blob: bd1818bb25593c3bd11a802f27b0f2c21200d65c [file] [log] [blame]
/* IRA processing allocno lives to build allocno live ranges.
Copyright (C) 2006-2021 Free Software Foundation, Inc.
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "predict.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "ira.h"
#include "ira-int.h"
#include "sparseset.h"
#include "function-abi.h"
/* The code in this file is similar to one in global but the code
works on the allocno basis and creates live ranges instead of
pseudo-register conflicts. */
/* Program points are enumerated by numbers from range
0..IRA_MAX_POINT-1. There are approximately two times more program
points than insns. Program points are places in the program where
liveness info can be changed. In most general case (there are more
complicated cases too) some program points correspond to places
where input operand dies and other ones correspond to places where
output operands are born. */
int ira_max_point;
/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
live ranges with given start/finish point. */
live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
/* Number of the current program point. */
static int curr_point;
/* Point where register pressure excess started or -1 if there is no
register pressure excess. Excess pressure for a register class at
some point means that there are more allocnos of given register
class living at the point than number of hard-registers of the
class available for the allocation. It is defined only for
pressure classes. */
static int high_pressure_start_point[N_REG_CLASSES];
/* Objects live at current point in the scan. */
static sparseset objects_live;
/* A temporary bitmap used in functions that wish to avoid visiting an allocno
multiple times. */
static sparseset allocnos_processed;
/* Set of hard regs (except eliminable ones) currently live. */
static HARD_REG_SET hard_regs_live;
/* The loop tree node corresponding to the current basic block. */
static ira_loop_tree_node_t curr_bb_node;
/* The number of the last processed call. */
static int last_call_num;
/* The number of last call at which given allocno was saved. */
static int *allocno_saved_at_call;
/* The value returned by ira_setup_alts for the current instruction;
i.e. the set of alternatives that we should consider to be likely
candidates during reloading. */
static alternative_mask preferred_alternatives;
/* If non-NULL, the source operand of a register to register copy for which
we should not add a conflict with the copy's destination operand. */
static rtx ignore_reg_for_conflicts;
/* Record hard register REGNO as now being live. */
static void
make_hard_regno_live (int regno)
{
SET_HARD_REG_BIT (hard_regs_live, regno);
}
/* Process the definition of hard register REGNO. This updates
hard_regs_live and hard reg conflict information for living allocnos. */
static void
make_hard_regno_dead (int regno)
{
unsigned int i;
EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
{
ira_object_t obj = ira_object_id_map[i];
if (ignore_reg_for_conflicts != NULL_RTX
&& REGNO (ignore_reg_for_conflicts)
== (unsigned int) ALLOCNO_REGNO (OBJECT_ALLOCNO (obj)))
continue;
SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
}
CLEAR_HARD_REG_BIT (hard_regs_live, regno);
}
/* Record object OBJ as now being live. Set a bit for it in objects_live,
and start a new live range for it if necessary. */
static void
make_object_live (ira_object_t obj)
{
sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
live_range_t lr = OBJECT_LIVE_RANGES (obj);
if (lr == NULL
|| (lr->finish != curr_point && lr->finish + 1 != curr_point))
ira_add_live_range_to_object (obj, curr_point, -1);
}
/* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
associated with object OBJ. */
static void
update_allocno_pressure_excess_length (ira_object_t obj)
{
ira_allocno_t a = OBJECT_ALLOCNO (obj);
int start, i;
enum reg_class aclass, pclass, cl;
live_range_t p;
aclass = ALLOCNO_CLASS (a);
pclass = ira_pressure_class_translate[aclass];
for (i = 0;
(cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
i++)
{
if (! ira_reg_pressure_class_p[cl])
continue;
if (high_pressure_start_point[cl] < 0)
continue;
p = OBJECT_LIVE_RANGES (obj);
ira_assert (p != NULL);
start = (high_pressure_start_point[cl] > p->start
? high_pressure_start_point[cl] : p->start);
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
}
}
/* Process the definition of object OBJ, which is associated with allocno A.
This finishes the current live range for it. */
static void
make_object_dead (ira_object_t obj)
{
live_range_t lr;
int regno;
int ignore_regno = -1;
int ignore_total_regno = -1;
int end_regno = -1;
sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
/* Check whether any part of IGNORE_REG_FOR_CONFLICTS already conflicts
with OBJ. */
if (ignore_reg_for_conflicts != NULL_RTX
&& REGNO (ignore_reg_for_conflicts) < FIRST_PSEUDO_REGISTER)
{
end_regno = END_REGNO (ignore_reg_for_conflicts);
ignore_regno = ignore_total_regno = REGNO (ignore_reg_for_conflicts);
for (regno = ignore_regno; regno < end_regno; regno++)
{
if (TEST_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno))
ignore_regno = end_regno;
if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
ignore_total_regno = end_regno;
}
}
OBJECT_CONFLICT_HARD_REGS (obj) |= hard_regs_live;
OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= hard_regs_live;
/* If IGNORE_REG_FOR_CONFLICTS did not already conflict with OBJ, make
sure it still doesn't. */
for (regno = ignore_regno; regno < end_regno; regno++)
CLEAR_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
for (regno = ignore_total_regno; regno < end_regno; regno++)
CLEAR_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
lr = OBJECT_LIVE_RANGES (obj);
ira_assert (lr != NULL);
lr->finish = curr_point;
update_allocno_pressure_excess_length (obj);
}
/* The current register pressures for each pressure class for the current
basic block. */
static int curr_reg_pressure[N_REG_CLASSES];
/* Record that register pressure for PCLASS increased by N registers.
