| /* Rtl-level induction variable analysis. |
| Copyright (C) 2004-2021 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it |
| under the terms of the GNU General Public License as published by the |
| Free Software Foundation; either version 3, or (at your option) any |
| later version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* This is a simple analysis of induction variables of the loop. The major use |
| is for determining the number of iterations of a loop for loop unrolling, |
| doloop optimization and branch prediction. The iv information is computed |
| on demand. |
| |
| Induction variables are analyzed by walking the use-def chains. When |
| a basic induction variable (biv) is found, it is cached in the bivs |
| hash table. When register is proved to be a biv, its description |
| is stored to DF_REF_DATA of the def reference. |
| |
| The analysis works always with one loop -- you must call |
| iv_analysis_loop_init (loop) for it. All the other functions then work with |
| this loop. When you need to work with another loop, just call |
| iv_analysis_loop_init for it. When you no longer need iv analysis, call |
| iv_analysis_done () to clean up the memory. |
| |
| The available functions are: |
| |
| iv_analyze (insn, mode, reg, iv): Stores the description of the induction |
| variable corresponding to the use of register REG in INSN to IV, given |
| that REG has mode MODE. Returns true if REG is an induction variable |
| in INSN. false otherwise. If a use of REG is not found in INSN, |
| the following insns are scanned (so that we may call this function |
| on insns returned by get_condition). |
| iv_analyze_result (insn, def, iv): Stores to IV the description of the iv |
| corresponding to DEF, which is a register defined in INSN. |
| iv_analyze_expr (insn, mode, expr, iv): Stores to IV the description of iv |
| corresponding to expression EXPR evaluated at INSN. All registers used by |
| EXPR must also be used in INSN. MODE is the mode of EXPR. |
| */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "rtl.h" |
| #include "df.h" |
| #include "memmodel.h" |
| #include "emit-rtl.h" |
| #include "diagnostic-core.h" |
| #include "cfgloop.h" |
| #include "intl.h" |
| #include "dumpfile.h" |
| #include "rtl-iter.h" |
| #include "tree-ssa-loop-niter.h" |
| #include "regs.h" |
| #include "function-abi.h" |
| |
| /* Possible return values of iv_get_reaching_def. */ |
| |
| enum iv_grd_result |
| { |
| /* More than one reaching def, or reaching def that does not |
| dominate the use. */ |
| GRD_INVALID, |
| |
| /* The use is trivial invariant of the loop, i.e. is not changed |
| inside the loop. */ |
| GRD_INVARIANT, |
| |
| /* The use is reached by initial value and a value from the |
| previous iteration. */ |
| GRD_MAYBE_BIV, |
| |
| /* The use has single dominating def. */ |
| GRD_SINGLE_DOM |
| }; |
| |
| /* Information about a biv. */ |
| |
| class biv_entry |
| { |
| public: |
| unsigned regno; /* The register of the biv. */ |
| class rtx_iv iv; /* Value of the biv. */ |
| }; |
| |
| static bool clean_slate = true; |
| |
| static unsigned int iv_ref_table_size = 0; |
| |
| /* Table of rtx_ivs indexed by the df_ref uid field. */ |
| static class rtx_iv ** iv_ref_table; |
| |
| /* Induction variable stored at the reference. */ |
| #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)] |
| #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV) |
| |
| /* The current loop. */ |
| |
| static class loop *current_loop; |
| |
| /* Hashtable helper. */ |
| |
| struct biv_entry_hasher : free_ptr_hash <biv_entry> |
| { |
| typedef rtx_def *compare_type; |
| static inline hashval_t hash (const biv_entry *); |
| static inline bool equal (const biv_entry *, const rtx_def *); |
| }; |
| |
| /* Returns hash value for biv B. */ |
| |
| inline hashval_t |
| biv_entry_hasher::hash (const biv_entry *b) |
| { |
| return b->regno; |
| } |
| |
| /* Compares biv B and register R. */ |
| |
| inline bool |
| biv_entry_hasher::equal (const biv_entry *b, const rtx_def *r) |
| { |
| return b->regno == REGNO (r); |
| } |
| |
| /* Bivs of the current loop. */ |
| |
| static hash_table<biv_entry_hasher> *bivs; |
| |
| static bool iv_analyze_op (rtx_insn *, scalar_int_mode, rtx, class rtx_iv *); |
| |
| /* Return the RTX code corresponding to the IV extend code EXTEND. */ |
| static inline enum rtx_code |
| iv_extend_to_rtx_code (enum iv_extend_code extend) |
| { |
| switch (extend) |
| { |
| case IV_SIGN_EXTEND: |
| return SIGN_EXTEND; |
| case IV_ZERO_EXTEND: |
| return ZERO_EXTEND; |
| case IV_UNKNOWN_EXTEND: |
| return UNKNOWN; |
| } |
| gcc_unreachable (); |
| } |
| |
| /* Dumps information about IV to FILE. */ |
| |
| extern void dump_iv_info (FILE *, class rtx_iv *); |
| void |
| dump_iv_info (FILE *file, class rtx_iv *iv) |
| { |
| if (!iv->base) |
| { |
| fprintf (file, "not simple"); |
| return; |
| } |
| |
| if (iv->step == const0_rtx |
| && !iv->first_special) |
| fprintf (file, "invariant "); |
| |
| print_rtl (file, iv->base); |
| if (iv->step != const0_rtx) |
| { |
| fprintf (file, " + "); |
| print_rtl (file, iv->step); |
| fprintf (file, " * iteration"); |
| } |
| fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode)); |
| |
| if (iv->mode != iv->extend_mode) |
| fprintf (file, " %s to %s", |
| rtx_name[iv_extend_to_rtx_code (iv->extend)], |
| GET_MODE_NAME (iv->extend_mode)); |
| |
| if (iv->mult != const1_rtx) |
| { |
| fprintf (file, " * "); |
| print_rtl (file, iv->mult); |
| } |
| if (iv->delta != const0_rtx) |
| { |
| fprintf (file, " + "); |
| print_rtl (file, iv->delta); |
| } |
| if (iv->first_special) |
| fprintf (file, " (first special)"); |
| } |
| |
| static void |
| check_iv_ref_table_size (void) |
| { |
| if (iv_ref_table_size < DF_DEFS_TABLE_SIZE ()) |
| { |
| unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4); |
| iv_ref_table = XRESIZEVEC (class rtx_iv *, iv_ref_table, new_size); |
| memset (&iv_ref_table[iv_ref_table_size], 0, |
| (new_size - iv_ref_table_size) * sizeof (class rtx_iv *)); |
| iv_ref_table_size = new_size; |
| } |
| } |
| |
| |
| /* Checks whether REG is a well-behaved register. */ |
| |
| static bool |
| simple_reg_p (rtx reg) |
| { |
| unsigned r; |
| |
| if (GET_CODE (reg) == SUBREG) |
| { |
| if (!subreg_lowpart_p (reg)) |
| return false; |
| reg = SUBREG_REG (reg); |
| } |
| |
| if (!REG_P (reg)) |
| return false; |
| |
| r = REGNO (reg); |
| if (HARD_REGISTER_NUM_P (r)) |
| return false; |
| |
| if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT) |
| return false; |
| |
| return true; |
| } |
| |
| /* Clears the information about ivs stored in df. */ |
| |
| static void |
| clear_iv_info (void) |
| { |
| unsigned i, n_defs = DF_DEFS_TABLE_SIZE (); |
| class rtx_iv *iv; |
| |
| check_iv_ref_table_size (); |
| for (i = 0; i < n_defs; i++) |
| { |
| iv = iv_ref_table[i]; |
| if (iv) |
| { |
| free (iv); |
| iv_ref_table[i] = NULL; |
| } |
| } |
| |
| bivs->empty (); |
| } |
| |
| |
| /* Prepare the data for an induction variable analysis of a LOOP. */ |
| |
| void |
| iv_analysis_loop_init (class loop *loop) |
| { |
| current_loop = loop; |
| |
| /* Clear the information from the analysis of the previous loop. */ |
| if (clean_slate) |
| { |
| df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN); |
| bivs = new hash_table<biv_entry_hasher> (10); |
| clean_slate = false; |
| } |
| else |
| clear_iv_info (); |
| |
| /* Get rid of the ud chains before processing the rescans. Then add |
| the problem back. */ |
| df_remove_problem (df_chain); |
| df_process_deferred_rescans (); |
| df_set_flags (DF_RD_PRUNE_DEAD_DEFS); |
| df_chain_add_problem (DF_UD_CHAIN); |
| df_note_add_problem (); |
| df_analyze_loop (loop); |
| if (dump_file) |
| df_dump_region (dump_file); |
| |
| check_iv_ref_table_size (); |
| } |
| |
| /* Finds the definition of REG that dominates loop latch and stores |
| it to DEF. Returns false if there is not a single definition |
| dominating the latch. If REG has no definition in loop, DEF |
| is set to NULL and true is returned. */ |
| |
| static bool |
| latch_dominating_def (rtx reg, df_ref *def) |
| { |
| df_ref single_rd = NULL, adef; |
| unsigned regno = REGNO (reg); |
| class df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch); |
| |
| for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef)) |
| { |
| if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef)) |
| || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef))) |
| continue; |
| |
| /* More than one reaching definition. */ |
| if (single_rd) |
| return false; |
| |
| if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef))) |
| return false; |
| |
| single_rd = adef; |
| } |
| |
| *def = single_rd; |
| return true; |
| } |
| |
| /* Gets definition of REG reaching its use in INSN and stores it to DEF. */ |
| |
| static enum iv_grd_result |
| iv_get_reaching_def (rtx_insn *insn, rtx reg, df_ref *def) |
| { |
| df_ref use, adef; |
| basic_block def_bb, use_bb; |
| rtx_insn *def_insn; |
| bool dom_p; |
| |
| *def = NULL; |
| if (!simple_reg_p (reg)) |
| return GRD_INVALID; |
| if (GET_CODE (reg) == SUBREG) |
| reg = SUBREG_REG (reg); |
| gcc_assert (REG_P (reg)); |
| |
| use = df_find_use (insn, reg); |
| gcc_assert (use != NULL); |
| |
| if (!DF_REF_CHAIN (use)) |
| return GRD_INVARIANT; |
| |
| /* More than one reaching def. */ |
| if (DF_REF_CHAIN (use)->next) |
| return GRD_INVALID; |
| |
| adef = DF_REF_CHAIN (use)->ref; |
| |
| /* We do not handle setting only part of the register. */ |
| if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE) |
| return GRD_INVALID; |
| |
| def_insn = DF_REF_INSN (adef); |
| def_bb = DF_REF_BB (adef); |
| use_bb = BLOCK_FOR_INSN (insn); |
| |
| if (use_bb == def_bb) |
| dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn)); |
| else |
| dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb); |
| |
| if (dom_p) |
| { |
| *def = adef; |
| return GRD_SINGLE_DOM; |
| } |
| |
| /* The definition does not dominate the use. This is still OK if |
| this may be a use of a biv, i.e. if the def_bb dominates loop |
| latch. */ |
| if (just_once_each_iteration_p (current_loop, def_bb)) |
