| /* Interprocedural analyses. |
| Copyright (C) 2005-2021 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "rtl.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "alloc-pool.h" |
| #include "tree-pass.h" |
| #include "ssa.h" |
| #include "tree-streamer.h" |
| #include "cgraph.h" |
| #include "diagnostic.h" |
| #include "fold-const.h" |
| #include "gimple-fold.h" |
| #include "tree-eh.h" |
| #include "calls.h" |
| #include "stor-layout.h" |
| #include "print-tree.h" |
| #include "gimplify.h" |
| #include "gimple-iterator.h" |
| #include "gimplify-me.h" |
| #include "gimple-walk.h" |
| #include "symbol-summary.h" |
| #include "ipa-prop.h" |
| #include "tree-cfg.h" |
| #include "tree-dfa.h" |
| #include "tree-inline.h" |
| #include "ipa-fnsummary.h" |
| #include "gimple-pretty-print.h" |
| #include "ipa-utils.h" |
| #include "dbgcnt.h" |
| #include "domwalk.h" |
| #include "builtins.h" |
| #include "tree-cfgcleanup.h" |
| #include "options.h" |
| #include "symtab-clones.h" |
| #include "attr-fnspec.h" |
| #include "gimple-range.h" |
| |
| /* Function summary where the parameter infos are actually stored. */ |
| ipa_node_params_t *ipa_node_params_sum = NULL; |
| |
| function_summary <ipcp_transformation *> *ipcp_transformation_sum = NULL; |
| |
| /* Edge summary for IPA-CP edge information. */ |
| ipa_edge_args_sum_t *ipa_edge_args_sum; |
| |
| /* Traits for a hash table for reusing already existing ipa_bits. */ |
| |
| struct ipa_bit_ggc_hash_traits : public ggc_cache_remove <ipa_bits *> |
| { |
| typedef ipa_bits *value_type; |
| typedef ipa_bits *compare_type; |
| static hashval_t |
| hash (const ipa_bits *p) |
| { |
| hashval_t t = (hashval_t) p->value.to_shwi (); |
| return iterative_hash_host_wide_int (p->mask.to_shwi (), t); |
| } |
| static bool |
| equal (const ipa_bits *a, const ipa_bits *b) |
| { |
| return a->value == b->value && a->mask == b->mask; |
| } |
| static const bool empty_zero_p = true; |
| static void |
| mark_empty (ipa_bits *&p) |
| { |
| p = NULL; |
| } |
| static bool |
| is_empty (const ipa_bits *p) |
| { |
| return p == NULL; |
| } |
| static bool |
| is_deleted (const ipa_bits *p) |
| { |
| return p == reinterpret_cast<const ipa_bits *> (1); |
| } |
| static void |
| mark_deleted (ipa_bits *&p) |
| { |
| p = reinterpret_cast<ipa_bits *> (1); |
| } |
| }; |
| |
| /* Hash table for avoid repeated allocations of equal ipa_bits. */ |
| static GTY ((cache)) hash_table<ipa_bit_ggc_hash_traits> *ipa_bits_hash_table; |
| |
| /* Traits for a hash table for reusing value_ranges used for IPA. Note that |
| the equiv bitmap is not hashed and is expected to be NULL. */ |
| |
| struct ipa_vr_ggc_hash_traits : public ggc_cache_remove <value_range *> |
| { |
| typedef value_range *value_type; |
| typedef value_range *compare_type; |
| static hashval_t |
| hash (const value_range *p) |
| { |
| inchash::hash hstate (p->kind ()); |
| inchash::add_expr (p->min (), hstate); |
| inchash::add_expr (p->max (), hstate); |
| return hstate.end (); |
| } |
| static bool |
| equal (const value_range *a, const value_range *b) |
| { |
| return (a->equal_p (*b) |
| && types_compatible_p (a->type (), b->type ())); |
| } |
| static const bool empty_zero_p = true; |
| static void |
| mark_empty (value_range *&p) |
| { |
| p = NULL; |
| } |
| static bool |
| is_empty (const value_range *p) |
| { |
| return p == NULL; |
| } |
| static bool |
| is_deleted (const value_range *p) |
| { |
| return p == reinterpret_cast<const value_range *> (1); |
| } |
| static void |
| mark_deleted (value_range *&p) |
| { |
| p = reinterpret_cast<value_range *> (1); |
| } |
| }; |
| |
| /* Hash table for avoid repeated allocations of equal value_ranges. */ |
| static GTY ((cache)) hash_table<ipa_vr_ggc_hash_traits> *ipa_vr_hash_table; |
| |
| /* Holders of ipa cgraph hooks: */ |
| static struct cgraph_node_hook_list *function_insertion_hook_holder; |
| |
| /* Description of a reference to an IPA constant. */ |
| struct ipa_cst_ref_desc |
| { |
| /* Edge that corresponds to the statement which took the reference. */ |
| struct cgraph_edge *cs; |
| /* Linked list of duplicates created when call graph edges are cloned. */ |
| struct ipa_cst_ref_desc *next_duplicate; |
| /* Number of references in IPA structures, IPA_UNDESCRIBED_USE if the value |
| if out of control. */ |
| int refcount; |
| }; |
| |
| /* Allocation pool for reference descriptions. */ |
| |
| static object_allocator<ipa_cst_ref_desc> ipa_refdesc_pool |
| ("IPA-PROP ref descriptions"); |
| |
| /* Return true if DECL_FUNCTION_SPECIFIC_OPTIMIZATION of the decl associated |
| with NODE should prevent us from analyzing it for the purposes of IPA-CP. */ |
| |
| static bool |
| ipa_func_spec_opts_forbid_analysis_p (struct cgraph_node *node) |
| { |
| tree fs_opts = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (node->decl); |
| |
| if (!fs_opts) |
| return false; |
| return !opt_for_fn (node->decl, optimize) || !opt_for_fn (node->decl, flag_ipa_cp); |
| } |
| |
| /* Return index of the formal whose tree is PTREE in function which corresponds |
| to INFO. */ |
| |
| static int |
| ipa_get_param_decl_index_1 (vec<ipa_param_descriptor, va_gc> *descriptors, |
| tree ptree) |
| { |
| int i, count; |
| |
| count = vec_safe_length (descriptors); |
| for (i = 0; i < count; i++) |
| if ((*descriptors)[i].decl_or_type == ptree) |
| return i; |
| |
| return -1; |
| } |
| |
| /* Return index of the formal whose tree is PTREE in function which corresponds |
| to INFO. */ |
| |
| int |
| ipa_get_param_decl_index (class ipa_node_params *info, tree ptree) |
| { |
| return ipa_get_param_decl_index_1 (info->descriptors, ptree); |
| } |
| |
| /* Populate the param_decl field in parameter DESCRIPTORS that correspond to |
| NODE. */ |
| |
| static void |
| ipa_populate_param_decls (struct cgraph_node *node, |
| vec<ipa_param_descriptor, va_gc> &descriptors) |
| { |
| tree fndecl; |
| tree fnargs; |
| tree parm; |
| int param_num; |
| |
| fndecl = node->decl; |
| gcc_assert (gimple_has_body_p (fndecl)); |
| fnargs = DECL_ARGUMENTS (fndecl); |
| param_num = 0; |
| for (parm = fnargs; parm; parm = DECL_CHAIN (parm)) |
| { |
| descriptors[param_num].decl_or_type = parm; |
| unsigned int cost = estimate_move_cost (TREE_TYPE (parm), true); |
| descriptors[param_num].move_cost = cost; |
| /* Watch overflow, move_cost is a bitfield. */ |
| gcc_checking_assert (cost == descriptors[param_num].move_cost); |
| param_num++; |
| } |
| } |
| |
| /* Return how many formal parameters FNDECL has. */ |
| |
| int |
| count_formal_params (tree fndecl) |
| { |
| tree parm; |
| int count = 0; |
| gcc_assert (gimple_has_body_p (fndecl)); |
| |
| for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm)) |
| count++; |
| |
| return count; |
| } |
| |
| /* Return the declaration of Ith formal parameter of the function corresponding |
| to INFO. Note there is no setter function as this array is built just once |
| using ipa_initialize_node_params. */ |
| |
| void |
| ipa_dump_param (FILE *file, class ipa_node_params *info, int i) |
| { |
| fprintf (file, "param #%i", i); |
| if ((*info->descriptors)[i].decl_or_type) |
| { |
| fprintf (file, " "); |
| print_generic_expr (file, (*info->descriptors)[i].decl_or_type); |
| } |
| } |
| |
| /* If necessary, allocate vector of parameter descriptors in info of NODE. |
| Return true if they were allocated, false if not. */ |
| |
| static bool |
| ipa_alloc_node_params (struct cgraph_node *node, int param_count) |
| { |
| ipa_node_params *info = ipa_node_params_sum->get_create (node); |
| |
| if (!info->descriptors && param_count) |
| { |
| vec_safe_grow_cleared (info->descriptors, param_count, true); |
| return true; |
| } |
| else |
| return false; |
| } |
| |
| /* Initialize the ipa_node_params structure associated with NODE by counting |
| the function parameters, creating the descriptors and populating their |
| param_decls. */ |
| |
| void |
| ipa_initialize_node_params (struct cgraph_node *node) |
| { |
| ipa_node_params *info = ipa_node_params_sum->get_create (node); |
| |
| if (!info->descriptors |
| && ipa_alloc_node_params (node, count_formal_params (node->decl))) |
| ipa_populate_param_decls (node, *info->descriptors); |
| } |
| |
| /* Print the jump functions associated with call graph edge CS to file F. */ |
| |
| static void |
| ipa_print_node_jump_functions_for_edge (FILE *f, struct cgraph_edge *cs) |
| { |
| ipa_edge_args *args = ipa_edge_args_sum->get (cs); |
| int count = ipa_get_cs_argument_count (args); |
| |
| for (int i = 0; i < count; i++) |
| { |
| struct ipa_jump_func *jump_func; |
| enum jump_func_type type; |
| |
| jump_func = ipa_get_ith_jump_func (args, i); |
| type = jump_func->type; |
| |
| fprintf (f, " param %d: ", i); |
| if (type == IPA_JF_UNKNOWN) |
| fprintf (f, "UNKNOWN\n"); |
| else if (type == IPA_JF_CONST) |
| { |
| tree val = jump_func->value.constant.value; |
| fprintf (f, "CONST: "); |
| print_generic_expr (f, val); |
| if (TREE_CODE (val) == ADDR_EXPR |
| && TREE_CODE (TREE_OPERAND (val, 0)) == CONST_DECL) |
| { |
| fprintf (f, " -> "); |
| print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (val, 0))); |
| } |
| fprintf (f, "\n"); |
| } |
| else if (type == IPA_JF_PASS_THROUGH) |
| { |
| fprintf (f, "PASS THROUGH: "); |
| fprintf (f, "%d, op %s", |
| jump_func->value.pass_through.formal_id, |
| get_tree_code_name(jump_func->value.pass_through.operation)); |
| if (jump_func->value.pass_through.operation != NOP_EXPR) |
| { |
| fprintf (f, " "); |
| print_generic_expr (f, jump_func->value.pass_through.operand); |
| } |
| if (jump_func->value.pass_through.agg_preserved) |
| fprintf (f, ", agg_preserved"); |
| fprintf (f, "\n"); |
| } |
| else if (type == IPA_JF_ANCESTOR) |
| { |
| fprintf (f, "ANCESTOR: "); |
| fprintf (f, "%d, offset " HOST_WIDE_INT_PRINT_DEC, |
| jump_func->value.ancestor.formal_id, |
| jump_func->value.ancestor.offset); |
| if (jump_func->value.ancestor.agg_preserved) |
| fprintf (f, ", agg_preserved"); |
| fprintf (f, "\n"); |
| } |
| |
| if (jump_func->agg.items) |
| { |
| struct ipa_agg_jf_item *item; |
| int j; |
| |
| fprintf (f, " Aggregate passed by %s:\n", |
| jump_func->agg.by_ref ? "reference" : "value"); |
| FOR_EACH_VEC_ELT (*jump_func->agg.items, j, item) |
| { |
| fprintf (f, " offset: " HOST_WIDE_INT_PRINT_DEC ", ", |
| item->offset); |
| fprintf (f, "type: "); |
| print_generic_expr (f, item->type); |
| fprintf (f, ", "); |
| if (item->jftype == IPA_JF_PASS_THROUGH) |
| fprintf (f, "PASS THROUGH: %d,", |
| item->value.pass_through.formal_id); |
| else if (item->jftype == IPA_JF_LOAD_AGG) |
| { |
| fprintf (f, "LOAD AGG: %d", |
| item->value.pass_through.formal_id); |
| fprintf (f, " [offset: " HOST_WIDE_INT_PRINT_DEC ", by %s],", |
| item->value.load_agg.offset, |
| item->value.load_agg.by_ref ? "reference" |
| : "value"); |
| } |
| |
| if (item->jftype == IPA_JF_PASS_THROUGH |
| || item->jftype == IPA_JF_LOAD_AGG) |
| { |
| fprintf (f, " op %s", |
| get_tree_code_name (item->value.pass_through.operation)); |
| if (item->value.pass_through.operation != NOP_EXPR) |
| { |
| fprintf (f, " "); |
| print_generic_expr (f, item->value.pass_through.operand); |
| } |
| } |
| else if (item->jftype == IPA_JF_CONST) |
| { |
| fprintf (f, "CONST: "); |
| print_generic_expr (f, item->value.constant); |
| } |
| else if (item->jftype == IPA_JF_UNKNOWN) |
| fprintf (f, "UNKNOWN: " HOST_WIDE_INT_PRINT_DEC " bits", |
| tree_to_uhwi (TYPE_SIZE (item->type))); |
| fprintf (f, "\n"); |
| } |
| } |
| |
| class ipa_polymorphic_call_context *ctx |
| = ipa_get_ith_polymorhic_call_context (args, i); |
| if (ctx && !ctx->useless_p ()) |
| { |
| fprintf (f, " Context: "); |
| ctx->dump (dump_file); |
| } |
| |
| if (jump_func->bits) |
| { |
| fprintf (f, " value: "); |
| print_hex (jump_func->bits->value, f); |
| fprintf (f, ", mask: "); |
| print_hex (jump_func->bits->mask, f); |
| fprintf (f, "\n"); |