Update the current register pressure, maximal register pressure for
the current BB and the start point of the register pressure
excess. */
static void
inc_register_pressure (enum reg_class pclass, int n)
{
int i;
enum reg_class cl;
for (i = 0;
(cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
i++)
{
if (! ira_reg_pressure_class_p[cl])
continue;
curr_reg_pressure[cl] += n;
if (high_pressure_start_point[cl] < 0
&& (curr_reg_pressure[cl] > ira_class_hard_regs_num[cl]))
high_pressure_start_point[cl] = curr_point;
if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
}
}
/* Record that register pressure for PCLASS has decreased by NREGS
registers; update current register pressure, start point of the
register pressure excess, and register pressure excess length for
living allocnos. */
static void
dec_register_pressure (enum reg_class pclass, int nregs)
{
int i;
unsigned int j;
enum reg_class cl;
bool set_p = false;
for (i = 0;
(cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
i++)
{
if (! ira_reg_pressure_class_p[cl])
continue;
curr_reg_pressure[cl] -= nregs;
ira_assert (curr_reg_pressure[cl] >= 0);
if (high_pressure_start_point[cl] >= 0
&& curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
set_p = true;
}
if (set_p)
{
EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
update_allocno_pressure_excess_length (ira_object_id_map[j]);
for (i = 0;
(cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
i++)
{
if (! ira_reg_pressure_class_p[cl])
continue;
if (high_pressure_start_point[cl] >= 0
&& curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
high_pressure_start_point[cl] = -1;
}
}
}
/* Determine from the objects_live bitmap whether REGNO is currently live,
and occupies only one object. Return false if we have no information. */
static bool
pseudo_regno_single_word_and_live_p (int regno)
{
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
ira_object_t obj;
if (a == NULL)
return false;
if (ALLOCNO_NUM_OBJECTS (a) > 1)
return false;
obj = ALLOCNO_OBJECT (a, 0);
return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
}
/* Mark the pseudo register REGNO as live. Update all information about
live ranges and register pressure. */
static void
mark_pseudo_regno_live (int regno)
{
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
enum reg_class pclass;
int i, n, nregs;
if (a == NULL)
return;
/* Invalidate because it is referenced. */
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
n = ALLOCNO_NUM_OBJECTS (a);
pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
if (n > 1)
{
/* We track every subobject separately. */
gcc_assert (nregs == n);
nregs = 1;
}
for (i = 0; i < n; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
continue;
inc_register_pressure (pclass, nregs);
make_object_live (obj);
}
}
/* Like mark_pseudo_regno_live, but try to only mark one subword of
the pseudo as live. SUBWORD indicates which; a value of 0
indicates the low part. */
static void
mark_pseudo_regno_subword_live (int regno, int subword)
{
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
int n;
enum reg_class pclass;
ira_object_t obj;
if (a == NULL)
return;
/* Invalidate because it is referenced. */
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
n = ALLOCNO_NUM_OBJECTS (a);
if (n == 1)
{
mark_pseudo_regno_live (regno);
return;
}
pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
gcc_assert
(n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
obj = ALLOCNO_OBJECT (a, subword);
if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
return;
inc_register_pressure (pclass, 1);
make_object_live (obj);
}
/* Mark the register REG as live. Store a 1 in hard_regs_live for
this register, record how many consecutive hardware registers it
actually needs. */
static void
mark_hard_reg_live (rtx reg)
{
int regno = REGNO (reg);
if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
{
int last = END_REGNO (reg);
enum reg_class aclass, pclass;
while (regno < last)
{
if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
&& ! TEST_HARD_REG_BIT (eliminable_regset, regno))
{
aclass = ira_hard_regno_allocno_class[regno];
pclass = ira_pressure_class_translate[aclass];
inc_register_pressure (pclass, 1);
make_hard_regno_live (regno);
}
regno++;
}
}
}
/* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
register number; ORIG_REG is the access in the insn, which may be a
subreg. */
static void
mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
{
if (read_modify_subreg_p (orig_reg))
{
mark_pseudo_regno_subword_live (regno,
subreg_lowpart_p (orig_reg) ? 0 : 1);
}
else
mark_pseudo_regno_live (regno);
}
/* Mark the register referenced by use or def REF as live. */
static void
mark_ref_live (df_ref ref)
{
rtx reg = DF_REF_REG (ref);
rtx orig_reg = reg;
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
mark_pseudo_reg_live (orig_reg, REGNO (reg));
else
mark_hard_reg_live (reg);
}
/* Mark the pseudo register REGNO as dead. Update all information about
live ranges and register pressure. */
static void
mark_pseudo_regno_dead (int regno)
{
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
int n, i, nregs;
enum reg_class cl;
if (a == NULL)
return;
/* Invalidate because it is referenced. */
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
n = ALLOCNO_NUM_OBJECTS (a);
cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
if (n > 1)
{
/* We track every subobject separately. */
gcc_assert (nregs == n);
nregs = 1;
}
for (i = 0; i < n; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
continue;
dec_register_pressure (cl, nregs);
make_object_dead (obj);
}
}
/* Like mark_pseudo_regno_dead, but called when we know that only part of the
register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
static void
mark_pseudo_regno_subword_dead (int regno, int subword)
{
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
int n;
enum reg_class cl;
ira_object_t obj;
if (a == NULL)
return;
/* Invalidate because it is referenced. */
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
n = ALLOCNO_NUM_OBJECTS (a);
if (n == 1)
/* The allocno as a whole doesn't die in this case. */
return;
cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
gcc_assert
(n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
obj = ALLOCNO_OBJECT (a, subword);
if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
return;
dec_register_pressure (cl, 1);
make_object_dead (obj);
}
/* Process the definition of hard register REG. This updates hard_regs_live
and hard reg conflict information for living allocnos. */
static void
mark_hard_reg_dead (rtx reg)
{
int regno = REGNO (reg);
if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
{
int last = END_REGNO (reg);
enum reg_class aclass, pclass;
while (regno < last)
{
if (TEST_HARD_REG_BIT (hard_regs_live, regno))
{
aclass = ira_hard_regno_allocno_class[regno];
pclass = ira_pressure_class_translate[aclass];
dec_register_pressure (pclass, 1);
make_hard_regno_dead (regno);
}
regno++;
}
}
}
/* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
register number; ORIG_REG is the access in the insn, which may be a
subreg. */
static void
mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
{
if (read_modify_subreg_p (orig_reg))
{
mark_pseudo_regno_subword_dead (regno,
subreg_lowpart_p (orig_reg) ? 0 : 1);
}
else
mark_pseudo_regno_dead (regno);
}
/* Mark the register referenced by definition DEF as dead, if the
definition is a total one. */
static void
mark_ref_dead (df_ref def)
{
rtx reg = DF_REF_REG (def);
rtx orig_reg = reg;
if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
return;
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
&& (GET_CODE (orig_reg) != SUBREG
|| REGNO (reg) < FIRST_PSEUDO_REGISTER
|| !read_modify_subreg_p (orig_reg)))
return;
if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
mark_pseudo_reg_dead (orig_reg, REGNO (reg));
else
mark_hard_reg_dead (reg);
}
/* If REG is a pseudo or a subreg of it, and the class of its allocno
intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
rtx actually accessed, it may be identical to DREG or a subreg of it.
