| /* Functions to support general ended bitmaps. |
| Copyright (C) 1997-2020 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "bitmap.h" |
| #include "selftest.h" |
| |
| /* Memory allocation statistics purpose instance. */ |
| mem_alloc_description<bitmap_usage> bitmap_mem_desc; |
| |
| /* Static zero-initialized bitmap obstack used for default initialization |
| of bitmap_head. */ |
| bitmap_obstack bitmap_head::crashme; |
| |
| static bitmap_element *bitmap_tree_listify_from (bitmap, bitmap_element *); |
| |
| /* Register new bitmap. */ |
| void |
| bitmap_register (bitmap b MEM_STAT_DECL) |
| { |
| static unsigned alloc_descriptor_max_uid = 1; |
| gcc_assert (b->alloc_descriptor == 0); |
| b->alloc_descriptor = alloc_descriptor_max_uid++; |
| |
| bitmap_mem_desc.register_descriptor (b->get_descriptor (), BITMAP_ORIGIN, |
| false FINAL_PASS_MEM_STAT); |
| } |
| |
| /* Account the overhead. */ |
| static void |
| register_overhead (bitmap b, size_t amount) |
| { |
| unsigned *d = b->get_descriptor (); |
| if (bitmap_mem_desc.contains_descriptor_for_instance (d)) |
| bitmap_mem_desc.register_instance_overhead (amount, d); |
| } |
| |
| /* Release the overhead. */ |
| static void |
| release_overhead (bitmap b, size_t amount, bool remove_from_map) |
| { |
| unsigned *d = b->get_descriptor (); |
| if (bitmap_mem_desc.contains_descriptor_for_instance (d)) |
| bitmap_mem_desc.release_instance_overhead (d, amount, remove_from_map); |
| } |
| |
| |
| /* Global data */ |
| bitmap_element bitmap_zero_bits; /* An element of all zero bits. */ |
| bitmap_obstack bitmap_default_obstack; /* The default bitmap obstack. */ |
| static int bitmap_default_obstack_depth; |
| static GTY((deletable)) bitmap_element *bitmap_ggc_free; /* Freelist of |
| GC'd elements. */ |
| |
| |
| /* Bitmap memory management. */ |
| |
| /* Add ELT to the appropriate freelist. */ |
| static inline void |
| bitmap_elem_to_freelist (bitmap head, bitmap_element *elt) |
| { |
| bitmap_obstack *bit_obstack = head->obstack; |
| |
| if (GATHER_STATISTICS) |
| release_overhead (head, sizeof (bitmap_element), false); |
| |
| elt->next = NULL; |
| elt->indx = -1; |
| if (bit_obstack) |
| { |
| elt->prev = bit_obstack->elements; |
| bit_obstack->elements = elt; |
| } |
| else |
| { |
| elt->prev = bitmap_ggc_free; |
| bitmap_ggc_free = elt; |
| } |
| } |
| |
| /* Allocate a bitmap element. The bits are cleared, but nothing else is. */ |
| |
| static inline bitmap_element * |
| bitmap_element_allocate (bitmap head) |
| { |
| bitmap_element *element; |
| bitmap_obstack *bit_obstack = head->obstack; |
| |
| if (bit_obstack) |
| { |
| element = bit_obstack->elements; |
| |
| if (element) |
| /* Use up the inner list first before looking at the next |
| element of the outer list. */ |
| if (element->next) |
| { |
| bit_obstack->elements = element->next; |
| bit_obstack->elements->prev = element->prev; |
| } |
| else |
| /* Inner list was just a singleton. */ |
| bit_obstack->elements = element->prev; |
| else |
| element = XOBNEW (&bit_obstack->obstack, bitmap_element); |
| } |
| else |
| { |
| element = bitmap_ggc_free; |
| if (element) |
| /* Use up the inner list first before looking at the next |
| element of the outer list. */ |
| if (element->next) |
| { |
| bitmap_ggc_free = element->next; |
| bitmap_ggc_free->prev = element->prev; |
| } |
| else |
| /* Inner list was just a singleton. */ |
| bitmap_ggc_free = element->prev; |
| else |
| element = ggc_alloc<bitmap_element> (); |
| } |
| |
| if (GATHER_STATISTICS) |
| register_overhead (head, sizeof (bitmap_element)); |
| |
| memset (element->bits, 0, sizeof (element->bits)); |
| |
| return element; |
| } |
| |
| /* Remove ELT and all following elements from bitmap HEAD. |
| Put the released elements in the freelist for HEAD. */ |
| |
| void |
| bitmap_elt_clear_from (bitmap head, bitmap_element *elt) |
| { |
| bitmap_element *prev; |
| bitmap_obstack *bit_obstack = head->obstack; |
| |
| if (!elt) |
| return; |
| |
| if (head->tree_form) |
| elt = bitmap_tree_listify_from (head, elt); |
| |
| if (GATHER_STATISTICS) |
| { |
| int n = 0; |
| for (prev = elt; prev; prev = prev->next) |
| n++; |
| release_overhead (head, sizeof (bitmap_element) * n, false); |
| } |
| |
| prev = elt->prev; |
| if (prev) |
| { |
| prev->next = NULL; |
| if (head->current->indx > prev->indx) |
| { |
| head->current = prev; |
| head->indx = prev->indx; |
| } |
| } |
| else |
| { |
| head->first = NULL; |
| head->current = NULL; |
| head->indx = 0; |
| } |
| |
| /* Put the entire list onto the freelist in one operation. */ |
| if (bit_obstack) |
| { |
| elt->prev = bit_obstack->elements; |
| bit_obstack->elements = elt; |
| } |
| else |
| { |
| elt->prev = bitmap_ggc_free; |
| bitmap_ggc_free = elt; |
| } |
| } |
| |
| /* Linked-list view of bitmaps. |
| |
| In this representation, the bitmap elements form a double-linked list |
| with elements sorted by increasing index. */ |
| |
| /* Link the bitmap element into the current bitmap linked list. */ |
| |
| static inline void |
| bitmap_list_link_element (bitmap head, bitmap_element *element) |
| { |
| unsigned int indx = element->indx; |
| bitmap_element *ptr; |
| |
| gcc_checking_assert (!head->tree_form); |
| |
| /* If this is the first and only element, set it in. */ |
| if (head->first == 0) |
| { |
| element->next = element->prev = 0; |
| head->first = element; |
| } |
| |
| /* If this index is less than that of the current element, it goes someplace |
| before the current element. */ |
| else if (indx < head->indx) |
| { |
| for (ptr = head->current; |
| ptr->prev != 0 && ptr->prev->indx > indx; |
| ptr = ptr->prev) |
| ; |
| |
| if (ptr->prev) |
| ptr->prev->next = element; |
| else |
| head->first = element; |
| |
| element->prev = ptr->prev; |
| element->next = ptr; |
| ptr->prev = element; |
| } |
| |
| /* Otherwise, it must go someplace after the current element. */ |
| else |
| { |
| for (ptr = head->current; |
| ptr->next != 0 && ptr->next->indx < indx; |
| ptr = ptr->next) |
| ; |
| |
| if (ptr->next) |
| ptr->next->prev = element; |
| |
| element->next = ptr->next; |
| element->prev = ptr; |
| ptr->next = element; |
| } |
| |
| /* Set up so this is the first element searched. */ |
| head->current = element; |
| head->indx = indx; |
| } |
| |
| /* Unlink the bitmap element from the current bitmap linked list, |
| and return it to the freelist. */ |
| |
| static inline void |
| bitmap_list_unlink_element (bitmap head, bitmap_element *element, |
| bool to_freelist = true) |
| { |
| bitmap_element *next = element->next; |
| bitmap_element *prev = element->prev; |
| |
| gcc_checking_assert (!head->tree_form); |
| |
| if (prev) |
| prev->next = next; |
| |
| if (next) |
| next->prev = prev; |
| |
| if (head->first == element) |
| head->first = next; |
| |
| /* Since the first thing we try is to insert before current, |
| make current the next entry in preference to the previous. */ |
| if (head->current == element) |
| { |
| head->current = next != 0 ? next : prev; |
| if (head->current) |
| head->indx = head->current->indx; |
| else |
| head->indx = 0; |
| } |
| |
| if (to_freelist) |
| bitmap_elem_to_freelist (head, element); |
| } |
| |
| /* Insert a new uninitialized element (or NODE if not NULL) into bitmap |
| HEAD after element ELT. If ELT is NULL, insert the element at the start. |
| Return the new element. */ |
| |
| static bitmap_element * |
| bitmap_list_insert_element_after (bitmap head, |
| bitmap_element *elt, unsigned int indx, |
| bitmap_element *node = NULL) |
| { |
| if (!node) |
| node = bitmap_element_allocate (head); |
| node->indx = indx; |
| |
| gcc_checking_assert (!head->tree_form); |
| |
| if (!elt) |
| { |
| if (!head->current) |
| { |
| head->current = node; |
| head->indx = indx; |
| } |
| node->next = head->first; |
| if (node->next) |
| node->next->prev = node; |
| head->first = node; |
| node->prev = NULL; |
| } |
| else |
| { |
| gcc_checking_assert (head->current); |
| node->next = elt->next; |
| if (node->next) |
| node->next->prev = node; |
| elt->next = node; |
| node->prev = elt; |
| } |
| return node; |
| } |
| |
| /* Return the element for INDX, or NULL if the element doesn't exist. |
| Update the `current' field even if we can't find an element that |
| would hold the bitmap's bit to make eventual allocation |
| faster. */ |
| |
| static inline bitmap_element * |
| bitmap_list_find_element (bitmap head, unsigned int indx) |
| { |
| bitmap_element *element; |
| |
| if (head->current == NULL |
| || head->indx == indx) |
| return head->current; |
| |
| if (head->current == head->first |
| && head->first->next == NULL) |
| return NULL; |
| |
| /* Usage can be NULL due to allocated bitmaps for which we do not |
| call initialize function. */ |
| bitmap_usage *usage = NULL; |
| if (GATHER_STATISTICS) |
| usage = bitmap_mem_desc.get_descriptor_for_instance (head); |
