blob: 06a9c2ad6b84f1cb429d513313b1931522ce6fc1 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#include "config.h"
#ifdef HAVE_DL_ITERATE_PHDR
#include <link.h>
#endif
#include "runtime.h"
#include "arch.h"
#include "defs.h"
#include "malloc.h"
#include "go-type.h"
#ifdef USING_SPLIT_STACK
/* FIXME: These are not declared anywhere. */
extern void __splitstack_getcontext(void *context[10]);
extern void __splitstack_setcontext(void *context[10]);
extern void *__splitstack_makecontext(size_t, void *context[10], size_t *);
extern void * __splitstack_resetcontext(void *context[10], size_t *);
extern void *__splitstack_find(void *, void *, size_t *, void **, void **,
void **);
extern void __splitstack_block_signals (int *, int *);
extern void __splitstack_block_signals_context (void *context[10], int *,
int *);
#endif
#ifndef PTHREAD_STACK_MIN
# define PTHREAD_STACK_MIN 8192
#endif
#if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK)
# define StackMin PTHREAD_STACK_MIN
#else
# define StackMin ((sizeof(char *) < 8) ? 2 * 1024 * 1024 : 4 * 1024 * 1024)
#endif
uintptr runtime_stacks_sys;
static void gtraceback(G*);
#ifdef __rtems__
#define __thread
#endif
static __thread G *g;
#ifndef SETCONTEXT_CLOBBERS_TLS
static inline void
initcontext(void)
{
}
static inline void
fixcontext(ucontext_t *c __attribute__ ((unused)))
{
}
#else
# if defined(__x86_64__) && defined(__sun__)
// x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs
// register to that of the thread which called getcontext. The effect
// is that the address of all __thread variables changes. This bug
// also affects pthread_self() and pthread_getspecific. We work
// around it by clobbering the context field directly to keep %fs the
// same.
static __thread greg_t fs;
static inline void
initcontext(void)
{
ucontext_t c;
getcontext(&c);
fs = c.uc_mcontext.gregs[REG_FSBASE];
}
static inline void
fixcontext(ucontext_t* c)
{
c->uc_mcontext.gregs[REG_FSBASE] = fs;
}
# elif defined(__NetBSD__)
// NetBSD has a bug: setcontext clobbers tlsbase, we need to save
// and restore it ourselves.
static __thread __greg_t tlsbase;
static inline void
initcontext(void)
{
ucontext_t c;
getcontext(&c);
tlsbase = c.uc_mcontext._mc_tlsbase;
}
static inline void
fixcontext(ucontext_t* c)
{
c->uc_mcontext._mc_tlsbase = tlsbase;
}
# elif defined(__sparc__)
static inline void
initcontext(void)
{
}
static inline void
fixcontext(ucontext_t *c)
{
/* ??? Using
register unsigned long thread __asm__("%g7");
c->uc_mcontext.gregs[REG_G7] = thread;
results in
error: variable ‘thread’ might be clobbered by \
‘longjmp’ or ‘vfork’ [-Werror=clobbered]
which ought to be false, as %g7 is a fixed register. */
if (sizeof (c->uc_mcontext.gregs[REG_G7]) == 8)
asm ("stx %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7]));
else
asm ("st %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7]));
}
# else
# error unknown case for SETCONTEXT_CLOBBERS_TLS
# endif
#endif
// ucontext_arg returns a properly aligned ucontext_t value. On some
// systems a ucontext_t value must be aligned to a 16-byte boundary.
// The g structure that has fields of type ucontext_t is defined in
// Go, and Go has no simple way to align a field to such a boundary.
// So we make the field larger in runtime2.go and pick an appropriate
// offset within the field here.
static ucontext_t*
ucontext_arg(void** go_ucontext)
{
uintptr_t p = (uintptr_t)go_ucontext;
size_t align = __alignof__(ucontext_t);
if(align > 16) {
// We only ensured space for up to a 16 byte alignment
// in libgo/go/runtime/runtime2.go.
runtime_throw("required alignment of ucontext_t too large");
}
p = (p + align - 1) &~ (uintptr_t)(align - 1);
return (ucontext_t*)p;
}
// We can not always refer to the TLS variables directly. The
// compiler will call tls_get_addr to get the address of the variable,
// and it may hold it in a register across a call to schedule. When
// we get back from the call we may be running in a different thread,
// in which case the register now points to the TLS variable for a
// different thread. We use non-inlinable functions to avoid this
// when necessary.
G* runtime_g(void) __attribute__ ((noinline, no_split_stack));
G*
runtime_g(void)
{
return g;
}
M* runtime_m(void) __attribute__ ((noinline, no_split_stack));
M*
runtime_m(void)
{
if(g == nil)
return nil;
return g->m;
}
// Set g.
void
runtime_setg(G* gp)
{
g = gp;
}
// Start a new thread.
static void
runtime_newosproc(M *mp)
{
pthread_attr_t attr;
sigset_t clear, old;
pthread_t tid;
int tries;
int ret;
if(pthread_attr_init(&attr) != 0)
runtime_throw("pthread_attr_init");
if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0)
runtime_throw("pthread_attr_setdetachstate");
// Block signals during pthread_create so that the new thread
// starts with signals disabled. It will enable them in minit.
sigfillset(&clear);
#ifdef SIGTRAP
// Blocking SIGTRAP reportedly breaks gdb on Alpha GNU/Linux.
sigdelset(&clear, SIGTRAP);
#endif
sigemptyset(&old);
pthread_sigmask(SIG_BLOCK, &clear, &old);
for (tries = 0; tries < 20; tries++) {
ret = pthread_create(&tid, &attr, runtime_mstart, mp);
if (ret != EAGAIN) {
break;
}
runtime_usleep((tries + 1) * 1000); // Milliseconds.