| } |
| else |
| fprintf (f, " Unknown bits\n"); |
| |
| if (jump_func->m_vr) |
| { |
| fprintf (f, " VR "); |
| fprintf (f, "%s[", |
| (jump_func->m_vr->kind () == VR_ANTI_RANGE) ? "~" : ""); |
| print_decs (wi::to_wide (jump_func->m_vr->min ()), f); |
| fprintf (f, ", "); |
| print_decs (wi::to_wide (jump_func->m_vr->max ()), f); |
| fprintf (f, "]\n"); |
| } |
| else |
| fprintf (f, " Unknown VR\n"); |
| } |
| } |
| |
| |
| /* Print the jump functions of all arguments on all call graph edges going from |
| NODE to file F. */ |
| |
| void |
| ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node) |
| { |
| struct cgraph_edge *cs; |
| |
| fprintf (f, " Jump functions of caller %s:\n", node->dump_name ()); |
| for (cs = node->callees; cs; cs = cs->next_callee) |
| { |
| |
| fprintf (f, " callsite %s -> %s : \n", |
| node->dump_name (), |
| cs->callee->dump_name ()); |
| if (!ipa_edge_args_info_available_for_edge_p (cs)) |
| fprintf (f, " no arg info\n"); |
| else |
| ipa_print_node_jump_functions_for_edge (f, cs); |
| } |
| |
| for (cs = node->indirect_calls; cs; cs = cs->next_callee) |
| { |
| class cgraph_indirect_call_info *ii; |
| |
| ii = cs->indirect_info; |
| if (ii->agg_contents) |
| fprintf (f, " indirect %s callsite, calling param %i, " |
| "offset " HOST_WIDE_INT_PRINT_DEC ", %s", |
| ii->member_ptr ? "member ptr" : "aggregate", |
| ii->param_index, ii->offset, |
| ii->by_ref ? "by reference" : "by_value"); |
| else |
| fprintf (f, " indirect %s callsite, calling param %i, " |
| "offset " HOST_WIDE_INT_PRINT_DEC, |
| ii->polymorphic ? "polymorphic" : "simple", ii->param_index, |
| ii->offset); |
| |
| if (cs->call_stmt) |
| { |
| fprintf (f, ", for stmt "); |
| print_gimple_stmt (f, cs->call_stmt, 0, TDF_SLIM); |
| } |
| else |
| fprintf (f, "\n"); |
| if (ii->polymorphic) |
| ii->context.dump (f); |
| if (!ipa_edge_args_info_available_for_edge_p (cs)) |
| fprintf (f, " no arg info\n"); |
| else |
| ipa_print_node_jump_functions_for_edge (f, cs); |
| } |
| } |
| |
| /* Print ipa_jump_func data structures of all nodes in the call graph to F. */ |
| |
| void |
| ipa_print_all_jump_functions (FILE *f) |
| { |
| struct cgraph_node *node; |
| |
| fprintf (f, "\nJump functions:\n"); |
| FOR_EACH_FUNCTION (node) |
| { |
| ipa_print_node_jump_functions (f, node); |
| } |
| } |
| |
| /* Set jfunc to be a know-really nothing jump function. */ |
| |
| static void |
| ipa_set_jf_unknown (struct ipa_jump_func *jfunc) |
| { |
| jfunc->type = IPA_JF_UNKNOWN; |
| } |
| |
| /* Set JFUNC to be a copy of another jmp (to be used by jump function |
| combination code). The two functions will share their rdesc. */ |
| |
| static void |
| ipa_set_jf_cst_copy (struct ipa_jump_func *dst, |
| struct ipa_jump_func *src) |
| |
| { |
| gcc_checking_assert (src->type == IPA_JF_CONST); |
| dst->type = IPA_JF_CONST; |
| dst->value.constant = src->value.constant; |
| } |
| |
| /* Set JFUNC to be a constant jmp function. */ |
| |
| static void |
| ipa_set_jf_constant (struct ipa_jump_func *jfunc, tree constant, |
| struct cgraph_edge *cs) |
| { |
| jfunc->type = IPA_JF_CONST; |
| jfunc->value.constant.value = unshare_expr_without_location (constant); |
| |
| if (TREE_CODE (constant) == ADDR_EXPR |
| && (TREE_CODE (TREE_OPERAND (constant, 0)) == FUNCTION_DECL |
| || (TREE_CODE (TREE_OPERAND (constant, 0)) == VAR_DECL |
| && TREE_STATIC (TREE_OPERAND (constant, 0))))) |
| { |
| struct ipa_cst_ref_desc *rdesc; |
| |
| rdesc = ipa_refdesc_pool.allocate (); |
| rdesc->cs = cs; |
| rdesc->next_duplicate = NULL; |
| rdesc->refcount = 1; |
| jfunc->value.constant.rdesc = rdesc; |
| } |
| else |
| jfunc->value.constant.rdesc = NULL; |
| } |
| |
| /* Set JFUNC to be a simple pass-through jump function. */ |
| static void |
| ipa_set_jf_simple_pass_through (struct ipa_jump_func *jfunc, int formal_id, |
| bool agg_preserved) |
| { |
| jfunc->type = IPA_JF_PASS_THROUGH; |
| jfunc->value.pass_through.operand = NULL_TREE; |
| jfunc->value.pass_through.formal_id = formal_id; |
| jfunc->value.pass_through.operation = NOP_EXPR; |
| jfunc->value.pass_through.agg_preserved = agg_preserved; |
| } |
| |
| /* Set JFUNC to be an unary pass through jump function. */ |
| |
| static void |
| ipa_set_jf_unary_pass_through (struct ipa_jump_func *jfunc, int formal_id, |
| enum tree_code operation) |
| { |
| jfunc->type = IPA_JF_PASS_THROUGH; |
| jfunc->value.pass_through.operand = NULL_TREE; |
| jfunc->value.pass_through.formal_id = formal_id; |
| jfunc->value.pass_through.operation = operation; |
| jfunc->value.pass_through.agg_preserved = false; |
| } |
| /* Set JFUNC to be an arithmetic pass through jump function. */ |
| |
| static void |
| ipa_set_jf_arith_pass_through (struct ipa_jump_func *jfunc, int formal_id, |
| tree operand, enum tree_code operation) |
| { |
| jfunc->type = IPA_JF_PASS_THROUGH; |
| jfunc->value.pass_through.operand = unshare_expr_without_location (operand); |
| jfunc->value.pass_through.formal_id = formal_id; |
| jfunc->value.pass_through.operation = operation; |
| jfunc->value.pass_through.agg_preserved = false; |
| } |
| |
| /* Set JFUNC to be an ancestor jump function. */ |
| |
| static void |
| ipa_set_ancestor_jf (struct ipa_jump_func *jfunc, HOST_WIDE_INT offset, |
| int formal_id, bool agg_preserved) |
| { |
| jfunc->type = IPA_JF_ANCESTOR; |
| jfunc->value.ancestor.formal_id = formal_id; |
| jfunc->value.ancestor.offset = offset; |
| jfunc->value.ancestor.agg_preserved = agg_preserved; |
| } |
| |
| /* Get IPA BB information about the given BB. FBI is the context of analyzis |
| of this function body. */ |
| |
| static struct ipa_bb_info * |
| ipa_get_bb_info (struct ipa_func_body_info *fbi, basic_block bb) |
| { |
| gcc_checking_assert (fbi); |
| return &fbi->bb_infos[bb->index]; |
| } |
| |
| /* Structure to be passed in between detect_type_change and |
| check_stmt_for_type_change. */ |
| |
| struct prop_type_change_info |
| { |
| /* Offset into the object where there is the virtual method pointer we are |
| looking for. */ |
| HOST_WIDE_INT offset; |
| /* The declaration or SSA_NAME pointer of the base that we are checking for |
| type change. */ |
| tree object; |
| /* Set to true if dynamic type change has been detected. */ |
| bool type_maybe_changed; |
| }; |
| |
| /* Return true if STMT can modify a virtual method table pointer. |
| |
| This function makes special assumptions about both constructors and |
| destructors which are all the functions that are allowed to alter the VMT |
| pointers. It assumes that destructors begin with assignment into all VMT |
| pointers and that constructors essentially look in the following way: |
| |
| 1) The very first thing they do is that they call constructors of ancestor |
| sub-objects that have them. |
| |
| 2) Then VMT pointers of this and all its ancestors is set to new values |
| corresponding to the type corresponding to the constructor. |
| |
| 3) Only afterwards, other stuff such as constructor of member sub-objects |
| and the code written by the user is run. Only this may include calling |
| virtual functions, directly or indirectly. |
| |
| There is no way to call a constructor of an ancestor sub-object in any |
| other way. |
| |
| This means that we do not have to care whether constructors get the correct |
| type information because they will always change it (in fact, if we define |
| the type to be given by the VMT pointer, it is undefined). |
| |
| The most important fact to derive from the above is that if, for some |
| statement in the section 3, we try to detect whether the dynamic type has |
| changed, we can safely ignore all calls as we examine the function body |
| backwards until we reach statements in section 2 because these calls cannot |
| be ancestor constructors or destructors (if the input is not bogus) and so |
| do not change the dynamic type (this holds true only for automatically |
| allocated objects but at the moment we devirtualize only these). We then |
| must detect that statements in section 2 change the dynamic type and can try |
| to derive the new type. That is enough and we can stop, we will never see |
| the calls into constructors of sub-objects in this code. Therefore we can |
| safely ignore all call statements that we traverse. |
| */ |
| |
| static bool |
| stmt_may_be_vtbl_ptr_store (gimple *stmt) |
| { |
| if (is_gimple_call (stmt)) |
| return false; |
| if (gimple_clobber_p (stmt)) |
| return false; |
| else if (is_gimple_assign (stmt)) |
| { |
| tree lhs = gimple_assign_lhs (stmt); |
| |
| if (!AGGREGATE_TYPE_P (TREE_TYPE (lhs))) |
| { |
| if (flag_strict_aliasing |
| && !POINTER_TYPE_P (TREE_TYPE (lhs))) |
| return false; |
| |
| if (TREE_CODE (lhs) == COMPONENT_REF |
| && !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1))) |
| return false; |
| /* In the future we might want to use get_ref_base_and_extent to find |
| if there is a field corresponding to the offset and if so, proceed |
| almost like if it was a component ref. */ |
| } |
| } |
| return true; |
| } |
| |
| /* Callback of walk_aliased_vdefs and a helper function for detect_type_change |
| to check whether a particular statement may modify the virtual table |
| pointerIt stores its result into DATA, which points to a |
| prop_type_change_info structure. */ |
| |
| static bool |
| check_stmt_for_type_change (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data) |
| { |
| gimple *stmt = SSA_NAME_DEF_STMT (vdef); |
| struct prop_type_change_info *tci = (struct prop_type_change_info *) data; |
| |
| if (stmt_may_be_vtbl_ptr_store (stmt)) |
| { |
| tci->type_maybe_changed = true; |
| return true; |
| } |
| else |
| return false; |
| } |
| |
| /* See if ARG is PARAM_DECl describing instance passed by pointer |
| or reference in FUNCTION. Return false if the dynamic type may change |
| in between beggining of the function until CALL is invoked. |
| |
| Generally functions are not allowed to change type of such instances, |
| but they call destructors. We assume that methods cannot destroy the THIS |
| pointer. Also as a special cases, constructor and destructors may change |
| type of the THIS pointer. */ |
| |
| static bool |
| param_type_may_change_p (tree function, tree arg, gimple *call) |
| { |
| /* Pure functions cannot do any changes on the dynamic type; |
| that require writting to memory. */ |
| if (flags_from_decl_or_type (function) & (ECF_PURE | ECF_CONST)) |
| return false; |
| /* We need to check if we are within inlined consturctor |
| or destructor (ideally we would have way to check that the |
| inline cdtor is actually working on ARG, but we don't have |
| easy tie on this, so punt on all non-pure cdtors. |
| We may also record the types of cdtors and once we know type |
| of the instance match them. |
| |
| Also code unification optimizations may merge calls from |
| different blocks making return values unreliable. So |
| do nothing during late optimization. */ |
| if (DECL_STRUCT_FUNCTION (function)->after_inlining) |
| return true; |
| if (TREE_CODE (arg) == SSA_NAME |
| && SSA_NAME_IS_DEFAULT_DEF (arg) |
| && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL) |
| { |
| /* Normal (non-THIS) argument. */ |
| if ((SSA_NAME_VAR (arg) != DECL_ARGUMENTS (function) |
| || TREE_CODE (TREE_TYPE (function)) != METHOD_TYPE) |
| /* THIS pointer of an method - here we want to watch constructors |
| and destructors as those definitely may change the dynamic |
| type. */ |
| || (TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE |
| && !DECL_CXX_CONSTRUCTOR_P (function) |
| && !DECL_CXX_DESTRUCTOR_P (function) |
| && (SSA_NAME_VAR (arg) == DECL_ARGUMENTS (function)))) |
| { |
| /* Walk the inline stack and watch out for ctors/dtors. */ |
| for (tree block = gimple_block (call); block && TREE_CODE (block) == BLOCK; |
| block = BLOCK_SUPERCONTEXT (block)) |
| if (inlined_polymorphic_ctor_dtor_block_p (block, false)) |
