blob: 07d885b0beef5bae9fa4f60f234a7471511dc830 [file] [log] [blame]
/**
* Defines the bulk of the classes which represent the AST at the expression level.
*
* Specification: ($LINK2 https://dlang.org/spec/expression.html, Expressions)
*
* Copyright: Copyright (C) 1999-2022 by The D Language Foundation, All Rights Reserved
* Authors: $(LINK2 https://www.digitalmars.com, Walter Bright)
* License: $(LINK2 https://www.boost.org/LICENSE_1_0.txt, Boost License 1.0)
* Source: $(LINK2 https://github.com/dlang/dmd/blob/master/src/dmd/expression.d, _expression.d)
* Documentation: https://dlang.org/phobos/dmd_expression.html
* Coverage: https://codecov.io/gh/dlang/dmd/src/master/src/dmd/expression.d
*/
module dmd.expression;
import core.stdc.stdarg;
import core.stdc.stdio;
import core.stdc.string;
import dmd.aggregate;
import dmd.aliasthis;
import dmd.apply;
import dmd.arrayop;
import dmd.arraytypes;
import dmd.astenums;
import dmd.ast_node;
import dmd.gluelayer;
import dmd.constfold;
import dmd.ctfeexpr;
import dmd.ctorflow;
import dmd.dcast;
import dmd.dclass;
import dmd.declaration;
import dmd.delegatize;
import dmd.dimport;
import dmd.dinterpret;
import dmd.dmodule;
import dmd.dscope;
import dmd.dstruct;
import dmd.dsymbol;
import dmd.dsymbolsem;
import dmd.dtemplate;
import dmd.errors;
import dmd.escape;
import dmd.expressionsem;
import dmd.func;
import dmd.globals;
import dmd.hdrgen;
import dmd.id;
import dmd.identifier;
import dmd.init;
import dmd.inline;
import dmd.mtype;
import dmd.nspace;
import dmd.objc;
import dmd.opover;
import dmd.optimize;
import dmd.root.complex;
import dmd.root.ctfloat;
import dmd.root.filename;
import dmd.common.outbuffer;
import dmd.root.optional;
import dmd.root.rmem;
import dmd.root.rootobject;
import dmd.root.string;
import dmd.root.utf;
import dmd.safe;
import dmd.sideeffect;
import dmd.target;
import dmd.tokens;
import dmd.typesem;
import dmd.visitor;
enum LOGSEMANTIC = false;
void emplaceExp(T : Expression, Args...)(void* p, Args args)
{
static if (__VERSION__ < 2099)
const init = typeid(T).initializer;
else
const init = __traits(initSymbol, T);
p[0 .. __traits(classInstanceSize, T)] = init[];
(cast(T)p).__ctor(args);
}
void emplaceExp(T : UnionExp)(T* p, Expression e)
{
memcpy(p, cast(void*)e, e.size);
}
/// Return value for `checkModifiable`
enum Modifiable
{
/// Not modifiable
no,
/// Modifiable (the type is mutable)
yes,
/// Modifiable because it is initialization
initialization,
}
/**
* Specifies how the checkModify deals with certain situations
*/
enum ModifyFlags
{
/// Issue error messages on invalid modifications of the variable
none,
/// No errors are emitted for invalid modifications
noError = 0x1,
/// The modification occurs for a subfield of the current variable
fieldAssign = 0x2,
}
/****************************************
* Find the first non-comma expression.
* Params:
* e = Expressions connected by commas
* Returns:
* left-most non-comma expression
*/
inout(Expression) firstComma(inout Expression e)
{
Expression ex = cast()e;
while (ex.op == EXP.comma)
ex = (cast(CommaExp)ex).e1;
return cast(inout)ex;
}
/****************************************
* Find the last non-comma expression.
* Params:
* e = Expressions connected by commas
* Returns:
* right-most non-comma expression
*/
inout(Expression) lastComma(inout Expression e)
{
Expression ex = cast()e;
while (ex.op == EXP.comma)
ex = (cast(CommaExp)ex).e2;
return cast(inout)ex;
}
/*****************************************
* Determine if `this` is available by walking up the enclosing
* scopes until a function is found.
*
* Params:
* sc = where to start looking for the enclosing function
* Returns:
* Found function if it satisfies `isThis()`, otherwise `null`
*/
FuncDeclaration hasThis(Scope* sc)
{
//printf("hasThis()\n");
Dsymbol p = sc.parent;
while (p && p.isTemplateMixin())
p = p.parent;
FuncDeclaration fdthis = p ? p.isFuncDeclaration() : null;
//printf("fdthis = %p, '%s'\n", fdthis, fdthis ? fdthis.toChars() : "");
// Go upwards until we find the enclosing member function
FuncDeclaration fd = fdthis;
while (1)
{
if (!fd)
{
return null;
}
if (!fd.isNested() || fd.isThis() || (fd.hasDualContext() && fd.isMember2()))
break;
Dsymbol parent = fd.parent;
while (1)
{
if (!parent)
return null;
TemplateInstance ti = parent.isTemplateInstance();
if (ti)
parent = ti.parent;
else
break;
}
fd = parent.isFuncDeclaration();
}
if (!fd.isThis() && !(fd.hasDualContext() && fd.isMember2()))
{
return null;
}
assert(fd.vthis);
return fd;
}
/***********************************
* Determine if a `this` is needed to access `d`.
* Params:
* sc = context
* d = declaration to check
* Returns:
* true means a `this` is needed
*/
bool isNeedThisScope(Scope* sc, Declaration d)
{
if (sc.intypeof == 1)
return false;
AggregateDeclaration ad = d.isThis();
if (!ad)
return false;
//printf("d = %s, ad = %s\n", d.toChars(), ad.toChars());
for (Dsymbol s = sc.parent; s; s = s.toParentLocal())
{
//printf("\ts = %s %s, toParent2() = %p\n", s.kind(), s.toChars(), s.toParent2());
if (AggregateDeclaration ad2 = s.isAggregateDeclaration())
{
if (ad2 == ad)
return false;
else if (ad2.isNested())
continue;
else
return true;
}
if (FuncDeclaration f = s.isFuncDeclaration())
{
if (f.isMemberLocal())
break;
}
}
return true;
}
/******************************
* check e is exp.opDispatch!(tiargs) or not
* It's used to switch to UFCS the semantic analysis path
*/
bool isDotOpDispatch(Expression e)
{
if (auto dtie = e.isDotTemplateInstanceExp())
return dtie.ti.name == Id.opDispatch;
return false;
}
/****************************************
* Expand tuples.
* Input:
* exps aray of Expressions
* Output:
* exps rewritten in place
*/
extern (C++) void expandTuples(Expressions* exps)
{
//printf("expandTuples()\n");
if (exps is null)
return;
for (size_t i = 0; i < exps.dim; i++)
{
Expression arg = (*exps)[i];
if (!arg)
continue;
// Look for tuple with 0 members
if (auto e = arg.isTypeExp())
{
if (auto tt = e.type.toBasetype().isTypeTuple())
{
if (!tt.arguments || tt.arguments.dim == 0)
{
exps.remove(i);
if (i == exps.dim)
return;
}
else // Expand a TypeTuple
{
exps.remove(i);
auto texps = new Expressions(tt.arguments.length);
foreach (j, a; *tt.arguments)
(*texps)[j] = new TypeExp(e.loc, a.type);
exps.insert(i, texps);
}
i--;
continue;
}
}
// Inline expand all the tuples
while (arg.op == EXP.tuple)
{
TupleExp te = cast(TupleExp)arg;
exps.remove(i); // remove arg
exps.insert(i, te.exps); // replace with tuple contents
if (i == exps.dim)
return; // empty tuple, no more arguments
(*exps)[i] = Expression.combine(te.e0, (*exps)[i]);
arg = (*exps)[i];
}
}
}
/****************************************
* Expand alias this tuples.
*/
TupleDeclaration isAliasThisTuple(Expression e)
{
if (!e.type)
return null;
Type t = e.type.toBasetype();
while (true)
{
if (Dsymbol s = t.toDsymbol(null))
{
if (auto ad = s.isAggregateDeclaration())
{
s = ad.aliasthis ? ad.aliasthis.sym : null;
if (s && s.isVarDeclaration())
{
TupleDeclaration td = s.isVarDeclaration().toAlias().isTupleDeclaration();
if (td && td.isexp)
return td;
}
if (Type att = t.aliasthisOf())
{
t = att;
continue;
}
}
}
return null;
}
}
int expandAliasThisTuples(Expressions* exps, size_t starti = 0)
{
if (!exps || exps.dim == 0)
return -1;
for (size_t u = starti; u < exps.dim; u++)
{
Expression exp = (*exps)[u];
if (TupleDeclaration td = exp.isAliasThisTuple)
{
exps.remove(u);
foreach (i, o; *td.objects)
{
auto d = o.isExpression().isDsymbolExp().s.isDeclaration();
auto e = new DotVarExp(exp.loc, exp, d);
assert(d.type);
e.type = d.type;
exps.insert(u + i, e);
}
version (none)
{
printf("expansion ->\n");
foreach (e; exps)
{
printf("\texps[%d] e = %s %s\n", i, EXPtoString(e.op), e.toChars());
}
}
return cast(int)u;
}
}
return -1;
}
/****************************************
* If `s` is a function template, i.e. the only member of a template
* and that member is a function, return that template.
* Params:
* s = symbol that might be a function template
* Returns:
* template for that function, otherwise null
*/
TemplateDeclaration getFuncTemplateDecl(Dsymbol s)
{
FuncDeclaration f = s.isFuncDeclaration();
if (f && f.parent)
{
if (auto ti = f.parent.isTemplateInstance())
{
if (!ti.isTemplateMixin() && ti.tempdecl)
{
auto td = ti.tempdecl.isTemplateDeclaration();
if (td.onemember && td.ident == f.ident)
{
return td;
}
}
}
}
return null;
}
/************************************************
* If we want the value of this expression, but do not want to call
* the destructor on it.
*/
Expression valueNoDtor(Expression e)
{
auto ex = lastComma(e);
if (auto ce = ex.isCallExp())
{
/* The struct value returned from the function is transferred
* so do not call the destructor on it.
* Recognize:
* ((S _ctmp = S.init), _ctmp).this(...)
* and make sure the destructor is not called on _ctmp
* BUG: if ex is a CommaExp, we should go down the right side.
*/
if (auto dve = ce.e1.isDotVarExp())
{
if (dve.var.isCtorDeclaration())
{
// It's a constructor call
if (auto comma = dve.e1.isCommaExp())
{
if (auto ve = comma.e2.isVarExp())
{
VarDeclaration ctmp = ve.var.isVarDeclaration();
if (ctmp)
{
ctmp.storage_class |= STC.nodtor;
assert(!ce.isLvalue());
}
}
}
}
}
}
else if (auto ve = ex.isVarExp())
{
auto vtmp = ve.var.isVarDeclaration();
if (vtmp && (vtmp.storage_class & STC.rvalue))
{
vtmp.storage_class |= STC.nodtor;
}
}
return e;
}
/*********************************************
* If e is an instance of a struct, and that struct has a copy constructor,
* rewrite e as:
* (tmp = e),tmp
* Input:
* sc = just used to specify the scope of created temporary variable
* destinationType = the type of the object on which the copy constructor is called;
* may be null if the struct defines a postblit
*/
private Expression callCpCtor(Scope* sc, Expression e, Type destinationType)
{
if (auto ts = e.type.baseElemOf().isTypeStruct())
{
StructDeclaration sd = ts.sym;
if (sd.postblit || sd.hasCopyCtor)
{
/* Create a variable tmp, and replace the argument e with:
* (tmp = e),tmp
* and let AssignExp() handle the construction.
* This is not the most efficient, ideally tmp would be constructed
* directly onto the stack.
*/
auto tmp = copyToTemp(STC.rvalue, "__copytmp", e);
if (sd.hasCopyCtor && destinationType)
{
// https://issues.dlang.org/show_bug.cgi?id=22619
// If the destination type is inout we can preserve it
// only if inside an inout function; if we are not inside
// an inout function, then we will preserve the type of
// the source
if (destinationType.hasWild && !(sc.func.storage_class & STC.wild))
tmp.type = e.type;
else
tmp.type = destinationType;
}
tmp.storage_class |= STC.nodtor;
tmp.dsymbolSemantic(sc);
Expression de = new DeclarationExp(e.loc, tmp);
Expression ve = new VarExp(e.loc, tmp);
de.type = Type.tvoid;
ve.type = e.type;
return Expression.combine(de, ve);
}
}
return e;
}
/************************************************
* Handle the postblit call on lvalue, or the move of rvalue.
*
* Params:
* sc = the scope where the expression is encountered
* e = the expression the needs to be moved or copied (source)
* t = if the struct defines a copy constructor, the type of the destination
*
* Returns:
* The expression that copy constructs or moves the value.
*/
extern (D) Expression doCopyOrMove(Scope *sc, Expression e, Type t = null)
{
if (auto ce = e.isCondExp())
{
ce.e1 = doCopyOrMove(sc, ce.e1);
ce.e2 = doCopyOrMove(sc, ce.e2);
}
else
{
e = e.isLvalue() ? callCpCtor(sc, e, t) : valueNoDtor(e);
}
return e;
}
/****************************************************************/
/* A type meant as a union of all the Expression types,
* to serve essentially as a Variant that will sit on the stack
* during CTFE to reduce memory consumption.
*/
extern (C++) struct UnionExp
{
// yes, default constructor does nothing
extern (D) this(Expression e)
{
memcpy(&this, cast(void*)e, e.size);
}
/* Extract pointer to Expression
*/
extern (C++) Expression exp() return
{
return cast(Expression)&u;
}
/* Convert to an allocated Expression
*/
extern (C++) Expression copy()
{
Expression e = exp();
//if (e.size > sizeof(u)) printf("%s\n", EXPtoString(e.op).ptr);
assert(e.size <= u.sizeof);
switch (e.op)
{
case EXP.cantExpression: return CTFEExp.cantexp;
case EXP.voidExpression: return CTFEExp.voidexp;
case EXP.break_: return CTFEExp.breakexp;
case EXP.continue_: return CTFEExp.continueexp;
case EXP.goto_: return CTFEExp.gotoexp;
default: return e.copy();
}
}
private:
// Ensure that the union is suitably aligned.
align(8) union __AnonStruct__u
{
char[__traits(classInstanceSize, Expression)] exp;
char[__traits(classInstanceSize, IntegerExp)] integerexp;
char[__traits(classInstanceSize, ErrorExp)] errorexp;
char[__traits(classInstanceSize, RealExp)] realexp;
char[__traits(classInstanceSize, ComplexExp)] complexexp;
char[__traits(classInstanceSize, SymOffExp)] symoffexp;
char[__traits(classInstanceSize, StringExp)] stringexp;
char[__traits(classInstanceSize, ArrayLiteralExp)] arrayliteralexp;
char[__traits(classInstanceSize, AssocArrayLiteralExp)] assocarrayliteralexp;
char[__traits(classInstanceSize, StructLiteralExp)] structliteralexp;
char[__traits(classInstanceSize, CompoundLiteralExp)] compoundliteralexp;
char[__traits(classInstanceSize, NullExp)] nullexp;
char[__traits(classInstanceSize, DotVarExp)] dotvarexp;
char[__traits(classInstanceSize, AddrExp)] addrexp;
char[__traits(classInstanceSize, IndexExp)] indexexp;
char[__traits(classInstanceSize, SliceExp)] sliceexp;
char[__traits(classInstanceSize, VectorExp)] vectorexp;
}
__AnonStruct__u u;
}
/********************************
* Test to see if two reals are the same.
* Regard NaN's as equivalent.
* Regard +0 and -0 as different.
* Params:
* x1 = first operand
* x2 = second operand
* Returns:
* true if x1 is x2
* else false
*/
bool RealIdentical(real_t x1, real_t x2)
{
return (CTFloat.isNaN(x1) && CTFloat.isNaN(x2)) || CTFloat.isIdentical(x1, x2);
}
/************************ TypeDotIdExp ************************************/
/* Things like:
* int.size
* foo.size
* (foo).size
* cast(foo).size
*/
DotIdExp typeDotIdExp(const ref Loc loc, Type type, Identifier ident)
{
return new DotIdExp(loc, new TypeExp(loc, type), ident);
}
/***************************************************
* Given an Expression, find the variable it really is.
*
* For example, `a[index]` is really `a`, and `s.f` is really `s`.
* Params:
* e = Expression to look at
* Returns:
* variable if there is one, null if not
*/
VarDeclaration expToVariable(Expression e)
{
while (1)
{
switch (e.op)
{
case EXP.variable:
return (cast(VarExp)e).var.isVarDeclaration();
case EXP.dotVariable:
e = (cast(DotVarExp)e).e1;
continue;
case EXP.index:
{
IndexExp ei = cast(IndexExp)e;
e = ei.e1;
Type ti = e.type.toBasetype();
if (ti.ty == Tsarray)
continue;
return null;
}
case EXP.slice:
{
SliceExp ei = cast(SliceExp)e;
e = ei.e1;
Type ti = e.type.toBasetype();
if (ti.ty == Tsarray)
continue;
return null;
}
case EXP.this_:
case EXP.super_:
return (cast(ThisExp)e).var.isVarDeclaration();
default:
return null;
}
}
}
enum OwnedBy : ubyte
{
code, // normal code expression in AST
ctfe, // value expression for CTFE
cache, // constant value cached for CTFE
}
enum WANTvalue = 0; // default
enum WANTexpand = 1; // expand const/immutable variables if possible
/***********************************************************
* https://dlang.org/spec/expression.html#expression
*/
extern (C++) abstract class Expression : ASTNode
{
const EXP op; // to minimize use of dynamic_cast
ubyte size; // # of bytes in Expression so we can copy() it
ubyte parens; // if this is a parenthesized expression
Type type; // !=null means that semantic() has been run
Loc loc; // file location
extern (D) this(const ref Loc loc, EXP op, int size)
{
//printf("Expression::Expression(op = %d) this = %p\n", op, this);
this.loc = loc;
this.op = op;
this.size = cast(ubyte)size;
}
static void _init()
{
CTFEExp.cantexp = new CTFEExp(EXP.cantExpression);
CTFEExp.voidexp = new CTFEExp(EXP.voidExpression);
CTFEExp.breakexp = new CTFEExp(EXP.break_);
CTFEExp.continueexp = new CTFEExp(EXP.continue_);
CTFEExp.gotoexp = new CTFEExp(EXP.goto_);
CTFEExp.showcontext = new CTFEExp(EXP.showCtfeContext);
}
/**
* Deinitializes the global state of the compiler.
*
* This can be used to restore the state set by `_init` to its original
* state.
*/
static void deinitialize()
{
CTFEExp.cantexp = CTFEExp.cantexp.init;
CTFEExp.voidexp = CTFEExp.voidexp.init;
CTFEExp.breakexp = CTFEExp.breakexp.init;
CTFEExp.continueexp = CTFEExp.continueexp.init;
CTFEExp.gotoexp = CTFEExp.gotoexp.init;
CTFEExp.showcontext = CTFEExp.showcontext.init;
}
/*********************************
* Does *not* do a deep copy.
*/
final Expression copy()
{
Expression e;
if (!size)
{
debug
{
fprintf(stderr, "No expression copy for: %s\n", toChars());
printf("op = %d\n", op);
}
assert(0);
}
// memory never freed, so can use the faster bump-pointer-allocation
e = cast(Expression)allocmemory(size);
//printf("Expression::copy(op = %d) e = %p\n", op, e);
return cast(Expression)memcpy(cast(void*)e, cast(void*)this, size);
}
Expression syntaxCopy()
{
//printf("Expression::syntaxCopy()\n");
//print();
return copy();
}
// kludge for template.isExpression()
override final DYNCAST dyncast() const
{
return DYNCAST.expression;
}
override const(char)* toChars() const
{
OutBuffer buf;
HdrGenState hgs;
toCBuffer(this, &buf, &hgs);
return buf.extractChars();
}
static if (__VERSION__ < 2092)
{
final void error(const(char)* format, ...) const
{
if (type != Type.terror)
{
va_list ap;
va_start(ap, format);
.verror(loc, format, ap);
va_end(ap);
}
}
final void errorSupplemental(const(char)* format, ...)
{
if (type == Type.terror)
return;
va_list ap;
va_start(ap, format);
.verrorSupplemental(loc, format, ap);
va_end(ap);
}
final void warning(const(char)* format, ...) const
{
if (type != Type.terror)
{
va_list ap;
va_start(ap, format);
.vwarning(loc, format, ap);
va_end(ap);
}
}
final void deprecation(const(char)* format, ...) const
{
if (type != Type.terror)
{
va_list ap;
va_start(ap, format);
.vdeprecation(loc, format, ap);
va_end(ap);
}
}
}
else
{
pragma(printf) final void error(const(char)* format, ...) const
{
if (type != Type.terror)
{
va_list ap;
va_start(ap, format);
.verror(loc, format, ap);
va_end(ap);
}
}
pragma(printf) final void errorSupplemental(const(char)* format, ...)
{
if (type == Type.terror)
return;
va_list ap;
va_start(ap, format);
.verrorSupplemental(loc, format, ap);
va_end(ap);
}
pragma(printf) final void warning(const(char)* format, ...) const
{
if (type != Type.terror)
{
va_list ap;
va_start(ap, format);
.vwarning(loc, format, ap);
va_end(ap);
}
}
pragma(printf) final void deprecation(const(char)* format, ...) const
{
if (type != Type.terror)
{
va_list ap;
va_start(ap, format);
.vdeprecation(loc, format, ap);
va_end(ap);
}
}
}
/**********************************
* Combine e1 and e2 by CommaExp if both are not NULL.
