| `/* Implementation of the RESHAPE intrinsic |
| Copyright (C) 2002-2021 Free Software Foundation, Inc. |
| Contributed by Paul Brook <paul@nowt.org> |
| |
| This file is part of the GNU Fortran runtime library (libgfortran). |
| |
| Libgfortran is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public |
| License as published by the Free Software Foundation; either |
| version 3 of the License, or (at your option) any later version. |
| |
| Libgfortran is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "libgfortran.h"' |
| |
| include(iparm.m4)dnl |
| |
| `#if defined (HAVE_'rtype_name`) |
| |
| typedef GFC_FULL_ARRAY_DESCRIPTOR(1, 'index_type`) 'shape_type`;' |
| |
| dnl For integer routines, only the kind (ie size) is used to name the |
| dnl function. The same function will be used for integer and logical |
| dnl arrays of the same kind. |
| |
| `extern void reshape_'rtype_ccode` ('rtype` * const restrict, |
| 'rtype` * const restrict, |
| 'shape_type` * const restrict, |
| 'rtype` * const restrict, |
| 'shape_type` * const restrict); |
| export_proto(reshape_'rtype_ccode`); |
| |
| void |
| reshape_'rtype_ccode` ('rtype` * const restrict ret, |
| 'rtype` * const restrict source, |
| 'shape_type` * const restrict shape, |
| 'rtype` * const restrict pad, |
| 'shape_type` * const restrict order) |
| { |
| /* r.* indicates the return array. */ |
| index_type rcount[GFC_MAX_DIMENSIONS]; |
| index_type rextent[GFC_MAX_DIMENSIONS]; |
| index_type rstride[GFC_MAX_DIMENSIONS]; |
| index_type rstride0; |
| index_type rdim; |
| index_type rsize; |
| index_type rs; |
| index_type rex; |
| 'rtype_name` *rptr; |
| /* s.* indicates the source array. */ |
| index_type scount[GFC_MAX_DIMENSIONS]; |
| index_type sextent[GFC_MAX_DIMENSIONS]; |
| index_type sstride[GFC_MAX_DIMENSIONS]; |
| index_type sstride0; |
| index_type sdim; |
| index_type ssize; |
| const 'rtype_name` *sptr; |
| /* p.* indicates the pad array. */ |
| index_type pcount[GFC_MAX_DIMENSIONS]; |
| index_type pextent[GFC_MAX_DIMENSIONS]; |
| index_type pstride[GFC_MAX_DIMENSIONS]; |
| index_type pdim; |
| index_type psize; |
| const 'rtype_name` *pptr; |
| |
| const 'rtype_name` *src; |
| int sempty, pempty, shape_empty; |
| index_type shape_data[GFC_MAX_DIMENSIONS]; |
| |
| rdim = GFC_DESCRIPTOR_EXTENT(shape,0); |
| /* rdim is always > 0; this lets the compiler optimize more and |
| avoids a potential warning. */ |
| GFC_ASSERT(rdim>0); |
| |
| if (rdim != GFC_DESCRIPTOR_RANK(ret)) |
| runtime_error("rank of return array incorrect in RESHAPE intrinsic"); |
| |
| shape_empty = 0; |
| |
| for (index_type n = 0; n < rdim; n++) |
| { |
| shape_data[n] = shape->base_addr[n * GFC_DESCRIPTOR_STRIDE(shape,0)]; |
| if (shape_data[n] <= 0) |
| { |
| shape_data[n] = 0; |
| shape_empty = 1; |
| } |
| } |
| |
| if (ret->base_addr == NULL) |
| { |
| index_type alloc_size; |
| |
| rs = 1; |
| for (index_type n = 0; n < rdim; n++) |
| { |
| rex = shape_data[n]; |
| |
| GFC_DIMENSION_SET(ret->dim[n], 0, rex - 1, rs); |
| |
| rs *= rex; |
| } |
| ret->offset = 0; |
| |
| if (unlikely (rs < 1)) |
| alloc_size = 0; |
| else |
| alloc_size = rs; |
| |
| ret->base_addr = xmallocarray (alloc_size, sizeof ('rtype_name`)); |
| ret->dtype.rank = rdim; |
| } |
| |
| if (shape_empty) |
| return; |
| |
| if (pad) |
| { |
| pdim = GFC_DESCRIPTOR_RANK (pad); |
| psize = 1; |
| pempty = 0; |
| for (index_type n = 0; n < pdim; n++) |
| { |
| pcount[n] = 0; |
| pstride[n] = GFC_DESCRIPTOR_STRIDE(pad,n); |
| pextent[n] = GFC_DESCRIPTOR_EXTENT(pad,n); |
| if (pextent[n] <= 0) |
| { |
| pempty = 1; |
| pextent[n] = 0; |
| } |
| |
| if (psize == pstride[n]) |
| psize *= pextent[n]; |
| else |
| psize = 0; |
| } |
| pptr = pad->base_addr; |
| } |
| else |
| { |
| pdim = 0; |
| psize = 1; |
| pempty = 1; |
| pptr = NULL; |
| } |
| |
| if (unlikely (compile_options.bounds_check)) |
| { |
| index_type ret_extent, source_extent; |
| |
| rs = 1; |
| for (index_type n = 0; n < rdim; n++) |
| { |
| rs *= shape_data[n]; |
| ret_extent = GFC_DESCRIPTOR_EXTENT(ret,n); |
| if (ret_extent != shape_data[n]) |
| runtime_error("Incorrect extent in return value of RESHAPE" |
| " intrinsic in dimension %ld: is %ld," |
| " should be %ld", (long int) n+1, |
| (long int) ret_extent, (long int) shape_data[n]); |
| } |
| |
