| /* Tail merging for gimple. |
| Copyright (C) 2011-2021 Free Software Foundation, Inc. |
| Contributed by Tom de Vries (tom@codesourcery.com) |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* Pass overview. |
| |
| |
| MOTIVATIONAL EXAMPLE |
| |
| gimple representation of gcc/testsuite/gcc.dg/pr43864.c at |
| |
| hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601) |
| { |
| struct FILED.1638 * fpD.2605; |
| charD.1 fileNameD.2604[1000]; |
| intD.0 D.3915; |
| const charD.1 * restrict outputFileName.0D.3914; |
| |
| # BLOCK 2 freq:10000 |
| # PRED: ENTRY [100.0%] (fallthru,exec) |
| # PT = nonlocal { D.3926 } (restr) |
| outputFileName.0D.3914_3 |
| = (const charD.1 * restrict) outputFileNameD.2600_2(D); |
| # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)> |
| # USE = nonlocal null { fileNameD.2604 D.3926 } (restr) |
| # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr) |
| sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3); |
| # .MEMD.3923_14 = VDEF <.MEMD.3923_13> |
| # USE = nonlocal null { fileNameD.2604 D.3926 } (restr) |
| # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr) |
| D.3915_4 = accessD.2606 (&fileNameD.2604, 1); |
| if (D.3915_4 == 0) |
| goto <bb 3>; |
| else |
| goto <bb 4>; |
| # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec) |
| |
| # BLOCK 3 freq:1000 |
| # PRED: 2 [10.0%] (true,exec) |
| # .MEMD.3923_15 = VDEF <.MEMD.3923_14> |
| # USE = nonlocal null { fileNameD.2604 D.3926 } (restr) |
| # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr) |
| freeD.898 (ctxD.2601_5(D)); |
| goto <bb 7>; |
| # SUCC: 7 [100.0%] (fallthru,exec) |
| |
| # BLOCK 4 freq:9000 |
| # PRED: 2 [90.0%] (false,exec) |
| # .MEMD.3923_16 = VDEF <.MEMD.3923_14> |
| # PT = nonlocal escaped |
| # USE = nonlocal null { fileNameD.2604 D.3926 } (restr) |
| # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr) |
| fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B); |
| if (fpD.2605_8 == 0B) |
| goto <bb 5>; |
| else |
| goto <bb 6>; |
| # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec) |
| |
| # BLOCK 5 freq:173 |
| # PRED: 4 [1.9%] (true,exec) |
| # .MEMD.3923_17 = VDEF <.MEMD.3923_16> |
| # USE = nonlocal null { fileNameD.2604 D.3926 } (restr) |
| # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr) |
| freeD.898 (ctxD.2601_5(D)); |
| goto <bb 7>; |
| # SUCC: 7 [100.0%] (fallthru,exec) |
| |
| # BLOCK 6 freq:8827 |
| # PRED: 4 [98.1%] (false,exec) |
| # .MEMD.3923_18 = VDEF <.MEMD.3923_16> |
| # USE = nonlocal null { fileNameD.2604 D.3926 } (restr) |
| # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr) |
| fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8); |
| # SUCC: 7 [100.0%] (fallthru,exec) |
| |
| # BLOCK 7 freq:10000 |
| # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec) |
| 6 [100.0%] (fallthru,exec) |
| # PT = nonlocal null |
| |
| # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)> |
| # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5), |
| .MEMD.3923_18(6)> |
| # VUSE <.MEMD.3923_11> |
| return ctxD.2601_1; |
| # SUCC: EXIT [100.0%] |
| } |
| |
| bb 3 and bb 5 can be merged. The blocks have different predecessors, but the |
| same successors, and the same operations. |
| |
| |
| CONTEXT |
| |
| A technique called tail merging (or cross jumping) can fix the example |
| above. For a block, we look for common code at the end (the tail) of the |
| predecessor blocks, and insert jumps from one block to the other. |
| The example is a special case for tail merging, in that 2 whole blocks |
| can be merged, rather than just the end parts of it. |
| We currently only focus on whole block merging, so in that sense |
| calling this pass tail merge is a bit of a misnomer. |
| |
| We distinguish 2 kinds of situations in which blocks can be merged: |
| - same operations, same predecessors. The successor edges coming from one |
| block are redirected to come from the other block. |
| - same operations, same successors. The predecessor edges entering one block |
| are redirected to enter the other block. Note that this operation might |
| involve introducing phi operations. |
| |
| For efficient implementation, we would like to value numbers the blocks, and |
| have a comparison operator that tells us whether the blocks are equal. |
| Besides being runtime efficient, block value numbering should also abstract |
| from irrelevant differences in order of operations, much like normal value |
| numbering abstracts from irrelevant order of operations. |
| |
| For the first situation (same_operations, same predecessors), normal value |
| numbering fits well. We can calculate a block value number based on the |
| value numbers of the defs and vdefs. |
| |
| For the second situation (same operations, same successors), this approach |
| doesn't work so well. We can illustrate this using the example. The calls |
| to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will |
| remain different in value numbering, since they represent different memory |
| states. So the resulting vdefs of the frees will be different in value |
| numbering, so the block value numbers will be different. |
| |
| The reason why we call the blocks equal is not because they define the same |
| values, but because uses in the blocks use (possibly different) defs in the |
| same way. To be able to detect this efficiently, we need to do some kind of |
| reverse value numbering, meaning number the uses rather than the defs, and |
| calculate a block value number based on the value number of the uses. |
| Ideally, a block comparison operator will also indicate which phis are needed |
| to merge the blocks. |
| |
| For the moment, we don't do block value numbering, but we do insn-by-insn |
| matching, using scc value numbers to match operations with results, and |
| structural comparison otherwise, while ignoring vop mismatches. |
| |
| |
| IMPLEMENTATION |
| |
| 1. The pass first determines all groups of blocks with the same successor |
| blocks. |
| 2. Within each group, it tries to determine clusters of equal basic blocks. |
| 3. The clusters are applied. |
| 4. The same successor groups are updated. |
