| /* DDG - Data Dependence Graph implementation. |
| Copyright (C) 2004-2020 Free Software Foundation, Inc. |
| Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "rtl.h" |
| #include "df.h" |
| #include "insn-attr.h" |
| #include "sched-int.h" |
| #include "ddg.h" |
| #include "rtl-iter.h" |
| |
| #ifdef INSN_SCHEDULING |
| |
| /* Forward declarations. */ |
| static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr); |
| static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr); |
| static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr); |
| static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr, |
| ddg_node_ptr, dep_t); |
| static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr, |
| dep_type, dep_data_type, int); |
| static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type, |
| dep_data_type, int, int); |
| static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr); |
| |
| /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */ |
| static bool mem_ref_p; |
| |
| /* Auxiliary function for mem_read_insn_p. */ |
| static void |
| mark_mem_use (rtx *x, void *) |
| { |
| subrtx_iterator::array_type array; |
| FOR_EACH_SUBRTX (iter, array, *x, NONCONST) |
| if (MEM_P (*iter)) |
| { |
| mem_ref_p = true; |
| break; |
| } |
| } |
| |
| /* Returns nonzero if INSN reads from memory. */ |
| static bool |
| mem_read_insn_p (rtx_insn *insn) |
| { |
| mem_ref_p = false; |
| note_uses (&PATTERN (insn), mark_mem_use, NULL); |
| return mem_ref_p; |
| } |
| |
| static void |
| mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED) |
| { |
| if (MEM_P (loc)) |
| mem_ref_p = true; |
| } |
| |
| /* Returns nonzero if INSN writes to memory. */ |
| static bool |
| mem_write_insn_p (rtx_insn *insn) |
| { |
| mem_ref_p = false; |
| note_stores (insn, mark_mem_store, NULL); |
| return mem_ref_p; |
| } |
| |
| /* Returns nonzero if X has access to memory. */ |
| static bool |
| rtx_mem_access_p (rtx x) |
| { |
| int i, j; |
| const char *fmt; |
| enum rtx_code code; |
| |
| if (x == 0) |
| return false; |
| |
| if (MEM_P (x)) |
| return true; |
| |
| code = GET_CODE (x); |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e') |
| { |
| if (rtx_mem_access_p (XEXP (x, i))) |
| return true; |
| } |
| else if (fmt[i] == 'E') |
| for (j = 0; j < XVECLEN (x, i); j++) |
| { |
| if (rtx_mem_access_p (XVECEXP (x, i, j))) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* Returns nonzero if INSN reads to or writes from memory. */ |
| static bool |
| mem_access_insn_p (rtx_insn *insn) |
| { |
| return rtx_mem_access_p (PATTERN (insn)); |
| } |
| |
| /* Return true if DEF_INSN contains address being auto-inc or auto-dec |
| which is used in USE_INSN. Otherwise return false. The result is |
| being used to decide whether to remove the edge between def_insn and |
| use_insn when -fmodulo-sched-allow-regmoves is set. This function |
| doesn't need to consider the specific address register; no reg_moves |
| will be allowed for any life range defined by def_insn and used |
| by use_insn, if use_insn uses an address register auto-inc'ed by |
| def_insn. */ |
| bool |
| autoinc_var_is_used_p (rtx_insn *def_insn, rtx_insn *use_insn) |
| { |
| rtx note; |
| |
| for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1)) |
| if (REG_NOTE_KIND (note) == REG_INC |
| && reg_referenced_p (XEXP (note, 0), PATTERN (use_insn))) |
| return true; |
| |
| return false; |
| } |
| |
| /* Return true if one of the definitions in INSN has MODE_CC. Otherwise |
| return false. */ |
| static bool |
| def_has_ccmode_p (rtx_insn *insn) |
| { |
| df_ref def; |
| |
| FOR_EACH_INSN_DEF (def, insn) |
| { |
| machine_mode mode = GET_MODE (DF_REF_REG (def)); |
| |
| if (GET_MODE_CLASS (mode) == MODE_CC) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Computes the dependence parameters (latency, distance etc.), creates |
| a ddg_edge and adds it to the given DDG. */ |
| static void |
| create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node, |
| ddg_node_ptr dest_node, dep_t link) |
| { |