| return true; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* Detect whether the dynamic type of ARG of COMP_TYPE has changed (before |
| callsite CALL) by looking for assignments to its virtual table pointer. If |
| it is, return true. ARG is the object itself (not a pointer |
| to it, unless dereferenced). BASE is the base of the memory access as |
| returned by get_ref_base_and_extent, as is the offset. |
| |
| This is helper function for detect_type_change and detect_type_change_ssa |
| that does the heavy work which is usually unnecesary. */ |
| |
| static bool |
| detect_type_change_from_memory_writes (ipa_func_body_info *fbi, tree arg, |
| tree base, tree comp_type, gcall *call, |
| HOST_WIDE_INT offset) |
| { |
| struct prop_type_change_info tci; |
| ao_ref ao; |
| |
| gcc_checking_assert (DECL_P (arg) |
| || TREE_CODE (arg) == MEM_REF |
| || handled_component_p (arg)); |
| |
| comp_type = TYPE_MAIN_VARIANT (comp_type); |
| |
| /* Const calls cannot call virtual methods through VMT and so type changes do |
| not matter. */ |
| if (!flag_devirtualize || !gimple_vuse (call) |
| /* Be sure expected_type is polymorphic. */ |
| || !comp_type |
| || TREE_CODE (comp_type) != RECORD_TYPE |
| || !TYPE_BINFO (TYPE_MAIN_VARIANT (comp_type)) |
| || !BINFO_VTABLE (TYPE_BINFO (TYPE_MAIN_VARIANT (comp_type)))) |
| return true; |
| |
| if (fbi->aa_walk_budget == 0) |
| return false; |
| |
| ao_ref_init (&ao, arg); |
| ao.base = base; |
| ao.offset = offset; |
| ao.size = POINTER_SIZE; |
| ao.max_size = ao.size; |
| |
| tci.offset = offset; |
| tci.object = get_base_address (arg); |
| tci.type_maybe_changed = false; |
| |
| int walked |
| = walk_aliased_vdefs (&ao, gimple_vuse (call), check_stmt_for_type_change, |
| &tci, NULL, NULL, fbi->aa_walk_budget); |
| if (walked >= 0) |
| fbi->aa_walk_budget -= walked; |
| else |
| fbi->aa_walk_budget = 0; |
| |
| if (walked >= 0 && !tci.type_maybe_changed) |
| return false; |
| |
| return true; |
| } |
| |
| /* Detect whether the dynamic type of ARG of COMP_TYPE may have changed. |
| If it is, return true. ARG is the object itself (not a pointer |
| to it, unless dereferenced). BASE is the base of the memory access as |
| returned by get_ref_base_and_extent, as is the offset. */ |
| |
| static bool |
| detect_type_change (ipa_func_body_info *fbi, tree arg, tree base, |
| tree comp_type, gcall *call, |
| HOST_WIDE_INT offset) |
| { |
| if (!flag_devirtualize) |
| return false; |
| |
| if (TREE_CODE (base) == MEM_REF |
| && !param_type_may_change_p (current_function_decl, |
| TREE_OPERAND (base, 0), |
| call)) |
| return false; |
| return detect_type_change_from_memory_writes (fbi, arg, base, comp_type, |
| call, offset); |
| } |
| |
| /* Like detect_type_change but ARG is supposed to be a non-dereferenced pointer |
| SSA name (its dereference will become the base and the offset is assumed to |
| be zero). */ |
| |
| static bool |
| detect_type_change_ssa (ipa_func_body_info *fbi, tree arg, tree comp_type, |
| gcall *call) |
| { |
| gcc_checking_assert (TREE_CODE (arg) == SSA_NAME); |
| if (!flag_devirtualize |
| || !POINTER_TYPE_P (TREE_TYPE (arg))) |
| return false; |
| |
| if (!param_type_may_change_p (current_function_decl, arg, call)) |
| return false; |
| |
| arg = build2 (MEM_REF, ptr_type_node, arg, |
| build_int_cst (ptr_type_node, 0)); |
| |
| return detect_type_change_from_memory_writes (fbi, arg, arg, comp_type, |
| call, 0); |
| } |
| |
| /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the |
| boolean variable pointed to by DATA. */ |
| |
| static bool |
| mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED, |
| void *data) |
| { |
| bool *b = (bool *) data; |
| *b = true; |
| return true; |
| } |
| |
| /* Find the nearest valid aa status for parameter specified by INDEX that |
| dominates BB. */ |
| |
| static struct ipa_param_aa_status * |
| find_dominating_aa_status (struct ipa_func_body_info *fbi, basic_block bb, |
| int index) |
| { |
| while (true) |
| { |
| bb = get_immediate_dominator (CDI_DOMINATORS, bb); |
| if (!bb) |
| return NULL; |
| struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb); |
| if (!bi->param_aa_statuses.is_empty () |
| && bi->param_aa_statuses[index].valid) |
| return &bi->param_aa_statuses[index]; |
| } |
| } |
| |
| /* Get AA status structure for the given BB and parameter with INDEX. Allocate |
| structures and/or intialize the result with a dominating description as |
| necessary. */ |
| |
| static struct ipa_param_aa_status * |
| parm_bb_aa_status_for_bb (struct ipa_func_body_info *fbi, basic_block bb, |
| int index) |
| { |
| gcc_checking_assert (fbi); |
| struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb); |
| if (bi->param_aa_statuses.is_empty ()) |
| bi->param_aa_statuses.safe_grow_cleared (fbi->param_count, true); |
| struct ipa_param_aa_status *paa = &bi->param_aa_statuses[index]; |
| if (!paa->valid) |
| { |
| gcc_checking_assert (!paa->parm_modified |
| && !paa->ref_modified |
| && !paa->pt_modified); |
| struct ipa_param_aa_status *dom_paa; |
| dom_paa = find_dominating_aa_status (fbi, bb, index); |
| if (dom_paa) |
| *paa = *dom_paa; |
| else |
| paa->valid = true; |
| } |
| |
| return paa; |
| } |
| |
| /* Return true if a load from a formal parameter PARM_LOAD is known to retrieve |
| a value known not to be modified in this function before reaching the |
| statement STMT. FBI holds information about the function we have so far |
| gathered but do not survive the summary building stage. */ |
| |
| static bool |
| parm_preserved_before_stmt_p (struct ipa_func_body_info *fbi, int index, |
| gimple *stmt, tree parm_load) |
| { |
| struct ipa_param_aa_status *paa; |
| bool modified = false; |
| ao_ref refd; |
| |
| tree base = get_base_address (parm_load); |
| gcc_assert (TREE_CODE (base) == PARM_DECL); |
| if (TREE_READONLY (base)) |
| return true; |
| |
| gcc_checking_assert (fbi); |
| paa = parm_bb_aa_status_for_bb (fbi, gimple_bb (stmt), index); |
| if (paa->parm_modified || fbi->aa_walk_budget == 0) |
| return false; |
| |
| gcc_checking_assert (gimple_vuse (stmt) != NULL_TREE); |
| ao_ref_init (&refd, parm_load); |
| int walked = walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, |
| &modified, NULL, NULL, |
| fbi->aa_walk_budget); |
| if (walked < 0) |
| { |
| modified = true; |
| fbi->aa_walk_budget = 0; |
| } |
| else |
| fbi->aa_walk_budget -= walked; |
| if (paa && modified) |
| paa->parm_modified = true; |
| return !modified; |
| } |
| |
| /* If STMT is an assignment that loads a value from an parameter declaration, |
| return the index of the parameter in ipa_node_params which has not been |
| modified. Otherwise return -1. */ |
| |
| static int |
| load_from_unmodified_param (struct ipa_func_body_info *fbi, |
| vec<ipa_param_descriptor, va_gc> *descriptors, |
| gimple *stmt) |
| { |
| int index; |
| tree op1; |
| |
| if (!gimple_assign_single_p (stmt)) |
| return -1; |
| |
| op1 = gimple_assign_rhs1 (stmt); |
| if (TREE_CODE (op1) != PARM_DECL) |
| return -1; |
| |
| index = ipa_get_param_decl_index_1 (descriptors, op1); |
| if (index < 0 |
| || !parm_preserved_before_stmt_p (fbi, index, stmt, op1)) |
| return -1; |
| |
| return index; |
| } |
| |
| /* Return true if memory reference REF (which must be a load through parameter |
| with INDEX) loads data that are known to be unmodified in this function |
| before reaching statement STMT. */ |
| |
| static bool |
| parm_ref_data_preserved_p (struct ipa_func_body_info *fbi, |
| int index, gimple *stmt, tree ref) |
| { |
| struct ipa_param_aa_status *paa; |
| bool modified = false; |
| ao_ref refd; |
| |
| gcc_checking_assert (fbi); |
| paa = parm_bb_aa_status_for_bb (fbi, gimple_bb (stmt), index); |
| if (paa->ref_modified || fbi->aa_walk_budget == 0) |
| return false; |
| |
| gcc_checking_assert (gimple_vuse (stmt)); |
| ao_ref_init (&refd, ref); |
| int walked = walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, |
| &modified, NULL, NULL, |
| fbi->aa_walk_budget); |
| if (walked < 0) |
| { |
| modified = true; |
| fbi->aa_walk_budget = 0; |
| } |
| else |
| fbi->aa_walk_budget -= walked; |
| if (modified) |
| paa->ref_modified = true; |
| return !modified; |
| } |
| |
| /* Return true if the data pointed to by PARM (which is a parameter with INDEX) |
| is known to be unmodified in this function before reaching call statement |
| CALL into which it is passed. FBI describes the function body. */ |
| |
| static bool |
| parm_ref_data_pass_through_p (struct ipa_func_body_info *fbi, int index, |
| gimple *call, tree parm) |
| { |
| bool modified = false; |
| ao_ref refd; |
| |
| /* It's unnecessary to calculate anything about memory contnets for a const |
| function because it is not goin to use it. But do not cache the result |
| either. Also, no such calculations for non-pointers. */ |
| if (!gimple_vuse (call) |
| || !POINTER_TYPE_P (TREE_TYPE (parm))) |
| return false; |
| |
| struct ipa_param_aa_status *paa = parm_bb_aa_status_for_bb (fbi, |
| gimple_bb (call), |
| index); |
| if (paa->pt_modified || fbi->aa_walk_budget == 0) |
| return false; |
| |
| ao_ref_init_from_ptr_and_size (&refd, parm, NULL_TREE); |
| int walked = walk_aliased_vdefs (&refd, gimple_vuse (call), mark_modified, |
| &modified, NULL, NULL, |
| fbi->aa_walk_budget); |
| if (walked < 0) |
| { |
| fbi->aa_walk_budget = 0; |
| modified = true; |
| } |
| else |
| fbi->aa_walk_budget -= walked; |
| if (modified) |
| paa->pt_modified = true; |
| return !modified; |
| } |
| |
| /* Return true if we can prove that OP is a memory reference loading |
| data from an aggregate passed as a parameter. |
| |
| The function works in two modes. If GUARANTEED_UNMODIFIED is NULL, it return |
| false if it cannot prove that the value has not been modified before the |
| load in STMT. If GUARANTEED_UNMODIFIED is not NULL, it will return true even |
| if it cannot prove the value has not been modified, in that case it will |
| store false to *GUARANTEED_UNMODIFIED, otherwise it will store true there. |
| |
| INFO and PARMS_AINFO describe parameters of the current function (but the |
| latter can be NULL), STMT is the load statement. If function returns true, |
| *INDEX_P, *OFFSET_P and *BY_REF is filled with the parameter index, offset |
| within the aggregate and whether it is a load from a value passed by |
| reference respectively. */ |
| |
| bool |
| ipa_load_from_parm_agg (struct ipa_func_body_info *fbi, |
| vec<ipa_param_descriptor, va_gc> *descriptors, |
| gimple *stmt, tree op, int *index_p, |
| HOST_WIDE_INT *offset_p, poly_int64 *size_p, |
| bool *by_ref_p, bool *guaranteed_unmodified) |
| { |
| int index; |
| HOST_WIDE_INT size; |
| bool reverse; |
| tree base = get_ref_base_and_extent_hwi (op, offset_p, &size, &reverse); |
| |
| if (!base) |
| return false; |
| |
| if (DECL_P (base)) |
| { |
| int index = ipa_get_param_decl_index_1 (descriptors, base); |
| if (index >= 0 |
| && parm_preserved_before_stmt_p (fbi, index, stmt, op)) |
| { |
| *index_p = index; |
| *by_ref_p = false; |
| if (size_p) |
| *size_p = size; |
| if (guaranteed_unmodified) |
| *guaranteed_unmodified = true; |
| return true; |
| } |
| return false; |
| } |
| |
| if (TREE_CODE (base) != MEM_REF |
| || TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME |
| || !integer_zerop (TREE_OPERAND (base, 1))) |
| return false; |
| |
| if (SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (base, 0))) |
| { |
| tree parm = SSA_NAME_VAR (TREE_OPERAND (base, 0)); |
| index = ipa_get_param_decl_index_1 (descriptors, parm); |
| } |
| else |
| { |
| /* This branch catches situations where a pointer parameter is not a |
| gimple register, for example: |
| |
| void hip7(S*) (struct S * p) |
| { |
| void (*<T2e4>) (struct S *) D.1867; |
| struct S * p.1; |
| |
| <bb 2>: |
| p.1_1 = p; |
| D.1867_2 = p.1_1->f; |
| D.1867_2 (); |
| gdp = &p; |
| */ |
| |