| 5. This process is repeated from 2 onwards, until no more changes. |
| |
| |
| LIMITATIONS/TODO |
| |
| - block only |
| - handles only 'same operations, same successors'. |
| It handles same predecessors as a special subcase though. |
| - does not implement the reverse value numbering and block value numbering. |
| - improve memory allocation: use garbage collected memory, obstacks, |
| allocpools where appropriate. |
| - no insertion of gimple_reg phis, We only introduce vop-phis. |
| - handle blocks with gimple_reg phi_nodes. |
| |
| |
| PASS PLACEMENT |
| This 'pass' is not a stand-alone gimple pass, but runs as part of |
| pass_pre, in order to share the value numbering. |
| |
| |
| SWITCHES |
| |
| - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "cfghooks.h" |
| #include "tree-pass.h" |
| #include "ssa.h" |
| #include "fold-const.h" |
| #include "trans-mem.h" |
| #include "cfganal.h" |
| #include "cfgcleanup.h" |
| #include "gimple-iterator.h" |
| #include "tree-cfg.h" |
| #include "tree-into-ssa.h" |
| #include "tree-ssa-sccvn.h" |
| #include "cfgloop.h" |
| #include "tree-eh.h" |
| #include "tree-cfgcleanup.h" |
| |
| const int ignore_edge_flags = EDGE_DFS_BACK | EDGE_EXECUTABLE; |
| |
| /* Describes a group of bbs with the same successors. The successor bbs are |
| cached in succs, and the successor edge flags are cached in succ_flags. |
| If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags, |
| it's marked in inverse. |
| Additionally, the hash value for the struct is cached in hashval, and |
| in_worklist indicates whether it's currently part of worklist. */ |
| |
| struct same_succ : pointer_hash <same_succ> |
| { |
| /* The bbs that have the same successor bbs. */ |
| bitmap bbs; |
| /* The successor bbs. */ |
| bitmap succs; |
| /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for |
| bb. */ |
| bitmap inverse; |
| /* The edge flags for each of the successor bbs. */ |
| vec<int> succ_flags; |
| /* Indicates whether the struct is currently in the worklist. */ |
| bool in_worklist; |
| /* The hash value of the struct. */ |
| hashval_t hashval; |
| |
| /* hash_table support. */ |
| static inline hashval_t hash (const same_succ *); |
| static int equal (const same_succ *, const same_succ *); |
| static void remove (same_succ *); |
| }; |
| |
| /* hash routine for hash_table support, returns hashval of E. */ |
| |
| inline hashval_t |
| same_succ::hash (const same_succ *e) |
| { |
| return e->hashval; |
| } |
| |
| /* A group of bbs where 1 bb from bbs can replace the other bbs. */ |
| |
| struct bb_cluster |
| { |
| /* The bbs in the cluster. */ |
| bitmap bbs; |
| /* The preds of the bbs in the cluster. */ |
| bitmap preds; |
| /* Index in all_clusters vector. */ |
| int index; |
| /* The bb to replace the cluster with. */ |
| basic_block rep_bb; |
| }; |
| |
| /* Per bb-info. */ |
| |
| struct aux_bb_info |
| { |
| /* The number of non-debug statements in the bb. */ |
| int size; |
| /* The same_succ that this bb is a member of. */ |
| same_succ *bb_same_succ; |
| /* The cluster that this bb is a member of. */ |
| bb_cluster *cluster; |
| /* The vop state at the exit of a bb. This is shortlived data, used to |
| communicate data between update_block_by and update_vuses. */ |
| tree vop_at_exit; |
| /* The bb that either contains or is dominated by the dependencies of the |
| bb. */ |
| basic_block dep_bb; |
| }; |
| |
| /* Macros to access the fields of struct aux_bb_info. */ |
| |
| #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size) |
| #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ) |
| #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster) |
| #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit) |
| #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb) |
| |
| /* Valueization helper querying the VN lattice. */ |
| |
| static tree |
| tail_merge_valueize (tree name) |
| { |
| if (TREE_CODE (name) == SSA_NAME |
| && has_VN_INFO (name)) |
| { |
| tree tem = VN_INFO (name)->valnum; |
| if (tem != VN_TOP) |
| return tem; |
| } |
| return name; |
| } |
| |
| /* Returns true if the only effect a statement STMT has, is to define locally |
| used SSA_NAMEs. */ |
| |
| static bool |
| stmt_local_def (gimple *stmt) |
| { |
| basic_block bb, def_bb; |
| imm_use_iterator iter; |
| use_operand_p use_p; |
| tree val; |
| def_operand_p def_p; |
| |
| if (gimple_vdef (stmt) != NULL_TREE |
| || gimple_has_side_effects (stmt) |
| || gimple_could_trap_p_1 (stmt, false, false) |
| || gimple_vuse (stmt) != NULL_TREE |
| /* Copied from tree-ssa-ifcombine.c:bb_no_side_effects_p(): |
| const calls don't match any of the above, yet they could |
| still have some side-effects - they could contain |
| gimple_could_trap_p statements, like floating point |
| exceptions or integer division by zero. See PR70586. |
| FIXME: perhaps gimple_has_side_effects or gimple_could_trap_p |
| should handle this. */ |
| || is_gimple_call (stmt)) |
| return false; |
| |
| def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF); |
| if (def_p == NULL) |
| return false; |
| |
| val = DEF_FROM_PTR (def_p); |
| if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME) |
| return false; |
| |
| def_bb = gimple_bb (stmt); |
| |
| FOR_EACH_IMM_USE_FAST (use_p, iter, val) |
| { |
| if (is_gimple_debug (USE_STMT (use_p))) |
| continue; |
| bb = gimple_bb (USE_STMT (use_p)); |
| if (bb == def_bb) |
| continue; |
| |
| if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI |
| && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb) |
| continue; |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Let GSI skip forwards over local defs. */ |
| |
| static void |
| gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi) |
| { |
| gimple *stmt; |
| |
| while (true) |
| { |
| if (gsi_end_p (*gsi)) |
| return; |
| stmt = gsi_stmt (*gsi); |
| if (!stmt_local_def (stmt)) |
| return; |
| gsi_next_nondebug (gsi); |
| } |
| } |
| |
| /* VAL1 and VAL2 are either: |
| - uses in BB1 and BB2, or |
| - phi alternatives for BB1 and BB2. |
| Return true if the uses have the same gvn value. */ |
| |
| static bool |
| gvn_uses_equal (tree val1, tree val2) |