| return GRD_MAYBE_BIV; |
| |
| return GRD_INVALID; |
| } |
| |
| /* Sets IV to invariant CST in MODE. Always returns true (just for |
| consistency with other iv manipulation functions that may fail). */ |
| |
| static bool |
| iv_constant (class rtx_iv *iv, scalar_int_mode mode, rtx cst) |
| { |
| iv->mode = mode; |
| iv->base = cst; |
| iv->step = const0_rtx; |
| iv->first_special = false; |
| iv->extend = IV_UNKNOWN_EXTEND; |
| iv->extend_mode = iv->mode; |
| iv->delta = const0_rtx; |
| iv->mult = const1_rtx; |
| |
| return true; |
| } |
| |
| /* Evaluates application of subreg to MODE on IV. */ |
| |
| static bool |
| iv_subreg (class rtx_iv *iv, scalar_int_mode mode) |
| { |
| /* If iv is invariant, just calculate the new value. */ |
| if (iv->step == const0_rtx |
| && !iv->first_special) |
| { |
| rtx val = get_iv_value (iv, const0_rtx); |
| val = lowpart_subreg (mode, val, |
| iv->extend == IV_UNKNOWN_EXTEND |
| ? iv->mode : iv->extend_mode); |
| |
| iv->base = val; |
| iv->extend = IV_UNKNOWN_EXTEND; |
| iv->mode = iv->extend_mode = mode; |
| iv->delta = const0_rtx; |
| iv->mult = const1_rtx; |
| return true; |
| } |
| |
| if (iv->extend_mode == mode) |
| return true; |
| |
| if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode)) |
| return false; |
| |
| iv->extend = IV_UNKNOWN_EXTEND; |
| iv->mode = mode; |
| |
| iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta, |
| simplify_gen_binary (MULT, iv->extend_mode, |
| iv->base, iv->mult)); |
| iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult); |
| iv->mult = const1_rtx; |
| iv->delta = const0_rtx; |
| iv->first_special = false; |
| |
| return true; |
| } |
| |
| /* Evaluates application of EXTEND to MODE on IV. */ |
| |
| static bool |
| iv_extend (class rtx_iv *iv, enum iv_extend_code extend, scalar_int_mode mode) |
| { |
| /* If iv is invariant, just calculate the new value. */ |
| if (iv->step == const0_rtx |
| && !iv->first_special) |
| { |
| rtx val = get_iv_value (iv, const0_rtx); |
| if (iv->extend_mode != iv->mode |
| && iv->extend != IV_UNKNOWN_EXTEND |
| && iv->extend != extend) |
| val = lowpart_subreg (iv->mode, val, iv->extend_mode); |
| val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode, |
| val, |
| iv->extend == extend |
| ? iv->extend_mode : iv->mode); |
| iv->base = val; |
| iv->extend = IV_UNKNOWN_EXTEND; |
| iv->mode = iv->extend_mode = mode; |
| iv->delta = const0_rtx; |
| iv->mult = const1_rtx; |
| return true; |
| } |
| |
| if (mode != iv->extend_mode) |
| return false; |
| |
| if (iv->extend != IV_UNKNOWN_EXTEND |
| && iv->extend != extend) |
| return false; |
| |
| iv->extend = extend; |
| |
| return true; |
| } |
| |
| /* Evaluates negation of IV. */ |
| |
| static bool |
| iv_neg (class rtx_iv *iv) |
| { |
| if (iv->extend == IV_UNKNOWN_EXTEND) |
| { |
| iv->base = simplify_gen_unary (NEG, iv->extend_mode, |
| iv->base, iv->extend_mode); |
| iv->step = simplify_gen_unary (NEG, iv->extend_mode, |
| iv->step, iv->extend_mode); |
| } |
| else |
| { |
| iv->delta = simplify_gen_unary (NEG, iv->extend_mode, |
| iv->delta, iv->extend_mode); |
| iv->mult = simplify_gen_unary (NEG, iv->extend_mode, |
| iv->mult, iv->extend_mode); |
| } |
| |
| return true; |
| } |
| |
| /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */ |
| |
| static bool |
| iv_add (class rtx_iv *iv0, class rtx_iv *iv1, enum rtx_code op) |
| { |
| scalar_int_mode mode; |
| rtx arg; |
| |
| /* Extend the constant to extend_mode of the other operand if necessary. */ |
| if (iv0->extend == IV_UNKNOWN_EXTEND |
| && iv0->mode == iv0->extend_mode |
| && iv0->step == const0_rtx |
| && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode)) |
| { |
| iv0->extend_mode = iv1->extend_mode; |
| iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode, |
| iv0->base, iv0->mode); |
| } |
| if (iv1->extend == IV_UNKNOWN_EXTEND |
| && iv1->mode == iv1->extend_mode |
| && iv1->step == const0_rtx |
| && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode)) |
| { |
| iv1->extend_mode = iv0->extend_mode; |
| iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode, |
| iv1->base, iv1->mode); |
| } |
| |
| mode = iv0->extend_mode; |
| if (mode != iv1->extend_mode) |
| return false; |
| |
| if (iv0->extend == IV_UNKNOWN_EXTEND |
| && iv1->extend == IV_UNKNOWN_EXTEND) |
| { |
| if (iv0->mode != iv1->mode) |
| return false; |
| |
| iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base); |
| iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step); |
| |
| return true; |
| } |
| |
| /* Handle addition of constant. */ |
| if (iv1->extend == IV_UNKNOWN_EXTEND |
| && iv1->mode == mode |
| && iv1->step == const0_rtx) |
| { |
| iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base); |
| return true; |
| } |
| |
| if (iv0->extend == IV_UNKNOWN_EXTEND |
| && iv0->mode == mode |
| && iv0->step == const0_rtx) |
| { |
| arg = iv0->base; |
| *iv0 = *iv1; |
| if (op == MINUS |
| && !iv_neg (iv0)) |
| return false; |
| |
| iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Evaluates multiplication of IV by constant CST. */ |
| |
| static bool |
| iv_mult (class rtx_iv *iv, rtx mby) |
| { |
| scalar_int_mode mode = iv->extend_mode; |
| |
| if (GET_MODE (mby) != VOIDmode |
| && GET_MODE (mby) != mode) |
| return false; |
| |
| if (iv->extend == IV_UNKNOWN_EXTEND) |
| { |
| iv->base = simplify_gen_binary (MULT, mode, iv->base, mby); |
| iv->step = simplify_gen_binary (MULT, mode, iv->step, mby); |
| } |
| else |
| { |
| iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby); |
| iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby); |
| } |
| |
| return true; |
| } |
| |
| /* Evaluates shift of IV by constant CST. */ |
| |
| static bool |
| iv_shift (class rtx_iv *iv, rtx mby) |
| { |
| scalar_int_mode mode = iv->extend_mode; |
| |
| if (GET_MODE (mby) != VOIDmode |
| && GET_MODE (mby) != mode) |
| return false; |
| |
| if (iv->extend == IV_UNKNOWN_EXTEND) |
| { |
| iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby); |
| iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby); |
| } |
| else |
| { |
| iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby); |
| iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby); |
| } |
| |
| return true; |
| } |
| |
| /* The recursive part of get_biv_step. Gets the value of the single value |
| defined by DEF wrto initial value of REG inside loop, in shape described |
| at get_biv_step. */ |
| |
| static bool |
| get_biv_step_1 (df_ref def, scalar_int_mode outer_mode, rtx reg, |
| rtx *inner_step, scalar_int_mode *inner_mode, |
| enum iv_extend_code *extend, |
| rtx *outer_step) |
| { |
| rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX; |
| rtx next, nextr; |
| enum rtx_code code; |
| rtx_insn *insn = DF_REF_INSN (def); |
| df_ref next_def; |
| enum iv_grd_result res; |
| |
| set = single_set (insn); |
| if (!set) |
| return false; |
| |
| rhs = find_reg_equal_equiv_note (insn); |
| if (rhs) |
| rhs = XEXP (rhs, 0); |
| else |
| rhs = SET_SRC (set); |
| |
| code = GET_CODE (rhs); |
| switch (code) |
| { |
| case SUBREG: |
| case REG: |
| next = rhs; |
| break; |
| |
| case PLUS: |
| case MINUS: |
| op0 = XEXP (rhs, 0); |
| op1 = XEXP (rhs, 1); |
| |
| if (code == PLUS && CONSTANT_P (op0)) |
| std::swap (op0, op1); |
| |
| if (!simple_reg_p (op0) |
| || !CONSTANT_P (op1)) |
| return false; |
| |
| if (GET_MODE (rhs) != outer_mode) |
| { |
| /* ppc64 uses expressions like |
| |
| (set x:SI (plus:SI (subreg:SI y:DI) 1)). |
| |
| this is equivalent to |
| |
| (set x':DI (plus:DI y:DI 1)) |
| (set x:SI (subreg:SI (x':DI)). */ |
| if (GET_CODE (op0) != SUBREG) |
| return false; |
| if (GET_MODE (SUBREG_REG (op0)) != outer_mode) |
| return false; |
| } |
| |
| next = op0; |
| break; |
| |
| case SIGN_EXTEND: |
| case ZERO_EXTEND: |
| if (GET_MODE (rhs) != outer_mode) |
| return false; |
| |
| op0 = XEXP (rhs, 0); |
| if (!simple_reg_p (op0)) |
| return false; |
| |
| next = op0; |
| break; |
| |
| default: |
| return false; |
| } |
| |
| if (GET_CODE (next) == SUBREG) |
| { |
| if (!subreg_lowpart_p (next)) |
| return false; |
| |
| nextr = SUBREG_REG (next); |
| if (GET_MODE (nextr) != outer_mode) |
| return false; |
| } |
| else |
| nextr = next; |
| |
| res = iv_get_reaching_def (insn, nextr, &next_def); |
| |
| if (res == GRD_INVALID || res == GRD_INVARIANT) |
| return false; |
| |
| if (res == GRD_MAYBE_BIV) |
| { |
| if (!rtx_equal_p (nextr, reg)) |
| return false; |
| |
| *inner_step = const0_rtx; |
| *extend = IV_UNKNOWN_EXTEND; |
| *inner_mode = outer_mode; |
| *outer_step = const0_rtx; |
| } |
| else if (!get_biv_step_1 (next_def, outer_mode, reg, |
| inner_step, inner_mode, extend, |
| outer_step)) |
| return false; |
| |
| if (GET_CODE (next) == SUBREG) |
| { |
| scalar_int_mode amode; |
| if (!is_a <scalar_int_mode> (GET_MODE (next), &amode) |
| || GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode)) |
| return false; |
| |
| *inner_mode = amode; |
| *inner_step = simplify_gen_binary (PLUS, outer_mode, |
| *inner_step, *outer_step); |
| *outer_step = const0_rtx; |
| *extend = IV_UNKNOWN_EXTEND; |
| } |
| |
| switch (code) |
| { |
| case REG: |
| case SUBREG: |
| break; |
| |
| case PLUS: |
| case MINUS: |
| if (*inner_mode == outer_mode |
| /* See comment in previous switch. */ |
| || GET_MODE (rhs) != outer_mode) |
| *inner_step = simplify_gen_binary (code, outer_mode, |
| *inner_step, op1); |
| else |
| *outer_step = simplify_gen_binary (code, outer_mode, |
| *outer_step, op1); |
| break; |
| |
| case SIGN_EXTEND: |
| case ZERO_EXTEND: |
| gcc_assert (GET_MODE (op0) == *inner_mode |
| && *extend == IV_UNKNOWN_EXTEND |
| && *outer_step == const0_rtx); |
| |
| *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND; |
| break; |
| |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Gets the operation on register REG inside loop, in shape |
| |
| OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP)) |
| |
| If the operation cannot be described in this shape, return false. |
| LAST_DEF is the definition of REG that dominates loop latch. */ |
| |
| static bool |
| get_biv_step (df_ref last_def, scalar_int_mode outer_mode, rtx reg, |