Advance the current program point before making the conflict if
ADVANCE_P. Return TRUE if we will need to advance the current
program point. */
static bool
make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
bool advance_p)
{
rtx orig_reg = reg;
ira_allocno_t a;
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
return advance_p;
a = ira_curr_regno_allocno_map[REGNO (reg)];
if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
return advance_p;
if (advance_p)
curr_point++;
mark_pseudo_reg_live (orig_reg, REGNO (reg));
mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
mark_pseudo_reg_dead (orig_reg, REGNO (reg));
mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
return false;
}
/* Check and make if necessary conflicts for pseudo DREG of class
DEF_CL of the current insn with input operand USE of class USE_CL.
ORIG_DREG is the rtx actually accessed, it may be identical to
DREG or a subreg of it. Advance the current program point before
making the conflict if ADVANCE_P. Return TRUE if we will need to
advance the current program point. */
static bool
check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
enum reg_class def_cl, int use,
enum reg_class use_cl, bool advance_p)
{
if (! reg_classes_intersect_p (def_cl, use_cl))
return advance_p;
advance_p = make_pseudo_conflict (recog_data.operand[use],
use_cl, dreg, orig_dreg, advance_p);
/* Reload may end up swapping commutative operands, so you
have to take both orderings into account. The
constraints for the two operands can be completely
different. (Indeed, if the constraints for the two
operands are the same for all alternatives, there's no
point marking them as commutative.) */
if (use < recog_data.n_operands - 1
&& recog_data.constraints[use][0] == '%')
advance_p
= make_pseudo_conflict (recog_data.operand[use + 1],
use_cl, dreg, orig_dreg, advance_p);
if (use >= 1
&& recog_data.constraints[use - 1][0] == '%')
advance_p
= make_pseudo_conflict (recog_data.operand[use - 1],
use_cl, dreg, orig_dreg, advance_p);
return advance_p;
}
/* Check and make if necessary conflicts for definition DEF of class
DEF_CL of the current insn with input operands. Process only
constraints of alternative ALT.
One of three things is true when this function is called:
(1) DEF is an earlyclobber for alternative ALT. Input operands then
conflict with DEF in ALT unless they explicitly match DEF via 0-9
constraints.
(2) DEF matches (via 0-9 constraints) an operand that is an
earlyclobber for alternative ALT. Other input operands then
conflict with DEF in ALT.
(3) [FOR_TIE_P] Some input operand X matches DEF for alternative ALT.
Input operands with a different value from X then conflict with
DEF in ALT.
However, there's still a judgement call to make when deciding
whether a conflict in ALT is important enough to be reflected
in the pan-alternative allocno conflict set. */
static void
check_and_make_def_conflict (int alt, int def, enum reg_class def_cl,
bool for_tie_p)
{
int use, use_match;
ira_allocno_t a;
enum reg_class use_cl, acl;
bool advance_p;
rtx dreg = recog_data.operand[def];
rtx orig_dreg = dreg;
if (def_cl == NO_REGS)
return;
if (GET_CODE (dreg) == SUBREG)
dreg = SUBREG_REG (dreg);
if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
return;
a = ira_curr_regno_allocno_map[REGNO (dreg)];
acl = ALLOCNO_CLASS (a);
if (! reg_classes_intersect_p (acl, def_cl))
return;
advance_p = true;
int n_operands = recog_data.n_operands;
const operand_alternative *op_alt = &recog_op_alt[alt * n_operands];
for (use = 0; use < n_operands; use++)
{
int alt1;
if (use == def || recog_data.operand_type[use] == OP_OUT)
continue;
/* An earlyclobber on DEF doesn't apply to an input operand X if X
explicitly matches DEF, but it applies to other input operands
even if they happen to be the same value as X.
In contrast, if an input operand X is tied to a non-earlyclobber
DEF, there's no conflict with other input operands that have the
same value as X. */
if (op_alt[use].matches == def
|| (for_tie_p
&& rtx_equal_p (recog_data.operand[use],
recog_data.operand[op_alt[def].matched])))
continue;
if (op_alt[use].anything_ok)
use_cl = ALL_REGS;
else
use_cl = op_alt[use].cl;
if (use_cl == NO_REGS)
continue;
/* If DEF is simply a tied operand, ignore cases in which this
alternative requires USE to have a likely-spilled class.
Adding a conflict would just constrain USE further if DEF
happens to be allocated first. */
if (for_tie_p && targetm.class_likely_spilled_p (use_cl))
continue;
/* If there's any alternative that allows USE to match DEF, do not
record a conflict. If that causes us to create an invalid
instruction due to the earlyclobber, reload must fix it up.