*/
extern (D) static Expression combine(Expression e1, Expression e2)
{
if (e1)
{
if (e2)
{
e1 = new CommaExp(e1.loc, e1, e2);
e1.type = e2.type;
}
}
else
e1 = e2;
return e1;
}
extern (D) static Expression combine(Expression e1, Expression e2, Expression e3)
{
return combine(combine(e1, e2), e3);
}
extern (D) static Expression combine(Expression e1, Expression e2, Expression e3, Expression e4)
{
return combine(combine(e1, e2), combine(e3, e4));
}
/**********************************
* If 'e' is a tree of commas, returns the rightmost expression
* by stripping off it from the tree. The remained part of the tree
* is returned via e0.
* Otherwise 'e' is directly returned and e0 is set to NULL.
*/
extern (D) static Expression extractLast(Expression e, out Expression e0)
{
if (e.op != EXP.comma)
{
return e;
}
CommaExp ce = cast(CommaExp)e;
if (ce.e2.op != EXP.comma)
{
e0 = ce.e1;
return ce.e2;
}
else
{
e0 = e;
Expression* pce = &ce.e2;
while ((cast(CommaExp)(*pce)).e2.op == EXP.comma)
{
pce = &(cast(CommaExp)(*pce)).e2;
}
assert((*pce).op == EXP.comma);
ce = cast(CommaExp)(*pce);
*pce = ce.e1;
return ce.e2;
}
}
extern (D) static Expressions* arraySyntaxCopy(Expressions* exps)
{
Expressions* a = null;
if (exps)
{
a = new Expressions(exps.dim);
foreach (i, e; *exps)
{
(*a)[i] = e ? e.syntaxCopy() : null;
}
}
return a;
}
dinteger_t toInteger()
{
//printf("Expression %s\n", EXPtoString(op).ptr);
error("integer constant expression expected instead of `%s`", toChars());
return 0;
}
uinteger_t toUInteger()
{
//printf("Expression %s\n", EXPtoString(op).ptr);
return cast(uinteger_t)toInteger();
}
real_t toReal()
{
error("floating point constant expression expected instead of `%s`", toChars());
return CTFloat.zero;
}
real_t toImaginary()
{
error("floating point constant expression expected instead of `%s`", toChars());
return CTFloat.zero;
}
complex_t toComplex()
{
error("floating point constant expression expected instead of `%s`", toChars());
return complex_t(CTFloat.zero);
}
StringExp toStringExp()
{
return null;
}
TupleExp toTupleExp()
{
return null;
}
/***************************************
* Return !=0 if expression is an lvalue.
*/
bool isLvalue()
{
return false;
}
/*******************************
* Give error if we're not an lvalue.
* If we can, convert expression to be an lvalue.
*/
Expression toLvalue(Scope* sc, Expression e)
{
if (!e)
e = this;
else if (!loc.isValid())
loc = e.loc;
if (e.op == EXP.type)
error("`%s` is a `%s` definition and cannot be modified", e.type.toChars(), e.type.kind());
else
error("`%s` is not an lvalue and cannot be modified", e.toChars());
return ErrorExp.get();
}
Expression modifiableLvalue(Scope* sc, Expression e)
{
//printf("Expression::modifiableLvalue() %s, type = %s\n", toChars(), type.toChars());
// See if this expression is a modifiable lvalue (i.e. not const)
if (checkModifiable(this, sc) == Modifiable.yes)
{
assert(type);
if (!type.isMutable())
{
if (auto dve = this.isDotVarExp())
{
if (isNeedThisScope(sc, dve.var))
for (Dsymbol s = sc.func; s; s = s.toParentLocal())
{
FuncDeclaration ff = s.isFuncDeclaration();
if (!ff)
break;
if (!ff.type.isMutable)
{
error("cannot modify `%s` in `%s` function", toChars(), MODtoChars(type.mod));
return ErrorExp.get();
}
}
}
error("cannot modify `%s` expression `%s`", MODtoChars(type.mod), toChars());
return ErrorExp.get();
}
else if (!type.isAssignable())
{
error("cannot modify struct instance `%s` of type `%s` because it contains `const` or `immutable` members",
toChars(), type.toChars());
return ErrorExp.get();
}
}
return toLvalue(sc, e);
}
final Expression implicitCastTo(Scope* sc, Type t)
{
return .implicitCastTo(this, sc, t);
}
final MATCH implicitConvTo(Type t)
{
return .implicitConvTo(this, t);
}
final Expression castTo(Scope* sc, Type t)
{
return .castTo(this, sc, t);
}
/****************************************
* Resolve __FILE__, __LINE__, __MODULE__, __FUNCTION__, __PRETTY_FUNCTION__, __FILE_FULL_PATH__ to loc.
*/
Expression resolveLoc(const ref Loc loc, Scope* sc)
{
this.loc = loc;
return this;
}
/****************************************
* Check that the expression has a valid type.
* If not, generates an error "... has no type".
* Returns:
* true if the expression is not valid.
* Note:
* When this function returns true, `checkValue()` should also return true.
*/
bool checkType()
{
return false;
}
/****************************************
* Check that the expression has a valid value.
* If not, generates an error "... has no value".
* Returns:
* true if the expression is not valid or has void type.
*/
bool checkValue()
{
if (type && type.toBasetype().ty == Tvoid)
{
error("expression `%s` is `void` and has no value", toChars());
//print(); assert(0);
if (!global.gag)
type = Type.terror;
return true;
}
return false;
}
extern (D) final bool checkScalar()
{
if (op == EXP.error)
return true;
if (type.toBasetype().ty == Terror)
return true;
if (!type.isscalar())
{
error("`%s` is not a scalar, it is a `%s`", toChars(), type.toChars());
return true;
}
return checkValue();
}
extern (D) final bool checkNoBool()
{
if (op == EXP.error)
return true;
if (type.toBasetype().ty == Terror)
return true;
if (type.toBasetype().ty == Tbool)
{
error("operation not allowed on `bool` `%s`", toChars());
return true;
}
return false;
}
extern (D) final bool checkIntegral()
{
if (op == EXP.error)
return true;
if (type.toBasetype().ty == Terror)
return true;
if (!type.isintegral())
{
error("`%s` is not of integral type, it is a `%s`", toChars(), type.toChars());
return true;
}
return checkValue();
}
extern (D) final bool checkArithmetic()
{
if (op == EXP.error)
return true;
if (type.toBasetype().ty == Terror)
return true;
if (!type.isintegral() && !type.isfloating())
{
error("`%s` is not of arithmetic type, it is a `%s`", toChars(), type.toChars());
return true;
}
return checkValue();
}
final bool checkDeprecated(Scope* sc, Dsymbol s)
{
return s.checkDeprecated(loc, sc);
}
extern (D) final bool checkDisabled(Scope* sc, Dsymbol s)
{
if (auto d = s.isDeclaration())
{
return d.checkDisabled(loc, sc);
}
return false;
}
/*********************************************
* Calling function f.
* Check the purity, i.e. if we're in a pure function
* we can only call other pure functions.
* Returns true if error occurs.
*/
extern (D) final bool checkPurity(Scope* sc, FuncDeclaration f)
{
if (!sc.func)
return false;
if (sc.func == f)
return false;
if (sc.intypeof == 1)
return false;
if (sc.flags & (SCOPE.ctfe | SCOPE.debug_))
return false;
// If the call has a pure parent, then the called func must be pure.
if (!f.isPure() && checkImpure(sc))
{
error("`pure` %s `%s` cannot call impure %s `%s`",
sc.func.kind(), sc.func.toPrettyChars(), f.kind(),
f.toPrettyChars());
checkOverridenDtor(sc, f, dd => dd.type.toTypeFunction().purity != PURE.impure, "impure");
return true;
}
return false;
}
/**
* Checks whether `f` is a generated `DtorDeclaration` that hides a user-defined one
* which passes `check` while `f` doesn't (e.g. when the user defined dtor is pure but
* the generated dtor is not).
* In that case the method will identify and print all members causing the attribute
* missmatch.
*
* Params:
* sc = scope
* f = potential `DtorDeclaration`
* check = current check (e.g. whether it's pure)
* checkName = the kind of check (e.g. `"pure"`)
*/
extern (D) final void checkOverridenDtor(Scope* sc, FuncDeclaration f,
scope bool function(DtorDeclaration) check, const string checkName
) {
auto dd = f.isDtorDeclaration();
if (!dd || !dd.isGenerated())
return;
// DtorDeclaration without parents should fail at an earlier stage
auto ad = cast(AggregateDeclaration) f.toParent2();
assert(ad);
if (ad.userDtors.dim)
{
if (!check(ad.userDtors[0])) // doesn't match check (e.g. is impure as well)
return;
// Sanity check
assert(!check(ad.fieldDtor));
}
dd.loc.errorSupplemental("%s`%s.~this` is %.*s because of the following field's destructors:",
dd.isGenerated() ? "generated " : "".ptr,
ad.toChars,
cast(int) checkName.length, checkName.ptr);
// Search for the offending fields
foreach (field; ad.fields)
{
// Only structs may define automatically called destructors
auto ts = field.type.isTypeStruct();
if (!ts)
{
// But they might be part of a static array
auto ta = field.type.isTypeSArray();
if (!ta)
continue;
ts = ta.baseElemOf().isTypeStruct();
if (!ts)
continue;
}
auto fieldSym = ts.toDsymbol(sc);
assert(fieldSym); // Resolving ts must succeed because missing defs. should error before
auto fieldSd = fieldSym.isStructDeclaration();
assert(fieldSd); // ts is a TypeStruct, this would imply a malformed ASR
if (fieldSd.dtor && !check(fieldSd.dtor))
{
field.loc.errorSupplemental(" - %s %s", field.type.toChars(), field.toChars());
if (fieldSd.dtor.isGenerated())
checkOverridenDtor(sc, fieldSd.dtor, check, checkName);
else
fieldSd.dtor.loc.errorSupplemental(" %.*s `%s.~this` is declared here",
cast(int) checkName.length, checkName.ptr, fieldSd.toChars());
}
}
}
/*******************************************
* Accessing variable v.
* Check for purity and safety violations.
* Returns true if error occurs.
*/
extern (D) final bool checkPurity(Scope* sc, VarDeclaration v)
{
//printf("v = %s %s\n", v.type.toChars(), v.toChars());
/* Look for purity and safety violations when accessing variable v
* from current function.
*/
if (!sc.func)
return false;
if (sc.intypeof == 1)
return false; // allow violations inside typeof(expression)
if (sc.flags & (SCOPE.ctfe | SCOPE.debug_))
return false; // allow violations inside compile-time evaluated expressions and debug conditionals
if (v.ident == Id.ctfe)
return false; // magic variable never violates pure and safe
if (v.isImmutable())
return false; // always safe and pure to access immutables...
if (v.isConst() && !v.isReference() && (v.isDataseg() || v.isParameter()) && v.type.implicitConvTo(v.type.immutableOf()))
return false; // or const global/parameter values which have no mutable indirections
if (v.storage_class & STC.manifest)
return false; // ...or manifest constants
// accessing empty structs is pure
if (v.type.ty == Tstruct)
{
StructDeclaration sd = (cast(TypeStruct)v.type).sym;
if (sd.members) // not opaque
{
sd.determineSize(v.loc);
if (sd.hasNoFields)
return false;
}
}
bool err = false;
if (v.isDataseg())
{
// https://issues.dlang.org/show_bug.cgi?id=7533
// Accessing implicit generated __gate is pure.
if (v.ident == Id.gate)
return false;
if (checkImpure(sc))
{
error("`pure` %s `%s` cannot access mutable static data `%s`",
sc.func.kind(), sc.func.toPrettyChars(), v.toChars());
err = true;
}
}
else
{
/* Given:
* void f() {
* int fx;
* pure void g() {
* int gx;
* /+pure+/ void h() {
* int hx;
* /+pure+/ void i() { }
* }
* }
* }
* i() can modify hx and gx but not fx
*/
Dsymbol vparent = v.toParent2();
for (Dsymbol s = sc.func; !err && s; s = s.toParentP(vparent))
{
if (s == vparent)
break;
if (AggregateDeclaration ad = s.isAggregateDeclaration())
{
if (ad.isNested())
continue;
break;
}
FuncDeclaration ff = s.isFuncDeclaration();
if (!ff)
break;
if (ff.isNested() || ff.isThis())
{
if (ff.type.isImmutable() ||
ff.type.isShared() && !MODimplicitConv(ff.type.mod, v.type.mod))
{
OutBuffer ffbuf;
OutBuffer vbuf;
MODMatchToBuffer(&ffbuf, ff.type.mod, v.type.mod);
MODMatchToBuffer(&vbuf, v.type.mod, ff.type.mod);
error("%s%s `%s` cannot access %sdata `%s`",
ffbuf.peekChars(), ff.kind(), ff.toPrettyChars(), vbuf.peekChars(), v.toChars());
err = true;
break;
}
continue;
}
break;
}
}
/* Do not allow safe functions to access __gshared data
*/
if (v.storage_class & STC.gshared)
{
if (sc.func.setUnsafe())
{
error("`@safe` %s `%s` cannot access `__gshared` data `%s`",
sc.func.kind(), sc.func.toChars(), v.toChars());
err = true;
}
}
return err;
}
/*
Check if sc.func is impure or can be made impure.
Returns true on error, i.e. if sc.func is pure and cannot be made impure.
*/
private static bool checkImpure(Scope* sc)
{
return sc.func && (sc.flags & SCOPE.compile
? sc.func.isPureBypassingInference() >= PURE.weak
: sc.func.setImpure());
}
/*********************************************
* Calling function f.
* Check the safety, i.e. if we're in a @safe function
* we can only call @safe or @trusted functions.
* Returns true if error occurs.
*/
extern (D) final bool checkSafety(Scope* sc, FuncDeclaration f)
{
if (!sc.func)
return false;
if (sc.func == f)
return false;
if (sc.intypeof == 1)
return false;
if (sc.flags & (SCOPE.ctfe | SCOPE.debug_))
return false;
if (!f.isSafe() && !f.isTrusted())
{
if (sc.flags & SCOPE.compile ? sc.func.isSafeBypassingInference() : sc.func.setUnsafe())
{
if (!loc.isValid()) // e.g. implicitly generated dtor
loc = sc.func.loc;
const prettyChars = f.toPrettyChars();
error("`@safe` %s `%s` cannot call `@system` %s `%s`",
sc.func.kind(), sc.func.toPrettyChars(), f.kind(),
prettyChars);
.errorSupplemental(f.loc, "`%s` is declared here", prettyChars);
checkOverridenDtor(sc, f, dd => dd.type.toTypeFunction().trust > TRUST.system, "@system");
return true;
}
}
return false;
}
/*********************************************
* Calling function f.
* Check the @nogc-ness, i.e. if we're in a @nogc function
* we can only call other @nogc functions.
* Returns true if error occurs.
*/
extern (D) final bool checkNogc(Scope* sc, FuncDeclaration f)
{
if (!sc.func)
return false;
if (sc.func == f)
return false;
if (sc.intypeof == 1)
return false;
if (sc.flags & (SCOPE.ctfe | SCOPE.debug_))
return false;
if (!f.isNogc())
{
if (sc.flags & SCOPE.compile ? sc.func.isNogcBypassingInference() : sc.func.setGC())
{
if (loc.linnum == 0) // e.g. implicitly generated dtor
loc = sc.func.loc;
// Lowered non-@nogc'd hooks will print their own error message inside of nogc.d (NOGCVisitor.visit(CallExp e)),
// so don't print anything to avoid double error messages.
if (!(f.ident == Id._d_HookTraceImpl || f.ident == Id._d_arraysetlengthT))
error("`@nogc` %s `%s` cannot call non-@nogc %s `%s`",
sc.func.kind(), sc.func.toPrettyChars(), f.kind(), f.toPrettyChars());
checkOverridenDtor(sc, f, dd => dd.type.toTypeFunction().isnogc, "non-@nogc");
return true;
}
}
return false;
}
/********************************************
* Check that the postblit is callable if t is an array of structs.
* Returns true if error happens.
*/
extern (D) final bool checkPostblit(Scope* sc, Type t)
{
if (auto ts = t.baseElemOf().isTypeStruct())
{
if (global.params.useTypeInfo && Type.dtypeinfo)
{
// https://issues.dlang.org/show_bug.cgi?id=11395
// Require TypeInfo generation for array concatenation
semanticTypeInfo(sc, t);
}
StructDeclaration sd = ts.sym;
if (sd.postblit)
{
if (sd.postblit.checkDisabled(loc, sc))
return true;
//checkDeprecated(sc, sd.postblit); // necessary?
checkPurity(sc, sd.postblit);
checkSafety(sc, sd.postblit);
checkNogc(sc, sd.postblit);
//checkAccess(sd, loc, sc, sd.postblit); // necessary?
return false;
}
}
return false;
}
extern (D) final bool checkRightThis(Scope* sc)
{
if (op == EXP.error)
return true;
if (op == EXP.variable && type.ty != Terror)
{
VarExp ve = cast(VarExp)this;
if (isNeedThisScope(sc, ve.var))
{
//printf("checkRightThis sc.intypeof = %d, ad = %p, func = %p, fdthis = %p\n",
// sc.intypeof, sc.getStructClassScope(), func, fdthis);
error("need `this` for `%s` of type `%s`", ve.var.toChars(), ve.var.type.toChars());
return true;
}
}
return false;
}
/*******************************
* Check whether the expression allows RMW operations, error with rmw operator diagnostic if not.
* ex is the RHS expression, or NULL if ++/-- is used (for diagnostics)
* Returns true if error occurs.
*/
extern (D) final bool checkReadModifyWrite(EXP rmwOp, Expression ex = null)
{
//printf("Expression::checkReadModifyWrite() %s %s", toChars(), ex ? ex.toChars() : "");
if (!type || !type.isShared() || type.isTypeStruct() || type.isTypeClass())
return false;
// atomicOp uses opAssign (+=/-=) rather than opOp (++/--) for the CT string literal.
switch (rmwOp)
{
case EXP.plusPlus:
case EXP.prePlusPlus:
rmwOp = EXP.addAssign;
break;
case EXP.minusMinus:
case EXP.preMinusMinus:
rmwOp = EXP.minAssign;
break;
default:
break;
}
error("read-modify-write operations are not allowed for `shared` variables");
errorSupplemental("Use `core.atomic.atomicOp!\"%s\"(%s, %s)` instead",
EXPtoString(rmwOp).ptr, toChars(), ex ? ex.toChars() : "1");
return true;
}
/************************************************
* Destructors are attached to VarDeclarations.
* Hence, if expression returns a temp that needs a destructor,
* make sure and create a VarDeclaration for that temp.
*/
Expression addDtorHook(Scope* sc)
{
return this;
}
/******************************
* Take address of expression.
*/
final Expression addressOf()
{
//printf("Expression::addressOf()\n");
debug
{
assert(op == EXP.error || isLvalue());
}
Expression e = new AddrExp(loc, this, type.pointerTo());
return e;
}
/******************************
* If this is a reference, dereference it.
*/
final Expression deref()
{
//printf("Expression::deref()\n");
// type could be null if forward referencing an 'auto' variable
if (type)
if (auto tr = type.isTypeReference())
{
Expression e = new PtrExp(loc, this, tr.next);
return e;
}
return this;
}
final Expression optimize(int result, bool keepLvalue = false)
{
return Expression_optimize(this, result, keepLvalue);
}
// Entry point for CTFE.