| rtx *inner_step, scalar_int_mode *inner_mode, |
| enum iv_extend_code *extend, rtx *outer_step) |
| { |
| if (!get_biv_step_1 (last_def, outer_mode, reg, |
| inner_step, inner_mode, extend, |
| outer_step)) |
| return false; |
| |
| gcc_assert ((*inner_mode == outer_mode) != (*extend != IV_UNKNOWN_EXTEND)); |
| gcc_assert (*inner_mode != outer_mode || *outer_step == const0_rtx); |
| |
| return true; |
| } |
| |
| /* Records information that DEF is induction variable IV. */ |
| |
| static void |
| record_iv (df_ref def, class rtx_iv *iv) |
| { |
| class rtx_iv *recorded_iv = XNEW (class rtx_iv); |
| |
| *recorded_iv = *iv; |
| check_iv_ref_table_size (); |
| DF_REF_IV_SET (def, recorded_iv); |
| } |
| |
| /* If DEF was already analyzed for bivness, store the description of the biv to |
| IV and return true. Otherwise return false. */ |
| |
| static bool |
| analyzed_for_bivness_p (rtx def, class rtx_iv *iv) |
| { |
| class biv_entry *biv = bivs->find_with_hash (def, REGNO (def)); |
| |
| if (!biv) |
| return false; |
| |
| *iv = biv->iv; |
| return true; |
| } |
| |
| static void |
| record_biv (rtx def, class rtx_iv *iv) |
| { |
| class biv_entry *biv = XNEW (class biv_entry); |
| biv_entry **slot = bivs->find_slot_with_hash (def, REGNO (def), INSERT); |
| |
| biv->regno = REGNO (def); |
| biv->iv = *iv; |
| gcc_assert (!*slot); |
| *slot = biv; |
| } |
| |
| /* Determines whether DEF is a biv and if so, stores its description |
| to *IV. OUTER_MODE is the mode of DEF. */ |
| |
| static bool |
| iv_analyze_biv (scalar_int_mode outer_mode, rtx def, class rtx_iv *iv) |
| { |
| rtx inner_step, outer_step; |
| scalar_int_mode inner_mode; |
| enum iv_extend_code extend; |
| df_ref last_def; |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "Analyzing "); |
| print_rtl (dump_file, def); |
| fprintf (dump_file, " for bivness.\n"); |
| } |
| |
| if (!REG_P (def)) |
| { |
| if (!CONSTANT_P (def)) |
| return false; |
| |
| return iv_constant (iv, outer_mode, def); |
| } |
| |
| if (!latch_dominating_def (def, &last_def)) |
| { |
| if (dump_file) |
| fprintf (dump_file, " not simple.\n"); |
| return false; |
| } |
| |
| if (!last_def) |
| return iv_constant (iv, outer_mode, def); |
| |
| if (analyzed_for_bivness_p (def, iv)) |
| { |
| if (dump_file) |
| fprintf (dump_file, " already analysed.\n"); |
| return iv->base != NULL_RTX; |
| } |
| |
| if (!get_biv_step (last_def, outer_mode, def, &inner_step, &inner_mode, |
| &extend, &outer_step)) |
| { |
| iv->base = NULL_RTX; |
| goto end; |
| } |
| |
| /* Loop transforms base to es (base + inner_step) + outer_step, |
| where es means extend of subreg between inner_mode and outer_mode. |
| The corresponding induction variable is |
| |
| es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */ |
| |
| iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step); |
| iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step); |
| iv->mode = inner_mode; |
| iv->extend_mode = outer_mode; |
| iv->extend = extend; |
| iv->mult = const1_rtx; |
| iv->delta = outer_step; |
| iv->first_special = inner_mode != outer_mode; |
| |
| end: |
| if (dump_file) |
| { |
| fprintf (dump_file, " "); |
| dump_iv_info (dump_file, iv); |
| fprintf (dump_file, "\n"); |
| } |
| |
| record_biv (def, iv); |
| return iv->base != NULL_RTX; |
| } |
| |
| /* Analyzes expression RHS used at INSN and stores the result to *IV. |
| The mode of the induction variable is MODE. */ |
| |
| bool |
| iv_analyze_expr (rtx_insn *insn, scalar_int_mode mode, rtx rhs, |
| class rtx_iv *iv) |
| { |
| rtx mby = NULL_RTX; |
| rtx op0 = NULL_RTX, op1 = NULL_RTX; |
| class rtx_iv iv0, iv1; |
| enum rtx_code code = GET_CODE (rhs); |
| scalar_int_mode omode = mode; |
| |
| iv->base = NULL_RTX; |
| iv->step = NULL_RTX; |
| |
| gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode); |
| |
| if (CONSTANT_P (rhs) |
| || REG_P (rhs) |
| || code == SUBREG) |
| return iv_analyze_op (insn, mode, rhs, iv); |
| |
| switch (code) |
| { |
| case REG: |
| op0 = rhs; |
| break; |
| |
| case SIGN_EXTEND: |
| case ZERO_EXTEND: |
| case NEG: |
| op0 = XEXP (rhs, 0); |
| /* We don't know how many bits there are in a sign-extended constant. */ |
| if (!is_a <scalar_int_mode> (GET_MODE (op0), &omode)) |
| return false; |
| break; |
| |
| case PLUS: |
| case MINUS: |
| op0 = XEXP (rhs, 0); |
| op1 = XEXP (rhs, 1); |
| break; |
| |
| case MULT: |
| op0 = XEXP (rhs, 0); |
| mby = XEXP (rhs, 1); |
| if (!CONSTANT_P (mby)) |
| std::swap (op0, mby); |
| if (!CONSTANT_P (mby)) |
| return false; |
| break; |
| |
| case ASHIFT: |
| op0 = XEXP (rhs, 0); |
| mby = XEXP (rhs, 1); |
| if (!CONSTANT_P (mby)) |
| return false; |
| break; |
| |
| default: |
| return false; |
| } |
| |
| if (op0 |
| && !iv_analyze_expr (insn, omode, op0, &iv0)) |
| return false; |
| |
| if (op1 |
| && !iv_analyze_expr (insn, omode, op1, &iv1)) |
| return false; |
| |
| switch (code) |
| { |
| case SIGN_EXTEND: |
| if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode)) |
| return false; |
| break; |
| |
| case ZERO_EXTEND: |
| if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode)) |
| return false; |
| break; |
| |
| case NEG: |
| if (!iv_neg (&iv0)) |
| return false; |
| break; |
| |
| case PLUS: |
| case MINUS: |
| if (!iv_add (&iv0, &iv1, code)) |
| return false; |
| break; |
| |
| case MULT: |
| if (!iv_mult (&iv0, mby)) |
| return false; |
| break; |
| |
| case ASHIFT: |
| if (!iv_shift (&iv0, mby)) |
| return false; |
| break; |
| |
| default: |
| break; |
| } |
| |
| *iv = iv0; |
| return iv->base != NULL_RTX; |
| } |
| |
| /* Analyzes iv DEF and stores the result to *IV. */ |
| |
| static bool |
| iv_analyze_def (df_ref def, class rtx_iv *iv) |
| { |
| rtx_insn *insn = DF_REF_INSN (def); |
| rtx reg = DF_REF_REG (def); |
| rtx set, rhs; |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "Analyzing def of "); |
| print_rtl (dump_file, reg); |
| fprintf (dump_file, " in insn "); |
| print_rtl_single (dump_file, insn); |
| } |
| |
| check_iv_ref_table_size (); |
| if (DF_REF_IV (def)) |
| { |
| if (dump_file) |
| fprintf (dump_file, " already analysed.\n"); |
| *iv = *DF_REF_IV (def); |
| return iv->base != NULL_RTX; |
| } |
| |
| iv->base = NULL_RTX; |
| iv->step = NULL_RTX; |
| |
| scalar_int_mode mode; |
| if (!REG_P (reg) || !is_a <scalar_int_mode> (GET_MODE (reg), &mode)) |
| return false; |
| |
| set = single_set (insn); |
| if (!set) |
| return false; |
| |
| if (!REG_P (SET_DEST (set))) |
| return false; |
| |
| gcc_assert (SET_DEST (set) == reg); |
| rhs = find_reg_equal_equiv_note (insn); |
| if (rhs) |
| rhs = XEXP (rhs, 0); |
| else |
| rhs = SET_SRC (set); |
| |
| iv_analyze_expr (insn, mode, rhs, iv); |
| record_iv (def, iv); |
| |
| if (dump_file) |
| { |
| print_rtl (dump_file, reg); |
| fprintf (dump_file, " in insn "); |
| print_rtl_single (dump_file, insn); |
| fprintf (dump_file, " is "); |
| dump_iv_info (dump_file, iv); |
| fprintf (dump_file, "\n"); |
| } |
| |
| return iv->base != NULL_RTX; |
| } |
| |
| /* Analyzes operand OP of INSN and stores the result to *IV. MODE is the |
| mode of OP. */ |
| |
| static bool |
| iv_analyze_op (rtx_insn *insn, scalar_int_mode mode, rtx op, class rtx_iv *iv) |
| { |
| df_ref def = NULL; |
| enum iv_grd_result res; |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "Analyzing operand "); |
| print_rtl (dump_file, op); |
| fprintf (dump_file, " of insn "); |
| print_rtl_single (dump_file, insn); |
| } |
| |
| if (function_invariant_p (op)) |
| res = GRD_INVARIANT; |
| else if (GET_CODE (op) == SUBREG) |
| { |
| scalar_int_mode inner_mode; |
| if (!subreg_lowpart_p (op) |
| || !is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op)), &inner_mode)) |
| return false; |
| |
| if (!iv_analyze_op (insn, inner_mode, SUBREG_REG (op), iv)) |
| return false; |
| |
| return iv_subreg (iv, mode); |
| } |
| else |
| { |
| res = iv_get_reaching_def (insn, op, &def); |
| if (res == GRD_INVALID) |
| { |
| if (dump_file) |
| fprintf (dump_file, " not simple.\n"); |
| return false; |
| } |
| } |
| |
| if (res == GRD_INVARIANT) |
| { |
| iv_constant (iv, mode, op); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, " "); |
| dump_iv_info (dump_file, iv); |
| fprintf (dump_file, "\n"); |
| } |
| return true; |
| } |
| |
| if (res == GRD_MAYBE_BIV) |
| return iv_analyze_biv (mode, op, iv); |
| |
| return iv_analyze_def (def, iv); |
| } |
| |
| /* Analyzes value VAL at INSN and stores the result to *IV. MODE is the |
| mode of VAL. */ |
| |
| bool |
| iv_analyze (rtx_insn *insn, scalar_int_mode mode, rtx val, class rtx_iv *iv) |
| { |
| rtx reg; |
| |
| /* We must find the insn in that val is used, so that we get to UD chains. |
| Since the function is sometimes called on result of get_condition, |
| this does not necessarily have to be directly INSN; scan also the |
| following insns. */ |
| if (simple_reg_p (val)) |
| { |
| if (GET_CODE (val) == SUBREG) |
| reg = SUBREG_REG (val); |
| else |
| reg = val; |
| |
| while (!df_find_use (insn, reg)) |
| insn = NEXT_INSN (insn); |
| } |
| |
| return iv_analyze_op (insn, mode, val, iv); |
| } |
| |
| /* Analyzes definition of DEF in INSN and stores the result to IV. */ |
| |
| bool |
| iv_analyze_result (rtx_insn *insn, rtx def, class rtx_iv *iv) |
| { |
| df_ref adef; |
| |
| adef = df_find_def (insn, def); |
| if (!adef) |
| return false; |
| |
| return iv_analyze_def (adef, iv); |
| } |
| |
| /* Checks whether definition of register REG in INSN is a basic induction |
| variable. MODE is the mode of REG. |
| |
| IV analysis must have been initialized (via a call to |
| iv_analysis_loop_init) for this function to produce a result. */ |
| |
| bool |
| biv_p (rtx_insn *insn, scalar_int_mode mode, rtx reg) |
| { |
| class rtx_iv iv; |
| df_ref def, last_def; |
| |
| if (!simple_reg_p (reg)) |
| return false; |
| |
| def = df_find_def (insn, reg); |
| gcc_assert (def != NULL); |
| if (!latch_dominating_def (reg, &last_def)) |
| return false; |
| if (last_def != def) |
| return false; |
| |
| if (!iv_analyze_biv (mode, reg, &iv)) |
| return false; |
| |
| return iv.step != const0_rtx; |
| } |
| |