| gimple *def = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0)); |
| index = load_from_unmodified_param (fbi, descriptors, def); |
| } |
| |
| if (index >= 0) |
| { |
| bool data_preserved = parm_ref_data_preserved_p (fbi, index, stmt, op); |
| if (!data_preserved && !guaranteed_unmodified) |
| return false; |
| |
| *index_p = index; |
| *by_ref_p = true; |
| if (size_p) |
| *size_p = size; |
| if (guaranteed_unmodified) |
| *guaranteed_unmodified = data_preserved; |
| return true; |
| } |
| return false; |
| } |
| |
| /* If STMT is an assignment that loads a value from a parameter declaration, |
| or from an aggregate passed as the parameter either by value or reference, |
| return the index of the parameter in ipa_node_params. Otherwise return -1. |
| |
| FBI holds gathered information about the function. INFO describes |
| parameters of the function, STMT is the assignment statement. If it is a |
| memory load from an aggregate, *OFFSET_P is filled with offset within the |
| aggregate, and *BY_REF_P specifies whether the aggregate is passed by |
| reference. */ |
| |
| static int |
| load_from_unmodified_param_or_agg (struct ipa_func_body_info *fbi, |
| class ipa_node_params *info, |
| gimple *stmt, |
| HOST_WIDE_INT *offset_p, |
| bool *by_ref_p) |
| { |
| int index = load_from_unmodified_param (fbi, info->descriptors, stmt); |
| poly_int64 size; |
| |
| /* Load value from a parameter declaration. */ |
| if (index >= 0) |
| { |
| *offset_p = -1; |
| return index; |
| } |
| |
| if (!gimple_assign_load_p (stmt)) |
| return -1; |
| |
| tree rhs = gimple_assign_rhs1 (stmt); |
| |
| /* Skip memory reference containing VIEW_CONVERT_EXPR. */ |
| for (tree t = rhs; handled_component_p (t); t = TREE_OPERAND (t, 0)) |
| if (TREE_CODE (t) == VIEW_CONVERT_EXPR) |
| return -1; |
| |
| /* Skip memory reference containing bit-field. */ |
| if (TREE_CODE (rhs) == BIT_FIELD_REF |
| || contains_bitfld_component_ref_p (rhs)) |
| return -1; |
| |
| if (!ipa_load_from_parm_agg (fbi, info->descriptors, stmt, rhs, &index, |
| offset_p, &size, by_ref_p)) |
| return -1; |
| |
| gcc_assert (!maybe_ne (tree_to_poly_int64 (TYPE_SIZE (TREE_TYPE (rhs))), |
| size)); |
| if (!*by_ref_p) |
| { |
| tree param_type = ipa_get_type (info, index); |
| |
| if (!param_type || !AGGREGATE_TYPE_P (param_type)) |
| return -1; |
| } |
| else if (TREE_THIS_VOLATILE (rhs)) |
| return -1; |
| |
| return index; |
| } |
| |
| /* Walk pointer adjustemnts from OP (such as POINTER_PLUS and ADDR_EXPR) |
| to find original pointer. Initialize RET to the pointer which results from |
| the walk. |
| If offset is known return true and initialize OFFSET_RET. */ |
| |
| bool |
| unadjusted_ptr_and_unit_offset (tree op, tree *ret, poly_int64 *offset_ret) |
| { |
| poly_int64 offset = 0; |
| bool offset_known = true; |
| int i; |
| |
| for (i = 0; i < param_ipa_jump_function_lookups; i++) |
| { |
| if (TREE_CODE (op) == ADDR_EXPR) |
| { |
| poly_int64 extra_offset = 0; |
| tree base = get_addr_base_and_unit_offset (TREE_OPERAND (op, 0), |
| &offset); |
| if (!base) |
| { |
| base = get_base_address (TREE_OPERAND (op, 0)); |
| if (TREE_CODE (base) != MEM_REF) |
| break; |
| offset_known = false; |
| } |
| else |
| { |
| if (TREE_CODE (base) != MEM_REF) |
| break; |
| offset += extra_offset; |
| } |
| op = TREE_OPERAND (base, 0); |
| if (mem_ref_offset (base).to_shwi (&extra_offset)) |
| offset += extra_offset; |
| else |
| offset_known = false; |
| } |
| else if (TREE_CODE (op) == SSA_NAME |
| && !SSA_NAME_IS_DEFAULT_DEF (op)) |
| { |
| gimple *pstmt = SSA_NAME_DEF_STMT (op); |
| |
| if (gimple_assign_single_p (pstmt)) |
| op = gimple_assign_rhs1 (pstmt); |
| else if (is_gimple_assign (pstmt) |
| && gimple_assign_rhs_code (pstmt) == POINTER_PLUS_EXPR) |
| { |
| poly_int64 extra_offset = 0; |
| if (ptrdiff_tree_p (gimple_assign_rhs2 (pstmt), |
| &extra_offset)) |
| offset += extra_offset; |
| else |
| offset_known = false; |
| op = gimple_assign_rhs1 (pstmt); |
| } |
| else |
| break; |
| } |
| else |
| break; |
| } |
| *ret = op; |
| *offset_ret = offset; |
| return offset_known; |
| } |
| |
| /* Given that an actual argument is an SSA_NAME (given in NAME) and is a result |
| of an assignment statement STMT, try to determine whether we are actually |
| handling any of the following cases and construct an appropriate jump |
| function into JFUNC if so: |
| |
| 1) The passed value is loaded from a formal parameter which is not a gimple |
| register (most probably because it is addressable, the value has to be |
| scalar) and we can guarantee the value has not changed. This case can |
| therefore be described by a simple pass-through jump function. For example: |
| |
| foo (int a) |
| { |
| int a.0; |
| |
| a.0_2 = a; |
| bar (a.0_2); |
| |
| 2) The passed value can be described by a simple arithmetic pass-through |
| jump function. E.g. |
| |
| foo (int a) |
| { |
| int D.2064; |
| |
| D.2064_4 = a.1(D) + 4; |
| bar (D.2064_4); |
| |
| This case can also occur in combination of the previous one, e.g.: |
| |
| foo (int a, int z) |
| { |
| int a.0; |
| int D.2064; |
| |
| a.0_3 = a; |
| D.2064_4 = a.0_3 + 4; |
| foo (D.2064_4); |
| |
| 3) The passed value is an address of an object within another one (which |
| also passed by reference). Such situations are described by an ancestor |
| jump function and describe situations such as: |
| |
| B::foo() (struct B * const this) |
| { |
| struct A * D.1845; |
| |
| D.1845_2 = &this_1(D)->D.1748; |
| A::bar (D.1845_2); |
| |
| INFO is the structure describing individual parameters access different |
| stages of IPA optimizations. PARMS_AINFO contains the information that is |
| only needed for intraprocedural analysis. */ |
| |
| static void |
| compute_complex_assign_jump_func (struct ipa_func_body_info *fbi, |
| class ipa_node_params *info, |
| struct ipa_jump_func *jfunc, |
| gcall *call, gimple *stmt, tree name, |
| tree param_type) |
| { |
| HOST_WIDE_INT offset, size; |
| tree op1, tc_ssa, base, ssa; |
| bool reverse; |
| int index; |
| |
| op1 = gimple_assign_rhs1 (stmt); |
| |
| if (TREE_CODE (op1) == SSA_NAME) |
| { |
| if (SSA_NAME_IS_DEFAULT_DEF (op1)) |
| index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1)); |
| else |
| index = load_from_unmodified_param (fbi, info->descriptors, |
| SSA_NAME_DEF_STMT (op1)); |
| tc_ssa = op1; |
| } |
| else |
| { |
| index = load_from_unmodified_param (fbi, info->descriptors, stmt); |
| tc_ssa = gimple_assign_lhs (stmt); |
| } |
| |
| if (index >= 0) |
| { |
| switch (gimple_assign_rhs_class (stmt)) |
| { |
| case GIMPLE_BINARY_RHS: |
| { |
| tree op2 = gimple_assign_rhs2 (stmt); |
| if (!is_gimple_ip_invariant (op2) |
| || ((TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) |
| != tcc_comparison) |
| && !useless_type_conversion_p (TREE_TYPE (name), |
| TREE_TYPE (op1)))) |
| return; |
| |
| ipa_set_jf_arith_pass_through (jfunc, index, op2, |
| gimple_assign_rhs_code (stmt)); |
| break; |
| } |
| case GIMPLE_SINGLE_RHS: |
| { |
| bool agg_p = parm_ref_data_pass_through_p (fbi, index, call, |
| tc_ssa); |
| ipa_set_jf_simple_pass_through (jfunc, index, agg_p); |
| break; |
| } |
| case GIMPLE_UNARY_RHS: |
| if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))) |
| ipa_set_jf_unary_pass_through (jfunc, index, |
| gimple_assign_rhs_code (stmt)); |
| default:; |
| } |
| return; |
| } |
| |
| if (TREE_CODE (op1) != ADDR_EXPR) |
| return; |
| op1 = TREE_OPERAND (op1, 0); |
| if (TREE_CODE (TREE_TYPE (op1)) != RECORD_TYPE) |
| return; |
| base = get_ref_base_and_extent_hwi (op1, &offset, &size, &reverse); |
| offset_int mem_offset; |
| if (!base |
| || TREE_CODE (base) != MEM_REF |
| || !mem_ref_offset (base).is_constant (&mem_offset)) |
| return; |
| offset += mem_offset.to_short_addr () * BITS_PER_UNIT; |
| ssa = TREE_OPERAND (base, 0); |
| if (TREE_CODE (ssa) != SSA_NAME |
| || !SSA_NAME_IS_DEFAULT_DEF (ssa) |
| || offset < 0) |
| return; |
| |
| /* Dynamic types are changed in constructors and destructors. */ |
| index = ipa_get_param_decl_index (info, SSA_NAME_VAR (ssa)); |
| if (index >= 0 && param_type && POINTER_TYPE_P (param_type)) |
| ipa_set_ancestor_jf (jfunc, offset, index, |
| parm_ref_data_pass_through_p (fbi, index, call, ssa)); |
| } |
| |
| /* Extract the base, offset and MEM_REF expression from a statement ASSIGN if |
| it looks like: |
| |
| iftmp.1_3 = &obj_2(D)->D.1762; |
| |
| The base of the MEM_REF must be a default definition SSA NAME of a |
| parameter. Return NULL_TREE if it looks otherwise. If case of success, the |
| whole MEM_REF expression is returned and the offset calculated from any |
| handled components and the MEM_REF itself is stored into *OFFSET. The whole |
| RHS stripped off the ADDR_EXPR is stored into *OBJ_P. */ |
| |
| static tree |
| get_ancestor_addr_info (gimple *assign, tree *obj_p, HOST_WIDE_INT *offset) |
| { |
| HOST_WIDE_INT size; |
| tree expr, parm, obj; |
| bool reverse; |
| |
| if (!gimple_assign_single_p (assign)) |
| return NULL_TREE; |
| expr = gimple_assign_rhs1 (assign); |
| |
| if (TREE_CODE (expr) != ADDR_EXPR) |
| return NULL_TREE; |
| expr = TREE_OPERAND (expr, 0); |
| obj = expr; |
| expr = get_ref_base_and_extent_hwi (expr, offset, &size, &reverse); |
| |
| offset_int mem_offset; |
| if (!expr |
| || TREE_CODE (expr) != MEM_REF |
| || !mem_ref_offset (expr).is_constant (&mem_offset)) |
| return NULL_TREE; |
| parm = TREE_OPERAND (expr, 0); |
| if (TREE_CODE (parm) != SSA_NAME |
| || !SSA_NAME_IS_DEFAULT_DEF (parm) |
| || TREE_CODE (SSA_NAME_VAR (parm)) != PARM_DECL) |
| return NULL_TREE; |
| |
| *offset += mem_offset.to_short_addr () * BITS_PER_UNIT; |
| *obj_p = obj; |
| return expr; |
| } |
| |
| |
| /* Given that an actual argument is an SSA_NAME that is a result of a phi |
| statement PHI, try to find out whether NAME is in fact a |
| multiple-inheritance typecast from a descendant into an ancestor of a formal |
| parameter and thus can be described by an ancestor jump function and if so, |
| write the appropriate function into JFUNC. |
| |
| Essentially we want to match the following pattern: |
| |
| if (obj_2(D) != 0B) |
| goto <bb 3>; |
| else |
| goto <bb 4>; |
| |
| <bb 3>: |
| iftmp.1_3 = &obj_2(D)->D.1762; |
| |
| <bb 4>: |
| # iftmp.1_1 = PHI <iftmp.1_3(3), 0B(2)> |
| D.1879_6 = middleman_1 (iftmp.1_1, i_5(D)); |
| return D.1879_6; */ |
| |
| static void |
| compute_complex_ancestor_jump_func (struct ipa_func_body_info *fbi, |
| class ipa_node_params *info, |
| struct ipa_jump_func *jfunc, |
| gcall *call, gphi *phi) |
| { |
| HOST_WIDE_INT offset; |
| gimple *assign, *cond; |
| basic_block phi_bb, assign_bb, cond_bb; |
| tree tmp, parm, expr, obj; |
| int index, i; |
| |
| if (gimple_phi_num_args (phi) != 2) |
| return; |
| |
| if (integer_zerop (PHI_ARG_DEF (phi, 1))) |
| tmp = PHI_ARG_DEF (phi, 0); |
| else if (integer_zerop (PHI_ARG_DEF (phi, 0))) |
| tmp = PHI_ARG_DEF (phi, 1); |
| else |
| return; |
| if (TREE_CODE (tmp) != SSA_NAME |
| || SSA_NAME_IS_DEFAULT_DEF (tmp) |
| || !POINTER_TYPE_P (TREE_TYPE (tmp)) |
| || TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) != RECORD_TYPE) |
| return; |
| |
| assign = SSA_NAME_DEF_STMT (tmp); |
| assign_bb = gimple_bb (assign); |
| if (!single_pred_p (assign_bb)) |
| return; |
| expr = get_ancestor_addr_info (assign, &obj, &offset); |
| if (!expr) |
| return; |
| parm = TREE_OPERAND (expr, 0); |
| index = ipa_get_param_decl_index (info, SSA_NAME_VAR (parm)); |
| if (index < 0) |
| return; |
| |
| cond_bb = single_pred (assign_bb); |
| cond = last_stmt (cond_bb); |
| if (!cond |
| || gimple_code (cond) != GIMPLE_COND |
| || gimple_cond_code (cond) != NE_EXPR |
| || gimple_cond_lhs (cond) != parm |
| || !integer_zerop (gimple_cond_rhs (cond))) |
| return; |
| |
| phi_bb = gimple_bb (phi); |
| for (i = 0; i < 2; i++) |
| { |
| basic_block pred = EDGE_PRED (phi_bb, i)->src; |
| if (pred != assign_bb && pred != cond_bb) |
| return; |