// A compile-time result is required. Give an error if not possible
final Expression ctfeInterpret()
{
return .ctfeInterpret(this);
}
final int isConst()
{
return .isConst(this);
}
/// Statically evaluate this expression to a `bool` if possible
/// Returns: an optional thath either contains the value or is empty
Optional!bool toBool()
{
return typeof(return)();
}
bool hasCode()
{
return true;
}
final pure inout nothrow @nogc @safe
{
inout(IntegerExp) isIntegerExp() { return op == EXP.int64 ? cast(typeof(return))this : null; }
inout(ErrorExp) isErrorExp() { return op == EXP.error ? cast(typeof(return))this : null; }
inout(VoidInitExp) isVoidInitExp() { return op == EXP.void_ ? cast(typeof(return))this : null; }
inout(RealExp) isRealExp() { return op == EXP.float64 ? cast(typeof(return))this : null; }
inout(ComplexExp) isComplexExp() { return op == EXP.complex80 ? cast(typeof(return))this : null; }
inout(IdentifierExp) isIdentifierExp() { return op == EXP.identifier ? cast(typeof(return))this : null; }
inout(DollarExp) isDollarExp() { return op == EXP.dollar ? cast(typeof(return))this : null; }
inout(DsymbolExp) isDsymbolExp() { return op == EXP.dSymbol ? cast(typeof(return))this : null; }
inout(ThisExp) isThisExp() { return op == EXP.this_ ? cast(typeof(return))this : null; }
inout(SuperExp) isSuperExp() { return op == EXP.super_ ? cast(typeof(return))this : null; }
inout(NullExp) isNullExp() { return op == EXP.null_ ? cast(typeof(return))this : null; }
inout(StringExp) isStringExp() { return op == EXP.string_ ? cast(typeof(return))this : null; }
inout(TupleExp) isTupleExp() { return op == EXP.tuple ? cast(typeof(return))this : null; }
inout(ArrayLiteralExp) isArrayLiteralExp() { return op == EXP.arrayLiteral ? cast(typeof(return))this : null; }
inout(AssocArrayLiteralExp) isAssocArrayLiteralExp() { return op == EXP.assocArrayLiteral ? cast(typeof(return))this : null; }
inout(StructLiteralExp) isStructLiteralExp() { return op == EXP.structLiteral ? cast(typeof(return))this : null; }
inout(CompoundLiteralExp) isCompoundLiteralExp() { return op == EXP.compoundLiteral ? cast(typeof(return))this : null; }
inout(TypeExp) isTypeExp() { return op == EXP.type ? cast(typeof(return))this : null; }
inout(ScopeExp) isScopeExp() { return op == EXP.scope_ ? cast(typeof(return))this : null; }
inout(TemplateExp) isTemplateExp() { return op == EXP.template_ ? cast(typeof(return))this : null; }
inout(NewExp) isNewExp() { return op == EXP.new_ ? cast(typeof(return))this : null; }
inout(NewAnonClassExp) isNewAnonClassExp() { return op == EXP.newAnonymousClass ? cast(typeof(return))this : null; }
inout(SymOffExp) isSymOffExp() { return op == EXP.symbolOffset ? cast(typeof(return))this : null; }
inout(VarExp) isVarExp() { return op == EXP.variable ? cast(typeof(return))this : null; }
inout(OverExp) isOverExp() { return op == EXP.overloadSet ? cast(typeof(return))this : null; }
inout(FuncExp) isFuncExp() { return op == EXP.function_ ? cast(typeof(return))this : null; }
inout(DeclarationExp) isDeclarationExp() { return op == EXP.declaration ? cast(typeof(return))this : null; }
inout(TypeidExp) isTypeidExp() { return op == EXP.typeid_ ? cast(typeof(return))this : null; }
inout(TraitsExp) isTraitsExp() { return op == EXP.traits ? cast(typeof(return))this : null; }
inout(HaltExp) isHaltExp() { return op == EXP.halt ? cast(typeof(return))this : null; }
inout(IsExp) isExp() { return op == EXP.is_ ? cast(typeof(return))this : null; }
inout(MixinExp) isMixinExp() { return op == EXP.mixin_ ? cast(typeof(return))this : null; }
inout(ImportExp) isImportExp() { return op == EXP.import_ ? cast(typeof(return))this : null; }
inout(AssertExp) isAssertExp() { return op == EXP.assert_ ? cast(typeof(return))this : null; }
inout(DotIdExp) isDotIdExp() { return op == EXP.dotIdentifier ? cast(typeof(return))this : null; }
inout(DotTemplateExp) isDotTemplateExp() { return op == EXP.dotTemplateDeclaration ? cast(typeof(return))this : null; }
inout(DotVarExp) isDotVarExp() { return op == EXP.dotVariable ? cast(typeof(return))this : null; }
inout(DotTemplateInstanceExp) isDotTemplateInstanceExp() { return op == EXP.dotTemplateInstance ? cast(typeof(return))this : null; }
inout(DelegateExp) isDelegateExp() { return op == EXP.delegate_ ? cast(typeof(return))this : null; }
inout(DotTypeExp) isDotTypeExp() { return op == EXP.dotType ? cast(typeof(return))this : null; }
inout(CallExp) isCallExp() { return op == EXP.call ? cast(typeof(return))this : null; }
inout(AddrExp) isAddrExp() { return op == EXP.address ? cast(typeof(return))this : null; }
inout(PtrExp) isPtrExp() { return op == EXP.star ? cast(typeof(return))this : null; }
inout(NegExp) isNegExp() { return op == EXP.negate ? cast(typeof(return))this : null; }
inout(UAddExp) isUAddExp() { return op == EXP.uadd ? cast(typeof(return))this : null; }
inout(ComExp) isComExp() { return op == EXP.tilde ? cast(typeof(return))this : null; }
inout(NotExp) isNotExp() { return op == EXP.not ? cast(typeof(return))this : null; }
inout(DeleteExp) isDeleteExp() { return op == EXP.delete_ ? cast(typeof(return))this : null; }
inout(CastExp) isCastExp() { return op == EXP.cast_ ? cast(typeof(return))this : null; }
inout(VectorExp) isVectorExp() { return op == EXP.vector ? cast(typeof(return))this : null; }
inout(VectorArrayExp) isVectorArrayExp() { return op == EXP.vectorArray ? cast(typeof(return))this : null; }
inout(SliceExp) isSliceExp() { return op == EXP.slice ? cast(typeof(return))this : null; }
inout(ArrayLengthExp) isArrayLengthExp() { return op == EXP.arrayLength ? cast(typeof(return))this : null; }
inout(ArrayExp) isArrayExp() { return op == EXP.array ? cast(typeof(return))this : null; }
inout(DotExp) isDotExp() { return op == EXP.dot ? cast(typeof(return))this : null; }
inout(CommaExp) isCommaExp() { return op == EXP.comma ? cast(typeof(return))this : null; }
inout(IntervalExp) isIntervalExp() { return op == EXP.interval ? cast(typeof(return))this : null; }
inout(DelegatePtrExp) isDelegatePtrExp() { return op == EXP.delegatePointer ? cast(typeof(return))this : null; }
inout(DelegateFuncptrExp) isDelegateFuncptrExp() { return op == EXP.delegateFunctionPointer ? cast(typeof(return))this : null; }
inout(IndexExp) isIndexExp() { return op == EXP.index ? cast(typeof(return))this : null; }
inout(PostExp) isPostExp() { return (op == EXP.plusPlus || op == EXP.minusMinus) ? cast(typeof(return))this : null; }
inout(PreExp) isPreExp() { return (op == EXP.prePlusPlus || op == EXP.preMinusMinus) ? cast(typeof(return))this : null; }
inout(AssignExp) isAssignExp() { return op == EXP.assign ? cast(typeof(return))this : null; }
inout(ConstructExp) isConstructExp() { return op == EXP.construct ? cast(typeof(return))this : null; }
inout(BlitExp) isBlitExp() { return op == EXP.blit ? cast(typeof(return))this : null; }
inout(AddAssignExp) isAddAssignExp() { return op == EXP.addAssign ? cast(typeof(return))this : null; }
inout(MinAssignExp) isMinAssignExp() { return op == EXP.minAssign ? cast(typeof(return))this : null; }
inout(MulAssignExp) isMulAssignExp() { return op == EXP.mulAssign ? cast(typeof(return))this : null; }
inout(DivAssignExp) isDivAssignExp() { return op == EXP.divAssign ? cast(typeof(return))this : null; }
inout(ModAssignExp) isModAssignExp() { return op == EXP.modAssign ? cast(typeof(return))this : null; }
inout(AndAssignExp) isAndAssignExp() { return op == EXP.andAssign ? cast(typeof(return))this : null; }
inout(OrAssignExp) isOrAssignExp() { return op == EXP.orAssign ? cast(typeof(return))this : null; }
inout(XorAssignExp) isXorAssignExp() { return op == EXP.xorAssign ? cast(typeof(return))this : null; }
inout(PowAssignExp) isPowAssignExp() { return op == EXP.powAssign ? cast(typeof(return))this : null; }
inout(ShlAssignExp) isShlAssignExp() { return op == EXP.leftShiftAssign ? cast(typeof(return))this : null; }
inout(ShrAssignExp) isShrAssignExp() { return op == EXP.rightShiftAssign ? cast(typeof(return))this : null; }
inout(UshrAssignExp) isUshrAssignExp() { return op == EXP.unsignedRightShiftAssign ? cast(typeof(return))this : null; }
inout(CatAssignExp) isCatAssignExp() { return op == EXP.concatenateAssign
? cast(typeof(return))this
: null; }
inout(CatElemAssignExp) isCatElemAssignExp() { return op == EXP.concatenateElemAssign
? cast(typeof(return))this
: null; }
inout(CatDcharAssignExp) isCatDcharAssignExp() { return op == EXP.concatenateDcharAssign
? cast(typeof(return))this
: null; }
inout(AddExp) isAddExp() { return op == EXP.add ? cast(typeof(return))this : null; }
inout(MinExp) isMinExp() { return op == EXP.min ? cast(typeof(return))this : null; }
inout(CatExp) isCatExp() { return op == EXP.concatenate ? cast(typeof(return))this : null; }
inout(MulExp) isMulExp() { return op == EXP.mul ? cast(typeof(return))this : null; }
inout(DivExp) isDivExp() { return op == EXP.div ? cast(typeof(return))this : null; }
inout(ModExp) isModExp() { return op == EXP.mod ? cast(typeof(return))this : null; }
inout(PowExp) isPowExp() { return op == EXP.pow ? cast(typeof(return))this : null; }
inout(ShlExp) isShlExp() { return op == EXP.leftShift ? cast(typeof(return))this : null; }
inout(ShrExp) isShrExp() { return op == EXP.rightShift ? cast(typeof(return))this : null; }
inout(UshrExp) isUshrExp() { return op == EXP.unsignedRightShift ? cast(typeof(return))this : null; }
inout(AndExp) isAndExp() { return op == EXP.and ? cast(typeof(return))this : null; }
inout(OrExp) isOrExp() { return op == EXP.or ? cast(typeof(return))this : null; }
inout(XorExp) isXorExp() { return op == EXP.xor ? cast(typeof(return))this : null; }
inout(LogicalExp) isLogicalExp() { return (op == EXP.andAnd || op == EXP.orOr) ? cast(typeof(return))this : null; }
//inout(CmpExp) isCmpExp() { return op == EXP. ? cast(typeof(return))this : null; }
inout(InExp) isInExp() { return op == EXP.in_ ? cast(typeof(return))this : null; }
inout(RemoveExp) isRemoveExp() { return op == EXP.remove ? cast(typeof(return))this : null; }
inout(EqualExp) isEqualExp() { return (op == EXP.equal || op == EXP.notEqual) ? cast(typeof(return))this : null; }
inout(IdentityExp) isIdentityExp() { return (op == EXP.identity || op == EXP.notIdentity) ? cast(typeof(return))this : null; }
inout(CondExp) isCondExp() { return op == EXP.question ? cast(typeof(return))this : null; }
inout(GenericExp) isGenericExp() { return op == EXP._Generic ? cast(typeof(return))this : null; }
inout(DefaultInitExp) isDefaultInitExp() { return isDefaultInitOp(op) ? cast(typeof(return))this: null; }
inout(FileInitExp) isFileInitExp() { return (op == EXP.file || op == EXP.fileFullPath) ? cast(typeof(return))this : null; }
inout(LineInitExp) isLineInitExp() { return op == EXP.line ? cast(typeof(return))this : null; }
inout(ModuleInitExp) isModuleInitExp() { return op == EXP.moduleString ? cast(typeof(return))this : null; }
inout(FuncInitExp) isFuncInitExp() { return op == EXP.functionString ? cast(typeof(return))this : null; }
inout(PrettyFuncInitExp) isPrettyFuncInitExp() { return op == EXP.prettyFunction ? cast(typeof(return))this : null; }
inout(ClassReferenceExp) isClassReferenceExp() { return op == EXP.classReference ? cast(typeof(return))this : null; }
inout(ThrownExceptionExp) isThrownExceptionExp() { return op == EXP.thrownException ? cast(typeof(return))this : null; }
inout(UnaExp) isUnaExp() pure inout nothrow @nogc
{
return exptab[op] & EXPFLAGS.unary ? cast(typeof(return))this : null;
}
inout(BinExp) isBinExp() pure inout nothrow @nogc
{
return exptab[op] & EXPFLAGS.binary ? cast(typeof(return))this : null;
}
inout(BinAssignExp) isBinAssignExp() pure inout nothrow @nogc
{
return exptab[op] & EXPFLAGS.binaryAssign ? cast(typeof(return))this : null;
}
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* A compile-time known integer value
*/
extern (C++) final class IntegerExp : Expression
{
private dinteger_t value;
extern (D) this(const ref Loc loc, dinteger_t value, Type type)
{
super(loc, EXP.int64, __traits(classInstanceSize, IntegerExp));
//printf("IntegerExp(value = %lld, type = '%s')\n", value, type ? type.toChars() : "");
assert(type);
if (!type.isscalar())
{
//printf("%s, loc = %d\n", toChars(), loc.linnum);
if (type.ty != Terror)
error("integral constant must be scalar type, not `%s`", type.toChars());
type = Type.terror;
}
this.type = type;
this.value = normalize(type.toBasetype().ty, value);
}
extern (D) this(dinteger_t value)
{
super(Loc.initial, EXP.int64, __traits(classInstanceSize, IntegerExp));
this.type = Type.tint32;
this.value = cast(int)value;
}
static IntegerExp create(const ref Loc loc, dinteger_t value, Type type)
{
return new IntegerExp(loc, value, type);
}
// Same as create, but doesn't allocate memory.
static void emplace(UnionExp* pue, const ref Loc loc, dinteger_t value, Type type)
{
emplaceExp!(IntegerExp)(pue, loc, value, type);
}
override bool equals(const RootObject o) const
{
if (this == o)
return true;
if (auto ne = (cast(Expression)o).isIntegerExp())
{
if (type.toHeadMutable().equals(ne.type.toHeadMutable()) && value == ne.value)
{
return true;
}
}
return false;
}
override dinteger_t toInteger()
{
// normalize() is necessary until we fix all the paints of 'type'
return value = normalize(type.toBasetype().ty, value);
}
override real_t toReal()
{
// normalize() is necessary until we fix all the paints of 'type'
const ty = type.toBasetype().ty;
const val = normalize(ty, value);
value = val;
return (ty == Tuns64)
? real_t(cast(ulong)val)
: real_t(cast(long)val);
}
override real_t toImaginary()
{
return CTFloat.zero;
}
override complex_t toComplex()
{
return complex_t(toReal());
}
override Optional!bool toBool()
{
bool r = toInteger() != 0;
return typeof(return)(r);
}
override Expression toLvalue(Scope* sc, Expression e)
{
if (!e)
e = this;
else if (!loc.isValid())
loc = e.loc;
e.error("cannot modify constant `%s`", e.toChars());
return ErrorExp.get();
}
override void accept(Visitor v)
{
v.visit(this);
}
dinteger_t getInteger()
{
return value;
}
void setInteger(dinteger_t value)
{
this.value = normalize(type.toBasetype().ty, value);
}
extern (D) static dinteger_t normalize(TY ty, dinteger_t value)
{
/* 'Normalize' the value of the integer to be in range of the type
*/
dinteger_t result;
switch (ty)
{
case Tbool:
result = (value != 0);
break;
case Tint8:
result = cast(byte)value;
break;
case Tchar:
case Tuns8:
result = cast(ubyte)value;
break;
case Tint16:
result = cast(short)value;
break;
case Twchar:
case Tuns16:
result = cast(ushort)value;
break;
case Tint32:
result = cast(int)value;
break;
case Tdchar:
case Tuns32:
result = cast(uint)value;
break;
case Tint64:
result = cast(long)value;
break;
case Tuns64:
result = cast(ulong)value;
break;
case Tpointer:
if (target.ptrsize == 8)
goto case Tuns64;
if (target.ptrsize == 4)
goto case Tuns32;
if (target.ptrsize == 2)
goto case Tuns16;
assert(0);
default:
break;
}
return result;
}
override IntegerExp syntaxCopy()
{
return this;
}
/**
* Use this instead of creating new instances for commonly used literals
* such as 0 or 1.
*
* Parameters:
* v = The value of the expression
* Returns:
* A static instance of the expression, typed as `Tint32`.
*/
static IntegerExp literal(int v)()
{
__gshared IntegerExp theConstant;
if (!theConstant)
theConstant = new IntegerExp(v);
return theConstant;
}
/**
* Use this instead of creating new instances for commonly used bools.
*
* Parameters:
* b = The value of the expression
* Returns:
* A static instance of the expression, typed as `Type.tbool`.
*/
static IntegerExp createBool(bool b)
{
__gshared IntegerExp trueExp, falseExp;
if (!trueExp)
{
trueExp = new IntegerExp(Loc.initial, 1, Type.tbool);
falseExp = new IntegerExp(Loc.initial, 0, Type.tbool);
}
return b ? trueExp : falseExp;
}
}
/***********************************************************
* Use this expression for error recovery.
*
* It should behave as a 'sink' to prevent further cascaded error messages.
*/
extern (C++) final class ErrorExp : Expression
{
private extern (D) this()
{
super(Loc.initial, EXP.error, __traits(classInstanceSize, ErrorExp));
type = Type.terror;
}
static ErrorExp get ()
{
if (errorexp is null)
errorexp = new ErrorExp();
if (global.errors == 0 && global.gaggedErrors == 0)
{
/* Unfortunately, errors can still leak out of gagged errors,
* and we need to set the error count to prevent bogus code
* generation. At least give a message.
*/
.error(Loc.initial, "unknown, please file report on issues.dlang.org");
}
return errorexp;
}
override Expression toLvalue(Scope* sc, Expression e)
{
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
extern (C++) __gshared ErrorExp errorexp; // handy shared value
}
/***********************************************************
* An uninitialized value,
* generated from void initializers.
*
* https://dlang.org/spec/declaration.html#void_init
*/
extern (C++) final class VoidInitExp : Expression
{
VarDeclaration var; /// the variable from where the void value came from, null if not known
/// Useful for error messages
extern (D) this(VarDeclaration var)
{
super(var.loc, EXP.void_, __traits(classInstanceSize, VoidInitExp));
this.var = var;
this.type = var.type;
}
override const(char)* toChars() const
{
return "void";
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* A compile-time known floating point number
*/
extern (C++) final class RealExp : Expression
{
real_t value;
extern (D) this(const ref Loc loc, real_t value, Type type)
{
super(loc, EXP.float64, __traits(classInstanceSize, RealExp));
//printf("RealExp::RealExp(%Lg)\n", value);
this.value = value;
this.type = type;
}
static RealExp create(const ref Loc loc, real_t value, Type type)
{
return new RealExp(loc, value, type);
}
// Same as create, but doesn't allocate memory.
static void emplace(UnionExp* pue, const ref Loc loc, real_t value, Type type)
{
emplaceExp!(RealExp)(pue, loc, value, type);
}
override bool equals(const RootObject o) const
{
if (this == o)
return true;
if (auto ne = (cast(Expression)o).isRealExp())
{
if (type.toHeadMutable().equals(ne.type.toHeadMutable()) && RealIdentical(value, ne.value))
{
return true;
}
}
return false;
}
override dinteger_t toInteger()
{
return cast(sinteger_t)toReal();
}
override uinteger_t toUInteger()
{
return cast(uinteger_t)toReal();
}
override real_t toReal()
{
return type.isreal() ? value : CTFloat.zero;
}
override real_t toImaginary()
{
return type.isreal() ? CTFloat.zero : value;
}
override complex_t toComplex()
{
return complex_t(toReal(), toImaginary());
}
override Optional!bool toBool()
{
return typeof(return)(!!value);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* A compile-time complex number (deprecated)
*/
extern (C++) final class ComplexExp : Expression
{
complex_t value;
extern (D) this(const ref Loc loc, complex_t value, Type type)
{
super(loc, EXP.complex80, __traits(classInstanceSize, ComplexExp));
this.value = value;
this.type = type;
//printf("ComplexExp::ComplexExp(%s)\n", toChars());
}
static ComplexExp create(const ref Loc loc, complex_t value, Type type)
{
return new ComplexExp(loc, value, type);
}
// Same as create, but doesn't allocate memory.
static void emplace(UnionExp* pue, const ref Loc loc, complex_t value, Type type)
{
emplaceExp!(ComplexExp)(pue, loc, value, type);
}
override bool equals(const RootObject o) const
{
if (this == o)
return true;
if (auto ne = (cast(Expression)o).isComplexExp())
{
if (type.toHeadMutable().equals(ne.type.toHeadMutable()) && RealIdentical(creall(value), creall(ne.value)) && RealIdentical(cimagl(value), cimagl(ne.value)))
{
return true;
}
}
return false;
}
override dinteger_t toInteger()
{
return cast(sinteger_t)toReal();
}
override uinteger_t toUInteger()
{
return cast(uinteger_t)toReal();
}
override real_t toReal()
{
return creall(value);
}
override real_t toImaginary()
{
return cimagl(value);
}
override complex_t toComplex()
{
return value;
}
override Optional!bool toBool()
{
return typeof(return)(!!value);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* An identifier in the context of an expression (as opposed to a declaration)
*
* ---
* int x; // VarDeclaration with Identifier
* x++; // PostExp with IdentifierExp
* ---
*/
extern (C++) class IdentifierExp : Expression
{
Identifier ident;
extern (D) this(const ref Loc loc, Identifier ident)
{
super(loc, EXP.identifier, __traits(classInstanceSize, IdentifierExp));
this.ident = ident;
}
static IdentifierExp create(const ref Loc loc, Identifier ident)
{
return new IdentifierExp(loc, ident);
}
override final bool isLvalue()
{
return true;
}
override final Expression toLvalue(Scope* sc, Expression e)
{
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The dollar operator used when indexing or slicing an array. E.g `a[$]`, `a[1 .. $]` etc.
*
* https://dlang.org/spec/arrays.html#array-length
*/
extern (C++) final class DollarExp : IdentifierExp
{
extern (D) this(const ref Loc loc)
{
super(loc, Id.dollar);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Won't be generated by parser.