| /* Calculates value of IV at ITERATION-th iteration. */ |
| |
| rtx |
| get_iv_value (class rtx_iv *iv, rtx iteration) |
| { |
| rtx val; |
| |
| /* We would need to generate some if_then_else patterns, and so far |
| it is not needed anywhere. */ |
| gcc_assert (!iv->first_special); |
| |
| if (iv->step != const0_rtx && iteration != const0_rtx) |
| val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base, |
| simplify_gen_binary (MULT, iv->extend_mode, |
| iv->step, iteration)); |
| else |
| val = iv->base; |
| |
| if (iv->extend_mode == iv->mode) |
| return val; |
| |
| val = lowpart_subreg (iv->mode, val, iv->extend_mode); |
| |
| if (iv->extend == IV_UNKNOWN_EXTEND) |
| return val; |
| |
| val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend), |
| iv->extend_mode, val, iv->mode); |
| val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta, |
| simplify_gen_binary (MULT, iv->extend_mode, |
| iv->mult, val)); |
| |
| return val; |
| } |
| |
| /* Free the data for an induction variable analysis. */ |
| |
| void |
| iv_analysis_done (void) |
| { |
| if (!clean_slate) |
| { |
| clear_iv_info (); |
| clean_slate = true; |
| df_finish_pass (true); |
| delete bivs; |
| bivs = NULL; |
| free (iv_ref_table); |
| iv_ref_table = NULL; |
| iv_ref_table_size = 0; |
| } |
| } |
| |
| /* Computes inverse to X modulo (1 << MOD). */ |
| |
| static uint64_t |
| inverse (uint64_t x, int mod) |
| { |
| uint64_t mask = |
| ((uint64_t) 1 << (mod - 1) << 1) - 1; |
| uint64_t rslt = 1; |
| int i; |
| |
| for (i = 0; i < mod - 1; i++) |
| { |
| rslt = (rslt * x) & mask; |
| x = (x * x) & mask; |
| } |
| |
| return rslt; |
| } |
| |
| /* Checks whether any register in X is in set ALT. */ |
| |
| static bool |
| altered_reg_used (const_rtx x, bitmap alt) |
| { |
| subrtx_iterator::array_type array; |
| FOR_EACH_SUBRTX (iter, array, x, NONCONST) |
| { |
| const_rtx x = *iter; |
| if (REG_P (x) && REGNO_REG_SET_P (alt, REGNO (x))) |
| return true; |
| } |
| return false; |
| } |
| |
| /* Marks registers altered by EXPR in set ALT. */ |
| |
| static void |
| mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt) |
| { |
| if (GET_CODE (expr) == SUBREG) |
| expr = SUBREG_REG (expr); |
| if (!REG_P (expr)) |
| return; |
| |
| SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr)); |
| } |
| |
| /* Checks whether RHS is simple enough to process. */ |
| |
| static bool |
| simple_rhs_p (rtx rhs) |
| { |
| rtx op0, op1; |
| |
| if (function_invariant_p (rhs) |
| || (REG_P (rhs) && !HARD_REGISTER_P (rhs))) |
| return true; |
| |
| switch (GET_CODE (rhs)) |
| { |
| case PLUS: |
| case MINUS: |
| case AND: |
| op0 = XEXP (rhs, 0); |
| op1 = XEXP (rhs, 1); |
| /* Allow reg OP const and reg OP reg. */ |
| if (!(REG_P (op0) && !HARD_REGISTER_P (op0)) |
| && !function_invariant_p (op0)) |
| return false; |
| if (!(REG_P (op1) && !HARD_REGISTER_P (op1)) |
| && !function_invariant_p (op1)) |
| return false; |
| |
| return true; |
| |
| case ASHIFT: |
| case ASHIFTRT: |
| case LSHIFTRT: |
| case MULT: |
| op0 = XEXP (rhs, 0); |
| op1 = XEXP (rhs, 1); |
| /* Allow reg OP const. */ |
| if (!(REG_P (op0) && !HARD_REGISTER_P (op0))) |
| return false; |
| if (!function_invariant_p (op1)) |
| return false; |
| |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| /* If REGNO has a single definition, return its known value, otherwise return |
| null. */ |
| |
| static rtx |
| find_single_def_src (unsigned int regno) |
| { |
| rtx src = NULL_RTX; |
| |
| /* Don't look through unbounded number of single definition REG copies, |
| there might be loops for sources with uninitialized variables. */ |
| for (int cnt = 0; cnt < 128; cnt++) |
| { |
| df_ref adef = DF_REG_DEF_CHAIN (regno); |
| if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL |
| || DF_REF_IS_ARTIFICIAL (adef)) |
| return NULL_RTX; |
| |
| rtx set = single_set (DF_REF_INSN (adef)); |
| if (set == NULL || !REG_P (SET_DEST (set)) |
| || REGNO (SET_DEST (set)) != regno) |
| return NULL_RTX; |
| |
| rtx note = find_reg_equal_equiv_note (DF_REF_INSN (adef)); |
| if (note && function_invariant_p (XEXP (note, 0))) |
| { |
| src = XEXP (note, 0); |
| break; |
| } |
| src = SET_SRC (set); |
| |
| if (REG_P (src)) |
| { |
| regno = REGNO (src); |
| continue; |
| } |
| break; |
| } |
| if (!function_invariant_p (src)) |
| return NULL_RTX; |
| |
| return src; |
| } |
| |
| /* If any registers in *EXPR that have a single definition, try to replace |
| them with the known-equivalent values. */ |
| |
| static void |
| replace_single_def_regs (rtx *expr) |
| { |
| subrtx_var_iterator::array_type array; |
| repeat: |
| FOR_EACH_SUBRTX_VAR (iter, array, *expr, NONCONST) |
| { |
| rtx x = *iter; |
| if (REG_P (x)) |
| if (rtx new_x = find_single_def_src (REGNO (x))) |
| { |
| *expr = simplify_replace_rtx (*expr, x, new_x); |
| goto repeat; |
| } |
| } |
| } |
| |
| /* A subroutine of simplify_using_initial_values, this function examines INSN |
| to see if it contains a suitable set that we can use to make a replacement. |
| If it is suitable, return true and set DEST and SRC to the lhs and rhs of |
| the set; return false otherwise. */ |
| |
| static bool |
| suitable_set_for_replacement (rtx_insn *insn, rtx *dest, rtx *src) |
| { |
| rtx set = single_set (insn); |
| rtx lhs = NULL_RTX, rhs; |
| |
| if (!set) |
| return false; |
| |
| lhs = SET_DEST (set); |
| if (!REG_P (lhs)) |
| return false; |
| |
| rhs = find_reg_equal_equiv_note (insn); |
| if (rhs) |
| rhs = XEXP (rhs, 0); |
| else |
| rhs = SET_SRC (set); |
| |
| if (!simple_rhs_p (rhs)) |
| return false; |
| |
| *dest = lhs; |
| *src = rhs; |
| return true; |
| } |
| |
| /* Using the data returned by suitable_set_for_replacement, replace DEST |
| with SRC in *EXPR and return the new expression. Also call |
| replace_single_def_regs if the replacement changed something. */ |
| static void |
| replace_in_expr (rtx *expr, rtx dest, rtx src) |
| { |
| rtx old = *expr; |
| *expr = simplify_replace_rtx (*expr, dest, src); |
| if (old == *expr) |
| return; |
| replace_single_def_regs (expr); |
| } |
| |
| /* Checks whether A implies B. */ |
| |
| static bool |
| implies_p (rtx a, rtx b) |
| { |
| rtx op0, op1, opb0, opb1; |
| machine_mode mode; |
| |
| if (rtx_equal_p (a, b)) |
| return true; |
| |
| if (GET_CODE (a) == EQ) |
| { |
| op0 = XEXP (a, 0); |
| op1 = XEXP (a, 1); |
| |
| if (REG_P (op0) |
| || (GET_CODE (op0) == SUBREG |
| && REG_P (SUBREG_REG (op0)))) |
| { |
| rtx r = simplify_replace_rtx (b, op0, op1); |
| if (r == const_true_rtx) |
| return true; |
| } |
| |
| if (REG_P (op1) |
| || (GET_CODE (op1) == SUBREG |
| && REG_P (SUBREG_REG (op1)))) |
| { |
| rtx r = simplify_replace_rtx (b, op1, op0); |
| if (r == const_true_rtx) |
| return true; |
| } |
| } |
| |
| if (b == const_true_rtx) |
| return true; |
| |
| if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE |
| && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE) |
| || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE |
| && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE)) |
| return false; |
| |
| op0 = XEXP (a, 0); |
| op1 = XEXP (a, 1); |
| opb0 = XEXP (b, 0); |
| opb1 = XEXP (b, 1); |
| |
| mode = GET_MODE (op0); |
| if (mode != GET_MODE (opb0)) |
| mode = VOIDmode; |
| else if (mode == VOIDmode) |
| { |
| mode = GET_MODE (op1); |
| if (mode != GET_MODE (opb1)) |
| mode = VOIDmode; |
| } |
| |
| /* A < B implies A + 1 <= B. */ |
| if ((GET_CODE (a) == GT || GET_CODE (a) == LT) |
| && (GET_CODE (b) == GE || GET_CODE (b) == LE)) |
| { |
| |
| if (GET_CODE (a) == GT) |
| std::swap (op0, op1); |
| |
| if (GET_CODE (b) == GE) |
| std::swap (opb0, opb1); |
| |
| if (SCALAR_INT_MODE_P (mode) |
| && rtx_equal_p (op1, opb1) |
| && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx) |
| return true; |
| return false; |
| } |
| |
| /* A < B or A > B imply A != B. TODO: Likewise |
| A + n < B implies A != B + n if neither wraps. */ |
| if (GET_CODE (b) == NE |
| && (GET_CODE (a) == GT || GET_CODE (a) == GTU |
| || GET_CODE (a) == LT || GET_CODE (a) == LTU)) |
| { |
| if (rtx_equal_p (op0, opb0) |
| && rtx_equal_p (op1, opb1)) |
| return true; |
| } |
| |
| /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */ |
| if (GET_CODE (a) == NE |
| && op1 == const0_rtx) |
| { |
| if ((GET_CODE (b) == GTU |
| && opb1 == const0_rtx) |
| || (GET_CODE (b) == GEU |
| && opb1 == const1_rtx)) |
| return rtx_equal_p (op0, opb0); |
| } |
| |
| /* A != N is equivalent to A - (N + 1) <u -1. */ |
| if (GET_CODE (a) == NE |
| && CONST_INT_P (op1) |
| && GET_CODE (b) == LTU |
| && opb1 == constm1_rtx |
| && GET_CODE (opb0) == PLUS |
| && CONST_INT_P (XEXP (opb0, 1)) |
| /* Avoid overflows. */ |
| && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1)) |
| != ((unsigned HOST_WIDE_INT)1 |
| << (HOST_BITS_PER_WIDE_INT - 1)) - 1) |
| && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1)) |
| return rtx_equal_p (op0, XEXP (opb0, 0)); |
| |
| /* Likewise, A != N implies A - N > 0. */ |
| if (GET_CODE (a) == NE |
| && CONST_INT_P (op1)) |
| { |
| if (GET_CODE (b) == GTU |
| && GET_CODE (opb0) == PLUS |
| && opb1 == const0_rtx |
| && CONST_INT_P (XEXP (opb0, 1)) |
| /* Avoid overflows. */ |
| && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1)) |
| != (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1))) |
| && rtx_equal_p (XEXP (opb0, 0), op0)) |
| return INTVAL (op1) == -INTVAL (XEXP (opb0, 1)); |
| if (GET_CODE (b) == GEU |
| && GET_CODE (opb0) == PLUS |
| && opb1 == const1_rtx |
| && CONST_INT_P (XEXP (opb0, 1)) |
| /* Avoid overflows. */ |
| && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1)) |
| != (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1))) |
| && rtx_equal_p (XEXP (opb0, 0), op0)) |
| return INTVAL (op1) == -INTVAL (XEXP (opb0, 1)); |
| } |
| |
| /* A >s X, where X is positive, implies A <u Y, if Y is negative. */ |
| if ((GET_CODE (a) == GT || GET_CODE (a) == GE) |
| && CONST_INT_P (op1) |
| && ((GET_CODE (a) == GT && op1 == constm1_rtx) |
| || INTVAL (op1) >= 0) |
| && GET_CODE (b) == LTU |
| && CONST_INT_P (opb1) |
| && rtx_equal_p (op0, opb0)) |
| return INTVAL (opb1) < 0; |
| |
| return false; |