| } |
| |
| ipa_set_ancestor_jf (jfunc, offset, index, |
| parm_ref_data_pass_through_p (fbi, index, call, parm)); |
| } |
| |
| /* Inspect the given TYPE and return true iff it has the same structure (the |
| same number of fields of the same types) as a C++ member pointer. If |
| METHOD_PTR and DELTA are non-NULL, store the trees representing the |
| corresponding fields there. */ |
| |
| static bool |
| type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta) |
| { |
| tree fld; |
| |
| if (TREE_CODE (type) != RECORD_TYPE) |
| return false; |
| |
| fld = TYPE_FIELDS (type); |
| if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld)) |
| || TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE |
| || !tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld))) |
| return false; |
| |
| if (method_ptr) |
| *method_ptr = fld; |
| |
| fld = DECL_CHAIN (fld); |
| if (!fld || INTEGRAL_TYPE_P (fld) |
| || !tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld))) |
| return false; |
| if (delta) |
| *delta = fld; |
| |
| if (DECL_CHAIN (fld)) |
| return false; |
| |
| return true; |
| } |
| |
| /* If RHS is an SSA_NAME and it is defined by a simple copy assign statement, |
| return the rhs of its defining statement, and this statement is stored in |
| *RHS_STMT. Otherwise return RHS as it is. */ |
| |
| static inline tree |
| get_ssa_def_if_simple_copy (tree rhs, gimple **rhs_stmt) |
| { |
| while (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs)) |
| { |
| gimple *def_stmt = SSA_NAME_DEF_STMT (rhs); |
| |
| if (gimple_assign_single_p (def_stmt)) |
| rhs = gimple_assign_rhs1 (def_stmt); |
| else |
| break; |
| *rhs_stmt = def_stmt; |
| } |
| return rhs; |
| } |
| |
| /* Simple linked list, describing contents of an aggregate before call. */ |
| |
| struct ipa_known_agg_contents_list |
| { |
| /* Offset and size of the described part of the aggregate. */ |
| HOST_WIDE_INT offset, size; |
| |
| /* Type of the described part of the aggregate. */ |
| tree type; |
| |
| /* Known constant value or jump function data describing contents. */ |
| struct ipa_load_agg_data value; |
| |
| /* Pointer to the next structure in the list. */ |
| struct ipa_known_agg_contents_list *next; |
| }; |
| |
| /* Add an aggregate content item into a linked list of |
| ipa_known_agg_contents_list structure, in which all elements |
| are sorted ascendingly by offset. */ |
| |
| static inline void |
| add_to_agg_contents_list (struct ipa_known_agg_contents_list **plist, |
| struct ipa_known_agg_contents_list *item) |
| { |
| struct ipa_known_agg_contents_list *list = *plist; |
| |
| for (; list; list = list->next) |
| { |
| if (list->offset >= item->offset) |
| break; |
| |
| plist = &list->next; |
| } |
| |
| item->next = list; |
| *plist = item; |
| } |
| |
| /* Check whether a given aggregate content is clobbered by certain element in |
| a linked list of ipa_known_agg_contents_list. */ |
| |
| static inline bool |
| clobber_by_agg_contents_list_p (struct ipa_known_agg_contents_list *list, |
| struct ipa_known_agg_contents_list *item) |
| { |
| for (; list; list = list->next) |
| { |
| if (list->offset >= item->offset) |
| return list->offset < item->offset + item->size; |
| |
| if (list->offset + list->size > item->offset) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Build aggregate jump function from LIST, assuming there are exactly |
| VALUE_COUNT entries there and that offset of the passed argument |
| is ARG_OFFSET and store it into JFUNC. */ |
| |
| static void |
| build_agg_jump_func_from_list (struct ipa_known_agg_contents_list *list, |
| int value_count, HOST_WIDE_INT arg_offset, |
| struct ipa_jump_func *jfunc) |
| { |
| vec_safe_reserve (jfunc->agg.items, value_count, true); |
| for (; list; list = list->next) |
| { |
| struct ipa_agg_jf_item item; |
| tree operand = list->value.pass_through.operand; |
| |
| if (list->value.pass_through.formal_id >= 0) |
| { |
| /* Content value is derived from some formal paramerter. */ |
| if (list->value.offset >= 0) |
| item.jftype = IPA_JF_LOAD_AGG; |
| else |
| item.jftype = IPA_JF_PASS_THROUGH; |
| |
| item.value.load_agg = list->value; |
| if (operand) |
| item.value.pass_through.operand |
| = unshare_expr_without_location (operand); |
| } |
| else if (operand) |
| { |
| /* Content value is known constant. */ |
| item.jftype = IPA_JF_CONST; |
| item.value.constant = unshare_expr_without_location (operand); |
| } |
| else |
| continue; |
| |
| item.type = list->type; |
| gcc_assert (tree_to_shwi (TYPE_SIZE (list->type)) == list->size); |
| |
| item.offset = list->offset - arg_offset; |
| gcc_assert ((item.offset % BITS_PER_UNIT) == 0); |
| |
| jfunc->agg.items->quick_push (item); |
| } |
| } |
| |
| /* Given an assignment statement STMT, try to collect information into |
| AGG_VALUE that will be used to construct jump function for RHS of the |
| assignment, from which content value of an aggregate part comes. |
| |
| Besides constant and simple pass-through jump functions, also try to |
| identify whether it matches the following pattern that can be described by |
| a load-value-from-aggregate jump function, which is a derivative of simple |
| pass-through jump function. |
| |
| foo (int *p) |
| { |
| ... |
| |
| *(q_5 + 4) = *(p_3(D) + 28) op 1; |
| bar (q_5); |
| } |
| |
| Here IPA_LOAD_AGG_DATA data structure is informative enough to describe |
| constant, simple pass-through and load-vale-from-aggregate. If value |
| is constant, it will be kept in field OPERAND, and field FORMAL_ID is |
| set to -1. For simple pass-through and load-value-from-aggregate, field |
| FORMAL_ID specifies the related formal parameter index, and field |
| OFFSET can be used to distinguish them, -1 means simple pass-through, |
| otherwise means load-value-from-aggregate. */ |
| |
| static void |
| analyze_agg_content_value (struct ipa_func_body_info *fbi, |
| struct ipa_load_agg_data *agg_value, |
| gimple *stmt) |
| { |
| tree lhs = gimple_assign_lhs (stmt); |
| tree rhs1 = gimple_assign_rhs1 (stmt); |
| enum tree_code code; |
| int index = -1; |
| |
| /* Initialize jump function data for the aggregate part. */ |
| memset (agg_value, 0, sizeof (*agg_value)); |
| agg_value->pass_through.operation = NOP_EXPR; |
| agg_value->pass_through.formal_id = -1; |
| agg_value->offset = -1; |
| |
| if (AGGREGATE_TYPE_P (TREE_TYPE (lhs)) /* TODO: Support aggregate type. */ |
| || TREE_THIS_VOLATILE (lhs) |
| || TREE_CODE (lhs) == BIT_FIELD_REF |
| || contains_bitfld_component_ref_p (lhs)) |
| return; |
| |
| /* Skip SSA copies. */ |
| while (gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS) |
| { |
| if (TREE_CODE (rhs1) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (rhs1)) |
| break; |
| |
| stmt = SSA_NAME_DEF_STMT (rhs1); |
| if (!is_gimple_assign (stmt)) |
| break; |
| |
| rhs1 = gimple_assign_rhs1 (stmt); |
| } |
| |
| if (gphi *phi = dyn_cast<gphi *> (stmt)) |
| { |
| /* Also special case like the following (a is a formal parameter): |
| |
| _12 = *a_11(D).dim[0].stride; |
| ... |
| # iftmp.22_9 = PHI <_12(2), 1(3)> |
| ... |
| parm.6.dim[0].stride = iftmp.22_9; |
| ... |
| __x_MOD_foo (&parm.6, b_31(D)); |
| |
| The aggregate function describing parm.6.dim[0].stride is encoded as a |
| PASS-THROUGH jump function with ASSERT_EXPR operation whith operand 1 |
| (the constant from the PHI node). */ |
| |
| if (gimple_phi_num_args (phi) != 2) |
| return; |
| tree arg0 = gimple_phi_arg_def (phi, 0); |
| tree arg1 = gimple_phi_arg_def (phi, 1); |
| tree operand; |
| |
| if (is_gimple_ip_invariant (arg1)) |
| { |
| operand = arg1; |
| rhs1 = arg0; |
| } |
| else if (is_gimple_ip_invariant (arg0)) |
| { |
| operand = arg0; |
| rhs1 = arg1; |
| } |
| else |
| return; |
| |
| rhs1 = get_ssa_def_if_simple_copy (rhs1, &stmt); |
| if (!is_gimple_assign (stmt)) |
| return; |
| |
| code = ASSERT_EXPR; |
| agg_value->pass_through.operand = operand; |
| } |
| else if (is_gimple_assign (stmt)) |
| { |
| code = gimple_assign_rhs_code (stmt); |
| switch (gimple_assign_rhs_class (stmt)) |
| { |
| case GIMPLE_SINGLE_RHS: |
| if (is_gimple_ip_invariant (rhs1)) |
| { |
| agg_value->pass_through.operand = rhs1; |
| return; |
| } |
| code = NOP_EXPR; |
| break; |
| |
| case GIMPLE_UNARY_RHS: |
| /* NOTE: A GIMPLE_UNARY_RHS operation might not be tcc_unary |
| (truth_not_expr is example), GIMPLE_BINARY_RHS does not imply |
| tcc_binary, this subtleness is somewhat misleading. |
| |
| Since tcc_unary is widely used in IPA-CP code to check an operation |
| with one operand, here we only allow tc_unary operation to avoid |
| possible problem. Then we can use (opclass == tc_unary) or not to |
| distinguish unary and binary. */ |
| if (TREE_CODE_CLASS (code) != tcc_unary || CONVERT_EXPR_CODE_P (code)) |
| return; |
| |
| rhs1 = get_ssa_def_if_simple_copy (rhs1, &stmt); |
| break; |
| |
| case GIMPLE_BINARY_RHS: |
| { |
| gimple *rhs1_stmt = stmt; |
| gimple *rhs2_stmt = stmt; |
| tree rhs2 = gimple_assign_rhs2 (stmt); |
| |
| rhs1 = get_ssa_def_if_simple_copy (rhs1, &rhs1_stmt); |
| rhs2 = get_ssa_def_if_simple_copy (rhs2, &rhs2_stmt); |
| |
| if (is_gimple_ip_invariant (rhs2)) |
| { |
| agg_value->pass_through.operand = rhs2; |
| stmt = rhs1_stmt; |
| } |
| else if (is_gimple_ip_invariant (rhs1)) |
| { |
| if (TREE_CODE_CLASS (code) == tcc_comparison) |
| code = swap_tree_comparison (code); |
| else if (!commutative_tree_code (code)) |
| return; |
| |
| agg_value->pass_through.operand = rhs1; |
| stmt = rhs2_stmt; |
| rhs1 = rhs2; |
| } |
| else |
| return; |
| |
| if (TREE_CODE_CLASS (code) != tcc_comparison |
| && !useless_type_conversion_p (TREE_TYPE (lhs), |
| TREE_TYPE (rhs1))) |
| return; |
| } |
| break; |
| |
| default: |
| return; |
| } |
| } |
| else |
| return; |
| |
| if (TREE_CODE (rhs1) != SSA_NAME) |
| index = load_from_unmodified_param_or_agg (fbi, fbi->info, stmt, |
| &agg_value->offset, |
| &agg_value->by_ref); |
| else if (SSA_NAME_IS_DEFAULT_DEF (rhs1)) |
| index = ipa_get_param_decl_index (fbi->info, SSA_NAME_VAR (rhs1)); |
| |
| if (index >= 0) |
| { |
| if (agg_value->offset >= 0) |
| agg_value->type = TREE_TYPE (rhs1); |
| agg_value->pass_through.formal_id = index; |
| agg_value->pass_through.operation = code; |
| } |
| else |
| agg_value->pass_through.operand = NULL_TREE; |
| } |
| |
| /* If STMT is a memory store to the object whose address is BASE, extract |
| information (offset, size, and value) into CONTENT, and return true, |
| otherwise we conservatively assume the whole object is modified with |
| unknown content, and return false. CHECK_REF means that access to object |
| is expected to be in form of MEM_REF expression. */ |
| |
| static bool |
| extract_mem_content (struct ipa_func_body_info *fbi, |
| gimple *stmt, tree base, bool check_ref, |
| struct ipa_known_agg_contents_list *content) |
| { |
| HOST_WIDE_INT lhs_offset, lhs_size; |
| bool reverse; |
| |
| if (!is_gimple_assign (stmt)) |
| return false; |
| |
| tree lhs = gimple_assign_lhs (stmt); |
| tree lhs_base = get_ref_base_and_extent_hwi (lhs, &lhs_offset, &lhs_size, |
| &reverse); |
| if (!lhs_base) |
| return false; |
| |
| if (check_ref) |
| { |
| if (TREE_CODE (lhs_base) != MEM_REF |
| || TREE_OPERAND (lhs_base, 0) != base |
| || !integer_zerop (TREE_OPERAND (lhs_base, 1))) |
| return false; |
| } |
| else if (lhs_base != base) |
| return false; |
| |
| content->offset = lhs_offset; |
| content->size = lhs_size; |
| content->type = TREE_TYPE (lhs); |
| content->next = NULL; |
| |
| analyze_agg_content_value (fbi, &content->value, stmt); |
| return true; |
| } |
| |
| /* Traverse statements from CALL backwards, scanning whether an aggregate given |
| in ARG is filled in constants or values that are derived from caller's |
| formal parameter in the way described by some kinds of jump functions. FBI |
| is the context of the caller function for interprocedural analysis. ARG can |