Likewise, if we're treating a tied DEF like a partial earlyclobber,
do not record a conflict if there's another alternative in which
DEF is neither tied nor earlyclobber. */
for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
{
if (!TEST_BIT (preferred_alternatives, alt1))
continue;
const operand_alternative *op_alt1
= &recog_op_alt[alt1 * n_operands];
if (op_alt1[use].matches == def
|| (use < n_operands - 1
&& recog_data.constraints[use][0] == '%'
&& op_alt1[use + 1].matches == def)
|| (use >= 1
&& recog_data.constraints[use - 1][0] == '%'
&& op_alt1[use - 1].matches == def))
break;
if (for_tie_p
&& !op_alt1[def].earlyclobber
&& op_alt1[def].matched < 0
&& alternative_class (op_alt1, def) != NO_REGS
&& alternative_class (op_alt1, use) != NO_REGS)
break;
}
if (alt1 < recog_data.n_alternatives)
continue;
advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
use, use_cl, advance_p);
if ((use_match = op_alt[use].matches) >= 0)
{
gcc_checking_assert (use_match != def);
if (op_alt[use_match].anything_ok)
use_cl = ALL_REGS;
else
use_cl = op_alt[use_match].cl;
advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
use, use_cl, advance_p);
}
}
}
/* Make conflicts of early clobber pseudo registers of the current
insn with its inputs. Avoid introducing unnecessary conflicts by
checking classes of the constraints and pseudos because otherwise
significant code degradation is possible for some targets.
For these purposes, tying an input to an output makes that output act
like an earlyclobber for inputs with a different value, since the output
register then has a predetermined purpose on input to the instruction. */
static void
make_early_clobber_and_input_conflicts (void)
{
int alt;
int def, def_match;
enum reg_class def_cl;
int n_alternatives = recog_data.n_alternatives;
int n_operands = recog_data.n_operands;
const operand_alternative *op_alt = recog_op_alt;
for (alt = 0; alt < n_alternatives; alt++, op_alt += n_operands)
if (TEST_BIT (preferred_alternatives, alt))
for (def = 0; def < n_operands; def++)
{
if (op_alt[def].anything_ok)
def_cl = ALL_REGS;
else
def_cl = op_alt[def].cl;
if (def_cl != NO_REGS)
{
if (op_alt[def].earlyclobber)
check_and_make_def_conflict (alt, def, def_cl, false);
else if (op_alt[def].matched >= 0
&& !targetm.class_likely_spilled_p (def_cl))
check_and_make_def_conflict (alt, def, def_cl, true);
}
if ((def_match = op_alt[def].matches) >= 0
&& (op_alt[def_match].earlyclobber
|| op_alt[def].earlyclobber))
{
if (op_alt[def_match].anything_ok)
def_cl = ALL_REGS;
else
def_cl = op_alt[def_match].cl;
check_and_make_def_conflict (alt, def, def_cl, false);
}
}
}
/* Mark early clobber hard registers of the current INSN as live (if
LIVE_P) or dead. Return true if there are such registers. */
static bool
mark_hard_reg_early_clobbers (rtx_insn *insn, bool live_p)
{
df_ref def;
bool set_p = false;
FOR_EACH_INSN_DEF (def, insn)
if (DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER))
{
rtx dreg = DF_REF_REG (def);
if (GET_CODE (dreg) == SUBREG)
dreg = SUBREG_REG (dreg);
if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
continue;
/* Hard register clobbers are believed to be early clobber
because there is no way to say that non-operand hard
register clobbers are not early ones. */
if (live_p)
mark_ref_live (def);
else
mark_ref_dead (def);
set_p = true;
}
return set_p;
}
/* Checks that CONSTRAINTS permits to use only one hard register. If
it is so, the function returns the class of the hard register.
Otherwise it returns NO_REGS. */
static enum reg_class
single_reg_class (const char *constraints, rtx op, rtx equiv_const)
{
int c;
enum reg_class cl, next_cl;
enum constraint_num cn;
cl = NO_REGS;
alternative_mask preferred = preferred_alternatives;
while ((c = *constraints))
{
if (c == '#')
preferred &= ~ALTERNATIVE_BIT (0);
else if (c == ',')
preferred >>= 1;
else if (preferred & 1)
switch (c)
{
case 'g':
return NO_REGS;
default:
/* ??? Is this the best way to handle memory constraints? */
cn = lookup_constraint (constraints);
if (insn_extra_memory_constraint (cn)
|| insn_extra_special_memory_constraint (cn)
|| insn_extra_relaxed_memory_constraint (cn)
|| insn_extra_address_constraint (cn))
return NO_REGS;
if (constraint_satisfied_p (op, cn)
|| (equiv_const != NULL_RTX
&& CONSTANT_P (equiv_const)
&& constraint_satisfied_p (equiv_const, cn)))
return NO_REGS;
next_cl = reg_class_for_constraint (cn);
if (next_cl == NO_REGS)
break;
if (cl == NO_REGS
? ira_class_singleton[next_cl][GET_MODE (op)] < 0
: (ira_class_singleton[cl][GET_MODE (op)]
!= ira_class_singleton[next_cl][GET_MODE (op)]))
return NO_REGS;
cl = next_cl;
break;
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
{
char *end;
unsigned long dup = strtoul (constraints, &end, 10);
constraints = end;
next_cl
= single_reg_class (recog_data.constraints[dup],
recog_data.operand[dup], NULL_RTX);
if (cl == NO_REGS
? ira_class_singleton[next_cl][GET_MODE (op)] < 0
: (ira_class_singleton[cl][GET_MODE (op)]
!= ira_class_singleton[next_cl][GET_MODE (op)]))
return NO_REGS;
cl = next_cl;
continue;
}
}
constraints += CONSTRAINT_LEN (c, constraints);
}
return cl;
}
/* The function checks that operand OP_NUM of the current insn can use
only one hard register. If it is so, the function returns the