| } |
| |
| /* Canonicalizes COND so that |
| |
| (1) Ensure that operands are ordered according to |
| swap_commutative_operands_p. |
| (2) (LE x const) will be replaced with (LT x <const+1>) and similarly |
| for GE, GEU, and LEU. */ |
| |
| rtx |
| canon_condition (rtx cond) |
| { |
| rtx op0, op1; |
| enum rtx_code code; |
| machine_mode mode; |
| |
| code = GET_CODE (cond); |
| op0 = XEXP (cond, 0); |
| op1 = XEXP (cond, 1); |
| |
| if (swap_commutative_operands_p (op0, op1)) |
| { |
| code = swap_condition (code); |
| std::swap (op0, op1); |
| } |
| |
| mode = GET_MODE (op0); |
| if (mode == VOIDmode) |
| mode = GET_MODE (op1); |
| gcc_assert (mode != VOIDmode); |
| |
| if (CONST_SCALAR_INT_P (op1) && GET_MODE_CLASS (mode) != MODE_CC) |
| { |
| rtx_mode_t const_val (op1, mode); |
| |
| switch (code) |
| { |
| case LE: |
| if (wi::ne_p (const_val, wi::max_value (mode, SIGNED))) |
| { |
| code = LT; |
| op1 = immed_wide_int_const (wi::add (const_val, 1), mode); |
| } |
| break; |
| |
| case GE: |
| if (wi::ne_p (const_val, wi::min_value (mode, SIGNED))) |
| { |
| code = GT; |
| op1 = immed_wide_int_const (wi::sub (const_val, 1), mode); |
| } |
| break; |
| |
| case LEU: |
| if (wi::ne_p (const_val, -1)) |
| { |
| code = LTU; |
| op1 = immed_wide_int_const (wi::add (const_val, 1), mode); |
| } |
| break; |
| |
| case GEU: |
| if (wi::ne_p (const_val, 0)) |
| { |
| code = GTU; |
| op1 = immed_wide_int_const (wi::sub (const_val, 1), mode); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| if (op0 != XEXP (cond, 0) |
| || op1 != XEXP (cond, 1) |
| || code != GET_CODE (cond) |
| || GET_MODE (cond) != SImode) |
| cond = gen_rtx_fmt_ee (code, SImode, op0, op1); |
| |
| return cond; |
| } |
| |
| /* Reverses CONDition; returns NULL if we cannot. */ |
| |
| static rtx |
| reversed_condition (rtx cond) |
| { |
| enum rtx_code reversed; |
| reversed = reversed_comparison_code (cond, NULL); |
| if (reversed == UNKNOWN) |
| return NULL_RTX; |
| else |
| return gen_rtx_fmt_ee (reversed, |
| GET_MODE (cond), XEXP (cond, 0), |
| XEXP (cond, 1)); |
| } |
| |
| /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the |
| set of altered regs. */ |
| |
| void |
| simplify_using_condition (rtx cond, rtx *expr, regset altered) |
| { |
| rtx rev, reve, exp = *expr; |
| |
| /* If some register gets altered later, we do not really speak about its |
| value at the time of comparison. */ |
| if (altered && altered_reg_used (cond, altered)) |
| return; |
| |
| if (GET_CODE (cond) == EQ |
| && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1))) |
| { |
| *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1)); |
| return; |
| } |
| |
| if (!COMPARISON_P (exp)) |
| return; |
| |
| rev = reversed_condition (cond); |
| reve = reversed_condition (exp); |
| |
| cond = canon_condition (cond); |
| exp = canon_condition (exp); |
| if (rev) |
| rev = canon_condition (rev); |
| if (reve) |
| reve = canon_condition (reve); |
| |
| if (rtx_equal_p (exp, cond)) |
| { |
| *expr = const_true_rtx; |
| return; |
| } |
| |
| if (rev && rtx_equal_p (exp, rev)) |
| { |
| *expr = const0_rtx; |
| return; |
| } |
| |
| if (implies_p (cond, exp)) |
| { |
| *expr = const_true_rtx; |
| return; |
| } |
| |
| if (reve && implies_p (cond, reve)) |
| { |
| *expr = const0_rtx; |
| return; |
| } |
| |
| /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must |
| be false. */ |
| if (rev && implies_p (exp, rev)) |
| { |
| *expr = const0_rtx; |
| return; |
| } |
| |
| /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */ |
| if (rev && reve && implies_p (reve, rev)) |
| { |
| *expr = const_true_rtx; |
| return; |
| } |
| |
| /* We would like to have some other tests here. TODO. */ |
| |
| return; |
| } |
| |
| /* Use relationship between A and *B to eventually eliminate *B. |
| OP is the operation we consider. */ |
| |
| static void |
| eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b) |
| { |
| switch (op) |
| { |
| case AND: |
| /* If A implies *B, we may replace *B by true. */ |
| if (implies_p (a, *b)) |
| *b = const_true_rtx; |
| break; |
| |
| case IOR: |
| /* If *B implies A, we may replace *B by false. */ |
| if (implies_p (*b, a)) |
| *b = const0_rtx; |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the |
| operation we consider. */ |
| |
| static void |
| eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail) |
| { |
| rtx elt; |
| |
| for (elt = tail; elt; elt = XEXP (elt, 1)) |
| eliminate_implied_condition (op, *head, &XEXP (elt, 0)); |
| for (elt = tail; elt; elt = XEXP (elt, 1)) |
| eliminate_implied_condition (op, XEXP (elt, 0), head); |
| } |
| |
| /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR |
| is a list, its elements are assumed to be combined using OP. */ |
| |
| static void |
| simplify_using_initial_values (class loop *loop, enum rtx_code op, rtx *expr) |
| { |
| bool expression_valid; |
| rtx head, tail, last_valid_expr; |
| rtx_expr_list *cond_list; |
| rtx_insn *insn; |
| rtx neutral, aggr; |
| regset altered, this_altered; |
| edge e; |
| |
| if (!*expr) |
| return; |
| |
| if (CONSTANT_P (*expr)) |
| return; |
| |
| if (GET_CODE (*expr) == EXPR_LIST) |
| { |
| head = XEXP (*expr, 0); |
| tail = XEXP (*expr, 1); |
| |
| eliminate_implied_conditions (op, &head, tail); |
| |
| switch (op) |
| { |
| case AND: |
| neutral = const_true_rtx; |
| aggr = const0_rtx; |
| break; |
| |
| case IOR: |
| neutral = const0_rtx; |
| aggr = const_true_rtx; |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| simplify_using_initial_values (loop, UNKNOWN, &head); |
| if (head == aggr) |
| { |
| XEXP (*expr, 0) = aggr; |
| XEXP (*expr, 1) = NULL_RTX; |
| return; |
| } |
| else if (head == neutral) |
| { |
| *expr = tail; |
| simplify_using_initial_values (loop, op, expr); |
| return; |
| } |
| simplify_using_initial_values (loop, op, &tail); |
| |
| if (tail && XEXP (tail, 0) == aggr) |
| { |
| *expr = tail; |
| return; |
| } |
| |
| XEXP (*expr, 0) = head; |
| XEXP (*expr, 1) = tail; |
| return; |
| } |
| |
| gcc_assert (op == UNKNOWN); |
| |
| replace_single_def_regs (expr); |
| if (CONSTANT_P (*expr)) |
| return; |
| |
| e = loop_preheader_edge (loop); |
| if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)) |
| return; |
| |
| altered = ALLOC_REG_SET (®_obstack); |
| this_altered = ALLOC_REG_SET (®_obstack); |
| |
| expression_valid = true; |
| last_valid_expr = *expr; |
| cond_list = NULL; |
| while (1) |
| { |
| insn = BB_END (e->src); |
| if (any_condjump_p (insn) && onlyjump_p (insn)) |
| { |
| rtx cond = get_condition (BB_END (e->src), NULL, false, true); |
| |
| if (cond && (e->flags & EDGE_FALLTHRU)) |
| cond = reversed_condition (cond); |
| if (cond) |
| { |
| rtx old = *expr; |
| simplify_using_condition (cond, expr, altered); |
| if (old != *expr) |
| { |
| rtx note; |
| if (CONSTANT_P (*expr)) |
| goto out; |
| for (note = cond_list; note; note = XEXP (note, 1)) |
| { |
| simplify_using_condition (XEXP (note, 0), expr, altered); |
| if (CONSTANT_P (*expr)) |
| goto out; |
| } |
| } |
| cond_list = alloc_EXPR_LIST (0, cond, cond_list); |
| } |
| } |
| |
| FOR_BB_INSNS_REVERSE (e->src, insn) |
| { |
| rtx src, dest; |
| rtx old = *expr; |
| |
| if (!INSN_P (insn)) |
| continue; |
| |
| CLEAR_REG_SET (this_altered); |
| note_stores (insn, mark_altered, this_altered); |
| if (CALL_P (insn)) |
| { |
| /* Kill all registers that might be clobbered by the call. |
| We don't track modes of hard registers, so we need to be |
| conservative and assume that partial kills are full kills. */ |
| function_abi callee_abi = insn_callee_abi (insn); |
| IOR_REG_SET_HRS (this_altered, |
| callee_abi.full_and_partial_reg_clobbers ()); |
| } |
| |
| if (suitable_set_for_replacement (insn, &dest, &src)) |
| { |
| rtx_expr_list **pnote, **pnote_next; |
| |
| replace_in_expr (expr, dest, src); |
| if (CONSTANT_P (*expr)) |
| goto out; |
| |
| for (pnote = &cond_list; *pnote; pnote = pnote_next) |
| { |
| rtx_expr_list *note = *pnote; |
| rtx old_cond = XEXP (note, 0); |
| |
| pnote_next = (rtx_expr_list **)&XEXP (note, 1); |
| replace_in_expr (&XEXP (note, 0), dest, src); |
| |
| /* We can no longer use a condition that has been simplified |
| to a constant, and simplify_using_condition will abort if |
| we try. */ |
| if (CONSTANT_P (XEXP (note, 0))) |
| { |
| *pnote = *pnote_next; |
| pnote_next = pnote; |
| free_EXPR_LIST_node (note); |
| } |
| /* Retry simplifications with this condition if either the |
| expression or the condition changed. */ |
| else if (old_cond != XEXP (note, 0) || old != *expr) |
| simplify_using_condition (XEXP (note, 0), expr, altered); |
| } |
| } |
| else |
| { |
| rtx_expr_list **pnote, **pnote_next; |
| |
| /* If we did not use this insn to make a replacement, any overlap |
| between stores in this insn and our expression will cause the |
| expression to become invalid. */ |
| if (altered_reg_used (*expr, this_altered)) |
| goto out; |
| |
| /* Likewise for the conditions. */ |
| for (pnote = &cond_list; *pnote; pnote = pnote_next) |
| { |
| rtx_expr_list *note = *pnote; |
| rtx old_cond = XEXP (note, 0); |
| |
| pnote_next = (rtx_expr_list **)&XEXP (note, 1); |
| if (altered_reg_used (old_cond, this_altered)) |
| { |
| *pnote = *pnote_next; |
| pnote_next = pnote; |
| free_EXPR_LIST_node (note); |
| } |
| } |
| } |
| |
| if (CONSTANT_P (*expr)) |
| goto out; |
| |
| IOR_REG_SET (altered, this_altered); |
| |
| /* If the expression now contains regs that have been altered, we |
| can't return it to the caller. However, it is still valid for |
| further simplification, so keep searching to see if we can |
| eventually turn it into a constant. */ |
| if (altered_reg_used (*expr, altered)) |
| expression_valid = false; |
| if (expression_valid) |
| last_valid_expr = *expr; |
| } |
| |
| if (!single_pred_p (e->src) |
| || single_pred (e->src) == ENTRY_BLOCK_PTR_FOR_FN (cfun)) |
| break; |
| e = single_pred_edge (e->src); |
| } |
| |
| out: |
| free_EXPR_LIST_list (&cond_list); |
| if (!CONSTANT_P (*expr)) |
| *expr = last_valid_expr; |
| FREE_REG_SET (altered); |
| FREE_REG_SET (this_altered); |
| } |
| |