| ddg_edge_ptr e; |
| int latency, distance = 0; |
| dep_type t = TRUE_DEP; |
| dep_data_type dt = (mem_access_insn_p (src_node->insn) |
| && mem_access_insn_p (dest_node->insn) ? MEM_DEP |
| : REG_DEP); |
| gcc_assert (src_node->cuid < dest_node->cuid); |
| gcc_assert (link); |
| |
| /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */ |
| if (DEP_TYPE (link) == REG_DEP_ANTI) |
| t = ANTI_DEP; |
| else if (DEP_TYPE (link) == REG_DEP_OUTPUT) |
| t = OUTPUT_DEP; |
| |
| /* We currently choose not to create certain anti-deps edges and |
| compensate for that by generating reg-moves based on the life-range |
| analysis. The anti-deps that will be deleted are the ones which |
| have true-deps edges in the opposite direction (in other words |
| the kernel has only one def of the relevant register). |
| If the address that is being auto-inc or auto-dec in DEST_NODE |
| is used in SRC_NODE then do not remove the edge to make sure |
| reg-moves will not be created for this address. |
| TODO: support the removal of all anti-deps edges, i.e. including those |
| whose register has multiple defs in the loop. */ |
| if (flag_modulo_sched_allow_regmoves |
| && (t == ANTI_DEP && dt == REG_DEP) |
| && !def_has_ccmode_p (dest_node->insn) |
| && !autoinc_var_is_used_p (dest_node->insn, src_node->insn)) |
| { |
| rtx set; |
| |
| set = single_set (dest_node->insn); |
| /* TODO: Handle registers that REG_P is not true for them, i.e. |
| subregs and special registers. */ |
| if (set && REG_P (SET_DEST (set))) |
| { |
| int regno = REGNO (SET_DEST (set)); |
| df_ref first_def; |
| class df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb); |
| |
| first_def = df_bb_regno_first_def_find (g->bb, regno); |
| gcc_assert (first_def); |
| |
| if (bitmap_bit_p (&bb_info->gen, DF_REF_ID (first_def))) |
| return; |
| } |
| } |
| |
| latency = dep_cost (link); |
| e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance); |
| add_edge_to_ddg (g, e); |
| } |
| |
| /* The same as the above function, but it doesn't require a link parameter. */ |
| static void |
| create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to, |
| dep_type d_t, dep_data_type d_dt, int distance) |
| { |
| ddg_edge_ptr e; |
| int l; |
| enum reg_note dep_kind; |
| struct _dep _dep, *dep = &_dep; |
| |
| if (d_t == ANTI_DEP) |
| dep_kind = REG_DEP_ANTI; |
| else if (d_t == OUTPUT_DEP) |
| dep_kind = REG_DEP_OUTPUT; |
| else |
| { |
| gcc_assert (d_t == TRUE_DEP); |
| |
| dep_kind = REG_DEP_TRUE; |
| } |
| |
| init_dep (dep, from->insn, to->insn, dep_kind); |
| |
| l = dep_cost (dep); |
| |
| e = create_ddg_edge (from, to, d_t, d_dt, l, distance); |
| if (distance > 0) |
| add_backarc_to_ddg (g, e); |
| else |
| add_edge_to_ddg (g, e); |
| } |
| |
| |
| /* Given a downwards exposed register def LAST_DEF (which is the last |
| definition of that register in the bb), add inter-loop true dependences |
| to all its uses in the next iteration, an output dependence to the |
| first def of the same register (possibly itself) in the next iteration |
| and anti-dependences from its uses in the current iteration to the |
| first definition in the next iteration. */ |
| static void |
| add_cross_iteration_register_deps (ddg_ptr g, df_ref last_def) |
| { |
| struct df_link *r_use; |
| int has_use_in_bb_p = false; |
| int regno = DF_REF_REGNO (last_def); |
| ddg_node_ptr last_def_node = get_node_of_insn (g, DF_REF_INSN (last_def)); |
| df_ref first_def = df_bb_regno_first_def_find (g->bb, regno); |
| ddg_node_ptr first_def_node = get_node_of_insn (g, DF_REF_INSN (first_def)); |
| ddg_node_ptr use_node; |
| |
| gcc_assert (last_def_node && first_def && first_def_node); |
| |
| if (flag_checking && DF_REF_ID (last_def) != DF_REF_ID (first_def)) |
| { |
| class df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb); |
| gcc_assert (!bitmap_bit_p (&bb_info->gen, DF_REF_ID (first_def))); |
| } |
| |
| /* Create inter-loop true dependences and anti dependences. */ |
| for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next) |
| { |