| |
| /* This bitmap has more than one element, and we're going to look |
| through the elements list. Count that as a search. */ |
| if (GATHER_STATISTICS && usage) |
| usage->m_nsearches++; |
| |
| if (head->indx < indx) |
| /* INDX is beyond head->indx. Search from head->current |
| forward. */ |
| for (element = head->current; |
| element->next != 0 && element->indx < indx; |
| element = element->next) |
| { |
| if (GATHER_STATISTICS && usage) |
| usage->m_search_iter++; |
| } |
| |
| else if (head->indx / 2 < indx) |
| /* INDX is less than head->indx and closer to head->indx than to |
| 0. Search from head->current backward. */ |
| for (element = head->current; |
| element->prev != 0 && element->indx > indx; |
| element = element->prev) |
| { |
| if (GATHER_STATISTICS && usage) |
| usage->m_search_iter++; |
| } |
| |
| else |
| /* INDX is less than head->indx and closer to 0 than to |
| head->indx. Search from head->first forward. */ |
| for (element = head->first; |
| element->next != 0 && element->indx < indx; |
| element = element->next) |
| { |
| if (GATHER_STATISTICS && usage) |
| usage->m_search_iter++; |
| } |
| |
| /* `element' is the nearest to the one we want. If it's not the one we |
| want, the one we want doesn't exist. */ |
| gcc_checking_assert (element != NULL); |
| head->current = element; |
| head->indx = element->indx; |
| if (element->indx != indx) |
| element = 0; |
| return element; |
| } |
| |
| |
| /* Splay-tree view of bitmaps. |
| |
| This is an almost one-to-one the implementatin of the simple top-down |
| splay tree in Sleator and Tarjan's "Self-adjusting Binary Search Trees". |
| It is probably not the most efficient form of splay trees, but it should |
| be good enough to experiment with this idea of bitmaps-as-trees. |
| |
| For all functions below, the variable or function argument "t" is a node |
| in the tree, and "e" is a temporary or new node in the tree. The rest |
| is sufficiently straigh-forward (and very well explained in the paper) |
| that comment would only clutter things. */ |
| |
| static inline void |
| bitmap_tree_link_left (bitmap_element * &t, bitmap_element * &l) |
| { |
| l->next = t; |
| l = t; |
| t = t->next; |
| } |
| |
| static inline void |
| bitmap_tree_link_right (bitmap_element * &t, bitmap_element * &r) |
| { |
| r->prev = t; |
| r = t; |
| t = t->prev; |
| } |
| |
| static inline void |
| bitmap_tree_rotate_left (bitmap_element * &t) |
| { |
| bitmap_element *e = t->next; |
| t->next = t->next->prev; |
| e->prev = t; |
| t = e; |
| } |
| |
| static inline void |
| bitmap_tree_rotate_right (bitmap_element * &t) |
| { |
| bitmap_element *e = t->prev; |
| t->prev = t->prev->next; |
| e->next = t; |
| t = e; |
| } |
| |
| static bitmap_element * |
| bitmap_tree_splay (bitmap head, bitmap_element *t, unsigned int indx) |
| { |
| bitmap_element N, *l, *r; |
| |
| if (t == NULL) |
| return NULL; |
| |
| bitmap_usage *usage = NULL; |
| if (GATHER_STATISTICS) |
| usage = bitmap_mem_desc.get_descriptor_for_instance (head); |
| |
| N.prev = N.next = NULL; |
| l = r = &N; |
| |
| while (indx != t->indx) |
| { |
| if (GATHER_STATISTICS && usage) |
| usage->m_search_iter++; |
| |
| if (indx < t->indx) |
| { |
| if (t->prev != NULL && indx < t->prev->indx) |
| bitmap_tree_rotate_right (t); |
| if (t->prev == NULL) |
| break; |
| bitmap_tree_link_right (t, r); |
| } |
| else if (indx > t->indx) |
| { |
| if (t->next != NULL && indx > t->next->indx) |
| bitmap_tree_rotate_left (t); |
| if (t->next == NULL) |
| break; |
| bitmap_tree_link_left (t, l); |
| } |
| } |
| |
| l->next = t->prev; |
| r->prev = t->next; |
| t->prev = N.next; |
| t->next = N.prev; |
| return t; |
| } |
| |
| /* Link bitmap element E into the current bitmap splay tree. */ |
| |
| static inline void |
| bitmap_tree_link_element (bitmap head, bitmap_element *e) |
| { |
| if (head->first == NULL) |
| e->prev = e->next = NULL; |
| else |
| { |
| bitmap_element *t = bitmap_tree_splay (head, head->first, e->indx); |
| if (e->indx < t->indx) |
| { |
| e->prev = t->prev; |
| e->next = t; |
| t->prev = NULL; |
| } |
| else if (e->indx > t->indx) |
| { |
| e->next = t->next; |
| e->prev = t; |
| t->next = NULL; |
| } |
| else |
| gcc_unreachable (); |
| } |
| head->first = e; |
| head->current = e; |
| head->indx = e->indx; |
| } |
| |
| /* Unlink bitmap element E from the current bitmap splay tree, |
| and return it to the freelist. */ |
| |
| static void |
| bitmap_tree_unlink_element (bitmap head, bitmap_element *e) |
| { |
| bitmap_element *t = bitmap_tree_splay (head, head->first, e->indx); |
| |
| gcc_checking_assert (t == e); |
| |
| if (e->prev == NULL) |
| t = e->next; |
| else |
| { |
| t = bitmap_tree_splay (head, e->prev, e->indx); |
| t->next = e->next; |
| } |
| head->first = t; |
| head->current = t; |
| head->indx = (t != NULL) ? t->indx : 0; |
| |
| bitmap_elem_to_freelist (head, e); |
| } |
| |
| /* Return the element for INDX, or NULL if the element doesn't exist. */ |
| |
| static inline bitmap_element * |
| bitmap_tree_find_element (bitmap head, unsigned int indx) |
| { |
| if (head->current == NULL |
| || head->indx == indx) |
| return head->current; |
| |
| /* Usage can be NULL due to allocated bitmaps for which we do not |
| call initialize function. */ |
| bitmap_usage *usage = NULL; |
| if (GATHER_STATISTICS) |
| usage = bitmap_mem_desc.get_descriptor_for_instance (head); |
| |
| /* This bitmap has more than one element, and we're going to look |
| through the elements list. Count that as a search. */ |
| if (GATHER_STATISTICS && usage) |
| usage->m_nsearches++; |
| |
| bitmap_element *element = bitmap_tree_splay (head, head->first, indx); |
| gcc_checking_assert (element != NULL); |
| head->first = element; |
| head->current = element; |
| head->indx = element->indx; |
| if (element->indx != indx) |
| element = 0; |
| return element; |
| } |
| |
| /* Converting bitmap views from linked-list to tree and vice versa. */ |
| |
| /* Splice element E and all elements with a larger index from |
| bitmap HEAD, convert the spliced elements to the linked-list |
| view, and return the head of the list (which should be E again), */ |
| |
| static bitmap_element * |
| bitmap_tree_listify_from (bitmap head, bitmap_element *e) |
| { |
| bitmap_element *t, *erb; |
| |
| /* Detach the right branch from E (all elements with indx > E->indx), |
| and splay E to the root. */ |
| erb = e->next; |
| e->next = NULL; |
| t = bitmap_tree_splay (head, head->first, e->indx); |
| gcc_checking_assert (t == e); |
| |
| /* Because E has no right branch, and we rotated it to the root, |
| the left branch is the new root. */ |
| t = e->prev; |
| head->first = t; |
| head->current = t; |
| head->indx = (t != NULL) ? t->indx : 0; |
| |
| /* Detach the tree from E, and re-attach the right branch of E. */ |
| e->prev = NULL; |
| e->next = erb; |
| |
| /* The tree is now valid again. Now we need to "un-tree" E. |
| It is imperative that a non-recursive implementation is used |
| for this, because splay trees have a worst case depth of O(N) |
| for a tree with N nodes. A recursive implementation could |
| result in a stack overflow for a sufficiently large, unbalanced |
| bitmap tree. */ |
| |
| auto_vec<bitmap_element *, 32> stack; |
| auto_vec<bitmap_element *, 32> sorted_elements; |
| bitmap_element *n = e; |
| |
| while (true) |
| { |
| while (n != NULL) |
| { |
| stack.safe_push (n); |
| n = n->prev; |
| } |
| |
| if (stack.is_empty ()) |
| break; |
| |
| n = stack.pop (); |
| sorted_elements.safe_push (n); |
| n = n->next; |
| } |
| |
| gcc_assert (sorted_elements[0] == e); |
| |
| bitmap_element *prev = NULL; |
| unsigned ix; |
| FOR_EACH_VEC_ELT (sorted_elements, ix, n) |
| { |
| if (prev != NULL) |
| prev->next = n; |
| n->prev = prev; |
| n->next = NULL; |
| prev = n; |
| } |
| |
| return e; |
| } |
| |
| /* Convert bitmap HEAD from splay-tree view to linked-list view. */ |
| |
| void |
| bitmap_list_view (bitmap head) |
| { |
| bitmap_element *ptr; |
| |
| gcc_assert (head->tree_form); |
| |
| ptr = head->first; |
| if (ptr) |
| { |
| while (ptr->prev) |
| bitmap_tree_rotate_right (ptr); |
| head->first = ptr; |
| head->first = bitmap_tree_listify_from (head, ptr); |
| } |
| |
| head->tree_form = false; |
| } |
| |
| /* Convert bitmap HEAD from linked-list view to splay-tree view. |
| This is simply a matter of dropping the prev or next pointers |
| and setting the tree_form flag. The tree will balance itself |
| if and when it is used. */ |
| |
| void |
| bitmap_tree_view (bitmap head) |
| { |
| bitmap_element *ptr; |
| |
| gcc_assert (! head->tree_form); |
| |
| ptr = head->first; |
| while (ptr) |
| { |
| ptr->prev = NULL; |
| ptr = ptr->next; |
| } |
| |
| head->tree_form = true; |
| } |
| |
| /* Clear a bitmap by freeing all its elements. */ |
| |
| void |
| bitmap_clear (bitmap head) |