| /* Transforms invariant IV into MODE. Adds assumptions based on the fact |
| that IV occurs as left operands of comparison COND and its signedness |
| is SIGNED_P to DESC. */ |
| |
| static void |
| shorten_into_mode (class rtx_iv *iv, scalar_int_mode mode, |
| enum rtx_code cond, bool signed_p, class niter_desc *desc) |
| { |
| rtx mmin, mmax, cond_over, cond_under; |
| |
| get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax); |
| cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode, |
| iv->base, mmin); |
| cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode, |
| iv->base, mmax); |
| |
| switch (cond) |
| { |
| case LE: |
| case LT: |
| case LEU: |
| case LTU: |
| if (cond_under != const0_rtx) |
| desc->infinite = |
| alloc_EXPR_LIST (0, cond_under, desc->infinite); |
| if (cond_over != const0_rtx) |
| desc->noloop_assumptions = |
| alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions); |
| break; |
| |
| case GE: |
| case GT: |
| case GEU: |
| case GTU: |
| if (cond_over != const0_rtx) |
| desc->infinite = |
| alloc_EXPR_LIST (0, cond_over, desc->infinite); |
| if (cond_under != const0_rtx) |
| desc->noloop_assumptions = |
| alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions); |
| break; |
| |
| case NE: |
| if (cond_over != const0_rtx) |
| desc->infinite = |
| alloc_EXPR_LIST (0, cond_over, desc->infinite); |
| if (cond_under != const0_rtx) |
| desc->infinite = |
| alloc_EXPR_LIST (0, cond_under, desc->infinite); |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| iv->mode = mode; |
| iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND; |
| } |
| |
| /* Transforms IV0 and IV1 compared by COND so that they are both compared as |
| subregs of the same mode if possible (sometimes it is necessary to add |
| some assumptions to DESC). */ |
| |
| static bool |
| canonicalize_iv_subregs (class rtx_iv *iv0, class rtx_iv *iv1, |
| enum rtx_code cond, class niter_desc *desc) |
| { |
| scalar_int_mode comp_mode; |
| bool signed_p; |
| |
| /* If the ivs behave specially in the first iteration, or are |
| added/multiplied after extending, we ignore them. */ |
| if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx) |
| return false; |
| if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx) |
| return false; |
| |
| /* If there is some extend, it must match signedness of the comparison. */ |
| switch (cond) |
| { |
| case LE: |
| case LT: |
| if (iv0->extend == IV_ZERO_EXTEND |
| || iv1->extend == IV_ZERO_EXTEND) |
| return false; |
| signed_p = true; |
| break; |
| |
| case LEU: |
| case LTU: |
| if (iv0->extend == IV_SIGN_EXTEND |
| || iv1->extend == IV_SIGN_EXTEND) |
| return false; |
| signed_p = false; |
| break; |
| |
| case NE: |
| if (iv0->extend != IV_UNKNOWN_EXTEND |
| && iv1->extend != IV_UNKNOWN_EXTEND |
| && iv0->extend != iv1->extend) |
| return false; |
| |
| signed_p = false; |
| if (iv0->extend != IV_UNKNOWN_EXTEND) |
| signed_p = iv0->extend == IV_SIGN_EXTEND; |
| if (iv1->extend != IV_UNKNOWN_EXTEND) |
| signed_p = iv1->extend == IV_SIGN_EXTEND; |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| /* Values of both variables should be computed in the same mode. These |
| might indeed be different, if we have comparison like |
| |
| (compare (subreg:SI (iv0)) (subreg:SI (iv1))) |
| |
| and iv0 and iv1 are both ivs iterating in SI mode, but calculated |
| in different modes. This does not seem impossible to handle, but |
| it hardly ever occurs in practice. |
| |
| The only exception is the case when one of operands is invariant. |
| For example pentium 3 generates comparisons like |
| (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we |
| definitely do not want this prevent the optimization. */ |
| comp_mode = iv0->extend_mode; |
| if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode)) |
| comp_mode = iv1->extend_mode; |
| |
| if (iv0->extend_mode != comp_mode) |
| { |
| if (iv0->mode != iv0->extend_mode |
| || iv0->step != const0_rtx) |
| return false; |
| |
| iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND, |
| comp_mode, iv0->base, iv0->mode); |
| iv0->extend_mode = comp_mode; |
| } |
| |
| if (iv1->extend_mode != comp_mode) |
| { |
| if (iv1->mode != iv1->extend_mode |
| || iv1->step != const0_rtx) |
| return false; |
| |
| iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND, |
| comp_mode, iv1->base, iv1->mode); |
| iv1->extend_mode = comp_mode; |
| } |
| |
| /* Check that both ivs belong to a range of a single mode. If one of the |
| operands is an invariant, we may need to shorten it into the common |
| mode. */ |
| if (iv0->mode == iv0->extend_mode |
| && iv0->step == const0_rtx |
| && iv0->mode != iv1->mode) |
| shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc); |
| |
| if (iv1->mode == iv1->extend_mode |
| && iv1->step == const0_rtx |
| && iv0->mode != iv1->mode) |
| shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc); |
| |
| if (iv0->mode != iv1->mode) |
| return false; |
| |
| desc->mode = iv0->mode; |
| desc->signed_p = signed_p; |
| |
| return true; |
| } |
| |
| /* Tries to estimate the maximum number of iterations in LOOP, and return the |
| result. This function is called from iv_number_of_iterations with |
| a number of fields in DESC already filled in. OLD_NITER is the original |
| expression for the number of iterations, before we tried to simplify it. */ |
| |
| static uint64_t |
| determine_max_iter (class loop *loop, class niter_desc *desc, rtx old_niter) |
| { |
| rtx niter = desc->niter_expr; |
| rtx mmin, mmax, cmp; |
| uint64_t nmax, inc; |
| uint64_t andmax = 0; |
| |
| /* We used to look for constant operand 0 of AND, |
| but canonicalization should always make this impossible. */ |
| gcc_checking_assert (GET_CODE (niter) != AND |
| || !CONST_INT_P (XEXP (niter, 0))); |
| |
| if (GET_CODE (niter) == AND |
| && CONST_INT_P (XEXP (niter, 1))) |
| { |
| andmax = UINTVAL (XEXP (niter, 1)); |
| niter = XEXP (niter, 0); |
| } |
| |
| get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax); |
| nmax = UINTVAL (mmax) - UINTVAL (mmin); |
| |
| if (GET_CODE (niter) == UDIV) |
| { |
| if (!CONST_INT_P (XEXP (niter, 1))) |
| return nmax; |
| inc = INTVAL (XEXP (niter, 1)); |
| niter = XEXP (niter, 0); |
| } |
| else |
| inc = 1; |
| |
| /* We could use a binary search here, but for now improving the upper |
| bound by just one eliminates one important corner case. */ |
| cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode, |
| desc->mode, old_niter, mmax); |
| simplify_using_initial_values (loop, UNKNOWN, &cmp); |
| if (cmp == const_true_rtx) |
| { |
| nmax--; |
| |
| if (dump_file) |
| fprintf (dump_file, ";; improved upper bound by one.\n"); |
| } |
| nmax /= inc; |
| if (andmax) |
| nmax = MIN (nmax, andmax); |
| if (dump_file) |
| fprintf (dump_file, ";; Determined upper bound %" PRId64".\n", |
| nmax); |
| return nmax; |
| } |
| |
| /* Computes number of iterations of the CONDITION in INSN in LOOP and stores |
| the result into DESC. Very similar to determine_number_of_iterations |
| (basically its rtl version), complicated by things like subregs. */ |
| |
| static void |
| iv_number_of_iterations (class loop *loop, rtx_insn *insn, rtx condition, |
| class niter_desc *desc) |
| { |
| rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1; |
| class rtx_iv iv0, iv1; |
| rtx assumption, may_not_xform; |
| enum rtx_code cond; |
| machine_mode nonvoid_mode; |
| scalar_int_mode comp_mode; |
| rtx mmin, mmax, mode_mmin, mode_mmax; |
| uint64_t s, size, d, inv, max, up, down; |
| int64_t inc, step_val; |
| int was_sharp = false; |
| rtx old_niter; |
| bool step_is_pow2; |
| |
| /* The meaning of these assumptions is this: |
| if !assumptions |
| then the rest of information does not have to be valid |
| if noloop_assumptions then the loop does not roll |
| if infinite then this exit is never used */ |
| |
| desc->assumptions = NULL_RTX; |
| desc->noloop_assumptions = NULL_RTX; |
| desc->infinite = NULL_RTX; |
| desc->simple_p = true; |
| |
| desc->const_iter = false; |
| desc->niter_expr = NULL_RTX; |
| |
| cond = GET_CODE (condition); |
| gcc_assert (COMPARISON_P (condition)); |
| |
| nonvoid_mode = GET_MODE (XEXP (condition, 0)); |
| if (nonvoid_mode == VOIDmode) |
| nonvoid_mode = GET_MODE (XEXP (condition, 1)); |
| /* The constant comparisons should be folded. */ |
| gcc_assert (nonvoid_mode != VOIDmode); |
| |
| /* We only handle integers or pointers. */ |
| scalar_int_mode mode; |
| if (!is_a <scalar_int_mode> (nonvoid_mode, &mode)) |
| goto fail; |
| |
| op0 = XEXP (condition, 0); |
| if (!iv_analyze (insn, mode, op0, &iv0)) |
| goto fail; |
| |
| op1 = XEXP (condition, 1); |
| if (!iv_analyze (insn, mode, op1, &iv1)) |
| goto fail; |
| |
| if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT |
| || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT) |
| goto fail; |
| |
| /* Check condition and normalize it. */ |
| |
| switch (cond) |
| { |
| case GE: |
| case GT: |
| case GEU: |
| case GTU: |
| std::swap (iv0, iv1); |
| cond = swap_condition (cond); |
| break; |
| case NE: |
| case LE: |
| case LEU: |
| case LT: |
| case LTU: |
| break; |
| default: |
| goto fail; |
| } |
| |
| /* Handle extends. This is relatively nontrivial, so we only try in some |
| easy cases, when we can canonicalize the ivs (possibly by adding some |
| assumptions) to shape subreg (base + i * step). This function also fills |
| in desc->mode and desc->signed_p. */ |
| |
| if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc)) |
| goto fail; |
| |
| comp_mode = iv0.extend_mode; |
| mode = iv0.mode; |
| size = GET_MODE_PRECISION (mode); |
| get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax); |
| mode_mmin = lowpart_subreg (mode, mmin, comp_mode); |
| mode_mmax = lowpart_subreg (mode, mmax, comp_mode); |
| |
| if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step)) |
| goto fail; |
| |
| /* We can take care of the case of two induction variables chasing each other |
| if the test is NE. I have never seen a loop using it, but still it is |
| cool. */ |
| if (iv0.step != const0_rtx && iv1.step != const0_rtx) |
| { |
| if (cond != NE) |
| goto fail; |
| |
| iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step); |
| iv1.step = const0_rtx; |
| } |
| |
| iv0.step = lowpart_subreg (mode, iv0.step, comp_mode); |
| iv1.step = lowpart_subreg (mode, iv1.step, comp_mode); |
| |
| /* This is either infinite loop or the one that ends immediately, depending |
| on initial values. Unswitching should remove this kind of conditions. */ |
| if (iv0.step == const0_rtx && iv1.step == const0_rtx) |
| goto fail; |
| |
| if (cond != NE) |
| { |
| if (iv0.step == const0_rtx) |
| step_val = -INTVAL (iv1.step); |
| else |
| step_val = INTVAL (iv0.step); |
| |
| /* Ignore loops of while (i-- < 10) type. */ |
| if (step_val < 0) |
| goto fail; |
| |
| step_is_pow2 = !(step_val & (step_val - 1)); |
| } |
| else |
| { |
| /* We do not care about whether the step is power of two in this |
| case. */ |
| step_is_pow2 = false; |
| step_val = 0; |
| } |
| |
| /* Some more condition normalization. We must record some assumptions |
| due to overflows. */ |
| switch (cond) |
| { |
| case LT: |
| case LTU: |
| /* We want to take care only of non-sharp relationals; this is easy, |
| as in cases the overflow would make the transformation unsafe |
| the loop does not roll. Seemingly it would make more sense to want |
| to take care of sharp relationals instead, as NE is more similar to |
| them, but the problem is that here the transformation would be more |
| difficult due to possibly infinite loops. */ |
| if (iv0.step == const0_rtx) |
| { |
| tmp = lowpart_subreg (mode, iv0.base, comp_mode); |
| assumption = simplify_gen_relational (EQ, SImode, mode, tmp, |
| mode_mmax); |
| if (assumption == const_true_rtx) |
| goto zero_iter_simplify; |
| iv0.base = simplify_gen_binary (PLUS, comp_mode, |
| iv0.base, const1_rtx); |
| } |
| else |
| { |
| tmp = lowpart_subreg (mode, iv1.base, comp_mode); |
| assumption = simplify_gen_relational (EQ, SImode, mode, tmp, |
| mode_mmin); |
| if (assumption == const_true_rtx) |
| goto zero_iter_simplify; |
| iv1.base = simplify_gen_binary (PLUS, comp_mode, |
| iv1.base, constm1_rtx); |
| } |
| |
| if (assumption != const0_rtx) |
| desc->noloop_assumptions = |
| alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions); |
| cond = (cond == LT) ? LE : LEU; |
| |
| /* It will be useful to be able to tell the difference once more in |
| LE -> NE reduction. */ |
| was_sharp = true; |
| break; |
| default: ; |
| } |
| |
| /* Take care of trivially infinite loops. */ |
| if (cond != NE) |
| { |
| if (iv0.step == const0_rtx) |
| { |
| tmp = lowpart_subreg (mode, iv0.base, comp_mode); |
| if (rtx_equal_p (tmp, mode_mmin)) |
| { |
| desc->infinite = |
| alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX); |
| /* Fill in the remaining fields somehow. */ |
| goto zero_iter_simplify; |
| } |
| } |
| else |
| { |
| tmp = lowpart_subreg (mode, iv1.base, comp_mode); |
| if (rtx_equal_p (tmp, mode_mmax)) |
| { |
| desc->infinite = |
| alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX); |
| /* Fill in the remaining fields somehow. */ |
| goto zero_iter_simplify; |
| } |
| } |
| } |
| |
| /* If we can we want to take care of NE conditions instead of size |
| comparisons, as they are much more friendly (most importantly |
| this takes care of special handling of loops with step 1). We can |
| do it if we first check that upper bound is greater or equal to |
| lower bound, their difference is constant c modulo step and that |
| there is not an overflow. */ |
| if (cond != NE) |
| { |
| if (iv0.step == const0_rtx) |
| step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode); |
| else |
| step = iv0.step; |
| step = lowpart_subreg (mode, step, comp_mode); |
| delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base); |
| delta = lowpart_subreg (mode, delta, comp_mode); |
| delta = simplify_gen_binary (UMOD, mode, delta, step); |
| may_xform = const0_rtx; |
| may_not_xform = const_true_rtx; |
| |
| if (CONST_INT_P (delta)) |
| { |
| if (was_sharp && INTVAL (delta) == INTVAL (step) - 1) |
| { |
| /* A special case. We have transformed condition of type |
| for (i = 0; i < 4; i += 4) |
| into |
| for (i = 0; i <= 3; i += 4) |
| obviously if the test for overflow during that transformation |
| passed, we cannot overflow here. Most importantly any |
| loop with sharp end condition and step 1 falls into this |
| category, so handling this case specially is definitely |
| worth the troubles. */ |
| may_xform = const_true_rtx; |
| } |
| else if (iv0.step == const0_rtx) |
| { |
| bound = simplify_gen_binary (PLUS, comp_mode, mmin, step); |
| bound = simplify_gen_binary (MINUS, comp_mode, bound, delta); |
| bound = lowpart_subreg (mode, bound, comp_mode); |
| tmp = lowpart_subreg (mode, iv0.base, comp_mode); |
| may_xform = simplify_gen_relational (cond, SImode, mode, |
| bound, tmp); |
| may_not_xform = simplify_gen_relational (reverse_condition (cond), |
| SImode, mode, |
| bound, tmp); |
| } |
| else |
| { |
| bound = simplify_gen_binary (MINUS, comp_mode, mmax, step); |
| bound = simplify_gen_binary (PLUS, comp_mode, bound, delta); |
| bound = lowpart_subreg (mode, bound, comp_mode); |
| tmp = lowpart_subreg (mode, iv1.base, comp_mode); |
| may_xform = simplify_gen_relational (cond, SImode, mode, |
| tmp, bound); |
| may_not_xform = simplify_gen_relational (reverse_condition (cond), |
| SImode, mode, |
| tmp, bound); |
| } |
| } |
| |
| if (may_xform != const0_rtx) |
| { |
| /* We perform the transformation always provided that it is not |
| completely senseless. This is OK, as we would need this assumption |
| to determine the number of iterations anyway. */ |
| if (may_xform != const_true_rtx) |
| { |
| /* If the step is a power of two and the final value we have |
| computed overflows, the cycle is infinite. Otherwise it |
| is nontrivial to compute the number of iterations. */ |
| if (step_is_pow2) |
| desc->infinite = alloc_EXPR_LIST (0, may_not_xform, |
| desc->infinite); |
| else |
| desc->assumptions = alloc_EXPR_LIST (0, may_xform, |
| desc->assumptions); |
| } |
| |
| /* We are going to lose some information about upper bound on |
| number of iterations in this step, so record the information |
| here. */ |
| inc = INTVAL (iv0.step) - INTVAL (iv1.step); |
| if (CONST_INT_P (iv1.base)) |
| up = INTVAL (iv1.base); |
| else |
| up = INTVAL (mode_mmax) - inc; |
| down = INTVAL (CONST_INT_P (iv0.base) |
| ? iv0.base |
| : mode_mmin); |
| max = (up - down) / inc + 1; |
| if (!desc->infinite |
| && !desc->assumptions) |
| record_niter_bound (loop, max, false, true); |
| |
| if (iv0.step == const0_rtx) |
| { |
| iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta); |
| iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step); |
| } |
| else |
| { |
| iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta); |
| iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step); |
| } |
| |
| tmp0 = lowpart_subreg (mode, iv0.base, comp_mode); |
| tmp1 = lowpart_subreg (mode, iv1.base, comp_mode); |
| assumption = simplify_gen_relational (reverse_condition (cond), |
| SImode, mode, tmp0, tmp1); |
| if (assumption == const_true_rtx) |
| goto zero_iter_simplify; |
| else if (assumption != const0_rtx) |
| desc->noloop_assumptions = |
| alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions); |
| cond = NE; |
| } |
| } |
| |
| /* Count the number of iterations. */ |
| if (cond == NE) |
| { |
| /* Everything we do here is just arithmetics modulo size of mode. This |
| makes us able to do more involved computations of number of iterations |
| than in other cases. First transform the condition into shape |
| s * i <> c, with s positive. */ |
| iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base); |
| iv0.base = const0_rtx; |
| iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step); |
| iv1.step = const0_rtx; |
| if (INTVAL (iv0.step) < 0) |
| { |
| iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, comp_mode); |
| iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, comp_mode); |
| } |
| iv0.step = lowpart_subreg (mode, iv0.step, comp_mode); |
| |
| /* Let nsd (s, size of mode) = d. If d does not divide c, the loop |
| is infinite. Otherwise, the number of iterations is |
| (inverse(s/d) * (c/d)) mod (size of mode/d). */ |
| s = INTVAL (iv0.step); d = 1; |
| while (s % 2 != 1) |
| { |
| s /= 2; |
| d *= 2; |
| size--; |
| } |
| bound = GEN_INT (((uint64_t) 1 << (size - 1 ) << 1) - 1); |
| |
| tmp1 = lowpart_subreg (mode, iv1.base, comp_mode); |
| tmp = simplify_gen_binary (UMOD, mode, tmp1, gen_int_mode (d, mode)); |
| assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx); |
| desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite); |
| |
| tmp = simplify_gen_binary (UDIV, mode, tmp1, gen_int_mode (d, mode)); |
| inv = inverse (s, size); |
| tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode)); |
| desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound); |
| } |
| else |
| { |
| if (iv1.step == const0_rtx) |
| /* Condition in shape a + s * i <= b |
| We must know that b + s does not overflow and a <= b + s and then we |
| can compute number of iterations as (b + s - a) / s. (It might |
| seem that we in fact could be more clever about testing the b + s |
| overflow condition using some information about b - a mod s, |
| but it was already taken into account during LE -> NE transform). */ |
| { |
| step = iv0.step; |
| tmp0 = lowpart_subreg (mode, iv0.base, comp_mode); |
| tmp1 = lowpart_subreg (mode, iv1.base, comp_mode); |
| |
| bound = simplify_gen_binary (MINUS, mode, mode_mmax, |
| lowpart_subreg (mode, step, |
| comp_mode)); |
| if (step_is_pow2) |
| { |
| rtx t0, t1; |
| |
| /* If s is power of 2, we know that the loop is infinite if |
| a % s <= b % s and b + s overflows. */ |
| assumption = simplify_gen_relational (reverse_condition (cond), |
| SImode, mode, |
| tmp1, bound); |
| |
| t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step); |
| t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step); |
| tmp = simplify_gen_relational (cond, SImode, mode, t0, t1); |
| assumption = simplify_gen_binary (AND, SImode, assumption, tmp); |
| desc->infinite = |
| alloc_EXPR_LIST (0, assumption, desc->infinite); |