| { |
| gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE); |
| |
| if (val1 == val2) |
| return true; |
| |
| if (tail_merge_valueize (val1) != tail_merge_valueize (val2)) |
| return false; |
| |
| return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1)) |
| && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2))); |
| } |
| |
| /* Prints E to FILE. */ |
| |
| static void |
| same_succ_print (FILE *file, const same_succ *e) |
| { |
| unsigned int i; |
| bitmap_print (file, e->bbs, "bbs:", "\n"); |
| bitmap_print (file, e->succs, "succs:", "\n"); |
| bitmap_print (file, e->inverse, "inverse:", "\n"); |
| fprintf (file, "flags:"); |
| for (i = 0; i < e->succ_flags.length (); ++i) |
| fprintf (file, " %x", e->succ_flags[i]); |
| fprintf (file, "\n"); |
| } |
| |
| /* Prints same_succ VE to VFILE. */ |
| |
| inline int |
| ssa_same_succ_print_traverse (same_succ **pe, FILE *file) |
| { |
| const same_succ *e = *pe; |
| same_succ_print (file, e); |
| return 1; |
| } |
| |
| /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */ |
| |
| static void |
| update_dep_bb (basic_block use_bb, tree val) |
| { |
| basic_block dep_bb; |
| |
| /* Not a dep. */ |
| if (TREE_CODE (val) != SSA_NAME) |
| return; |
| |
| /* Skip use of global def. */ |
| if (SSA_NAME_IS_DEFAULT_DEF (val)) |
| return; |
| |
| /* Skip use of local def. */ |
| dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val)); |
| if (dep_bb == use_bb) |
| return; |
| |
| if (BB_DEP_BB (use_bb) == NULL |
| || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb))) |
| BB_DEP_BB (use_bb) = dep_bb; |
| } |
| |
| /* Update BB_DEP_BB, given the dependencies in STMT. */ |
| |
| static void |
| stmt_update_dep_bb (gimple *stmt) |
| { |
| ssa_op_iter iter; |
| use_operand_p use; |
| |
| FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE) |
| update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use)); |
| } |
| |
| /* Calculates hash value for same_succ VE. */ |
| |
| static hashval_t |
| same_succ_hash (const same_succ *e) |
| { |
| inchash::hash hstate (bitmap_hash (e->succs)); |
| int flags; |
| unsigned int i; |
| unsigned int first = bitmap_first_set_bit (e->bbs); |
| basic_block bb = BASIC_BLOCK_FOR_FN (cfun, first); |
| int size = 0; |
| gimple *stmt; |
| tree arg; |
| unsigned int s; |
| bitmap_iterator bs; |
| |
| for (gimple_stmt_iterator gsi = gsi_start_nondebug_bb (bb); |
| !gsi_end_p (gsi); gsi_next_nondebug (&gsi)) |
| { |
| stmt = gsi_stmt (gsi); |
| stmt_update_dep_bb (stmt); |
| if (stmt_local_def (stmt)) |
| continue; |
| size++; |
| |
| hstate.add_int (gimple_code (stmt)); |
| if (is_gimple_assign (stmt)) |
| hstate.add_int (gimple_assign_rhs_code (stmt)); |
| if (!is_gimple_call (stmt)) |
| continue; |
| if (gimple_call_internal_p (stmt)) |
| hstate.add_int (gimple_call_internal_fn (stmt)); |
| else |
| { |
| inchash::add_expr (gimple_call_fn (stmt), hstate); |
| if (gimple_call_chain (stmt)) |
| inchash::add_expr (gimple_call_chain (stmt), hstate); |
| } |
| for (i = 0; i < gimple_call_num_args (stmt); i++) |
| { |
| arg = gimple_call_arg (stmt, i); |
| arg = tail_merge_valueize (arg); |
| inchash::add_expr (arg, hstate); |
| } |
| } |
| |
| hstate.add_int (size); |
| BB_SIZE (bb) = size; |
| |
| hstate.add_int (bb->loop_father->num); |
| |
| for (i = 0; i < e->succ_flags.length (); ++i) |
| { |
| flags = e->succ_flags[i]; |
| flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); |
| hstate.add_int (flags); |
| } |
| |
| EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs) |
| { |
| int n = find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, s))->dest_idx; |
| for (gphi_iterator gsi = gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun, s)); |
| !gsi_end_p (gsi); |
| gsi_next (&gsi)) |
| { |
| gphi *phi = gsi.phi (); |
| tree lhs = gimple_phi_result (phi); |
| tree val = gimple_phi_arg_def (phi, n); |
| |
| if (virtual_operand_p (lhs)) |
| continue; |
| update_dep_bb (bb, val); |
| } |
| } |
| |
| return hstate.end (); |
| } |
| |
| /* Returns true if E1 and E2 have 2 successors, and if the successor flags |
| are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for |
| the other edge flags. */ |
| |
| static bool |
| inverse_flags (const same_succ *e1, const same_succ *e2) |
| { |
| int f1a, f1b, f2a, f2b; |
| int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); |
| |
| if (e1->succ_flags.length () != 2) |
| return false; |
| |
| f1a = e1->succ_flags[0]; |
| f1b = e1->succ_flags[1]; |
| f2a = e2->succ_flags[0]; |
| f2b = e2->succ_flags[1]; |
| |
| if (f1a == f2a && f1b == f2b) |
| return false; |
| |
| return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask); |
| } |
| |
| /* Compares SAME_SUCCs E1 and E2. */ |
| |
| int |
| same_succ::equal (const same_succ *e1, const same_succ *e2) |
| { |
| unsigned int i, first1, first2; |
| gimple_stmt_iterator gsi1, gsi2; |
| gimple *s1, *s2; |
| basic_block bb1, bb2; |
| |
| if (e1 == e2) |
| return 1; |
| |
| if (e1->hashval != e2->hashval) |
| return 0; |
| |
| if (e1->succ_flags.length () != e2->succ_flags.length ()) |
| return 0; |
| |
| if (!bitmap_equal_p (e1->succs, e2->succs)) |
| return 0; |
| |
| if (!inverse_flags (e1, e2)) |
| { |
| for (i = 0; i < e1->succ_flags.length (); ++i) |
| if (e1->succ_flags[i] != e2->succ_flags[i]) |
| return 0; |
| } |
| |
| first1 = bitmap_first_set_bit (e1->bbs); |
| first2 = bitmap_first_set_bit (e2->bbs); |
| |
| bb1 = BASIC_BLOCK_FOR_FN (cfun, first1); |
| bb2 = BASIC_BLOCK_FOR_FN (cfun, first2); |
| |
| if (BB_SIZE (bb1) != BB_SIZE (bb2)) |
| return 0; |
| |
| if (bb1->loop_father != bb2->loop_father) |
| return 0; |
| |
| gsi1 = gsi_start_nondebug_bb (bb1); |
| gsi2 = gsi_start_nondebug_bb (bb2); |
| gsi_advance_fw_nondebug_nonlocal (&gsi1); |
| gsi_advance_fw_nondebug_nonlocal (&gsi2); |
| while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2))) |
| { |
| s1 = gsi_stmt (gsi1); |
| s2 = gsi_stmt (gsi2); |
| if (gimple_code (s1) != gimple_code (s2)) |
| return 0; |
| if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2)) |
| return 0; |
| gsi_next_nondebug (&gsi1); |
| gsi_next_nondebug (&gsi2); |
