| //===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and |
| /// FreeBSD-specific code. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "sanitizer_common/sanitizer_platform.h" |
| #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD |
| |
| #include "hwasan.h" |
| #include "hwasan_dynamic_shadow.h" |
| #include "hwasan_interface_internal.h" |
| #include "hwasan_mapping.h" |
| #include "hwasan_report.h" |
| #include "hwasan_thread.h" |
| #include "hwasan_thread_list.h" |
| |
| #include <dlfcn.h> |
| #include <elf.h> |
| #include <link.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <sys/resource.h> |
| #include <sys/time.h> |
| #include <unistd.h> |
| #include <unwind.h> |
| #include <sys/prctl.h> |
| #include <errno.h> |
| |
| #include "sanitizer_common/sanitizer_common.h" |
| #include "sanitizer_common/sanitizer_procmaps.h" |
| |
| // Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID. |
| // |
| // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF |
| // Not currently tested. |
| // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON |
| // Integration tests downstream exist. |
| // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF |
| // Tested with check-hwasan on x86_64-linux. |
| // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON |
| // Tested with check-hwasan on aarch64-linux-android. |
| #if !SANITIZER_ANDROID |
| SANITIZER_INTERFACE_ATTRIBUTE |
| THREADLOCAL uptr __hwasan_tls; |
| #endif |
| |
| namespace __hwasan { |
| |
| // With the zero shadow base we can not actually map pages starting from 0. |
| // This constant is somewhat arbitrary. |
| constexpr uptr kZeroBaseShadowStart = 0; |
| constexpr uptr kZeroBaseMaxShadowStart = 1 << 18; |
| |
| static void ProtectGap(uptr addr, uptr size) { |
| __sanitizer::ProtectGap(addr, size, kZeroBaseShadowStart, |
| kZeroBaseMaxShadowStart); |
| } |
| |
| uptr kLowMemStart; |
| uptr kLowMemEnd; |
| uptr kLowShadowEnd; |
| uptr kLowShadowStart; |
| uptr kHighShadowStart; |
| uptr kHighShadowEnd; |
| uptr kHighMemStart; |
| uptr kHighMemEnd; |
| |
| static void PrintRange(uptr start, uptr end, const char *name) { |
| Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name); |
| } |
| |
| static void PrintAddressSpaceLayout() { |
| PrintRange(kHighMemStart, kHighMemEnd, "HighMem"); |
| if (kHighShadowEnd + 1 < kHighMemStart) |
| PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap"); |
| else |
| CHECK_EQ(kHighShadowEnd + 1, kHighMemStart); |
| PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow"); |
| if (kLowShadowEnd + 1 < kHighShadowStart) |
| PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap"); |
| else |
| CHECK_EQ(kLowMemEnd + 1, kHighShadowStart); |
| PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow"); |
| if (kLowMemEnd + 1 < kLowShadowStart) |
| PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap"); |
| else |
| CHECK_EQ(kLowMemEnd + 1, kLowShadowStart); |
| PrintRange(kLowMemStart, kLowMemEnd, "LowMem"); |
| CHECK_EQ(0, kLowMemStart); |
| } |
| |
| static uptr GetHighMemEnd() { |
| // HighMem covers the upper part of the address space. |
| uptr max_address = GetMaxUserVirtualAddress(); |
| // Adjust max address to make sure that kHighMemEnd and kHighMemStart are |
| // properly aligned: |
| max_address |= (GetMmapGranularity() << kShadowScale) - 1; |
| return max_address; |
| } |
| |
| static void InitializeShadowBaseAddress(uptr shadow_size_bytes) { |
| __hwasan_shadow_memory_dynamic_address = |
| FindDynamicShadowStart(shadow_size_bytes); |
| } |
| |
| void InitPrctl() { |
| #define PR_SET_TAGGED_ADDR_CTRL 55 |
| #define PR_GET_TAGGED_ADDR_CTRL 56 |
| #define PR_TAGGED_ADDR_ENABLE (1UL << 0) |
| // Check we're running on a kernel that can use the tagged address ABI. |