| } |
| else |
| { |
| assumption = simplify_gen_relational (cond, SImode, mode, |
| tmp1, bound); |
| desc->assumptions = |
| alloc_EXPR_LIST (0, assumption, desc->assumptions); |
| } |
| |
| tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step); |
| tmp = lowpart_subreg (mode, tmp, comp_mode); |
| assumption = simplify_gen_relational (reverse_condition (cond), |
| SImode, mode, tmp0, tmp); |
| |
| delta = simplify_gen_binary (PLUS, mode, tmp1, step); |
| delta = simplify_gen_binary (MINUS, mode, delta, tmp0); |
| } |
| else |
| { |
| /* Condition in shape a <= b - s * i |
| We must know that a - s does not overflow and a - s <= b and then |
| we can again compute number of iterations as (b - (a - s)) / s. */ |
| step = simplify_gen_unary (NEG, mode, iv1.step, mode); |
| tmp0 = lowpart_subreg (mode, iv0.base, comp_mode); |
| tmp1 = lowpart_subreg (mode, iv1.base, comp_mode); |
| |
| bound = simplify_gen_binary (PLUS, mode, mode_mmin, |
| lowpart_subreg (mode, step, comp_mode)); |
| if (step_is_pow2) |
| { |
| rtx t0, t1; |
| |
| /* If s is power of 2, we know that the loop is infinite if |
| a % s <= b % s and a - s overflows. */ |
| assumption = simplify_gen_relational (reverse_condition (cond), |
| SImode, mode, |
| bound, tmp0); |
| |
| t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step); |
| t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step); |
| tmp = simplify_gen_relational (cond, SImode, mode, t0, t1); |
| assumption = simplify_gen_binary (AND, SImode, assumption, tmp); |
| desc->infinite = |
| alloc_EXPR_LIST (0, assumption, desc->infinite); |
| } |
| else |
| { |
| assumption = simplify_gen_relational (cond, SImode, mode, |
| bound, tmp0); |
| desc->assumptions = |
| alloc_EXPR_LIST (0, assumption, desc->assumptions); |
| } |
| |
| tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step); |
| tmp = lowpart_subreg (mode, tmp, comp_mode); |
| assumption = simplify_gen_relational (reverse_condition (cond), |
| SImode, mode, |
| tmp, tmp1); |
| delta = simplify_gen_binary (MINUS, mode, tmp0, step); |
| delta = simplify_gen_binary (MINUS, mode, tmp1, delta); |
| } |
| if (assumption == const_true_rtx) |
| goto zero_iter_simplify; |
| else if (assumption != const0_rtx) |
| desc->noloop_assumptions = |
| alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions); |
| delta = simplify_gen_binary (UDIV, mode, delta, step); |
| desc->niter_expr = delta; |
| } |
| |
| old_niter = desc->niter_expr; |
| |
| simplify_using_initial_values (loop, AND, &desc->assumptions); |
| if (desc->assumptions |
| && XEXP (desc->assumptions, 0) == const0_rtx) |
| goto fail; |
| simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions); |
| simplify_using_initial_values (loop, IOR, &desc->infinite); |
| simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr); |
| |
| /* Rerun the simplification. Consider code (created by copying loop headers) |
| |
| i = 0; |
| |
| if (0 < n) |
| { |
| do |
| { |
| i++; |
| } while (i < n); |
| } |
| |
| The first pass determines that i = 0, the second pass uses it to eliminate |
| noloop assumption. */ |
| |
| simplify_using_initial_values (loop, AND, &desc->assumptions); |
| if (desc->assumptions |
| && XEXP (desc->assumptions, 0) == const0_rtx) |
| goto fail; |
| simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions); |
| simplify_using_initial_values (loop, IOR, &desc->infinite); |
| simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr); |
| |
| if (desc->noloop_assumptions |
| && XEXP (desc->noloop_assumptions, 0) == const_true_rtx) |
| goto zero_iter; |
| |
| if (CONST_INT_P (desc->niter_expr)) |
| { |
| uint64_t val = INTVAL (desc->niter_expr); |
| |
| desc->const_iter = true; |
| desc->niter = val & GET_MODE_MASK (desc->mode); |
| if (!desc->infinite |
| && !desc->assumptions) |
| record_niter_bound (loop, desc->niter, false, true); |
| } |
| else |
| { |
| max = determine_max_iter (loop, desc, old_niter); |
| if (!max) |
| goto zero_iter_simplify; |
| if (!desc->infinite |
| && !desc->assumptions) |
| record_niter_bound (loop, max, false, true); |
| |
| /* simplify_using_initial_values does a copy propagation on the registers |
| in the expression for the number of iterations. This prolongs life |
| ranges of registers and increases register pressure, and usually |
| brings no gain (and if it happens to do, the cse pass will take care |
| of it anyway). So prevent this behavior, unless it enabled us to |
| derive that the number of iterations is a constant. */ |
| desc->niter_expr = old_niter; |
| } |
| |
| return; |
| |
| zero_iter_simplify: |
| /* Simplify the assumptions. */ |
| simplify_using_initial_values (loop, AND, &desc->assumptions); |
| if (desc->assumptions |
| && XEXP (desc->assumptions, 0) == const0_rtx) |
| goto fail; |
| simplify_using_initial_values (loop, IOR, &desc->infinite); |
| |
| /* Fallthru. */ |
| zero_iter: |
| desc->const_iter = true; |
| desc->niter = 0; |
| record_niter_bound (loop, 0, true, true); |
| desc->noloop_assumptions = NULL_RTX; |
| desc->niter_expr = const0_rtx; |
| return; |
| |
| fail: |
| desc->simple_p = false; |
| return; |
| } |
| |
| /* Checks whether E is a simple exit from LOOP and stores its description |
| into DESC. */ |
| |
| static void |
| check_simple_exit (class loop *loop, edge e, class niter_desc *desc) |
| { |
| basic_block exit_bb; |
| rtx condition; |
| rtx_insn *at; |
| edge ein; |
| |
| exit_bb = e->src; |
| desc->simple_p = false; |
| |
| /* It must belong directly to the loop. */ |
| if (exit_bb->loop_father != loop) |
| return; |
| |
| /* It must be tested (at least) once during any iteration. */ |
| if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb)) |
| return; |
| |
| /* It must end in a simple conditional jump. */ |
| if (!any_condjump_p (BB_END (exit_bb)) || !onlyjump_p (BB_END (exit_bb))) |
| return; |
| |
| ein = EDGE_SUCC (exit_bb, 0); |
| if (ein == e) |
| ein = EDGE_SUCC (exit_bb, 1); |
| |
| desc->out_edge = e; |
| desc->in_edge = ein; |
| |
| /* Test whether the condition is suitable. */ |
| if (!(condition = get_condition (BB_END (ein->src), &at, false, false))) |
| return; |
| |
| if (ein->flags & EDGE_FALLTHRU) |
| { |
| condition = reversed_condition (condition); |
| if (!condition) |
| return; |
| } |
| |
| /* Check that we are able to determine number of iterations and fill |
| in information about it. */ |
| iv_number_of_iterations (loop, at, condition, desc); |
| } |
| |
| /* Finds a simple exit of LOOP and stores its description into DESC. */ |
| |
| static void |
| find_simple_exit (class loop *loop, class niter_desc *desc) |
| { |
| unsigned i; |
| basic_block *body; |
| edge e; |
| class niter_desc act; |
| bool any = false; |
| edge_iterator ei; |
| |
| desc->simple_p = false; |
| body = get_loop_body (loop); |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| { |
| FOR_EACH_EDGE (e, ei, body[i]->succs) |
| { |
| if (flow_bb_inside_loop_p (loop, e->dest)) |
| continue; |
| |
| check_simple_exit (loop, e, &act); |
| if (!act.simple_p) |
| continue; |
| |
| if (!any) |
| any = true; |
| else |
| { |
| /* Prefer constant iterations; the less the better. */ |
| if (!act.const_iter |
| || (desc->const_iter && act.niter >= desc->niter)) |
| continue; |
| |
| /* Also if the actual exit may be infinite, while the old one |
| not, prefer the old one. */ |
| if (act.infinite && !desc->infinite) |
| continue; |
| } |
| |
| *desc = act; |
| } |
| } |
| |
| if (dump_file) |
| { |
| if (desc->simple_p) |
| { |
| fprintf (dump_file, "Loop %d is simple:\n", loop->num); |
| fprintf (dump_file, " simple exit %d -> %d\n", |
| desc->out_edge->src->index, |
| desc->out_edge->dest->index); |
| if (desc->assumptions) |
| { |
| fprintf (dump_file, " assumptions: "); |
| print_rtl (dump_file, desc->assumptions); |
| fprintf (dump_file, "\n"); |
| } |
| if (desc->noloop_assumptions) |
| { |
| fprintf (dump_file, " does not roll if: "); |
| print_rtl (dump_file, desc->noloop_assumptions); |
| fprintf (dump_file, "\n"); |
| } |
| if (desc->infinite) |
| { |
| fprintf (dump_file, " infinite if: "); |
| print_rtl (dump_file, desc->infinite); |
| fprintf (dump_file, "\n"); |
| } |
| |
| fprintf (dump_file, " number of iterations: "); |
| print_rtl (dump_file, desc->niter_expr); |
| fprintf (dump_file, "\n"); |
| |
| fprintf (dump_file, " upper bound: %li\n", |
| (long)get_max_loop_iterations_int (loop)); |
| fprintf (dump_file, " likely upper bound: %li\n", |
| (long)get_likely_max_loop_iterations_int (loop)); |
| fprintf (dump_file, " realistic bound: %li\n", |
| (long)get_estimated_loop_iterations_int (loop)); |
| } |
| else |
| fprintf (dump_file, "Loop %d is not simple.\n", loop->num); |
| } |
| |
| /* Fix up the finiteness if possible. We can only do it for single exit, |
| since the loop is finite, but it's possible that we predicate one loop |
| exit to be finite which can not be determined as finite in middle-end as |
| well. It results in incorrect predicate information on the exit condition |
| expression. For example, if says [(int) _1 + -8, + , -8] != 0 finite, |
| it means _1 can exactly divide -8. */ |
| if (desc->infinite && single_exit (loop) && finite_loop_p (loop)) |
| { |
| desc->infinite = NULL_RTX; |
| if (dump_file) |
| fprintf (dump_file, " infinite updated to finite.\n"); |
| } |
| |
| free (body); |
| } |
| |
| /* Creates a simple loop description of LOOP if it was not computed |
| already. */ |
| |
| class niter_desc * |
| get_simple_loop_desc (class loop *loop) |
| { |
| class niter_desc *desc = simple_loop_desc (loop); |
| |
| if (desc) |
| return desc; |
| |
| /* At least desc->infinite is not always initialized by |
| find_simple_loop_exit. */ |
| desc = ggc_cleared_alloc<niter_desc> (); |
| iv_analysis_loop_init (loop); |
| find_simple_exit (loop, desc); |
| loop->simple_loop_desc = desc; |
| return desc; |
| } |
| |
| /* Releases simple loop description for LOOP. */ |
| |
| void |
| free_simple_loop_desc (class loop *loop) |
| { |
| class niter_desc *desc = simple_loop_desc (loop); |
| |
| if (!desc) |
| return; |
| |
| ggc_free (desc); |
| loop->simple_loop_desc = NULL; |
| } |