| gsi_advance_fw_nondebug_nonlocal (&gsi1); |
| gsi_advance_fw_nondebug_nonlocal (&gsi2); |
| } |
| |
| return 1; |
| } |
| |
| /* Alloc and init a new SAME_SUCC. */ |
| |
| static same_succ * |
| same_succ_alloc (void) |
| { |
| same_succ *same = XNEW (struct same_succ); |
| |
| same->bbs = BITMAP_ALLOC (NULL); |
| same->succs = BITMAP_ALLOC (NULL); |
| same->inverse = BITMAP_ALLOC (NULL); |
| same->succ_flags.create (10); |
| same->in_worklist = false; |
| |
| return same; |
| } |
| |
| /* Delete same_succ E. */ |
| |
| void |
| same_succ::remove (same_succ *e) |
| { |
| BITMAP_FREE (e->bbs); |
| BITMAP_FREE (e->succs); |
| BITMAP_FREE (e->inverse); |
| e->succ_flags.release (); |
| |
| XDELETE (e); |
| } |
| |
| /* Reset same_succ SAME. */ |
| |
| static void |
| same_succ_reset (same_succ *same) |
| { |
| bitmap_clear (same->bbs); |
| bitmap_clear (same->succs); |
| bitmap_clear (same->inverse); |
| same->succ_flags.truncate (0); |
| } |
| |
| static hash_table<same_succ> *same_succ_htab; |
| |
| /* Array that is used to store the edge flags for a successor. */ |
| |
| static int *same_succ_edge_flags; |
| |
| /* Bitmap that is used to mark bbs that are recently deleted. */ |
| |
| static bitmap deleted_bbs; |
| |
| /* Bitmap that is used to mark predecessors of bbs that are |
| deleted. */ |
| |
| static bitmap deleted_bb_preds; |
| |
| /* Prints same_succ_htab to stderr. */ |
| |
| extern void debug_same_succ (void); |
| DEBUG_FUNCTION void |
| debug_same_succ ( void) |
| { |
| same_succ_htab->traverse <FILE *, ssa_same_succ_print_traverse> (stderr); |
| } |
| |
| |
| /* Vector of bbs to process. */ |
| |
| static vec<same_succ *> worklist; |
| |
| /* Prints worklist to FILE. */ |
| |
| static void |
| print_worklist (FILE *file) |
| { |
| unsigned int i; |
| for (i = 0; i < worklist.length (); ++i) |
| same_succ_print (file, worklist[i]); |
| } |
| |
| /* Adds SAME to worklist. */ |
| |
| static void |
| add_to_worklist (same_succ *same) |
| { |
| if (same->in_worklist) |
| return; |
| |
| if (bitmap_count_bits (same->bbs) < 2) |
| return; |
| |
| same->in_worklist = true; |
| worklist.safe_push (same); |
| } |
| |
| /* Add BB to same_succ_htab. */ |
| |
| static void |
| find_same_succ_bb (basic_block bb, same_succ **same_p) |
| { |
| unsigned int j; |
| bitmap_iterator bj; |
| same_succ *same = *same_p; |
| same_succ **slot; |
| edge_iterator ei; |
| edge e; |
| |
| if (bb == NULL) |
| return; |
| bitmap_set_bit (same->bbs, bb->index); |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| int index = e->dest->index; |
| bitmap_set_bit (same->succs, index); |
| same_succ_edge_flags[index] = (e->flags & ~ignore_edge_flags); |
| } |
| EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj) |
| same->succ_flags.safe_push (same_succ_edge_flags[j]); |
| |
| same->hashval = same_succ_hash (same); |
| |
| slot = same_succ_htab->find_slot_with_hash (same, same->hashval, INSERT); |
| if (*slot == NULL) |
| { |
| *slot = same; |
| BB_SAME_SUCC (bb) = same; |
| add_to_worklist (same); |
| *same_p = NULL; |
| } |
| else |
| { |
| bitmap_set_bit ((*slot)->bbs, bb->index); |
| BB_SAME_SUCC (bb) = *slot; |
| add_to_worklist (*slot); |
| if (inverse_flags (same, *slot)) |
| bitmap_set_bit ((*slot)->inverse, bb->index); |
| same_succ_reset (same); |
| } |
| } |
| |
| /* Find bbs with same successors. */ |
| |
| static void |
| find_same_succ (void) |
| { |
| same_succ *same = same_succ_alloc (); |
| basic_block bb; |
| |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| find_same_succ_bb (bb, &same); |
| if (same == NULL) |
| same = same_succ_alloc (); |
| } |
| |
| same_succ::remove (same); |
| } |
| |
| /* Initializes worklist administration. */ |
| |
| static void |
| init_worklist (void) |
| { |
| alloc_aux_for_blocks (sizeof (struct aux_bb_info)); |
| same_succ_htab = new hash_table<same_succ> (n_basic_blocks_for_fn (cfun)); |
| same_succ_edge_flags = XCNEWVEC (int, last_basic_block_for_fn (cfun)); |
| deleted_bbs = BITMAP_ALLOC (NULL); |
| deleted_bb_preds = BITMAP_ALLOC (NULL); |
| worklist.create (n_basic_blocks_for_fn (cfun)); |
| find_same_succ (); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "initial worklist:\n"); |
| print_worklist (dump_file); |
| } |
| } |
| |
| /* Deletes worklist administration. */ |
| |
| static void |
| delete_worklist (void) |
| { |
| free_aux_for_blocks (); |
| delete same_succ_htab; |
| same_succ_htab = NULL; |
| XDELETEVEC (same_succ_edge_flags); |
| same_succ_edge_flags = NULL; |
| BITMAP_FREE (deleted_bbs); |
| BITMAP_FREE (deleted_bb_preds); |
| worklist.release (); |
| } |
| |
| /* Mark BB as deleted, and mark its predecessors. */ |
| |
| static void |
| mark_basic_block_deleted (basic_block bb) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| bitmap_set_bit (deleted_bbs, bb->index); |
| |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| bitmap_set_bit (deleted_bb_preds, e->src->index); |
| } |
| |
| /* Removes BB from its corresponding same_succ. */ |
| |
| static void |
| same_succ_flush_bb (basic_block bb) |
| { |
| same_succ *same = BB_SAME_SUCC (bb); |
| if (! same) |
| return; |
| |
| BB_SAME_SUCC (bb) = NULL; |
| if (bitmap_single_bit_set_p (same->bbs)) |
| same_succ_htab->remove_elt_with_hash (same, same->hashval); |
| else |
| bitmap_clear_bit (same->bbs, bb->index); |
| } |
| |
| /* Removes all bbs in BBS from their corresponding same_succ. */ |
| |
| static void |
| same_succ_flush_bbs (bitmap bbs) |
| { |
| unsigned int i; |
| bitmap_iterator bi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi) |
| same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun, i)); |
| } |
| |
| /* Release the last vdef in BB, either normal or phi result. */ |
| |
| static void |
| release_last_vdef (basic_block bb) |
| { |
| for (gimple_stmt_iterator i = gsi_last_bb (bb); !gsi_end_p (i); |
| gsi_prev_nondebug (&i)) |
| { |
| gimple *stmt = gsi_stmt (i); |
| if (gimple_vdef (stmt) == NULL_TREE) |
| continue; |
| |
| mark_virtual_operand_for_renaming (gimple_vdef (stmt)); |
| return; |
| } |
| |
| for (gphi_iterator i = gsi_start_phis (bb); !gsi_end_p (i); |
| gsi_next (&i)) |
| { |
| gphi *phi = i.phi (); |