| if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) == (uptr)-1 && |
| errno == EINVAL) { |
| #if SANITIZER_ANDROID |
| // Some older Android kernels have the tagged pointer ABI on |
| // unconditionally, and hence don't have the tagged-addr prctl while still |
| // allow the ABI. |
| // If targeting Android and the prctl is not around we assume this is the |
| // case. |
| return; |
| #else |
| Printf( |
| "FATAL: " |
| "HWAddressSanitizer requires a kernel with tagged address ABI.\n"); |
| Die(); |
| #endif |
| } |
| |
| // Turn on the tagged address ABI. |
| if (internal_prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE, 0, 0, 0) == |
| (uptr)-1 || |
| !internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0)) { |
| Printf( |
| "FATAL: HWAddressSanitizer failed to enable tagged address syscall " |
| "ABI.\nSuggest check `sysctl abi.tagged_addr_disabled` " |
| "configuration.\n"); |
| Die(); |
| } |
| #undef PR_SET_TAGGED_ADDR_CTRL |
| #undef PR_GET_TAGGED_ADDR_CTRL |
| #undef PR_TAGGED_ADDR_ENABLE |
| } |
| |
| bool InitShadow() { |
| // Define the entire memory range. |
| kHighMemEnd = GetHighMemEnd(); |
| |
| // Determine shadow memory base offset. |
| InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd)); |
| |
| // Place the low memory first. |
| kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1; |
| kLowMemStart = 0; |
| |
| // Define the low shadow based on the already placed low memory. |
| kLowShadowEnd = MemToShadow(kLowMemEnd); |
| kLowShadowStart = __hwasan_shadow_memory_dynamic_address; |
| |
| // High shadow takes whatever memory is left up there (making sure it is not |
| // interfering with low memory in the fixed case). |
| kHighShadowEnd = MemToShadow(kHighMemEnd); |
| kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1; |
| |
| // High memory starts where allocated shadow allows. |
| kHighMemStart = ShadowToMem(kHighShadowStart); |
| |
| // Check the sanity of the defined memory ranges (there might be gaps). |
| CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0); |
| CHECK_GT(kHighMemStart, kHighShadowEnd); |
| CHECK_GT(kHighShadowEnd, kHighShadowStart); |
| CHECK_GT(kHighShadowStart, kLowMemEnd); |
| CHECK_GT(kLowMemEnd, kLowMemStart); |
| CHECK_GT(kLowShadowEnd, kLowShadowStart); |
| CHECK_GT(kLowShadowStart, kLowMemEnd); |
| |
| if (Verbosity()) |
| PrintAddressSpaceLayout(); |
| |
| // Reserve shadow memory. |
| ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow"); |
| ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow"); |
| |
| // Protect all the gaps. |
| ProtectGap(0, Min(kLowMemStart, kLowShadowStart)); |
| if (kLowMemEnd + 1 < kLowShadowStart) |
| ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1); |
| if (kLowShadowEnd + 1 < kHighShadowStart) |
| ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1); |
| if (kHighShadowEnd + 1 < kHighMemStart) |
| ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1); |
| |
| return true; |
| } |
| |
| void InitThreads() { |
| CHECK(__hwasan_shadow_memory_dynamic_address); |
| uptr guard_page_size = GetMmapGranularity(); |
| uptr thread_space_start = |
| __hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment); |
| uptr thread_space_end = |
| __hwasan_shadow_memory_dynamic_address - guard_page_size; |
| ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1, |
| "hwasan threads", /*madvise_shadow*/ false); |
| ProtectGap(thread_space_end, |
| __hwasan_shadow_memory_dynamic_address - thread_space_end); |
| InitThreadList(thread_space_start, thread_space_end - thread_space_start); |
| } |
| |
| bool MemIsApp(uptr p) { |
| CHECK(GetTagFromPointer(p) == 0); |
| return p >= kHighMemStart || (p >= kLowMemStart && p <= kLowMemEnd); |