}
pthread_sigmask(SIG_SETMASK, &old, nil);
if (ret != 0) {
runtime_printf("pthread_create failed: %d\n", ret);
runtime_throw("pthread_create");
}
}
// First function run by a new goroutine. This replaces gogocall.
static void
kickoff(void)
{
void (*fn)(void*);
void *param;
if(g->traceback != nil)
gtraceback(g);
fn = (void (*)(void*))(g->entry);
param = g->param;
g->entry = nil;
g->param = nil;
fn(param);
runtime_goexit1();
}
// Switch context to a different goroutine. This is like longjmp.
void runtime_gogo(G*) __attribute__ ((noinline));
void
runtime_gogo(G* newg)
{
#ifdef USING_SPLIT_STACK
__splitstack_setcontext(&newg->stackcontext[0]);
#endif
g = newg;
newg->fromgogo = true;
fixcontext(ucontext_arg(&newg->context[0]));
setcontext(ucontext_arg(&newg->context[0]));
runtime_throw("gogo setcontext returned");
}
// Save context and call fn passing g as a parameter. This is like
// setjmp. Because getcontext always returns 0, unlike setjmp, we use
// g->fromgogo as a code. It will be true if we got here via
// setcontext. g == nil the first time this is called in a new m.
void runtime_mcall(void (*)(G*)) __attribute__ ((noinline));
void
runtime_mcall(void (*pfn)(G*))
{
M *mp;
G *gp;
#ifndef USING_SPLIT_STACK
void *afterregs;
#endif
// Ensure that all registers are on the stack for the garbage
// collector.
__builtin_unwind_init();
gp = g;
mp = gp->m;
if(gp == mp->g0)
runtime_throw("runtime: mcall called on m->g0 stack");
if(gp != nil) {
#ifdef USING_SPLIT_STACK
__splitstack_getcontext(&g->stackcontext[0]);
#else
// We have to point to an address on the stack that is
// below the saved registers.
gp->gcnextsp = &afterregs;
#endif
gp->fromgogo = false;
getcontext(ucontext_arg(&gp->context[0]));
// When we return from getcontext, we may be running
// in a new thread. That means that g may have
// changed. It is a global variables so we will
// reload it, but the address of g may be cached in
// our local stack frame, and that address may be
// wrong. Call the function to reload the value for
// this thread.
gp = runtime_g();
mp = gp->m;
if(gp->traceback != nil)
gtraceback(gp);
}
if (gp == nil || !gp->fromgogo) {
#ifdef USING_SPLIT_STACK
__splitstack_setcontext(&mp->g0->stackcontext[0]);
#endif
mp->g0->entry = (byte*)pfn;
mp->g0->param = gp;
// It's OK to set g directly here because this case
// can not occur if we got here via a setcontext to
// the getcontext call just above.
g = mp->g0;
fixcontext(ucontext_arg(&mp->g0->context[0]));
setcontext(ucontext_arg(&mp->g0->context[0]));
runtime_throw("runtime: mcall function returned");
}
}
// Goroutine scheduler
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
//
// The main concepts are:
// G - goroutine.
// M - worker thread, or machine.
// P - processor, a resource that is required to execute Go code.
// M must have an associated P to execute Go code, however it can be
// blocked or in a syscall w/o an associated P.
//
// Design doc at http://golang.org/s/go11sched.
enum
{
// Number of goroutine ids to grab from runtime_sched->goidgen to local per-P cache at once.
// 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
GoidCacheBatch = 16,
};
extern Sched* runtime_getsched() __asm__ (GOSYM_PREFIX "runtime.getsched");
extern bool* runtime_getCgoHasExtraM()
__asm__ (GOSYM_PREFIX "runtime.getCgoHasExtraM");
extern P** runtime_getAllP()
__asm__ (GOSYM_PREFIX "runtime.getAllP");
extern G* allocg(void)
__asm__ (GOSYM_PREFIX "runtime.allocg");
extern bool needaddgcproc(void)
__asm__ (GOSYM_PREFIX "runtime.needaddgcproc");
extern void startm(P*, bool)
__asm__(GOSYM_PREFIX "runtime.startm");
extern void newm(void(*)(void), P*)
__asm__(GOSYM_PREFIX "runtime.newm");
Sched* runtime_sched;
M runtime_m0;
G runtime_g0; // idle goroutine for m0
G* runtime_lastg;
P** runtime_allp;
int8* runtime_goos;
int32 runtime_ncpu;
bool runtime_precisestack;
bool runtime_isarchive;
void* runtime_mstart(void*);
static void exitsyscall0(G*);
static void park0(G*);
static void goexit0(G*);
static bool exitsyscallfast(void);
extern void setncpu(int32)
__asm__(GOSYM_PREFIX "runtime.setncpu");
extern void setpagesize(uintptr_t)
__asm__(GOSYM_PREFIX "runtime.setpagesize");
extern void allgadd(G*)
__asm__(GOSYM_PREFIX "runtime.allgadd");
extern void mcommoninit(M*)
__asm__(GOSYM_PREFIX "runtime.mcommoninit");
extern void stopm(void)
__asm__(GOSYM_PREFIX "runtime.stopm");
extern void handoffp(P*)
__asm__(GOSYM_PREFIX "runtime.handoffp");
extern void wakep(void)
__asm__(GOSYM_PREFIX "runtime.wakep");
extern void stoplockedm(void)
__asm__(GOSYM_PREFIX "runtime.stoplockedm");
extern void schedule(void)
__asm__(GOSYM_PREFIX "runtime.schedule");
extern void execute(G*, bool)
__asm__(GOSYM_PREFIX "runtime.execute");
extern void gfput(P*, G*)