class of the hard register. Otherwise it returns NO_REGS. */
static enum reg_class
single_reg_operand_class (int op_num)
{
if (op_num < 0 || recog_data.n_alternatives == 0)
return NO_REGS;
return single_reg_class (recog_data.constraints[op_num],
recog_data.operand[op_num], NULL_RTX);
}
/* The function sets up hard register set *SET to hard registers which
might be used by insn reloads because the constraints are too
strict. */
void
ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set,
alternative_mask preferred)
{
int i, c, regno = 0;
enum reg_class cl;
rtx op;
machine_mode mode;
CLEAR_HARD_REG_SET (*set);
for (i = 0; i < recog_data.n_operands; i++)
{
op = recog_data.operand[i];
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (GET_CODE (op) == SCRATCH
|| (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
{
const char *p = recog_data.constraints[i];
mode = (GET_CODE (op) == SCRATCH
? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
cl = NO_REGS;
for (; (c = *p); p += CONSTRAINT_LEN (c, p))
if (c == '#')
preferred &= ~ALTERNATIVE_BIT (0);
else if (c == ',')
preferred >>= 1;
else if (preferred & 1)
{
cl = reg_class_for_constraint (lookup_constraint (p));
if (cl != NO_REGS)
{
/* There is no register pressure problem if all of the
regs in this class are fixed. */
int regno = ira_class_singleton[cl][mode];
if (regno >= 0)
add_to_hard_reg_set (set, mode, regno);
}
}
}
}
}
/* Processes input operands, if IN_P, or output operands otherwise of
the current insn with FREQ to find allocno which can use only one
hard register and makes other currently living allocnos conflicting
with the hard register. */
static void
process_single_reg_class_operands (bool in_p, int freq)
{
int i, regno;
unsigned int px;
enum reg_class cl;
rtx operand;
ira_allocno_t operand_a, a;
for (i = 0; i < recog_data.n_operands; i++)
{
operand = recog_data.operand[i];
if (in_p && recog_data.operand_type[i] != OP_IN
&& recog_data.operand_type[i] != OP_INOUT)
continue;
if (! in_p && recog_data.operand_type[i] != OP_OUT
&& recog_data.operand_type[i] != OP_INOUT)
continue;
cl = single_reg_operand_class (i);
if (cl == NO_REGS)
continue;
operand_a = NULL;
if (GET_CODE (operand) == SUBREG)
operand = SUBREG_REG (operand);
if (REG_P (operand)
&& (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
{
enum reg_class aclass;
operand_a = ira_curr_regno_allocno_map[regno];
aclass = ALLOCNO_CLASS (operand_a);
if (ira_class_subset_p[cl][aclass])
{
/* View the desired allocation of OPERAND as:
(REG:YMODE YREGNO),
a simplification of:
(subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
machine_mode ymode, xmode;
int xregno, yregno;
poly_int64 offset;
xmode = recog_data.operand_mode[i];
xregno = ira_class_singleton[cl][xmode];
gcc_assert (xregno >= 0);
ymode = ALLOCNO_MODE (operand_a);
offset = subreg_lowpart_offset (ymode, xmode);
yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
if (yregno >= 0
&& ira_class_hard_reg_index[aclass][yregno] >= 0)
{
int cost;
ira_allocate_and_set_costs
(&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
aclass, 0);
ira_init_register_move_cost_if_necessary (xmode);
cost = freq * (in_p
? ira_register_move_cost[xmode][aclass][cl]
: ira_register_move_cost[xmode][cl][aclass]);
ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
[ira_class_hard_reg_index[aclass][yregno]] -= cost;
}
}
}
EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
{
ira_object_t obj = ira_object_id_map[px];
a = OBJECT_ALLOCNO (obj);
if (a != operand_a)
{
/* We could increase costs of A instead of making it
conflicting with the hard register. But it works worse
because it will be spilled in reload in anyway. */
OBJECT_CONFLICT_HARD_REGS (obj) |= reg_class_contents[cl];
OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= reg_class_contents[cl];
}
}
}
}
/* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
we find a SET rtx that we can use to deduce that a register can be cheaply
caller-saved. Return such a register, or NULL_RTX if none is found. */
static rtx
find_call_crossed_cheap_reg (rtx_insn *insn)
{
rtx cheap_reg = NULL_RTX;
rtx exp = CALL_INSN_FUNCTION_USAGE (insn);
while (exp != NULL)
{
rtx x = XEXP (exp, 0);
if (GET_CODE (x) == SET)
{
exp = x;
break;
}
exp = XEXP (exp, 1);
}
if (exp != NULL)
{
basic_block bb = BLOCK_FOR_INSN (insn);
rtx reg = SET_SRC (exp);
rtx_insn *prev = PREV_INSN (insn);
while (prev && !(INSN_P (prev)
&& BLOCK_FOR_INSN (prev) != bb))
{
if (NONDEBUG_INSN_P (prev))
{
rtx set = single_set (prev);
if (set && rtx_equal_p (SET_DEST (set), reg))
{
rtx src = SET_SRC (set);
if (!REG_P (src) || HARD_REGISTER_P (src)
|| !pseudo_regno_single_word_and_live_p (REGNO (src)))
break;
if (!modified_between_p (src, prev, insn))
cheap_reg = src;
break;
}
if (set && rtx_equal_p (SET_SRC (set), reg))
{
rtx dest = SET_DEST (set);
if (!REG_P (dest) || HARD_REGISTER_P (dest)
|| !pseudo_regno_single_word_and_live_p (REGNO (dest)))
break;
if (!modified_between_p (dest, prev, insn))
cheap_reg = dest;
break;
}
if (reg_set_p (reg, prev))
break;
}
prev = PREV_INSN (prev);
}
}
return cheap_reg;
}
/* Determine whether INSN is a register to register copy of the type where
we do not need to make the source and destiniation registers conflict.
If this is a copy instruction, then return the source reg. Otherwise,
return NULL_RTX. */
rtx
non_conflicting_reg_copy_p (rtx_insn *insn)
{
/* Reload has issues with overlapping pseudos being assigned to the
same hard register, so don't allow it. See PR87600 for details. */
if (!targetm.lra_p ())
return NULL_RTX;
rtx set = single_set (insn);
/* Disallow anything other than a simple register to register copy
that has no side effects. */
if (set == NULL_RTX
|| !REG_P (SET_DEST (set))
|| !REG_P (SET_SRC (set))
|| side_effects_p (set))
return NULL_RTX;
int dst_regno = REGNO (SET_DEST (set));
int src_regno = REGNO (SET_SRC (set));
machine_mode mode = GET_MODE (SET_DEST (set));
/* By definition, a register does not conflict with itself, therefore we
do not have to handle it specially. Returning NULL_RTX now, helps
simplify the callers of this function. */
if (dst_regno == src_regno)
return NULL_RTX;
/* Computing conflicts for register pairs is difficult to get right, so
for now, disallow it. */
if ((HARD_REGISTER_NUM_P (dst_regno)
&& hard_regno_nregs (dst_regno, mode) != 1)
|| (HARD_REGISTER_NUM_P (src_regno)
&& hard_regno_nregs (src_regno, mode) != 1))
return NULL_RTX;
return SET_SRC (set);
}
#ifdef EH_RETURN_DATA_REGNO
/* Add EH return hard registers as conflict hard registers to allocnos
living at end of BB. For most allocnos it is already done in
process_bb_node_lives when we processing input edges but it does
not work when and EH edge is edge out of the current region. This
function covers such out of region edges. */
static void
process_out_of_region_eh_regs (basic_block bb)
{
edge e;
edge_iterator ei;
unsigned int i;
bitmap_iterator bi;
bool eh_p = false;
FOR_EACH_EDGE (e, ei, bb->succs)
if ((e->flags & EDGE_EH)
&& IRA_BB_NODE (e->dest)->parent != IRA_BB_NODE (bb)->parent)
eh_p = true;
if (! eh_p)
return;
EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), FIRST_PSEUDO_REGISTER, i, bi)
{
ira_allocno_t a = ira_curr_regno_allocno_map[i];
for (int n = ALLOCNO_NUM_OBJECTS (a) - 1; n >= 0; n--)
{
ira_object_t obj = ALLOCNO_OBJECT (a, n);
for (int k = 0; ; k++)
{
unsigned int regno = EH_RETURN_DATA_REGNO (k);
if (regno == INVALID_REGNUM)
break;
SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
}
}
}
}
#endif
/* Process insns of the basic block given by its LOOP_TREE_NODE to
update allocno live ranges, allocno hard register conflicts,
intersected calls, and register pressure info for allocnos for the
basic block for and regions containing the basic block. */
static void
process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
{
int i, freq;
unsigned int j;
basic_block bb;
rtx_insn *insn;
bitmap_iterator bi;
bitmap reg_live_out;
unsigned int px;
bool set_p;
bb = loop_tree_node->bb;
if (bb != NULL)
{
for (i = 0; i < ira_pressure_classes_num; i++)
{
curr_reg_pressure[ira_pressure_classes[i]] = 0;
high_pressure_start_point[ira_pressure_classes[i]] = -1;
}
curr_bb_node = loop_tree_node;
reg_live_out = df_get_live_out (bb);
sparseset_clear (objects_live);
REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
hard_regs_live &= ~(eliminable_regset | ira_no_alloc_regs);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (hard_regs_live, i))
{
enum reg_class aclass, pclass, cl;
aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
pclass = ira_pressure_class_translate[aclass];
for (j = 0;
(cl = ira_reg_class_super_classes[pclass][j])
!= LIM_REG_CLASSES;
j++)
{
if (! ira_reg_pressure_class_p[cl])
continue;
curr_reg_pressure[cl]++;
if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
ira_assert (curr_reg_pressure[cl]
<= ira_class_hard_regs_num[cl]);
}
}
EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
mark_pseudo_regno_live (j);
#ifdef EH_RETURN_DATA_REGNO
process_out_of_region_eh_regs (bb);
#endif
freq = REG_FREQ_FROM_BB (bb);
if (freq == 0)
freq = 1;
/* Invalidate all allocno_saved_at_call entries. */
last_call_num++;
/* Scan the code of this basic block, noting which allocnos and
hard regs are born or die.
Note that this loop treats uninitialized values as live until
the beginning of the block. For example, if an instruction
uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
set, FOO will remain live until the beginning of the block.
Likewise if FOO is not set at all. This is unnecessarily
pessimistic, but it probably doesn't matter much in practice. */
FOR_BB_INSNS_REVERSE (bb, insn)
{
ira_allocno_t a;
df_ref def, use;
bool call_p;
if (!NONDEBUG_INSN_P (insn))
continue;
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
INSN_UID (insn), loop_tree_node->parent->loop_num,
curr_point);
call_p = CALL_P (insn);
ignore_reg_for_conflicts = non_conflicting_reg_copy_p (insn);
/* Mark each defined value as live. We need to do this for
unused values because they still conflict with quantities
that are live at the time of the definition.
Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
references represent the effect of the called function
on a call-clobbered register. Marking the register as
live would stop us from allocating it to a call-crossing
allocno. */
FOR_EACH_INSN_DEF (def, insn)
if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
mark_ref_live (def);
/* If INSN has multiple outputs, then any value used in one
of the outputs conflicts with the other outputs. Model this
by making the used value live during the output phase.