| tree res = gimple_phi_result (phi); |
| |
| if (!virtual_operand_p (res)) |
| continue; |
| |
| mark_virtual_phi_result_for_renaming (phi); |
| return; |
| } |
| } |
| |
| /* For deleted_bb_preds, find bbs with same successors. */ |
| |
| static void |
| update_worklist (void) |
| { |
| unsigned int i; |
| bitmap_iterator bi; |
| basic_block bb; |
| same_succ *same; |
| |
| bitmap_and_compl_into (deleted_bb_preds, deleted_bbs); |
| bitmap_clear (deleted_bbs); |
| |
| bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK); |
| same_succ_flush_bbs (deleted_bb_preds); |
| |
| same = same_succ_alloc (); |
| EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi) |
| { |
| bb = BASIC_BLOCK_FOR_FN (cfun, i); |
| gcc_assert (bb != NULL); |
| find_same_succ_bb (bb, &same); |
| if (same == NULL) |
| same = same_succ_alloc (); |
| } |
| same_succ::remove (same); |
| bitmap_clear (deleted_bb_preds); |
| } |
| |
| /* Prints cluster C to FILE. */ |
| |
| static void |
| print_cluster (FILE *file, bb_cluster *c) |
| { |
| if (c == NULL) |
| return; |
| bitmap_print (file, c->bbs, "bbs:", "\n"); |
| bitmap_print (file, c->preds, "preds:", "\n"); |
| } |
| |
| /* Prints cluster C to stderr. */ |
| |
| extern void debug_cluster (bb_cluster *); |
| DEBUG_FUNCTION void |
| debug_cluster (bb_cluster *c) |
| { |
| print_cluster (stderr, c); |
| } |
| |
| /* Update C->rep_bb, given that BB is added to the cluster. */ |
| |
| static void |
| update_rep_bb (bb_cluster *c, basic_block bb) |
| { |
| /* Initial. */ |
| if (c->rep_bb == NULL) |
| { |
| c->rep_bb = bb; |
| return; |
| } |
| |
| /* Current needs no deps, keep it. */ |
| if (BB_DEP_BB (c->rep_bb) == NULL) |
| return; |
| |
| /* Bb needs no deps, change rep_bb. */ |
| if (BB_DEP_BB (bb) == NULL) |
| { |
| c->rep_bb = bb; |
| return; |
| } |
| |
| /* Bb needs last deps earlier than current, change rep_bb. A potential |
| problem with this, is that the first deps might also be earlier, which |
| would mean we prefer longer lifetimes for the deps. To be able to check |
| for this, we would have to trace BB_FIRST_DEP_BB as well, besides |
| BB_DEP_BB, which is really BB_LAST_DEP_BB. |
| The benefit of choosing the bb with last deps earlier, is that it can |
| potentially be used as replacement for more bbs. */ |
| if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb))) |
| c->rep_bb = bb; |
| } |
| |
| /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */ |
| |
| static void |
| add_bb_to_cluster (bb_cluster *c, basic_block bb) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| bitmap_set_bit (c->bbs, bb->index); |
| |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| bitmap_set_bit (c->preds, e->src->index); |
| |
| update_rep_bb (c, bb); |
| } |
| |
| /* Allocate and init new cluster. */ |
| |
| static bb_cluster * |
| new_cluster (void) |
| { |
| bb_cluster *c; |
| c = XCNEW (bb_cluster); |
| c->bbs = BITMAP_ALLOC (NULL); |
| c->preds = BITMAP_ALLOC (NULL); |
| c->rep_bb = NULL; |
| return c; |
| } |
| |
| /* Delete clusters. */ |
| |
| static void |
| delete_cluster (bb_cluster *c) |
| { |
| if (c == NULL) |
| return; |
| BITMAP_FREE (c->bbs); |
| BITMAP_FREE (c->preds); |
| XDELETE (c); |
| } |
| |
| |
| /* Array that contains all clusters. */ |
| |
| static vec<bb_cluster *> all_clusters; |
| |
| /* Allocate all cluster vectors. */ |
| |
| static void |
| alloc_cluster_vectors (void) |
| { |
| all_clusters.create (n_basic_blocks_for_fn (cfun)); |
| } |
| |
| /* Reset all cluster vectors. */ |
| |
| static void |
| reset_cluster_vectors (void) |
| { |
| unsigned int i; |
| basic_block bb; |
| for (i = 0; i < all_clusters.length (); ++i) |
| delete_cluster (all_clusters[i]); |
| all_clusters.truncate (0); |
| FOR_EACH_BB_FN (bb, cfun) |
| BB_CLUSTER (bb) = NULL; |
| } |
| |
| /* Delete all cluster vectors. */ |
| |
| static void |
| delete_cluster_vectors (void) |
| { |
| unsigned int i; |
| for (i = 0; i < all_clusters.length (); ++i) |
| delete_cluster (all_clusters[i]); |
| all_clusters.release (); |
| } |
| |
| /* Merge cluster C2 into C1. */ |
| |
| static void |
| merge_clusters (bb_cluster *c1, bb_cluster *c2) |
| { |
| bitmap_ior_into (c1->bbs, c2->bbs); |
| bitmap_ior_into (c1->preds, c2->preds); |
| } |
| |
| /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in |
| all_clusters, or merge c with existing cluster. */ |
| |
| static void |
| set_cluster (basic_block bb1, basic_block bb2) |
| { |
| basic_block merge_bb, other_bb; |
| bb_cluster *merge, *old, *c; |
| |
| if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL) |
| { |
| c = new_cluster (); |
| add_bb_to_cluster (c, bb1); |
| add_bb_to_cluster (c, bb2); |
| BB_CLUSTER (bb1) = c; |
| BB_CLUSTER (bb2) = c; |
| c->index = all_clusters.length (); |
| all_clusters.safe_push (c); |
| } |
| else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL) |
| { |
| merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1; |
| other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2; |
| merge = BB_CLUSTER (merge_bb); |
| add_bb_to_cluster (merge, other_bb); |
| BB_CLUSTER (other_bb) = merge; |
| } |
| else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2)) |
| { |
| unsigned int i; |
| bitmap_iterator bi; |
| |
| old = BB_CLUSTER (bb2); |
| merge = BB_CLUSTER (bb1); |
| merge_clusters (merge, old); |
| EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi) |
| BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun, i)) = merge; |
| all_clusters[old->index] = NULL; |
| update_rep_bb (merge, old->rep_bb); |
| delete_cluster (old); |
| } |
| else |
| gcc_unreachable (); |
| } |
| |
| /* Return true if gimple operands T1 and T2 have the same value. */ |
| |
| static bool |
| gimple_operand_equal_value_p (tree t1, tree t2) |
| { |
| if (t1 == t2) |
| return true; |
| |
| if (t1 == NULL_TREE |
| || t2 == NULL_TREE) |
| return false; |
| |
| if (operand_equal_p (t1, t2, OEP_MATCH_SIDE_EFFECTS)) |
| return true; |
| |
| return gvn_uses_equal (t1, t2); |
| } |
| |
| /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and |
| gimple_bb (s2) are members of SAME_SUCC. */ |
| |
| static bool |
| gimple_equal_p (same_succ *same_succ, gimple *s1, gimple *s2) |
