blob: 5fcd09fc78ff05e7556673a2ca70553101dc091e [file] [log] [blame]
/* If-conversion support.
Copyright (C) 2000-2020 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "expmed.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "cfgcleanup.h"
#include "expr.h"
#include "output.h"
#include "cfgloop.h"
#include "tree-pass.h"
#include "dbgcnt.h"
#include "shrink-wrap.h"
#include "rtl-iter.h"
#include "ifcvt.h"
#ifndef MAX_CONDITIONAL_EXECUTE
#define MAX_CONDITIONAL_EXECUTE \
(BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
+ 1)
#endif
#define IFCVT_MULTIPLE_DUMPS 1
#define NULL_BLOCK ((basic_block) NULL)
/* True if after combine pass. */
static bool ifcvt_after_combine;
/* True if the target has the cbranchcc4 optab. */
static bool have_cbranchcc4;
/* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
static int num_possible_if_blocks;
/* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
execution. */
static int num_updated_if_blocks;
/* # of changes made. */
static int num_true_changes;
/* Whether conditional execution changes were made. */
static int cond_exec_changed_p;
/* Forward references. */
static int count_bb_insns (const_basic_block);
static bool cheap_bb_rtx_cost_p (const_basic_block, profile_probability, int);
static rtx_insn *first_active_insn (basic_block);
static rtx_insn *last_active_insn (basic_block, int);
static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
static basic_block block_fallthru (basic_block);
static rtx cond_exec_get_condition (rtx_insn *);
static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
static int noce_operand_ok (const_rtx);
static void merge_if_block (ce_if_block *);
static int find_cond_trap (basic_block, edge, edge);
static basic_block find_if_header (basic_block, int);
static int block_jumps_and_fallthru_p (basic_block, basic_block);
static int noce_find_if_block (basic_block, edge, edge, int);
static int cond_exec_find_if_block (ce_if_block *);
static int find_if_case_1 (basic_block, edge, edge);
static int find_if_case_2 (basic_block, edge, edge);
static int dead_or_predicable (basic_block, basic_block, basic_block,
edge, int);
static void noce_emit_move_insn (rtx, rtx);
static rtx_insn *block_has_only_trap (basic_block);
/* Count the number of non-jump active insns in BB. */
static int
count_bb_insns (const_basic_block bb)
{
int count = 0;
rtx_insn *insn = BB_HEAD (bb);
while (1)
{
if (active_insn_p (insn) && !JUMP_P (insn))
count++;
if (insn == BB_END (bb))
break;
insn = NEXT_INSN (insn);
}
return count;
}
/* Determine whether the total insn_cost on non-jump insns in
basic block BB is less than MAX_COST. This function returns
false if the cost of any instruction could not be estimated.
The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
as those insns are being speculated. MAX_COST is scaled with SCALE
plus a small fudge factor. */
static bool
cheap_bb_rtx_cost_p (const_basic_block bb,
profile_probability prob, int max_cost)
{
int count = 0;
rtx_insn *insn = BB_HEAD (bb);
bool speed = optimize_bb_for_speed_p (bb);
int scale = prob.initialized_p () ? prob.to_reg_br_prob_base ()
: REG_BR_PROB_BASE;
/* Set scale to REG_BR_PROB_BASE to void the identical scaling
applied to insn_cost when optimizing for size. Only do
this after combine because if-conversion might interfere with
passes before combine.
Use optimize_function_for_speed_p instead of the pre-defined
variable speed to make sure it is set to same value for all
basic blocks in one if-conversion transformation. */
if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
scale = REG_BR_PROB_BASE;
/* Our branch probability/scaling factors are just estimates and don't
account for cases where we can get speculation for free and other
secondary benefits. So we fudge the scale factor to make speculating
appear a little more profitable when optimizing for performance. */
else
scale += REG_BR_PROB_BASE / 8;
max_cost *= scale;
while (1)
{
if (NONJUMP_INSN_P (insn))
{
int cost = insn_cost (insn, speed) * REG_BR_PROB_BASE;
if (cost == 0)
return false;
/* If this instruction is the load or set of a "stack" register,
such as a floating point register on x87, then the cost of
speculatively executing this insn may need to include
the additional cost of popping its result off of the
register stack. Unfortunately, correctly recognizing and
accounting for this additional overhead is tricky, so for
now we simply prohibit such speculative execution. */
#ifdef STACK_REGS
{
rtx set = single_set (insn);
if (set && STACK_REG_P (SET_DEST (set)))
return false;
}
#endif
count += cost;
if (count >= max_cost)
return false;
}
else if (CALL_P (insn))
return false;
if (insn == BB_END (bb))
break;
insn = NEXT_INSN (insn);
}
return true;
}
/* Return the first non-jump active insn in the basic block. */
static rtx_insn *
first_active_insn (basic_block bb)
{
rtx_insn *insn = BB_HEAD (bb);
if (LABEL_P (insn))
{
if (insn == BB_END (bb))
return NULL;
insn = NEXT_INSN (insn);
}
while (NOTE_P (insn) || DEBUG_INSN_P (insn))
{
if (insn == BB_END (bb))
return NULL;
insn = NEXT_INSN (insn);
}
if (JUMP_P (insn))
return NULL;
return insn;
}
/* Return the last non-jump active (non-jump) insn in the basic block. */
static rtx_insn *
last_active_insn (basic_block bb, int skip_use_p)
{
rtx_insn *insn = BB_END (bb);
rtx_insn *head = BB_HEAD (bb);
while (NOTE_P (insn)
|| JUMP_P (insn)
|| DEBUG_INSN_P (insn)
|| (skip_use_p
&& NONJUMP_INSN_P (insn)
&& GET_CODE (PATTERN (insn)) == USE))
{
if (insn == head)
return NULL;
insn = PREV_INSN (insn);
}
if (LABEL_P (insn))
return NULL;
return insn;
}
/* Return the active insn before INSN inside basic block CURR_BB. */
static rtx_insn *
find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
{
if (!insn || insn == BB_HEAD (curr_bb))
return NULL;
while ((insn = PREV_INSN (insn)) != NULL_RTX)
{
if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
break;
/* No other active insn all the way to the start of the basic block. */
if (insn == BB_HEAD (curr_bb))
return NULL;
}
return insn;
}
/* Return the active insn after INSN inside basic block CURR_BB. */
static rtx_insn *
find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
{
if (!insn || insn == BB_END (curr_bb))
return NULL;
while ((insn = NEXT_INSN (insn)) != NULL_RTX)
{
if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
break;
/* No other active insn all the way to the end of the basic block. */
if (insn == BB_END (curr_bb))
return NULL;
}
return insn;
}
/* Return the basic block reached by falling though the basic block BB. */
static basic_block
block_fallthru (basic_block bb)
{
edge e = find_fallthru_edge (bb->succs);
return (e) ? e->dest : NULL_BLOCK;
}
/* Return true if RTXs A and B can be safely interchanged. */
static bool
rtx_interchangeable_p (const_rtx a, const_rtx b)
{
if (!rtx_equal_p (a, b))
return false;
if (GET_CODE (a) != MEM)
return true;
/* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
reference is not. Interchanging a dead type-unsafe memory reference with
a live type-safe one creates a live type-unsafe memory reference, in other
words, it makes the program illegal.
We check here conservatively whether the two memory references have equal
memory attributes. */
return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
}
/* Go through a bunch of insns, converting them to conditional
execution format if possible. Return TRUE if all of the non-note
insns were processed. */
static int
cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
/* if block information */rtx_insn *start,
/* first insn to look at */rtx end,
/* last insn to look at */rtx test,
/* conditional execution test */profile_probability
prob_val,
/* probability of branch taken. */int mod_ok)
{
int must_be_last = FALSE;
rtx_insn *insn;
rtx xtest;
rtx pattern;
if (!start || !end)
return FALSE;
for (insn = start; ; insn = NEXT_INSN (insn))
{
/* dwarf2out can't cope with conditional prologues. */
if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
return FALSE;
if (NOTE_P (insn) || DEBUG_INSN_P (insn))
goto insn_done;
gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
/* dwarf2out can't cope with conditional unwind info. */
if (RTX_FRAME_RELATED_P (insn))
return FALSE;
/* Remove USE insns that get in the way. */
if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
{
/* ??? Ug. Actually unlinking the thing is problematic,
given what we'd have to coordinate with our callers. */
SET_INSN_DELETED (insn);
goto insn_done;
}
/* Last insn wasn't last? */
if (must_be_last)
return FALSE;
if (modified_in_p (test, insn))
{
if (!mod_ok)
return FALSE;
must_be_last = TRUE;
}
/* Now build the conditional form of the instruction. */
pattern = PATTERN (insn);
xtest = copy_rtx (test);
/* If this is already a COND_EXEC, rewrite the test to be an AND of the
two conditions. */
if (GET_CODE (pattern) == COND_EXEC)
{
if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
return FALSE;
xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
COND_EXEC_TEST (pattern));
pattern = COND_EXEC_CODE (pattern);
}
pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
/* If the machine needs to modify the insn being conditionally executed,
say for example to force a constant integer operand into a temp
register, do so here. */
#ifdef IFCVT_MODIFY_INSN
IFCVT_MODIFY_INSN (ce_info, pattern, insn);
if (! pattern)
return FALSE;
#endif
validate_change (insn, &PATTERN (insn), pattern, 1);
if (CALL_P (insn) && prob_val.initialized_p ())
validate_change (insn, &REG_NOTES (insn),
gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
prob_val.to_reg_br_prob_note (),
REG_NOTES (insn)), 1);
insn_done:
if (insn == end)
break;
}
return TRUE;
}
/* Return the condition for a jump. Do not do any special processing. */
static rtx
cond_exec_get_condition (rtx_insn *jump)
{
rtx test_if, cond;
if (any_condjump_p (jump))
test_if = SET_SRC (pc_set (jump));
else
return NULL_RTX;
cond = XEXP (test_if, 0);
/* If this branches to JUMP_LABEL when the condition is false,
reverse the condition. */
if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
&& label_ref_label (XEXP (test_if, 2)) == JUMP_LABEL (jump))
{
enum rtx_code rev = reversed_comparison_code (cond, jump);
if (rev == UNKNOWN)
return NULL_RTX;
cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
XEXP (cond, 1));
}
return cond;
}
/* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
to conditional execution. Return TRUE if we were successful at
converting the block. */
static int
cond_exec_process_if_block (ce_if_block * ce_info,
/* if block information */int do_multiple_p)
{
basic_block test_bb = ce_info->test_bb; /* last test block */
basic_block then_bb = ce_info->then_bb; /* THEN */
basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
rtx_insn *then_start; /* first insn in THEN block */
rtx_insn *then_end; /* last insn + 1 in THEN block */
rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
int max; /* max # of insns to convert. */
int then_mod_ok; /* whether conditional mods are ok in THEN */
rtx true_expr; /* test for else block insns */
rtx false_expr; /* test for then block insns */
profile_probability true_prob_val;/* probability of else block */
profile_probability false_prob_val;/* probability of then block */
rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
int then_n_insns, else_n_insns, n_insns;
enum rtx_code false_code;
rtx note;
/* If test is comprised of && or || elements, and we've failed at handling
all of them together, just use the last test if it is the special case of
&& elements without an ELSE block. */
if (!do_multiple_p && ce_info->num_multiple_test_blocks)
{
if (else_bb || ! ce_info->and_and_p)
return FALSE;
ce_info->test_bb = test_bb = ce_info->last_test_bb;
ce_info->num_multiple_test_blocks = 0;
ce_info->num_and_and_blocks = 0;
ce_info->num_or_or_blocks = 0;
}
/* Find the conditional jump to the ELSE or JOIN part, and isolate
the test. */
test_expr = cond_exec_get_condition (BB_END (test_bb));
if (! test_expr)
return FALSE;
/* If the conditional jump is more than just a conditional jump,
then we cannot do conditional execution conversion on this block. */
if (! onlyjump_p (BB_END (test_bb)))
return FALSE;
/* Collect the bounds of where we're to search, skipping any labels, jumps
and notes at the beginning and end of the block. Then count the total
number of insns and see if it is small enough to convert. */
then_start = first_active_insn (then_bb);
then_end = last_active_insn (then_bb, TRUE);
then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
n_insns = then_n_insns;
max = MAX_CONDITIONAL_EXECUTE;
if (else_bb)
{
int n_matching;
max *= 2;
else_start = first_active_insn (else_bb);
else_end = last_active_insn (else_bb, TRUE);
else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
n_insns += else_n_insns;
/* Look for matching sequences at the head and tail of the two blocks,
and limit the range of insns to be converted if possible. */
n_matching = flow_find_cross_jump (then_bb, else_bb,
&then_first_tail, &else_first_tail,
NULL);
if (then_first_tail == BB_HEAD (then_bb))
then_start = then_end = NULL;
if (else_first_tail == BB_HEAD (else_bb))
else_start = else_end = NULL;
if (n_matching > 0)
{
if (then_end)
then_end = find_active_insn_before (then_bb, then_first_tail);
if (else_end)
else_end = find_active_insn_before (else_bb, else_first_tail);
n_insns -= 2 * n_matching;
}
if (then_start
&& else_start
&& then_n_insns > n_matching
&& else_n_insns > n_matching)
{
int longest_match = MIN (then_n_insns - n_matching,
else_n_insns - n_matching);
n_matching
= flow_find_head_matching_sequence (then_bb, else_bb,
&then_last_head,
&else_last_head,
longest_match);
if (n_matching > 0)
{
rtx_insn *insn;
/* We won't pass the insns in the head sequence to
cond_exec_process_insns, so we need to test them here
to make sure that they don't clobber the condition. */
for (insn = BB_HEAD (then_bb);
insn != NEXT_INSN (then_last_head);
insn = NEXT_INSN (insn))
if (!LABEL_P (insn) && !NOTE_P (insn)
&& !DEBUG_INSN_P (insn)
&& modified_in_p (test_expr, insn))
return FALSE;
}
if (then_last_head == then_end)
then_start = then_end = NULL;
if (else_last_head == else_end)
else_start = else_end = NULL;
if (n_matching > 0)
{
if (then_start)
then_start = find_active_insn_after (then_bb, then_last_head);
if (else_start)
else_start = find_active_insn_after (else_bb, else_last_head);
n_insns -= 2 * n_matching;
}
}
}
if (n_insns > max)
return FALSE;
/* Map test_expr/test_jump into the appropriate MD tests to use on
the conditionally executed code. */
true_expr = test_expr;
false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
if (false_code != UNKNOWN)
false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
XEXP (true_expr, 0), XEXP (true_expr, 1));
else
false_expr = NULL_RTX;
#ifdef IFCVT_MODIFY_TESTS
/* If the machine description needs to modify the tests, such as setting a
conditional execution register from a comparison, it can do so here. */
IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
/* See if the conversion failed. */
if (!true_expr || !false_expr)
goto fail;
#endif
note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
if (note)
{
true_prob_val = profile_probability::from_reg_br_prob_note (XINT (note, 0));
false_prob_val = true_prob_val.invert ();
}
else
{
true_prob_val = profile_probability::uninitialized ();
false_prob_val = profile_probability::uninitialized ();
}
/* If we have && or || tests, do them here. These tests are in the adjacent
blocks after the first block containing the test. */
if (ce_info->num_multiple_test_blocks > 0)
{
basic_block bb = test_bb;
basic_block last_test_bb = ce_info->last_test_bb;
if (! false_expr)
goto fail;
do
{
rtx_insn *start, *end;
rtx t, f;
enum rtx_code f_code;
bb = block_fallthru (bb);
start = first_active_insn (bb);
end = last_active_insn (bb, TRUE);
if (start
&& ! cond_exec_process_insns (ce_info, start, end, false_expr,
false_prob_val, FALSE))
goto fail;
/* If the conditional jump is more than just a conditional jump, then
we cannot do conditional execution conversion on this block. */
if (! onlyjump_p (BB_END (bb)))
goto fail;
/* Find the conditional jump and isolate the test. */
t = cond_exec_get_condition (BB_END (bb));
if (! t)
goto fail;
f_code = reversed_comparison_code (t, BB_END (bb));
if (f_code == UNKNOWN)
goto fail;
f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
if (ce_info->and_and_p)
{
t = gen_rtx_AND (GET_MODE (t), true_expr, t);
f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
}
else
{
t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
f = gen_rtx_AND (GET_MODE (t), false_expr, f);
}
/* If the machine description needs to modify the tests, such as
setting a conditional execution register from a comparison, it can
do so here. */
#ifdef IFCVT_MODIFY_MULTIPLE_TESTS
IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
/* See if the conversion failed. */
if (!t || !f)
goto fail;
#endif
true_expr = t;
false_expr = f;
}
while (bb != last_test_bb);
}
/* For IF-THEN-ELSE blocks, we don't allow modifications of the test
on then THEN block. */
then_mod_ok = (else_bb == NULL_BLOCK);
/* Go through the THEN and ELSE blocks converting the insns if possible
to conditional execution. */
if (then_end
&& (! false_expr
|| ! cond_exec_process_insns (ce_info, then_start, then_end,
false_expr, false_prob_val,
then_mod_ok)))
goto fail;
if (else_bb && else_end
&& ! cond_exec_process_insns (ce_info, else_start, else_end,
true_expr, true_prob_val, TRUE))
goto fail;
/* If we cannot apply the changes, fail. Do not go through the normal fail
processing, since apply_change_group will call cancel_changes. */
if (! apply_change_group ())
{
#ifdef IFCVT_MODIFY_CANCEL
/* Cancel any machine dependent changes. */
IFCVT_MODIFY_CANCEL (ce_info);
#endif
return FALSE;
}
#ifdef IFCVT_MODIFY_FINAL
/* Do any machine dependent final modifications. */
IFCVT_MODIFY_FINAL (ce_info);
#endif
/* Conversion succeeded. */
if (dump_file)
fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
n_insns, (n_insns == 1) ? " was" : "s were");
/* Merge the blocks! If we had matching sequences, make sure to delete one
copy at the appropriate location first: delete the copy in the THEN branch
for a tail sequence so that the remaining one is executed last for both
branches, and delete the copy in the ELSE branch for a head sequence so
that the remaining one is executed first for both branches. */
if (then_first_tail)
{
rtx_insn *from = then_first_tail;
if (!INSN_P (from))
from = find_active_insn_after (then_bb, from);
delete_insn_chain (from, get_last_bb_insn (then_bb), false);
}
if (else_last_head)
delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
merge_if_block (ce_info);
cond_exec_changed_p = TRUE;
return TRUE;
fail:
#ifdef IFCVT_MODIFY_CANCEL
/* Cancel any machine dependent changes. */
IFCVT_MODIFY_CANCEL (ce_info);
#endif
cancel_changes (0);
return FALSE;
}
static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
static int noce_try_move (struct noce_if_info *);
static int noce_try_ifelse_collapse (struct noce_if_info *);
static int noce_try_store_flag (struct noce_if_info *);
static int noce_try_addcc (struct noce_if_info *);
static int noce_try_store_flag_constants (struct noce_if_info *);
static int noce_try_store_flag_mask (struct noce_if_info *);
static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
rtx, rtx, rtx);
static int noce_try_cmove (struct noce_if_info *);
static int noce_try_cmove_arith (struct noce_if_info *);
static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
static int noce_try_minmax (struct noce_if_info *);
static int noce_try_abs (struct noce_if_info *);
static int noce_try_sign_mask (struct noce_if_info *);
/* Return the comparison code for reversed condition for IF_INFO,
or UNKNOWN if reversing the condition is not possible. */
static inline enum rtx_code
noce_reversed_cond_code (struct noce_if_info *if_info)
{
if (if_info->rev_cond)
return GET_CODE (if_info->rev_cond);
return reversed_comparison_code (if_info->cond, if_info->jump);
}
/* Return true if SEQ is a good candidate as a replacement for the
if-convertible sequence described in IF_INFO.