It is unsafe to use !single_set here since it will ignore
an unused output. Just because an output is unused does
not mean the compiler can assume the side effect will not
occur. Consider if ALLOCNO appears in the address of an
output and we reload the output. If we allocate ALLOCNO
to the same hard register as an unused output we could
set the hard register before the output reload insn. */
if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
FOR_EACH_INSN_USE (use, insn)
{
int i;
rtx reg;
reg = DF_REF_REG (use);
for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
{
rtx set;
set = XVECEXP (PATTERN (insn), 0, i);
if (GET_CODE (set) == SET
&& reg_overlap_mentioned_p (reg, SET_DEST (set)))
{
/* After the previous loop, this is a no-op if
REG is contained within SET_DEST (SET). */
mark_ref_live (use);
break;
}
}
}
preferred_alternatives = ira_setup_alts (insn);
process_single_reg_class_operands (false, freq);
if (call_p)
{
/* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
there, try to find a pseudo that is live across the call but
can be cheaply reconstructed from the return value. */
rtx cheap_reg = find_call_crossed_cheap_reg (insn);
if (cheap_reg != NULL_RTX)
add_reg_note (insn, REG_RETURNED, cheap_reg);
last_call_num++;
sparseset_clear (allocnos_processed);
/* The current set of live allocnos are live across the call. */
EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
{
ira_object_t obj = ira_object_id_map[i];
a = OBJECT_ALLOCNO (obj);
int num = ALLOCNO_NUM (a);
function_abi callee_abi = insn_callee_abi (insn);
/* Don't allocate allocnos that cross setjmps or any
call, if this function receives a nonlocal
goto. */
if (cfun->has_nonlocal_label
|| (!targetm.setjmp_preserves_nonvolatile_regs_p ()
&& (find_reg_note (insn, REG_SETJMP, NULL_RTX)
!= NULL_RTX)))
{
SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
}
if (can_throw_internal (insn))
{
OBJECT_CONFLICT_HARD_REGS (obj)
|= callee_abi.mode_clobbers (ALLOCNO_MODE (a));
OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)
|= callee_abi.mode_clobbers (ALLOCNO_MODE (a));
}
if (sparseset_bit_p (allocnos_processed, num))
continue;
sparseset_set_bit (allocnos_processed, num);
if (allocno_saved_at_call[num] != last_call_num)
/* Here we are mimicking caller-save.c behavior
which does not save hard register at a call if
it was saved on previous call in the same basic
block and the hard register was not mentioned
between the two calls. */
ALLOCNO_CALL_FREQ (a) += freq;
/* Mark it as saved at the next call. */
allocno_saved_at_call[num] = last_call_num + 1;
ALLOCNO_CALLS_CROSSED_NUM (a)++;
ALLOCNO_CROSSED_CALLS_ABIS (a) |= 1 << callee_abi.id ();
ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a)
|= callee_abi.full_and_partial_reg_clobbers ();
if (cheap_reg != NULL_RTX
&& ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
}
}
/* See which defined values die here. Note that we include
the call insn in the lifetimes of these values, so we don't
mistakenly consider, for e.g. an addressing mode with a
side-effect like a post-increment fetching the address,
that the use happens before the call, and the def to happen
after the call: we believe both to happen before the actual
call. (We don't handle return-values here.) */
FOR_EACH_INSN_DEF (def, insn)
if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
mark_ref_dead (def);
make_early_clobber_and_input_conflicts ();
curr_point++;
/* Mark each used value as live. */
FOR_EACH_INSN_USE (use, insn)
mark_ref_live (use);
process_single_reg_class_operands (true, freq);
set_p = mark_hard_reg_early_clobbers (insn, true);
if (set_p)
{
mark_hard_reg_early_clobbers (insn, false);
/* Mark each hard reg as live again. For example, a
hard register can be in clobber and in an insn
input. */
FOR_EACH_INSN_USE (use, insn)
{
rtx ureg = DF_REF_REG (use);
if (GET_CODE (ureg) == SUBREG)
ureg = SUBREG_REG (ureg);
if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
continue;
mark_ref_live (use);
}
}
curr_point++;
}
ignore_reg_for_conflicts = NULL_RTX;
if (bb_has_eh_pred (bb))
for (j = 0; ; ++j)
{
unsigned int regno = EH_RETURN_DATA_REGNO (j);
if (regno == INVALID_REGNUM)
break;
make_hard_regno_live (regno);
}
/* Allocnos can't go in stack regs at the start of a basic block
that is reached by an abnormal edge. Likewise for registers
that are at least partly call clobbered, because caller-save,
fixup_abnormal_edges and possibly the table driven EH machinery
are not quite ready to handle such allocnos live across such
edges. */
if (bb_has_abnormal_pred (bb))
{
#ifdef STACK_REGS
EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
{
ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
ALLOCNO_NO_STACK_REG_P (a) = true;
ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
}
for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
make_hard_regno_live (px);
#endif
/* No need to record conflicts for call clobbered regs if we
have nonlocal labels around, as we don't ever try to
allocate such regs in this case. */
if (!cfun->has_nonlocal_label
&& has_abnormal_call_or_eh_pred_edge_p (bb))
for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
if (eh_edge_abi.clobbers_at_least_part_of_reg_p (px)
#ifdef REAL_PIC_OFFSET_TABLE_REGNUM
/* We should create a conflict of PIC pseudo with
PIC hard reg as PIC hard reg can have a wrong
value after jump described by the abnormal edge.