| source_extent = 1; |
| sdim = GFC_DESCRIPTOR_RANK (source); |
| for (index_type n = 0; n < sdim; n++) |
| { |
| index_type se; |
| se = GFC_DESCRIPTOR_EXTENT(source,n); |
| source_extent *= se > 0 ? se : 0; |
| } |
| |
| if (rs > source_extent && (!pad || pempty)) |
| runtime_error("Incorrect size in SOURCE argument to RESHAPE" |
| " intrinsic: is %ld, should be %ld", |
| (long int) source_extent, (long int) rs); |
| |
| if (order) |
| { |
| int seen[GFC_MAX_DIMENSIONS]; |
| index_type v; |
| |
| for (index_type n = 0; n < rdim; n++) |
| seen[n] = 0; |
| |
| for (index_type n = 0; n < rdim; n++) |
| { |
| v = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1; |
| |
| if (v < 0 || v >= rdim) |
| runtime_error("Value %ld out of range in ORDER argument" |
| " to RESHAPE intrinsic", (long int) v + 1); |
| |
| if (seen[v] != 0) |
| runtime_error("Duplicate value %ld in ORDER argument to" |
| " RESHAPE intrinsic", (long int) v + 1); |
| |
| seen[v] = 1; |
| } |
| } |
| } |
| |
| rsize = 1; |
| for (index_type n = 0; n < rdim; n++) |
| { |
| index_type dim; |
| if (order) |
| dim = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1; |
| else |
| dim = n; |
| |
| rcount[n] = 0; |
| rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim); |
| rextent[n] = GFC_DESCRIPTOR_EXTENT(ret,dim); |
| if (rextent[n] < 0) |
| rextent[n] = 0; |
| |
| if (rextent[n] != shape_data[dim]) |
| runtime_error ("shape and target do not conform"); |
| |
| if (rsize == rstride[n]) |
| rsize *= rextent[n]; |
| else |
| rsize = 0; |
| if (rextent[n] <= 0) |
| return; |
| } |
| |
| sdim = GFC_DESCRIPTOR_RANK (source); |
| |
| /* sdim is always > 0; this lets the compiler optimize more and |
| avoids a warning. */ |
| GFC_ASSERT(sdim>0); |
| |
| ssize = 1; |
| sempty = 0; |
| for (index_type n = 0; n < sdim; n++) |
| { |
| scount[n] = 0; |
| sstride[n] = GFC_DESCRIPTOR_STRIDE(source,n); |
| sextent[n] = GFC_DESCRIPTOR_EXTENT(source,n); |
| if (sextent[n] <= 0) |
| { |
| sempty = 1; |
| sextent[n] = 0; |
| } |
| |
| if (ssize == sstride[n]) |
| ssize *= sextent[n]; |
| else |
| ssize = 0; |
| } |
| |
| if (rsize != 0 && ssize != 0 && psize != 0) |
| { |
| rsize *= sizeof ('rtype_name`); |
| ssize *= sizeof ('rtype_name`); |
| psize *= sizeof ('rtype_name`); |
| reshape_packed ((char *)ret->base_addr, rsize, (char *)source->base_addr, |
| ssize, pad ? (char *)pad->base_addr : NULL, psize); |
| return; |
| } |
| rptr = ret->base_addr; |
| src = sptr = source->base_addr; |
| rstride0 = rstride[0]; |
| sstride0 = sstride[0]; |
| |
| if (sempty && pempty) |
| abort (); |
| |
| if (sempty) |
| { |
| /* Pretend we are using the pad array the first time around, too. */ |
| src = pptr; |
| sptr = pptr; |
| sdim = pdim; |
| for (index_type dim = 0; dim < pdim; dim++) |
| { |
| scount[dim] = pcount[dim]; |
| sextent[dim] = pextent[dim]; |
| sstride[dim] = pstride[dim]; |
| sstride0 = pstride[0]; |
| } |
| } |
| |
| while (rptr) |
| { |
| /* Select between the source and pad arrays. */ |
| *rptr = *src; |
| /* Advance to the next element. */ |
| rptr += rstride0; |
| src += sstride0; |
| rcount[0]++; |
| scount[0]++; |
| |
| /* Advance to the next destination element. */ |
| index_type n = 0; |
| while (rcount[n] == rextent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| rcount[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| rptr -= rstride[n] * rextent[n]; |
| n++; |
| if (n == rdim) |
| { |
| /* Break out of the loop. */ |
| rptr = NULL; |
| break; |
| } |
| else |
| { |
| rcount[n]++; |
| rptr += rstride[n]; |
| } |
| } |
| /* Advance to the next source element. */ |
| n = 0; |
| while (scount[n] == sextent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| scount[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| src -= sstride[n] * sextent[n]; |
| n++; |
| if (n == sdim) |
| { |
| if (sptr && pad) |
| { |
| /* Switch to the pad array. */ |
| sptr = NULL; |
| sdim = pdim; |
| for (index_type dim = 0; dim < pdim; dim++) |
| { |
| scount[dim] = pcount[dim]; |
| sextent[dim] = pextent[dim]; |
| sstride[dim] = pstride[dim]; |
| sstride0 = sstride[0]; |
| } |
| } |
| /* We now start again from the beginning of the pad array. */ |
| src = pptr; |
| break; |
| } |
| else |
| { |
| scount[n]++; |
| src += sstride[n]; |
| } |
| } |
| } |
| } |
| |
| #endif' |