__asm__(GOSYM_PREFIX "runtime.gfput");
extern G* gfget(P*)
__asm__(GOSYM_PREFIX "runtime.gfget");
extern void procresize(int32)
__asm__(GOSYM_PREFIX "runtime.procresize");
extern void acquirep(P*)
__asm__(GOSYM_PREFIX "runtime.acquirep");
extern P* releasep(void)
__asm__(GOSYM_PREFIX "runtime.releasep");
extern void incidlelocked(int32)
__asm__(GOSYM_PREFIX "runtime.incidlelocked");
extern void checkdead(void)
__asm__(GOSYM_PREFIX "runtime.checkdead");
extern void sysmon(void)
__asm__(GOSYM_PREFIX "runtime.sysmon");
extern void mput(M*)
__asm__(GOSYM_PREFIX "runtime.mput");
extern M* mget(void)
__asm__(GOSYM_PREFIX "runtime.mget");
extern void globrunqput(G*)
__asm__(GOSYM_PREFIX "runtime.globrunqput");
extern P* pidleget(void)
__asm__(GOSYM_PREFIX "runtime.pidleget");
extern bool runqempty(P*)
__asm__(GOSYM_PREFIX "runtime.runqempty");
extern void runqput(P*, G*, bool)
__asm__(GOSYM_PREFIX "runtime.runqput");
bool runtime_isstarted;
// The bootstrap sequence is:
//
// call osinit
// call schedinit
// make & queue new G
// call runtime_mstart
//
// The new G calls runtime_main.
void
runtime_schedinit(void)
{
M *m;
int32 n, procs;
String s;
const byte *p;
Eface i;
setncpu(runtime_ncpu);
setpagesize(getpagesize());
runtime_sched = runtime_getsched();
m = &runtime_m0;
g = &runtime_g0;
m->g0 = g;
m->curg = g;
g->m = m;
initcontext();
runtime_sched->maxmcount = 10000;
runtime_precisestack = 0;
// runtime_symtabinit();
runtime_mallocinit();
mcommoninit(m);
runtime_alginit(); // maps must not be used before this call
// Initialize the itable value for newErrorCString,
// so that the next time it gets called, possibly
// in a fault during a garbage collection, it will not
// need to allocated memory.
runtime_newErrorCString(0, &i);
// Initialize the cached gotraceback value, since
// gotraceback calls getenv, which mallocs on Plan 9.
runtime_gotraceback(nil);
runtime_goargs();
runtime_goenvs();
runtime_parsedebugvars();
runtime_sched->lastpoll = runtime_nanotime();
procs = 1;
s = runtime_getenv("GOMAXPROCS");
p = s.str;
if(p != nil && (n = runtime_atoi(p, s.len)) > 0) {
if(n > _MaxGomaxprocs)
n = _MaxGomaxprocs;
procs = n;
}
runtime_allp = runtime_getAllP();
procresize(procs);
// Can not enable GC until all roots are registered.
// mstats()->enablegc = 1;
}
extern void main_init(void) __asm__ (GOSYM_PREFIX "__go_init_main");
extern void main_main(void) __asm__ (GOSYM_PREFIX "main.main");
// Used to determine the field alignment.
struct field_align
{
char c;
Hchan *p;
};
static void
initDone(void *arg __attribute__ ((unused))) {
runtime_unlockOSThread();
};
// The main goroutine.
// Note: C frames in general are not copyable during stack growth, for two reasons:
// 1) We don't know where in a frame to find pointers to other stack locations.
// 2) There's no guarantee that globals or heap values do not point into the frame.
//
// The C frame for runtime.main is copyable, because:
// 1) There are no pointers to other stack locations in the frame
// (d.fn points at a global, d.link is nil, d.argp is -1).
// 2) The only pointer into this frame is from the defer chain,
// which is explicitly handled during stack copying.
void
runtime_main(void* dummy __attribute__((unused)))
{
Defer d;
_Bool frame;
newm(sysmon, nil);
// Lock the main goroutine onto this, the main OS thread,
// during initialization. Most programs won't care, but a few
// do require certain calls to be made by the main thread.
// Those can arrange for main.main to run in the main thread
// by calling runtime.LockOSThread during initialization
// to preserve the lock.
runtime_lockOSThread();
// Defer unlock so that runtime.Goexit during init does the unlock too.
d.pfn = (uintptr)(void*)initDone;
d.link = g->_defer;
d.arg = (void*)-1;
d._panic = g->_panic;
d.retaddr = 0;
d.makefunccanrecover = 0;
d.frame = &frame;
d.special = true;
g->_defer = &d;
if(g->m != &runtime_m0)
runtime_throw("runtime_main not on m0");
__go_go(runtime_MHeap_Scavenger, nil);
makeMainInitDone();
_cgo_notify_runtime_init_done();
main_init();
closeMainInitDone();
if(g->_defer != &d || (void*)d.pfn != initDone)
runtime_throw("runtime: bad defer entry after init");
g->_defer = d.link;
runtime_unlockOSThread();
// For gccgo we have to wait until after main is initialized
// to enable GC, because initializing main registers the GC
// roots.
mstats()->enablegc = 1;
if(runtime_isarchive) {
// This is not a complete program, but is instead a
// library built using -buildmode=c-archive or
// c-shared. Now that we are initialized, there is
// nothing further to do.
return;
}
main_main();
// Make racy client program work: if panicking on
// another goroutine at the same time as main returns,
// let the other goroutine finish printing the panic trace.