*/
extern (C++) final class DsymbolExp : Expression
{
Dsymbol s;
bool hasOverloads;
extern (D) this(const ref Loc loc, Dsymbol s, bool hasOverloads = true)
{
super(loc, EXP.dSymbol, __traits(classInstanceSize, DsymbolExp));
this.s = s;
this.hasOverloads = hasOverloads;
}
override bool isLvalue()
{
return true;
}
override Expression toLvalue(Scope* sc, Expression e)
{
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* https://dlang.org/spec/expression.html#this
*/
extern (C++) class ThisExp : Expression
{
VarDeclaration var;
extern (D) this(const ref Loc loc)
{
super(loc, EXP.this_, __traits(classInstanceSize, ThisExp));
//printf("ThisExp::ThisExp() loc = %d\n", loc.linnum);
}
this(const ref Loc loc, const EXP tok)
{
super(loc, tok, __traits(classInstanceSize, ThisExp));
//printf("ThisExp::ThisExp() loc = %d\n", loc.linnum);
}
override ThisExp syntaxCopy()
{
auto r = cast(ThisExp) super.syntaxCopy();
// require new semantic (possibly new `var` etc.)
r.type = null;
r.var = null;
return r;
}
override Optional!bool toBool()
{
// `this` is never null (what about structs?)
return typeof(return)(true);
}
override final bool isLvalue()
{
// Class `this` should be an rvalue; struct `this` should be an lvalue.
return type.toBasetype().ty != Tclass;
}
override final Expression toLvalue(Scope* sc, Expression e)
{
if (type.toBasetype().ty == Tclass)
{
// Class `this` is an rvalue; struct `this` is an lvalue.
return Expression.toLvalue(sc, e);
}
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* https://dlang.org/spec/expression.html#super
*/
extern (C++) final class SuperExp : ThisExp
{
extern (D) this(const ref Loc loc)
{
super(loc, EXP.super_);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* A compile-time known `null` value
*
* https://dlang.org/spec/expression.html#null
*/
extern (C++) final class NullExp : Expression
{
extern (D) this(const ref Loc loc, Type type = null)
{
super(loc, EXP.null_, __traits(classInstanceSize, NullExp));
this.type = type;
}
override bool equals(const RootObject o) const
{
if (auto e = o.isExpression())
{
if (e.op == EXP.null_ && type.equals(e.type))
{
return true;
}
}
return false;
}
override Optional!bool toBool()
{
// null in any type is false
return typeof(return)(false);
}
override StringExp toStringExp()
{
if (implicitConvTo(Type.tstring))
{
auto se = new StringExp(loc, (cast(char*)mem.xcalloc(1, 1))[0 .. 0]);
se.type = Type.tstring;
return se;
}
return null;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* https://dlang.org/spec/expression.html#string_literals
*/
extern (C++) final class StringExp : Expression
{
private union
{
char* string; // if sz == 1
wchar* wstring; // if sz == 2
dchar* dstring; // if sz == 4
} // (const if ownedByCtfe == OwnedBy.code)
size_t len; // number of code units
ubyte sz = 1; // 1: char, 2: wchar, 4: dchar
ubyte committed; // !=0 if type is committed
enum char NoPostfix = 0;
char postfix = NoPostfix; // 'c', 'w', 'd'
OwnedBy ownedByCtfe = OwnedBy.code;
extern (D) this(const ref Loc loc, const(void)[] string)
{
super(loc, EXP.string_, __traits(classInstanceSize, StringExp));
this.string = cast(char*)string.ptr; // note that this.string should be const
this.len = string.length;
this.sz = 1; // work around LDC bug #1286
}
extern (D) this(const ref Loc loc, const(void)[] string, size_t len, ubyte sz, char postfix = NoPostfix)
{
super(loc, EXP.string_, __traits(classInstanceSize, StringExp));
this.string = cast(char*)string.ptr; // note that this.string should be const
this.len = len;
this.sz = sz;
this.postfix = postfix;
}
static StringExp create(const ref Loc loc, const(char)* s)
{
return new StringExp(loc, s.toDString());
}
static StringExp create(const ref Loc loc, const(void)* string, size_t len)
{
return new StringExp(loc, string[0 .. len]);
}
// Same as create, but doesn't allocate memory.
static void emplace(UnionExp* pue, const ref Loc loc, const(char)* s)
{
emplaceExp!(StringExp)(pue, loc, s.toDString());
}
extern (D) static void emplace(UnionExp* pue, const ref Loc loc, const(void)[] string)
{
emplaceExp!(StringExp)(pue, loc, string);
}
extern (D) static void emplace(UnionExp* pue, const ref Loc loc, const(void)[] string, size_t len, ubyte sz, char postfix)
{
emplaceExp!(StringExp)(pue, loc, string, len, sz, postfix);
}
override bool equals(const RootObject o) const
{
//printf("StringExp::equals('%s') %s\n", o.toChars(), toChars());
if (auto e = o.isExpression())
{
if (auto se = e.isStringExp())
{
return compare(se) == 0;
}
}
return false;
}
/**********************************
* Return the number of code units the string would be if it were re-encoded
* as tynto.
* Params:
* tynto = code unit type of the target encoding
* Returns:
* number of code units
*/
size_t numberOfCodeUnits(int tynto = 0) const
{
int encSize;
switch (tynto)
{
case 0: return len;
case Tchar: encSize = 1; break;
case Twchar: encSize = 2; break;
case Tdchar: encSize = 4; break;
default:
assert(0);
}
if (sz == encSize)
return len;
size_t result = 0;
dchar c;
switch (sz)
{
case 1:
for (size_t u = 0; u < len;)
{
if (const s = utf_decodeChar(string[0 .. len], u, c))
{
error("%.*s", cast(int)s.length, s.ptr);
return 0;
}
result += utf_codeLength(encSize, c);
}
break;
case 2:
for (size_t u = 0; u < len;)
{
if (const s = utf_decodeWchar(wstring[0 .. len], u, c))
{
error("%.*s", cast(int)s.length, s.ptr);
return 0;
}
result += utf_codeLength(encSize, c);
}
break;
case 4:
foreach (u; 0 .. len)
{
result += utf_codeLength(encSize, dstring[u]);
}
break;
default:
assert(0);
}
return result;
}
/**********************************************
* Write the contents of the string to dest.
* Use numberOfCodeUnits() to determine size of result.
* Params:
* dest = destination
* tyto = encoding type of the result
* zero = add terminating 0
*/
void writeTo(void* dest, bool zero, int tyto = 0) const
{
int encSize;
switch (tyto)
{
case 0: encSize = sz; break;
case Tchar: encSize = 1; break;
case Twchar: encSize = 2; break;
case Tdchar: encSize = 4; break;
default:
assert(0);
}
if (sz == encSize)
{
memcpy(dest, string, len * sz);
if (zero)
memset(dest + len * sz, 0, sz);
}
else
assert(0);
}
/*********************************************
* Get the code unit at index i
* Params:
* i = index
* Returns:
* code unit at index i
*/
dchar getCodeUnit(size_t i) const pure
{
assert(i < len);
final switch (sz)
{
case 1:
return string[i];
case 2:
return wstring[i];
case 4:
return dstring[i];
}
}
/*********************************************
* Set the code unit at index i to c
* Params:
* i = index
* c = code unit to set it to
*/
void setCodeUnit(size_t i, dchar c)
{
assert(i < len);
final switch (sz)
{
case 1:
string[i] = cast(char)c;
break;
case 2:
wstring[i] = cast(wchar)c;
break;
case 4:
dstring[i] = c;
break;
}
}
override StringExp toStringExp()
{
return this;
}
/****************************************
* Convert string to char[].
*/
StringExp toUTF8(Scope* sc)
{
if (sz != 1)
{
// Convert to UTF-8 string
committed = 0;
Expression e = castTo(sc, Type.tchar.arrayOf());
e = e.optimize(WANTvalue);
auto se = e.isStringExp();
assert(se.sz == 1);
return se;
}
return this;
}
/**
* Compare two `StringExp` by length, then value
*
* The comparison is not the usual C-style comparison as seen with
* `strcmp` or `memcmp`, but instead first compare based on the length.
* This allows both faster lookup and sorting when comparing sparse data.
*
* This ordering scheme is relied on by the string-switching feature.
* Code in Druntime's `core.internal.switch_` relies on this ordering
* when doing a binary search among case statements.
*
* Both `StringExp` should be of the same encoding.
*
* Params:
* se2 = String expression to compare `this` to
*
* Returns:
* `0` when `this` is equal to se2, a value greater than `0` if
* `this` should be considered greater than `se2`,
* and a value less than `0` if `this` is lesser than `se2`.
*/
int compare(const StringExp se2) const nothrow pure @nogc
{
//printf("StringExp::compare()\n");
const len1 = len;
const len2 = se2.len;
assert(this.sz == se2.sz, "Comparing string expressions of different sizes");
//printf("sz = %d, len1 = %d, len2 = %d\n", sz, (int)len1, (int)len2);
if (len1 == len2)
{
switch (sz)
{
case 1:
return memcmp(string, se2.string, len1);
case 2:
{
wchar* s1 = cast(wchar*)string;
wchar* s2 = cast(wchar*)se2.string;
foreach (u; 0 .. len)
{
if (s1[u] != s2[u])
return s1[u] - s2[u];
}
}
break;
case 4:
{
dchar* s1 = cast(dchar*)string;
dchar* s2 = cast(dchar*)se2.string;
foreach (u; 0 .. len)
{
if (s1[u] != s2[u])
return s1[u] - s2[u];
}
}
break;
default:
assert(0);
}
}
return cast(int)(len1 - len2);
}
override Optional!bool toBool()
{
// Keep the old behaviour for this refactoring
// Should probably match language spec instead and check for length
return typeof(return)(true);
}
override bool isLvalue()
{
/* string literal is rvalue in default, but
* conversion to reference of static array is only allowed.
*/
return (type && type.toBasetype().ty == Tsarray);
}
override Expression toLvalue(Scope* sc, Expression e)
{
//printf("StringExp::toLvalue(%s) type = %s\n", toChars(), type ? type.toChars() : NULL);
return (type && type.toBasetype().ty == Tsarray) ? this : Expression.toLvalue(sc, e);
}
override Expression modifiableLvalue(Scope* sc, Expression e)
{
error("cannot modify string literal `%s`", toChars());
return ErrorExp.get();
}
/********************************
* Convert string contents to a 0 terminated string,
* allocated by mem.xmalloc().
*/
extern (D) const(char)[] toStringz() const
{
auto nbytes = len * sz;
char* s = cast(char*)mem.xmalloc(nbytes + sz);
writeTo(s, true);
return s[0 .. nbytes];
}
extern (D) const(char)[] peekString() const
{
assert(sz == 1);
return this.string[0 .. len];
}
extern (D) const(wchar)[] peekWstring() const
{
assert(sz == 2);
return this.wstring[0 .. len];
}
extern (D) const(dchar)[] peekDstring() const
{
assert(sz == 4);
return this.dstring[0 .. len];
}
/*******************
* Get a slice of the data.
*/
extern (D) const(ubyte)[] peekData() const
{
return cast(const(ubyte)[])this.string[0 .. len * sz];
}
/*******************
* Borrow a slice of the data, so the caller can modify
* it in-place (!)
*/
extern (D) ubyte[] borrowData()
{
return cast(ubyte[])this.string[0 .. len * sz];
}
/***********************
* Set new string data.
* `this` becomes the new owner of the data.
*/
extern (D) void setData(void* s, size_t len, ubyte sz)
{
this.string = cast(char*)s;
this.len = len;
this.sz = sz;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* A sequence of expressions
*
* ---
* alias AliasSeq(T...) = T;
* alias Tup = AliasSeq!(3, int, "abc");
* ---
*/
extern (C++) final class TupleExp : Expression
{
/* Tuple-field access may need to take out its side effect part.
* For example:
* foo().tupleof
* is rewritten as:
* (ref __tup = foo(); tuple(__tup.field0, __tup.field1, ...))
* The declaration of temporary variable __tup will be stored in TupleExp.e0.
*/
Expression e0;
Expressions* exps;
extern (D) this(const ref Loc loc, Expression e0, Expressions* exps)
{
super(loc, EXP.tuple, __traits(classInstanceSize, TupleExp));
//printf("TupleExp(this = %p)\n", this);
this.e0 = e0;
this.exps = exps;
}
extern (D) this(const ref Loc loc, Expressions* exps)
{
super(loc, EXP.tuple, __traits(classInstanceSize, TupleExp));
//printf("TupleExp(this = %p)\n", this);
this.exps = exps;
}
extern (D) this(const ref Loc loc, TupleDeclaration tup)
{
super(loc, EXP.tuple, __traits(classInstanceSize, TupleExp));
this.exps = new Expressions();
this.exps.reserve(tup.objects.dim);
foreach (o; *tup.objects)
{
if (Dsymbol s = getDsymbol(o))
{
/* If tuple element represents a symbol, translate to DsymbolExp
* to supply implicit 'this' if needed later.
*/
Expression e = new DsymbolExp(loc, s);
this.exps.push(e);
}
else if (auto eo = o.isExpression())
{
auto e = eo.copy();
e.loc = loc; // https://issues.dlang.org/show_bug.cgi?id=15669
this.exps.push(e);
}
else if (auto t = o.isType())
{
Expression e = new TypeExp(loc, t);
this.exps.push(e);
}
else
{
error("`%s` is not an expression", o.toChars());
}
}
}
static TupleExp create(const ref Loc loc, Expressions* exps)
{
return new TupleExp(loc, exps);
}
override TupleExp toTupleExp()
{
return this;
}
override TupleExp syntaxCopy()
{
return new TupleExp(loc, e0 ? e0.syntaxCopy() : null, arraySyntaxCopy(exps));
}
override bool equals(const RootObject o) const
{
if (this == o)
return true;
if (auto e = o.isExpression())
if (auto te = e.isTupleExp())
{
if (exps.dim != te.exps.dim)
return false;
if (e0 && !e0.equals(te.e0) || !e0 && te.e0)
return false;
foreach (i, e1; *exps)
{
auto e2 = (*te.exps)[i];
if (!e1.equals(e2))
return false;
}
return true;
}
return false;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* [ e1, e2, e3, ... ]
*
* https://dlang.org/spec/expression.html#array_literals
*/
extern (C++) final class ArrayLiteralExp : Expression
{
/** If !is null, elements[] can be sparse and basis is used for the
* "default" element value. In other words, non-null elements[i] overrides
* this 'basis' value.
*/
Expression basis;
Expressions* elements;
OwnedBy ownedByCtfe = OwnedBy.code;
extern (D) this(const ref Loc loc, Type type, Expressions* elements)
{
super(loc, EXP.arrayLiteral, __traits(classInstanceSize, ArrayLiteralExp));
this.type = type;
this.elements = elements;
}
extern (D) this(const ref Loc loc, Type type, Expression e)
{
super(loc, EXP.arrayLiteral, __traits(classInstanceSize, ArrayLiteralExp));
this.type = type;
elements = new Expressions();
elements.push(e);
}
extern (D) this(const ref Loc loc, Type type, Expression basis, Expressions* elements)
{
super(loc, EXP.arrayLiteral, __traits(classInstanceSize, ArrayLiteralExp));
this.type = type;
this.basis = basis;
this.elements = elements;
}
static ArrayLiteralExp create(const ref Loc loc, Expressions* elements)
{
return new ArrayLiteralExp(loc, null, elements);
}
// Same as create, but doesn't allocate memory.
static void emplace(UnionExp* pue, const ref Loc loc, Expressions* elements)
{
emplaceExp!(ArrayLiteralExp)(pue, loc, null, elements);
}
override ArrayLiteralExp syntaxCopy()
{
return new ArrayLiteralExp(loc,
null,
basis ? basis.syntaxCopy() : null,
arraySyntaxCopy(elements));
}
override bool equals(const RootObject o) const
{
if (this == o)
return true;
auto e = o.isExpression();
if (!e)
return false;
if (auto ae = e.isArrayLiteralExp())
{
if (elements.dim != ae.elements.dim)
return false;
if (elements.dim == 0 && !type.equals(ae.type))
{
return false;
}
foreach (i, e1; *elements)
{
auto e2 = (*ae.elements)[i];
auto e1x = e1 ? e1 : basis;
auto e2x = e2 ? e2 : ae.basis;
if (e1x != e2x && (!e1x || !e2x || !e1x.equals(e2x)))
return false;
}
return true;
}
return false;
}
Expression getElement(size_t i)
{
return this[i];
}
Expression opIndex(size_t i)
{
auto el = (*elements)[i];
return el ? el : basis;
}
override Optional!bool toBool()
{
size_t dim = elements ? elements.dim : 0;
return typeof(return)(dim != 0);
}
override StringExp toStringExp()
{
TY telem = type.nextOf().toBasetype().ty;
if (telem.isSomeChar || (telem == Tvoid && (!elements || elements.dim == 0)))
{
ubyte sz = 1;
if (telem == Twchar)
sz = 2;
else if (telem == Tdchar)
sz = 4;
OutBuffer buf;
if (elements)
{
foreach (i; 0 .. elements.dim)
{
auto ch = this[i];
if (ch.op != EXP.int64)
return null;
if (sz == 1)
buf.writeByte(cast(uint)ch.toInteger());
else if (sz == 2)
buf.writeword(cast(uint)ch.toInteger());
else
buf.write4(cast(uint)ch.toInteger());
}
}
char prefix;
if (sz == 1)
{
prefix = 'c';
buf.writeByte(0);
}
else if (sz == 2)
{
prefix = 'w';
buf.writeword(0);
}
else
{
prefix = 'd';
buf.write4(0);
}
const size_t len = buf.length / sz - 1;
auto se = new StringExp(loc, buf.extractSlice()[0 .. len * sz], len, sz, prefix);
se.sz = sz;
se.type = type;
return se;
}
return null;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* [ key0 : value0, key1 : value1, ... ]
*
* https://dlang.org/spec/expression.html#associative_array_literals
*/
extern (C++) final class AssocArrayLiteralExp : Expression
{
Expressions* keys;
Expressions* values;
OwnedBy ownedByCtfe = OwnedBy.code;
extern (D) this(const ref Loc loc, Expressions* keys, Expressions* values)
{
super(loc, EXP.assocArrayLiteral, __traits(classInstanceSize, AssocArrayLiteralExp));
assert(keys.dim == values.dim);
this.keys = keys;
this.values = values;
}
override bool equals(const RootObject o) const
{
if (this == o)
return true;
auto e = o.isExpression();
if (!e)
return false;
if (auto ae = e.isAssocArrayLiteralExp())
{
if (keys.dim != ae.keys.dim)
return false;
size_t count = 0;
foreach (i, key; *keys)
{
foreach (j, akey; *ae.keys)
{
if (key.equals(akey))
{
if (!(*values)[i].equals((*ae.values)[j]))
return false;
++count;
}
}
}
return count == keys.dim;
}
return false;
}
override AssocArrayLiteralExp syntaxCopy()
{
return new AssocArrayLiteralExp(loc, arraySyntaxCopy(keys), arraySyntaxCopy(values));
}
override Optional!bool toBool()
{
size_t dim = keys.dim;
return typeof(return)(dim != 0);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
enum stageScrub = 0x1; /// scrubReturnValue is running
enum stageSearchPointers = 0x2; /// hasNonConstPointers is running
enum stageOptimize = 0x4; /// optimize is running
enum stageApply = 0x8; /// apply is running
enum stageInlineScan = 0x10; /// inlineScan is running
enum stageToCBuffer = 0x20; /// toCBuffer is running
/***********************************************************
* sd( e1, e2, e3, ... )
*/
extern (C++) final class StructLiteralExp : Expression
{
StructDeclaration sd; /// which aggregate this is for
Expressions* elements; /// parallels sd.fields[] with null entries for fields to skip
Type stype; /// final type of result (can be different from sd's type)
Symbol* sym; /// back end symbol to initialize with literal
/** pointer to the origin instance of the expression.
* once a new expression is created, origin is set to 'this'.
* anytime when an expression copy is created, 'origin' pointer is set to
* 'origin' pointer value of the original expression.
*/
StructLiteralExp origin;
/// those fields need to prevent a infinite recursion when one field of struct initialized with 'this' pointer.
StructLiteralExp inlinecopy;
/** anytime when recursive function is calling, 'stageflags' marks with bit flag of
* current stage and unmarks before return from this function.
* 'inlinecopy' uses similar 'stageflags' and from multiple evaluation 'doInline'
* (with infinite recursion) of this expression.
*/
int stageflags;
bool useStaticInit; /// if this is true, use the StructDeclaration's init symbol
bool isOriginal = false; /// used when moving instances to indicate `this is this.origin`
OwnedBy ownedByCtfe = OwnedBy.code;
extern (D) this(const ref Loc loc, StructDeclaration sd, Expressions* elements, Type stype = null)
{
super(loc, EXP.structLiteral, __traits(classInstanceSize, StructLiteralExp));
this.sd = sd;
if (!elements)
elements = new Expressions();
this.elements = elements;
this.stype = stype;
this.origin = this;
//printf("StructLiteralExp::StructLiteralExp(%s)\n", toChars());
}
static StructLiteralExp create(const ref Loc loc, StructDeclaration sd, void* elements, Type stype = null)
{
return new StructLiteralExp(loc, sd, cast(Expressions*)elements, stype);
}
override bool equals(const RootObject o) const
{
if (this == o)
return true;
auto e = o.isExpression();
if (!e)
return false;
if (auto se = e.isStructLiteralExp())
{
if (!type.equals(se.type))
return false;
if (elements.dim != se.elements.dim)
return false;
foreach (i, e1; *elements)
{
auto e2 = (*se.elements)[i];
if (e1 != e2 && (!e1 || !e2 || !e1.equals(e2)))
return false;
}
return true;
}
return false;
}
override StructLiteralExp syntaxCopy()
{
auto exp = new StructLiteralExp(loc, sd, arraySyntaxCopy(elements), type ? type : stype);
exp.origin = this;
return exp;
}
/**************************************
* Gets expression at offset of type.
* Returns NULL if not found.
*/
Expression getField(Type type, uint offset)
{
//printf("StructLiteralExp::getField(this = %s, type = %s, offset = %u)\n",
// /*toChars()*/"", type.toChars(), offset);
Expression e = null;
int i = getFieldIndex(type, offset);
if (i != -1)
{
//printf("\ti = %d\n", i);
if (i >= sd.nonHiddenFields())
return null;
assert(i < elements.dim);
e = (*elements)[i];
if (e)
{
//printf("e = %s, e.type = %s\n", e.toChars(), e.type.toChars());
/* If type is a static array, and e is an initializer for that array,
* then the field initializer should be an array literal of e.
*/
auto tsa = type.isTypeSArray();
if (tsa && e.type.castMod(0) != type.castMod(0))
{
const length = cast(size_t)tsa.dim.toInteger();
auto z = new Expressions(length);
foreach (ref q; *z)
q = e.copy();
e = new ArrayLiteralExp(loc, type, z);
}
else
{
e = e.copy();
e.type = type;
}
if (useStaticInit && e.type.needsNested())
if (auto se = e.isStructLiteralExp())
{
se.useStaticInit = true;
}
}
}
return e;
}
/************************************
* Get index of field.