| if (DF_REF_BB (r_use->ref) != g->bb) |
| continue; |
| |
| gcc_assert (!DF_REF_IS_ARTIFICIAL (r_use->ref) |
| && DF_REF_INSN_INFO (r_use->ref) != NULL); |
| |
| rtx_insn *use_insn = DF_REF_INSN (r_use->ref); |
| |
| if (DEBUG_INSN_P (use_insn)) |
| continue; |
| |
| /* ??? Do not handle uses with DF_REF_IN_NOTE notes. */ |
| use_node = get_node_of_insn (g, use_insn); |
| gcc_assert (use_node); |
| has_use_in_bb_p = true; |
| if (use_node->cuid <= last_def_node->cuid) |
| { |
| /* Add true deps from last_def to it's uses in the next |
| iteration. Any such upwards exposed use appears before |
| the last_def def. */ |
| create_ddg_dep_no_link (g, last_def_node, use_node, |
| TRUE_DEP, REG_DEP, 1); |
| } |
| else |
| { |
| /* Add anti deps from last_def's uses in the current iteration |
| to the first def in the next iteration. We do not add ANTI |
| dep when there is an intra-loop TRUE dep in the opposite |
| direction, but use regmoves to fix such disregarded ANTI |
| deps when broken. If the first_def reaches the USE then |
| there is such a dep. |
| Always create the edge if the use node is a branch in |
| order to prevent the creation of reg-moves. |
| If the address that is being auto-inc or auto-dec in LAST_DEF |
| is used in USE_INSN then do not remove the edge to make sure |
| reg-moves will not be created for that address. */ |
| if (DF_REF_ID (last_def) != DF_REF_ID (first_def) |
| || !flag_modulo_sched_allow_regmoves |
| || JUMP_P (use_node->insn) |
| || autoinc_var_is_used_p (DF_REF_INSN (last_def), use_insn) |
| || def_has_ccmode_p (DF_REF_INSN (last_def))) |
| create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP, |
| REG_DEP, 1); |
| } |
| } |
| /* Create an inter-loop output dependence between LAST_DEF (which is the |
| last def in its block, being downwards exposed) and the first def in |
| its block. Avoid creating a self output dependence. Avoid creating |
| an output dependence if there is a dependence path between the two |
| defs starting with a true dependence to a use which can be in the |
| next iteration; followed by an anti dependence of that use to the |
| first def (i.e. if there is a use between the two defs.) */ |
| if (!has_use_in_bb_p && DF_REF_ID (last_def) != DF_REF_ID (first_def)) |
| create_ddg_dep_no_link (g, last_def_node, first_def_node, |
| OUTPUT_DEP, REG_DEP, 1); |
| } |
| |
| /* Build inter-loop dependencies, by looking at DF analysis backwards. */ |
| static void |
| build_inter_loop_deps (ddg_ptr g) |
| { |
| unsigned rd_num; |
| class df_rd_bb_info *rd_bb_info; |
| bitmap_iterator bi; |
| |
| rd_bb_info = DF_RD_BB_INFO (g->bb); |
| |
| /* Find inter-loop register output, true and anti deps. */ |
| EXECUTE_IF_SET_IN_BITMAP (&rd_bb_info->gen, 0, rd_num, bi) |
| { |
| df_ref rd = DF_DEFS_GET (rd_num); |
| |
| add_cross_iteration_register_deps (g, rd); |
| } |
| } |
| |
| |
| /* Return true if two specified instructions have mem expr with conflict |
| alias sets. */ |
| static bool |
| insns_may_alias_p (rtx_insn *insn1, rtx_insn *insn2) |
| { |
| subrtx_iterator::array_type array1; |
| subrtx_iterator::array_type array2; |
| FOR_EACH_SUBRTX (iter1, array1, PATTERN (insn1), NONCONST) |
| { |
| const_rtx x1 = *iter1; |
| if (MEM_P (x1)) |
| FOR_EACH_SUBRTX (iter2, array2, PATTERN (insn2), NONCONST) |
| { |
| const_rtx x2 = *iter2; |
| if (MEM_P (x2) && may_alias_p (x2, x1)) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* Given two nodes, analyze their RTL insns and add intra-loop mem deps |
| to ddg G. */ |
| static void |
| add_intra_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to) |
| { |
| |
| if ((from->cuid == to->cuid) |
| || !insns_may_alias_p (from->insn, to->insn)) |
| /* Do not create edge if memory references have disjoint alias sets |
| or 'to' and 'from' are the same instruction. */ |
| return; |
| |
| if (mem_write_insn_p (from->insn)) |
| { |
| if (mem_read_insn_p (to->insn)) |
| create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 0); |
| else |
| create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 0); |
| } |