// Once it does, it will exit. See issue 3934.
if(runtime_panicking())
runtime_park(nil, nil, "panicwait");
runtime_exit(0);
for(;;)
*(int32*)0 = 0;
}
void getTraceback(G*, G*) __asm__(GOSYM_PREFIX "runtime.getTraceback");
// getTraceback stores a traceback of gp in the g's traceback field
// and then returns to me. We expect that gp's traceback is not nil.
// It works by saving me's current context, and checking gp's traceback field.
// If gp's traceback field is not nil, it starts running gp.
// In places where we call getcontext, we check the traceback field.
// If it is not nil, we collect a traceback, and then return to the
// goroutine stored in the traceback field, which is me.
void getTraceback(G* me, G* gp)
{
#ifdef USING_SPLIT_STACK
__splitstack_getcontext(&me->stackcontext[0]);
#endif
getcontext(ucontext_arg(&me->context[0]));
if (gp->traceback != nil) {
runtime_gogo(gp);
}
}
// Do a stack trace of gp, and then restore the context to
// gp->dotraceback.
static void
gtraceback(G* gp)
{
Traceback* traceback;
traceback = gp->traceback;
gp->traceback = nil;
if(gp->m != nil)
runtime_throw("gtraceback: m is not nil");
gp->m = traceback->gp->m;
traceback->c = runtime_callers(1, traceback->locbuf,
sizeof traceback->locbuf / sizeof traceback->locbuf[0], false);
gp->m = nil;
runtime_gogo(traceback->gp);
}
// Called to start an M.
void*
runtime_mstart(void* mp)
{
M *m;
G *gp;
m = (M*)mp;
g = m->g0;
g->m = m;
gp = g;
initcontext();
gp->entry = nil;
gp->param = nil;
// Record top of stack for use by mcall.
// Once we call schedule we're never coming back,
// so other calls can reuse this stack space.
#ifdef USING_SPLIT_STACK
__splitstack_getcontext(&g->stackcontext[0]);
#else
gp->gcinitialsp = &mp;
// Setting gcstacksize to 0 is a marker meaning that gcinitialsp
// is the top of the stack, not the bottom.
gp->gcstacksize = 0;
gp->gcnextsp = &mp;
#endif
getcontext(ucontext_arg(&gp->context[0]));
if(gp->traceback != nil)
gtraceback(gp);
if(gp->entry != nil) {
// Got here from mcall.
void (*pfn)(G*) = (void (*)(G*))gp->entry;
G* gp1 = (G*)gp->param;
gp->entry = nil;
gp->param = nil;
pfn(gp1);
*(int*)0x21 = 0x21;
}
runtime_minit();
#ifdef USING_SPLIT_STACK
{
int dont_block_signals = 0;
__splitstack_block_signals(&dont_block_signals, nil);
}
#endif
// Install signal handlers; after minit so that minit can
// prepare the thread to be able to handle the signals.
if(m == &runtime_m0) {
if(runtime_iscgo) {
bool* cgoHasExtraM = runtime_getCgoHasExtraM();
if(!*cgoHasExtraM) {
*cgoHasExtraM = true;
runtime_newextram();
}
}
runtime_initsig(false);
}
if(m->mstartfn)
((void (*)(void))m->mstartfn)();
if(m->helpgc) {
m->helpgc = 0;
stopm();
} else if(m != &runtime_m0) {
acquirep((P*)m->nextp);
m->nextp = 0;
}
schedule();
// TODO(brainman): This point is never reached, because scheduler
// does not release os threads at the moment. But once this path
// is enabled, we must remove our seh here.
return nil;
}
typedef struct CgoThreadStart CgoThreadStart;
struct CgoThreadStart
{
M *m;
G *g;
uintptr *tls;
void (*fn)(void);
};
M* runtime_allocm(P*, bool, byte**, uintptr*)
__asm__(GOSYM_PREFIX "runtime.allocm");
// Allocate a new m unassociated with any thread.
// Can use p for allocation context if needed.
M*
runtime_allocm(P *p, bool allocatestack, byte** ret_g0_stack, uintptr* ret_g0_stacksize)
{
M *mp;
g->m->locks++; // disable GC because it can be called from sysmon
if(g->m->p == 0)
acquirep(p); // temporarily borrow p for mallocs in this function
#if 0
if(mtype == nil) {
Eface e;
runtime_gc_m_ptr(&e);
mtype = ((const PtrType*)e.__type_descriptor)->__element_type;
}
#endif
mp = runtime_mal(sizeof *mp);
mcommoninit(mp);
mp->g0 = runtime_malg(allocatestack, false, ret_g0_stack, ret_g0_stacksize);
mp->g0->m = mp;
if(p == (P*)g->m->p)
releasep();
g->m->locks--;
return mp;
}
void setGContext(void) __asm__ (GOSYM_PREFIX "runtime.setGContext");
// setGContext sets up a new goroutine context for the current g.
void
setGContext()
{
int val;
G *gp;
initcontext();
gp = g;
gp->entry = nil;
gp->param = nil;
#ifdef USING_SPLIT_STACK
__splitstack_getcontext(&gp->stackcontext[0]);
val = 0;
__splitstack_block_signals(&val, nil);
#else
gp->gcinitialsp = &val;
gp->gcstack = nil;
gp->gcstacksize = 0;
gp->gcnextsp = &val;
#endif
getcontext(ucontext_arg(&gp->context[0]));
if(gp->entry != nil) {
// Got here from mcall.