| } |
| |
| static void HwasanAtExit(void) { |
| if (common_flags()->print_module_map) |
| DumpProcessMap(); |
| if (flags()->print_stats && (flags()->atexit || hwasan_report_count > 0)) |
| ReportStats(); |
| if (hwasan_report_count > 0) { |
| // ReportAtExitStatistics(); |
| if (common_flags()->exitcode) |
| internal__exit(common_flags()->exitcode); |
| } |
| } |
| |
| void InstallAtExitHandler() { |
| atexit(HwasanAtExit); |
| } |
| |
| // ---------------------- TSD ---------------- {{{1 |
| |
| extern "C" void __hwasan_thread_enter() { |
| hwasanThreadList().CreateCurrentThread()->InitRandomState(); |
| } |
| |
| extern "C" void __hwasan_thread_exit() { |
| Thread *t = GetCurrentThread(); |
| // Make sure that signal handler can not see a stale current thread pointer. |
| atomic_signal_fence(memory_order_seq_cst); |
| if (t) |
| hwasanThreadList().ReleaseThread(t); |
| } |
| |
| #if HWASAN_WITH_INTERCEPTORS |
| static pthread_key_t tsd_key; |
| static bool tsd_key_inited = false; |
| |
| void HwasanTSDThreadInit() { |
| if (tsd_key_inited) |
| CHECK_EQ(0, pthread_setspecific(tsd_key, |
| (void *)GetPthreadDestructorIterations())); |
| } |
| |
| void HwasanTSDDtor(void *tsd) { |
| uptr iterations = (uptr)tsd; |
| if (iterations > 1) { |
| CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1))); |
| return; |
| } |
| __hwasan_thread_exit(); |
| } |
| |
| void HwasanTSDInit() { |
| CHECK(!tsd_key_inited); |
| tsd_key_inited = true; |
| CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor)); |
| } |
| #else |
| void HwasanTSDInit() {} |
| void HwasanTSDThreadInit() {} |
| #endif |
| |
| #if SANITIZER_ANDROID |
| uptr *GetCurrentThreadLongPtr() { |
| return (uptr *)get_android_tls_ptr(); |
| } |
| #else |
| uptr *GetCurrentThreadLongPtr() { |
| return &__hwasan_tls; |
| } |
| #endif |
| |
| #if SANITIZER_ANDROID |
| void AndroidTestTlsSlot() { |
| uptr kMagicValue = 0x010203040A0B0C0D; |
| uptr *tls_ptr = GetCurrentThreadLongPtr(); |
| uptr old_value = *tls_ptr; |
| *tls_ptr = kMagicValue; |
| dlerror(); |
| if (*(uptr *)get_android_tls_ptr() != kMagicValue) { |
| Printf( |
| "ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used " |
| "for dlerror().\n"); |
| Die(); |
| } |
| *tls_ptr = old_value; |
| } |
| #else |
| void AndroidTestTlsSlot() {} |
| #endif |
| |
| Thread *GetCurrentThread() { |
| uptr *ThreadLongPtr = GetCurrentThreadLongPtr(); |
| if (UNLIKELY(*ThreadLongPtr == 0)) |
| return nullptr; |
| auto *R = (StackAllocationsRingBuffer *)ThreadLongPtr; |
| return hwasanThreadList().GetThreadByBufferAddress((uptr)R->Next()); |
| } |
| |
| struct AccessInfo { |
| uptr addr; |
| uptr size; |
| bool is_store; |
| bool is_load; |
| bool recover; |
| }; |
| |
| static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) { |
| // Access type is passed in a platform dependent way (see below) and encoded |
| // as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is |
| // recoverable. Valid values of Y are 0 to 4, which are interpreted as |
| // log2(access_size), and 0xF, which means that access size is passed via |
| // platform dependent register (see below). |
| #if defined(__aarch64__) |
| // Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF, |
| // access size is stored in X1 register. Access address is always in X0 |
| // register. |
| uptr pc = (uptr)info->si_addr; |
| const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff; |
| if ((code & 0xff00) != 0x900) |
| return AccessInfo{}; // Not ours. |
| |
| const bool is_store = code & 0x10; |
| const bool recover = code & 0x20; |
| const uptr addr = uc->uc_mcontext.regs[0]; |
| const unsigned size_log = code & 0xf; |
| if (size_log > 4 && size_log != 0xf) |
| return AccessInfo{}; // Not ours. |