In this case we cannot allocate PIC hard reg to
PIC pseudo as PIC pseudo will also have a wrong
value. This code is not critical as LRA can fix
it but it is better to have the right allocation
earlier. */
|| (px == REAL_PIC_OFFSET_TABLE_REGNUM
&& pic_offset_table_rtx != NULL_RTX
&& REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
#endif
)
make_hard_regno_live (px);
}
EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
make_object_dead (ira_object_id_map[i]);
curr_point++;
}
/* Propagate register pressure to upper loop tree nodes. */
if (loop_tree_node != ira_loop_tree_root)
for (i = 0; i < ira_pressure_classes_num; i++)
{
enum reg_class pclass;
pclass = ira_pressure_classes[i];
if (loop_tree_node->reg_pressure[pclass]
> loop_tree_node->parent->reg_pressure[pclass])
loop_tree_node->parent->reg_pressure[pclass]
= loop_tree_node->reg_pressure[pclass];
}
}
/* Create and set up IRA_START_POINT_RANGES and
IRA_FINISH_POINT_RANGES. */
static void
create_start_finish_chains (void)
{
ira_object_t obj;
ira_object_iterator oi;
live_range_t r;
ira_start_point_ranges
= (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
ira_finish_point_ranges
= (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
FOR_EACH_OBJECT (obj, oi)
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
{
r->start_next = ira_start_point_ranges[r->start];
ira_start_point_ranges[r->start] = r;
r->finish_next = ira_finish_point_ranges[r->finish];
ira_finish_point_ranges[r->finish] = r;
}
}
/* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
new live ranges and program points were added as a result if new
insn generation. */
void
ira_rebuild_start_finish_chains (void)
{
ira_free (ira_finish_point_ranges);
ira_free (ira_start_point_ranges);
create_start_finish_chains ();
}
/* Compress allocno live ranges by removing program points where
nothing happens. */
static void
remove_some_program_points_and_update_live_ranges (void)
{
unsigned i;
int n;
int *map;
ira_object_t obj;
ira_object_iterator oi;
live_range_t r, prev_r, next_r;
sbitmap_iterator sbi;
bool born_p, dead_p, prev_born_p, prev_dead_p;
auto_sbitmap born (ira_max_point);
auto_sbitmap dead (ira_max_point);
bitmap_clear (born);
bitmap_clear (dead);
FOR_EACH_OBJECT (obj, oi)
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
{
ira_assert (r->start <= r->finish);
bitmap_set_bit (born, r->start);
bitmap_set_bit (dead, r->finish);
}
auto_sbitmap born_or_dead (ira_max_point);
bitmap_ior (born_or_dead, born, dead);
map = (int *) ira_allocate (sizeof (int) * ira_max_point);
n = -1;
prev_born_p = prev_dead_p = false;
EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
{
born_p = bitmap_bit_p (born, i);
dead_p = bitmap_bit_p (dead, i);
if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
|| (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
map[i] = n;
else
map[i] = ++n;
prev_born_p = born_p;
prev_dead_p = dead_p;
}
n++;
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
ira_max_point, n, 100 * n / ira_max_point);
ira_max_point = n;
FOR_EACH_OBJECT (obj, oi)
for (r = OBJECT_LIVE_RANGES (obj), prev_r = NULL; r != NULL; r = next_r)
{
next_r = r->next;
r->start = map[r->start];
r->finish = map[r->finish];
if (prev_r == NULL || prev_r->start > r->finish + 1)
{
prev_r = r;
continue;
}
prev_r->start = r->start;
prev_r->next = next_r;
ira_finish_live_range (r);
}
ira_free (map);
}
/* Print live ranges R to file F. */
void
ira_print_live_range_list (FILE *f, live_range_t r)
{
for (; r != NULL; r = r->next)
fprintf (f, " [%d..%d]", r->start, r->finish);
fprintf (f, "\n");
}
DEBUG_FUNCTION void
debug (live_range &ref)
{
ira_print_live_range_list (stderr, &ref);
}
DEBUG_FUNCTION void
debug (live_range *ptr)
{
if (ptr)
debug (*ptr);
else
fprintf (stderr, "<nil>\n");
}
/* Print live ranges R to stderr. */
void
ira_debug_live_range_list (live_range_t r)
{
ira_print_live_range_list (stderr, r);
}
/* Print live ranges of object OBJ to file F. */
static void
print_object_live_ranges (FILE *f, ira_object_t obj)
{
ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
}
/* Print live ranges of allocno A to file F. */
static void
print_allocno_live_ranges (FILE *f, ira_allocno_t a)
{
int n = ALLOCNO_NUM_OBJECTS (a);
int i;
for (i = 0; i < n; i++)
{
fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
if (n > 1)
fprintf (f, " [%d]", i);
fprintf (f, "):");
print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
}
}
/* Print live ranges of allocno A to stderr. */
void
ira_debug_allocno_live_ranges (ira_allocno_t a)
{
print_allocno_live_ranges (stderr, a);
}
/* Print live ranges of all allocnos to file F. */
static void
print_live_ranges (FILE *f)
{
ira_allocno_t a;
ira_allocno_iterator ai;
FOR_EACH_ALLOCNO (a, ai)
print_allocno_live_ranges (f, a);
}
/* Print live ranges of all allocnos to stderr. */
void
ira_debug_live_ranges (void)
{
print_live_ranges (stderr);
}
/* The main entry function creates live ranges, set up
CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
calculate register pressure info. */
void
ira_create_allocno_live_ranges (void)
{
objects_live = sparseset_alloc (ira_objects_num);
allocnos_processed = sparseset_alloc (ira_allocnos_num);
curr_point = 0;
last_call_num = 0;
allocno_saved_at_call
= (int *) ira_allocate (ira_allocnos_num * sizeof (int));
memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
process_bb_node_lives);
ira_max_point = curr_point;
create_start_finish_chains ();
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
print_live_ranges (ira_dump_file);
/* Clean up. */
ira_free (allocno_saved_at_call);
sparseset_free (objects_live);
sparseset_free (allocnos_processed);
}
/* Compress allocno live ranges. */
void
ira_compress_allocno_live_ranges (void)
{
remove_some_program_points_and_update_live_ranges ();
ira_rebuild_start_finish_chains ();
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
{
fprintf (ira_dump_file, "Ranges after the compression:\n");
print_live_ranges (ira_dump_file);
}
}
/* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
void
ira_finish_allocno_live_ranges (void)
{
ira_free (ira_finish_point_ranges);
ira_free (ira_start_point_ranges);
}