| else if (!mem_read_insn_p (to->insn)) |
| create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 0); |
| } |
| |
| /* Given two nodes, analyze their RTL insns and add inter-loop mem deps |
| to ddg G. */ |
| static void |
| add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to) |
| { |
| if (!insns_may_alias_p (from->insn, to->insn)) |
| /* Do not create edge if memory references have disjoint alias sets. */ |
| return; |
| |
| if (mem_write_insn_p (from->insn)) |
| { |
| if (mem_read_insn_p (to->insn)) |
| create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1); |
| else if (from->cuid != to->cuid) |
| create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1); |
| } |
| else |
| { |
| if (mem_read_insn_p (to->insn)) |
| return; |
| else if (from->cuid != to->cuid) |
| { |
| create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1); |
| create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1); |
| } |
| } |
| } |
| |
| /* Perform intra-block Data Dependency analysis and connect the nodes in |
| the DDG. We assume the loop has a single basic block. */ |
| static void |
| build_intra_loop_deps (ddg_ptr g) |
| { |
| int i; |
| /* Hold the dependency analysis state during dependency calculations. */ |
| class deps_desc tmp_deps; |
| rtx_insn *head, *tail; |
| |
| /* Build the dependence information, using the sched_analyze function. */ |
| init_deps_global (); |
| init_deps (&tmp_deps, false); |
| |
| /* Do the intra-block data dependence analysis for the given block. */ |
| get_ebb_head_tail (g->bb, g->bb, &head, &tail); |
| sched_analyze (&tmp_deps, head, tail); |
| |
| /* Build intra-loop data dependencies using the scheduler dependency |
| analysis. */ |
| for (i = 0; i < g->num_nodes; i++) |
| { |
| ddg_node_ptr dest_node = &g->nodes[i]; |
| sd_iterator_def sd_it; |
| dep_t dep; |
| |
| FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep) |
| { |
| rtx_insn *src_insn = DEP_PRO (dep); |
| ddg_node_ptr src_node = get_node_of_insn (g, src_insn); |
| |
| if (!src_node) |
| continue; |
| |
| create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep); |
| } |
| |
| /* If this insn modifies memory, add an edge to all insns that access |
| memory. */ |
| if (mem_access_insn_p (dest_node->insn)) |
| { |
| int j; |
| |
| for (j = 0; j <= i; j++) |
| { |
| ddg_node_ptr j_node = &g->nodes[j]; |
| |
| if (mem_access_insn_p (j_node->insn)) |
| { |
| /* Don't bother calculating inter-loop dep if an intra-loop dep |
| already exists. */ |
| if (! bitmap_bit_p (dest_node->successors, j)) |
| add_inter_loop_mem_dep (g, dest_node, j_node); |
| /* If -fmodulo-sched-allow-regmoves |
| is set certain anti-dep edges are not created. |
| It might be that these anti-dep edges are on the |
| path from one memory instruction to another such that |
| removing these edges could cause a violation of the |
| memory dependencies. Thus we add intra edges between |
| every two memory instructions in this case. */ |
| if (flag_modulo_sched_allow_regmoves |
| && !bitmap_bit_p (dest_node->predecessors, j)) |
| add_intra_loop_mem_dep (g, j_node, dest_node); |
| } |
| } |
| } |
| } |
| |
| /* Free the INSN_LISTs. */ |
| finish_deps_global (); |
| free_deps (&tmp_deps); |
| |
| /* Free dependencies. */ |
| sched_free_deps (head, tail, false); |
| } |
| |
| |
| /* Given a basic block, create its DDG and return a pointer to a variable |
| of ddg type that represents it. |
| Initialize the ddg structure fields to the appropriate values. */ |
| ddg_ptr |
| create_ddg (basic_block bb, int closing_branch_deps) |
| { |
| ddg_ptr g; |
| rtx_insn *insn, *first_note; |
| int i, j; |
| int num_nodes = 0; |
| |
| g = (ddg_ptr) xcalloc (1, sizeof (struct ddg)); |
| |
| g->bb = bb; |
| g->closing_branch_deps = closing_branch_deps; |
| |
| /* Count the number of insns in the BB. */ |
| for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); |
| insn = NEXT_INSN (insn)) |
| { |
| if (!INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE) |
| continue; |
| |
| if (NONDEBUG_INSN_P (insn)) |
| { |