void (*pfn)(G*) = (void (*)(G*))gp->entry;
G* gp1 = (G*)gp->param;
gp->entry = nil;
gp->param = nil;
pfn(gp1);
*(int*)0x22 = 0x22;
}
}
void makeGContext(G*, byte*, uintptr)
__asm__(GOSYM_PREFIX "runtime.makeGContext");
// makeGContext makes a new context for a g.
void
makeGContext(G* gp, byte* sp, uintptr spsize) {
ucontext_t *uc;
uc = ucontext_arg(&gp->context[0]);
getcontext(uc);
uc->uc_stack.ss_sp = sp;
uc->uc_stack.ss_size = (size_t)spsize;
makecontext(uc, kickoff, 0);
}
// Create a new m. It will start off with a call to fn, or else the scheduler.
void
newm(void(*fn)(void), P *p)
{
M *mp;
mp = runtime_allocm(p, false, nil, nil);
mp->nextp = (uintptr)p;
mp->mstartfn = (uintptr)(void*)fn;
runtime_newosproc(mp);
}
static void
mspinning(void)
{
g->m->spinning = true;
}
// Schedules some M to run the p (creates an M if necessary).
// If p==nil, tries to get an idle P, if no idle P's does nothing.
void
startm(P *p, bool spinning)
{
M *mp;
void (*fn)(void);
runtime_lock(&runtime_sched->lock);
if(p == nil) {
p = pidleget();
if(p == nil) {
runtime_unlock(&runtime_sched->lock);
if(spinning)
runtime_xadd(&runtime_sched->nmspinning, -1);
return;
}
}
mp = mget();
runtime_unlock(&runtime_sched->lock);
if(mp == nil) {
fn = nil;
if(spinning)
fn = mspinning;
newm(fn, p);
return;
}
if(mp->spinning)
runtime_throw("startm: m is spinning");
if(mp->nextp)
runtime_throw("startm: m has p");
if(spinning && !runqempty(p)) {
runtime_throw("startm: p has runnable gs");
}
mp->spinning = spinning;
mp->nextp = (uintptr)p;
runtime_notewakeup(&mp->park);
}
// Puts the current goroutine into a waiting state and calls unlockf.
// If unlockf returns false, the goroutine is resumed.
void
runtime_park(bool(*unlockf)(G*, void*), void *lock, const char *reason)
{
if(g->atomicstatus != _Grunning)
runtime_throw("bad g status");
g->m->waitlock = lock;
g->m->waitunlockf = unlockf;
g->waitreason = runtime_gostringnocopy((const byte*)reason);
runtime_mcall(park0);
}
void gopark(FuncVal *, void *, String, byte, int)
__asm__ ("runtime.gopark");
void
gopark(FuncVal *unlockf, void *lock, String reason,
byte traceEv __attribute__ ((unused)),
int traceskip __attribute__ ((unused)))
{
if(g->atomicstatus != _Grunning)
runtime_throw("bad g status");
g->m->waitlock = lock;
g->m->waitunlockf = unlockf == nil ? nil : (void*)unlockf->fn;
g->waitreason = reason;
runtime_mcall(park0);
}
static bool
parkunlock(G *gp, void *lock)
{
USED(gp);
runtime_unlock(lock);
return true;
}
// Puts the current goroutine into a waiting state and unlocks the lock.
// The goroutine can be made runnable again by calling runtime_ready(gp).
void
runtime_parkunlock(Lock *lock, const char *reason)
{
runtime_park(parkunlock, lock, reason);
}
void goparkunlock(Lock *, String, byte, int)
__asm__ (GOSYM_PREFIX "runtime.goparkunlock");
void
goparkunlock(Lock *lock, String reason, byte traceEv __attribute__ ((unused)),
int traceskip __attribute__ ((unused)))
{
if(g->atomicstatus != _Grunning)
runtime_throw("bad g status");
g->m->waitlock = lock;
g->m->waitunlockf = parkunlock;
g->waitreason = reason;
runtime_mcall(park0);
}
// runtime_park continuation on g0.
static void
park0(G *gp)
{
M *m;
bool ok;
m = g->m;
gp->atomicstatus = _Gwaiting;
gp->m = nil;
m->curg = nil;
if(m->waitunlockf) {
ok = ((bool (*)(G*, void*))m->waitunlockf)(gp, m->waitlock);
m->waitunlockf = nil;
m->waitlock = nil;
if(!ok) {
gp->atomicstatus = _Grunnable;
execute(gp, true); // Schedule it back, never returns.
}
}
if(m->lockedg) {
stoplockedm();
execute(gp, true); // Never returns.
}
schedule();
}
// Scheduler yield.
void
runtime_gosched(void)
{
if(g->atomicstatus != _Grunning)
runtime_throw("bad g status");
runtime_mcall(runtime_gosched0);
}
// runtime_gosched continuation on g0.
void
runtime_gosched0(G *gp)
{
M *m;
m = g->m;
gp->atomicstatus = _Grunnable;
gp->m = nil;
m->curg = nil;
runtime_lock(&runtime_sched->lock);
globrunqput(gp);
runtime_unlock(&runtime_sched->lock);
if(m->lockedg) {
stoplockedm();
execute(gp, true); // Never returns.
}
schedule();
}
// Finishes execution of the current goroutine.
// Need to mark it as nosplit, because it runs with sp > stackbase (as runtime_lessstack).
// Since it does not return it does not matter. But if it is preempted
// at the split stack check, GC will complain about inconsistent sp.
void runtime_goexit1(void) __attribute__ ((noinline));
void
runtime_goexit1(void)
{
if(g->atomicstatus != _Grunning)
runtime_throw("bad g status");
runtime_mcall(goexit0);
}
// runtime_goexit1 continuation on g0.
static void
goexit0(G *gp)
{
M *m;
m = g->m;
gp->atomicstatus = _Gdead;
gp->entry = nil;
gp->m = nil;
gp->lockedm = nil;
gp->paniconfault = 0;
gp->_defer = nil; // should be true already but just in case.
gp->_panic = nil; // non-nil for Goexit during panic. points at stack-allocated data.
gp->writebuf.__values = nil;
gp->writebuf.__count = 0;
gp->writebuf.__capacity = 0;
gp->waitreason = runtime_gostringnocopy(nil);
gp->param = nil;
m->curg->m = nil;
m->curg = nil;
m->lockedg = nil;
if(m->locked & ~_LockExternal) {
runtime_printf("invalid m->locked = %d\n", m->locked);
runtime_throw("internal lockOSThread error");
}
m->locked = 0;
gfput((P*)m->p, gp);
schedule();
}
// The goroutine g is about to enter a system call.
// Record that it's not using the cpu anymore.
// This is called only from the go syscall library and cgocall,
// not from the low-level system calls used by the runtime.
//
// Entersyscall cannot split the stack: the runtime_gosave must
// make g->sched refer to the caller's stack segment, because
// entersyscall is going to return immediately after.
void runtime_entersyscall(int32) __attribute__ ((no_split_stack));
static void doentersyscall(uintptr, uintptr)
__attribute__ ((no_split_stack, noinline));
void
runtime_entersyscall(int32 dummy __attribute__ ((unused)))
{
// Save the registers in the g structure so that any pointers
// held in registers will be seen by the garbage collector.
getcontext(ucontext_arg(&g->gcregs[0]));
// Do the work in a separate function, so that this function
// doesn't save any registers on its own stack. If this
// function does save any registers, we might store the wrong
// value in the call to getcontext.
//
// FIXME: This assumes that we do not need to save any
// callee-saved registers to access the TLS variable g. We
// don't want to put the ucontext_t on the stack because it is
// large and we can not split the stack here.
doentersyscall((uintptr)runtime_getcallerpc(&dummy),
(uintptr)runtime_getcallersp(&dummy));
}
static void
doentersyscall(uintptr pc, uintptr sp)
{
// Disable preemption because during this function g is in _Gsyscall status,
// but can have inconsistent g->sched, do not let GC observe it.
g->m->locks++;
// Leave SP around for GC and traceback.
#ifdef USING_SPLIT_STACK
{
size_t gcstacksize;
g->gcstack = __splitstack_find(nil, nil, &gcstacksize,
&g->gcnextsegment, &g->gcnextsp,
&g->gcinitialsp);
g->gcstacksize = (uintptr)gcstacksize;
}
#else
{
void *v;
g->gcnextsp = (byte *) &v;
}
#endif
g->syscallsp = sp;
g->syscallpc = pc;
g->atomicstatus = _Gsyscall;
if(runtime_atomicload(&runtime_sched->sysmonwait)) { // TODO: fast atomic
runtime_lock(&runtime_sched->lock);
if(runtime_atomicload(&runtime_sched->sysmonwait)) {
runtime_atomicstore(&runtime_sched->sysmonwait, 0);
runtime_notewakeup(&runtime_sched->sysmonnote);
}
runtime_unlock(&runtime_sched->lock);
}
g->m->mcache = nil;
((P*)(g->m->p))->m = 0;
runtime_atomicstore(&((P*)g->m->p)->status, _Psyscall);
if(runtime_atomicload(&runtime_sched->gcwaiting)) {
runtime_lock(&runtime_sched->lock);
if (runtime_sched->stopwait > 0 && runtime_cas(&((P*)g->m->p)->status, _Psyscall, _Pgcstop)) {
if(--runtime_sched->stopwait == 0)
runtime_notewakeup(&runtime_sched->stopnote);
}
runtime_unlock(&runtime_sched->lock);
}
g->m->locks--;
}
// The same as runtime_entersyscall(), but with a hint that the syscall is blocking.
void
runtime_entersyscallblock(int32 dummy __attribute__ ((unused)))
{
P *p;
g->m->locks++; // see comment in entersyscall
// Leave SP around for GC and traceback.
#ifdef USING_SPLIT_STACK
{
size_t gcstacksize;
g->gcstack = __splitstack_find(nil, nil, &gcstacksize,
&g->gcnextsegment, &g->gcnextsp,
&g->gcinitialsp);
g->gcstacksize = (uintptr)gcstacksize;
}
#else
g->gcnextsp = (byte *) &p;
#endif
// Save the registers in the g structure so that any pointers
// held in registers will be seen by the garbage collector.
getcontext(ucontext_arg(&g->gcregs[0]));
g->syscallpc = (uintptr)runtime_getcallerpc(&dummy);
g->syscallsp = (uintptr)runtime_getcallersp(&dummy);
g->atomicstatus = _Gsyscall;
p = releasep();
handoffp(p);
if(g->isbackground) // do not consider blocked scavenger for deadlock detection
incidlelocked(1);
g->m->locks--;
}
// The goroutine g exited its system call.
// Arrange for it to run on a cpu again.
// This is called only from the go syscall library, not
// from the low-level system calls used by the runtime.
void
runtime_exitsyscall(int32 dummy __attribute__ ((unused)))
{
G *gp;
gp = g;
gp->m->locks++; // see comment in entersyscall
if(gp->isbackground) // do not consider blocked scavenger for deadlock detection
incidlelocked(-1);
gp->waitsince = 0;
if(exitsyscallfast()) {
// There's a cpu for us, so we can run.