| { |
| if (head->first == NULL) |
| return; |
| if (head->tree_form) |
| { |
| bitmap_element *e, *t; |
| for (e = head->first; e->prev; e = e->prev) |
| /* Loop to find the element with the smallest index. */ ; |
| t = bitmap_tree_splay (head, head->first, e->indx); |
| gcc_checking_assert (t == e); |
| head->first = t; |
| } |
| bitmap_elt_clear_from (head, head->first); |
| } |
| |
| /* Initialize a bitmap obstack. If BIT_OBSTACK is NULL, initialize |
| the default bitmap obstack. */ |
| |
| void |
| bitmap_obstack_initialize (bitmap_obstack *bit_obstack) |
| { |
| if (!bit_obstack) |
| { |
| if (bitmap_default_obstack_depth++) |
| return; |
| bit_obstack = &bitmap_default_obstack; |
| } |
| |
| #if !defined(__GNUC__) || (__GNUC__ < 2) |
| #define __alignof__(type) 0 |
| #endif |
| |
| bit_obstack->elements = NULL; |
| bit_obstack->heads = NULL; |
| obstack_specify_allocation (&bit_obstack->obstack, OBSTACK_CHUNK_SIZE, |
| __alignof__ (bitmap_element), |
| obstack_chunk_alloc, |
| obstack_chunk_free); |
| } |
| |
| /* Release the memory from a bitmap obstack. If BIT_OBSTACK is NULL, |
| release the default bitmap obstack. */ |
| |
| void |
| bitmap_obstack_release (bitmap_obstack *bit_obstack) |
| { |
| if (!bit_obstack) |
| { |
| if (--bitmap_default_obstack_depth) |
| { |
| gcc_assert (bitmap_default_obstack_depth > 0); |
| return; |
| } |
| bit_obstack = &bitmap_default_obstack; |
| } |
| |
| bit_obstack->elements = NULL; |
| bit_obstack->heads = NULL; |
| obstack_free (&bit_obstack->obstack, NULL); |
| } |
| |
| /* Create a new bitmap on an obstack. If BIT_OBSTACK is NULL, create |
| it on the default bitmap obstack. */ |
| |
| bitmap |
| bitmap_alloc (bitmap_obstack *bit_obstack MEM_STAT_DECL) |
| { |
| bitmap map; |
| |
| if (!bit_obstack) |
| bit_obstack = &bitmap_default_obstack; |
| map = bit_obstack->heads; |
| if (map) |
| bit_obstack->heads = (class bitmap_head *) map->first; |
| else |
| map = XOBNEW (&bit_obstack->obstack, bitmap_head); |
| bitmap_initialize (map, bit_obstack PASS_MEM_STAT); |
| |
| if (GATHER_STATISTICS) |
| register_overhead (map, sizeof (bitmap_head)); |
| |
| return map; |
| } |
| |
| /* Create a new GCd bitmap. */ |
| |
| bitmap |
| bitmap_gc_alloc (ALONE_MEM_STAT_DECL) |
| { |
| bitmap map; |
| |
| map = ggc_alloc<bitmap_head> (); |
| bitmap_initialize (map, NULL PASS_MEM_STAT); |
| |
| if (GATHER_STATISTICS) |
| register_overhead (map, sizeof (bitmap_head)); |
| |
| return map; |
| } |
| |
| /* Release an obstack allocated bitmap. */ |
| |
| void |
| bitmap_obstack_free (bitmap map) |
| { |
| if (map) |
| { |
| bitmap_clear (map); |
| map->first = (bitmap_element *) map->obstack->heads; |
| |
| if (GATHER_STATISTICS) |
| release_overhead (map, sizeof (bitmap_head), true); |
| |
| map->obstack->heads = map; |
| } |
| } |
| |
| |
| /* Return nonzero if all bits in an element are zero. */ |
| |
| static inline int |
| bitmap_element_zerop (const bitmap_element *element) |
| { |
| #if BITMAP_ELEMENT_WORDS == 2 |
| return (element->bits[0] | element->bits[1]) == 0; |
| #else |
| unsigned i; |
| |
| for (i = 0; i < BITMAP_ELEMENT_WORDS; i++) |
| if (element->bits[i] != 0) |
| return 0; |
| |
| return 1; |
| #endif |
| } |
| |
| /* Copy a bitmap to another bitmap. */ |
| |
| void |
| bitmap_copy (bitmap to, const_bitmap from) |
| { |
| const bitmap_element *from_ptr; |
| bitmap_element *to_ptr = 0; |
| |
| gcc_checking_assert (!to->tree_form && !from->tree_form); |
| |
| bitmap_clear (to); |
| |
| /* Copy elements in forward direction one at a time. */ |
| for (from_ptr = from->first; from_ptr; from_ptr = from_ptr->next) |
| { |
| bitmap_element *to_elt = bitmap_element_allocate (to); |
| |
| to_elt->indx = from_ptr->indx; |
| memcpy (to_elt->bits, from_ptr->bits, sizeof (to_elt->bits)); |
| |
| /* Here we have a special case of bitmap_list_link_element, |
| for the case where we know the links are being entered |
| in sequence. */ |
| if (to_ptr == 0) |
| { |
| to->first = to->current = to_elt; |
| to->indx = from_ptr->indx; |
| to_elt->next = to_elt->prev = 0; |
| } |
| else |
| { |
| to_elt->prev = to_ptr; |
| to_elt->next = 0; |
| to_ptr->next = to_elt; |
| } |
| |
| to_ptr = to_elt; |
| } |
| } |
| |
| /* Move a bitmap to another bitmap. */ |
| |
| void |
| bitmap_move (bitmap to, bitmap from) |
| { |
| gcc_assert (to->obstack == from->obstack); |
| |
| bitmap_clear (to); |
| |
| size_t sz = 0; |
| if (GATHER_STATISTICS) |
| { |
| for (bitmap_element *e = to->first; e; e = e->next) |
| sz += sizeof (bitmap_element); |
| register_overhead (to, sz); |
| } |
| |
| *to = *from; |
| |
| if (GATHER_STATISTICS) |
| release_overhead (from, sz, false); |
| } |
| |
| /* Clear a single bit in a bitmap. Return true if the bit changed. */ |
| |
| bool |
| bitmap_clear_bit (bitmap head, int bit) |
| { |
| unsigned int indx = bit / BITMAP_ELEMENT_ALL_BITS; |
| bitmap_element *ptr; |
| |
| if (!head->tree_form) |
| ptr = bitmap_list_find_element (head, indx); |
| else |
| ptr = bitmap_tree_find_element (head, indx); |
| if (ptr != 0) |
| { |
| unsigned bit_num = bit % BITMAP_WORD_BITS; |
| unsigned word_num = bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS; |
| BITMAP_WORD bit_val = ((BITMAP_WORD) 1) << bit_num; |
| bool res = (ptr->bits[word_num] & bit_val) != 0; |
| if (res) |
| { |
| ptr->bits[word_num] &= ~bit_val; |
| /* If we cleared the entire word, free up the element. */ |
| if (!ptr->bits[word_num] |
| && bitmap_element_zerop (ptr)) |
| { |
| if (!head->tree_form) |
| bitmap_list_unlink_element (head, ptr); |
| else |
| bitmap_tree_unlink_element (head, ptr); |
| } |
| } |
| |
| return res; |
| } |
| |
| return false; |
| } |
| |
| /* Set a single bit in a bitmap. Return true if the bit changed. */ |
| |
| bool |
| bitmap_set_bit (bitmap head, int bit) |
| { |
| unsigned indx = bit / BITMAP_ELEMENT_ALL_BITS; |
| bitmap_element *ptr; |
| if (!head->tree_form) |
| ptr = bitmap_list_find_element (head, indx); |
| else |
| ptr = bitmap_tree_find_element (head, indx); |
| unsigned word_num = bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS; |
| unsigned bit_num = bit % BITMAP_WORD_BITS; |
| BITMAP_WORD bit_val = ((BITMAP_WORD) 1) << bit_num; |
| |
| if (ptr != 0) |
| { |
| bool res = (ptr->bits[word_num] & bit_val) == 0; |
| if (res) |
| ptr->bits[word_num] |= bit_val; |
| return res; |
| } |
| |
| ptr = bitmap_element_allocate (head); |
| ptr->indx = bit / BITMAP_ELEMENT_ALL_BITS; |
| ptr->bits[word_num] = bit_val; |
| if (!head->tree_form) |
| bitmap_list_link_element (head, ptr); |
| else |
| bitmap_tree_link_element (head, ptr); |
| return true; |
| } |
| |
| /* Return whether a bit is set within a bitmap. */ |
| |
| int |
| bitmap_bit_p (const_bitmap head, int bit) |
| { |
| unsigned int indx = bit / BITMAP_ELEMENT_ALL_BITS; |
| const bitmap_element *ptr; |
| unsigned bit_num; |
| unsigned word_num; |
| |
| if (!head->tree_form) |
| ptr = bitmap_list_find_element (const_cast<bitmap> (head), indx); |
| else |
| ptr = bitmap_tree_find_element (const_cast<bitmap> (head), indx); |
| if (ptr == 0) |
| return 0; |
| |
| bit_num = bit % BITMAP_WORD_BITS; |
| word_num = bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS; |
| |
| return (ptr->bits[word_num] >> bit_num) & 1; |
| } |
| |
| #if GCC_VERSION < 3400 |
| /* Table of number of set bits in a character, indexed by value of char. */ |
| static const unsigned char popcount_table[] = |
| { |
| 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, |
| 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, |
| 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, |
| 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, |
| 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, |
| 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, |
| 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, |
| 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8, |
| }; |
| |
| static unsigned long |
| bitmap_popcount (BITMAP_WORD a) |
| { |
| unsigned long ret = 0; |
| unsigned i; |
| |
| /* Just do this the table way for now */ |
| for (i = 0; i < BITMAP_WORD_BITS; i+= 8) |
| ret += popcount_table[(a >> i) & 0xff]; |
| return ret; |
| } |
| #endif |
| |
| /* Count and return the number of bits set in the bitmap word BITS. */ |
| static unsigned long |
| bitmap_count_bits_in_word (const BITMAP_WORD *bits) |
| { |
| unsigned long count = 0; |
| |
| for (unsigned ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++) |
| { |
| #if GCC_VERSION >= 3400 |
| /* Note that popcountl matches BITMAP_WORD in type, so the actual size |
| of BITMAP_WORD is not material. */ |
| count += __builtin_popcountl (bits[ix]); |
| #else |
| count += bitmap_popcount (bits[ix]); |
| #endif |
| } |
| return count; |
| } |
| |
| /* Count the number of bits set in the bitmap, and return it. */ |
| |
| unsigned long |
| bitmap_count_bits (const_bitmap a) |
| { |
| unsigned long count = 0; |
| const bitmap_element *elt; |
| |
| gcc_checking_assert (!a->tree_form); |
| for (elt = a->first; elt; elt = elt->next) |
| count += bitmap_count_bits_in_word (elt->bits); |
| |
| return count; |
| } |
| |
| /* Count the number of unique bits set in A and B and return it. */ |
| |
| unsigned long |
| bitmap_count_unique_bits (const_bitmap a, const_bitmap b) |
| { |
| unsigned long count = 0; |
| const bitmap_element *elt_a, *elt_b; |
| |
| for (elt_a = a->first, elt_b = b->first; elt_a && elt_b; ) |
| { |
| /* If we're at different indices, then count all the bits |
| in the lower element. If we're at the same index, then |
| count the bits in the IOR of the two elements. */ |
| if (elt_a->indx < elt_b->indx) |
| { |
| count += bitmap_count_bits_in_word (elt_a->bits); |
| elt_a = elt_a->next; |
| } |
| else if (elt_b->indx < elt_a->indx) |
| { |
| count += bitmap_count_bits_in_word (elt_b->bits); |
| elt_b = elt_b->next; |
| } |
| else |
| { |
| BITMAP_WORD bits[BITMAP_ELEMENT_WORDS]; |
| for (unsigned ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++) |
| bits[ix] = elt_a->bits[ix] | elt_b->bits[ix]; |
| count += bitmap_count_bits_in_word (bits); |
| elt_a = elt_a->next; |
| elt_b = elt_b->next; |
| } |
| } |
| return count; |
| } |
| |
| /* Return true if the bitmap has a single bit set. Otherwise return |
| false. */ |
| |
| bool |
| bitmap_single_bit_set_p (const_bitmap a) |
| { |
| unsigned long count = 0; |
| const bitmap_element *elt; |
| unsigned ix; |
| |
| if (bitmap_empty_p (a)) |
| return false; |
| |
| elt = a->first; |
| |
| /* As there are no completely empty bitmap elements, a second one |
| means we have more than one bit set. */ |
| if (elt->next != NULL |
| && (!a->tree_form || elt->prev != NULL)) |
| return false; |
| |
| for (ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++) |
| { |
| #if GCC_VERSION >= 3400 |
| /* Note that popcountl matches BITMAP_WORD in type, so the actual size |
| of BITMAP_WORD is not material. */ |
| count += __builtin_popcountl (elt->bits[ix]); |
| #else |
| count += bitmap_popcount (elt->bits[ix]); |
| #endif |
| if (count > 1) |
| return false; |
| } |
| |
| return count == 1; |
| } |
| |
| |
| /* Return the bit number of the first set bit in the bitmap. The |
| bitmap must be non-empty. */ |
| |
| unsigned |
| bitmap_first_set_bit (const_bitmap a) |
| { |
| const bitmap_element *elt = a->first; |
| unsigned bit_no; |
| BITMAP_WORD word; |
| unsigned ix; |
| |
| gcc_checking_assert (elt); |
| |
| if (a->tree_form) |
| while (elt->prev) |
| elt = elt->prev; |
| |
| bit_no = elt->indx * BITMAP_ELEMENT_ALL_BITS; |
| for (ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++) |
| { |
| word = elt->bits[ix]; |
| if (word) |
| goto found_bit; |
| } |
| gcc_unreachable (); |
| found_bit: |
| bit_no += ix * BITMAP_WORD_BITS; |
| |
| #if GCC_VERSION >= 3004 |
| gcc_assert (sizeof (long) == sizeof (word)); |
| bit_no += __builtin_ctzl (word); |
| #else |
| /* Binary search for the first set bit. */ |
| #if BITMAP_WORD_BITS > 64 |
| #error "Fill out the table." |
| #endif |
| #if BITMAP_WORD_BITS > 32 |
| if (!(word & 0xffffffff)) |
| word >>= 32, bit_no += 32; |
| #endif |
| if (!(word & 0xffff)) |
| word >>= 16, bit_no += 16; |
| if (!(word & 0xff)) |
| word >>= 8, bit_no += 8; |
| if (!(word & 0xf)) |
| word >>= 4, bit_no += 4; |
| if (!(word & 0x3)) |
| word >>= 2, bit_no += 2; |
| if (!(word & 0x1)) |
| word >>= 1, bit_no += 1; |
| |
| gcc_checking_assert (word & 1); |
| #endif |
| return bit_no; |
| } |
| |
| /* Return the bit number of the first set bit in the bitmap. The |
| bitmap must be non-empty. */ |
| |
| unsigned |
| bitmap_last_set_bit (const_bitmap a) |
| { |
| const bitmap_element *elt; |
| unsigned bit_no; |
| BITMAP_WORD word; |
| int ix; |
| |
| if (a->tree_form) |
| elt = a->first; |
| else |
| elt = a->current ? a->current : a->first; |
| gcc_checking_assert (elt); |
| |
| while (elt->next) |
| elt = elt->next; |
| |
| bit_no = elt->indx * BITMAP_ELEMENT_ALL_BITS; |
| for (ix = BITMAP_ELEMENT_WORDS - 1; ix >= 1; ix--) |
| { |
| word = elt->bits[ix]; |
| if (word) |
| goto found_bit; |
| } |
| gcc_assert (elt->bits[ix] != 0); |
| found_bit: |
| bit_no += ix * BITMAP_WORD_BITS; |
| #if GCC_VERSION >= 3004 |
| gcc_assert (sizeof (long) == sizeof (word)); |
| bit_no += BITMAP_WORD_BITS - __builtin_clzl (word) - 1; |
| #else |
| /* Hopefully this is a twos-complement host... */ |
| BITMAP_WORD x = word; |
| x |= (x >> 1); |
| x |= (x >> 2); |
| x |= (x >> 4); |
| x |= (x >> 8); |
| x |= (x >> 16); |
| #if BITMAP_WORD_BITS > 32 |
| x |= (x >> 32); |
| #endif |
| bit_no += bitmap_popcount (x) - 1; |
| #endif |
| |
| return bit_no; |
| } |
| |
| |
| /* DST = A & B. */ |
| |
| void |
| bitmap_and (bitmap dst, const_bitmap a, const_bitmap b) |
| { |
| bitmap_element *dst_elt = dst->first; |
| const bitmap_element *a_elt = a->first; |
| const bitmap_element *b_elt = b->first; |
| bitmap_element *dst_prev = NULL; |
| |
| gcc_checking_assert (!dst->tree_form && !a->tree_form && !b->tree_form); |
| gcc_assert (dst != a && dst != b); |
| |
| if (a == b) |
| { |
| bitmap_copy (dst, a); |
| return; |
| } |
| |
| while (a_elt && b_elt) |
| { |
| if (a_elt->indx < b_elt->indx) |
| a_elt = a_elt->next; |
| else if (b_elt->indx < a_elt->indx) |
| b_elt = b_elt->next; |
| else |
| { |
| /* Matching elts, generate A & B. */ |
| unsigned ix; |
| BITMAP_WORD ior = 0; |
| |
| if (!dst_elt) |
| dst_elt = bitmap_list_insert_element_after (dst, dst_prev, |
| a_elt->indx); |
| else |
| dst_elt->indx = a_elt->indx; |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| { |
| BITMAP_WORD r = a_elt->bits[ix] & b_elt->bits[ix]; |
| |
| dst_elt->bits[ix] = r; |
| ior |= r; |
| } |
| if (ior) |
| { |
| dst_prev = dst_elt; |
| dst_elt = dst_elt->next; |
| } |
| a_elt = a_elt->next; |
| b_elt = b_elt->next; |
| } |
| } |
| /* Ensure that dst->current is valid. */ |
| dst->current = dst->first; |
| bitmap_elt_clear_from (dst, dst_elt); |
| gcc_checking_assert (!dst->current == !dst->first); |
| if (dst->current) |
| dst->indx = dst->current->indx; |
| } |
| |
| /* A &= B. Return true if A changed. */ |
| |
| bool |
| bitmap_and_into (bitmap a, const_bitmap b) |
| { |
| bitmap_element *a_elt = a->first; |
| const bitmap_element *b_elt = b->first; |
| bitmap_element *next; |
| bool changed = false; |
| |
| gcc_checking_assert (!a->tree_form && !b->tree_form); |
| |
| if (a == b) |
| return false; |
| |
| while (a_elt && b_elt) |
| { |
| if (a_elt->indx < b_elt->indx) |
| { |
| next = a_elt->next; |
| bitmap_list_unlink_element (a, a_elt); |
| a_elt = next; |
| changed = true; |
| } |
| else if (b_elt->indx < a_elt->indx) |
| b_elt = b_elt->next; |
| else |
| { |
| /* Matching elts, generate A &= B. */ |
| unsigned ix; |
| BITMAP_WORD ior = 0; |
| |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| { |
| BITMAP_WORD r = a_elt->bits[ix] & b_elt->bits[ix]; |
| if (a_elt->bits[ix] != r) |
| changed = true; |
| a_elt->bits[ix] = r; |
| ior |= r; |
| } |
| next = a_elt->next; |
| if (!ior) |
| bitmap_list_unlink_element (a, a_elt); |
| a_elt = next; |
| b_elt = b_elt->next; |
| } |
| } |
| |
| if (a_elt) |
| { |
| changed = true; |
| bitmap_elt_clear_from (a, a_elt); |
| } |
| |
| gcc_checking_assert (!a->current == !a->first |
| && (!a->current || a->indx == a->current->indx)); |
| |
| return changed; |
| } |
| |
| |
| /* Insert an element equal to SRC_ELT after DST_PREV, overwriting DST_ELT |
| if non-NULL. CHANGED is true if the destination bitmap had already been |
| changed; the new value of CHANGED is returned. */ |
| |
| static inline bool |
| bitmap_elt_copy (bitmap dst, bitmap_element *dst_elt, bitmap_element *dst_prev, |
| const bitmap_element *src_elt, bool changed) |
| { |
| if (!changed && dst_elt && dst_elt->indx == src_elt->indx) |
| { |
| unsigned ix; |
| |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| if (src_elt->bits[ix] != dst_elt->bits[ix]) |
| { |
| dst_elt->bits[ix] = src_elt->bits[ix]; |
| changed = true; |
| } |
| } |
| else |
| { |
| changed = true; |
| if (!dst_elt) |
| dst_elt = bitmap_list_insert_element_after (dst, dst_prev, |
| src_elt->indx); |
| else |
| dst_elt->indx = src_elt->indx; |
| memcpy (dst_elt->bits, src_elt->bits, sizeof (dst_elt->bits)); |
| } |
| return changed; |
| } |
| |
| |
| |
| /* DST = A & ~B */ |
| |
| bool |
| bitmap_and_compl (bitmap dst, const_bitmap a, const_bitmap b) |
| { |
| bitmap_element *dst_elt = dst->first; |
| const bitmap_element *a_elt = a->first; |
| const bitmap_element *b_elt = b->first; |
| bitmap_element *dst_prev = NULL; |
| bitmap_element **dst_prev_pnext = &dst->first; |
| bool changed = false; |
| |
| gcc_checking_assert (!dst->tree_form && !a->tree_form && !b->tree_form); |
| gcc_assert (dst != a && dst != b); |
| |
| if (a == b) |
| { |