* Returns -1 if not found.
*/
int getFieldIndex(Type type, uint offset)
{
/* Find which field offset is by looking at the field offsets
*/
if (elements.dim)
{
const sz = type.size();
if (sz == SIZE_INVALID)
return -1;
foreach (i, v; sd.fields)
{
if (offset == v.offset && sz == v.type.size())
{
/* context fields might not be filled. */
if (i >= sd.nonHiddenFields())
return cast(int)i;
if (auto e = (*elements)[i])
{
return cast(int)i;
}
break;
}
}
}
return -1;
}
override Expression addDtorHook(Scope* sc)
{
/* If struct requires a destructor, rewrite as:
* (S tmp = S()),tmp
* so that the destructor can be hung on tmp.
*/
if (sd.dtor && sc.func)
{
/* Make an identifier for the temporary of the form:
* __sl%s%d, where %s is the struct name
*/
char[10] buf = void;
const prefix = "__sl";
const ident = sd.ident.toString;
const fullLen = prefix.length + ident.length;
const len = fullLen < buf.length ? fullLen : buf.length;
buf[0 .. prefix.length] = prefix;
buf[prefix.length .. len] = ident[0 .. len - prefix.length];
auto tmp = copyToTemp(0, buf[0 .. len], this);
Expression ae = new DeclarationExp(loc, tmp);
Expression e = new CommaExp(loc, ae, new VarExp(loc, tmp));
e = e.expressionSemantic(sc);
return e;
}
return this;
}
override Expression toLvalue(Scope* sc, Expression e)
{
if (sc.flags & SCOPE.Cfile)
return this; // C struct literals are lvalues
else
return Expression.toLvalue(sc, e);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* C11 6.5.2.5
* ( type-name ) { initializer-list }
*/
extern (C++) final class CompoundLiteralExp : Expression
{
Initializer initializer; /// initializer-list
extern (D) this(const ref Loc loc, Type type_name, Initializer initializer)
{
super(loc, EXP.compoundLiteral, __traits(classInstanceSize, CompoundLiteralExp));
super.type = type_name;
this.initializer = initializer;
//printf("CompoundLiteralExp::CompoundLiteralExp(%s)\n", toChars());
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Mainly just a placeholder
*/
extern (C++) final class TypeExp : Expression
{
extern (D) this(const ref Loc loc, Type type)
{
super(loc, EXP.type, __traits(classInstanceSize, TypeExp));
//printf("TypeExp::TypeExp(%s)\n", type.toChars());
this.type = type;
}
override TypeExp syntaxCopy()
{
return new TypeExp(loc, type.syntaxCopy());
}
override bool checkType()
{
error("type `%s` is not an expression", toChars());
return true;
}
override bool checkValue()
{
error("type `%s` has no value", toChars());
return true;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Mainly just a placeholder of
* Package, Module, Nspace, and TemplateInstance (including TemplateMixin)
*
* A template instance that requires IFTI:
* foo!tiargs(fargs) // foo!tiargs
* is left until CallExp::semantic() or resolveProperties()
*/
extern (C++) final class ScopeExp : Expression
{
ScopeDsymbol sds;
extern (D) this(const ref Loc loc, ScopeDsymbol sds)
{
super(loc, EXP.scope_, __traits(classInstanceSize, ScopeExp));
//printf("ScopeExp::ScopeExp(sds = '%s')\n", sds.toChars());
//static int count; if (++count == 38) *(char*)0=0;
this.sds = sds;
assert(!sds.isTemplateDeclaration()); // instead, you should use TemplateExp
}
override ScopeExp syntaxCopy()
{
return new ScopeExp(loc, sds.syntaxCopy(null));
}
override bool checkType()
{
if (sds.isPackage())
{
error("%s `%s` has no type", sds.kind(), sds.toChars());
return true;
}
if (auto ti = sds.isTemplateInstance())
{
//assert(ti.needsTypeInference(sc));
if (ti.tempdecl &&
ti.semantictiargsdone &&
ti.semanticRun == PASS.initial)
{
error("partial %s `%s` has no type", sds.kind(), toChars());
return true;
}
}
return false;
}
override bool checkValue()
{
error("%s `%s` has no value", sds.kind(), sds.toChars());
return true;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Mainly just a placeholder
*/
extern (C++) final class TemplateExp : Expression
{
TemplateDeclaration td;
FuncDeclaration fd;
extern (D) this(const ref Loc loc, TemplateDeclaration td, FuncDeclaration fd = null)
{
super(loc, EXP.template_, __traits(classInstanceSize, TemplateExp));
//printf("TemplateExp(): %s\n", td.toChars());
this.td = td;
this.fd = fd;
}
override bool isLvalue()
{
return fd !is null;
}
override Expression toLvalue(Scope* sc, Expression e)
{
if (!fd)
return Expression.toLvalue(sc, e);
assert(sc);
return symbolToExp(fd, loc, sc, true);
}
override bool checkType()
{
error("%s `%s` has no type", td.kind(), toChars());
return true;
}
override bool checkValue()
{
error("%s `%s` has no value", td.kind(), toChars());
return true;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* newtype(arguments)
*/
extern (C++) final class NewExp : Expression
{
Expression thisexp; // if !=null, 'this' for class being allocated
Type newtype;
Expressions* arguments; // Array of Expression's
Expression argprefix; // expression to be evaluated just before arguments[]
CtorDeclaration member; // constructor function
bool onstack; // allocate on stack
bool thrownew; // this NewExp is the expression of a ThrowStatement
extern (D) this(const ref Loc loc, Expression thisexp, Type newtype, Expressions* arguments)
{
super(loc, EXP.new_, __traits(classInstanceSize, NewExp));
this.thisexp = thisexp;
this.newtype = newtype;
this.arguments = arguments;
}
static NewExp create(const ref Loc loc, Expression thisexp, Type newtype, Expressions* arguments)
{
return new NewExp(loc, thisexp, newtype, arguments);
}
override NewExp syntaxCopy()
{
return new NewExp(loc,
thisexp ? thisexp.syntaxCopy() : null,
newtype.syntaxCopy(),
arraySyntaxCopy(arguments));
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* class baseclasses { } (arguments)
*/
extern (C++) final class NewAnonClassExp : Expression
{
Expression thisexp; // if !=null, 'this' for class being allocated
ClassDeclaration cd; // class being instantiated
Expressions* arguments; // Array of Expression's to call class constructor
extern (D) this(const ref Loc loc, Expression thisexp, ClassDeclaration cd, Expressions* arguments)
{
super(loc, EXP.newAnonymousClass, __traits(classInstanceSize, NewAnonClassExp));
this.thisexp = thisexp;
this.cd = cd;
this.arguments = arguments;
}
override NewAnonClassExp syntaxCopy()
{
return new NewAnonClassExp(loc, thisexp ? thisexp.syntaxCopy() : null, cd.syntaxCopy(null), arraySyntaxCopy(arguments));
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) class SymbolExp : Expression
{
Declaration var;
Dsymbol originalScope; // original scope before inlining
bool hasOverloads;
extern (D) this(const ref Loc loc, EXP op, int size, Declaration var, bool hasOverloads)
{
super(loc, op, size);
assert(var);
this.var = var;
this.hasOverloads = hasOverloads;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Offset from symbol
*/
extern (C++) final class SymOffExp : SymbolExp
{
dinteger_t offset;
extern (D) this(const ref Loc loc, Declaration var, dinteger_t offset, bool hasOverloads = true)
{
if (auto v = var.isVarDeclaration())
{
// FIXME: This error report will never be handled anyone.
// It should be done before the SymOffExp construction.
if (v.needThis())
.error(loc, "need `this` for address of `%s`", v.toChars());
hasOverloads = false;
}
super(loc, EXP.symbolOffset, __traits(classInstanceSize, SymOffExp), var, hasOverloads);
this.offset = offset;
}
override Optional!bool toBool()
{
return typeof(return)(true);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Variable
*/
extern (C++) final class VarExp : SymbolExp
{
bool delegateWasExtracted;
extern (D) this(const ref Loc loc, Declaration var, bool hasOverloads = true)
{
if (var.isVarDeclaration())
hasOverloads = false;
super(loc, EXP.variable, __traits(classInstanceSize, VarExp), var, hasOverloads);
//printf("VarExp(this = %p, '%s', loc = %s)\n", this, var.toChars(), loc.toChars());
//if (strcmp(var.ident.toChars(), "func") == 0) assert(0);
this.type = var.type;
}
static VarExp create(const ref Loc loc, Declaration var, bool hasOverloads = true)
{
return new VarExp(loc, var, hasOverloads);
}
override bool equals(const RootObject o) const
{
if (this == o)
return true;
if (auto ne = o.isExpression().isVarExp())
{
if (type.toHeadMutable().equals(ne.type.toHeadMutable()) && var == ne.var)
{
return true;
}
}
return false;
}
override bool isLvalue()
{
if (var.storage_class & (STC.lazy_ | STC.rvalue | STC.manifest))
return false;
return true;
}
override Expression toLvalue(Scope* sc, Expression e)
{
if (var.storage_class & STC.manifest)
{
error("manifest constant `%s` cannot be modified", var.toChars());
return ErrorExp.get();
}
if (var.storage_class & STC.lazy_ && !delegateWasExtracted)
{
error("lazy variable `%s` cannot be modified", var.toChars());
return ErrorExp.get();
}
if (var.ident == Id.ctfe)
{
error("cannot modify compiler-generated variable `__ctfe`");
return ErrorExp.get();
}
if (var.ident == Id.dollar) // https://issues.dlang.org/show_bug.cgi?id=13574
{
error("cannot modify operator `$`");
return ErrorExp.get();
}
return this;
}
override Expression modifiableLvalue(Scope* sc, Expression e)
{
//printf("VarExp::modifiableLvalue('%s')\n", var.toChars());
if (var.storage_class & STC.manifest)
{
error("cannot modify manifest constant `%s`", toChars());
return ErrorExp.get();
}
// See if this expression is a modifiable lvalue (i.e. not const)
return Expression.modifiableLvalue(sc, e);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Overload Set
*/
extern (C++) final class OverExp : Expression
{
OverloadSet vars;
extern (D) this(const ref Loc loc, OverloadSet s)
{
super(loc, EXP.overloadSet, __traits(classInstanceSize, OverExp));
//printf("OverExp(this = %p, '%s')\n", this, var.toChars());
vars = s;
type = Type.tvoid;
}
override bool isLvalue()
{
return true;
}
override Expression toLvalue(Scope* sc, Expression e)
{
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Function/Delegate literal
*/
extern (C++) final class FuncExp : Expression
{
FuncLiteralDeclaration fd;
TemplateDeclaration td;
TOK tok; // TOK.reserved, TOK.delegate_, TOK.function_
extern (D) this(const ref Loc loc, Dsymbol s)
{
super(loc, EXP.function_, __traits(classInstanceSize, FuncExp));
this.td = s.isTemplateDeclaration();
this.fd = s.isFuncLiteralDeclaration();
if (td)
{
assert(td.literal);
assert(td.members && td.members.dim == 1);
fd = (*td.members)[0].isFuncLiteralDeclaration();
}
tok = fd.tok; // save original kind of function/delegate/(infer)
assert(fd.fbody);
}
override bool equals(const RootObject o) const
{
if (this == o)
return true;
auto e = o.isExpression();
if (!e)
return false;
if (auto fe = e.isFuncExp())
{
return fd == fe.fd;
}
return false;
}
extern (D) void genIdent(Scope* sc)
{
if (fd.ident == Id.empty)
{
const(char)[] s;
if (fd.fes)
s = "__foreachbody";
else if (fd.tok == TOK.reserved)
s = "__lambda";
else if (fd.tok == TOK.delegate_)
s = "__dgliteral";
else
s = "__funcliteral";
DsymbolTable symtab;
if (FuncDeclaration func = sc.parent.isFuncDeclaration())
{
if (func.localsymtab is null)
{
// Inside template constraint, symtab is not set yet.
// Initialize it lazily.
func.localsymtab = new DsymbolTable();
}
symtab = func.localsymtab;
}
else
{
ScopeDsymbol sds = sc.parent.isScopeDsymbol();
if (!sds.symtab)
{
// Inside template constraint, symtab may not be set yet.
// Initialize it lazily.
assert(sds.isTemplateInstance());
sds.symtab = new DsymbolTable();
}
symtab = sds.symtab;
}
assert(symtab);
Identifier id = Identifier.generateId(s, symtab.length() + 1);
fd.ident = id;
if (td)
td.ident = id;
symtab.insert(td ? cast(Dsymbol)td : cast(Dsymbol)fd);
}
}
override FuncExp syntaxCopy()
{
if (td)
return new FuncExp(loc, td.syntaxCopy(null));
else if (fd.semanticRun == PASS.initial)
return new FuncExp(loc, fd.syntaxCopy(null));
else // https://issues.dlang.org/show_bug.cgi?id=13481
// Prevent multiple semantic analysis of lambda body.
return new FuncExp(loc, fd);
}
extern (D) MATCH matchType(Type to, Scope* sc, FuncExp* presult, int flag = 0)
{
static MATCH cannotInfer(Expression e, Type to, int flag)
{
if (!flag)
e.error("cannot infer parameter types from `%s`", to.toChars());
return MATCH.nomatch;
}
//printf("FuncExp::matchType('%s'), to=%s\n", type ? type.toChars() : "null", to.toChars());
if (presult)
*presult = null;
TypeFunction tof = null;
if (to.ty == Tdelegate)
{
if (tok == TOK.function_)
{
if (!flag)
error("cannot match function literal to delegate type `%s`", to.toChars());
return MATCH.nomatch;
}
tof = cast(TypeFunction)to.nextOf();
}
else if (to.ty == Tpointer && (tof = to.nextOf().isTypeFunction()) !is null)
{
if (tok == TOK.delegate_)
{
if (!flag)
error("cannot match delegate literal to function pointer type `%s`", to.toChars());
return MATCH.nomatch;
}
}
if (td)
{
if (!tof)
{
return cannotInfer(this, to, flag);
}
// Parameter types inference from 'tof'
assert(td._scope);
TypeFunction tf = fd.type.isTypeFunction();
//printf("\ttof = %s\n", tof.toChars());
//printf("\ttf = %s\n", tf.toChars());
const dim = tf.parameterList.length;
if (tof.parameterList.length != dim || tof.parameterList.varargs != tf.parameterList.varargs)
return cannotInfer(this, to, flag);
auto tiargs = new Objects();
tiargs.reserve(td.parameters.dim);
foreach (tp; *td.parameters)
{
size_t u = 0;
foreach (i, p; tf.parameterList)
{
if (auto ti = p.type.isTypeIdentifier())
if (ti && ti.ident == tp.ident)
break;
++u;
}
assert(u < dim);
Parameter pto = tof.parameterList[u];
Type t = pto.type;
if (t.ty == Terror)
return cannotInfer(this, to, flag);
tiargs.push(t);
}
// Set target of return type inference
if (!tf.next && tof.next)
fd.treq = to;
auto ti = new TemplateInstance(loc, td, tiargs);
Expression ex = (new ScopeExp(loc, ti)).expressionSemantic(td._scope);
// Reset inference target for the later re-semantic
fd.treq = null;
if (ex.op == EXP.error)
return MATCH.nomatch;
if (auto ef = ex.isFuncExp())
return ef.matchType(to, sc, presult, flag);
else
return cannotInfer(this, to, flag);
}
if (!tof || !tof.next)
return MATCH.nomatch;
assert(type && type != Type.tvoid);
if (fd.type.ty == Terror)
return MATCH.nomatch;
auto tfx = fd.type.isTypeFunction();
bool convertMatch = (type.ty != to.ty);
if (fd.inferRetType && tfx.next.implicitConvTo(tof.next) == MATCH.convert)
{
/* If return type is inferred and covariant return,
* tweak return statements to required return type.
*
* interface I {}
* class C : Object, I{}
*
* I delegate() dg = delegate() { return new class C(); }
*/
convertMatch = true;
auto tfy = new TypeFunction(tfx.parameterList, tof.next,
tfx.linkage, STC.undefined_);
tfy.mod = tfx.mod;
tfy.trust = tfx.trust;
tfy.isnothrow = tfx.isnothrow;
tfy.isnogc = tfx.isnogc;
tfy.purity = tfx.purity;
tfy.isproperty = tfx.isproperty;
tfy.isref = tfx.isref;
tfy.isInOutParam = tfx.isInOutParam;
tfy.isInOutQual = tfx.isInOutQual;
tfy.deco = tfy.merge().deco;
tfx = tfy;
}
Type tx;
if (tok == TOK.delegate_ ||
tok == TOK.reserved && (type.ty == Tdelegate || type.ty == Tpointer && to.ty == Tdelegate))
{
// Allow conversion from implicit function pointer to delegate
tx = new TypeDelegate(tfx);
tx.deco = tx.merge().deco;
}
else
{
assert(tok == TOK.function_ || tok == TOK.reserved && type.ty == Tpointer || fd.errors);
tx = tfx.pointerTo();
}
//printf("\ttx = %s, to = %s\n", tx.toChars(), to.toChars());
MATCH m = tx.implicitConvTo(to);
if (m > MATCH.nomatch)
{
// MATCH.exact: exact type match
// MATCH.constant: covairiant type match (eg. attributes difference)
// MATCH.convert: context conversion
m = convertMatch ? MATCH.convert : tx.equals(to) ? MATCH.exact : MATCH.constant;
if (presult)
{
(*presult) = cast(FuncExp)copy();
(*presult).type = to;
// https://issues.dlang.org/show_bug.cgi?id=12508
// Tweak function body for covariant returns.
(*presult).fd.modifyReturns(sc, tof.next);
}
}
else if (!flag)
{
auto ts = toAutoQualChars(tx, to);
error("cannot implicitly convert expression `%s` of type `%s` to `%s`",
toChars(), ts[0], ts[1]);
}
return m;
}
override const(char)* toChars() const
{
return fd.toChars();
}
override bool checkType()
{
if (td)
{
error("template lambda has no type");
return true;
}
return false;
}
override bool checkValue()
{
if (td)
{
error("template lambda has no value");
return true;
}
return false;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Declaration of a symbol
*
* D grammar allows declarations only as statements. However in AST representation
* it can be part of any expression. This is used, for example, during internal
* syntax re-writes to inject hidden symbols.
*/
extern (C++) final class DeclarationExp : Expression
{
Dsymbol declaration;
extern (D) this(const ref Loc loc, Dsymbol declaration)
{
super(loc, EXP.declaration, __traits(classInstanceSize, DeclarationExp));
this.declaration = declaration;
}
override DeclarationExp syntaxCopy()
{
return new DeclarationExp(loc, declaration.syntaxCopy(null));
}
override bool hasCode()
{
if (auto vd = declaration.isVarDeclaration())
{
return !(vd.storage_class & (STC.manifest | STC.static_));
}
return false;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* typeid(int)
*/
extern (C++) final class TypeidExp : Expression
{
RootObject obj;
extern (D) this(const ref Loc loc, RootObject o)
{
super(loc, EXP.typeid_, __traits(classInstanceSize, TypeidExp));
this.obj = o;
}
override TypeidExp syntaxCopy()
{
return new TypeidExp(loc, objectSyntaxCopy(obj));
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* __traits(identifier, args...)
*/
extern (C++) final class TraitsExp : Expression
{
Identifier ident;
Objects* args;
extern (D) this(const ref Loc loc, Identifier ident, Objects* args)
{
super(loc, EXP.traits, __traits(classInstanceSize, TraitsExp));
this.ident = ident;
this.args = args;
}
override TraitsExp syntaxCopy()
{
return new TraitsExp(loc, ident, TemplateInstance.arraySyntaxCopy(args));
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Generates a halt instruction
*
* `assert(0)` gets rewritten to this with `CHECKACTION.halt`
*/
extern (C++) final class HaltExp : Expression
{
extern (D) this(const ref Loc loc)
{
super(loc, EXP.halt, __traits(classInstanceSize, HaltExp));
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* is(targ id tok tspec)
* is(targ id == tok2)
*/
extern (C++) final class IsExp : Expression
{
Type targ;
Identifier id; // can be null
Type tspec; // can be null
TemplateParameters* parameters;
TOK tok; // ':' or '=='
TOK tok2; // 'struct', 'union', etc.
extern (D) this(const ref Loc loc, Type targ, Identifier id, TOK tok, Type tspec, TOK tok2, TemplateParameters* parameters)
{
super(loc, EXP.is_, __traits(classInstanceSize, IsExp));
this.targ = targ;
this.id = id;
this.tok = tok;
this.tspec = tspec;
this.tok2 = tok2;
this.parameters = parameters;
}
override IsExp syntaxCopy()
{
// This section is identical to that in TemplateDeclaration::syntaxCopy()
TemplateParameters* p = null;
if (parameters)
{
p = new TemplateParameters(parameters.dim);
foreach (i, el; *parameters)
(*p)[i] = el.syntaxCopy();
}
return new IsExp(loc, targ.syntaxCopy(), id, tok, tspec ? tspec.syntaxCopy() : null, tok2, p);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Base class for unary operators
*
* https://dlang.org/spec/expression.html#unary-expression
*/
extern (C++) abstract class UnaExp : Expression
{
Expression e1;
Type att1; // Save alias this type to detect recursion
extern (D) this(const ref Loc loc, EXP op, int size, Expression e1)
{
super(loc, op, size);
this.e1 = e1;
}
override UnaExp syntaxCopy()
{
UnaExp e = cast(UnaExp)copy();
e.type = null;
e.e1 = e.e1.syntaxCopy();
return e;
}
/********************************
* The type for a unary expression is incompatible.
* Print error message.
* Returns:
* ErrorExp
*/
final Expression incompatibleTypes()
{
if (e1.type.toBasetype() == Type.terror)
return e1;
if (e1.op == EXP.type)
{
error("incompatible type for `%s(%s)`: cannot use `%s` with types", EXPtoString(op).ptr, e1.toChars(), EXPtoString(op).ptr);
}
else
{
error("incompatible type for `%s(%s)`: `%s`", EXPtoString(op).ptr, e1.toChars(), e1.type.toChars());
}
return ErrorExp.get();
}
/*********************
* Mark the operand as will never be dereferenced,
* which is useful info for @safe checks.
* Do before semantic() on operands rewrites them.
*/
final void setNoderefOperand()
{
if (auto edi = e1.isDotIdExp())
edi.noderef = true;
}
override final Expression resolveLoc(const ref Loc loc, Scope* sc)
{
e1 = e1.resolveLoc(loc, sc);
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
alias fp_t = UnionExp function(const ref Loc loc, Type, Expression, Expression);
alias fp2_t = bool function(const ref Loc loc, EXP, Expression, Expression);
/***********************************************************
* Base class for binary operators
*/
extern (C++) abstract class BinExp : Expression
{
Expression e1;
Expression e2;
Type att1; // Save alias this type to detect recursion
Type att2; // Save alias this type to detect recursion
extern (D) this(const ref Loc loc, EXP op, int size, Expression e1, Expression e2)
{
super(loc, op, size);
this.e1 = e1;
this.e2 = e2;
}
override BinExp syntaxCopy()
{
BinExp e = cast(BinExp)copy();
e.type = null;
e.e1 = e.e1.syntaxCopy();
e.e2 = e.e2.syntaxCopy();
return e;
}
/********************************
* The types for a binary expression are incompatible.
* Print error message.
* Returns:
* ErrorExp
*/
final Expression incompatibleTypes()
{
if (e1.type.toBasetype() == Type.terror)
return e1;
if (e2.type.toBasetype() == Type.terror)
return e2;
// CondExp uses 'a ? b : c' but we're comparing 'b : c'
const(char)* thisOp = (op == EXP.question) ? ":" : EXPtoString(op).ptr;
if (e1.op == EXP.type || e2.op == EXP.type)
{
error("incompatible types for `(%s) %s (%s)`: cannot use `%s` with types",
e1.toChars(), thisOp, e2.toChars(), EXPtoString(op).ptr);
}
else if (e1.type.equals(e2.type))
{
error("incompatible types for `(%s) %s (%s)`: both operands are of type `%s`",
e1.toChars(), thisOp, e2.toChars(), e1.type.toChars());
}
else
{
auto ts = toAutoQualChars(e1.type, e2.type);
error("incompatible types for `(%s) %s (%s)`: `%s` and `%s`",
e1.toChars(), thisOp, e2.toChars(), ts[0], ts[1]);
}
return ErrorExp.get();
}
extern (D) final Expression checkOpAssignTypes(Scope* sc)
{
// At that point t1 and t2 are the merged types. type is the original type of the lhs.
Type t1 = e1.type;
Type t2 = e2.type;
// T opAssign floating yields a floating. Prevent truncating conversions (float to int).
// See issue 3841.
// Should we also prevent double to float (type.isfloating() && type.size() < t2.size()) ?
if (op == EXP.addAssign || op == EXP.minAssign ||
op == EXP.mulAssign || op == EXP.divAssign || op == EXP.modAssign ||
op == EXP.powAssign)
{
if ((type.isintegral() && t2.isfloating()))
{
warning("`%s %s %s` is performing truncating conversion", type.toChars(), EXPtoString(op).ptr, t2.toChars());
}
}
// generate an error if this is a nonsensical *=,/=, or %=, eg real *= imaginary
if (op == EXP.mulAssign || op == EXP.divAssign || op == EXP.modAssign)
{
// Any multiplication by an imaginary or complex number yields a complex result.
// r *= c, i*=c, r*=i, i*=i are all forbidden operations.
const(char)* opstr = EXPtoString(op).ptr;
if (t1.isreal() && t2.iscomplex())
{
error("`%s %s %s` is undefined. Did you mean `%s %s %s.re`?", t1.toChars(), opstr, t2.toChars(), t1.toChars(), opstr, t2.toChars());
return ErrorExp.get();
}
else if (t1.isimaginary() && t2.iscomplex())
{
error("`%s %s %s` is undefined. Did you mean `%s %s %s.im`?", t1.toChars(), opstr, t2.toChars(), t1.toChars(), opstr, t2.toChars());
return ErrorExp.get();
}
else if ((t1.isreal() || t1.isimaginary()) && t2.isimaginary())
{
error("`%s %s %s` is an undefined operation", t1.toChars(), opstr, t2.toChars());
return ErrorExp.get();
}
}
// generate an error if this is a nonsensical += or -=, eg real += imaginary
if (op == EXP.addAssign || op == EXP.minAssign)
{
// Addition or subtraction of a real and an imaginary is a complex result.
// Thus, r+=i, r+=c, i+=r, i+=c are all forbidden operations.
if ((t1.isreal() && (t2.isimaginary() || t2.iscomplex())) || (t1.isimaginary() && (t2.isreal() || t2.iscomplex())))
{
error("`%s %s %s` is undefined (result is complex)", t1.toChars(), EXPtoString(op).ptr, t2.toChars());
return ErrorExp.get();
}
if (type.isreal() || type.isimaginary())
{
assert(global.errors || t2.isfloating());
e2 = e2.castTo(sc, t1);
}
}
if (op == EXP.mulAssign)
{
if (t2.isfloating())
{
if (t1.isreal())
{
if (t2.isimaginary() || t2.iscomplex())
{
e2 = e2.castTo(sc, t1);
}
}
else if (t1.isimaginary())
{
if (t2.isimaginary() || t2.iscomplex())
{
switch (t1.ty)
{
case Timaginary32:
t2 = Type.tfloat32;
break;
case Timaginary64:
t2 = Type.tfloat64;
break;
case Timaginary80:
t2 = Type.tfloat80;
break;
default:
assert(0);
}
e2 = e2.castTo(sc, t2);
}
}
}
}
else if (op == EXP.divAssign)
{
if (t2.isimaginary())
{
if (t1.isreal())
{
// x/iv = i(-x/v)
// Therefore, the result is 0
e2 = new CommaExp(loc, e2, new RealExp(loc, CTFloat.zero, t1));
e2.type = t1;
Expression e = new AssignExp(loc, e1, e2);
e.type = t1;
return e;
}
else if (t1.isimaginary())
{
Type t3;
switch (t1.ty)
{
case Timaginary32:
t3 = Type.tfloat32;
break;
case Timaginary64:
t3 = Type.tfloat64;
break;
case Timaginary80:
t3 = Type.tfloat80;
break;
default:
assert(0);
}
e2 = e2.castTo(sc, t3);
Expression e = new AssignExp(loc, e1, e2);
e.type = t1;
return e;
}
}
}
else if (op == EXP.modAssign)
{
if (t2.iscomplex())
{
error("cannot perform modulo complex arithmetic");
return ErrorExp.get();
}
}
return this;
}
extern (D) final bool checkIntegralBin()
{
bool r1 = e1.checkIntegral();
bool r2 = e2.checkIntegral();
return (r1 || r2);
}
extern (D) final bool checkArithmeticBin()
{
bool r1 = e1.checkArithmetic();
bool r2 = e2.checkArithmetic();
return (r1 || r2);
}
extern (D) final bool checkSharedAccessBin(Scope* sc)
{
const r1 = e1.checkSharedAccess(sc);
const r2 = e2.checkSharedAccess(sc);
return (r1 || r2);
}
/*********************
* Mark the operands as will never be dereferenced,
* which is useful info for @safe checks.
* Do before semantic() on operands rewrites them.
*/
final void setNoderefOperands()
{
if (auto edi = e1.isDotIdExp())
edi.noderef = true;
if (auto edi = e2.isDotIdExp())
edi.noderef = true;
}
final Expression reorderSettingAAElem(Scope* sc)
{
BinExp be = this;
auto ie = be.e1.isIndexExp();
if (!ie)
return be;
if (ie.e1.type.toBasetype().ty != Taarray)
return be;
/* Fix evaluation order of setting AA element
* https://issues.dlang.org/show_bug.cgi?id=3825
* Rewrite:
* aa[k1][k2][k3] op= val;
* as:
* auto ref __aatmp = aa;
* auto ref __aakey3 = k1, __aakey2 = k2, __aakey1 = k3;
* auto ref __aaval = val;
* __aatmp[__aakey3][__aakey2][__aakey1] op= __aaval; // assignment
*/
Expression e0;
while (1)
{
Expression de;
ie.e2 = extractSideEffect(sc, "__aakey", de, ie.e2);
e0 = Expression.combine(de, e0);
auto ie1 = ie.e1.isIndexExp();
if (!ie1 ||
ie1.e1.type.toBasetype().ty != Taarray)
{
break;
}
ie = ie1;
}
assert(ie.e1.type.toBasetype().ty == Taarray);
Expression de;
ie.e1 = extractSideEffect(sc, "__aatmp", de, ie.e1);
e0 = Expression.combine(de, e0);
be.e2 = extractSideEffect(sc, "__aaval", e0, be.e2, true);
//printf("-e0 = %s, be = %s\n", e0.toChars(), be.toChars());
return Expression.combine(e0, be);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Binary operator assignment, `+=` `-=` `*=` etc.
*/
extern (C++) class BinAssignExp : BinExp
{
extern (D) this(const ref Loc loc, EXP op, int size, Expression e1, Expression e2)
{
super(loc, op, size, e1, e2);
}
override final bool isLvalue()
{
return true;
}
override final Expression toLvalue(Scope* sc, Expression ex)
{
// Lvalue-ness will be handled in glue layer.
return this;
}
override final Expression modifiableLvalue(Scope* sc, Expression e)
{
// should check e1.checkModifiable() ?
return toLvalue(sc, this);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* A string mixin, `mixin("x")`
*
* https://dlang.org/spec/expression.html#mixin_expressions
*/
extern (C++) final class MixinExp : Expression
{
Expressions* exps;
extern (D) this(const ref Loc loc, Expressions* exps)
{
super(loc, EXP.mixin_, __traits(classInstanceSize, MixinExp));
this.exps = exps;
}
override MixinExp syntaxCopy()
{
return new MixinExp(loc, arraySyntaxCopy(exps));
}
override bool equals(const RootObject o) const
{
if (this == o)
return true;
auto e = o.isExpression();
if (!e)
return false;
if (auto ce = e.isMixinExp())
{
if (exps.dim != ce.exps.dim)
return false;
foreach (i, e1; *exps)
{
auto e2 = (*ce.exps)[i];
if (e1 != e2 && (!e1 || !e2 || !e1.equals(e2)))
return false;
}
return true;
}
return false;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* An import expression, `import("file.txt")`
*
* Not to be confused with module imports, `import std.stdio`, which is an `ImportStatement`
*
* https://dlang.org/spec/expression.html#import_expressions
*/
extern (C++) final class ImportExp : UnaExp
{
extern (D) this(const ref Loc loc, Expression e)
{
super(loc, EXP.import_, __traits(classInstanceSize, ImportExp), e);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* An assert expression, `assert(x == y)`
*
* https://dlang.org/spec/expression.html#assert_expressions
*/
extern (C++) final class AssertExp : UnaExp
{
Expression msg;
extern (D) this(const ref Loc loc, Expression e, Expression msg = null)
{
super(loc, EXP.assert_, __traits(classInstanceSize, AssertExp), e);
this.msg = msg;
}
override AssertExp syntaxCopy()
{
return new AssertExp(loc, e1.syntaxCopy(), msg ? msg.syntaxCopy() : null);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* `throw <e1>` as proposed by DIP 1034.
*
* Replacement for the deprecated `ThrowStatement` that can be nested
* in other expression.
*/
extern (C++) final class ThrowExp : UnaExp
{
extern (D) this(const ref Loc loc, Expression e)
{
super(loc, EXP.throw_, __traits(classInstanceSize, ThrowExp), e);
this.type = Type.tnoreturn;
}
override ThrowExp syntaxCopy()
{
return new ThrowExp(loc, e1.syntaxCopy());
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class DotIdExp : UnaExp
{
Identifier ident;
bool noderef; // true if the result of the expression will never be dereferenced
bool wantsym; // do not replace Symbol with its initializer during semantic()
bool arrow; // ImportC: if -> instead of .
extern (D) this(const ref Loc loc, Expression e, Identifier ident)
{
super(loc, EXP.dotIdentifier, __traits(classInstanceSize, DotIdExp), e);
this.ident = ident;
}
static DotIdExp create(const ref Loc loc, Expression e, Identifier ident)
{
return new DotIdExp(loc, e, ident);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Mainly just a placeholder
*/
extern (C++) final class DotTemplateExp : UnaExp
{
TemplateDeclaration td;
extern (D) this(const ref Loc loc, Expression e, TemplateDeclaration td)
{
super(loc, EXP.dotTemplateDeclaration, __traits(classInstanceSize, DotTemplateExp), e);
this.td = td;
}
override bool checkType()
{
error("%s `%s` has no type", td.kind(), toChars());
return true;
}
override bool checkValue()
{
error("%s `%s` has no value", td.kind(), toChars());
return true;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class DotVarExp : UnaExp
{
Declaration var;
bool hasOverloads;
extern (D) this(const ref Loc loc, Expression e, Declaration var, bool hasOverloads = true)
{
if (var.isVarDeclaration())
hasOverloads = false;
super(loc, EXP.dotVariable, __traits(classInstanceSize, DotVarExp), e);
//printf("DotVarExp()\n");
this.var = var;
this.hasOverloads = hasOverloads;
}
override bool isLvalue()
{
if (e1.op != EXP.structLiteral)
return true;
auto vd = var.isVarDeclaration();
return !(vd && vd.isField());
}
override Expression toLvalue(Scope* sc, Expression e)
{
//printf("DotVarExp::toLvalue(%s)\n", toChars());
if (sc && sc.flags & SCOPE.Cfile)
{
/* C11 6.5.2.3-3: A postfix expression followed by the '.' or '->' operator
* is an lvalue if the first expression is an lvalue.
*/
if (!e1.isLvalue())
return Expression.toLvalue(sc, e);
}
if (!isLvalue())
return Expression.toLvalue(sc, e);
if (e1.op == EXP.this_ && sc.ctorflow.fieldinit.length && !(sc.ctorflow.callSuper & CSX.any_ctor))
{
if (VarDeclaration vd = var.isVarDeclaration())
{
auto ad = vd.isMember2();
if (ad && ad.fields.dim == sc.ctorflow.fieldinit.length)
{
foreach (i, f; ad.fields)
{
if (f == vd)
{
if (!(sc.ctorflow.fieldinit[i].csx & CSX.this_ctor))
{
/* If the address of vd is taken, assume it is thereby initialized
* https://issues.dlang.org/show_bug.cgi?id=15869
*/
modifyFieldVar(loc, sc, vd, e1);
}
break;
}
}
}
}
}
return this;
}
override Expression modifiableLvalue(Scope* sc, Expression e)
{
version (none)
{
printf("DotVarExp::modifiableLvalue(%s)\n", toChars());
printf("e1.type = %s\n", e1.type.toChars());
printf("var.type = %s\n", var.type.toChars());
}
return Expression.modifiableLvalue(sc, e);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* foo.bar!(args)
*/
extern (C++) final class DotTemplateInstanceExp : UnaExp
{
TemplateInstance ti;
extern (D) this(const ref Loc loc, Expression e, Identifier name, Objects* tiargs)
{
super(loc, EXP.dotTemplateInstance, __traits(classInstanceSize, DotTemplateInstanceExp), e);
//printf("DotTemplateInstanceExp()\n");
this.ti = new TemplateInstance(loc, name, tiargs);
}
extern (D) this(const ref Loc loc, Expression e, TemplateInstance ti)
{
super(loc, EXP.dotTemplateInstance, __traits(classInstanceSize, DotTemplateInstanceExp), e);
this.ti = ti;
}
override DotTemplateInstanceExp syntaxCopy()
{
return new DotTemplateInstanceExp(loc, e1.syntaxCopy(), ti.name, TemplateInstance.arraySyntaxCopy(ti.tiargs));
}
bool findTempDecl(Scope* sc)
{
static if (LOGSEMANTIC)
{
printf("DotTemplateInstanceExp::findTempDecl('%s')\n", toChars());
}
if (ti.tempdecl)
return true;
Expression e = new DotIdExp(loc, e1, ti.name);
e = e.expressionSemantic(sc);
if (e.op == EXP.dot)
e = (cast(DotExp)e).e2;
Dsymbol s = null;
switch (e.op)
{
case EXP.overloadSet:
s = (cast(OverExp)e).vars;
break;
case EXP.dotTemplateDeclaration:
s = (cast(DotTemplateExp)e).td;
break;
case EXP.scope_:
s = (cast(ScopeExp)e).sds;
break;
case EXP.dotVariable:
s = (cast(DotVarExp)e).var;
break;
case EXP.variable:
s = (cast(VarExp)e).var;
break;
default:
return false;
}
return ti.updateTempDecl(sc, s);
}
override bool checkType()
{
// Same logic as ScopeExp.checkType()
if (ti.tempdecl &&
ti.semantictiargsdone &&
ti.semanticRun == PASS.initial)
{
error("partial %s `%s` has no type", ti.kind(), toChars());
return true;
}
return false;
}
override bool checkValue()
{
if (ti.tempdecl &&
ti.semantictiargsdone &&
ti.semanticRun == PASS.initial)
error("partial %s `%s` has no value", ti.kind(), toChars());
else
error("%s `%s` has no value", ti.kind(), ti.toChars());
return true;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class DelegateExp : UnaExp
{
FuncDeclaration func;
bool hasOverloads;
VarDeclaration vthis2; // container for multi-context
extern (D) this(const ref Loc loc, Expression e, FuncDeclaration f, bool hasOverloads = true, VarDeclaration vthis2 = null)
{
super(loc, EXP.delegate_, __traits(classInstanceSize, DelegateExp), e);
this.func = f;
this.hasOverloads = hasOverloads;
this.vthis2 = vthis2;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class DotTypeExp : UnaExp
{
Dsymbol sym; // symbol that represents a type
extern (D) this(const ref Loc loc, Expression e, Dsymbol s)
{
super(loc, EXP.dotType, __traits(classInstanceSize, DotTypeExp), e);
this.sym = s;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class CallExp : UnaExp
{
Expressions* arguments; // function arguments
FuncDeclaration f; // symbol to call
bool directcall; // true if a virtual call is devirtualized
bool inDebugStatement; /// true if this was in a debug statement
bool ignoreAttributes; /// don't enforce attributes (e.g. call @gc function in @nogc code)
VarDeclaration vthis2; // container for multi-context
extern (D) this(const ref Loc loc, Expression e, Expressions* exps)
{
super(loc, EXP.call, __traits(classInstanceSize, CallExp), e);
this.arguments = exps;
}
extern (D) this(const ref Loc loc, Expression e)
{
super(loc, EXP.call, __traits(classInstanceSize, CallExp), e);
}
extern (D) this(const ref Loc loc, Expression e, Expression earg1)
{
super(loc, EXP.call, __traits(classInstanceSize, CallExp), e);
this.arguments = new Expressions();
if (earg1)
this.arguments.push(earg1);
}
extern (D) this(const ref Loc loc, Expression e, Expression earg1, Expression earg2)
{
super(loc, EXP.call, __traits(classInstanceSize, CallExp), e);
auto arguments = new Expressions(2);
(*arguments)[0] = earg1;
(*arguments)[1] = earg2;
this.arguments = arguments;
}
/***********************************************************
* Instatiates a new function call expression
* Params:
* loc = location
* fd = the declaration of the function to call
* earg1 = the function argument
*/
extern(D) this(const ref Loc loc, FuncDeclaration fd, Expression earg1)
{
this(loc, new VarExp(loc, fd, false), earg1);
this.f = fd;
}
static CallExp create(const ref Loc loc, Expression e, Expressions* exps)
{
return new CallExp(loc, e, exps);
}
static CallExp create(const ref Loc loc, Expression e)
{
return new CallExp(loc, e);
}
static CallExp create(const ref Loc loc, Expression e, Expression earg1)
{
return new CallExp(loc, e, earg1);
}
/***********************************************************
* Creates a new function call expression
* Params:
* loc = location
* fd = the declaration of the function to call
* earg1 = the function argument
*/
static CallExp create(const ref Loc loc, FuncDeclaration fd, Expression earg1)
{
return new CallExp(loc, fd, earg1);
}
override CallExp syntaxCopy()
{
return new CallExp(loc, e1.syntaxCopy(), arraySyntaxCopy(arguments));
}
override bool isLvalue()
{
Type tb = e1.type.toBasetype();
if (tb.ty == Tdelegate || tb.ty == Tpointer)
tb = tb.nextOf();
auto tf = tb.isTypeFunction();
if (tf && tf.isref)
{
if (auto dve = e1.isDotVarExp())
if (dve.var.isCtorDeclaration())
return false;
return true; // function returns a reference
}
return false;
}
override Expression toLvalue(Scope* sc, Expression e)
{
if (isLvalue())
return this;
return Expression.toLvalue(sc, e);
}
override Expression addDtorHook(Scope* sc)
{
/* Only need to add dtor hook if it's a type that needs destruction.
* Use same logic as VarDeclaration::callScopeDtor()
*/
if (auto tf = e1.type.isTypeFunction())
{
if (tf.isref)
return this;
}
Type tv = type.baseElemOf();
if (auto ts = tv.isTypeStruct())
{
StructDeclaration sd = ts.sym;
if (sd.dtor)
{
/* Type needs destruction, so declare a tmp
* which the back end will recognize and call dtor on
*/
auto tmp = copyToTemp(0, "__tmpfordtor", this);
auto de = new DeclarationExp(loc, tmp);
auto ve = new VarExp(loc, tmp);
Expression e = new CommaExp(loc, de, ve);
e = e.expressionSemantic(sc);
return e;
}
}
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
FuncDeclaration isFuncAddress(Expression e, bool* hasOverloads = null)
{
if (auto ae = e.isAddrExp())
{
auto ae1 = ae.e1;
if (auto ve = ae1.isVarExp())
{
if (hasOverloads)
*hasOverloads = ve.hasOverloads;
return ve.var.isFuncDeclaration();
}
if (auto dve = ae1.isDotVarExp())
{
if (hasOverloads)
*hasOverloads = dve.hasOverloads;
return dve.var.isFuncDeclaration();
}
}
else
{
if (auto soe = e.isSymOffExp())
{
if (hasOverloads)
*hasOverloads = soe.hasOverloads;
return soe.var.isFuncDeclaration();
}
if (auto dge = e.isDelegateExp())
{
if (hasOverloads)
*hasOverloads = dge.hasOverloads;
return dge.func.isFuncDeclaration();
}
}
return null;
}
/***********************************************************
* The 'address of' operator, `&p`
*/
extern (C++) final class AddrExp : UnaExp
{
extern (D) this(const ref Loc loc, Expression e)
{
super(loc, EXP.address, __traits(classInstanceSize, AddrExp), e);
}
extern (D) this(const ref Loc loc, Expression e, Type t)
{
this(loc, e);
type = t;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The pointer dereference operator, `*p`
*/
extern (C++) final class PtrExp : UnaExp
{
extern (D) this(const ref Loc loc, Expression e)
{
super(loc, EXP.star, __traits(classInstanceSize, PtrExp), e);
//if (e.type)
// type = ((TypePointer *)e.type).next;
}
extern (D) this(const ref Loc loc, Expression e, Type t)
{
super(loc, EXP.star, __traits(classInstanceSize, PtrExp), e);
type = t;
}
override bool isLvalue()
{
return true;
}
override Expression toLvalue(Scope* sc, Expression e)
{
return this;
}
override Expression modifiableLvalue(Scope* sc, Expression e)
{
//printf("PtrExp::modifiableLvalue() %s, type %s\n", toChars(), type.toChars());
Declaration var;
if (auto se = e1.isSymOffExp())
var = se.var;
else if (auto ve = e1.isVarExp())
var = ve.var;
if (var && var.type.isFunction_Delegate_PtrToFunction())
{
if (var.type.isTypeFunction())
error("function `%s` is not an lvalue and cannot be modified", var.toChars());
else
error("function pointed to by `%s` is not an lvalue and cannot be modified", var.toChars());
return ErrorExp.get();
}
return Expression.modifiableLvalue(sc, e);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The negation operator, `-x`
*/
extern (C++) final class NegExp : UnaExp
{
extern (D) this(const ref Loc loc, Expression e)
{
super(loc, EXP.negate, __traits(classInstanceSize, NegExp), e);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The unary add operator, `+x`
*/
extern (C++) final class UAddExp : UnaExp
{
extern (D) this(const ref Loc loc, Expression e)
{
super(loc, EXP.uadd, __traits(classInstanceSize, UAddExp), e);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The bitwise complement operator, `~x`
*/
extern (C++) final class ComExp : UnaExp
{
extern (D) this(const ref Loc loc, Expression e)
{
super(loc, EXP.tilde, __traits(classInstanceSize, ComExp), e);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The logical not operator, `!x`
*/
extern (C++) final class NotExp : UnaExp
{
extern (D) this(const ref Loc loc, Expression e)
{
super(loc, EXP.not, __traits(classInstanceSize, NotExp), e);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The delete operator, `delete x` (deprecated)
*
* https://dlang.org/spec/expression.html#delete_expressions
*/
extern (C++) final class DeleteExp : UnaExp
{
bool isRAII; // true if called automatically as a result of scoped destruction
extern (D) this(const ref Loc loc, Expression e, bool isRAII)
{
super(loc, EXP.delete_, __traits(classInstanceSize, DeleteExp), e);
this.isRAII = isRAII;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The type cast operator, `cast(T) x`
*
* It's possible to cast to one type while painting to another type
*
* https://dlang.org/spec/expression.html#cast_expressions
*/
extern (C++) final class CastExp : UnaExp
{
Type to; // type to cast to
ubyte mod = cast(ubyte)~0; // MODxxxxx
extern (D) this(const ref Loc loc, Expression e, Type t)
{
super(loc, EXP.cast_, __traits(classInstanceSize, CastExp), e);
this.to = t;
}
/* For cast(const) and cast(immutable)
*/
extern (D) this(const ref Loc loc, Expression e, ubyte mod)
{
super(loc, EXP.cast_, __traits(classInstanceSize, CastExp), e);
this.mod = mod;
}
override CastExp syntaxCopy()
{
return to ? new CastExp(loc, e1.syntaxCopy(), to.syntaxCopy()) : new CastExp(loc, e1.syntaxCopy(), mod);
}
override bool isLvalue()
{
//printf("e1.type = %s, to.type = %s\n", e1.type.toChars(), to.toChars());
if (!e1.isLvalue())
return false;
return (to.ty == Tsarray && (e1.type.ty == Tvector || e1.type.ty == Tsarray)) ||
e1.type.mutableOf().unSharedOf().equals(to.mutableOf().unSharedOf());
}
override Expression toLvalue(Scope* sc, Expression e)
{
if (sc && sc.flags & SCOPE.Cfile)
{
/* C11 6.5.4-5: A cast does not yield an lvalue.
*/
return Expression.toLvalue(sc, e);
}
if (isLvalue())
return this;
return Expression.toLvalue(sc, e);
}
override Expression addDtorHook(Scope* sc)
{
if (to.toBasetype().ty == Tvoid) // look past the cast(void)
e1 = e1.addDtorHook(sc);
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class VectorExp : UnaExp
{
TypeVector to; // the target vector type before semantic()
uint dim = ~0; // number of elements in the vector
OwnedBy ownedByCtfe = OwnedBy.code;
extern (D) this(const ref Loc loc, Expression e, Type t)
{
super(loc, EXP.vector, __traits(classInstanceSize, VectorExp), e);
assert(t.ty == Tvector);
to = cast(TypeVector)t;
}
static VectorExp create(const ref Loc loc, Expression e, Type t)
{
return new VectorExp(loc, e, t);
}
// Same as create, but doesn't allocate memory.
static void emplace(UnionExp* pue, const ref Loc loc, Expression e, Type type)
{
emplaceExp!(VectorExp)(pue, loc, e, type);
}
override VectorExp syntaxCopy()
{
return new VectorExp(loc, e1.syntaxCopy(), to.syntaxCopy());
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* e1.array property for vectors.
*
* https://dlang.org/spec/simd.html#properties
*/
extern (C++) final class VectorArrayExp : UnaExp
{
extern (D) this(const ref Loc loc, Expression e1)
{
super(loc, EXP.vectorArray, __traits(classInstanceSize, VectorArrayExp), e1);
}
override bool isLvalue()
{
return e1.isLvalue();
}
override Expression toLvalue(Scope* sc, Expression e)
{
e1 = e1.toLvalue(sc, e);
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* e1 [lwr .. upr]
*
* https://dlang.org/spec/expression.html#slice_expressions
*/
extern (C++) final class SliceExp : UnaExp
{
Expression upr; // null if implicit 0
Expression lwr; // null if implicit [length - 1]
VarDeclaration lengthVar;
bool upperIsInBounds; // true if upr <= e1.length
bool lowerIsLessThanUpper; // true if lwr <= upr
bool arrayop; // an array operation, rather than a slice
/************************************************************/
extern (D) this(const ref Loc loc, Expression e1, IntervalExp ie)
{
super(loc, EXP.slice, __traits(classInstanceSize, SliceExp), e1);
this.upr = ie ? ie.upr : null;
this.lwr = ie ? ie.lwr : null;
}
extern (D) this(const ref Loc loc, Expression e1, Expression lwr, Expression upr)
{
super(loc, EXP.slice, __traits(classInstanceSize, SliceExp), e1);
this.upr = upr;
this.lwr = lwr;
}
override SliceExp syntaxCopy()
{
auto se = new SliceExp(loc, e1.syntaxCopy(), lwr ? lwr.syntaxCopy() : null, upr ? upr.syntaxCopy() : null);
se.lengthVar = this.lengthVar; // bug7871
return se;
}
override bool isLvalue()
{
/* slice expression is rvalue in default, but
* conversion to reference of static array is only allowed.
*/
return (type && type.toBasetype().ty == Tsarray);
}
override Expression toLvalue(Scope* sc, Expression e)
{
//printf("SliceExp::toLvalue(%s) type = %s\n", toChars(), type ? type.toChars() : NULL);
return (type && type.toBasetype().ty == Tsarray) ? this : Expression.toLvalue(sc, e);
}
override Expression modifiableLvalue(Scope* sc, Expression e)
{
error("slice expression `%s` is not a modifiable lvalue", toChars());
return this;
}
override Optional!bool toBool()
{
return e1.toBool();
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The `.length` property of an array
*/
extern (C++) final class ArrayLengthExp : UnaExp
{
extern (D) this(const ref Loc loc, Expression e1)
{
super(loc, EXP.arrayLength, __traits(classInstanceSize, ArrayLengthExp), e1);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* e1 [ a0, a1, a2, a3 ,... ]
*
* https://dlang.org/spec/expression.html#index_expressions
*/
extern (C++) final class ArrayExp : UnaExp
{
Expressions* arguments; // Array of Expression's a0..an
size_t currentDimension; // for opDollar
VarDeclaration lengthVar;
extern (D) this(const ref Loc loc, Expression e1, Expression index = null)
{
super(loc, EXP.array, __traits(classInstanceSize, ArrayExp), e1);
arguments = new Expressions();
if (index)
arguments.push(index);
}
extern (D) this(const ref Loc loc, Expression e1, Expressions* args)
{
super(loc, EXP.array, __traits(classInstanceSize, ArrayExp), e1);
arguments = args;
}
override ArrayExp syntaxCopy()
{
auto ae = new ArrayExp(loc, e1.syntaxCopy(), arraySyntaxCopy(arguments));
ae.lengthVar = this.lengthVar; // bug7871
return ae;
}
override bool isLvalue()
{
if (type && type.toBasetype().ty == Tvoid)
return false;
return true;
}
override Expression toLvalue(Scope* sc, Expression e)
{
if (type && type.toBasetype().ty == Tvoid)
error("`void`s have no value");
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class DotExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.dot, __traits(classInstanceSize, DotExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class CommaExp : BinExp
{
/// This is needed because AssignExp rewrites CommaExp, hence it needs
/// to trigger the deprecation.
const bool isGenerated;
/// Temporary variable to enable / disable deprecation of comma expression
/// depending on the context.
/// Since most constructor calls are rewritting, the only place where
/// false will be passed will be from the parser.
bool allowCommaExp;
extern (D) this(const ref Loc loc, Expression e1, Expression e2, bool generated = true)
{
super(loc, EXP.comma, __traits(classInstanceSize, CommaExp), e1, e2);
allowCommaExp = isGenerated = generated;
}
override bool isLvalue()
{
return e2.isLvalue();
}
override Expression toLvalue(Scope* sc, Expression e)
{
e2 = e2.toLvalue(sc, null);
return this;
}
override Expression modifiableLvalue(Scope* sc, Expression e)
{
e2 = e2.modifiableLvalue(sc, e);
return this;
}
override Optional!bool toBool()
{
return e2.toBool();
}
override Expression addDtorHook(Scope* sc)
{
e2 = e2.addDtorHook(sc);
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
/**
* If the argument is a CommaExp, set a flag to prevent deprecation messages
*
* It's impossible to know from CommaExp.semantic if the result will
* be used, hence when there is a result (type != void), a deprecation
* message is always emitted.
* However, some construct can produce a result but won't use it
* (ExpStatement and for loop increment). Those should call this function
* to prevent unwanted deprecations to be emitted.
*
* Params:
* exp = An expression that discards its result.
* If the argument is null or not a CommaExp, nothing happens.
*/
static void allow(Expression exp)
{
if (exp)
if (auto ce = exp.isCommaExp())
ce.allowCommaExp = true;
}
}
/***********************************************************
* Mainly just a placeholder
*/
extern (C++) final class IntervalExp : Expression
{
Expression lwr;
Expression upr;
extern (D) this(const ref Loc loc, Expression lwr, Expression upr)
{
super(loc, EXP.interval, __traits(classInstanceSize, IntervalExp));
this.lwr = lwr;
this.upr = upr;
}
override Expression syntaxCopy()
{
return new IntervalExp(loc, lwr.syntaxCopy(), upr.syntaxCopy());
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The `dg.ptr` property, pointing to the delegate's 'context'
*
* c.f.`DelegateFuncptrExp` for the delegate's function pointer `dg.funcptr`
*/
extern (C++) final class DelegatePtrExp : UnaExp
{
extern (D) this(const ref Loc loc, Expression e1)
{
super(loc, EXP.delegatePointer, __traits(classInstanceSize, DelegatePtrExp), e1);
}
override bool isLvalue()
{
return e1.isLvalue();
}
override Expression toLvalue(Scope* sc, Expression e)
{
e1 = e1.toLvalue(sc, e);
return this;
}
override Expression modifiableLvalue(Scope* sc, Expression e)
{
if (sc.func.setUnsafe())
{
error("cannot modify delegate pointer in `@safe` code `%s`", toChars());
return ErrorExp.get();
}
return Expression.modifiableLvalue(sc, e);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The `dg.funcptr` property, pointing to the delegate's function
*
* c.f.`DelegatePtrExp` for the delegate's function pointer `dg.ptr`
*/
extern (C++) final class DelegateFuncptrExp : UnaExp
{
extern (D) this(const ref Loc loc, Expression e1)
{
super(loc, EXP.delegateFunctionPointer, __traits(classInstanceSize, DelegateFuncptrExp), e1);
}
override bool isLvalue()
{
return e1.isLvalue();
}
override Expression toLvalue(Scope* sc, Expression e)
{
e1 = e1.toLvalue(sc, e);
return this;
}
override Expression modifiableLvalue(Scope* sc, Expression e)
{
if (sc.func.setUnsafe())
{
error("cannot modify delegate function pointer in `@safe` code `%s`", toChars());
return ErrorExp.get();
}
return Expression.modifiableLvalue(sc, e);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* e1 [ e2 ]
*/
extern (C++) final class IndexExp : BinExp
{
VarDeclaration lengthVar;
bool modifiable = false; // assume it is an rvalue
bool indexIsInBounds; // true if 0 <= e2 && e2 <= e1.length - 1
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.index, __traits(classInstanceSize, IndexExp), e1, e2);
//printf("IndexExp::IndexExp('%s')\n", toChars());
}
extern (D) this(const ref Loc loc, Expression e1, Expression e2, bool indexIsInBounds)
{
super(loc, EXP.index, __traits(classInstanceSize, IndexExp), e1, e2);
this.indexIsInBounds = indexIsInBounds;
//printf("IndexExp::IndexExp('%s')\n", toChars());
}
override IndexExp syntaxCopy()
{
auto ie = new IndexExp(loc, e1.syntaxCopy(), e2.syntaxCopy());
ie.lengthVar = this.lengthVar; // bug7871
return ie;
}
override bool isLvalue()
{
if (e1.op == EXP.assocArrayLiteral)
return false;
if (e1.type.ty == Tsarray ||
(e1.op == EXP.index && e1.type.ty != Tarray))
{
return e1.isLvalue();
}
return true;
}
override Expression toLvalue(Scope* sc, Expression e)
{
if (isLvalue())
return this;
return Expression.toLvalue(sc, e);
}
override Expression modifiableLvalue(Scope* sc, Expression e)
{
//printf("IndexExp::modifiableLvalue(%s)\n", toChars());
Expression ex = markSettingAAElem();
if (ex.op == EXP.error)
return ex;
return Expression.modifiableLvalue(sc, e);
}
extern (D) Expression markSettingAAElem()
{
if (e1.type.toBasetype().ty == Taarray)
{
Type t2b = e2.type.toBasetype();
if (t2b.ty == Tarray && t2b.nextOf().isMutable())
{
error("associative arrays can only be assigned values with immutable keys, not `%s`", e2.type.toChars());
return ErrorExp.get();
}
modifiable = true;
if (auto ie = e1.isIndexExp())
{
Expression ex = ie.markSettingAAElem();
if (ex.op == EXP.error)
return ex;
assert(ex == e1);
}
}
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The postfix increment/decrement operator, `i++` / `i--`
*/
extern (C++) final class PostExp : BinExp
{
extern (D) this(EXP op, const ref Loc loc, Expression e)
{
super(loc, op, __traits(classInstanceSize, PostExp), e, IntegerExp.literal!1);
assert(op == EXP.minusMinus || op == EXP.plusPlus);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The prefix increment/decrement operator, `++i` / `--i`
*/
extern (C++) final class PreExp : UnaExp
{
extern (D) this(EXP op, const ref Loc loc, Expression e)
{
super(loc, op, __traits(classInstanceSize, PreExp), e);
assert(op == EXP.preMinusMinus || op == EXP.prePlusPlus);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
enum MemorySet
{
none = 0, // simple assignment
blockAssign = 1, // setting the contents of an array
referenceInit = 2, // setting the reference of STC.ref_ variable
}
/***********************************************************
* The assignment / initialization operator, `=`
*
* Note: operator assignment `op=` has a different base class, `BinAssignExp`
*/
extern (C++) class AssignExp : BinExp
{
MemorySet memset;
/************************************************************/
/* op can be EXP.assign, EXP.construct, or EXP.blit */
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.assign, __traits(classInstanceSize, AssignExp), e1, e2);
}
this(const ref Loc loc, EXP tok, Expression e1, Expression e2)
{
super(loc, tok, __traits(classInstanceSize, AssignExp), e1, e2);
}
override final bool isLvalue()
{
// Array-op 'x[] = y[]' should make an rvalue.
// Setting array length 'x.length = v' should make an rvalue.
if (e1.op == EXP.slice || e1.op == EXP.arrayLength)
{
return false;
}
return true;
}
override final Expression toLvalue(Scope* sc, Expression ex)
{
if (e1.op == EXP.slice || e1.op == EXP.arrayLength)
{
return Expression.toLvalue(sc, ex);
}
/* In front-end level, AssignExp should make an lvalue of e1.
* Taking the address of e1 will be handled in low level layer,
* so this function does nothing.
*/
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
*/
extern (C++) final class ConstructExp : AssignExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.construct, e1, e2);
}
// Internal use only. If `v` is a reference variable, the assignment
// will become a reference initialization automatically.
extern (D) this(const ref Loc loc, VarDeclaration v, Expression e2)
{
auto ve = new VarExp(loc, v);
assert(v.type && ve.type);
super(loc, EXP.construct, ve, e2);
if (v.isReference())
memset = MemorySet.referenceInit;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* A bit-for-bit copy from `e2` to `e1`
*/
extern (C++) final class BlitExp : AssignExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.blit, e1, e2);
}
// Internal use only. If `v` is a reference variable, the assinment
// will become a reference rebinding automatically.
extern (D) this(const ref Loc loc, VarDeclaration v, Expression e2)
{
auto ve = new VarExp(loc, v);
assert(v.type && ve.type);
super(loc, EXP.blit, ve, e2);
if (v.isReference())
memset = MemorySet.referenceInit;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* `x += y`
*/
extern (C++) final class AddAssignExp : BinAssignExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.addAssign, __traits(classInstanceSize, AddAssignExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* `x -= y`
*/
extern (C++) final class MinAssignExp : BinAssignExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.minAssign, __traits(classInstanceSize, MinAssignExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* `x *= y`
*/
extern (C++) final class MulAssignExp : BinAssignExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.mulAssign, __traits(classInstanceSize, MulAssignExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* `x /= y`
*/
extern (C++) final class DivAssignExp : BinAssignExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.divAssign, __traits(classInstanceSize, DivAssignExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* `x %= y`
*/
extern (C++) final class ModAssignExp : BinAssignExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.modAssign, __traits(classInstanceSize, ModAssignExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* `x &= y`
*/
extern (C++) final class AndAssignExp : BinAssignExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.andAssign, __traits(classInstanceSize, AndAssignExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* `x |= y`
*/
extern (C++) final class OrAssignExp : BinAssignExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.orAssign, __traits(classInstanceSize, OrAssignExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* `x ^= y`
*/
extern (C++) final class XorAssignExp : BinAssignExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.xorAssign, __traits(classInstanceSize, XorAssignExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* `x ^^= y`
*/
extern (C++) final class PowAssignExp : BinAssignExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.powAssign, __traits(classInstanceSize, PowAssignExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* `x <<= y`
*/
extern (C++) final class ShlAssignExp : BinAssignExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.leftShiftAssign, __traits(classInstanceSize, ShlAssignExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* `x >>= y`
*/
extern (C++) final class ShrAssignExp : BinAssignExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.rightShiftAssign, __traits(classInstanceSize, ShrAssignExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* `x >>>= y`
*/
extern (C++) final class UshrAssignExp : BinAssignExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.unsignedRightShiftAssign, __traits(classInstanceSize, UshrAssignExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The `~=` operator.
*
* It can have one of the following operators:
*
* EXP.concatenateAssign - appending T[] to T[]
* EXP.concatenateElemAssign - appending T to T[]
* EXP.concatenateDcharAssign - appending dchar to T[]
*
* The parser initially sets it to EXP.concatenateAssign, and semantic() later decides which
* of the three it will be set to.