| if (mem_read_insn_p (insn)) |
| g->num_loads++; |
| if (mem_write_insn_p (insn)) |
| g->num_stores++; |
| num_nodes++; |
| } |
| } |
| |
| /* There is nothing to do for this BB. */ |
| if (num_nodes <= 1) |
| { |
| free (g); |
| return NULL; |
| } |
| |
| /* Allocate the nodes array, and initialize the nodes. */ |
| g->num_nodes = num_nodes; |
| g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node)); |
| g->closing_branch = NULL; |
| i = 0; |
| first_note = NULL; |
| for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); |
| insn = NEXT_INSN (insn)) |
| { |
| if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn)) |
| continue; |
| |
| if (!first_note && (INSN_P (insn) || NOTE_P (insn))) |
| first_note = insn; |
| |
| if (!INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE) |
| continue; |
| |
| if (JUMP_P (insn)) |
| { |
| gcc_assert (!g->closing_branch); |
| g->closing_branch = &g->nodes[i]; |
| } |
| |
| if (NONDEBUG_INSN_P (insn)) |
| { |
| g->nodes[i].cuid = i; |
| g->nodes[i].successors = sbitmap_alloc (num_nodes); |
| bitmap_clear (g->nodes[i].successors); |
| g->nodes[i].predecessors = sbitmap_alloc (num_nodes); |
| bitmap_clear (g->nodes[i].predecessors); |
| |
| gcc_checking_assert (first_note); |
| g->nodes[i].first_note = first_note; |
| |
| g->nodes[i].aux.count = -1; |
| g->nodes[i].max_dist = XCNEWVEC (int, num_nodes); |
| for (j = 0; j < num_nodes; j++) |
| g->nodes[i].max_dist[j] = -1; |
| |
| g->nodes[i++].insn = insn; |
| } |
| first_note = NULL; |
| } |
| |
| /* We must have found a branch in DDG. */ |
| gcc_assert (g->closing_branch); |
| |
| |
| /* Build the data dependency graph. */ |
| build_intra_loop_deps (g); |
| build_inter_loop_deps (g); |
| return g; |
| } |
| |
| /* Free all the memory allocated for the DDG. */ |
| void |
| free_ddg (ddg_ptr g) |
| { |
| int i; |
| |
| if (!g) |
| return; |
| |
| for (i = 0; i < g->num_nodes; i++) |
| { |
| ddg_edge_ptr e = g->nodes[i].out; |
| |
| while (e) |
| { |
| ddg_edge_ptr next = e->next_out; |
| |
| free (e); |
| e = next; |
| } |
| sbitmap_free (g->nodes[i].successors); |
| sbitmap_free (g->nodes[i].predecessors); |
| free (g->nodes[i].max_dist); |
| } |
| if (g->num_backarcs > 0) |
| free (g->backarcs); |
| free (g->nodes); |
| free (g); |
| } |
| |
| void |
| print_ddg_edge (FILE *file, ddg_edge_ptr e) |
| { |
| char dep_c; |
| |
| switch (e->type) |
| { |
| case OUTPUT_DEP : |
| dep_c = 'O'; |
| break; |
| case ANTI_DEP : |
| dep_c = 'A'; |
| break; |
| default: |
| dep_c = 'T'; |
| } |
| |
| fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn), |
| dep_c, e->latency, e->distance, INSN_UID (e->dest->insn)); |
| } |
| |
| /* Print the DDG nodes with there in/out edges to the dump file. */ |
| void |
| print_ddg (FILE *file, ddg_ptr g) |
| { |
| int i; |
| |
| for (i = 0; i < g->num_nodes; i++) |
| { |
| ddg_edge_ptr e; |
| |
| fprintf (file, "Node num: %d\n", g->nodes[i].cuid); |
| print_rtl_single (file, g->nodes[i].insn); |
| fprintf (file, "OUT ARCS: "); |
| for (e = g->nodes[i].out; e; e = e->next_out) |
| print_ddg_edge (file, e); |
| |
| fprintf (file, "\nIN ARCS: "); |
| for (e = g->nodes[i].in; e; e = e->next_in) |
| print_ddg_edge (file, e); |
| |
| fprintf (file, "\n"); |
| } |
| } |
| |
| /* Print the given DDG in VCG format. */ |
| DEBUG_FUNCTION void |
| vcg_print_ddg (FILE *file, ddg_ptr g) |
| { |
| int src_cuid; |
| |
| fprintf (file, "graph: {\n"); |
| for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++) |
| { |
| ddg_edge_ptr e; |
| int src_uid = INSN_UID (g->nodes[src_cuid].insn); |
| |
| fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid); |
| print_rtl_single (file, g->nodes[src_cuid].insn); |
| fprintf (file, "\"}\n"); |
| for (e = g->nodes[src_cuid].out; e; e = e->next_out) |
| { |
| int dst_uid = INSN_UID (e->dest->insn); |
| int dst_cuid = e->dest->cuid; |
| |
| /* Give the backarcs a different color. */ |
| if (e->distance > 0) |
| fprintf (file, "backedge: {color: red "); |
| else |
| fprintf (file, "edge: { "); |
| |
| fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid); |
| fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid); |
| fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance); |
| } |
| } |
| fprintf (file, "}\n"); |
| } |
| |
| /* Dump the sccs in SCCS. */ |
| void |
| print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g) |
| { |
| unsigned int u = 0; |
| sbitmap_iterator sbi; |
| int i; |
| |
| if (!file) |
| return; |
| |
| fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs); |
| for (i = 0; i < sccs->num_sccs; i++) |
| { |
| fprintf (file, "SCC number: %d\n", i); |
| EXECUTE_IF_SET_IN_BITMAP (sccs->sccs[i]->nodes, 0, u, sbi) |
| { |
| fprintf (file, "insn num %d\n", u); |
| print_rtl_single (file, g->nodes[u].insn); |
| } |
| } |
| fprintf (file, "\n"); |
| } |
| |
| /* Create an edge and initialize it with given values. */ |
| static ddg_edge_ptr |
| create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest, |
| dep_type t, dep_data_type dt, int l, int d) |
| { |
| ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge)); |
| |
| e->src = src; |
| e->dest = dest; |
| e->type = t; |
| e->data_type = dt; |
| e->latency = l; |
| e->distance = d; |
| e->next_in = e->next_out = NULL; |
| e->in_scc = false; |
| return e; |
| } |
| |
| /* Add the given edge to the in/out linked lists of the DDG nodes. */ |
| static void |
| add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e) |
| { |
| ddg_node_ptr src = e->src; |
| ddg_node_ptr dest = e->dest; |
| |
| /* Should have allocated the sbitmaps. */ |
| gcc_assert (src->successors && dest->predecessors); |
| |
| bitmap_set_bit (src->successors, dest->cuid); |
| bitmap_set_bit (dest->predecessors, src->cuid); |
| e->next_in = dest->in; |
| dest->in = e; |
| e->next_out = src->out; |
| src->out = e; |
| } |
| |
| |
| |
| /* Algorithm for computing the recurrence_length of an scc. We assume at |
| for now that cycles in the data dependence graph contain a single backarc. |
| This simplifies the algorithm, and can be generalized later. */ |
| static void |
| set_recurrence_length (ddg_scc_ptr scc) |
| { |
| int j; |
| int result = -1; |
| |
| for (j = 0; j < scc->num_backarcs; j++) |
| { |
| ddg_edge_ptr backarc = scc->backarcs[j]; |
| int distance = backarc->distance; |
| ddg_node_ptr src = backarc->dest; |
| ddg_node_ptr dest = backarc->src; |
| int length = src->max_dist[dest->cuid]; |
| |
| if (length < 0) |
| continue; |
| |
| length += backarc->latency; |
| result = MAX (result, (length / distance)); |
| } |
| scc->recurrence_length = result; |
| } |
| |
| /* Create a new SCC given the set of its nodes. Compute its recurrence_length |
| and mark edges that belong to this scc. */ |
| static ddg_scc_ptr |
| create_scc (ddg_ptr g, sbitmap nodes, int id) |
| { |
| ddg_scc_ptr scc; |
| unsigned int u = 0; |
| sbitmap_iterator sbi; |
| |
| scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc)); |
| scc->backarcs = NULL; |
| scc->num_backarcs = 0; |
| scc->nodes = sbitmap_alloc (g->num_nodes); |
| bitmap_copy (scc->nodes, nodes); |
| |
| /* Mark the backarcs that belong to this SCC. */ |
| EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi) |
| { |
| ddg_edge_ptr e; |
| ddg_node_ptr n = &g->nodes[u]; |
| |
| gcc_assert (n->aux.count == -1); |
| n->aux.count = id; |
| |
| for (e = n->out; e; e = e->next_out) |
| if (bitmap_bit_p (nodes, e->dest->cuid)) |
| { |
| e->in_scc = true; |
| if (e->distance > 0) |
| add_backarc_to_scc (scc, e); |
| } |
| } |
| |
| return scc; |
| } |
| |
| /* Cleans the memory allocation of a given SCC. */ |
| static void |
| free_scc (ddg_scc_ptr scc) |
| { |
| if (!scc) |
| return; |
| |
| sbitmap_free (scc->nodes); |
| if (scc->num_backarcs > 0) |
| free (scc->backarcs); |
| free (scc); |
| } |
| |
| |
| /* Add a given edge known to be a backarc to the given DDG. */ |
| static void |
| add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e) |
| { |
| int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr); |
| |
| add_edge_to_ddg (g, e); |
| g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size); |