This is the default implementation that targets can override
through a target hook. */
bool
default_noce_conversion_profitable_p (rtx_insn *seq,
struct noce_if_info *if_info)
{
bool speed_p = if_info->speed_p;
/* Cost up the new sequence. */
unsigned int cost = seq_cost (seq, speed_p);
if (cost <= if_info->original_cost)
return true;
/* When compiling for size, we can make a reasonably accurately guess
at the size growth. When compiling for speed, use the maximum. */
return speed_p && cost <= if_info->max_seq_cost;
}
/* Helper function for noce_try_store_flag*. */
static rtx
noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
int normalize)
{
rtx cond = if_info->cond;
int cond_complex;
enum rtx_code code;
cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
|| ! general_operand (XEXP (cond, 1), VOIDmode));
/* If earliest == jump, or when the condition is complex, try to
build the store_flag insn directly. */
if (cond_complex)
{
rtx set = pc_set (if_info->jump);
cond = XEXP (SET_SRC (set), 0);
if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
&& label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
reversep = !reversep;
if (if_info->then_else_reversed)
reversep = !reversep;
}
else if (reversep
&& if_info->rev_cond
&& general_operand (XEXP (if_info->rev_cond, 0), VOIDmode)
&& general_operand (XEXP (if_info->rev_cond, 1), VOIDmode))
{
cond = if_info->rev_cond;
reversep = false;
}
if (reversep)
code = reversed_comparison_code (cond, if_info->jump);
else
code = GET_CODE (cond);
if ((if_info->cond_earliest == if_info->jump || cond_complex)
&& (normalize == 0 || STORE_FLAG_VALUE == normalize))
{
rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
XEXP (cond, 1));
rtx set = gen_rtx_SET (x, src);
start_sequence ();
rtx_insn *insn = emit_insn (set);
if (recog_memoized (insn) >= 0)
{
rtx_insn *seq = get_insns ();
end_sequence ();
emit_insn (seq);
if_info->cond_earliest = if_info->jump;
return x;
}
end_sequence ();
}
/* Don't even try if the comparison operands or the mode of X are weird. */
if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
return NULL_RTX;
return emit_store_flag (x, code, XEXP (cond, 0),
XEXP (cond, 1), VOIDmode,
(code == LTU || code == LEU
|| code == GEU || code == GTU), normalize);
}
/* Return true if X can be safely forced into a register by copy_to_mode_reg
/ force_operand. */
static bool
noce_can_force_operand (rtx x)
{
if (general_operand (x, VOIDmode))
return true;
if (SUBREG_P (x))
{
if (!noce_can_force_operand (SUBREG_REG (x)))
return false;
return true;
}
if (ARITHMETIC_P (x))
{
if (!noce_can_force_operand (XEXP (x, 0))
|| !noce_can_force_operand (XEXP (x, 1)))
return false;
switch (GET_CODE (x))
{
case MULT:
case DIV:
case MOD:
case UDIV:
case UMOD:
return true;
default:
return code_to_optab (GET_CODE (x));
}
}
if (UNARY_P (x))
{
if (!noce_can_force_operand (XEXP (x, 0)))
return false;
switch (GET_CODE (x))
{
case ZERO_EXTEND:
case SIGN_EXTEND:
case TRUNCATE:
case FLOAT_EXTEND:
case FLOAT_TRUNCATE:
case FIX:
case UNSIGNED_FIX:
case FLOAT:
case UNSIGNED_FLOAT:
return true;
default:
return code_to_optab (GET_CODE (x));
}
}
return false;
}
/* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
X is the destination/target and Y is the value to copy. */
static void
noce_emit_move_insn (rtx x, rtx y)
{
machine_mode outmode;
rtx outer, inner;
poly_int64 bitpos;
if (GET_CODE (x) != STRICT_LOW_PART)
{
rtx_insn *seq, *insn;
rtx target;
optab ot;
start_sequence ();
/* Check that the SET_SRC is reasonable before calling emit_move_insn,
otherwise construct a suitable SET pattern ourselves. */
insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
? emit_move_insn (x, y)
: emit_insn (gen_rtx_SET (x, y));
seq = get_insns ();
end_sequence ();
if (recog_memoized (insn) <= 0)
{
if (GET_CODE (x) == ZERO_EXTRACT)
{
rtx op = XEXP (x, 0);
unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
/* store_bit_field expects START to be relative to
BYTES_BIG_ENDIAN and adjusts this value for machines with
BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
invoke store_bit_field again it is necessary to have the START
value from the first call. */
if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
{
if (MEM_P (op))
start = BITS_PER_UNIT - start - size;
else
{
gcc_assert (REG_P (op));
start = BITS_PER_WORD - start - size;
}
}
gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
store_bit_field (op, size, start, 0, 0, GET_MODE (x), y, false);
return;
}
switch (GET_RTX_CLASS (GET_CODE (y)))
{
case RTX_UNARY:
ot = code_to_optab (GET_CODE (y));
if (ot && noce_can_force_operand (XEXP (y, 0)))
{
start_sequence ();
target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
if (target != NULL_RTX)
{
if (target != x)
emit_move_insn (x, target);
seq = get_insns ();
}
end_sequence ();
}
break;
case RTX_BIN_ARITH:
case RTX_COMM_ARITH:
ot = code_to_optab (GET_CODE (y));
if (ot
&& noce_can_force_operand (XEXP (y, 0))
&& noce_can_force_operand (XEXP (y, 1)))
{
start_sequence ();
target = expand_binop (GET_MODE (y), ot,
XEXP (y, 0), XEXP (y, 1),
x, 0, OPTAB_DIRECT);
if (target != NULL_RTX)
{
if (target != x)
emit_move_insn (x, target);
seq = get_insns ();
}
end_sequence ();
}
break;
default:
break;
}
}
emit_insn (seq);
return;
}
outer = XEXP (x, 0);
inner = XEXP (outer, 0);
outmode = GET_MODE (outer);
bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
0, 0, outmode, y, false);
}
/* Return the CC reg if it is used in COND. */
static rtx
cc_in_cond (rtx cond)
{
if (have_cbranchcc4 && cond
&& GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
return XEXP (cond, 0);
return NULL_RTX;
}
/* Return sequence of instructions generated by if conversion. This
function calls end_sequence() to end the current stream, ensures
that the instructions are unshared, recognizable non-jump insns.
On failure, this function returns a NULL_RTX. */
static rtx_insn *
end_ifcvt_sequence (struct noce_if_info *if_info)
{
rtx_insn *insn;
rtx_insn *seq = get_insns ();
rtx cc = cc_in_cond (if_info->cond);
set_used_flags (if_info->x);
set_used_flags (if_info->cond);
set_used_flags (if_info->a);
set_used_flags (if_info->b);
for (insn = seq; insn; insn = NEXT_INSN (insn))
set_used_flags (insn);
unshare_all_rtl_in_chain (seq);
end_sequence ();
/* Make sure that all of the instructions emitted are recognizable,
and that we haven't introduced a new jump instruction.
As an exercise for the reader, build a general mechanism that
allows proper placement of required clobbers. */
for (insn = seq; insn; insn = NEXT_INSN (insn))
if (JUMP_P (insn)
|| recog_memoized (insn) == -1
/* Make sure new generated code does not clobber CC. */
|| (cc && set_of (cc, insn)))
return NULL;
return seq;
}
/* Return true iff the then and else basic block (if it exists)
consist of a single simple set instruction. */
static bool
noce_simple_bbs (struct noce_if_info *if_info)
{
if (!if_info->then_simple)
return false;
if (if_info->else_bb)
return if_info->else_simple;
return true;
}
/* Convert "if (a != b) x = a; else x = b" into "x = a" and
"if (a == b) x = a; else x = b" into "x = b". */
static int
noce_try_move (struct noce_if_info *if_info)
{
rtx cond = if_info->cond;
enum rtx_code code = GET_CODE (cond);
rtx y;
rtx_insn *seq;
if (code != NE && code != EQ)
return FALSE;
if (!noce_simple_bbs (if_info))
return FALSE;
/* This optimization isn't valid if either A or B could be a NaN
or a signed zero. */
if (HONOR_NANS (if_info->x)
|| HONOR_SIGNED_ZEROS (if_info->x))
return FALSE;
/* Check whether the operands of the comparison are A and in
either order. */
if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
&& rtx_equal_p (if_info->b, XEXP (cond, 1)))
|| (rtx_equal_p (if_info->a, XEXP (cond, 1))
&& rtx_equal_p (if_info->b, XEXP (cond, 0))))
{
if (!rtx_interchangeable_p (if_info->a, if_info->b))
return FALSE;
y = (code == EQ) ? if_info->a : if_info->b;
/* Avoid generating the move if the source is the destination. */
if (! rtx_equal_p (if_info->x, y))
{
start_sequence ();
noce_emit_move_insn (if_info->x, y);
seq = end_ifcvt_sequence (if_info);
if (!seq)
return FALSE;
emit_insn_before_setloc (seq, if_info->jump,
INSN_LOCATION (if_info->insn_a));
}
if_info->transform_name = "noce_try_move";
return TRUE;
}
return FALSE;
}
/* Try forming an IF_THEN_ELSE (cond, b, a) and collapsing that
through simplify_rtx. Sometimes that can eliminate the IF_THEN_ELSE.
If that is the case, emit the result into x. */
static int
noce_try_ifelse_collapse (struct noce_if_info * if_info)
{
if (!noce_simple_bbs (if_info))
return FALSE;
machine_mode mode = GET_MODE (if_info->x);
rtx if_then_else = simplify_gen_ternary (IF_THEN_ELSE, mode, mode,
if_info->cond, if_info->b,
if_info->a);
if (GET_CODE (if_then_else) == IF_THEN_ELSE)
return FALSE;
rtx_insn *seq;
start_sequence ();
noce_emit_move_insn (if_info->x, if_then_else);
seq = end_ifcvt_sequence (if_info);
if (!seq)
return FALSE;
emit_insn_before_setloc (seq, if_info->jump,
INSN_LOCATION (if_info->insn_a));
if_info->transform_name = "noce_try_ifelse_collapse";
return TRUE;
}
/* Convert "if (test) x = 1; else x = 0".
Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
tried in noce_try_store_flag_constants after noce_try_cmove has had
a go at the conversion. */
static int
noce_try_store_flag (struct noce_if_info *if_info)
{
int reversep;
rtx target;
rtx_insn *seq;
if (!noce_simple_bbs (if_info))
return FALSE;
if (CONST_INT_P (if_info->b)
&& INTVAL (if_info->b) == STORE_FLAG_VALUE
&& if_info->a == const0_rtx)
reversep = 0;
else if (if_info->b == const0_rtx
&& CONST_INT_P (if_info->a)
&& INTVAL (if_info->a) == STORE_FLAG_VALUE
&& noce_reversed_cond_code (if_info) != UNKNOWN)
reversep = 1;
else
return FALSE;
start_sequence ();
target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
if (target)
{
if (target != if_info->x)
noce_emit_move_insn (if_info->x, target);
seq = end_ifcvt_sequence (if_info);
if (! seq)
return FALSE;
emit_insn_before_setloc (seq, if_info->jump,
INSN_LOCATION (if_info->insn_a));
if_info->transform_name = "noce_try_store_flag";
return TRUE;
}
else
{
end_sequence ();
return FALSE;
}
}
/* Convert "if (test) x = -A; else x = A" into
x = A; if (test) x = -x if the machine can do the
conditional negate form of this cheaply.
Try this before noce_try_cmove that will just load the
immediates into two registers and do a conditional select
between them. If the target has a conditional negate or
conditional invert operation we can save a potentially
expensive constant synthesis. */
static bool
noce_try_inverse_constants (struct noce_if_info *if_info)
{
if (!noce_simple_bbs (if_info))
return false;
if (!CONST_INT_P (if_info->a)
|| !CONST_INT_P (if_info->b)
|| !REG_P (if_info->x))
return false;
machine_mode mode = GET_MODE (if_info->x);
HOST_WIDE_INT val_a = INTVAL (if_info->a);
HOST_WIDE_INT val_b = INTVAL (if_info->b);
rtx cond = if_info->cond;
rtx x = if_info->x;
rtx target;
start_sequence ();
rtx_code code;
if (val_b != HOST_WIDE_INT_MIN && val_a == -val_b)
code = NEG;
else if (val_a == ~val_b)
code = NOT;
else
{
end_sequence ();
return false;
}
rtx tmp = gen_reg_rtx (mode);
noce_emit_move_insn (tmp, if_info->a);
target = emit_conditional_neg_or_complement (x, code, mode, cond, tmp, tmp);
if (target)
{
rtx_insn *seq = get_insns ();
if (!seq)
{
end_sequence ();
return false;
}
if (target != if_info->x)
noce_emit_move_insn (if_info->x, target);
seq = end_ifcvt_sequence (if_info);
if (!seq)
return false;
emit_insn_before_setloc (seq, if_info->jump,
INSN_LOCATION (if_info->insn_a));
if_info->transform_name = "noce_try_inverse_constants";
return true;
}
end_sequence ();
return false;
}
/* Convert "if (test) x = a; else x = b", for A and B constant.
Also allow A = y + c1, B = y + c2, with a common y between A
and B. */
static int
noce_try_store_flag_constants (struct noce_if_info *if_info)
{
rtx target;
rtx_insn *seq;
bool reversep;
HOST_WIDE_INT itrue, ifalse, diff, tmp;
int normalize;
bool can_reverse;
machine_mode mode = GET_MODE (if_info->x);
rtx common = NULL_RTX;
rtx a = if_info->a;
rtx b = if_info->b;
/* Handle cases like x := test ? y + 3 : y + 4. */
if (GET_CODE (a) == PLUS
&& GET_CODE (b) == PLUS
&& CONST_INT_P (XEXP (a, 1))
&& CONST_INT_P (XEXP (b, 1))
&& rtx_equal_p (XEXP (a, 0), XEXP (b, 0))
/* Allow expressions that are not using the result or plain
registers where we handle overlap below. */
&& (REG_P (XEXP (a, 0))
|| (noce_operand_ok (XEXP (a, 0))
&& ! reg_overlap_mentioned_p (if_info->x, XEXP (a, 0)))))
{
common = XEXP (a, 0);
a = XEXP (a, 1);
b = XEXP (b, 1);
}
if (!noce_simple_bbs (if_info))
return FALSE;
if (CONST_INT_P (a)
&& CONST_INT_P (b))
{
ifalse = INTVAL (a);
itrue = INTVAL (b);
bool subtract_flag_p = false;
diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
/* Make sure we can represent the difference between the two values. */
if ((diff > 0)
!= ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
return FALSE;
diff = trunc_int_for_mode (diff, mode);
can_reverse = noce_reversed_cond_code (if_info) != UNKNOWN;
reversep = false;
if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
{
normalize = 0;
/* We could collapse these cases but it is easier to follow the
diff/STORE_FLAG_VALUE combinations when they are listed
explicitly. */
/* test ? 3 : 4
=> 4 + (test != 0). */
if (diff < 0 && STORE_FLAG_VALUE < 0)
reversep = false;
/* test ? 4 : 3
=> can_reverse | 4 + (test == 0)
!can_reverse | 3 - (test != 0). */
else if (diff > 0 && STORE_FLAG_VALUE < 0)
{
reversep = can_reverse;
subtract_flag_p = !can_reverse;
/* If we need to subtract the flag and we have PLUS-immediate
A and B then it is unlikely to be beneficial to play tricks
here. */
if (subtract_flag_p && common)
return FALSE;
}
/* test ? 3 : 4
=> can_reverse | 3 + (test == 0)
!can_reverse | 4 - (test != 0). */
else if (diff < 0 && STORE_FLAG_VALUE > 0)
{
reversep = can_reverse;
subtract_flag_p = !can_reverse;
/* If we need to subtract the flag and we have PLUS-immediate
A and B then it is unlikely to be beneficial to play tricks
here. */
if (subtract_flag_p && common)
return FALSE;
}
/* test ? 4 : 3
=> 4 + (test != 0). */
else if (diff > 0 && STORE_FLAG_VALUE > 0)
reversep = false;
else
gcc_unreachable ();
}
/* Is this (cond) ? 2^n : 0? */
else if (ifalse == 0 && pow2p_hwi (itrue)
&& STORE_FLAG_VALUE == 1)
normalize = 1;
/* Is this (cond) ? 0 : 2^n? */
else if (itrue == 0 && pow2p_hwi (ifalse) && can_reverse
&& STORE_FLAG_VALUE == 1)
{
normalize = 1;
reversep = true;
}
/* Is this (cond) ? -1 : x? */
else if (itrue == -1
&& STORE_FLAG_VALUE == -1)
normalize = -1;
/* Is this (cond) ? x : -1? */
else if (ifalse == -1 && can_reverse
&& STORE_FLAG_VALUE == -1)
{
normalize = -1;
reversep = true;
}
else
return FALSE;
if (reversep)
{
std::swap (itrue, ifalse);
diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
}
start_sequence ();
/* If we have x := test ? x + 3 : x + 4 then move the original
x out of the way while we store flags. */
if (common && rtx_equal_p (common, if_info->x))
{
common = gen_reg_rtx (mode);
noce_emit_move_insn (common, if_info->x);
}
target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
if (! target)
{
end_sequence ();
return FALSE;
}
/* if (test) x = 3; else x = 4;
=> x = 3 + (test == 0); */
if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
{
/* Add the common part now. This may allow combine to merge this
with the store flag operation earlier into some sort of conditional
increment/decrement if the target allows it. */
if (common)
target = expand_simple_binop (mode, PLUS,
target, common,
target, 0, OPTAB_WIDEN);
/* Always use ifalse here. It should have been swapped with itrue
when appropriate when reversep is true. */
target = expand_simple_binop (mode, subtract_flag_p ? MINUS : PLUS,
gen_int_mode (ifalse, mode), target,
if_info->x, 0, OPTAB_WIDEN);
}
/* Other cases are not beneficial when the original A and B are PLUS
expressions. */
else if (common)
{
end_sequence ();
return FALSE;
}
/* if (test) x = 8; else x = 0;
=> x = (test != 0) << 3; */
else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
{
target = expand_simple_binop (mode, ASHIFT,
target, GEN_INT (tmp), if_info->x, 0,
OPTAB_WIDEN);
}
/* if (test) x = -1; else x = b;
=> x = -(test != 0) | b; */
else if (itrue == -1)
{
target = expand_simple_binop (mode, IOR,
target, gen_int_mode (ifalse, mode),
if_info->x, 0, OPTAB_WIDEN);
}
else
{
end_sequence ();
return FALSE;
}
if (! target)
{
end_sequence ();
return FALSE;
}
if (target != if_info->x)
noce_emit_move_insn (if_info->x, target);
seq = end_ifcvt_sequence (if_info);
if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
return FALSE;
emit_insn_before_setloc (seq, if_info->jump,
INSN_LOCATION (if_info->insn_a));
if_info->transform_name = "noce_try_store_flag_constants";
return TRUE;
}
return FALSE;
}
/* Convert "if (test) foo++" into "foo += (test != 0)", and
similarly for "foo--". */
static int
noce_try_addcc (struct noce_if_info *if_info)
{
rtx target;
rtx_insn *seq;
int subtract, normalize;
if (!noce_simple_bbs (if_info))
return FALSE;
if (GET_CODE (if_info->a) == PLUS
&& rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
&& noce_reversed_cond_code (if_info) != UNKNOWN)
{
rtx cond = if_info->rev_cond;
enum rtx_code code;
if (cond == NULL_RTX)
{
cond = if_info->cond;
code = reversed_comparison_code (cond, if_info->jump);
}
else
code = GET_CODE (cond);
/* First try to use addcc pattern. */
if (general_operand (XEXP (cond, 0), VOIDmode)
&& general_operand (XEXP (cond, 1), VOIDmode))
{
start_sequence ();
target = emit_conditional_add (if_info->x, code,
XEXP (cond, 0),
XEXP (cond, 1),
VOIDmode,
if_info->b,
XEXP (if_info->a, 1),
GET_MODE (if_info->x),
(code == LTU || code == GEU
|| code == LEU || code == GTU));
if (target)
{
if (target != if_info->x)
noce_emit_move_insn (if_info->x, target);
seq = end_ifcvt_sequence (if_info);
if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
return FALSE;
emit_insn_before_setloc (seq, if_info->jump,
INSN_LOCATION (if_info->insn_a));
if_info->transform_name = "noce_try_addcc";
return TRUE;
}
end_sequence ();
}
/* If that fails, construct conditional increment or decrement using
setcc. We're changing a branch and an increment to a comparison and
an ADD/SUB. */
if (XEXP (if_info->a, 1) == const1_rtx
|| XEXP (if_info->a, 1) == constm1_rtx)
{
start_sequence ();
if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
subtract = 0, normalize = 0;
else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
subtract = 1, normalize = 0;
else
subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
target = noce_emit_store_flag (if_info,
gen_reg_rtx (GET_MODE (if_info->x)),
1, normalize);
if (target)
target = expand_simple_binop (GET_MODE (if_info->x),
subtract ? MINUS : PLUS,
if_info->b, target, if_info->x,
0, OPTAB_WIDEN);
if (target)
{
if (target != if_info->x)
noce_emit_move_insn (if_info->x, target);
seq = end_ifcvt_sequence (if_info);
if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
return FALSE;
emit_insn_before_setloc (seq, if_info->jump,
INSN_LOCATION (if_info->insn_a));
if_info->transform_name = "noce_try_addcc";
return TRUE;
}
end_sequence ();
}
}
return FALSE;
}
/* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
static int
noce_try_store_flag_mask (struct noce_if_info *if_info)
{
rtx target;
rtx_insn *seq;
int reversep;
if (!noce_simple_bbs (if_info))
return FALSE;
reversep = 0;
if ((if_info->a == const0_rtx
&& rtx_equal_p (if_info->b, if_info->x))
|| ((reversep = (noce_reversed_cond_code (if_info) != UNKNOWN))
&& if_info->b == const0_rtx
&& rtx_equal_p (if_info->a, if_info->x)))
{
start_sequence ();
target = noce_emit_store_flag (if_info,
gen_reg_rtx (GET_MODE (if_info->x)),
reversep, -1);
if (target)
target = expand_simple_binop (GET_MODE (if_info->x), AND,
if_info->x,
target, if_info->x, 0,
OPTAB_WIDEN);
if (target)
{
if (target != if_info->x)
noce_emit_move_insn (if_info->x, target);
seq = end_ifcvt_sequence (if_info);
if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
return FALSE;
emit_insn_before_setloc (seq, if_info->jump,
INSN_LOCATION (if_info->insn_a));
if_info->transform_name = "noce_try_store_flag_mask";
return TRUE;
}
end_sequence ();
}
return FALSE;
}
/* Helper function for noce_try_cmove and noce_try_cmove_arith. */
static rtx
noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
{
rtx target ATTRIBUTE_UNUSED;
int unsignedp ATTRIBUTE_UNUSED;
/* If earliest == jump, try to build the cmove insn directly.