| changed = !bitmap_empty_p (dst); |
| bitmap_clear (dst); |
| return changed; |
| } |
| |
| while (a_elt) |
| { |
| while (b_elt && b_elt->indx < a_elt->indx) |
| b_elt = b_elt->next; |
| |
| if (!b_elt || b_elt->indx > a_elt->indx) |
| { |
| changed = bitmap_elt_copy (dst, dst_elt, dst_prev, a_elt, changed); |
| dst_prev = *dst_prev_pnext; |
| dst_prev_pnext = &dst_prev->next; |
| dst_elt = *dst_prev_pnext; |
| a_elt = a_elt->next; |
| } |
| |
| else |
| { |
| /* Matching elts, generate A & ~B. */ |
| unsigned ix; |
| BITMAP_WORD ior = 0; |
| |
| if (!changed && dst_elt && dst_elt->indx == a_elt->indx) |
| { |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| { |
| BITMAP_WORD r = a_elt->bits[ix] & ~b_elt->bits[ix]; |
| |
| if (dst_elt->bits[ix] != r) |
| { |
| changed = true; |
| dst_elt->bits[ix] = r; |
| } |
| ior |= r; |
| } |
| } |
| else |
| { |
| bool new_element; |
| if (!dst_elt || dst_elt->indx > a_elt->indx) |
| { |
| dst_elt = bitmap_list_insert_element_after (dst, dst_prev, |
| a_elt->indx); |
| new_element = true; |
| } |
| else |
| { |
| dst_elt->indx = a_elt->indx; |
| new_element = false; |
| } |
| |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| { |
| BITMAP_WORD r = a_elt->bits[ix] & ~b_elt->bits[ix]; |
| |
| dst_elt->bits[ix] = r; |
| ior |= r; |
| } |
| |
| if (ior) |
| changed = true; |
| else |
| { |
| changed |= !new_element; |
| bitmap_list_unlink_element (dst, dst_elt); |
| dst_elt = *dst_prev_pnext; |
| } |
| } |
| |
| if (ior) |
| { |
| dst_prev = *dst_prev_pnext; |
| dst_prev_pnext = &dst_prev->next; |
| dst_elt = *dst_prev_pnext; |
| } |
| a_elt = a_elt->next; |
| b_elt = b_elt->next; |
| } |
| } |
| |
| /* Ensure that dst->current is valid. */ |
| dst->current = dst->first; |
| |
| if (dst_elt) |
| { |
| changed = true; |
| bitmap_elt_clear_from (dst, dst_elt); |
| } |
| gcc_checking_assert (!dst->current == !dst->first); |
| if (dst->current) |
| dst->indx = dst->current->indx; |
| |
| return changed; |
| } |
| |
| /* A &= ~B. Returns true if A changes */ |
| |
| bool |
| bitmap_and_compl_into (bitmap a, const_bitmap b) |
| { |
| bitmap_element *a_elt = a->first; |
| const bitmap_element *b_elt = b->first; |
| bitmap_element *next; |
| BITMAP_WORD changed = 0; |
| |
| gcc_checking_assert (!a->tree_form && !b->tree_form); |
| |
| if (a == b) |
| { |
| if (bitmap_empty_p (a)) |
| return false; |
| else |
| { |
| bitmap_clear (a); |
| return true; |
| } |
| } |
| |
| while (a_elt && b_elt) |
| { |
| if (a_elt->indx < b_elt->indx) |
| a_elt = a_elt->next; |
| else if (b_elt->indx < a_elt->indx) |
| b_elt = b_elt->next; |
| else |
| { |
| /* Matching elts, generate A &= ~B. */ |
| unsigned ix; |
| BITMAP_WORD ior = 0; |
| |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| { |
| BITMAP_WORD cleared = a_elt->bits[ix] & b_elt->bits[ix]; |
| BITMAP_WORD r = a_elt->bits[ix] ^ cleared; |
| |
| a_elt->bits[ix] = r; |
| changed |= cleared; |
| ior |= r; |
| } |
| next = a_elt->next; |
| if (!ior) |
| bitmap_list_unlink_element (a, a_elt); |
| a_elt = next; |
| b_elt = b_elt->next; |
| } |
| } |
| gcc_checking_assert (!a->current == !a->first |
| && (!a->current || a->indx == a->current->indx)); |
| return changed != 0; |
| } |
| |
| /* Set COUNT bits from START in HEAD. */ |
| void |
| bitmap_set_range (bitmap head, unsigned int start, unsigned int count) |
| { |
| unsigned int first_index, end_bit_plus1, last_index; |
| bitmap_element *elt, *elt_prev; |
| unsigned int i; |
| |
| gcc_checking_assert (!head->tree_form); |
| |
| if (!count) |
| return; |
| |
| if (count == 1) |
| { |
| bitmap_set_bit (head, start); |
| return; |
| } |
| |
| first_index = start / BITMAP_ELEMENT_ALL_BITS; |
| end_bit_plus1 = start + count; |
| last_index = (end_bit_plus1 - 1) / BITMAP_ELEMENT_ALL_BITS; |
| elt = bitmap_list_find_element (head, first_index); |
| |
| /* If bitmap_list_find_element returns zero, the current is the closest block |
| to the result. Otherwise, just use bitmap_element_allocate to |
| ensure ELT is set; in the loop below, ELT == NULL means "insert |
| at the end of the bitmap". */ |
| if (!elt) |
| { |
| elt = bitmap_element_allocate (head); |
| elt->indx = first_index; |
| bitmap_list_link_element (head, elt); |
| } |
| |
| gcc_checking_assert (elt->indx == first_index); |
| elt_prev = elt->prev; |
| for (i = first_index; i <= last_index; i++) |
| { |
| unsigned elt_start_bit = i * BITMAP_ELEMENT_ALL_BITS; |
| unsigned elt_end_bit_plus1 = elt_start_bit + BITMAP_ELEMENT_ALL_BITS; |
| |
| unsigned int first_word_to_mod; |
| BITMAP_WORD first_mask; |
| unsigned int last_word_to_mod; |
| BITMAP_WORD last_mask; |
| unsigned int ix; |
| |
| if (!elt || elt->indx != i) |
| elt = bitmap_list_insert_element_after (head, elt_prev, i); |
| |
| if (elt_start_bit <= start) |
| { |
| /* The first bit to turn on is somewhere inside this |
| elt. */ |
| first_word_to_mod = (start - elt_start_bit) / BITMAP_WORD_BITS; |
| |
| /* This mask should have 1s in all bits >= start position. */ |
| first_mask = |
| (((BITMAP_WORD) 1) << ((start % BITMAP_WORD_BITS))) - 1; |
| first_mask = ~first_mask; |
| } |
| else |
| { |
| /* The first bit to turn on is below this start of this elt. */ |
| first_word_to_mod = 0; |
| first_mask = ~(BITMAP_WORD) 0; |
| } |
| |
| if (elt_end_bit_plus1 <= end_bit_plus1) |
| { |
| /* The last bit to turn on is beyond this elt. */ |
| last_word_to_mod = BITMAP_ELEMENT_WORDS - 1; |
| last_mask = ~(BITMAP_WORD) 0; |
| } |
| else |
| { |
| /* The last bit to turn on is inside to this elt. */ |
| last_word_to_mod = |
| (end_bit_plus1 - elt_start_bit) / BITMAP_WORD_BITS; |
| |
| /* The last mask should have 1s below the end bit. */ |
| last_mask = |
| (((BITMAP_WORD) 1) << ((end_bit_plus1 % BITMAP_WORD_BITS))) - 1; |
| } |
| |
| if (first_word_to_mod == last_word_to_mod) |
| { |
| BITMAP_WORD mask = first_mask & last_mask; |
| elt->bits[first_word_to_mod] |= mask; |
| } |
| else |
| { |
| elt->bits[first_word_to_mod] |= first_mask; |
| if (BITMAP_ELEMENT_WORDS > 2) |
| for (ix = first_word_to_mod + 1; ix < last_word_to_mod; ix++) |
| elt->bits[ix] = ~(BITMAP_WORD) 0; |
| elt->bits[last_word_to_mod] |= last_mask; |
| } |
| |
| elt_prev = elt; |
| elt = elt->next; |
| } |
| |
| head->current = elt ? elt : elt_prev; |
| head->indx = head->current->indx; |
| } |
| |
| /* Clear COUNT bits from START in HEAD. */ |
| void |
| bitmap_clear_range (bitmap head, unsigned int start, unsigned int count) |
| { |
| unsigned int first_index, end_bit_plus1, last_index; |
| bitmap_element *elt; |
| |
| gcc_checking_assert (!head->tree_form); |
| |
| if (!count) |
| return; |
| |
| if (count == 1) |
| { |
| bitmap_clear_bit (head, start); |
| return; |
| } |
| |
| first_index = start / BITMAP_ELEMENT_ALL_BITS; |
| end_bit_plus1 = start + count; |
| last_index = (end_bit_plus1 - 1) / BITMAP_ELEMENT_ALL_BITS; |
| elt = bitmap_list_find_element (head, first_index); |
| |
| /* If bitmap_list_find_element returns zero, the current is the closest block |
| to the result. If the current is less than first index, find the |
| next one. Otherwise, just set elt to be current. */ |
| if (!elt) |
| { |
| if (head->current) |
| { |
| if (head->indx < first_index) |
| { |
| elt = head->current->next; |
| if (!elt) |
| return; |
| } |
| else |
| elt = head->current; |
| } |
| else |
| return; |
| } |
| |
| while (elt && (elt->indx <= last_index)) |
| { |
| bitmap_element * next_elt = elt->next; |
| unsigned elt_start_bit = (elt->indx) * BITMAP_ELEMENT_ALL_BITS; |
| unsigned elt_end_bit_plus1 = elt_start_bit + BITMAP_ELEMENT_ALL_BITS; |
| |
| |
| if (elt_start_bit >= start && elt_end_bit_plus1 <= end_bit_plus1) |
| /* Get rid of the entire elt and go to the next one. */ |
| bitmap_list_unlink_element (head, elt); |
| else |
| { |
| /* Going to have to knock out some bits in this elt. */ |
| unsigned int first_word_to_mod; |
| BITMAP_WORD first_mask; |
| unsigned int last_word_to_mod; |
| BITMAP_WORD last_mask; |
| unsigned int i; |
| bool clear = true; |
| |
| if (elt_start_bit <= start) |
| { |
| /* The first bit to turn off is somewhere inside this |
| elt. */ |
| first_word_to_mod = (start - elt_start_bit) / BITMAP_WORD_BITS; |
| |
| /* This mask should have 1s in all bits >= start position. */ |
| first_mask = |
| (((BITMAP_WORD) 1) << ((start % BITMAP_WORD_BITS))) - 1; |
| first_mask = ~first_mask; |
| } |
| else |
| { |
| /* The first bit to turn off is below this start of this elt. */ |
| first_word_to_mod = 0; |
| first_mask = 0; |
| first_mask = ~first_mask; |
| } |
| |
| if (elt_end_bit_plus1 <= end_bit_plus1) |
| { |
| /* The last bit to turn off is beyond this elt. */ |
| last_word_to_mod = BITMAP_ELEMENT_WORDS - 1; |
| last_mask = 0; |
| last_mask = ~last_mask; |
| } |
| else |
| { |
| /* The last bit to turn off is inside to this elt. */ |
| last_word_to_mod = |
| (end_bit_plus1 - elt_start_bit) / BITMAP_WORD_BITS; |