| g->backarcs[g->num_backarcs++] = e; |
| } |
| |
| /* Add backarc to an SCC. */ |
| static void |
| add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e) |
| { |
| int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr); |
| |
| scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size); |
| scc->backarcs[scc->num_backarcs++] = e; |
| } |
| |
| /* Add the given SCC to the DDG. */ |
| static void |
| add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc) |
| { |
| int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr); |
| |
| g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size); |
| g->sccs[g->num_sccs++] = scc; |
| } |
| |
| /* Given the instruction INSN return the node that represents it. */ |
| ddg_node_ptr |
| get_node_of_insn (ddg_ptr g, rtx_insn *insn) |
| { |
| int i; |
| |
| for (i = 0; i < g->num_nodes; i++) |
| if (insn == g->nodes[i].insn) |
| return &g->nodes[i]; |
| return NULL; |
| } |
| |
| /* Given a set OPS of nodes in the DDG, find the set of their successors |
| which are not in OPS, and set their bits in SUCC. Bits corresponding to |
| OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */ |
| void |
| find_successors (sbitmap succ, ddg_ptr g, sbitmap ops) |
| { |
| unsigned int i = 0; |
| sbitmap_iterator sbi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (ops, 0, i, sbi) |
| { |
| const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]); |
| bitmap_ior (succ, succ, node_succ); |
| }; |
| |
| /* We want those that are not in ops. */ |
| bitmap_and_compl (succ, succ, ops); |
| } |
| |
| /* Given a set OPS of nodes in the DDG, find the set of their predecessors |
| which are not in OPS, and set their bits in PREDS. Bits corresponding to |
| OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */ |
| void |
| find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops) |
| { |
| unsigned int i = 0; |
| sbitmap_iterator sbi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (ops, 0, i, sbi) |
| { |
| const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]); |
| bitmap_ior (preds, preds, node_preds); |
| }; |
| |
| /* We want those that are not in ops. */ |
| bitmap_and_compl (preds, preds, ops); |
| } |
| |
| |
| /* Compare function to be passed to qsort to order the backarcs in descending |
| recMII order. */ |
| static int |
| compare_sccs (const void *s1, const void *s2) |
| { |
| const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length; |
| const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length; |
| return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1)); |
| |
| } |
| |
| /* Order the backarcs in descending recMII order using compare_sccs. */ |
| static void |
| order_sccs (ddg_all_sccs_ptr g) |
| { |
| qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr), |
| (int (*) (const void *, const void *)) compare_sccs); |
| } |
| |
| /* Check that every node in SCCS belongs to exactly one strongly connected |
| component and that no element of SCCS is empty. */ |
| static void |
| check_sccs (ddg_all_sccs_ptr sccs, int num_nodes) |
| { |
| int i = 0; |
| auto_sbitmap tmp (num_nodes); |
| |
| bitmap_clear (tmp); |
| for (i = 0; i < sccs->num_sccs; i++) |
| { |
| gcc_assert (!bitmap_empty_p (sccs->sccs[i]->nodes)); |
| /* Verify that every node in sccs is in exactly one strongly |
| connected component. */ |
| gcc_assert (!bitmap_intersect_p (tmp, sccs->sccs[i]->nodes)); |
| bitmap_ior (tmp, tmp, sccs->sccs[i]->nodes); |
| } |
| } |
| |
| /* Perform the Strongly Connected Components decomposing algorithm on the |
| DDG and return DDG_ALL_SCCS structure that contains them. */ |
| ddg_all_sccs_ptr |
| create_ddg_all_sccs (ddg_ptr g) |
| { |
| int i, j, k, scc, way; |
| int num_nodes = g->num_nodes; |
| auto_sbitmap from (num_nodes); |
| auto_sbitmap to (num_nodes); |
| auto_sbitmap scc_nodes (num_nodes); |
| ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr) |
| xmalloc (sizeof (struct ddg_all_sccs)); |
| |
| sccs->ddg = g; |
| sccs->sccs = NULL; |
| sccs->num_sccs = 0; |
| |