| { |
| unsigned int i; |
| tree lhs1, lhs2; |
| basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2); |
| tree t1, t2; |
| bool inv_cond; |
| enum tree_code code1, code2; |
| |
| if (gimple_code (s1) != gimple_code (s2)) |
| return false; |
| |
| switch (gimple_code (s1)) |
| { |
| case GIMPLE_CALL: |
| if (!gimple_call_same_target_p (s1, s2)) |
| return false; |
| |
| t1 = gimple_call_chain (s1); |
| t2 = gimple_call_chain (s2); |
| if (!gimple_operand_equal_value_p (t1, t2)) |
| return false; |
| |
| if (gimple_call_num_args (s1) != gimple_call_num_args (s2)) |
| return false; |
| |
| for (i = 0; i < gimple_call_num_args (s1); ++i) |
| { |
| t1 = gimple_call_arg (s1, i); |
| t2 = gimple_call_arg (s2, i); |
| if (!gimple_operand_equal_value_p (t1, t2)) |
| return false; |
| } |
| |
| lhs1 = gimple_get_lhs (s1); |
| lhs2 = gimple_get_lhs (s2); |
| if (lhs1 == NULL_TREE && lhs2 == NULL_TREE) |
| return true; |
| if (lhs1 == NULL_TREE || lhs2 == NULL_TREE) |
| return false; |
| if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME) |
| return tail_merge_valueize (lhs1) == tail_merge_valueize (lhs2); |
| return operand_equal_p (lhs1, lhs2, 0); |
| |
| case GIMPLE_ASSIGN: |
| lhs1 = gimple_get_lhs (s1); |
| lhs2 = gimple_get_lhs (s2); |
| if (TREE_CODE (lhs1) != SSA_NAME |
| && TREE_CODE (lhs2) != SSA_NAME) |
| return (operand_equal_p (lhs1, lhs2, 0) |
| && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1), |
| gimple_assign_rhs1 (s2))); |
| else if (TREE_CODE (lhs1) == SSA_NAME |
| && TREE_CODE (lhs2) == SSA_NAME) |
| return operand_equal_p (gimple_assign_rhs1 (s1), |
| gimple_assign_rhs1 (s2), 0); |
| return false; |
| |
| case GIMPLE_COND: |
| t1 = gimple_cond_lhs (s1); |
| t2 = gimple_cond_lhs (s2); |
| if (!gimple_operand_equal_value_p (t1, t2)) |
| return false; |
| |
| t1 = gimple_cond_rhs (s1); |
| t2 = gimple_cond_rhs (s2); |
| if (!gimple_operand_equal_value_p (t1, t2)) |
| return false; |
| |
| code1 = gimple_cond_code (s1); |
| code2 = gimple_cond_code (s2); |
| inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index) |
| != bitmap_bit_p (same_succ->inverse, bb2->index)); |
| if (inv_cond) |
| { |
| bool honor_nans = HONOR_NANS (t1); |
| code2 = invert_tree_comparison (code2, honor_nans); |
| } |
| return code1 == code2; |
| |
| default: |
| return false; |
| } |
| } |
| |
| /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE. |
| Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the |
| processed statements. */ |
| |
| static void |
| gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse, |
| bool *vuse_escaped) |
| { |
| gimple *stmt; |
| tree lvuse; |
| |
| while (true) |
| { |
| if (gsi_end_p (*gsi)) |
| return; |
| stmt = gsi_stmt (*gsi); |
| |
| lvuse = gimple_vuse (stmt); |
| if (lvuse != NULL_TREE) |
| { |
| *vuse = lvuse; |
| if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF)) |
| *vuse_escaped = true; |
| } |
| |
| if (!stmt_local_def (stmt)) |
| return; |
| gsi_prev_nondebug (gsi); |
| } |
| } |
| |
| /* Return true if equal (in the sense of gimple_equal_p) statements STMT1 and |
| STMT2 are allowed to be merged. */ |
| |
| static bool |
| merge_stmts_p (gimple *stmt1, gimple *stmt2) |
| { |
| /* What could be better than this here is to blacklist the bb |
| containing the stmt, when encountering the stmt f.i. in |
| same_succ_hash. */ |
| if (is_tm_ending (stmt1)) |
| return false; |
| |
| /* Verify EH landing pads. */ |
| if (lookup_stmt_eh_lp_fn (cfun, stmt1) != lookup_stmt_eh_lp_fn (cfun, stmt2)) |
| return false; |
| |
| if (is_gimple_call (stmt1) |
| && gimple_call_internal_p (stmt1)) |
| switch (gimple_call_internal_fn (stmt1)) |
| { |
| case IFN_UBSAN_NULL: |
| case IFN_UBSAN_BOUNDS: |
| case IFN_UBSAN_VPTR: |
| case IFN_UBSAN_CHECK_ADD: |
| case IFN_UBSAN_CHECK_SUB: |
| case IFN_UBSAN_CHECK_MUL: |
| case IFN_UBSAN_OBJECT_SIZE: |
| case IFN_UBSAN_PTR: |
| case IFN_ASAN_CHECK: |
| /* For these internal functions, gimple_location is an implicit |
| parameter, which will be used explicitly after expansion. |
| Merging these statements may cause confusing line numbers in |
| sanitizer messages. */ |
| return gimple_location (stmt1) == gimple_location (stmt2); |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so, |
| clusters them. */ |
| |
| static void |
| find_duplicate (same_succ *same_succ, basic_block bb1, basic_block bb2) |
| { |
| gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1); |
| gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2); |
| tree vuse1 = NULL_TREE, vuse2 = NULL_TREE; |
| bool vuse_escaped = false; |
| |
| gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped); |
| gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped); |
| |
| while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2)) |
| { |
| gimple *stmt1 = gsi_stmt (gsi1); |
| gimple *stmt2 = gsi_stmt (gsi2); |
| |
| if (gimple_code (stmt1) == GIMPLE_LABEL |
| && gimple_code (stmt2) == GIMPLE_LABEL) |
| break; |
| |
| if (!gimple_equal_p (same_succ, stmt1, stmt2)) |
| return; |
| |
| if (!merge_stmts_p (stmt1, stmt2)) |
| return; |
| |
| gsi_prev_nondebug (&gsi1); |
| gsi_prev_nondebug (&gsi2); |
| gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped); |
| gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped); |
| } |
| |
| while (!gsi_end_p (gsi1) && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL) |
| { |
| tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi1))); |
| if (DECL_NONLOCAL (label) || FORCED_LABEL (label)) |
| return; |
| gsi_prev (&gsi1); |
| } |
| while (!gsi_end_p (gsi2) && gimple_code (gsi_stmt (gsi2)) == GIMPLE_LABEL) |
| { |
| tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi2))); |
| if (DECL_NONLOCAL (label) || FORCED_LABEL (label)) |
| return; |
| gsi_prev (&gsi2); |
| } |
| if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2))) |
| return; |
| |
| /* If the incoming vuses are not the same, and the vuse escaped into an |
| SSA_OP_DEF, then merging the 2 blocks will change the value of the def, |
| which potentially means the semantics of one of the blocks will be changed. |
| TODO: make this check more precise. */ |