*/
extern (C++) class CatAssignExp : BinAssignExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.concatenateAssign, __traits(classInstanceSize, CatAssignExp), e1, e2);
}
extern (D) this(const ref Loc loc, EXP tok, Expression e1, Expression e2)
{
super(loc, tok, __traits(classInstanceSize, CatAssignExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The `~=` operator when appending a single element
*/
extern (C++) final class CatElemAssignExp : CatAssignExp
{
extern (D) this(const ref Loc loc, Type type, Expression e1, Expression e2)
{
super(loc, EXP.concatenateElemAssign, e1, e2);
this.type = type;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The `~=` operator when appending a single `dchar`
*/
extern (C++) final class CatDcharAssignExp : CatAssignExp
{
extern (D) this(const ref Loc loc, Type type, Expression e1, Expression e2)
{
super(loc, EXP.concatenateDcharAssign, e1, e2);
this.type = type;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The addition operator, `x + y`
*
* https://dlang.org/spec/expression.html#add_expressions
*/
extern (C++) final class AddExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.add, __traits(classInstanceSize, AddExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The minus operator, `x - y`
*
* https://dlang.org/spec/expression.html#add_expressions
*/
extern (C++) final class MinExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.min, __traits(classInstanceSize, MinExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The concatenation operator, `x ~ y`
*
* https://dlang.org/spec/expression.html#cat_expressions
*/
extern (C++) final class CatExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.concatenate, __traits(classInstanceSize, CatExp), e1, e2);
}
override Expression resolveLoc(const ref Loc loc, Scope* sc)
{
e1 = e1.resolveLoc(loc, sc);
e2 = e2.resolveLoc(loc, sc);
return this;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The multiplication operator, `x * y`
*
* https://dlang.org/spec/expression.html#mul_expressions
*/
extern (C++) final class MulExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.mul, __traits(classInstanceSize, MulExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The division operator, `x / y`
*
* https://dlang.org/spec/expression.html#mul_expressions
*/
extern (C++) final class DivExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.div, __traits(classInstanceSize, DivExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The modulo operator, `x % y`
*
* https://dlang.org/spec/expression.html#mul_expressions
*/
extern (C++) final class ModExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.mod, __traits(classInstanceSize, ModExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The 'power' operator, `x ^^ y`
*
* https://dlang.org/spec/expression.html#pow_expressions
*/
extern (C++) final class PowExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.pow, __traits(classInstanceSize, PowExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The 'shift left' operator, `x << y`
*
* https://dlang.org/spec/expression.html#shift_expressions
*/
extern (C++) final class ShlExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.leftShift, __traits(classInstanceSize, ShlExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The 'shift right' operator, `x >> y`
*
* https://dlang.org/spec/expression.html#shift_expressions
*/
extern (C++) final class ShrExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.rightShift, __traits(classInstanceSize, ShrExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The 'unsigned shift right' operator, `x >>> y`
*
* https://dlang.org/spec/expression.html#shift_expressions
*/
extern (C++) final class UshrExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.unsignedRightShift, __traits(classInstanceSize, UshrExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The bitwise 'and' operator, `x & y`
*
* https://dlang.org/spec/expression.html#and_expressions
*/
extern (C++) final class AndExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.and, __traits(classInstanceSize, AndExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The bitwise 'or' operator, `x | y`
*
* https://dlang.org/spec/expression.html#or_expressions
*/
extern (C++) final class OrExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.or, __traits(classInstanceSize, OrExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The bitwise 'xor' operator, `x ^ y`
*
* https://dlang.org/spec/expression.html#xor_expressions
*/
extern (C++) final class XorExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.xor, __traits(classInstanceSize, XorExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The logical 'and' / 'or' operator, `X && Y` / `X || Y`
*
* https://dlang.org/spec/expression.html#andand_expressions
* https://dlang.org/spec/expression.html#oror_expressions
*/
extern (C++) final class LogicalExp : BinExp
{
extern (D) this(const ref Loc loc, EXP op, Expression e1, Expression e2)
{
super(loc, op, __traits(classInstanceSize, LogicalExp), e1, e2);
assert(op == EXP.andAnd || op == EXP.orOr);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* A comparison operator, `<` `<=` `>` `>=`
*
* `op` is one of:
* EXP.lessThan, EXP.lessOrEqual, EXP.greaterThan, EXP.greaterOrEqual
*
* https://dlang.org/spec/expression.html#relation_expressions
*/
extern (C++) final class CmpExp : BinExp
{
extern (D) this(EXP op, const ref Loc loc, Expression e1, Expression e2)
{
super(loc, op, __traits(classInstanceSize, CmpExp), e1, e2);
assert(op == EXP.lessThan || op == EXP.lessOrEqual || op == EXP.greaterThan || op == EXP.greaterOrEqual);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The `in` operator, `"a" in ["a": 1]`
*
* Note: `x !in y` is rewritten to `!(x in y)` in the parser
*
* https://dlang.org/spec/expression.html#in_expressions
*/
extern (C++) final class InExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.in_, __traits(classInstanceSize, InExp), e1, e2);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* Associative array removal, `aa.remove(arg)`
*
* This deletes the key e1 from the associative array e2
*/
extern (C++) final class RemoveExp : BinExp
{
extern (D) this(const ref Loc loc, Expression e1, Expression e2)
{
super(loc, EXP.remove, __traits(classInstanceSize, RemoveExp), e1, e2);
type = Type.tbool;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* `==` and `!=`
*
* EXP.equal and EXP.notEqual
*
* https://dlang.org/spec/expression.html#equality_expressions
*/
extern (C++) final class EqualExp : BinExp
{
extern (D) this(EXP op, const ref Loc loc, Expression e1, Expression e2)
{
super(loc, op, __traits(classInstanceSize, EqualExp), e1, e2);
assert(op == EXP.equal || op == EXP.notEqual);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* `is` and `!is`
*
* EXP.identity and EXP.notIdentity
*
* https://dlang.org/spec/expression.html#identity_expressions
*/
extern (C++) final class IdentityExp : BinExp
{
extern (D) this(EXP op, const ref Loc loc, Expression e1, Expression e2)
{
super(loc, op, __traits(classInstanceSize, IdentityExp), e1, e2);
assert(op == EXP.identity || op == EXP.notIdentity);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The ternary operator, `econd ? e1 : e2`
*
* https://dlang.org/spec/expression.html#conditional_expressions
*/
extern (C++) final class CondExp : BinExp
{
Expression econd;
extern (D) this(const ref Loc loc, Expression econd, Expression e1, Expression e2)
{
super(loc, EXP.question, __traits(classInstanceSize, CondExp), e1, e2);
this.econd = econd;
}
override CondExp syntaxCopy()
{
return new CondExp(loc, econd.syntaxCopy(), e1.syntaxCopy(), e2.syntaxCopy());
}
override bool isLvalue()
{
return e1.isLvalue() && e2.isLvalue();
}
override Expression toLvalue(Scope* sc, Expression ex)
{
// convert (econd ? e1 : e2) to *(econd ? &e1 : &e2)
CondExp e = cast(CondExp)copy();
e.e1 = e1.toLvalue(sc, null).addressOf();
e.e2 = e2.toLvalue(sc, null).addressOf();
e.type = type.pointerTo();
return new PtrExp(loc, e, type);
}
override Expression modifiableLvalue(Scope* sc, Expression e)
{
if (!e1.isLvalue() && !e2.isLvalue())
{
error("conditional expression `%s` is not a modifiable lvalue", toChars());
return ErrorExp.get();
}
e1 = e1.modifiableLvalue(sc, e1);
e2 = e2.modifiableLvalue(sc, e2);
return toLvalue(sc, this);
}
void hookDtors(Scope* sc)
{
extern (C++) final class DtorVisitor : StoppableVisitor
{
alias visit = typeof(super).visit;
public:
Scope* sc;
CondExp ce;
VarDeclaration vcond;
bool isThen;
extern (D) this(Scope* sc, CondExp ce)
{
this.sc = sc;
this.ce = ce;
}
override void visit(Expression e)
{
//printf("(e = %s)\n", e.toChars());
}
override void visit(DeclarationExp e)
{
auto v = e.declaration.isVarDeclaration();
if (v && !v.isDataseg())
{
if (v._init)
{
if (auto ei = v._init.isExpInitializer())
walkPostorder(ei.exp, this);
}
if (v.edtor)
walkPostorder(v.edtor, this);
if (v.needsScopeDtor())
{
if (!vcond)
{
vcond = copyToTemp(STC.volatile_ | STC.const_, "__cond", ce.econd);
vcond.dsymbolSemantic(sc);
Expression de = new DeclarationExp(ce.econd.loc, vcond);
de = de.expressionSemantic(sc);
Expression ve = new VarExp(ce.econd.loc, vcond);
ce.econd = Expression.combine(de, ve);
}
//printf("\t++v = %s, v.edtor = %s\n", v.toChars(), v.edtor.toChars());
Expression ve = new VarExp(vcond.loc, vcond);
if (isThen)
v.edtor = new LogicalExp(v.edtor.loc, EXP.andAnd, ve, v.edtor);
else
v.edtor = new LogicalExp(v.edtor.loc, EXP.orOr, ve, v.edtor);
v.edtor = v.edtor.expressionSemantic(sc);
//printf("\t--v = %s, v.edtor = %s\n", v.toChars(), v.edtor.toChars());
}
}
}
}
scope DtorVisitor v = new DtorVisitor(sc, this);
//printf("+%s\n", toChars());
v.isThen = true;
walkPostorder(e1, v);
v.isThen = false;
walkPostorder(e2, v);
//printf("-%s\n", toChars());
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/// Returns: if this token is the `op` for a derived `DefaultInitExp` class.
bool isDefaultInitOp(EXP op) pure nothrow @safe @nogc
{
return op == EXP.prettyFunction || op == EXP.functionString ||
op == EXP.line || op == EXP.moduleString ||
op == EXP.file || op == EXP.fileFullPath ;
}
/***********************************************************
* A special keyword when used as a function's default argument
*
* When possible, special keywords are resolved in the parser, but when
* appearing as a default argument, they result in an expression deriving
* from this base class that is resolved for each function call.
*
* ---
* const x = __LINE__; // resolved in the parser
* void foo(string file = __FILE__, int line = __LINE__); // DefaultInitExp
* ---
*
* https://dlang.org/spec/expression.html#specialkeywords
*/
extern (C++) class DefaultInitExp : Expression
{
extern (D) this(const ref Loc loc, EXP op, int size)
{
super(loc, op, size);
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The `__FILE__` token as a default argument
*/
extern (C++) final class FileInitExp : DefaultInitExp
{
extern (D) this(const ref Loc loc, EXP tok)
{
super(loc, tok, __traits(classInstanceSize, FileInitExp));
}
override Expression resolveLoc(const ref Loc loc, Scope* sc)
{
//printf("FileInitExp::resolve() %s\n", toChars());
const(char)* s;
if (op == EXP.fileFullPath)
s = FileName.toAbsolute(loc.isValid() ? loc.filename : sc._module.srcfile.toChars());
else
s = loc.isValid() ? loc.filename : sc._module.ident.toChars();
Expression e = new StringExp(loc, s.toDString());
e = e.expressionSemantic(sc);
e = e.castTo(sc, type);
return e;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The `__LINE__` token as a default argument
*/
extern (C++) final class LineInitExp : DefaultInitExp
{
extern (D) this(const ref Loc loc)
{
super(loc, EXP.line, __traits(classInstanceSize, LineInitExp));
}
override Expression resolveLoc(const ref Loc loc, Scope* sc)
{
Expression e = new IntegerExp(loc, loc.linnum, Type.tint32);
e = e.castTo(sc, type);
return e;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The `__MODULE__` token as a default argument
*/
extern (C++) final class ModuleInitExp : DefaultInitExp
{
extern (D) this(const ref Loc loc)
{
super(loc, EXP.moduleString, __traits(classInstanceSize, ModuleInitExp));
}
override Expression resolveLoc(const ref Loc loc, Scope* sc)
{
const auto s = (sc.callsc ? sc.callsc : sc)._module.toPrettyChars().toDString();
Expression e = new StringExp(loc, s);
e = e.expressionSemantic(sc);
e = e.castTo(sc, type);
return e;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The `__FUNCTION__` token as a default argument
*/
extern (C++) final class FuncInitExp : DefaultInitExp
{
extern (D) this(const ref Loc loc)
{
super(loc, EXP.functionString, __traits(classInstanceSize, FuncInitExp));
}
override Expression resolveLoc(const ref Loc loc, Scope* sc)
{
const(char)* s;
if (sc.callsc && sc.callsc.func)
s = sc.callsc.func.Dsymbol.toPrettyChars();
else if (sc.func)
s = sc.func.Dsymbol.toPrettyChars();
else
s = "";
Expression e = new StringExp(loc, s.toDString());
e = e.expressionSemantic(sc);
e.type = Type.tstring;
return e;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***********************************************************
* The `__PRETTY_FUNCTION__` token as a default argument
*/
extern (C++) final class PrettyFuncInitExp : DefaultInitExp
{
extern (D) this(const ref Loc loc)
{
super(loc, EXP.prettyFunction, __traits(classInstanceSize, PrettyFuncInitExp));
}
override Expression resolveLoc(const ref Loc loc, Scope* sc)
{
FuncDeclaration fd = (sc.callsc && sc.callsc.func)
? sc.callsc.func
: sc.func;
const(char)* s;
if (fd)
{
const funcStr = fd.Dsymbol.toPrettyChars();
OutBuffer buf;
functionToBufferWithIdent(fd.type.isTypeFunction(), &buf, funcStr, fd.isStatic);
s = buf.extractChars();
}
else
{
s = "";
}
Expression e = new StringExp(loc, s.toDString());
e = e.expressionSemantic(sc);
e.type = Type.tstring;
return e;
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/**
* Objective-C class reference expression.
*
* Used to get the metaclass of an Objective-C class, `NSObject.Class`.
*/
extern (C++) final class ObjcClassReferenceExp : Expression
{
ClassDeclaration classDeclaration;
extern (D) this(const ref Loc loc, ClassDeclaration classDeclaration)
{
super(loc, EXP.objcClassReference,
__traits(classInstanceSize, ObjcClassReferenceExp));
this.classDeclaration = classDeclaration;
type = objc.getRuntimeMetaclass(classDeclaration).getType();
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/*******************
* C11 6.5.1.1 Generic Selection
* For ImportC
*/
extern (C++) final class GenericExp : Expression
{
Expression cntlExp; /// controlling expression of a generic selection (not evaluated)
Types* types; /// type-names for generic associations (null entry for `default`)
Expressions* exps; /// 1:1 mapping of typeNames to exps
extern (D) this(const ref Loc loc, Expression cntlExp, Types* types, Expressions* exps)
{
super(loc, EXP._Generic, __traits(classInstanceSize, GenericExp));
this.cntlExp = cntlExp;
this.types = types;
this.exps = exps;
assert(types.length == exps.length); // must be the same and >=1
}
override GenericExp syntaxCopy()
{
return new GenericExp(loc, cntlExp.syntaxCopy(), Type.arraySyntaxCopy(types), Expression.arraySyntaxCopy(exps));
}
override void accept(Visitor v)
{
v.visit(this);
}
}
/***************************************
* Parameters:
* sc: scope
* flag: 1: do not issue error message for invalid modification
2: the exp is a DotVarExp and a subfield of the leftmost
variable is modified
* Returns:
* Whether the type is modifiable
*/
extern(D) Modifiable checkModifiable(Expression exp, Scope* sc, ModifyFlags flag = ModifyFlags.none)
{
switch(exp.op)
{
case EXP.variable:
auto varExp = cast(VarExp)exp;
//printf("VarExp::checkModifiable %s", varExp.toChars());
assert(varExp.type);
return varExp.var.checkModify(varExp.loc, sc, null, flag);
case EXP.dotVariable:
auto dotVarExp = cast(DotVarExp)exp;
//printf("DotVarExp::checkModifiable %s %s\n", dotVarExp.toChars(), dotVarExp.type.toChars());
if (dotVarExp.e1.op == EXP.this_)
return dotVarExp.var.checkModify(dotVarExp.loc, sc, dotVarExp.e1, flag);
/* https://issues.dlang.org/show_bug.cgi?id=12764
* If inside a constructor and an expression of type `this.field.var`
* is encountered, where `field` is a struct declaration with
* default construction disabled, we must make sure that
* assigning to `var` does not imply that `field` was initialized
*/
if (sc.func && sc.func.isCtorDeclaration())
{
// if inside a constructor scope and e1 of this DotVarExp
// is another DotVarExp, then check if the leftmost expression is a `this` identifier
if (auto dve = dotVarExp.e1.isDotVarExp())
{
// Iterate the chain of DotVarExp to find `this`
// Keep track whether access to fields was limited to union members
// s.t. one can initialize an entire struct inside nested unions
// (but not its members)
bool onlyUnion = true;
while (true)
{
auto v = dve.var.isVarDeclaration();
assert(v);
// Accessing union member?
auto t = v.type.isTypeStruct();
if (!t || !t.sym.isUnionDeclaration())
onlyUnion = false;
// Another DotVarExp left?
if (!dve.e1 || dve.e1.op != EXP.dotVariable)
break;
dve = cast(DotVarExp) dve.e1;
}
if (dve.e1.op == EXP.this_)
{
scope v = dve.var.isVarDeclaration();
/* if v is a struct member field with no initializer, no default construction
* and v wasn't intialized before
*/
if (v && v.isField() && !v._init && !v.ctorinit)
{
if (auto ts = v.type.isTypeStruct())
{
if (ts.sym.noDefaultCtor)
{
/* checkModify will consider that this is an initialization
* of v while it is actually an assignment of a field of v
*/
scope modifyLevel = v.checkModify(dotVarExp.loc, sc, dve.e1, !onlyUnion ? (flag | ModifyFlags.fieldAssign) : flag);
if (modifyLevel == Modifiable.initialization)
{
// https://issues.dlang.org/show_bug.cgi?id=22118
// v is a union type field that was assigned
// a variable, therefore it counts as initialization
if (v.ctorinit)
return Modifiable.initialization;
return Modifiable.yes;
}
return modifyLevel;
}
}
}
}
}
}
//printf("\te1 = %s\n", e1.toChars());
return dotVarExp.e1.checkModifiable(sc, flag);
case EXP.star:
auto ptrExp = cast(PtrExp)exp;
if (auto se = ptrExp.e1.isSymOffExp())
{
return se.var.checkModify(ptrExp.loc, sc, null, flag);
}
else if (auto ae = ptrExp.e1.isAddrExp())
{
return ae.e1.checkModifiable(sc, flag);
}
return Modifiable.yes;
case EXP.slice:
auto sliceExp = cast(SliceExp)exp;
//printf("SliceExp::checkModifiable %s\n", sliceExp.toChars());
auto e1 = sliceExp.e1;
if (e1.type.ty == Tsarray || (e1.op == EXP.index && e1.type.ty != Tarray) || e1.op == EXP.slice)
{
return e1.checkModifiable(sc, flag);
}
return Modifiable.yes;
case EXP.comma:
return (cast(CommaExp)exp).e2.checkModifiable(sc, flag);
case EXP.index:
auto indexExp = cast(IndexExp)exp;
auto e1 = indexExp.e1;
if (e1.type.ty == Tsarray ||
e1.type.ty == Taarray ||
(e1.op == EXP.index && e1.type.ty != Tarray) ||
e1.op == EXP.slice)
{
return e1.checkModifiable(sc, flag);
}
return Modifiable.yes;
case EXP.question:
auto condExp = cast(CondExp)exp;
if (condExp.e1.checkModifiable(sc, flag) != Modifiable.no
&& condExp.e2.checkModifiable(sc, flag) != Modifiable.no)
return Modifiable.yes;
return Modifiable.no;
default:
return exp.type ? Modifiable.yes : Modifiable.no; // default modifiable
}
}
/******************************
* Provide efficient way to implement isUnaExp(), isBinExp(), isBinAssignExp()
*/
private immutable ubyte[EXP.max + 1] exptab =
() {
ubyte[EXP.max + 1] tab;
with (EXPFLAGS)
{
foreach (i; Eunary) { tab[i] |= unary; }
foreach (i; Ebinary) { tab[i] |= unary | binary; }
foreach (i; EbinaryAssign) { tab[i] |= unary | binary | binaryAssign; }
}
return tab;
} ();
private enum EXPFLAGS : ubyte
{
unary = 1,
binary = 2,
binaryAssign = 4,
}
private enum Eunary =
[
EXP.import_, EXP.assert_, EXP.throw_, EXP.dotIdentifier, EXP.dotTemplateDeclaration,
EXP.dotVariable, EXP.dotTemplateInstance, EXP.delegate_, EXP.dotType, EXP.call,
EXP.address, EXP.star, EXP.negate, EXP.uadd, EXP.tilde, EXP.not, EXP.delete_, EXP.cast_,
EXP.vector, EXP.vectorArray, EXP.slice, EXP.arrayLength, EXP.array, EXP.delegatePointer,
EXP.delegateFunctionPointer, EXP.preMinusMinus, EXP.prePlusPlus,
];
private enum Ebinary =
[
EXP.dot, EXP.comma, EXP.index, EXP.minusMinus, EXP.plusPlus, EXP.assign,
EXP.add, EXP.min, EXP.concatenate, EXP.mul, EXP.div, EXP.mod, EXP.pow, EXP.leftShift,
EXP.rightShift, EXP.unsignedRightShift, EXP.and, EXP.or, EXP.xor, EXP.andAnd, EXP.orOr,
EXP.lessThan, EXP.lessOrEqual, EXP.greaterThan, EXP.greaterOrEqual,
EXP.in_, EXP.remove, EXP.equal, EXP.notEqual, EXP.identity, EXP.notIdentity,
EXP.question,
EXP.construct, EXP.blit,
];
private enum EbinaryAssign =
[
EXP.addAssign, EXP.minAssign, EXP.mulAssign, EXP.divAssign, EXP.modAssign,
EXP.andAssign, EXP.orAssign, EXP.xorAssign, EXP.powAssign,
EXP.leftShiftAssign, EXP.rightShiftAssign, EXP.unsignedRightShiftAssign,
EXP.concatenateAssign, EXP.concatenateElemAssign, EXP.concatenateDcharAssign,
];