| either be an aggregate expression or a pointer to an aggregate. ARG_TYPE is |
| the type of the aggregate, JFUNC is the jump function for the aggregate. */ |
| |
| static void |
| determine_known_aggregate_parts (struct ipa_func_body_info *fbi, |
| gcall *call, tree arg, |
| tree arg_type, |
| struct ipa_jump_func *jfunc) |
| { |
| struct ipa_known_agg_contents_list *list = NULL, *all_list = NULL; |
| bitmap visited = NULL; |
| int item_count = 0, value_count = 0; |
| HOST_WIDE_INT arg_offset, arg_size; |
| tree arg_base; |
| bool check_ref, by_ref; |
| ao_ref r; |
| int max_agg_items = opt_for_fn (fbi->node->decl, param_ipa_max_agg_items); |
| |
| if (max_agg_items == 0) |
| return; |
| |
| /* The function operates in three stages. First, we prepare check_ref, r, |
| arg_base and arg_offset based on what is actually passed as an actual |
| argument. */ |
| |
| if (POINTER_TYPE_P (arg_type)) |
| { |
| by_ref = true; |
| if (TREE_CODE (arg) == SSA_NAME) |
| { |
| tree type_size; |
| if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (arg_type))) |
| || !POINTER_TYPE_P (TREE_TYPE (arg))) |
| return; |
| check_ref = true; |
| arg_base = arg; |
| arg_offset = 0; |
| type_size = TYPE_SIZE (TREE_TYPE (arg_type)); |
| arg_size = tree_to_uhwi (type_size); |
| ao_ref_init_from_ptr_and_size (&r, arg_base, NULL_TREE); |
| } |
| else if (TREE_CODE (arg) == ADDR_EXPR) |
| { |
| bool reverse; |
| |
| arg = TREE_OPERAND (arg, 0); |
| arg_base = get_ref_base_and_extent_hwi (arg, &arg_offset, |
| &arg_size, &reverse); |
| if (!arg_base) |
| return; |
| if (DECL_P (arg_base)) |
| { |
| check_ref = false; |
| ao_ref_init (&r, arg_base); |
| } |
| else |
| return; |
| } |
| else |
| return; |
| } |
| else |
| { |
| bool reverse; |
| |
| gcc_checking_assert (AGGREGATE_TYPE_P (TREE_TYPE (arg))); |
| |
| by_ref = false; |
| check_ref = false; |
| arg_base = get_ref_base_and_extent_hwi (arg, &arg_offset, |
| &arg_size, &reverse); |
| if (!arg_base) |
| return; |
| |
| ao_ref_init (&r, arg); |
| } |
| |
| /* Second stage traverses virtual SSA web backwards starting from the call |
| statement, only looks at individual dominating virtual operand (its |
| definition dominates the call), as long as it is confident that content |
| of the aggregate is affected by definition of the virtual operand, it |
| builds a sorted linked list of ipa_agg_jf_list describing that. */ |
| |
| for (tree dom_vuse = gimple_vuse (call); |
| dom_vuse && fbi->aa_walk_budget > 0;) |
| { |
| gimple *stmt = SSA_NAME_DEF_STMT (dom_vuse); |
| |
| if (gimple_code (stmt) == GIMPLE_PHI) |
| { |
| dom_vuse = get_continuation_for_phi (stmt, &r, true, |
| fbi->aa_walk_budget, |
| &visited, false, NULL, NULL); |
| continue; |
| } |
| |
| fbi->aa_walk_budget--; |
| if (stmt_may_clobber_ref_p_1 (stmt, &r)) |
| { |
| struct ipa_known_agg_contents_list *content |
| = XALLOCA (struct ipa_known_agg_contents_list); |
| |
| if (!extract_mem_content (fbi, stmt, arg_base, check_ref, content)) |
| break; |
| |
| /* Now we get a dominating virtual operand, and need to check |
| whether its value is clobbered any other dominating one. */ |
| if ((content->value.pass_through.formal_id >= 0 |
| || content->value.pass_through.operand) |
| && !clobber_by_agg_contents_list_p (all_list, content)) |
| { |
| struct ipa_known_agg_contents_list *copy |
| = XALLOCA (struct ipa_known_agg_contents_list); |
| |
| /* Add to the list consisting of only dominating virtual |
| operands, whose definitions can finally reach the call. */ |
| add_to_agg_contents_list (&list, (*copy = *content, copy)); |
| |
| if (++value_count == max_agg_items) |
| break; |
| } |
| |
| /* Add to the list consisting of all dominating virtual operands. */ |
| add_to_agg_contents_list (&all_list, content); |
| |
| if (++item_count == 2 * max_agg_items) |
| break; |
| } |
| dom_vuse = gimple_vuse (stmt); |
| } |
| |
| if (visited) |
| BITMAP_FREE (visited); |
| |
| /* Third stage just goes over the list and creates an appropriate vector of |
| ipa_agg_jf_item structures out of it, of course only if there are |
| any meaningful items to begin with. */ |
| |
| if (value_count) |
| { |
| jfunc->agg.by_ref = by_ref; |
| build_agg_jump_func_from_list (list, value_count, arg_offset, jfunc); |
| } |
| } |
| |
| |
| /* Return the Ith param type of callee associated with call graph |
| edge E. */ |
| |
| tree |
| ipa_get_callee_param_type (struct cgraph_edge *e, int i) |
| { |
| int n; |
| tree type = (e->callee |
| ? TREE_TYPE (e->callee->decl) |
| : gimple_call_fntype (e->call_stmt)); |
| tree t = TYPE_ARG_TYPES (type); |
| |
| for (n = 0; n < i; n++) |
| { |
| if (!t) |
| break; |
| t = TREE_CHAIN (t); |
| } |
| if (t) |
| return TREE_VALUE (t); |
| if (!e->callee) |
| return NULL; |
| t = DECL_ARGUMENTS (e->callee->decl); |
| for (n = 0; n < i; n++) |
| { |
| if (!t) |
| return NULL; |
| t = TREE_CHAIN (t); |
| } |
| if (t) |
| return TREE_TYPE (t); |
| return NULL; |
| } |
| |
| /* Return ipa_bits with VALUE and MASK values, which can be either a newly |
| allocated structure or a previously existing one shared with other jump |
| functions and/or transformation summaries. */ |
| |
| ipa_bits * |
| ipa_get_ipa_bits_for_value (const widest_int &value, const widest_int &mask) |
| { |
| ipa_bits tmp; |
| tmp.value = value; |
| tmp.mask = mask; |
| |
| ipa_bits **slot = ipa_bits_hash_table->find_slot (&tmp, INSERT); |
| if (*slot) |
| return *slot; |
| |
| ipa_bits *res = ggc_alloc<ipa_bits> (); |
| res->value = value; |
| res->mask = mask; |
| *slot = res; |
| |
| return res; |
| } |
| |
| /* Assign to JF a pointer to ipa_bits structure with VALUE and MASK. Use hash |
| table in order to avoid creating multiple same ipa_bits structures. */ |
| |
| static void |
| ipa_set_jfunc_bits (ipa_jump_func *jf, const widest_int &value, |
| const widest_int &mask) |
| { |
| jf->bits = ipa_get_ipa_bits_for_value (value, mask); |
| } |
| |
| /* Return a pointer to a value_range just like *TMP, but either find it in |
| ipa_vr_hash_table or allocate it in GC memory. TMP->equiv must be NULL. */ |
| |
| static value_range * |
| ipa_get_value_range (value_range *tmp) |
| { |
| value_range **slot = ipa_vr_hash_table->find_slot (tmp, INSERT); |
| if (*slot) |
| return *slot; |
| |
| value_range *vr = new (ggc_alloc<value_range> ()) value_range; |
| *vr = *tmp; |
| *slot = vr; |
| |
| return vr; |
| } |
| |
| /* Return a pointer to a value range consisting of TYPE, MIN, MAX and an empty |
| equiv set. Use hash table in order to avoid creating multiple same copies of |
| value_ranges. */ |
| |
| static value_range * |
| ipa_get_value_range (enum value_range_kind kind, tree min, tree max) |
| { |
| value_range tmp (min, max, kind); |
| return ipa_get_value_range (&tmp); |
| } |
| |
| /* Assign to JF a pointer to a value_range structure with TYPE, MIN and MAX and |
| a NULL equiv bitmap. Use hash table in order to avoid creating multiple |
| same value_range structures. */ |
| |
| static void |
| ipa_set_jfunc_vr (ipa_jump_func *jf, enum value_range_kind type, |
| tree min, tree max) |
| { |
| jf->m_vr = ipa_get_value_range (type, min, max); |
| } |
| |
| /* Assign to JF a pointer to a value_range just like TMP but either fetch a |
| copy from ipa_vr_hash_table or allocate a new on in GC memory. */ |
| |
| static void |
| ipa_set_jfunc_vr (ipa_jump_func *jf, value_range *tmp) |
| { |
| jf->m_vr = ipa_get_value_range (tmp); |
| } |
| |
| /* Compute jump function for all arguments of callsite CS and insert the |
| information in the jump_functions array in the ipa_edge_args corresponding |
| to this callsite. */ |
| |
| static void |
| ipa_compute_jump_functions_for_edge (struct ipa_func_body_info *fbi, |
| struct cgraph_edge *cs) |
| { |
| ipa_node_params *info = ipa_node_params_sum->get (cs->caller); |
| ipa_edge_args *args = ipa_edge_args_sum->get_create (cs); |
| gcall *call = cs->call_stmt; |
| int n, arg_num = gimple_call_num_args (call); |
| bool useful_context = false; |
| value_range vr; |
| |
| if (arg_num == 0 || args->jump_functions) |
| return; |
| vec_safe_grow_cleared (args->jump_functions, arg_num, true); |
| if (flag_devirtualize) |
| vec_safe_grow_cleared (args->polymorphic_call_contexts, arg_num, true); |
| |
| if (gimple_call_internal_p (call)) |
| return; |
| if (ipa_func_spec_opts_forbid_analysis_p (cs->caller)) |
| return; |
| |
| for (n = 0; n < arg_num; n++) |
| { |
| struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, n); |
| tree arg = gimple_call_arg (call, n); |
| tree param_type = ipa_get_callee_param_type (cs, n); |
| if (flag_devirtualize && POINTER_TYPE_P (TREE_TYPE (arg))) |
| { |
| tree instance; |
| class ipa_polymorphic_call_context context (cs->caller->decl, |
| arg, cs->call_stmt, |
| &instance); |
| context.get_dynamic_type (instance, arg, NULL, cs->call_stmt, |
| &fbi->aa_walk_budget); |
| *ipa_get_ith_polymorhic_call_context (args, n) = context; |
| if (!context.useless_p ()) |
| useful_context = true; |
| } |
| |
| if (POINTER_TYPE_P (TREE_TYPE (arg))) |
| { |
| bool addr_nonzero = false; |
| bool strict_overflow = false; |
| |
| if (TREE_CODE (arg) == SSA_NAME |
| && param_type |
| && get_range_query (cfun)->range_of_expr (vr, arg) |
| && vr.nonzero_p ()) |
| addr_nonzero = true; |
| else if (tree_single_nonzero_warnv_p (arg, &strict_overflow)) |
| addr_nonzero = true; |
| |
| if (addr_nonzero) |
| { |
| tree z = build_int_cst (TREE_TYPE (arg), 0); |
| ipa_set_jfunc_vr (jfunc, VR_ANTI_RANGE, z, z); |
| } |
| else |
| gcc_assert (!jfunc->m_vr); |
| } |
| else |
| { |
| if (TREE_CODE (arg) == SSA_NAME |
| && param_type |
| && get_range_query (cfun)->range_of_expr (vr, arg) |
| && !vr.undefined_p ()) |
| { |
| value_range resvr; |
| range_fold_unary_expr (&resvr, NOP_EXPR, param_type, |
| &vr, TREE_TYPE (arg)); |
| if (!resvr.undefined_p () && !resvr.varying_p ()) |
| ipa_set_jfunc_vr (jfunc, &resvr); |
| else |
| gcc_assert (!jfunc->m_vr); |
| } |
| else |
| gcc_assert (!jfunc->m_vr); |
| } |
| |
| if (INTEGRAL_TYPE_P (TREE_TYPE (arg)) |
| && (TREE_CODE (arg) == SSA_NAME || TREE_CODE (arg) == INTEGER_CST)) |
| { |
| if (TREE_CODE (arg) == SSA_NAME) |
| ipa_set_jfunc_bits (jfunc, 0, |
| widest_int::from (get_nonzero_bits (arg), |
| TYPE_SIGN (TREE_TYPE (arg)))); |
| else |
| ipa_set_jfunc_bits (jfunc, wi::to_widest (arg), 0); |
| } |
| else if (POINTER_TYPE_P (TREE_TYPE (arg))) |
| { |
| unsigned HOST_WIDE_INT bitpos; |
| unsigned align; |
| |
| get_pointer_alignment_1 (arg, &align, &bitpos); |
| widest_int mask = wi::bit_and_not |
| (wi::mask<widest_int> (TYPE_PRECISION (TREE_TYPE (arg)), false), |
| align / BITS_PER_UNIT - 1); |
| widest_int value = bitpos / BITS_PER_UNIT; |
| ipa_set_jfunc_bits (jfunc, value, mask); |
| } |
| else |
| gcc_assert (!jfunc->bits); |
| |
| if (is_gimple_ip_invariant (arg) |
| || (VAR_P (arg) |
| && is_global_var (arg) |
| && TREE_READONLY (arg))) |
| ipa_set_jf_constant (jfunc, arg, cs); |
| else if (!is_gimple_reg_type (TREE_TYPE (arg)) |
| && TREE_CODE (arg) == PARM_DECL) |
| { |
| int index = ipa_get_param_decl_index (info, arg); |
| |
| gcc_assert (index >=0); |
| /* Aggregate passed by value, check for pass-through, otherwise we |
| will attempt to fill in aggregate contents later in this |
| for cycle. */ |
| if (parm_preserved_before_stmt_p (fbi, index, call, arg)) |
| { |
| ipa_set_jf_simple_pass_through (jfunc, index, false); |
| continue; |
| } |
| } |
| else if (TREE_CODE (arg) == SSA_NAME) |
| { |
| if (SSA_NAME_IS_DEFAULT_DEF (arg)) |
| { |
| int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg)); |
| if (index >= 0) |
| { |
| bool agg_p; |
| agg_p = parm_ref_data_pass_through_p (fbi, index, call, arg); |
| ipa_set_jf_simple_pass_through (jfunc, index, agg_p); |
| } |
| } |
| else |
| { |
| gimple *stmt = SSA_NAME_DEF_STMT (arg); |
| if (is_gimple_assign (stmt)) |
| compute_complex_assign_jump_func (fbi, info, jfunc, |
| call, stmt, arg, param_type); |