This is helpful when combine has created some complex condition
(like for alpha's cmovlbs) that we can't hope to regenerate
through the normal interface. */
if (if_info->cond_earliest == if_info->jump)
{
rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
cond, vtrue, vfalse);
rtx set = gen_rtx_SET (x, if_then_else);
start_sequence ();
rtx_insn *insn = emit_insn (set);
if (recog_memoized (insn) >= 0)
{
rtx_insn *seq = get_insns ();
end_sequence ();
emit_insn (seq);
return x;
}
end_sequence ();
}
/* Don't even try if the comparison operands are weird
except that the target supports cbranchcc4. */
if (! general_operand (cmp_a, GET_MODE (cmp_a))
|| ! general_operand (cmp_b, GET_MODE (cmp_b)))
{
if (!have_cbranchcc4
|| GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
|| cmp_b != const0_rtx)
return NULL_RTX;
}
unsignedp = (code == LTU || code == GEU
|| code == LEU || code == GTU);
target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
vtrue, vfalse, GET_MODE (x),
unsignedp);
if (target)
return target;
/* We might be faced with a situation like:
x = (reg:M TARGET)
vtrue = (subreg:M (reg:N VTRUE) BYTE)
vfalse = (subreg:M (reg:N VFALSE) BYTE)
We can't do a conditional move in mode M, but it's possible that we
could do a conditional move in mode N instead and take a subreg of
the result.
If we can't create new pseudos, though, don't bother. */
if (reload_completed)
return NULL_RTX;
if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
{
rtx reg_vtrue = SUBREG_REG (vtrue);
rtx reg_vfalse = SUBREG_REG (vfalse);
poly_uint64 byte_vtrue = SUBREG_BYTE (vtrue);
poly_uint64 byte_vfalse = SUBREG_BYTE (vfalse);
rtx promoted_target;
if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
|| maybe_ne (byte_vtrue, byte_vfalse)
|| (SUBREG_PROMOTED_VAR_P (vtrue)
!= SUBREG_PROMOTED_VAR_P (vfalse))
|| (SUBREG_PROMOTED_GET (vtrue)
!= SUBREG_PROMOTED_GET (vfalse)))
return NULL_RTX;
promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
VOIDmode, reg_vtrue, reg_vfalse,
GET_MODE (reg_vtrue), unsignedp);
/* Nope, couldn't do it in that mode either. */
if (!target)
return NULL_RTX;
target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
emit_move_insn (x, target);
return x;
}
else
return NULL_RTX;
}
/* Try only simple constants and registers here. More complex cases
are handled in noce_try_cmove_arith after noce_try_store_flag_arith
has had a go at it. */
static int
noce_try_cmove (struct noce_if_info *if_info)
{
enum rtx_code code;
rtx target;
rtx_insn *seq;
if (!noce_simple_bbs (if_info))
return FALSE;
if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
&& (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
{
start_sequence ();
code = GET_CODE (if_info->cond);
target = noce_emit_cmove (if_info, if_info->x, code,
XEXP (if_info->cond, 0),
XEXP (if_info->cond, 1),
if_info->a, if_info->b);
if (target)
{
if (target != if_info->x)
noce_emit_move_insn (if_info->x, target);
seq = end_ifcvt_sequence (if_info);
if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
return FALSE;
emit_insn_before_setloc (seq, if_info->jump,
INSN_LOCATION (if_info->insn_a));
if_info->transform_name = "noce_try_cmove";
return TRUE;
}
/* If both a and b are constants try a last-ditch transformation:
if (test) x = a; else x = b;
=> x = (-(test != 0) & (b - a)) + a;
Try this only if the target-specific expansion above has failed.
The target-specific expander may want to generate sequences that
we don't know about, so give them a chance before trying this
approach. */
else if (!targetm.have_conditional_execution ()
&& CONST_INT_P (if_info->a) && CONST_INT_P (if_info->b))
{
machine_mode mode = GET_MODE (if_info->x);
HOST_WIDE_INT ifalse = INTVAL (if_info->a);
HOST_WIDE_INT itrue = INTVAL (if_info->b);
rtx target = noce_emit_store_flag (if_info, if_info->x, false, -1);
if (!target)
{
end_sequence ();
return FALSE;
}
HOST_WIDE_INT diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
/* Make sure we can represent the difference
between the two values. */
if ((diff > 0)
!= ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
{
end_sequence ();
return FALSE;
}
diff = trunc_int_for_mode (diff, mode);
target = expand_simple_binop (mode, AND,
target, gen_int_mode (diff, mode),
if_info->x, 0, OPTAB_WIDEN);
if (target)
target = expand_simple_binop (mode, PLUS,
target, gen_int_mode (ifalse, mode),
if_info->x, 0, OPTAB_WIDEN);
if (target)
{
if (target != if_info->x)
noce_emit_move_insn (if_info->x, target);
seq = end_ifcvt_sequence (if_info);
if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
return FALSE;
emit_insn_before_setloc (seq, if_info->jump,
INSN_LOCATION (if_info->insn_a));
if_info->transform_name = "noce_try_cmove";
return TRUE;
}
else
{
end_sequence ();
return FALSE;
}
}
else
end_sequence ();
}
return FALSE;
}
/* Return true if X contains a conditional code mode rtx. */
static bool
contains_ccmode_rtx_p (rtx x)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, ALL)
if (GET_MODE_CLASS (GET_MODE (*iter)) == MODE_CC)
return true;
return false;
}
/* Helper for bb_valid_for_noce_process_p. Validate that
the rtx insn INSN is a single set that does not set
the conditional register CC and is in general valid for
if-conversion. */
static bool
insn_valid_noce_process_p (rtx_insn *insn, rtx cc)
{
if (!insn
|| !NONJUMP_INSN_P (insn)
|| (cc && set_of (cc, insn)))
return false;
rtx sset = single_set (insn);
/* Currently support only simple single sets in test_bb. */
if (!sset
|| !noce_operand_ok (SET_DEST (sset))
|| contains_ccmode_rtx_p (SET_DEST (sset))
|| !noce_operand_ok (SET_SRC (sset)))
return false;
return true;
}
/* Return true iff the registers that the insns in BB_A set do not get
used in BB_B. If TO_RENAME is non-NULL then it is a location that will be
renamed later by the caller and so conflicts on it should be ignored
in this function. */
static bool
bbs_ok_for_cmove_arith (basic_block bb_a, basic_block bb_b, rtx to_rename)
{
rtx_insn *a_insn;
bitmap bba_sets = BITMAP_ALLOC (&reg_obstack);
df_ref def;
df_ref use;
FOR_BB_INSNS (bb_a, a_insn)
{
if (!active_insn_p (a_insn))
continue;
rtx sset_a = single_set (a_insn);
if (!sset_a)
{
BITMAP_FREE (bba_sets);
return false;
}
/* Record all registers that BB_A sets. */
FOR_EACH_INSN_DEF (def, a_insn)
if (!(to_rename && DF_REF_REG (def) == to_rename))
bitmap_set_bit (bba_sets, DF_REF_REGNO (def));
}
rtx_insn *b_insn;
FOR_BB_INSNS (bb_b, b_insn)
{
if (!active_insn_p (b_insn))
continue;
rtx sset_b = single_set (b_insn);
if (!sset_b)
{
BITMAP_FREE (bba_sets);
return false;
}
/* Make sure this is a REG and not some instance
of ZERO_EXTRACT or SUBREG or other dangerous stuff.
If we have a memory destination then we have a pair of simple
basic blocks performing an operation of the form [addr] = c ? a : b.
bb_valid_for_noce_process_p will have ensured that these are
the only stores present. In that case [addr] should be the location
to be renamed. Assert that the callers set this up properly. */
if (MEM_P (SET_DEST (sset_b)))
gcc_assert (rtx_equal_p (SET_DEST (sset_b), to_rename));
else if (!REG_P (SET_DEST (sset_b)))
{
BITMAP_FREE (bba_sets);
return false;
}
/* If the insn uses a reg set in BB_A return false. */
FOR_EACH_INSN_USE (use, b_insn)
{
if (bitmap_bit_p (bba_sets, DF_REF_REGNO (use)))
{
BITMAP_FREE (bba_sets);
return false;
}
}
}
BITMAP_FREE (bba_sets);
return true;
}
/* Emit copies of all the active instructions in BB except the last.
This is a helper for noce_try_cmove_arith. */
static void
noce_emit_all_but_last (basic_block bb)
{
rtx_insn *last = last_active_insn (bb, FALSE);
rtx_insn *insn;
FOR_BB_INSNS (bb, insn)
{
if (insn != last && active_insn_p (insn))
{
rtx_insn *to_emit = as_a <rtx_insn *> (copy_rtx (insn));
emit_insn (PATTERN (to_emit));
}
}
}
/* Helper for noce_try_cmove_arith. Emit the pattern TO_EMIT and return
the resulting insn or NULL if it's not a valid insn. */
static rtx_insn *
noce_emit_insn (rtx to_emit)
{
gcc_assert (to_emit);
rtx_insn *insn = emit_insn (to_emit);
if (recog_memoized (insn) < 0)
return NULL;
return insn;
}
/* Helper for noce_try_cmove_arith. Emit a copy of the insns up to
and including the penultimate one in BB if it is not simple
(as indicated by SIMPLE). Then emit LAST_INSN as the last
insn in the block. The reason for that is that LAST_INSN may
have been modified by the preparation in noce_try_cmove_arith. */
static bool
noce_emit_bb (rtx last_insn, basic_block bb, bool simple)
{
if (bb && !simple)
noce_emit_all_but_last (bb);
if (last_insn && !noce_emit_insn (last_insn))
return false;
return true;
}
/* Try more complex cases involving conditional_move. */
static int
noce_try_cmove_arith (struct noce_if_info *if_info)
{
rtx a = if_info->a;
rtx b = if_info->b;
rtx x = if_info->x;
rtx orig_a, orig_b;
rtx_insn *insn_a, *insn_b;
bool a_simple = if_info->then_simple;
bool b_simple = if_info->else_simple;
basic_block then_bb = if_info->then_bb;
basic_block else_bb = if_info->else_bb;
rtx target;
int is_mem = 0;
enum rtx_code code;
rtx cond = if_info->cond;
rtx_insn *ifcvt_seq;
/* A conditional move from two memory sources is equivalent to a
conditional on their addresses followed by a load. Don't do this
early because it'll screw alias analysis. Note that we've
already checked for no side effects. */
if (cse_not_expected
&& MEM_P (a) && MEM_P (b)
&& MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b))
{
machine_mode address_mode = get_address_mode (a);
a = XEXP (a, 0);
b = XEXP (b, 0);
x = gen_reg_rtx (address_mode);
is_mem = 1;
}
/* ??? We could handle this if we knew that a load from A or B could
not trap or fault. This is also true if we've already loaded
from the address along the path from ENTRY. */
else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
return FALSE;
/* if (test) x = a + b; else x = c - d;
=> y = a + b;
x = c - d;
if (test)
x = y;
*/
code = GET_CODE (cond);
insn_a = if_info->insn_a;
insn_b = if_info->insn_b;
machine_mode x_mode = GET_MODE (x);
if (!can_conditionally_move_p (x_mode))
return FALSE;
/* Possibly rearrange operands to make things come out more natural. */
if (noce_reversed_cond_code (if_info) != UNKNOWN)
{
int reversep = 0;
if (rtx_equal_p (b, x))
reversep = 1;
else if (general_operand (b, GET_MODE (b)))
reversep = 1;
if (reversep)
{
if (if_info->rev_cond)
{
cond = if_info->rev_cond;
code = GET_CODE (cond);
}
else
code = reversed_comparison_code (cond, if_info->jump);
std::swap (a, b);
std::swap (insn_a, insn_b);
std::swap (a_simple, b_simple);
std::swap (then_bb, else_bb);
}
}
if (then_bb && else_bb
&& (!bbs_ok_for_cmove_arith (then_bb, else_bb, if_info->orig_x)
|| !bbs_ok_for_cmove_arith (else_bb, then_bb, if_info->orig_x)))
return FALSE;
start_sequence ();
/* If one of the blocks is empty then the corresponding B or A value
came from the test block. The non-empty complex block that we will
emit might clobber the register used by B or A, so move it to a pseudo
first. */
rtx tmp_a = NULL_RTX;
rtx tmp_b = NULL_RTX;
if (b_simple || !else_bb)
tmp_b = gen_reg_rtx (x_mode);
if (a_simple || !then_bb)
tmp_a = gen_reg_rtx (x_mode);
orig_a = a;
orig_b = b;
rtx emit_a = NULL_RTX;
rtx emit_b = NULL_RTX;
rtx_insn *tmp_insn = NULL;
bool modified_in_a = false;
bool modified_in_b = false;
/* If either operand is complex, load it into a register first.
The best way to do this is to copy the original insn. In this
way we preserve any clobbers etc that the insn may have had.
This is of course not possible in the IS_MEM case. */
if (! general_operand (a, GET_MODE (a)) || tmp_a)
{
if (is_mem)
{
rtx reg = gen_reg_rtx (GET_MODE (a));
emit_a = gen_rtx_SET (reg, a);
}
else
{
if (insn_a)
{
a = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
rtx set = single_set (copy_of_a);
SET_DEST (set) = a;
emit_a = PATTERN (copy_of_a);
}
else
{
rtx tmp_reg = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
emit_a = gen_rtx_SET (tmp_reg, a);
a = tmp_reg;
}
}
}
if (! general_operand (b, GET_MODE (b)) || tmp_b)
{
if (is_mem)
{
rtx reg = gen_reg_rtx (GET_MODE (b));
emit_b = gen_rtx_SET (reg, b);
}
else
{
if (insn_b)
{
b = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
rtx_insn *copy_of_b = as_a <rtx_insn *> (copy_rtx (insn_b));
rtx set = single_set (copy_of_b);
SET_DEST (set) = b;
emit_b = PATTERN (copy_of_b);
}
else
{
rtx tmp_reg = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
emit_b = gen_rtx_SET (tmp_reg, b);
b = tmp_reg;
}
}
}
modified_in_a = emit_a != NULL_RTX && modified_in_p (orig_b, emit_a);
if (tmp_b && then_bb)
{
FOR_BB_INSNS (then_bb, tmp_insn)
/* Don't check inside insn_a. We will have changed it to emit_a
with a destination that doesn't conflict. */
if (!(insn_a && tmp_insn == insn_a)
&& modified_in_p (orig_b, tmp_insn))
{
modified_in_a = true;
break;
}
}
modified_in_b = emit_b != NULL_RTX && modified_in_p (orig_a, emit_b);
if (tmp_a && else_bb)
{
FOR_BB_INSNS (else_bb, tmp_insn)
/* Don't check inside insn_b. We will have changed it to emit_b
with a destination that doesn't conflict. */
if (!(insn_b && tmp_insn == insn_b)
&& modified_in_p (orig_a, tmp_insn))
{
modified_in_b = true;
break;
}
}
/* If insn to set up A clobbers any registers B depends on, try to
swap insn that sets up A with the one that sets up B. If even
that doesn't help, punt. */
if (modified_in_a && !modified_in_b)
{
if (!noce_emit_bb (emit_b, else_bb, b_simple))
goto end_seq_and_fail;
if (!noce_emit_bb (emit_a, then_bb, a_simple))
goto end_seq_and_fail;
}
else if (!modified_in_a)
{
if (!noce_emit_bb (emit_a, then_bb, a_simple))
goto end_seq_and_fail;
if (!noce_emit_bb (emit_b, else_bb, b_simple))
goto end_seq_and_fail;
}
else
goto end_seq_and_fail;
target = noce_emit_cmove (if_info, x, code, XEXP (cond, 0), XEXP (cond, 1),
a, b);
if (! target)
goto end_seq_and_fail;
/* If we're handling a memory for above, emit the load now. */
if (is_mem)
{
rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
/* Copy over flags as appropriate. */
if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
MEM_VOLATILE_P (mem) = 1;
if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
set_mem_align (mem,
MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
noce_emit_move_insn (if_info->x, mem);
}
else if (target != x)
noce_emit_move_insn (x, target);
ifcvt_seq = end_ifcvt_sequence (if_info);
if (!ifcvt_seq || !targetm.noce_conversion_profitable_p (ifcvt_seq, if_info))
return FALSE;
emit_insn_before_setloc (ifcvt_seq, if_info->jump,
INSN_LOCATION (if_info->insn_a));
if_info->transform_name = "noce_try_cmove_arith";
return TRUE;
end_seq_and_fail:
end_sequence ();
return FALSE;
}
/* For most cases, the simplified condition we found is the best
choice, but this is not the case for the min/max/abs transforms.
For these we wish to know that it is A or B in the condition. */
static rtx
noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
rtx_insn **earliest)
{
rtx cond, set;
rtx_insn *insn;
int reverse;
/* If target is already mentioned in the known condition, return it. */
if (reg_mentioned_p (target, if_info->cond))
{
*earliest = if_info->cond_earliest;
return if_info->cond;
}
set = pc_set (if_info->jump);
cond = XEXP (SET_SRC (set), 0);
reverse
= GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
&& label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
if (if_info->then_else_reversed)
reverse = !reverse;
/* If we're looking for a constant, try to make the conditional
have that constant in it. There are two reasons why it may
not have the constant we want:
1. GCC may have needed to put the constant in a register, because
the target can't compare directly against that constant. For
this case, we look for a SET immediately before the comparison
that puts a constant in that register.