((P*)gp->m->p)->syscalltick++;
gp->atomicstatus = _Grunning;
// Garbage collector isn't running (since we are),
// so okay to clear gcstack and gcsp.
#ifdef USING_SPLIT_STACK
gp->gcstack = nil;
#endif
gp->gcnextsp = nil;
runtime_memclr(&gp->gcregs[0], sizeof gp->gcregs);
gp->syscallsp = 0;
gp->m->locks--;
return;
}
gp->m->locks--;
// Call the scheduler.
runtime_mcall(exitsyscall0);
// Scheduler returned, so we're allowed to run now.
// Delete the gcstack information that we left for
// the garbage collector during the system call.
// Must wait until now because until gosched returns
// we don't know for sure that the garbage collector
// is not running.
#ifdef USING_SPLIT_STACK
gp->gcstack = nil;
#endif
gp->gcnextsp = nil;
runtime_memclr(&gp->gcregs[0], sizeof gp->gcregs);
gp->syscallsp = 0;
// Note that this gp->m might be different than the earlier
// gp->m after returning from runtime_mcall.
((P*)gp->m->p)->syscalltick++;
}
static bool
exitsyscallfast(void)
{
G *gp;
P *p;
gp = g;
// Freezetheworld sets stopwait but does not retake P's.
if(runtime_sched->stopwait) {
gp->m->p = 0;
return false;
}
// Try to re-acquire the last P.
if(gp->m->p && ((P*)gp->m->p)->status == _Psyscall && runtime_cas(&((P*)gp->m->p)->status, _Psyscall, _Prunning)) {
// There's a cpu for us, so we can run.
gp->m->mcache = ((P*)gp->m->p)->mcache;
((P*)gp->m->p)->m = (uintptr)gp->m;
return true;
}
// Try to get any other idle P.
gp->m->p = 0;
if(runtime_sched->pidle) {
runtime_lock(&runtime_sched->lock);
p = pidleget();
if(p && runtime_atomicload(&runtime_sched->sysmonwait)) {
runtime_atomicstore(&runtime_sched->sysmonwait, 0);
runtime_notewakeup(&runtime_sched->sysmonnote);
}
runtime_unlock(&runtime_sched->lock);
if(p) {
acquirep(p);
return true;
}
}
return false;
}
// runtime_exitsyscall slow path on g0.
// Failed to acquire P, enqueue gp as runnable.
static void
exitsyscall0(G *gp)
{
M *m;
P *p;
m = g->m;
gp->atomicstatus = _Grunnable;
gp->m = nil;
m->curg = nil;
runtime_lock(&runtime_sched->lock);
p = pidleget();
if(p == nil)
globrunqput(gp);
else if(runtime_atomicload(&runtime_sched->sysmonwait)) {
runtime_atomicstore(&runtime_sched->sysmonwait, 0);
runtime_notewakeup(&runtime_sched->sysmonnote);
}
runtime_unlock(&runtime_sched->lock);
if(p) {
acquirep(p);
execute(gp, false); // Never returns.
}
if(m->lockedg) {
// Wait until another thread schedules gp and so m again.
stoplockedm();
execute(gp, false); // Never returns.
}
stopm();
schedule(); // Never returns.
}
void syscall_entersyscall(void)
__asm__(GOSYM_PREFIX "syscall.Entersyscall");
void syscall_entersyscall(void) __attribute__ ((no_split_stack));
void
syscall_entersyscall()
{
runtime_entersyscall(0);
}
void syscall_exitsyscall(void)
__asm__(GOSYM_PREFIX "syscall.Exitsyscall");
void syscall_exitsyscall(void) __attribute__ ((no_split_stack));
void
syscall_exitsyscall()
{
runtime_exitsyscall(0);
}
// Allocate a new g, with a stack big enough for stacksize bytes.
G*
runtime_malg(bool allocatestack, bool signalstack, byte** ret_stack, uintptr* ret_stacksize)
{
uintptr stacksize;
G *newg;
byte* unused_stack;
uintptr unused_stacksize;
#if USING_SPLIT_STACK
int dont_block_signals = 0;
size_t ss_stacksize;
#endif
if (ret_stack == nil) {
ret_stack = &unused_stack;
}
if (ret_stacksize == nil) {
ret_stacksize = &unused_stacksize;
}
newg = allocg();
if(allocatestack) {
stacksize = StackMin;
if(signalstack) {
stacksize = 32 * 1024; // OS X wants >= 8K, GNU/Linux >= 2K
#ifdef SIGSTKSZ
if(stacksize < SIGSTKSZ)
stacksize = SIGSTKSZ;
#endif
}
#if USING_SPLIT_STACK
*ret_stack = __splitstack_makecontext(stacksize,
&newg->stackcontext[0],
&ss_stacksize);
*ret_stacksize = (uintptr)ss_stacksize;
__splitstack_block_signals_context(&newg->stackcontext[0],
&dont_block_signals, nil);
#else
// In 64-bit mode, the maximum Go allocation space is
// 128G. Our stack size is 4M, which only permits 32K
// goroutines. In order to not limit ourselves,
// allocate the stacks out of separate memory. In
// 32-bit mode, the Go allocation space is all of
// memory anyhow.
if(sizeof(void*) == 8) {
void *p = runtime_SysAlloc(stacksize, &mstats()->other_sys);
if(p == nil)
runtime_throw("runtime: cannot allocate memory for goroutine stack");
*ret_stack = (byte*)p;
} else {
*ret_stack = runtime_mallocgc(stacksize, 0, FlagNoProfiling|FlagNoGC);
runtime_xadd(&runtime_stacks_sys, stacksize);
}
*ret_stacksize = (uintptr)stacksize;
newg->gcinitialsp = *ret_stack;
newg->gcstacksize = (uintptr)stacksize;
#endif
}
return newg;
}
G*
__go_go(void (*fn)(void*), void* arg)
{
byte *sp;
size_t spsize;
G *newg;
P *p;
//runtime_printf("newproc1 %p %p narg=%d nret=%d\n", fn->fn, argp, narg, nret);
if(fn == nil) {
g->m->throwing = -1; // do not dump full stacks
runtime_throw("go of nil func value");
}
g->m->locks++; // disable preemption because it can be holding p in a local var
p = (P*)g->m->p;
if((newg = gfget(p)) != nil) {
#ifdef USING_SPLIT_STACK
int dont_block_signals = 0;
sp = __splitstack_resetcontext(&newg->stackcontext[0],
&spsize);
__splitstack_block_signals_context(&newg->stackcontext[0],
&dont_block_signals, nil);
#else
sp = newg->gcinitialsp;
spsize = newg->gcstacksize;
if(spsize == 0)
runtime_throw("bad spsize in __go_go");
newg->gcnextsp = sp;
#endif
newg->traceback = nil;
} else {
uintptr malsize;
newg = runtime_malg(true, false, &sp, &malsize);
spsize = (size_t)malsize;
newg->atomicstatus = _Gdead;
allgadd(newg);
}
newg->entry = (byte*)fn;
newg->param = arg;
newg->gopc = (uintptr)__builtin_return_address(0);
newg->atomicstatus = _Grunnable;
if(p->goidcache == p->goidcacheend) {
p->goidcache = runtime_xadd64(&runtime_sched->goidgen, GoidCacheBatch);
p->goidcacheend = p->goidcache + GoidCacheBatch;
}
newg->goid = p->goidcache++;
makeGContext(newg, sp, (uintptr)spsize);
runqput(p, newg, true);
if(runtime_atomicload(&runtime_sched->npidle) != 0 && runtime_atomicload(&runtime_sched->nmspinning) == 0 && fn != runtime_main) // TODO: fast atomic
wakep();
g->m->locks--;
return newg;
}
void
runtime_Breakpoint(void)
{
runtime_breakpoint();
}
void runtime_Gosched (void) __asm__ (GOSYM_PREFIX "runtime.Gosched");
void
runtime_Gosched(void)
{
runtime_gosched();
}
static struct {
uint32 lock;
int32 hz;
} prof;
static void System(void) {}
static void GC(void) {}
// Called if we receive a SIGPROF signal.
void
runtime_sigprof()
{
M *mp = g->m;
int32 n, i;
bool traceback;
uintptr pcbuf[TracebackMaxFrames];
Location locbuf[TracebackMaxFrames];
Slice stk;
if(prof.hz == 0)
return;
if(mp == nil)
return;
// Profiling runs concurrently with GC, so it must not allocate.
mp->mallocing++;
traceback = true;
if(mp->mcache == nil)
traceback = false;
n = 0;
if(runtime_atomicload(&runtime_in_callers) > 0) {
// If SIGPROF arrived while already fetching runtime
// callers we can have trouble on older systems
// because the unwind library calls dl_iterate_phdr
// which was not recursive in the past.
traceback = false;
}
if(traceback) {
n = runtime_callers(0, locbuf, nelem(locbuf), false);
for(i = 0; i < n; i++)
pcbuf[i] = locbuf[i].pc;
}
if(!traceback || n <= 0) {
n = 2;
pcbuf[0] = (uintptr)runtime_getcallerpc(&n);
if(mp->gcing || mp->helpgc)
pcbuf[1] = (uintptr)GC;
else
pcbuf[1] = (uintptr)System;
}
if (prof.hz != 0) {
stk.__values = &pcbuf[0];
stk.__count = n;
stk.__capacity = n;
// Simple cas-lock to coordinate with setcpuprofilerate.
while (!runtime_cas(&prof.lock, 0, 1)) {
runtime_osyield();
}
if (prof.hz != 0) {
runtime_cpuprofAdd(stk);
}
runtime_atomicstore(&prof.lock, 0);
}
mp->mallocing--;
}
// Arrange to call fn with a traceback hz times a second.
void
runtime_setcpuprofilerate_m(int32 hz)
{
// Force sane arguments.
if(hz < 0)
hz = 0;
// Disable preemption, otherwise we can be rescheduled to another thread
// that has profiling enabled.
g->m->locks++;
// Stop profiler on this thread so that it is safe to lock prof.
// if a profiling signal came in while we had prof locked,
// it would deadlock.
runtime_resetcpuprofiler(0);
while (!runtime_cas(&prof.lock, 0, 1)) {
runtime_osyield();
}
prof.hz = hz;
runtime_atomicstore(&prof.lock, 0);
runtime_lock(&runtime_sched->lock);
runtime_sched->profilehz = hz;
runtime_unlock(&runtime_sched->lock);
if(hz != 0)
runtime_resetcpuprofiler(hz);
g->m->locks--;
}
// Return whether we are waiting for a GC. This gc toolchain uses
// preemption instead.
bool
runtime_gcwaiting(void)
{
return runtime_sched->gcwaiting;
}
// os_beforeExit is called from os.Exit(0).
//go:linkname os_beforeExit os.runtime_beforeExit
extern void os_beforeExit() __asm__ (GOSYM_PREFIX "os.runtime_beforeExit");
void
os_beforeExit()
{
}
intgo NumCPU(void) __asm__ (GOSYM_PREFIX "runtime.NumCPU");
intgo
NumCPU()
{
return (intgo)(runtime_ncpu);
}