| else if (gimple_code (stmt) == GIMPLE_PHI) |
| compute_complex_ancestor_jump_func (fbi, info, jfunc, |
| call, |
| as_a <gphi *> (stmt)); |
| } |
| } |
| |
| /* If ARG is pointer, we cannot use its type to determine the type of aggregate |
| passed (because type conversions are ignored in gimple). Usually we can |
| safely get type from function declaration, but in case of K&R prototypes or |
| variadic functions we can try our luck with type of the pointer passed. |
| TODO: Since we look for actual initialization of the memory object, we may better |
| work out the type based on the memory stores we find. */ |
| if (!param_type) |
| param_type = TREE_TYPE (arg); |
| |
| if ((jfunc->type != IPA_JF_PASS_THROUGH |
| || !ipa_get_jf_pass_through_agg_preserved (jfunc)) |
| && (jfunc->type != IPA_JF_ANCESTOR |
| || !ipa_get_jf_ancestor_agg_preserved (jfunc)) |
| && (AGGREGATE_TYPE_P (TREE_TYPE (arg)) |
| || POINTER_TYPE_P (param_type))) |
| determine_known_aggregate_parts (fbi, call, arg, param_type, jfunc); |
| } |
| if (!useful_context) |
| vec_free (args->polymorphic_call_contexts); |
| } |
| |
| /* Compute jump functions for all edges - both direct and indirect - outgoing |
| from BB. */ |
| |
| static void |
| ipa_compute_jump_functions_for_bb (struct ipa_func_body_info *fbi, basic_block bb) |
| { |
| struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb); |
| int i; |
| struct cgraph_edge *cs; |
| |
| FOR_EACH_VEC_ELT_REVERSE (bi->cg_edges, i, cs) |
| { |
| struct cgraph_node *callee = cs->callee; |
| |
| if (callee) |
| { |
| callee = callee->ultimate_alias_target (); |
| /* We do not need to bother analyzing calls to unknown functions |
| unless they may become known during lto/whopr. */ |
| if (!callee->definition && !flag_lto |
| && !gimple_call_fnspec (cs->call_stmt).known_p ()) |
| continue; |
| } |
| ipa_compute_jump_functions_for_edge (fbi, cs); |
| } |
| } |
| |
| /* If STMT looks like a statement loading a value from a member pointer formal |
| parameter, return that parameter and store the offset of the field to |
| *OFFSET_P, if it is non-NULL. Otherwise return NULL (but *OFFSET_P still |
| might be clobbered). If USE_DELTA, then we look for a use of the delta |
| field rather than the pfn. */ |
| |
| static tree |
| ipa_get_stmt_member_ptr_load_param (gimple *stmt, bool use_delta, |
| HOST_WIDE_INT *offset_p) |
| { |
| tree rhs, rec, ref_field, ref_offset, fld, ptr_field, delta_field; |
| |
| if (!gimple_assign_single_p (stmt)) |
| return NULL_TREE; |
| |
| rhs = gimple_assign_rhs1 (stmt); |
| if (TREE_CODE (rhs) == COMPONENT_REF) |
| { |
| ref_field = TREE_OPERAND (rhs, 1); |
| rhs = TREE_OPERAND (rhs, 0); |
| } |
| else |
| ref_field = NULL_TREE; |
| if (TREE_CODE (rhs) != MEM_REF) |
| return NULL_TREE; |
| rec = TREE_OPERAND (rhs, 0); |
| if (TREE_CODE (rec) != ADDR_EXPR) |
| return NULL_TREE; |
| rec = TREE_OPERAND (rec, 0); |
| if (TREE_CODE (rec) != PARM_DECL |
| || !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, &delta_field)) |
| return NULL_TREE; |
| ref_offset = TREE_OPERAND (rhs, 1); |
| |
| if (use_delta) |
| fld = delta_field; |
| else |
| fld = ptr_field; |
| if (offset_p) |
| *offset_p = int_bit_position (fld); |
| |
| if (ref_field) |
| { |
| if (integer_nonzerop (ref_offset)) |
| return NULL_TREE; |
| return ref_field == fld ? rec : NULL_TREE; |
| } |
| else |
| return tree_int_cst_equal (byte_position (fld), ref_offset) ? rec |
| : NULL_TREE; |
| } |
| |
| /* Returns true iff T is an SSA_NAME defined by a statement. */ |
| |
| static bool |
| ipa_is_ssa_with_stmt_def (tree t) |
| { |
| if (TREE_CODE (t) == SSA_NAME |
| && !SSA_NAME_IS_DEFAULT_DEF (t)) |
| return true; |
| else |
| return false; |
| } |
| |
| /* Find the indirect call graph edge corresponding to STMT and mark it as a |
| call to a parameter number PARAM_INDEX. NODE is the caller. Return the |
| indirect call graph edge. |
| If POLYMORPHIC is true record is as a destination of polymorphic call. */ |
| |
| static struct cgraph_edge * |
| ipa_note_param_call (struct cgraph_node *node, int param_index, |
| gcall *stmt, bool polymorphic) |
| { |
| struct cgraph_edge *cs; |
| |
| cs = node->get_edge (stmt); |
| cs->indirect_info->param_index = param_index; |
| cs->indirect_info->agg_contents = 0; |
| cs->indirect_info->member_ptr = 0; |
| cs->indirect_info->guaranteed_unmodified = 0; |
| ipa_node_params *info = ipa_node_params_sum->get (node); |
| ipa_set_param_used_by_indirect_call (info, param_index, true); |
| if (cs->indirect_info->polymorphic || polymorphic) |
| ipa_set_param_used_by_polymorphic_call (info, param_index, true); |
| return cs; |
| } |
| |
| /* Analyze the CALL and examine uses of formal parameters of the caller NODE |
| (described by INFO). PARMS_AINFO is a pointer to a vector containing |
| intermediate information about each formal parameter. Currently it checks |
| whether the call calls a pointer that is a formal parameter and if so, the |
| parameter is marked with the called flag and an indirect call graph edge |
| describing the call is created. This is very simple for ordinary pointers |
| represented in SSA but not-so-nice when it comes to member pointers. The |
| ugly part of this function does nothing more than trying to match the |
| pattern of such a call. An example of such a pattern is the gimple dump |
| below, the call is on the last line: |
| |
| <bb 2>: |
| f$__delta_5 = f.__delta; |
| f$__pfn_24 = f.__pfn; |
| |
| or |
| <bb 2>: |
| f$__delta_5 = MEM[(struct *)&f]; |
| f$__pfn_24 = MEM[(struct *)&f + 4B]; |
| |
| and a few lines below: |
| |
| <bb 5> |
| D.2496_3 = (int) f$__pfn_24; |
| D.2497_4 = D.2496_3 & 1; |
| if (D.2497_4 != 0) |
| goto <bb 3>; |
| else |
| goto <bb 4>; |
| |
| <bb 6>: |
| D.2500_7 = (unsigned int) f$__delta_5; |
| D.2501_8 = &S + D.2500_7; |
| D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8; |
| D.2503_10 = *D.2502_9; |
| D.2504_12 = f$__pfn_24 + -1; |
| D.2505_13 = (unsigned int) D.2504_12; |
| D.2506_14 = D.2503_10 + D.2505_13; |
| D.2507_15 = *D.2506_14; |
| iftmp.11_16 = (String:: *) D.2507_15; |
| |
| <bb 7>: |
| # iftmp.11_1 = PHI <iftmp.11_16(3), f$__pfn_24(2)> |
| D.2500_19 = (unsigned int) f$__delta_5; |
| D.2508_20 = &S + D.2500_19; |
| D.2493_21 = iftmp.11_1 (D.2508_20, 4); |
| |
| Such patterns are results of simple calls to a member pointer: |
| |
| int doprinting (int (MyString::* f)(int) const) |
| { |
| MyString S ("somestring"); |
| |
| return (S.*f)(4); |
| } |
| |
| Moreover, the function also looks for called pointers loaded from aggregates |
| passed by value or reference. */ |
| |
| static void |
| ipa_analyze_indirect_call_uses (struct ipa_func_body_info *fbi, gcall *call, |
| tree target) |
| { |
| class ipa_node_params *info = fbi->info; |
| HOST_WIDE_INT offset; |
| bool by_ref; |
| |
| if (SSA_NAME_IS_DEFAULT_DEF (target)) |
| { |
| tree var = SSA_NAME_VAR (target); |
| int index = ipa_get_param_decl_index (info, var); |
| if (index >= 0) |
| ipa_note_param_call (fbi->node, index, call, false); |
| return; |
| } |
| |
| int index; |
| gimple *def = SSA_NAME_DEF_STMT (target); |
| bool guaranteed_unmodified; |
| if (gimple_assign_single_p (def) |
| && ipa_load_from_parm_agg (fbi, info->descriptors, def, |
| gimple_assign_rhs1 (def), &index, &offset, |
| NULL, &by_ref, &guaranteed_unmodified)) |
| { |
| struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index, |
| call, false); |
| cs->indirect_info->offset = offset; |
| cs->indirect_info->agg_contents = 1; |
| cs->indirect_info->by_ref = by_ref; |
| cs->indirect_info->guaranteed_unmodified = guaranteed_unmodified; |
| return; |
| } |
| |
| /* Now we need to try to match the complex pattern of calling a member |
| pointer. */ |
| if (gimple_code (def) != GIMPLE_PHI |
| || gimple_phi_num_args (def) != 2 |
| || !POINTER_TYPE_P (TREE_TYPE (target)) |
| || TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE) |
| return; |
| |
| /* First, we need to check whether one of these is a load from a member |
| pointer that is a parameter to this function. */ |
| tree n1 = PHI_ARG_DEF (def, 0); |
| tree n2 = PHI_ARG_DEF (def, 1); |
| if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2)) |
| return; |
| gimple *d1 = SSA_NAME_DEF_STMT (n1); |
| gimple *d2 = SSA_NAME_DEF_STMT (n2); |
| |
| tree rec; |
| basic_block bb, virt_bb; |
| basic_block join = gimple_bb (def); |
| if ((rec = ipa_get_stmt_member_ptr_load_param (d1, false, &offset))) |
| { |
| if (ipa_get_stmt_member_ptr_load_param (d2, false, NULL)) |
| return; |
| |
| bb = EDGE_PRED (join, 0)->src; |
| virt_bb = gimple_bb (d2); |
| } |
| else if ((rec = ipa_get_stmt_member_ptr_load_param (d2, false, &offset))) |
| { |
| bb = EDGE_PRED (join, 1)->src; |
| virt_bb = gimple_bb (d1); |
| } |
| else |
| return; |
| |
| /* Second, we need to check that the basic blocks are laid out in the way |
| corresponding to the pattern. */ |
| |
| if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb) |
| || single_pred (virt_bb) != bb |
| || single_succ (virt_bb) != join) |
| return; |
| |
| /* Third, let's see that the branching is done depending on the least |
| significant bit of the pfn. */ |
| |
| gimple *branch = last_stmt (bb); |
| if (!branch || gimple_code (branch) != GIMPLE_COND) |
| return; |
| |
| if ((gimple_cond_code (branch) != NE_EXPR |
| && gimple_cond_code (branch) != EQ_EXPR) |
| || !integer_zerop (gimple_cond_rhs (branch))) |
| return; |
| |
| tree cond = gimple_cond_lhs (branch); |
| if (!ipa_is_ssa_with_stmt_def (cond)) |
| return; |
| |
| def = SSA_NAME_DEF_STMT (cond); |
| if (!is_gimple_assign (def) |
| || gimple_assign_rhs_code (def) != BIT_AND_EXPR |
| || !integer_onep (gimple_assign_rhs2 (def))) |
| return; |
| |
| cond = gimple_assign_rhs1 (def); |
| if (!ipa_is_ssa_with_stmt_def (cond)) |
| return; |
| |
| def = SSA_NAME_DEF_STMT (cond); |
| |
| if (is_gimple_assign (def) |
| && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def))) |
| { |
| cond = gimple_assign_rhs1 (def); |
| if (!ipa_is_ssa_with_stmt_def (cond)) |
| return; |
| def = SSA_NAME_DEF_STMT (cond); |
| } |
| |
| tree rec2; |
| rec2 = ipa_get_stmt_member_ptr_load_param (def, |
| (TARGET_PTRMEMFUNC_VBIT_LOCATION |
| == ptrmemfunc_vbit_in_delta), |
| NULL); |
| if (rec != rec2) |
| return; |
| |
| index = ipa_get_param_decl_index (info, rec); |
| if (index >= 0 |
| && parm_preserved_before_stmt_p (fbi, index, call, rec)) |
| { |
| struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index, |
| call, false); |
| cs->indirect_info->offset = offset; |
| cs->indirect_info->agg_contents = 1; |
| cs->indirect_info->member_ptr = 1; |
| cs->indirect_info->guaranteed_unmodified = 1; |
| } |
| |
| return; |
| } |
| |
| /* Analyze a CALL to an OBJ_TYPE_REF which is passed in TARGET and if the |
| object referenced in the expression is a formal parameter of the caller |
| FBI->node (described by FBI->info), create a call note for the |
| statement. */ |
| |
| static void |
| ipa_analyze_virtual_call_uses (struct ipa_func_body_info *fbi, |
| gcall *call, tree target) |
| { |
| tree obj = OBJ_TYPE_REF_OBJECT (target); |
| int index; |
| HOST_WIDE_INT anc_offset; |
| |
| if (!flag_devirtualize) |
| return; |
| |
| if (TREE_CODE (obj) != SSA_NAME) |
| return; |
| |
| class ipa_node_params *info = fbi->info; |
| if (SSA_NAME_IS_DEFAULT_DEF (obj)) |
| { |
| if (TREE_CODE (SSA_NAME_VAR (obj)) != PARM_DECL) |
| return; |
| |
| anc_offset = 0; |
| index = ipa_get_param_decl_index (info, SSA_NAME_VAR (obj)); |
| gcc_assert (index >= 0); |
| if (detect_type_change_ssa (fbi, obj, obj_type_ref_class (target), |
| call)) |
| return; |
| } |
| else |
| { |
| gimple *stmt = SSA_NAME_DEF_STMT (obj); |
| tree expr; |
| |
| expr = get_ancestor_addr_info (stmt, &obj, &anc_offset); |
| if (!expr) |
| return; |
| index = ipa_get_param_decl_index (info, |
| SSA_NAME_VAR (TREE_OPERAND (expr, 0))); |
| gcc_assert (index >= 0); |
| if (detect_type_change (fbi, obj, expr, obj_type_ref_class (target), |
| call, anc_offset)) |
| return; |
| } |
| |
| struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index, |
| call, true); |
| class cgraph_indirect_call_info *ii = cs->indirect_info; |
| ii->offset = anc_offset; |
| ii->otr_token = tree_to_uhwi (OBJ_TYPE_REF_TOKEN (target)); |
| ii->otr_type = obj_type_ref_class (target); |
| ii->polymorphic = 1; |
| } |
| |
| /* Analyze a call statement CALL whether and how it utilizes formal parameters |
| of the caller (described by INFO). PARMS_AINFO is a pointer to a vector |
| containing intermediate information about each formal parameter. */ |
| |
| static void |
| ipa_analyze_call_uses (struct ipa_func_body_info *fbi, gcall *call) |
| { |
| tree target = gimple_call_fn (call); |
| |
| if (!target |
| || (TREE_CODE (target) != SSA_NAME |
| && !virtual_method_call_p (target))) |
| return; |
| |
| struct cgraph_edge *cs = fbi->node->get_edge (call); |
| /* If we previously turned the call into a direct call, there is |
| no need to analyze. */ |
| if (cs && !cs->indirect_unknown_callee) |
| return; |
| |
| if (cs->indirect_info->polymorphic && flag_devirtualize) |
| { |
| tree instance; |
| tree target = gimple_call_fn (call); |
| ipa_polymorphic_call_context context (current_function_decl, |
| target, call, &instance); |
| |
| gcc_checking_assert (cs->indirect_info->otr_type |
| == obj_type_ref_class (target)); |
| gcc_checking_assert (cs->indirect_info->otr_token |
| == tree_to_shwi (OBJ_TYPE_REF_TOKEN (target))); |
| |
| cs->indirect_info->vptr_changed |
| = !context.get_dynamic_type (instance, |
| OBJ_TYPE_REF_OBJECT (target), |
| obj_type_ref_class (target), call, |
| &fbi->aa_walk_budget); |
| cs->indirect_info->context = context; |
| } |
| |
| if (TREE_CODE (target) == SSA_NAME) |
| ipa_analyze_indirect_call_uses (fbi, call, target); |
| else if (virtual_method_call_p (target)) |
| ipa_analyze_virtual_call_uses (fbi, call, target); |
| } |
| |
| |
| /* Analyze the call statement STMT with respect to formal parameters (described |
| in INFO) of caller given by FBI->NODE. Currently it only checks whether |
| formal parameters are called. */ |
| |
| static void |
| ipa_analyze_stmt_uses (struct ipa_func_body_info *fbi, gimple *stmt) |
| { |
| if (is_gimple_call (stmt)) |
| ipa_analyze_call_uses (fbi, as_a <gcall *> (stmt)); |
| } |
| |
| /* Callback of walk_stmt_load_store_addr_ops for the visit_load. |
| If OP is a parameter declaration, mark it as used in the info structure |
| passed in DATA. */ |
| |
| static bool |
| visit_ref_for_mod_analysis (gimple *, tree op, tree, void *data) |
| { |
| class ipa_node_params *info = (class ipa_node_params *) data; |
| |
| op = get_base_address (op); |
| if (op |
| && TREE_CODE (op) == PARM_DECL) |
| { |
| int index = ipa_get_param_decl_index (info, op); |
| gcc_assert (index >= 0); |
| ipa_set_param_used (info, index, true); |
| } |
| |
| return false; |
| } |
| |
| /* Scan the statements in BB and inspect the uses of formal parameters. Store |
| the findings in various structures of the associated ipa_node_params |
| structure, such as parameter flags, notes etc. FBI holds various data about |
| the function being analyzed. */ |
| |
| static void |
| ipa_analyze_params_uses_in_bb (struct ipa_func_body_info *fbi, basic_block bb) |
| { |
| gimple_stmt_iterator gsi; |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple *stmt = gsi_stmt (gsi); |
| |
| if (is_gimple_debug (stmt)) |
| continue; |
| |
| ipa_analyze_stmt_uses (fbi, stmt); |
| walk_stmt_load_store_addr_ops (stmt, fbi->info, |
| visit_ref_for_mod_analysis, |
| visit_ref_for_mod_analysis, |
| visit_ref_for_mod_analysis); |
| } |
| for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| walk_stmt_load_store_addr_ops (gsi_stmt (gsi), fbi->info, |
| visit_ref_for_mod_analysis, |
| visit_ref_for_mod_analysis, |
| visit_ref_for_mod_analysis); |
| } |
| |
| /* Return true EXPR is a load from a dereference of SSA_NAME NAME. */ |
| |
| static bool |
| load_from_dereferenced_name (tree expr, tree name) |
| { |
| tree base = get_base_address (expr); |
| return (TREE_CODE (base) == MEM_REF |
| && TREE_OPERAND (base, 0) == name); |
| } |
| |
| /* Calculate controlled uses of parameters of NODE. */ |
| |
| static void |
| ipa_analyze_controlled_uses (struct cgraph_node *node) |
| { |
| ipa_node_params *info = ipa_node_params_sum->get (node); |
| |
| for (int i = 0; i < ipa_get_param_count (info); i++) |
| { |
| tree parm = ipa_get_param (info, i); |
| int call_uses = 0; |
| bool load_dereferenced = false; |
| |
| /* For SSA regs see if parameter is used. For non-SSA we compute |
| the flag during modification analysis. */ |
| if (is_gimple_reg (parm)) |
| { |
| tree ddef = ssa_default_def (DECL_STRUCT_FUNCTION (node->decl), |
| parm); |
| if (ddef && !has_zero_uses (ddef)) |
| { |
| imm_use_iterator imm_iter; |
| gimple *stmt; |
| |
| ipa_set_param_used (info, i, true); |
| FOR_EACH_IMM_USE_STMT (stmt, imm_iter, ddef) |
| { |
| if (is_gimple_debug (stmt)) |
| continue; |
| |
| int all_stmt_uses = 0; |
| use_operand_p use_p; |
| FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter) |
| all_stmt_uses++; |
| |
| if (is_gimple_call (stmt)) |
| { |
| if (gimple_call_internal_p (stmt)) |
| { |
| call_uses = IPA_UNDESCRIBED_USE; |
| break; |
| } |
| int recognized_stmt_uses; |
| if (gimple_call_fn (stmt) == ddef) |
| recognized_stmt_uses = 1; |
| else |
| recognized_stmt_uses = 0; |
| unsigned arg_count = gimple_call_num_args (stmt); |
| for (unsigned i = 0; i < arg_count; i++) |
| { |
| tree arg = gimple_call_arg (stmt, i); |
| if (arg == ddef) |
| recognized_stmt_uses++; |
| else if (load_from_dereferenced_name (arg, ddef)) |
| { |
| load_dereferenced = true; |
| recognized_stmt_uses++; |
| } |
| } |
| |
| if (recognized_stmt_uses != all_stmt_uses) |
| { |
| call_uses = IPA_UNDESCRIBED_USE; |
| break; |
| } |
| if (call_uses >= 0) |
| call_uses += all_stmt_uses; |
| } |
| else if (gimple_assign_single_p (stmt)) |
| { |
| tree rhs = gimple_assign_rhs1 (stmt); |
| if (all_stmt_uses != 1 |
| || !load_from_dereferenced_name (rhs, ddef)) |
| { |
| call_uses = IPA_UNDESCRIBED_USE; |
| break; |
| } |
| load_dereferenced = true; |
| } |
| else |
| { |
| call_uses = IPA_UNDESCRIBED_USE; |
| break; |
| } |
| } |
| } |
| else |
| call_uses = 0; |
| } |
| else |
| call_uses = IPA_UNDESCRIBED_USE; |
| ipa_set_controlled_uses (info, i, call_uses); |
| ipa_set_param_load_dereferenced (info, i, load_dereferenced); |
| } |
| } |
| |
| /* Free stuff in BI. */ |
| |
| static void |
| free_ipa_bb_info (struct ipa_bb_info *bi) |
| { |
| bi->cg_edges.release (); |
| bi->param_aa_statuses.release (); |
| } |
| |
| /* Dominator walker driving the analysis. */ |
| |
| class analysis_dom_walker : public dom_walker |
| { |
| public: |
| analysis_dom_walker (struct ipa_func_body_info *fbi) |
| : dom_walker (CDI_DOMINATORS), m_fbi (fbi) {} |
| |
| virtual edge before_dom_children (basic_block); |
| |
| private: |
| struct ipa_func_body_info *m_fbi; |
| }; |
| |
| edge |
| analysis_dom_walker::before_dom_children (basic_block bb) |
| { |
| ipa_analyze_params_uses_in_bb (m_fbi, bb); |
| ipa_compute_jump_functions_for_bb (m_fbi, bb); |
| return NULL; |
| } |
| |
| /* Release body info FBI. */ |
| |
| void |
| ipa_release_body_info (struct ipa_func_body_info *fbi) |
| { |
| int i; |
| struct ipa_bb_info *bi; |
| |
| FOR_EACH_VEC_ELT (fbi->bb_infos, i, bi) |
| free_ipa_bb_info (bi); |
| fbi->bb_infos.release (); |
| } |
| |
| /* Initialize the array describing properties of formal parameters |
| of NODE, analyze their uses and compute jump functions associated |
| with actual arguments of calls from within NODE. */ |
| |
| void |
| ipa_analyze_node (struct cgraph_node *node) |
| { |
| struct ipa_func_body_info fbi; |
| class ipa_node_params *info; |
| |
| ipa_check_create_node_params (); |
| ipa_check_create_edge_args (); |
| info = ipa_node_params_sum->get_create (node); |
| |
| if (info->analysis_done) |
| return; |
| info->analysis_done = 1; |
| |
| if (ipa_func_spec_opts_forbid_analysis_p (node)) |
| { |
| for (int i = 0; i < ipa_get_param_count (info); i++) |
| { |
| ipa_set_param_used (info, i, true); |
| ipa_set_controlled_uses (info, i, IPA_UNDESCRIBED_USE); |
| } |
| return; |
| } |
| |
| struct function *func = DECL_STRUCT_FUNCTION (node->decl); |
| push_cfun (func); |
| calculate_dominance_info (CDI_DOMINATORS); |
| ipa_initialize_node_params (node); |
| ipa_analyze_controlled_uses (node); |
| |
| fbi.node = node; |
| fbi.info = info; |
| fbi.bb_infos = vNULL; |
| fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun), true); |
| fbi.param_count = ipa_get_param_count (info); |
| fbi.aa_walk_budget = opt_for_fn (node->decl, param_ipa_max_aa_steps); |
| |
| for (struct cgraph_edge *cs = node->callees; cs; cs = cs->next_callee) |
| { |
| ipa_bb_info *bi = ipa_get_bb_info (&fbi, gimple_bb (cs->call_stmt)); |
| bi->cg_edges.safe_push (cs); |
| } |
| |
| for (struct cgraph_edge *cs = node->indirect_calls; cs; cs = cs->next_callee) |
| { |
| ipa_bb_info *bi = ipa_get_bb_info (&fbi, gimple_bb (cs->call_stmt)); |
| bi->cg_edges.safe_push (cs); |
| } |
| |
| analysis_dom_walker (&fbi).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun)); |
| |
| ipa_release_body_info (&fbi); |
| free_dominance_info (CDI_DOMINATORS); |
| pop_cfun (); |
| } |
| |
| /* Update the jump functions associated with call graph edge E when the call |
| graph edge CS is being inlined, assuming that E->caller is already (possibly |
| indirectly) inlined into CS->callee and that E has not been inlined. */ |
| |
| static void |
| update_jump_functions_after_inlining (struct cgraph_edge *cs, |
| struct cgraph_edge *e) |
| { |
| ipa_edge_args *top = ipa_edge_args_sum->get (cs); |
| ipa_edge_args *args = ipa_edge_args_sum->get (e); |
| if (!args) |
| return; |
| int count = ipa_get_cs_argument_count (args); |
| int i; |
| |
| for (i = 0; i < count; i++) |
| { |
| struct ipa_jump_func *dst = ipa_get_ith_jump_func (args, i); |
| class ipa_polymorphic_call_context *dst_ctx |
| = ipa_get_ith_polymorhic_call_context (args, i); |
| |
| if (dst->agg.items) |
| { |
| struct ipa_agg_jf_item *item; |
| int j; |
| |
| FOR_EACH_VEC_ELT (*dst->agg.items, j, item) |
| { |
| int dst_fid; |
| struct ipa_jump_func *src; |
| |
| if (item->jftype != IPA_JF_PASS_THROUGH |
| && item->jftype != IPA_JF_LOAD_AGG) |
| continue; |
| |
| dst_fid = item->value.pass_through.formal_id; |
| if (!top || dst_fid >= ipa_get_cs_argument_count (top)) |
| { |
| item->jftype = IPA_JF_UNKNOWN; |
| continue; |
| } |
| |
| item->value.pass_through.formal_id = -1; |
| src = ipa_get_ith_jump_func (top, dst_fid); |
| if (src->type == IPA_JF_CONST) |
| { |
| if (item->jftype == IPA_JF_PASS_THROUGH |
| && item->value.pass_through.operation == NOP_EXPR) |
| { |
| item->jftype = IPA_JF_CONST; |
| item->value.constant = src->value.constant.value; |
| continue; |
| } |
| } |
| else if (src->type == IPA_JF_PASS_THROUGH |
| && src->value.pass_through.operation == NOP_EXPR) |
| { |
| if (item->jftype == IPA_JF_PASS_THROUGH |
| || !item->value.load_agg.by_ref |
| || src->value.pass_through.agg_preserved) |
| item->value.pass_through.formal_id |
| = src->value.pass_through.formal_id; |
| } |
| else if (src->type == IPA_JF_ANCESTOR) |
| { |
| if (item->jftype == IPA_JF_PASS_THROUGH) |
| { |
| if (!src->value.ancestor.offset) |
| item->value.pass_through.formal_id |
| = src->value.ancestor.formal_id; |
| } |
| else if (src->value.ancestor.agg_preserved) |
| { |
| gcc_checking_assert (item->value.load_agg.by_ref); |
| |
| item->value.pass_through.formal_id |
| = src->value.ancestor.formal_id; |
| item->value.load_agg.offset |
| += src->value.ancestor.offset; |
| } |
| } |
| |
| if (item->value.pass_through.formal_id < 0) |
| item->jftype = IPA_JF_UNKNOWN; |
| } |
| } |
| |
| |