2. GCC may have canonicalized the conditional, for example
replacing "if x < 4" with "if x <= 3". We can undo that (or
make equivalent types of changes) to get the constants we need
if they're off by one in the right direction. */
if (CONST_INT_P (target))
{
enum rtx_code code = GET_CODE (if_info->cond);
rtx op_a = XEXP (if_info->cond, 0);
rtx op_b = XEXP (if_info->cond, 1);
rtx_insn *prev_insn;
/* First, look to see if we put a constant in a register. */
prev_insn = prev_nonnote_insn (if_info->cond_earliest);
if (prev_insn
&& BLOCK_FOR_INSN (prev_insn)
== BLOCK_FOR_INSN (if_info->cond_earliest)
&& INSN_P (prev_insn)
&& GET_CODE (PATTERN (prev_insn)) == SET)
{
rtx src = find_reg_equal_equiv_note (prev_insn);
if (!src)
src = SET_SRC (PATTERN (prev_insn));
if (CONST_INT_P (src))
{
if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
op_a = src;
else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
op_b = src;
if (CONST_INT_P (op_a))
{
std::swap (op_a, op_b);
code = swap_condition (code);
}
}
}
/* Now, look to see if we can get the right constant by
adjusting the conditional. */
if (CONST_INT_P (op_b))
{
HOST_WIDE_INT desired_val = INTVAL (target);
HOST_WIDE_INT actual_val = INTVAL (op_b);
switch (code)
{
case LT:
if (desired_val != HOST_WIDE_INT_MAX
&& actual_val == desired_val + 1)
{
code = LE;
op_b = GEN_INT (desired_val);
}
break;
case LE:
if (desired_val != HOST_WIDE_INT_MIN
&& actual_val == desired_val - 1)
{
code = LT;
op_b = GEN_INT (desired_val);
}
break;
case GT:
if (desired_val != HOST_WIDE_INT_MIN
&& actual_val == desired_val - 1)
{
code = GE;
op_b = GEN_INT (desired_val);
}
break;
case GE:
if (desired_val != HOST_WIDE_INT_MAX
&& actual_val == desired_val + 1)
{
code = GT;
op_b = GEN_INT (desired_val);
}
break;
default:
break;
}
}
/* If we made any changes, generate a new conditional that is
equivalent to what we started with, but has the right
constants in it. */
if (code != GET_CODE (if_info->cond)
|| op_a != XEXP (if_info->cond, 0)
|| op_b != XEXP (if_info->cond, 1))
{
cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
*earliest = if_info->cond_earliest;
return cond;
}
}
cond = canonicalize_condition (if_info->jump, cond, reverse,
earliest, target, have_cbranchcc4, true);
if (! cond || ! reg_mentioned_p (target, cond))
return NULL;
/* We almost certainly searched back to a different place.
Need to re-verify correct lifetimes. */
/* X may not be mentioned in the range (cond_earliest, jump]. */
for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
return NULL;
/* A and B may not be modified in the range [cond_earliest, jump). */
for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
if (INSN_P (insn)
&& (modified_in_p (if_info->a, insn)
|| modified_in_p (if_info->b, insn)))
return NULL;
return cond;
}
/* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
static int
noce_try_minmax (struct noce_if_info *if_info)
{
rtx cond, target;
rtx_insn *earliest, *seq;
enum rtx_code code, op;
int unsignedp;
if (!noce_simple_bbs (if_info))
return FALSE;
/* ??? Reject modes with NaNs or signed zeros since we don't know how
they will be resolved with an SMIN/SMAX. It wouldn't be too hard
to get the target to tell us... */
if (HONOR_SIGNED_ZEROS (if_info->x)
|| HONOR_NANS (if_info->x))
return FALSE;
cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
if (!cond)
return FALSE;
/* Verify the condition is of the form we expect, and canonicalize
the comparison code. */
code = GET_CODE (cond);
if (rtx_equal_p (XEXP (cond, 0), if_info->a))
{
if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
return FALSE;
}
else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
{
if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
return FALSE;
code = swap_condition (code);
}
else
return FALSE;
/* Determine what sort of operation this is. Note that the code is for
a taken branch, so the code->operation mapping appears backwards. */
switch (code)
{
case LT:
case LE:
case UNLT:
case UNLE:
op = SMAX;
unsignedp = 0;
break;
case GT:
case GE:
case UNGT:
case UNGE:
op = SMIN;
unsignedp = 0;
break;
case LTU:
case LEU:
op = UMAX;
unsignedp = 1;
break;
case GTU:
case GEU:
op = UMIN;
unsignedp = 1;
break;
default:
return FALSE;
}
start_sequence ();
target = expand_simple_binop (GET_MODE (if_info->x), op,
if_info->a, if_info->b,
if_info->x, unsignedp, OPTAB_WIDEN);
if (! target)
{
end_sequence ();
return FALSE;
}
if (target != if_info->x)
noce_emit_move_insn (if_info->x, target);
seq = end_ifcvt_sequence (if_info);
if (!seq)
return FALSE;
emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
if_info->cond = cond;
if_info->cond_earliest = earliest;
if_info->rev_cond = NULL_RTX;
if_info->transform_name = "noce_try_minmax";
return TRUE;
}
/* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
"if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
etc. */
static int
noce_try_abs (struct noce_if_info *if_info)
{
rtx cond, target, a, b, c;
rtx_insn *earliest, *seq;
int negate;
bool one_cmpl = false;
if (!noce_simple_bbs (if_info))
return FALSE;
/* Reject modes with signed zeros. */
if (HONOR_SIGNED_ZEROS (if_info->x))
return FALSE;
/* Recognize A and B as constituting an ABS or NABS. The canonical
form is a branch around the negation, taken when the object is the
first operand of a comparison against 0 that evaluates to true. */
a = if_info->a;
b = if_info->b;
if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
negate = 0;
else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
{
std::swap (a, b);
negate = 1;
}
else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
{
negate = 0;
one_cmpl = true;
}
else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
{
std::swap (a, b);
negate = 1;
one_cmpl = true;
}
else
return FALSE;
cond = noce_get_alt_condition (if_info, b, &earliest);
if (!cond)
return FALSE;
/* Verify the condition is of the form we expect. */
if (rtx_equal_p (XEXP (cond, 0), b))
c = XEXP (cond, 1);
else if (rtx_equal_p (XEXP (cond, 1), b))
{
c = XEXP (cond, 0);
negate = !negate;
}
else
return FALSE;
/* Verify that C is zero. Search one step backward for a
REG_EQUAL note or a simple source if necessary. */
if (REG_P (c))
{
rtx set;
rtx_insn *insn = prev_nonnote_insn (earliest);
if (insn
&& BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
&& (set = single_set (insn))
&& rtx_equal_p (SET_DEST (set), c))
{
rtx note = find_reg_equal_equiv_note (insn);
if (note)
c = XEXP (note, 0);
else
c = SET_SRC (set);
}
else
return FALSE;
}
if (MEM_P (c)
&& GET_CODE (XEXP (c, 0)) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
c = get_pool_constant (XEXP (c, 0));
/* Work around funny ideas get_condition has wrt canonicalization.
Note that these rtx constants are known to be CONST_INT, and
therefore imply integer comparisons.