| if (vuse_escaped && vuse1 != vuse2) |
| return; |
| |
| if (dump_file) |
| fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n", |
| bb1->index, bb2->index); |
| |
| set_cluster (bb1, bb2); |
| } |
| |
| /* Returns whether for all phis in DEST the phi alternatives for E1 and |
| E2 are equal. */ |
| |
| static bool |
| same_phi_alternatives_1 (basic_block dest, edge e1, edge e2) |
| { |
| int n1 = e1->dest_idx, n2 = e2->dest_idx; |
| gphi_iterator gsi; |
| |
| for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gphi *phi = gsi.phi (); |
| tree lhs = gimple_phi_result (phi); |
| tree val1 = gimple_phi_arg_def (phi, n1); |
| tree val2 = gimple_phi_arg_def (phi, n2); |
| |
| if (virtual_operand_p (lhs)) |
| continue; |
| |
| if (operand_equal_for_phi_arg_p (val1, val2)) |
| continue; |
| if (gvn_uses_equal (val1, val2)) |
| continue; |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the |
| phi alternatives for BB1 and BB2 are equal. */ |
| |
| static bool |
| same_phi_alternatives (same_succ *same_succ, basic_block bb1, basic_block bb2) |
| { |
| unsigned int s; |
| bitmap_iterator bs; |
| edge e1, e2; |
| basic_block succ; |
| |
| EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs) |
| { |
| succ = BASIC_BLOCK_FOR_FN (cfun, s); |
| e1 = find_edge (bb1, succ); |
| e2 = find_edge (bb2, succ); |
| if (e1->flags & EDGE_COMPLEX |
| || e2->flags & EDGE_COMPLEX) |
| return false; |
| |
| /* For all phis in bb, the phi alternatives for e1 and e2 need to have |
| the same value. */ |
| if (!same_phi_alternatives_1 (succ, e1, e2)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Return true if BB has non-vop phis. */ |
| |
| static bool |
| bb_has_non_vop_phi (basic_block bb) |
| { |
| gimple_seq phis = phi_nodes (bb); |
| gimple *phi; |
| |
| if (phis == NULL) |
| return false; |
| |
| if (!gimple_seq_singleton_p (phis)) |
| return true; |
| |
| phi = gimple_seq_first_stmt (phis); |
| return !virtual_operand_p (gimple_phi_result (phi)); |
| } |
| |
| /* Returns true if redirecting the incoming edges of FROM to TO maintains the |
| invariant that uses in FROM are dominates by their defs. */ |
| |
| static bool |
| deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to) |
| { |
| basic_block cd, dep_bb = BB_DEP_BB (to); |
| edge_iterator ei; |
| edge e; |
| |
| if (dep_bb == NULL) |
| return true; |
| |
| bitmap from_preds = BITMAP_ALLOC (NULL); |
| FOR_EACH_EDGE (e, ei, from->preds) |
| bitmap_set_bit (from_preds, e->src->index); |
| cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds); |
| BITMAP_FREE (from_preds); |
| |
| return dominated_by_p (CDI_DOMINATORS, dep_bb, cd); |
| } |
| |
| /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its |
| replacement bb) and vice versa maintains the invariant that uses in the |
| replacement are dominates by their defs. */ |
| |
| static bool |
| deps_ok_for_redirect (basic_block bb1, basic_block bb2) |
| { |
| if (BB_CLUSTER (bb1) != NULL) |
| bb1 = BB_CLUSTER (bb1)->rep_bb; |
| |
| if (BB_CLUSTER (bb2) != NULL) |
| bb2 = BB_CLUSTER (bb2)->rep_bb; |
| |
| return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2) |
| && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1)); |
| } |
| |
| /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */ |
| |
| static void |
| find_clusters_1 (same_succ *same_succ) |
| { |
| basic_block bb1, bb2; |
| unsigned int i, j; |
| bitmap_iterator bi, bj; |
| int nr_comparisons; |
| int max_comparisons = param_max_tail_merge_comparisons; |
| |
| EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi) |
| { |
| bb1 = BASIC_BLOCK_FOR_FN (cfun, i); |
| |
| /* TODO: handle blocks with phi-nodes. We'll have to find corresponding |
| phi-nodes in bb1 and bb2, with the same alternatives for the same |
| preds. */ |
| if (bb_has_non_vop_phi (bb1) || bb_has_eh_pred (bb1) |
| || bb_has_abnormal_pred (bb1)) |
| continue; |
| |
| nr_comparisons = 0; |
| EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj) |
| { |
| bb2 = BASIC_BLOCK_FOR_FN (cfun, j); |
| |
| if (bb_has_non_vop_phi (bb2) || bb_has_eh_pred (bb2) |
| || bb_has_abnormal_pred (bb2)) |
| continue; |
| |
| if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2)) |
| continue; |
| |
| /* Limit quadratic behavior. */ |
| nr_comparisons++; |
| if (nr_comparisons > max_comparisons) |
| break; |
| |
| /* This is a conservative dependency check. We could test more |
| precise for allowed replacement direction. */ |
| if (!deps_ok_for_redirect (bb1, bb2)) |
| continue; |
| |
| if (!(same_phi_alternatives (same_succ, bb1, bb2))) |
| continue; |
| |
| find_duplicate (same_succ, bb1, bb2); |
| } |
| } |
| } |
| |
| /* Find clusters of bbs which can be merged. */ |
| |
| static void |
| find_clusters (void) |
| { |
| same_succ *same; |
| |
| while (!worklist.is_empty ()) |
| { |
| same = worklist.pop (); |
| same->in_worklist = false; |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "processing worklist entry\n"); |
| same_succ_print (dump_file, same); |
| } |
| find_clusters_1 (same); |
| } |
| } |
| |
| /* Returns the vop phi of BB, if any. */ |
| |
| static gphi * |
| vop_phi (basic_block bb) |
| { |
| gphi *stmt; |
| gphi_iterator gsi; |
| for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| stmt = gsi.phi (); |
| if (! virtual_operand_p (gimple_phi_result (stmt))) |
| continue; |
| return stmt; |
| } |
| return NULL; |
| } |
| |
| /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */ |
| |
| static void |
| replace_block_by (basic_block bb1, basic_block bb2) |
| { |
| edge pred_edge; |
| unsigned int i; |
| gphi *bb2_phi; |
| |
| bb2_phi = vop_phi (bb2); |
| |
| /* Mark the basic block as deleted. */ |
| mark_basic_block_deleted (bb1); |
| |
| /* Redirect the incoming edges of bb1 to bb2. */ |
| for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i) |
| { |
| pred_edge = EDGE_PRED (bb1, i - 1); |
| pred_edge = redirect_edge_and_branch (pred_edge, bb2); |
| gcc_assert (pred_edge != NULL); |
| |
| if (bb2_phi == NULL) |
| continue; |
| |
| /* The phi might have run out of capacity when the redirect added an |
| argument, which means it could have been replaced. Refresh it. */ |
| bb2_phi = vop_phi (bb2); |
| |
| add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)), |
| pred_edge, UNKNOWN_LOCATION); |
| } |
| |
| |
| /* Merge the outgoing edge counts from bb1 onto bb2. */ |
| edge e1, e2; |
| edge_iterator ei; |
| |
| if (bb2->count.initialized_p ()) |
| FOR_EACH_EDGE (e1, ei, bb1->succs) |
| { |
| e2 = find_edge (bb2, e1->dest); |
| gcc_assert (e2); |
| |
| /* If probabilities are same, we are done. |
| If counts are nonzero we can distribute accordingly. In remaining |
| cases just avreage the values and hope for the best. */ |
| e2->probability = e1->probability.combine_with_count |
| (bb1->count, e2->probability, bb2->count); |
| } |
| bb2->count += bb1->count; |
| |
| /* Move over any user labels from bb1 after the bb2 labels. */ |
| gimple_stmt_iterator gsi1 = gsi_start_bb (bb1); |
| if (!gsi_end_p (gsi1) && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL) |
| { |
| gimple_stmt_iterator gsi2 = gsi_after_labels (bb2); |
| while (!gsi_end_p (gsi1) |
| && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL) |
| { |
| tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi1))); |
| gcc_assert (!DECL_NONLOCAL (label) && !FORCED_LABEL (label)); |
| if (DECL_ARTIFICIAL (label)) |
| gsi_next (&gsi1); |
| else |
| gsi_move_before (&gsi1, &gsi2); |
| } |
| } |
| |
| /* Clear range info from all stmts in BB2 -- this transformation |
| could make them out of date. */ |
| reset_flow_sensitive_info_in_bb (bb2); |
| |
| /* Do updates that use bb1, before deleting bb1. */ |
| release_last_vdef (bb1); |
| same_succ_flush_bb (bb1); |
| |
| delete_basic_block (bb1); |
| } |
| |
| /* Bbs for which update_debug_stmt need to be called. */ |
| |
| static bitmap update_bbs; |
| |
| /* For each cluster in all_clusters, merge all cluster->bbs. Returns |
| number of bbs removed. */ |
| |
| static int |
| apply_clusters (void) |
| { |
| basic_block bb1, bb2; |
| bb_cluster *c; |
| unsigned int i, j; |
| bitmap_iterator bj; |
| int nr_bbs_removed = 0; |
| |
| for (i = 0; i < all_clusters.length (); ++i) |
| { |
| c = all_clusters[i]; |
| if (c == NULL) |
| continue; |
| |
| bb2 = c->rep_bb; |
| bitmap_set_bit (update_bbs, bb2->index); |
| |
| bitmap_clear_bit (c->bbs, bb2->index); |
| EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj) |
| { |
| bb1 = BASIC_BLOCK_FOR_FN (cfun, j); |
| bitmap_clear_bit (update_bbs, bb1->index); |
| |
| replace_block_by (bb1, bb2); |
| nr_bbs_removed++; |
| } |
| } |
| |
| return nr_bbs_removed; |
| } |
| |
| /* Resets debug statement STMT if it has uses that are not dominated by their |
| defs. */ |
| |
| static void |
| update_debug_stmt (gimple *stmt) |
| { |
| use_operand_p use_p; |
| ssa_op_iter oi; |
| basic_block bbuse; |
| |
| if (!gimple_debug_bind_p (stmt)) |
| return; |
| |
| bbuse = gimple_bb (stmt); |
| FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE) |
| { |
| tree name = USE_FROM_PTR (use_p); |
| gimple *def_stmt = SSA_NAME_DEF_STMT (name); |
| basic_block bbdef = gimple_bb (def_stmt); |
| if (bbdef == NULL || bbuse == bbdef |
| || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)) |
| continue; |
| |
| gimple_debug_bind_reset_value (stmt); |
| update_stmt (stmt); |
| break; |
| } |
| } |
| |
| /* Resets all debug statements that have uses that are not |
| dominated by their defs. */ |
| |
| static void |
| update_debug_stmts (void) |
| { |
| basic_block bb; |
| bitmap_iterator bi; |
| unsigned int i; |
| |
| EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi) |
| { |
| gimple *stmt; |
| gimple_stmt_iterator gsi; |
| |
| bb = BASIC_BLOCK_FOR_FN (cfun, i); |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| stmt = gsi_stmt (gsi); |
| if (!is_gimple_debug (stmt)) |
| continue; |
| update_debug_stmt (stmt); |
| } |
| } |
| } |
| |
| /* Runs tail merge optimization. */ |
| |
| unsigned int |
| tail_merge_optimize (unsigned int todo) |
| { |
| int nr_bbs_removed_total = 0; |
| int nr_bbs_removed; |
| bool loop_entered = false; |
| int iteration_nr = 0; |
| int max_iterations = param_max_tail_merge_iterations; |
| |
| if (!flag_tree_tail_merge |
| || max_iterations == 0) |
| return 0; |
| |
| timevar_push (TV_TREE_TAIL_MERGE); |
| |
| /* We enter from PRE which has critical edges split. Elimination |
| does not process trivially dead code so cleanup the CFG if we |
| are told so. And re-split critical edges then. */ |
| if (todo & TODO_cleanup_cfg) |
| { |
| cleanup_tree_cfg (); |
| todo &= ~TODO_cleanup_cfg; |
| split_edges_for_insertion (); |
| } |
| |
| if (!dom_info_available_p (CDI_DOMINATORS)) |
| { |
| /* PRE can leave us with unreachable blocks, remove them now. */ |
| delete_unreachable_blocks (); |
| calculate_dominance_info (CDI_DOMINATORS); |
| } |
| init_worklist (); |
| |
| while (!worklist.is_empty ()) |
| { |
| if (!loop_entered) |
| { |
| loop_entered = true; |
| alloc_cluster_vectors (); |
| update_bbs = BITMAP_ALLOC (NULL); |
| } |
| else |
| reset_cluster_vectors (); |
| |
| iteration_nr++; |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "worklist iteration #%d\n", iteration_nr); |
| |
| find_clusters (); |
| gcc_assert (worklist.is_empty ()); |
| if (all_clusters.is_empty ()) |
| break; |
| |
| nr_bbs_removed = apply_clusters (); |
| nr_bbs_removed_total += nr_bbs_removed; |
| if (nr_bbs_removed == 0) |
| break; |
| |
| free_dominance_info (CDI_DOMINATORS); |
| |
| if (iteration_nr == max_iterations) |
| break; |
| |
| calculate_dominance_info (CDI_DOMINATORS); |
| update_worklist (); |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "htab collision / search: %f\n", |
| same_succ_htab->collisions ()); |
| |
| if (nr_bbs_removed_total > 0) |
| { |
| if (MAY_HAVE_DEBUG_BIND_STMTS) |
| { |
| calculate_dominance_info (CDI_DOMINATORS); |
| update_debug_stmts (); |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Before TODOs.\n"); |
| dump_function_to_file (current_function_decl, dump_file, dump_flags); |
| } |
| |
| mark_virtual_operands_for_renaming (cfun); |
| } |
| |
| delete_worklist (); |
| if (loop_entered) |
| { |
| delete_cluster_vectors (); |
| BITMAP_FREE (update_bbs); |
| } |
| |
| timevar_pop (TV_TREE_TAIL_MERGE); |
| |
| return todo; |
| } |