| for (i = 0; i < g->num_backarcs; i++) |
| { |
| ddg_scc_ptr scc; |
| ddg_edge_ptr backarc = g->backarcs[i]; |
| ddg_node_ptr src = backarc->src; |
| ddg_node_ptr dest = backarc->dest; |
| |
| /* If the backarc already belongs to an SCC, continue. */ |
| if (backarc->in_scc) |
| continue; |
| |
| bitmap_clear (scc_nodes); |
| bitmap_clear (from); |
| bitmap_clear (to); |
| bitmap_set_bit (from, dest->cuid); |
| bitmap_set_bit (to, src->cuid); |
| |
| if (find_nodes_on_paths (scc_nodes, g, from, to)) |
| { |
| scc = create_scc (g, scc_nodes, sccs->num_sccs); |
| add_scc_to_ddg (sccs, scc); |
| } |
| } |
| |
| /* Init max_dist arrays for Floyd–Warshall-like |
| longest patch calculation algorithm. */ |
| for (k = 0; k < num_nodes; k++) |
| { |
| ddg_edge_ptr e; |
| ddg_node_ptr n = &g->nodes[k]; |
| |
| if (n->aux.count == -1) |
| continue; |
| |
| n->max_dist[k] = 0; |
| for (e = n->out; e; e = e->next_out) |
| if (e->distance == 0 && g->nodes[e->dest->cuid].aux.count == n->aux.count) |
| n->max_dist[e->dest->cuid] = e->latency; |
| } |
| |
| /* Run main Floid-Warshall loop. We use only non-backarc edges |
| inside each scc. */ |
| for (k = 0; k < num_nodes; k++) |
| { |
| scc = g->nodes[k].aux.count; |
| if (scc != -1) |
| { |
| for (i = 0; i < num_nodes; i++) |
| if (g->nodes[i].aux.count == scc) |
| for (j = 0; j < num_nodes; j++) |
| if (g->nodes[j].aux.count == scc |
| && g->nodes[i].max_dist[k] >= 0 |
| && g->nodes[k].max_dist[j] >= 0) |
| { |
| way = g->nodes[i].max_dist[k] + g->nodes[k].max_dist[j]; |
| if (g->nodes[i].max_dist[j] < way) |
| g->nodes[i].max_dist[j] = way; |
| } |
| } |
| } |
| |
| /* Calculate recurrence_length using max_dist info. */ |
| for (i = 0; i < sccs->num_sccs; i++) |
| set_recurrence_length (sccs->sccs[i]); |
| |
| order_sccs (sccs); |
| |
| if (flag_checking) |
| check_sccs (sccs, num_nodes); |
| |
| return sccs; |
| } |
| |
| /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */ |
| void |
| free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs) |
| { |
| int i; |
| |
| if (!all_sccs) |
| return; |
| |
| for (i = 0; i < all_sccs->num_sccs; i++) |
| free_scc (all_sccs->sccs[i]); |
| |
| free (all_sccs->sccs); |
| free (all_sccs); |
| } |
| |
| |
| /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination |
| nodes - find all nodes that lie on paths from FROM to TO (not excluding |
| nodes from FROM and TO). Return nonzero if nodes exist. */ |
| int |
| find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to) |
| { |
| int change; |
| unsigned int u = 0; |
| int num_nodes = g->num_nodes; |
| sbitmap_iterator sbi; |
| |
| auto_sbitmap workset (num_nodes); |
| auto_sbitmap reachable_from (num_nodes); |
| auto_sbitmap reach_to (num_nodes); |
| auto_sbitmap tmp (num_nodes); |
| |
| bitmap_copy (reachable_from, from); |
| bitmap_copy (tmp, from); |
| |
| change = 1; |
| while (change) |
| { |
| change = 0; |
| bitmap_copy (workset, tmp); |
| bitmap_clear (tmp); |
| EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi) |
| { |
| ddg_edge_ptr e; |
| ddg_node_ptr u_node = &g->nodes[u]; |
| |
| for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out) |
| { |
| ddg_node_ptr v_node = e->dest; |
| int v = v_node->cuid; |
| |
| if (!bitmap_bit_p (reachable_from, v)) |
| { |
| bitmap_set_bit (reachable_from, v); |
| bitmap_set_bit (tmp, v); |
| change = 1; |
| } |
| } |
| } |
| } |
| |
| bitmap_copy (reach_to, to); |
| bitmap_copy (tmp, to); |
| |
| change = 1; |
| while (change) |
| { |
| change = 0; |
| bitmap_copy (workset, tmp); |
| bitmap_clear (tmp); |
| EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi) |
| { |
| ddg_edge_ptr e; |
| ddg_node_ptr u_node = &g->nodes[u]; |
| |
| for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in) |
| { |
| ddg_node_ptr v_node = e->src; |
| int v = v_node->cuid; |
| |
| if (!bitmap_bit_p (reach_to, v)) |
| { |
| bitmap_set_bit (reach_to, v); |
| bitmap_set_bit (tmp, v); |
| change = 1; |
| } |
| } |
| } |
| } |
| |
| return bitmap_and (result, reachable_from, reach_to); |
| } |
| |
| #endif /* INSN_SCHEDULING */ |