| |
| /* The last mask should have 1s below the end bit. */ |
| last_mask = |
| (((BITMAP_WORD) 1) << (((end_bit_plus1) % BITMAP_WORD_BITS))) - 1; |
| } |
| |
| |
| if (first_word_to_mod == last_word_to_mod) |
| { |
| BITMAP_WORD mask = first_mask & last_mask; |
| elt->bits[first_word_to_mod] &= ~mask; |
| } |
| else |
| { |
| elt->bits[first_word_to_mod] &= ~first_mask; |
| if (BITMAP_ELEMENT_WORDS > 2) |
| for (i = first_word_to_mod + 1; i < last_word_to_mod; i++) |
| elt->bits[i] = 0; |
| elt->bits[last_word_to_mod] &= ~last_mask; |
| } |
| for (i = 0; i < BITMAP_ELEMENT_WORDS; i++) |
| if (elt->bits[i]) |
| { |
| clear = false; |
| break; |
| } |
| /* Check to see if there are any bits left. */ |
| if (clear) |
| bitmap_list_unlink_element (head, elt); |
| } |
| elt = next_elt; |
| } |
| |
| if (elt) |
| { |
| head->current = elt; |
| head->indx = head->current->indx; |
| } |
| } |
| |
| /* A = ~A & B. */ |
| |
| void |
| bitmap_compl_and_into (bitmap a, const_bitmap b) |
| { |
| bitmap_element *a_elt = a->first; |
| const bitmap_element *b_elt = b->first; |
| bitmap_element *a_prev = NULL; |
| bitmap_element *next; |
| |
| gcc_checking_assert (!a->tree_form && !b->tree_form); |
| gcc_assert (a != b); |
| |
| if (bitmap_empty_p (a)) |
| { |
| bitmap_copy (a, b); |
| return; |
| } |
| if (bitmap_empty_p (b)) |
| { |
| bitmap_clear (a); |
| return; |
| } |
| |
| while (a_elt || b_elt) |
| { |
| if (!b_elt || (a_elt && a_elt->indx < b_elt->indx)) |
| { |
| /* A is before B. Remove A */ |
| next = a_elt->next; |
| a_prev = a_elt->prev; |
| bitmap_list_unlink_element (a, a_elt); |
| a_elt = next; |
| } |
| else if (!a_elt || b_elt->indx < a_elt->indx) |
| { |
| /* B is before A. Copy B. */ |
| next = bitmap_list_insert_element_after (a, a_prev, b_elt->indx); |
| memcpy (next->bits, b_elt->bits, sizeof (next->bits)); |
| a_prev = next; |
| b_elt = b_elt->next; |
| } |
| else |
| { |
| /* Matching elts, generate A = ~A & B. */ |
| unsigned ix; |
| BITMAP_WORD ior = 0; |
| |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| { |
| BITMAP_WORD cleared = a_elt->bits[ix] & b_elt->bits[ix]; |
| BITMAP_WORD r = b_elt->bits[ix] ^ cleared; |
| |
| a_elt->bits[ix] = r; |
| ior |= r; |
| } |
| next = a_elt->next; |
| if (!ior) |
| bitmap_list_unlink_element (a, a_elt); |
| else |
| a_prev = a_elt; |
| a_elt = next; |
| b_elt = b_elt->next; |
| } |
| } |
| gcc_checking_assert (!a->current == !a->first |
| && (!a->current || a->indx == a->current->indx)); |
| return; |
| } |
| |
| |
| /* Insert an element corresponding to A_ELT | B_ELT after DST_PREV, |
| overwriting DST_ELT if non-NULL. CHANGED is true if the destination bitmap |
| had already been changed; the new value of CHANGED is returned. */ |
| |
| static inline bool |
| bitmap_elt_ior (bitmap dst, bitmap_element *dst_elt, bitmap_element *dst_prev, |
| const bitmap_element *a_elt, const bitmap_element *b_elt, |
| bool changed) |
| { |
| gcc_assert (a_elt || b_elt); |
| |
| if (a_elt && b_elt && a_elt->indx == b_elt->indx) |
| { |
| /* Matching elts, generate A | B. */ |
| unsigned ix; |
| |
| if (!changed && dst_elt && dst_elt->indx == a_elt->indx) |
| { |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| { |
| BITMAP_WORD r = a_elt->bits[ix] | b_elt->bits[ix]; |
| if (r != dst_elt->bits[ix]) |
| { |
| dst_elt->bits[ix] = r; |
| changed = true; |
| } |
| } |
| } |
| else |
| { |
| changed = true; |
| if (!dst_elt) |
| dst_elt = bitmap_list_insert_element_after (dst, dst_prev, |
| a_elt->indx); |
| else |
| dst_elt->indx = a_elt->indx; |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| { |
| BITMAP_WORD r = a_elt->bits[ix] | b_elt->bits[ix]; |
| dst_elt->bits[ix] = r; |
| } |
| } |
| } |
| else |
| { |
| /* Copy a single element. */ |
| const bitmap_element *src; |
| |
| if (!b_elt || (a_elt && a_elt->indx < b_elt->indx)) |
| src = a_elt; |
| else |
| src = b_elt; |
| |
| gcc_checking_assert (src); |
| changed = bitmap_elt_copy (dst, dst_elt, dst_prev, src, changed); |
| } |
| return changed; |
| } |
| |
| |
| /* DST = A | B. Return true if DST changes. */ |
| |
| bool |
| bitmap_ior (bitmap dst, const_bitmap a, const_bitmap b) |
| { |
| bitmap_element *dst_elt = dst->first; |
| const bitmap_element *a_elt = a->first; |
| const bitmap_element *b_elt = b->first; |
| bitmap_element *dst_prev = NULL; |
| bitmap_element **dst_prev_pnext = &dst->first; |
| bool changed = false; |
| |
| gcc_checking_assert (!dst->tree_form && !a->tree_form && !b->tree_form); |
| gcc_assert (dst != a && dst != b); |
| |
| while (a_elt || b_elt) |
| { |
| changed = bitmap_elt_ior (dst, dst_elt, dst_prev, a_elt, b_elt, changed); |
| |
| if (a_elt && b_elt && a_elt->indx == b_elt->indx) |
| { |
| a_elt = a_elt->next; |
| b_elt = b_elt->next; |
| } |
| else |
| { |
| if (a_elt && (!b_elt || a_elt->indx <= b_elt->indx)) |
| a_elt = a_elt->next; |
| else if (b_elt && (!a_elt || b_elt->indx <= a_elt->indx)) |
| b_elt = b_elt->next; |
| } |
| |
| dst_prev = *dst_prev_pnext; |
| dst_prev_pnext = &dst_prev->next; |
| dst_elt = *dst_prev_pnext; |
| } |
| |
| if (dst_elt) |
| { |
| changed = true; |
| /* Ensure that dst->current is valid. */ |
| dst->current = dst->first; |
| bitmap_elt_clear_from (dst, dst_elt); |
| } |
| gcc_checking_assert (!dst->current == !dst->first); |
| if (dst->current) |
| dst->indx = dst->current->indx; |
| return changed; |
| } |
| |
| /* A |= B. Return true if A changes. */ |
| |
| bool |
| bitmap_ior_into (bitmap a, const_bitmap b) |
| { |
| bitmap_element *a_elt = a->first; |
| const bitmap_element *b_elt = b->first; |
| bitmap_element *a_prev = NULL; |
| bitmap_element **a_prev_pnext = &a->first; |
| bool changed = false; |
| |
| gcc_checking_assert (!a->tree_form && !b->tree_form); |
| if (a == b) |
| return false; |
| |
| while (b_elt) |
| { |
| /* If A lags behind B, just advance it. */ |
| if (!a_elt || a_elt->indx == b_elt->indx) |
| { |
| changed = bitmap_elt_ior (a, a_elt, a_prev, a_elt, b_elt, changed); |
| b_elt = b_elt->next; |
| } |
| else if (a_elt->indx > b_elt->indx) |
| { |
| changed = bitmap_elt_copy (a, NULL, a_prev, b_elt, changed); |
| b_elt = b_elt->next; |
| } |
| |
| a_prev = *a_prev_pnext; |
| a_prev_pnext = &a_prev->next; |
| a_elt = *a_prev_pnext; |
| } |
| |
| gcc_checking_assert (!a->current == !a->first); |
| if (a->current) |
| a->indx = a->current->indx; |
| return changed; |
| } |
| |
| /* A |= B. Return true if A changes. Free B (re-using its storage |
| for the result). */ |
| |
| bool |
| bitmap_ior_into_and_free (bitmap a, bitmap *b_) |
| { |
| bitmap b = *b_; |
| bitmap_element *a_elt = a->first; |
| bitmap_element *b_elt = b->first; |
| bitmap_element *a_prev = NULL; |
| bitmap_element **a_prev_pnext = &a->first; |
| bool changed = false; |
| |
| gcc_checking_assert (!a->tree_form && !b->tree_form); |
| gcc_assert (a->obstack == b->obstack); |
| if (a == b) |
| return false; |
| |
| while (b_elt) |
| { |
| /* If A lags behind B, just advance it. */ |
| if (!a_elt || a_elt->indx == b_elt->indx) |
| { |
| changed = bitmap_elt_ior (a, a_elt, a_prev, a_elt, b_elt, changed); |
| b_elt = b_elt->next; |
| } |
| else if (a_elt->indx > b_elt->indx) |
| { |
| bitmap_element *b_elt_next = b_elt->next; |
| bitmap_list_unlink_element (b, b_elt, false); |
| bitmap_list_insert_element_after (a, a_prev, b_elt->indx, b_elt); |
| b_elt = b_elt_next; |
| } |
| |
| a_prev = *a_prev_pnext; |
| a_prev_pnext = &a_prev->next; |
| a_elt = *a_prev_pnext; |
| } |
| |
| gcc_checking_assert (!a->current == !a->first); |
| if (a->current) |
| a->indx = a->current->indx; |
| |
| if (b->obstack) |
| BITMAP_FREE (*b_); |
| else |
| bitmap_clear (b); |
| return changed; |
| } |
| |
| /* DST = A ^ B */ |
| |
| void |
| bitmap_xor (bitmap dst, const_bitmap a, const_bitmap b) |
| { |
| bitmap_element *dst_elt = dst->first; |
| const bitmap_element *a_elt = a->first; |
| const bitmap_element *b_elt = b->first; |
| bitmap_element *dst_prev = NULL; |
| |
| gcc_checking_assert (!dst->tree_form && !a->tree_form && !b->tree_form); |
| gcc_assert (dst != a && dst != b); |
| |
| if (a == b) |
| { |
| bitmap_clear (dst); |
| return; |
| } |
| |
| while (a_elt || b_elt) |
| { |
| if (a_elt && b_elt && a_elt->indx == b_elt->indx) |
| { |
| /* Matching elts, generate A ^ B. */ |
| unsigned ix; |
| BITMAP_WORD ior = 0; |
| |
| if (!dst_elt) |
| dst_elt = bitmap_list_insert_element_after (dst, dst_prev, |
| a_elt->indx); |
| else |
| dst_elt->indx = a_elt->indx; |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| { |
| BITMAP_WORD r = a_elt->bits[ix] ^ b_elt->bits[ix]; |
| |
| ior |= r; |
| dst_elt->bits[ix] = r; |
| } |
| a_elt = a_elt->next; |
| b_elt = b_elt->next; |
| if (ior) |
| { |
| dst_prev = dst_elt; |
| dst_elt = dst_elt->next; |
| } |
| } |
| else |
| { |
| /* Copy a single element. */ |
| const bitmap_element *src; |
| |
| if (!b_elt || (a_elt && a_elt->indx < b_elt->indx)) |
| { |
| src = a_elt; |
| a_elt = a_elt->next; |
| } |
| else |
| { |
| src = b_elt; |
| b_elt = b_elt->next; |
| } |
| |
| if (!dst_elt) |
| dst_elt = bitmap_list_insert_element_after (dst, dst_prev, |
| src->indx); |
| else |
| dst_elt->indx = src->indx; |
| memcpy (dst_elt->bits, src->bits, sizeof (dst_elt->bits)); |
| dst_prev = dst_elt; |
| dst_elt = dst_elt->next; |
| } |
| } |
| /* Ensure that dst->current is valid. */ |
| dst->current = dst->first; |
| bitmap_elt_clear_from (dst, dst_elt); |
| gcc_checking_assert (!dst->current == !dst->first); |
| if (dst->current) |
| dst->indx = dst->current->indx; |
| } |
| |
| /* A ^= B */ |
| |
| void |
| bitmap_xor_into (bitmap a, const_bitmap b) |
| { |
| bitmap_element *a_elt = a->first; |
| const bitmap_element *b_elt = b->first; |
| bitmap_element *a_prev = NULL; |
| |
| gcc_checking_assert (!a->tree_form && !b->tree_form); |
| |
| if (a == b) |
| { |
| bitmap_clear (a); |
| return; |
| } |
| |
| while (b_elt) |
| { |
| if (!a_elt || b_elt->indx < a_elt->indx) |
| { |
| /* Copy b_elt. */ |
| bitmap_element *dst = bitmap_list_insert_element_after (a, a_prev, |
| b_elt->indx); |
| memcpy (dst->bits, b_elt->bits, sizeof (dst->bits)); |
| a_prev = dst; |
| b_elt = b_elt->next; |
| } |
| else if (a_elt->indx < b_elt->indx) |
| { |
| a_prev = a_elt; |
| a_elt = a_elt->next; |
| } |
| else |
| { |
| /* Matching elts, generate A ^= B. */ |
| unsigned ix; |
| BITMAP_WORD ior = 0; |
| bitmap_element *next = a_elt->next; |
| |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| { |
| BITMAP_WORD r = a_elt->bits[ix] ^ b_elt->bits[ix]; |
| |
| ior |= r; |
| a_elt->bits[ix] = r; |
| } |
| b_elt = b_elt->next; |
| if (ior) |
| a_prev = a_elt; |
| else |
| bitmap_list_unlink_element (a, a_elt); |
| a_elt = next; |
| } |
| } |
| gcc_checking_assert (!a->current == !a->first); |
| if (a->current) |
| a->indx = a->current->indx; |
| } |
| |
| /* Return true if two bitmaps are identical. |
| We do not bother with a check for pointer equality, as that never |
| occurs in practice. */ |
| |
| bool |
| bitmap_equal_p (const_bitmap a, const_bitmap b) |
| { |
| const bitmap_element *a_elt; |
| const bitmap_element *b_elt; |
| unsigned ix; |
| |
| gcc_checking_assert (!a->tree_form && !b->tree_form); |
| |
| for (a_elt = a->first, b_elt = b->first; |
| a_elt && b_elt; |
| a_elt = a_elt->next, b_elt = b_elt->next) |
| { |
| if (a_elt->indx != b_elt->indx) |
| return false; |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| if (a_elt->bits[ix] != b_elt->bits[ix]) |
| return false; |
| } |
| return !a_elt && !b_elt; |
| } |
| |
| /* Return true if A AND B is not empty. */ |
| |
| bool |
| bitmap_intersect_p (const_bitmap a, const_bitmap b) |
| { |
| const bitmap_element *a_elt; |
| const bitmap_element *b_elt; |
| unsigned ix; |
| |
| gcc_checking_assert (!a->tree_form && !b->tree_form); |
| |
| for (a_elt = a->first, b_elt = b->first; |
| a_elt && b_elt;) |
| { |
| if (a_elt->indx < b_elt->indx) |
| a_elt = a_elt->next; |
| else if (b_elt->indx < a_elt->indx) |
| b_elt = b_elt->next; |
| else |
| { |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| if (a_elt->bits[ix] & b_elt->bits[ix]) |
| return true; |
| a_elt = a_elt->next; |
| b_elt = b_elt->next; |
| } |
| } |
| return false; |
| } |
| |
| /* Return true if A AND NOT B is not empty. */ |
| |
| bool |
| bitmap_intersect_compl_p (const_bitmap a, const_bitmap b) |
| { |
| const bitmap_element *a_elt; |
| const bitmap_element *b_elt; |
| unsigned ix; |
| |
| gcc_checking_assert (!a->tree_form && !b->tree_form); |
| |
| for (a_elt = a->first, b_elt = b->first; |
| a_elt && b_elt;) |
| { |
| if (a_elt->indx < b_elt->indx) |
| return true; |
| else if (b_elt->indx < a_elt->indx) |
| b_elt = b_elt->next; |
| else |
| { |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| if (a_elt->bits[ix] & ~b_elt->bits[ix]) |
| return true; |
| a_elt = a_elt->next; |
| b_elt = b_elt->next; |
| } |
| } |
| return a_elt != NULL; |
| } |
| |
| |
| /* DST = A | (FROM1 & ~FROM2). Return true if DST changes. */ |
| |
| bool |
| bitmap_ior_and_compl (bitmap dst, const_bitmap a, const_bitmap b, const_bitmap kill) |
| { |
| bool changed = false; |
| |
| bitmap_element *dst_elt = dst->first; |
| const bitmap_element *a_elt = a->first; |
| const bitmap_element *b_elt = b->first; |
| const bitmap_element *kill_elt = kill->first; |
| bitmap_element *dst_prev = NULL; |
| bitmap_element **dst_prev_pnext = &dst->first; |
| |
| gcc_checking_assert (!dst->tree_form && !a->tree_form && !b->tree_form |
| && !kill->tree_form); |
| gcc_assert (dst != a && dst != b && dst != kill); |
| |
| /* Special cases. We don't bother checking for bitmap_equal_p (b, kill). */ |
| if (b == kill || bitmap_empty_p (b)) |
| { |
| changed = !bitmap_equal_p (dst, a); |
| if (changed) |
| bitmap_copy (dst, a); |
| return changed; |
| } |
| if (bitmap_empty_p (kill)) |
| return bitmap_ior (dst, a, b); |
| if (bitmap_empty_p (a)) |
| return bitmap_and_compl (dst, b, kill); |
| |
| while (a_elt || b_elt) |
| { |
| bool new_element = false; |
| |
| if (b_elt) |
| while (kill_elt && kill_elt->indx < b_elt->indx) |
| kill_elt = kill_elt->next; |
| |
| if (b_elt && kill_elt && kill_elt->indx == b_elt->indx |
| && (!a_elt || a_elt->indx >= b_elt->indx)) |
| { |
| bitmap_element tmp_elt; |
| unsigned ix; |
| |
| BITMAP_WORD ior = 0; |
| tmp_elt.indx = b_elt->indx; |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| { |
| BITMAP_WORD r = b_elt->bits[ix] & ~kill_elt->bits[ix]; |
| ior |= r; |
| tmp_elt.bits[ix] = r; |
| } |
| |
| if (ior) |
| { |
| changed = bitmap_elt_ior (dst, dst_elt, dst_prev, |
| a_elt, &tmp_elt, changed); |
| new_element = true; |
| if (a_elt && a_elt->indx == b_elt->indx) |
| a_elt = a_elt->next; |
| } |
| |
| b_elt = b_elt->next; |
| kill_elt = kill_elt->next; |
| } |
| else |
| { |
| changed = bitmap_elt_ior (dst, dst_elt, dst_prev, |
| a_elt, b_elt, changed); |
| new_element = true; |
| |
| if (a_elt && b_elt && a_elt->indx == b_elt->indx) |
| { |
| a_elt = a_elt->next; |
| b_elt = b_elt->next; |
| } |
| else |
| { |
| if (a_elt && (!b_elt || a_elt->indx <= b_elt->indx)) |
| a_elt = a_elt->next; |
| else if (b_elt && (!a_elt || b_elt->indx <= a_elt->indx)) |
| b_elt = b_elt->next; |
| } |
| } |
| |
| if (new_element) |
| { |
| dst_prev = *dst_prev_pnext; |
| dst_prev_pnext = &dst_prev->next; |
| dst_elt = *dst_prev_pnext; |
| } |
| } |
| |
| if (dst_elt) |
| { |
| changed = true; |
| /* Ensure that dst->current is valid. */ |
| dst->current = dst->first; |
| bitmap_elt_clear_from (dst, dst_elt); |
| } |
| gcc_checking_assert (!dst->current == !dst->first); |
| if (dst->current) |
| dst->indx = dst->current->indx; |
| |
| return changed; |
| } |
| |
| /* A |= (B & ~C). Return true if A changes. */ |
| |
| bool |
| bitmap_ior_and_compl_into (bitmap a, const_bitmap b, const_bitmap c) |
| { |
| bitmap_element *a_elt = a->first; |
| const bitmap_element *b_elt = b->first; |
| const bitmap_element *c_elt = c->first; |
| bitmap_element and_elt; |
| bitmap_element *a_prev = NULL; |
| bitmap_element **a_prev_pnext = &a->first; |
| bool changed = false; |
| unsigned ix; |
| |
| gcc_checking_assert (!a->tree_form && !b->tree_form && !c->tree_form); |
| |
| if (a == b) |
| return false; |
| if (bitmap_empty_p (c)) |
| return bitmap_ior_into (a, b); |
| else if (bitmap_empty_p (a)) |
| return bitmap_and_compl (a, b, c); |
| |
| and_elt.indx = -1; |
| while (b_elt) |
| { |
| /* Advance C. */ |
| while (c_elt && c_elt->indx < b_elt->indx) |
| c_elt = c_elt->next; |
| |
| const bitmap_element *and_elt_ptr; |
| if (c_elt && c_elt->indx == b_elt->indx) |
| { |
| BITMAP_WORD overall = 0; |
| and_elt_ptr = &and_elt; |
| and_elt.indx = b_elt->indx; |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| { |
| and_elt.bits[ix] = b_elt->bits[ix] & ~c_elt->bits[ix]; |
| overall |= and_elt.bits[ix]; |
| } |
| if (!overall) |
| { |
| b_elt = b_elt->next; |
| continue; |
| } |
| } |
| else |
| and_elt_ptr = b_elt; |
| |
| b_elt = b_elt->next; |
| |
| /* Now find a place to insert AND_ELT. */ |
| do |
| { |
| ix = a_elt ? a_elt->indx : and_elt_ptr->indx; |
| if (ix == and_elt_ptr->indx) |
| changed = bitmap_elt_ior (a, a_elt, a_prev, a_elt, |
| and_elt_ptr, changed); |
| else if (ix > and_elt_ptr->indx) |
| changed = bitmap_elt_copy (a, NULL, a_prev, and_elt_ptr, changed); |
| |
| a_prev = *a_prev_pnext; |
| a_prev_pnext = &a_prev->next; |
| a_elt = *a_prev_pnext; |
| |
| /* If A lagged behind B/C, we advanced it so loop once more. */ |
| } |
| while (ix < and_elt_ptr->indx); |
| } |
| |
| gcc_checking_assert (!a->current == !a->first); |
| if (a->current) |
| a->indx = a->current->indx; |
| return changed; |
| } |
| |
| /* A |= (B & C). Return true if A changes. */ |
| |
| bool |
| bitmap_ior_and_into (bitmap a, const_bitmap b, const_bitmap c) |
| { |
| bitmap_element *a_elt = a->first; |
| const bitmap_element *b_elt = b->first; |
| const bitmap_element *c_elt = c->first; |
| bitmap_element and_elt; |
| bitmap_element *a_prev = NULL; |
| bitmap_element **a_prev_pnext = &a->first; |
| bool changed = false; |
| unsigned ix; |
| |
| gcc_checking_assert (!a->tree_form && !b->tree_form && !c->tree_form); |
| |
| if (b == c) |
| return bitmap_ior_into (a, b); |
| if (bitmap_empty_p (b) || bitmap_empty_p (c)) |
| return false; |
| |
| and_elt.indx = -1; |
| while (b_elt && c_elt) |
| { |
| BITMAP_WORD overall; |
| |
| /* Find a common item of B and C. */ |
| while (b_elt->indx != c_elt->indx) |
| { |
| if (b_elt->indx < c_elt->indx) |
| { |
| b_elt = b_elt->next; |
| if (!b_elt) |
| goto done; |
| } |
| else |
| { |
| c_elt = c_elt->next; |
| if (!c_elt) |
| goto done; |
| } |
| } |
| |
| overall = 0; |
| and_elt.indx = b_elt->indx; |
| for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++) |
| { |
| and_elt.bits[ix] = b_elt->bits[ix] & c_elt->bits[ix]; |
| overall |= and_elt.bits[ix]; |
| } |
| |
| b_elt = b_elt->next; |
| c_elt = c_elt->next; |
| if (!overall) |
| continue; |
| |
| /* Now find a place to insert AND_ELT. */ |
| do |
| { |
| ix = a_elt ? a_elt->indx : and_elt.indx; |
| if (ix == and_elt.indx) |
| changed = bitmap_elt_ior (a, a_elt, a_prev, a_elt, &and_elt, changed); |
| else if (ix > and_elt.indx) |
| changed = bitmap_elt_copy (a, NULL, a_prev, &and_elt, changed); |
| |
| a_prev = *a_prev_pnext; |
| a_prev_pnext = &a_prev->next; |
| a_elt = *a_prev_pnext; |
| |
| /* If A lagged behind B/C, we advanced it so loop once more. */ |
| } |
| while (ix < and_elt.indx); |
| } |
| |
| done: |
| gcc_checking_assert (!a->current == !a->first); |
| if (a->current) |
| a->indx = a->current->indx; |
| return changed; |
| } |
| |
| /* Compute hash of bitmap (for purposes of hashing). */ |
| |
| hashval_t |
| bitmap_hash (const_bitmap head) |
| { |
| const bitmap_element *ptr; |
| BITMAP_WORD hash = 0; |
| int ix; |
| |
| gcc_checking_assert (!head->tree_form); |
| |
| for (ptr = head->first; ptr; ptr = ptr->next) |
| { |
| hash ^= ptr->indx; |
| for (ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++) |
| hash ^= ptr->bits[ix]; |
| } |
| return (hashval_t)hash; |
| } |
| |
| |
| /* Function to obtain a vector of bitmap elements in bit order from |
| HEAD in tree view. */ |
| |
| static void |
| bitmap_tree_to_vec (vec<bitmap_element *> &elts, const_bitmap head) |
| { |
| gcc_checking_assert (head->tree_form); |
| auto_vec<bitmap_element *, 32> stack; |
| bitmap_element *e = head->first; |
| while (true) |
| { |
| while (e != NULL) |
| { |
| stack.safe_push (e); |
| e = e->prev; |
| } |
| if (stack.is_empty ()) |
| break; |
| |
| e = stack.pop (); |
| elts.safe_push (e); |
| e = e->next; |
| } |
| } |
| |
| /* Debugging function to print out the contents of a bitmap element. */ |
| |
| DEBUG_FUNCTION void |
| debug_bitmap_elt_file (FILE *file, const bitmap_element *ptr) |
| { |
| unsigned int i, j, col = 26; |
| |
| fprintf (file, "\t" HOST_PTR_PRINTF " next = " HOST_PTR_PRINTF |
| " prev = " HOST_PTR_PRINTF " indx = %u\n\t\tbits = {", |
| (const void*) ptr, (const void*) ptr->next, |
| (const void*) ptr->prev, ptr->indx); |
| |
| for (i = 0; i < BITMAP_ELEMENT_WORDS; i++) |
| for (j = 0; j < BITMAP_WORD_BITS; j++) |
| if ((ptr->bits[i] >> j) & 1) |
| { |
| if (col > 70) |
| { |
| fprintf (file, "\n\t\t\t"); |
| col = 24; |
| } |
| |
| fprintf (file, " %u", (ptr->indx * BITMAP_ELEMENT_ALL_BITS |
| + i * BITMAP_WORD_BITS + j)); |
| col += 4; |
| } |
| |
| fprintf (file, " }\n"); |
| } |
| |
| /* Debugging function to print out the contents of a bitmap. */ |
| |
| DEBUG_FUNCTION void |
| debug_bitmap_file (FILE *file, const_bitmap head) |
| { |
| const bitmap_element *ptr; |
| |
| fprintf (file, "\nfirst = " HOST_PTR_PRINTF |
| " current = " HOST_PTR_PRINTF " indx = %u\n", |
| (void *) head->first, (void *) head->current, head->indx); |
| |
| if (head->tree_form) |
| { |
| auto_vec<bitmap_element *, 32> elts; |
| bitmap_tree_to_vec (elts, head); |
| for (unsigned i = 0; i < elts.length (); ++i) |
| debug_bitmap_elt_file (file, elts[i]); |
| } |
| else |
| for (ptr = head->first; ptr; ptr = ptr->next) |
| debug_bitmap_elt_file (file, ptr); |
| } |
| |
| /* Function to be called from the debugger to print the contents |
| of a bitmap. */ |
| |
| DEBUG_FUNCTION void |
| debug_bitmap (const_bitmap head) |
| { |
| debug_bitmap_file (stderr, head); |
| } |
| |
| /* Function to print out the contents of a bitmap. Unlike debug_bitmap_file, |
| it does not print anything but the bits. */ |
| |
| DEBUG_FUNCTION void |
| bitmap_print (FILE *file, const_bitmap head, const char *prefix, |
| const char *suffix) |
| { |
| const char *comma = ""; |
| unsigned i; |
| |
| fputs (prefix, file); |
| if (head->tree_form) |
| { |
| auto_vec<bitmap_element *, 32> elts; |
| bitmap_tree_to_vec (elts, head); |
| for (i = 0; i < elts.length (); ++i) |
| for (unsigned ix = 0; ix != BITMAP_ELEMENT_WORDS; ++ix) |
| { |
| BITMAP_WORD word = elts[i]->bits[ix]; |
| for (unsigned bit = 0; bit != BITMAP_WORD_BITS; ++bit) |
| if (word & ((BITMAP_WORD)1 << bit)) |
| { |
| fprintf (file, "%s%d", comma, |
| (bit + BITMAP_WORD_BITS * ix |
| + elts[i]->indx * BITMAP_ELEMENT_ALL_BITS)); |
| comma = ", "; |
| } |
| } |
| } |
| else |
| { |
| bitmap_iterator bi; |
| EXECUTE_IF_SET_IN_BITMAP (head, 0, i, bi) |
| { |
| fprintf (file, "%s%d", comma, i); |
| comma = ", "; |
| } |
| } |
| fputs (suffix, file); |
| } |
| |
| /* Output per-bitmap memory usage statistics. */ |
| void |
| dump_bitmap_statistics (void) |
| { |
| if (!GATHER_STATISTICS) |
| return; |
| |
| bitmap_mem_desc.dump (BITMAP_ORIGIN); |
| } |
| |
| DEBUG_FUNCTION void |
| debug (const bitmap_head &ref) |
| { |
| dump_bitmap (stderr, &ref); |
| } |
| |
| DEBUG_FUNCTION void |
| debug (const bitmap_head *ptr) |
| { |
| if (ptr) |
| debug (*ptr); |
| else |
| fprintf (stderr, "<nil>\n"); |
| } |
| |
| void |
| bitmap_head::dump () |
| { |
| debug (this); |
| } |
| |
| #if CHECKING_P |
| |
| namespace selftest { |
| |
| /* Selftests for bitmaps. */ |
| |
| /* Freshly-created bitmaps ought to be empty. */ |
| |
| static void |
| test_gc_alloc () |
| { |
| bitmap b = bitmap_gc_alloc (); |
| ASSERT_TRUE (bitmap_empty_p (b)); |
| } |
| |
| /* Verify bitmap_set_range. */ |
| |
| static void |
| test_set_range () |
| { |
| bitmap b = bitmap_gc_alloc (); |
| ASSERT_TRUE (bitmap_empty_p (b)); |
| |
| bitmap_set_range (b, 7, 5); |
| ASSERT_FALSE (bitmap_empty_p (b)); |
| ASSERT_EQ (5, bitmap_count_bits (b)); |
| |
| /* Verify bitmap_bit_p at the boundaries. */ |
| ASSERT_FALSE (bitmap_bit_p (b, 6)); |
| ASSERT_TRUE (bitmap_bit_p (b, 7)); |
| ASSERT_TRUE (bitmap_bit_p (b, 11)); |
| ASSERT_FALSE (bitmap_bit_p (b, 12)); |
| } |
| |
| /* Verify splitting a range into two pieces using bitmap_clear_bit. */ |
| |
| static void |
| test_clear_bit_in_middle () |
| { |
| bitmap b = bitmap_gc_alloc (); |
| |
| /* Set b to [100..200]. */ |
| bitmap_set_range (b, 100, 100); |
| ASSERT_EQ (100, bitmap_count_bits (b)); |
| |
| /* Clear a bit in the middle. */ |
| bool changed = bitmap_clear_bit (b, 150); |
| ASSERT_TRUE (changed); |
| ASSERT_EQ (99, bitmap_count_bits (b)); |
| ASSERT_TRUE (bitmap_bit_p (b, 149)); |
| ASSERT_FALSE (bitmap_bit_p (b, 150)); |
| ASSERT_TRUE (bitmap_bit_p (b, 151)); |
| } |
| |
| /* Verify bitmap_copy. */ |
| |
| static void |
| test_copying () |
| { |
| bitmap src = bitmap_gc_alloc (); |
| bitmap_set_range (src, 40, 10); |
| |
| bitmap dst = bitmap_gc_alloc (); |
| ASSERT_FALSE (bitmap_equal_p (src, dst)); |
| bitmap_copy (dst, src); |
| ASSERT_TRUE (bitmap_equal_p (src, dst)); |
| |
| /* Verify that we can make them unequal again... */ |
| bitmap_set_range (src, 70, 5); |
| ASSERT_FALSE (bitmap_equal_p (src, dst)); |
| |
| /* ...and that changing src after the copy didn't affect |
| the other: */ |
| ASSERT_FALSE (bitmap_bit_p (dst, 70)); |
| } |
| |
| /* Verify bitmap_single_bit_set_p. */ |
| |
| static void |
| test_bitmap_single_bit_set_p () |
| { |
| bitmap b = bitmap_gc_alloc (); |
| |
| ASSERT_FALSE (bitmap_single_bit_set_p (b)); |
| |
| bitmap_set_range (b, 42, 1); |
| ASSERT_TRUE (bitmap_single_bit_set_p (b)); |
| ASSERT_EQ (42, bitmap_first_set_bit (b)); |
| |
| bitmap_set_range (b, 1066, 1); |
| ASSERT_FALSE (bitmap_single_bit_set_p (b)); |
| ASSERT_EQ (42, bitmap_first_set_bit (b)); |
| |
| bitmap_clear_range (b, 0, 100); |
| ASSERT_TRUE (bitmap_single_bit_set_p (b)); |
| ASSERT_EQ (1066, bitmap_first_set_bit (b)); |
| } |
| |
| /* Run all of the selftests within this file. */ |
| |
| void |
| bitmap_c_tests () |
| { |
| test_gc_alloc (); |
| test_set_range (); |
| test_clear_bit_in_middle (); |
| test_copying (); |
| test_bitmap_single_bit_set_p (); |
| } |
| |
| } // namespace selftest |
| #endif /* CHECKING_P */ |
| |
| #include "gt-bitmap.h" |