The one_cmpl case is more complicated, as we want to handle
only x < 0 ? ~x : x or x >= 0 ? x : ~x to one_cmpl_abs (x)
and x < 0 ? x : ~x or x >= 0 ? ~x : x to ~one_cmpl_abs (x),
but not other cases (x > -1 is equivalent of x >= 0). */
if (c == constm1_rtx && GET_CODE (cond) == GT)
;
else if (c == const1_rtx && GET_CODE (cond) == LT)
{
if (one_cmpl)
return FALSE;
}
else if (c == CONST0_RTX (GET_MODE (b)))
{
if (one_cmpl
&& GET_CODE (cond) != GE
&& GET_CODE (cond) != LT)
return FALSE;
}
else
return FALSE;
/* Determine what sort of operation this is. */
switch (GET_CODE (cond))
{
case LT:
case LE:
case UNLT:
case UNLE:
negate = !negate;
break;
case GT:
case GE:
case UNGT:
case UNGE:
break;
default:
return FALSE;
}
start_sequence ();
if (one_cmpl)
target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
if_info->x);
else
target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
/* ??? It's a quandary whether cmove would be better here, especially
for integers. Perhaps combine will clean things up. */
if (target && negate)
{
if (one_cmpl)
target = expand_simple_unop (GET_MODE (target), NOT, target,
if_info->x, 0);
else
target = expand_simple_unop (GET_MODE (target), NEG, target,
if_info->x, 0);
}
if (! target)
{
end_sequence ();
return FALSE;
}
if (target != if_info->x)
noce_emit_move_insn (if_info->x, target);
seq = end_ifcvt_sequence (if_info);
if (!seq)
return FALSE;
emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
if_info->cond = cond;
if_info->cond_earliest = earliest;
if_info->rev_cond = NULL_RTX;
if_info->transform_name = "noce_try_abs";
return TRUE;
}
/* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
static int
noce_try_sign_mask (struct noce_if_info *if_info)
{
rtx cond, t, m, c;
rtx_insn *seq;
machine_mode mode;
enum rtx_code code;
bool t_unconditional;
if (!noce_simple_bbs (if_info))
return FALSE;
cond = if_info->cond;
code = GET_CODE (cond);
m = XEXP (cond, 0);
c = XEXP (cond, 1);
t = NULL_RTX;
if (if_info->a == const0_rtx)
{
if ((code == LT && c == const0_rtx)
|| (code == LE && c == constm1_rtx))
t = if_info->b;
}
else if (if_info->b == const0_rtx)
{
if ((code == GE && c == const0_rtx)
|| (code == GT && c == constm1_rtx))
t = if_info->a;
}
if (! t || side_effects_p (t))
return FALSE;
/* We currently don't handle different modes. */
mode = GET_MODE (t);
if (GET_MODE (m) != mode)
return FALSE;
/* This is only profitable if T is unconditionally executed/evaluated in the
original insn sequence or T is cheap. The former happens if B is the
non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
INSN_B which can happen for e.g. conditional stores to memory. For the
cost computation use the block TEST_BB where the evaluation will end up
after the transformation. */
t_unconditional
= (t == if_info->b
&& (if_info->insn_b == NULL_RTX
|| BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
if (!(t_unconditional
|| (set_src_cost (t, mode, if_info->speed_p)
< COSTS_N_INSNS (2))))
return FALSE;
if (!noce_can_force_operand (t))
return FALSE;
start_sequence ();
/* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
"(signed) m >> 31" directly. This benefits targets with specialized
insns to obtain the signmask, but still uses ashr_optab otherwise. */
m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
: NULL_RTX;
if (!t)
{
end_sequence ();
return FALSE;
}
noce_emit_move_insn (if_info->x, t);
seq = end_ifcvt_sequence (if_info);
if (!seq)
return FALSE;
emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
if_info->transform_name = "noce_try_sign_mask";
return TRUE;
}
/* Optimize away "if (x & C) x |= C" and similar bit manipulation
transformations. */
static int
noce_try_bitop (struct noce_if_info *if_info)
{
rtx cond, x, a, result;
rtx_insn *seq;
scalar_int_mode mode;
enum rtx_code code;
int bitnum;
x = if_info->x;
cond = if_info->cond;
code = GET_CODE (cond);
/* Check for an integer operation. */
if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
return FALSE;
if (!noce_simple_bbs (if_info))
return FALSE;
/* Check for no else condition. */
if (! rtx_equal_p (x, if_info->b))
return FALSE;
/* Check for a suitable condition. */
if (code != NE && code != EQ)
return FALSE;
if (XEXP (cond, 1) != const0_rtx)
return FALSE;
cond = XEXP (cond, 0);
/* ??? We could also handle AND here. */
if (GET_CODE (cond) == ZERO_EXTRACT)
{
if (XEXP (cond, 1) != const1_rtx
|| !CONST_INT_P (XEXP (cond, 2))
|| ! rtx_equal_p (x, XEXP (cond, 0)))
return FALSE;
bitnum = INTVAL (XEXP (cond, 2));
if (BITS_BIG_ENDIAN)
bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
return FALSE;
}
else
return FALSE;
a = if_info->a;
if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
{
/* Check for "if (X & C) x = x op C". */
if (! rtx_equal_p (x, XEXP (a, 0))
|| !CONST_INT_P (XEXP (a, 1))
|| (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
!= HOST_WIDE_INT_1U << bitnum)
return FALSE;
/* if ((x & C) == 0) x |= C; is transformed to x |= C. */
/* if ((x & C) != 0) x |= C; is transformed to nothing. */
if (GET_CODE (a) == IOR)
result = (code == NE) ? a : NULL_RTX;
else if (code == NE)
{
/* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
result = gen_int_mode (HOST_WIDE_INT_1 << bitnum, mode);
result = simplify_gen_binary (IOR, mode, x, result);
}
else
{
/* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
result = gen_int_mode (~(HOST_WIDE_INT_1 << bitnum), mode);
result = simplify_gen_binary (AND, mode, x, result);
}
}
else if (GET_CODE (a) == AND)
{
/* Check for "if (X & C) x &= ~C". */
if (! rtx_equal_p (x, XEXP (a, 0))
|| !CONST_INT_P (XEXP (a, 1))
|| (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
!= (~(HOST_WIDE_INT_1 << bitnum) & GET_MODE_MASK (mode)))
return FALSE;
/* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
/* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
result = (code == EQ) ? a : NULL_RTX;
}
else
return FALSE;
if (result)
{
start_sequence ();
noce_emit_move_insn (x, result);
seq = end_ifcvt_sequence (if_info);
if (!seq)
return FALSE;
emit_insn_before_setloc (seq, if_info->jump,
INSN_LOCATION (if_info->insn_a));
}
if_info->transform_name = "noce_try_bitop";
return TRUE;
}
/* Similar to get_condition, only the resulting condition must be
valid at JUMP, instead of at EARLIEST.
If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
THEN block of the caller, and we have to reverse the condition. */
static rtx
noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
{
rtx cond, set, tmp;
bool reverse;
if (! any_condjump_p (jump))
return NULL_RTX;
set = pc_set (jump);
/* If this branches to JUMP_LABEL when the condition is false,
reverse the condition. */
reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
&& label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
/* We may have to reverse because the caller's if block is not canonical,
i.e. the THEN block isn't the fallthrough block for the TEST block
(see find_if_header). */
if (then_else_reversed)
reverse = !reverse;
/* If the condition variable is a register and is MODE_INT, accept it. */
cond = XEXP (SET_SRC (set), 0);
tmp = XEXP (cond, 0);
if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
&& (GET_MODE (tmp) != BImode
|| !targetm.small_register_classes_for_mode_p (BImode)))
{
*earliest = jump;
if (reverse)
cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
GET_MODE (cond), tmp, XEXP (cond, 1));
return cond;
}
/* Otherwise, fall back on canonicalize_condition to do the dirty
work of manipulating MODE_CC values and COMPARE rtx codes. */
tmp = canonicalize_condition (jump, cond, reverse, earliest,
NULL_RTX, have_cbranchcc4, true);
/* We don't handle side-effects in the condition, like handling
REG_INC notes and making sure no duplicate conditions are emitted. */
if (tmp != NULL_RTX && side_effects_p (tmp))
return NULL_RTX;
return tmp;
}
/* Return true if OP is ok for if-then-else processing. */
static int
noce_operand_ok (const_rtx op)
{
if (side_effects_p (op))
return FALSE;
/* We special-case memories, so handle any of them with
no address side effects. */
if (MEM_P (op))
return ! side_effects_p (XEXP (op, 0));
return ! may_trap_p (op);
}
/* Return true iff basic block TEST_BB is valid for noce if-conversion.
The condition used in this if-conversion is in COND.
In practice, check that TEST_BB ends with a single set
x := a and all previous computations
in TEST_BB don't produce any values that are live after TEST_BB.
In other words, all the insns in TEST_BB are there only
to compute a value for x. Add the rtx cost of the insns
in TEST_BB to COST. Record whether TEST_BB is a single simple
set instruction in SIMPLE_P. */
static bool
bb_valid_for_noce_process_p (basic_block test_bb, rtx cond,
unsigned int *cost, bool *simple_p)
{
if (!test_bb)
return false;
rtx_insn *last_insn = last_active_insn (test_bb, FALSE);
rtx last_set = NULL_RTX;
rtx cc = cc_in_cond (cond);
if (!insn_valid_noce_process_p (last_insn, cc))
return false;
/* Punt on blocks ending with asm goto or jumps with other side-effects,
last_active_insn ignores JUMP_INSNs. */
if (JUMP_P (BB_END (test_bb)) && !onlyjump_p (BB_END (test_bb)))
return false;
last_set = single_set (last_insn);
rtx x = SET_DEST (last_set);
rtx_insn *first_insn = first_active_insn (test_bb);
rtx first_set = single_set (first_insn);
if (!first_set)
return false;
/* We have a single simple set, that's okay. */
bool speed_p = optimize_bb_for_speed_p (test_bb);
if (first_insn == last_insn)
{
*simple_p = noce_operand_ok (SET_DEST (first_set));
*cost += pattern_cost (first_set, speed_p);
return *simple_p;
}
rtx_insn *prev_last_insn = PREV_INSN (last_insn);
gcc_assert (prev_last_insn);
/* For now, disallow setting x multiple times in test_bb. */
if (REG_P (x) && reg_set_between_p (x, first_insn, prev_last_insn))
return false;
bitmap test_bb_temps = BITMAP_ALLOC (&reg_obstack);
/* The regs that are live out of test_bb. */
bitmap test_bb_live_out = df_get_live_out (test_bb);
int potential_cost = pattern_cost (last_set, speed_p);
rtx_insn *insn;
FOR_BB_INSNS (test_bb, insn)
{
if (insn != last_insn)
{
if (!active_insn_p (insn))
continue;
if (!insn_valid_noce_process_p (insn, cc))
goto free_bitmap_and_fail;
rtx sset = single_set (insn);
gcc_assert (sset);
if (contains_mem_rtx_p (SET_SRC (sset))
|| !REG_P (SET_DEST (sset))
|| reg_overlap_mentioned_p (SET_DEST (sset), cond))
goto free_bitmap_and_fail;
potential_cost += pattern_cost (sset, speed_p);
bitmap_set_bit (test_bb_temps, REGNO (SET_DEST (sset)));
}
}
/* If any of the intermediate results in test_bb are live after test_bb
then fail. */
if (bitmap_intersect_p (test_bb_live_out, test_bb_temps))
goto free_bitmap_and_fail;
BITMAP_FREE (test_bb_temps);
*cost += potential_cost;
*simple_p = false;
return true;
free_bitmap_and_fail:
BITMAP_FREE (test_bb_temps);
return false;
}
/* We have something like:
if (x > y)
{ i = a; j = b; k = c; }
Make it:
tmp_i = (x > y) ? a : i;
tmp_j = (x > y) ? b : j;
tmp_k = (x > y) ? c : k;
i = tmp_i;
j = tmp_j;
k = tmp_k;
Subsequent passes are expected to clean up the extra moves.
Look for special cases such as writes to one register which are
read back in another SET, as might occur in a swap idiom or
similar.
These look like:
if (x > y)
i = a;
j = i;
Which we want to rewrite to:
tmp_i = (x > y) ? a : i;
tmp_j = (x > y) ? tmp_i : j;
i = tmp_i;
j = tmp_j;
We can catch these when looking at (SET x y) by keeping a list of the
registers we would have targeted before if-conversion and looking back
through it for an overlap with Y. If we find one, we rewire the
conditional set to use the temporary we introduced earlier.
IF_INFO contains the useful information about the block structure and
jump instructions. */
static int
noce_convert_multiple_sets (struct noce_if_info *if_info)
{
basic_block test_bb = if_info->test_bb;
basic_block then_bb = if_info->then_bb;
basic_block join_bb = if_info->join_bb;
rtx_insn *jump = if_info->jump;
rtx_insn *cond_earliest;
rtx_insn *insn;
start_sequence ();
/* Decompose the condition attached to the jump. */