| const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log; |
| |
| #elif defined(__x86_64__) |
| // Access type is encoded in the instruction following INT3 as |
| // NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in |
| // RSI register. Access address is always in RDI register. |
| uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP]; |
| uint8_t *nop = (uint8_t*)pc; |
| if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 || |
| *(nop + 3) < 0x40) |
| return AccessInfo{}; // Not ours. |
| const unsigned code = *(nop + 3); |
| |
| const bool is_store = code & 0x10; |
| const bool recover = code & 0x20; |
| const uptr addr = uc->uc_mcontext.gregs[REG_RDI]; |
| const unsigned size_log = code & 0xf; |
| if (size_log > 4 && size_log != 0xf) |
| return AccessInfo{}; // Not ours. |
| const uptr size = |
| size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log; |
| |
| #else |
| # error Unsupported architecture |
| #endif |
| |
| return AccessInfo{addr, size, is_store, !is_store, recover}; |
| } |
| |
| static void HandleTagMismatch(AccessInfo ai, uptr pc, uptr frame, |
| ucontext_t *uc, uptr *registers_frame = nullptr) { |
| InternalMmapVector<BufferedStackTrace> stack_buffer(1); |
| BufferedStackTrace *stack = stack_buffer.data(); |
| stack->Reset(); |
| stack->Unwind(pc, frame, uc, common_flags()->fast_unwind_on_fatal); |
| |
| // The second stack frame contains the failure __hwasan_check function, as |
| // we have a stack frame for the registers saved in __hwasan_tag_mismatch that |
| // we wish to ignore. This (currently) only occurs on AArch64, as x64 |
| // implementations use SIGTRAP to implement the failure, and thus do not go |
| // through the stack saver. |
| if (registers_frame && stack->trace && stack->size > 0) { |
| stack->trace++; |
| stack->size--; |
| } |
| |
| bool fatal = flags()->halt_on_error || !ai.recover; |
| ReportTagMismatch(stack, ai.addr, ai.size, ai.is_store, fatal, |
| registers_frame); |
| } |
| |
| static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) { |
| AccessInfo ai = GetAccessInfo(info, uc); |
| if (!ai.is_store && !ai.is_load) |
| return false; |
| |
| SignalContext sig{info, uc}; |
| HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc); |
| |
| #if defined(__aarch64__) |
| uc->uc_mcontext.pc += 4; |
| #elif defined(__x86_64__) |
| #else |
| # error Unsupported architecture |
| #endif |
| return true; |
| } |
| |
| static void OnStackUnwind(const SignalContext &sig, const void *, |
| BufferedStackTrace *stack) { |
| stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context, |
| common_flags()->fast_unwind_on_fatal); |
| } |
| |
| void HwasanOnDeadlySignal(int signo, void *info, void *context) { |
| // Probably a tag mismatch. |
| if (signo == SIGTRAP) |
| if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t*)context)) |
| return; |
| |
| HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr); |
| } |
| |
| |
| } // namespace __hwasan |
| |
| // Entry point for interoperability between __hwasan_tag_mismatch (ASM) and the |
| // rest of the mismatch handling code (C++). |
| void __hwasan_tag_mismatch4(uptr addr, uptr access_info, uptr *registers_frame, |
| size_t outsize) { |
| __hwasan::AccessInfo ai; |
| ai.is_store = access_info & 0x10; |
| ai.is_load = !ai.is_store; |
| ai.recover = access_info & 0x20; |
| ai.addr = addr; |
| if ((access_info & 0xf) == 0xf) |
| ai.size = outsize; |
| else |
| ai.size = 1 << (access_info & 0xf); |
| |
| __hwasan::HandleTagMismatch(ai, (uptr)__builtin_return_address(0), |
| (uptr)__builtin_frame_address(0), nullptr, |
| registers_frame); |
| __builtin_unreachable(); |
| } |
| |
| #endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD |