| /* Liveness for SSA trees. |
| Copyright (C) 2003-2020 Free Software Foundation, Inc. |
| Contributed by Andrew MacLeod <amacleod@redhat.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "rtl.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "timevar.h" |
| #include "ssa.h" |
| #include "cgraph.h" |
| #include "gimple-pretty-print.h" |
| #include "diagnostic-core.h" |
| #include "gimple-iterator.h" |
| #include "tree-dfa.h" |
| #include "dumpfile.h" |
| #include "tree-ssa-live.h" |
| #include "debug.h" |
| #include "tree-ssa.h" |
| #include "ipa-utils.h" |
| #include "cfgloop.h" |
| #include "stringpool.h" |
| #include "attribs.h" |
| #include "optinfo.h" |
| #include "gimple-walk.h" |
| #include "cfganal.h" |
| |
| static void verify_live_on_entry (tree_live_info_p); |
| |
| |
| /* VARMAP maintains a mapping from SSA version number to real variables. |
| |
| All SSA_NAMES are divided into partitions. Initially each ssa_name is the |
| only member of it's own partition. Coalescing will attempt to group any |
| ssa_names which occur in a copy or in a PHI node into the same partition. |
| |
| At the end of out-of-ssa, each partition becomes a "real" variable and is |
| rewritten as a compiler variable. |
| |
| The var_map data structure is used to manage these partitions. It allows |
| partitions to be combined, and determines which partition belongs to what |
| ssa_name or variable, and vice versa. */ |
| |
| |
| /* Remove the base table in MAP. */ |
| |
| static void |
| var_map_base_fini (var_map map) |
| { |
| /* Free the basevar info if it is present. */ |
| if (map->partition_to_base_index != NULL) |
| { |
| free (map->partition_to_base_index); |
| map->partition_to_base_index = NULL; |
| map->num_basevars = 0; |
| } |
| } |
| /* Create a variable partition map of SIZE for region, initialize and return |
| it. Region is a loop if LOOP is non-NULL, otherwise is the current |
| function. */ |
| |
| var_map |
| init_var_map (int size, class loop *loop) |
| { |
| var_map map; |
| |
| map = (var_map) xmalloc (sizeof (struct _var_map)); |
| map->var_partition = partition_new (size); |
| |
| map->partition_to_view = NULL; |
| map->view_to_partition = NULL; |
| map->num_partitions = size; |
| map->partition_size = size; |
| map->num_basevars = 0; |
| map->partition_to_base_index = NULL; |
| map->vec_bbs = vNULL; |
| if (loop) |
| { |
| map->bmp_bbs = BITMAP_ALLOC (NULL); |
| map->outofssa_p = false; |
| basic_block *bbs = get_loop_body_in_dom_order (loop); |
| for (unsigned i = 0; i < loop->num_nodes; ++i) |
| { |
| bitmap_set_bit (map->bmp_bbs, bbs[i]->index); |
| map->vec_bbs.safe_push (bbs[i]); |
| } |
| free (bbs); |
| } |
| else |
| { |
| map->bmp_bbs = NULL; |
| map->outofssa_p = true; |
| basic_block bb; |
| FOR_EACH_BB_FN (bb, cfun) |
| map->vec_bbs.safe_push (bb); |
| } |
| return map; |
| } |
| |
| |
| /* Free memory associated with MAP. */ |
| |
| void |
| delete_var_map (var_map map) |
| { |
| var_map_base_fini (map); |
| partition_delete (map->var_partition); |
| free (map->partition_to_view); |
| free (map->view_to_partition); |
| if (map->bmp_bbs) |
| BITMAP_FREE (map->bmp_bbs); |
| map->vec_bbs.release (); |
| free (map); |
| } |
| |
| |
| /* This function will combine the partitions in MAP for VAR1 and VAR2. It |
| Returns the partition which represents the new partition. If the two |
| partitions cannot be combined, NO_PARTITION is returned. */ |
| |
| int |
| var_union (var_map map, tree var1, tree var2) |
| { |
| int p1, p2, p3; |
| |
| gcc_assert (TREE_CODE (var1) == SSA_NAME); |
| gcc_assert (TREE_CODE (var2) == SSA_NAME); |
| |
| /* This is independent of partition_to_view. If partition_to_view is |
| on, then whichever one of these partitions is absorbed will never have a |
| dereference into the partition_to_view array any more. */ |
| |
| p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1)); |
| p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2)); |
| |
| gcc_assert (p1 != NO_PARTITION); |
| gcc_assert (p2 != NO_PARTITION); |
| |
| if (p1 == p2) |
| p3 = p1; |
| else |
| p3 = partition_union (map->var_partition, p1, p2); |
| |
| if (map->partition_to_view) |
| p3 = map->partition_to_view[p3]; |
| |
| return p3; |
| } |
| |
| |
| /* Compress the partition numbers in MAP such that they fall in the range |
| 0..(num_partitions-1) instead of wherever they turned out during |
| the partitioning exercise. This removes any references to unused |
| partitions, thereby allowing bitmaps and other vectors to be much |
| denser. |
| |
| This is implemented such that compaction doesn't affect partitioning. |
| Ie., once partitions are created and possibly merged, running one |
| or more different kind of compaction will not affect the partitions |
| themselves. Their index might change, but all the same variables will |
| still be members of the same partition group. This allows work on reduced |
| sets, and no loss of information when a larger set is later desired. |
| |
| In particular, coalescing can work on partitions which have 2 or more |
| definitions, and then 'recompact' later to include all the single |
| definitions for assignment to program variables. */ |
| |
| |
| /* Set MAP back to the initial state of having no partition view. Return a |
| bitmap which has a bit set for each partition number which is in use in the |
| varmap. */ |
| |
| static bitmap |
| partition_view_init (var_map map) |
| { |
| bitmap used; |
| int tmp; |
| unsigned int x; |
| |
| used = BITMAP_ALLOC (NULL); |
| |
| /* Already in a view? Abandon the old one. */ |
| if (map->partition_to_view) |
| { |
| free (map->partition_to_view); |
| map->partition_to_view = NULL; |
| } |
| if (map->view_to_partition) |
| { |
| free (map->view_to_partition); |
| map->view_to_partition = NULL; |
| } |
| |
| /* Find out which partitions are actually referenced. */ |
| for (x = 0; x < map->partition_size; x++) |
| { |
| tmp = partition_find (map->var_partition, x); |
| if (ssa_name (tmp) != NULL_TREE && !virtual_operand_p (ssa_name (tmp)) |
| && (!has_zero_uses (ssa_name (tmp)) |
| || !SSA_NAME_IS_DEFAULT_DEF (ssa_name (tmp)) |
| || (SSA_NAME_VAR (ssa_name (tmp)) |
| && !VAR_P (SSA_NAME_VAR (ssa_name (tmp)))))) |
| bitmap_set_bit (used, tmp); |
| } |
| |
| map->num_partitions = map->partition_size; |
| return used; |
| } |
| |
| |
| /* This routine will finalize the view data for MAP based on the partitions |
| set in SELECTED. This is either the same bitmap returned from |
| partition_view_init, or a trimmed down version if some of those partitions |
| were not desired in this view. SELECTED is freed before returning. */ |
| |
| static void |
| partition_view_fini (var_map map, bitmap selected) |
| { |
| bitmap_iterator bi; |
| unsigned count, i, x, limit; |
| |
| gcc_assert (selected); |
| |
| count = bitmap_count_bits (selected); |
| limit = map->partition_size; |
| |
| /* If its a one-to-one ratio, we don't need any view compaction. */ |
| if (count < limit) |
| { |
| map->partition_to_view = (int *)xmalloc (limit * sizeof (int)); |
| memset (map->partition_to_view, 0xff, (limit * sizeof (int))); |
| map->view_to_partition = (int *)xmalloc (count * sizeof (int)); |
| |
| i = 0; |
| /* Give each selected partition an index. */ |
| EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi) |
| { |
| map->partition_to_view[x] = i; |
| map->view_to_partition[i] = x; |
| i++; |
| } |
| gcc_assert (i == count); |
| map->num_partitions = i; |
| } |
| |
| BITMAP_FREE (selected); |
| } |
| |
| |
| /* Create a partition view which includes all the used partitions in MAP. */ |
| |
| void |
| partition_view_normal (var_map map) |
| { |
| bitmap used; |
| |
| used = partition_view_init (map); |
| partition_view_fini (map, used); |
| |
| var_map_base_fini (map); |
| } |
| |
| |
| /* Create a partition view in MAP which includes just partitions which occur in |
| the bitmap ONLY. If WANT_BASES is true, create the base variable map |
| as well. */ |
| |
| void |
| partition_view_bitmap (var_map map, bitmap only) |
| { |
| bitmap used; |
| bitmap new_partitions = BITMAP_ALLOC (NULL); |
| unsigned x, p; |
| bitmap_iterator bi; |
| |
| used = partition_view_init (map); |
| EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi) |
| { |
| p = partition_find (map->var_partition, x); |
| gcc_assert (bitmap_bit_p (used, p)); |
| bitmap_set_bit (new_partitions, p); |
| } |
| partition_view_fini (map, new_partitions); |
| |
| var_map_base_fini (map); |
| } |
| |
| |
| static bitmap usedvars; |
| |
| /* Mark VAR as used, so that it'll be preserved during rtl expansion. |
| Returns true if VAR wasn't marked before. */ |
| |
| static inline bool |
| set_is_used (tree var) |
| { |
| return bitmap_set_bit (usedvars, DECL_UID (var)); |
| } |
| |
| /* Return true if VAR is marked as used. */ |
| |
| static inline bool |
| is_used_p (tree var) |
| { |
| return bitmap_bit_p (usedvars, DECL_UID (var)); |
| } |
| |
| static inline void mark_all_vars_used (tree *); |
| |
| /* Helper function for mark_all_vars_used, called via walk_tree. */ |
| |
| static tree |
| mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) |
| { |
| tree t = *tp; |
| enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t)); |
| tree b; |
| |
| if (TREE_CODE (t) == SSA_NAME) |
| { |
| *walk_subtrees = 0; |
| t = SSA_NAME_VAR (t); |
| if (!t) |
| return NULL; |
| } |
| |
| if (IS_EXPR_CODE_CLASS (c) |
| && (b = TREE_BLOCK (t)) != NULL) |
| TREE_USED (b) = true; |
| |
| /* Ignore TMR_OFFSET and TMR_STEP for TARGET_MEM_REFS, as those |
| fields do not contain vars. */ |
| if (TREE_CODE (t) == TARGET_MEM_REF) |
| { |
| mark_all_vars_used (&TMR_BASE (t)); |
| mark_all_vars_used (&TMR_INDEX (t)); |
| mark_all_vars_used (&TMR_INDEX2 (t)); |
| *walk_subtrees = 0; |
| return NULL; |
| } |
| |
| /* Only need to mark VAR_DECLS; parameters and return results are not |
| eliminated as unused. */ |
| if (VAR_P (t)) |
| { |
| /* When a global var becomes used for the first time also walk its |
| initializer (non global ones don't have any). */ |
| if (set_is_used (t) && is_global_var (t) |
| && DECL_CONTEXT (t) == current_function_decl) |
| mark_all_vars_used (&DECL_INITIAL (t)); |
| } |
| /* remove_unused_scope_block_p requires information about labels |
| which are not DECL_IGNORED_P to tell if they might be used in the IL. */ |
| else if (TREE_CODE (t) == LABEL_DECL) |
| /* Although the TREE_USED values that the frontend uses would be |
| acceptable (albeit slightly over-conservative) for our purposes, |
| init_vars_expansion clears TREE_USED for LABEL_DECLs too, so we |
| must re-compute it here. */ |
| TREE_USED (t) = 1; |
| |
| if (IS_TYPE_OR_DECL_P (t)) |
| *walk_subtrees = 0; |
| |
| return NULL; |
| } |
| |
| /* Mark the scope block SCOPE and its subblocks unused when they can be |
| possibly eliminated if dead. */ |
| |
| static void |
| mark_scope_block_unused (tree scope) |
| { |
| tree t; |
| TREE_USED (scope) = false; |
| if (!(*debug_hooks->ignore_block) (scope)) |
| TREE_USED (scope) = true; |
| for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t)) |
| mark_scope_block_unused (t); |
| } |
| |
| /* Look if the block is dead (by possibly eliminating its dead subblocks) |
| and return true if so. |
| Block is declared dead if: |
| 1) No statements are associated with it. |
| 2) Declares no live variables |
| 3) All subblocks are dead |
| or there is precisely one subblocks and the block |
| has same abstract origin as outer block and declares |
| no variables, so it is pure wrapper. |
| When we are not outputting full debug info, we also eliminate dead variables |
| out of scope blocks to let them to be recycled by GGC and to save copying work |
| done by the inliner. */ |
| |
| static bool |
| remove_unused_scope_block_p (tree scope, bool in_ctor_dtor_block) |
| { |
| tree *t, *next; |
| bool unused = !TREE_USED (scope); |
| int nsubblocks = 0; |
| |
| /* For ipa-polymorphic-call.c purposes, preserve blocks: |
| 1) with BLOCK_ABSTRACT_ORIGIN of a ctor/dtor or their clones */ |
| if (inlined_polymorphic_ctor_dtor_block_p (scope, true)) |
| { |
| in_ctor_dtor_block = true; |
| unused = false; |
| } |
| /* 2) inside such blocks, the outermost block with block_ultimate_origin |
| being a FUNCTION_DECL. */ |
| else if (in_ctor_dtor_block) |
| { |
| tree fn = block_ultimate_origin (scope); |
| if (fn && TREE_CODE (fn) == FUNCTION_DECL) |
| { |
| in_ctor_dtor_block = false; |
| unused = false; |
| } |
| } |
| |
| for (t = &BLOCK_VARS (scope); *t; t = next) |
| { |
| next = &DECL_CHAIN (*t); |
| |
| /* Debug info of nested function refers to the block of the |
| function. We might stil call it even if all statements |
| of function it was nested into was elliminated. |
| |
| TODO: We can actually look into cgraph to see if function |
| will be output to file. */ |
| if (TREE_CODE (*t) == FUNCTION_DECL) |
| unused = false; |
| |
| /* If a decl has a value expr, we need to instantiate it |
| regardless of debug info generation, to avoid codegen |
| differences in memory overlap tests. update_equiv_regs() may |
| indirectly call validate_equiv_mem() to test whether a |
| SET_DEST overlaps with others, and if the value expr changes |
| by virtual register instantiation, we may get end up with |
| different results. */ |
| else if (VAR_P (*t) && DECL_HAS_VALUE_EXPR_P (*t)) |
| unused = false; |
| |
| /* Remove everything we don't generate debug info for. */ |
| else if (DECL_IGNORED_P (*t)) |
| { |
| *t = DECL_CHAIN (*t); |
| next = t; |
| } |
| |
| /* When we are outputting debug info, we usually want to output |
| info about optimized-out variables in the scope blocks. |
| Exception are the scope blocks not containing any instructions |
| at all so user can't get into the scopes at first place. */ |
| else if (is_used_p (*t)) |
| unused = false; |
| else if (TREE_CODE (*t) == LABEL_DECL && TREE_USED (*t)) |
| /* For labels that are still used in the IL, the decision to |
| preserve them must not depend DEBUG_INFO_LEVEL, otherwise we |
| risk having different ordering in debug vs. non-debug builds |
| during inlining or versioning. |
| A label appearing here (we have already checked DECL_IGNORED_P) |
| should not be used in the IL unless it has been explicitly used |
| before, so we use TREE_USED as an approximation. */ |
| /* In principle, we should do the same here as for the debug case |
| below, however, when debugging, there might be additional nested |
| levels that keep an upper level with a label live, so we have to |
| force this block to be considered used, too. */ |
| unused = false; |
| |
| /* When we are not doing full debug info, we however can keep around |
| only the used variables for cfgexpand's memory packing saving quite |
| a lot of memory. |
| |
| For sake of -g3, we keep around those vars but we don't count this as |
| use of block, so innermost block with no used vars and no instructions |
| can be considered dead. We only want to keep around blocks user can |
| breakpoint into and ask about value of optimized out variables. |
| |
| Similarly we need to keep around types at least until all |
| variables of all nested blocks are gone. We track no |
| information on whether given type is used or not, so we have |
| to keep them even when not emitting debug information, |
| otherwise we may end up remapping variables and their (local) |
| types in different orders depending on whether debug |
| information is being generated. */ |
| |
| else if (TREE_CODE (*t) == TYPE_DECL |
| || debug_info_level == DINFO_LEVEL_NORMAL |
| || debug_info_level == DINFO_LEVEL_VERBOSE) |
| ; |
| else |
| { |
| *t = DECL_CHAIN (*t); |
| next = t; |
| } |
| } |
| |
| for (t = &BLOCK_SUBBLOCKS (scope); *t ;) |
| if (remove_unused_scope_block_p (*t, in_ctor_dtor_block)) |
| { |
| if (BLOCK_SUBBLOCKS (*t)) |
| { |
| tree next = BLOCK_CHAIN (*t); |
| tree supercontext = BLOCK_SUPERCONTEXT (*t); |
| |
| *t = BLOCK_SUBBLOCKS (*t); |
| while (BLOCK_CHAIN (*t)) |
| { |
| BLOCK_SUPERCONTEXT (*t) = supercontext; |
| t = &BLOCK_CHAIN (*t); |
| } |
| BLOCK_CHAIN (*t) = next; |
| BLOCK_SUPERCONTEXT (*t) = supercontext; |
| t = &BLOCK_CHAIN (*t); |
| nsubblocks ++; |
| } |
| else |
| *t = BLOCK_CHAIN (*t); |
| } |
| else |
| { |
| t = &BLOCK_CHAIN (*t); |
| nsubblocks ++; |
| } |
| |
| |
| if (!unused) |
| ; |
| /* Outer scope is always used. */ |
| else if (!BLOCK_SUPERCONTEXT (scope) |
| || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL) |
| unused = false; |
| /* Innermost blocks with no live variables nor statements can be always |
| eliminated. */ |
| else if (!nsubblocks) |
| ; |
| /* When not generating debug info we can eliminate info on unused |
| variables. */ |
| else if (!flag_auto_profile && debug_info_level == DINFO_LEVEL_NONE |
| && !optinfo_wants_inlining_info_p ()) |
| { |
| /* Even for -g0 don't prune outer scopes from artificial |
| functions, otherwise diagnostics using tree_nonartificial_location |
| will not be emitted properly. */ |
| if (inlined_function_outer_scope_p (scope)) |
| { |
| tree ao = BLOCK_ORIGIN (scope); |
| if (ao |
| && TREE_CODE (ao) == FUNCTION_DECL |
| && DECL_DECLARED_INLINE_P (ao) |
| && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao))) |
| unused = false; |
| } |
| } |
| else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope)) |
| unused = false; |
| /* See if this block is important for representation of inlined |
| function. Inlined functions are always represented by block |
| with block_ultimate_origin being set to FUNCTION_DECL and |
| DECL_SOURCE_LOCATION set, unless they expand to nothing... */ |
| else if (inlined_function_outer_scope_p (scope)) |
| unused = false; |
| else |
| /* Verfify that only blocks with source location set |
| are entry points to the inlined functions. */ |
| gcc_assert (LOCATION_LOCUS (BLOCK_SOURCE_LOCATION (scope)) |
| == UNKNOWN_LOCATION); |
| |
| TREE_USED (scope) = !unused; |
| return unused; |
| } |
| |
| /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be |
| eliminated during the tree->rtl conversion process. */ |
| |
| static inline void |
| mark_all_vars_used (tree *expr_p) |
| { |
| walk_tree (expr_p, mark_all_vars_used_1, NULL, NULL); |
| } |
| |
| /* Helper function for clear_unused_block_pointer, called via walk_tree. */ |
| |
| static tree |
| clear_unused_block_pointer_1 (tree *tp, int *, void *) |
| { |
| if (EXPR_P (*tp) && TREE_BLOCK (*tp) |
| && !TREE_USED (TREE_BLOCK (*tp))) |
| TREE_SET_BLOCK (*tp, NULL); |
| return NULL_TREE; |
| } |
| |
| /* Set all block pointer in debug or clobber stmt to NULL if the block |
| is unused, so that they will not be streamed out. */ |
| |
| static void |
| clear_unused_block_pointer (void) |
| { |
| basic_block bb; |
| gimple_stmt_iterator gsi; |
| |
| FOR_EACH_BB_FN (bb, cfun) |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| unsigned i; |
| tree b; |
| gimple *stmt = gsi_stmt (gsi); |
| |
| if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt)) |
| continue; |
| b = gimple_block (stmt); |
| if (b && !TREE_USED (b)) |
| gimple_set_block (stmt, NULL); |
| for (i = 0; i < gimple_num_ops (stmt); i++) |
| walk_tree (gimple_op_ptr (stmt, i), clear_unused_block_pointer_1, |
| NULL, NULL); |
| } |
| } |
| |
| /* Dump scope blocks starting at SCOPE to FILE. INDENT is the |
| indentation level and FLAGS is as in print_generic_expr. */ |
| |
| static void |
| dump_scope_block (FILE *file, int indent, tree scope, dump_flags_t flags) |
| { |
| tree var, t; |
| unsigned int i; |
| |
| fprintf (file, "\n%*s{ Scope block #%i%s",indent, "" , BLOCK_NUMBER (scope), |
| TREE_USED (scope) ? "" : " (unused)"); |
| if (LOCATION_LOCUS (BLOCK_SOURCE_LOCATION (scope)) != UNKNOWN_LOCATION) |
| { |
| expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope)); |
| fprintf (file, " %s:%i", s.file, s.line); |
| } |
| if (BLOCK_ABSTRACT_ORIGIN (scope)) |
| { |
| tree origin = block_ultimate_origin (scope); |
| if (origin) |
| { |
| fprintf (file, " Originating from :"); |
| if (DECL_P (origin)) |
| print_generic_decl (file, origin, flags); |
| else |
| fprintf (file, "#%i", BLOCK_NUMBER (origin)); |
| } |
| } |
| if (BLOCK_FRAGMENT_ORIGIN (scope)) |
| fprintf (file, " Fragment of : #%i", |
| BLOCK_NUMBER (BLOCK_FRAGMENT_ORIGIN (scope))); |
| else if (BLOCK_FRAGMENT_CHAIN (scope)) |
| { |
| fprintf (file, " Fragment chain :"); |
| for (t = BLOCK_FRAGMENT_CHAIN (scope); t ; |
| t = BLOCK_FRAGMENT_CHAIN (t)) |
| fprintf (file, " #%i", BLOCK_NUMBER (t)); |
| } |
| fprintf (file, " \n"); |
| for (var = BLOCK_VARS (scope); var; var = DECL_CHAIN (var)) |
| { |
| fprintf (file, "%*s", indent, ""); |
| print_generic_decl (file, var, flags); |
| fprintf (file, "\n"); |
| } |
| for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++) |
| { |
| fprintf (file, "%*s",indent, ""); |
| print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i), |
| flags); |
| fprintf (file, " (nonlocalized)\n"); |
| } |
| for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t)) |
| dump_scope_block (file, indent + 2, t, flags); |
| fprintf (file, "\n%*s}\n",indent, ""); |
| } |
| |
| /* Dump the tree of lexical scopes starting at SCOPE to stderr. FLAGS |
| is as in print_generic_expr. */ |
| |
| DEBUG_FUNCTION void |
| debug_scope_block (tree scope, dump_flags_t flags) |
| { |
| dump_scope_block (stderr, 0, scope, flags); |
| } |
| |
| |
| /* Dump the tree of lexical scopes of current_function_decl to FILE. |
| FLAGS is as in print_generic_expr. */ |
| |
| void |
| dump_scope_blocks (FILE *file, dump_flags_t flags) |
| { |
| dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags); |
| } |
| |
| |
| /* Dump the tree of lexical scopes of current_function_decl to stderr. |
| FLAGS is as in print_generic_expr. */ |
| |
| DEBUG_FUNCTION void |
| debug_scope_blocks (dump_flags_t flags) |
| { |
| dump_scope_blocks (stderr, flags); |
| } |
| |
| /* Remove local variables that are not referenced in the IL. */ |
| |
| void |
| remove_unused_locals (void) |
| { |
| basic_block bb; |
| tree var; |
| unsigned srcidx, dstidx, num; |
| bool have_local_clobbers = false; |
| |
| /* Removing declarations from lexical blocks when not optimizing is |
| not only a waste of time, it actually causes differences in stack |
| layout. */ |
| if (!optimize) |
| return; |
| |
| timevar_push (TV_REMOVE_UNUSED); |
| |
| mark_scope_block_unused (DECL_INITIAL (current_function_decl)); |
| |
| usedvars = BITMAP_ALLOC (NULL); |
| |
| /* Walk the CFG marking all referenced symbols. */ |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| gimple_stmt_iterator gsi; |
| size_t i; |
| edge_iterator ei; |
| edge e; |
| |
| /* Walk the statements. */ |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple *stmt = gsi_stmt (gsi); |
| tree b = gimple_block (stmt); |
| |
| /* If we wanted to mark the block referenced by the inline |
| entry point marker as used, this would be a good spot to |
| do it. If the block is not otherwise used, the stmt will |
| be cleaned up in clean_unused_block_pointer. */ |
| if (is_gimple_debug (stmt)) |
| continue; |
| |
| if (gimple_clobber_p (stmt)) |
| { |
| have_local_clobbers = true; |
| continue; |
| } |
| |
| if (b) |
| TREE_USED (b) = true; |
| |
| for (i = 0; i < gimple_num_ops (stmt); i++) |
| mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i)); |
| } |
| |
| for (gphi_iterator gpi = gsi_start_phis (bb); |
| !gsi_end_p (gpi); |
| gsi_next (&gpi)) |
| { |
| use_operand_p arg_p; |
| ssa_op_iter i; |
| tree def; |
| gphi *phi = gpi.phi (); |
| |
| if (virtual_operand_p (gimple_phi_result (phi))) |
| continue; |
| |
| def = gimple_phi_result (phi); |
| mark_all_vars_used (&def); |
| |
| FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES) |
| { |
| tree arg = USE_FROM_PTR (arg_p); |
| int index = PHI_ARG_INDEX_FROM_USE (arg_p); |
| tree block = |
| LOCATION_BLOCK (gimple_phi_arg_location (phi, index)); |
| if (block != NULL) |
| TREE_USED (block) = true; |
| mark_all_vars_used (&arg); |
| } |
| } |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (LOCATION_BLOCK (e->goto_locus) != NULL) |
| TREE_USED (LOCATION_BLOCK (e->goto_locus)) = true; |
| } |
| |
| /* We do a two-pass approach about the out-of-scope clobbers. We want |
| to remove them if they are the only references to a local variable, |
| but we want to retain them when there's any other. So the first pass |
| ignores them, and the second pass (if there were any) tries to remove |
| them. */ |
| if (have_local_clobbers) |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| gimple_stmt_iterator gsi; |
| |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);) |
| { |
| gimple *stmt = gsi_stmt (gsi); |
| tree b = gimple_block (stmt); |
| |
| if (gimple_clobber_p (stmt)) |
| { |
| tree lhs = gimple_assign_lhs (stmt); |
| tree base = get_base_address (lhs); |
| /* Remove clobbers referencing unused vars, or clobbers |
| with MEM_REF lhs referencing uninitialized pointers. */ |
| if ((VAR_P (base) && !is_used_p (base)) |
| || (TREE_CODE (lhs) == MEM_REF |
| && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME |
| && SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)) |
| && (TREE_CODE (SSA_NAME_VAR (TREE_OPERAND (lhs, 0))) |
| != PARM_DECL))) |
| { |
| unlink_stmt_vdef (stmt); |
| gsi_remove (&gsi, true); |
| release_defs (stmt); |
| continue; |
| } |
| if (b) |
| TREE_USED (b) = true; |
| } |
| gsi_next (&gsi); |
| } |
| } |
| |
| if (cfun->has_simduid_loops) |
| { |
| class loop *loop; |
| FOR_EACH_LOOP (loop, 0) |
| if (loop->simduid && !is_used_p (loop->simduid)) |
| loop->simduid = NULL_TREE; |
| } |
| |
| cfun->has_local_explicit_reg_vars = false; |
| |
| /* Remove unmarked local and global vars from local_decls. */ |
| num = vec_safe_length (cfun->local_decls); |
| for (srcidx = 0, dstidx = 0; srcidx < num; srcidx++) |
| { |
| var = (*cfun->local_decls)[srcidx]; |
| if (VAR_P (var)) |
| { |
| if (!is_used_p (var)) |
| { |
| tree def; |
| if (cfun->nonlocal_goto_save_area |
| && TREE_OPERAND (cfun->nonlocal_goto_save_area, 0) == var) |
| cfun->nonlocal_goto_save_area = NULL; |
| /* Release any default def associated with var. */ |
| if ((def = ssa_default_def (cfun, var)) != NULL_TREE) |
| { |
| set_ssa_default_def (cfun, var, NULL_TREE); |
| release_ssa_name (def); |
| } |
| continue; |
| } |
| } |
| if (VAR_P (var) && DECL_HARD_REGISTER (var) && !is_global_var (var)) |
| cfun->has_local_explicit_reg_vars = true; |
| |
| if (srcidx != dstidx) |
| (*cfun->local_decls)[dstidx] = var; |
| dstidx++; |
| } |
| if (dstidx != num) |
| { |
| statistics_counter_event (cfun, "unused VAR_DECLs removed", num - dstidx); |
| cfun->local_decls->truncate (dstidx); |
| } |
| |
| remove_unused_scope_block_p (DECL_INITIAL (current_function_decl), |
| polymorphic_ctor_dtor_p (current_function_decl, |
| true) != NULL_TREE); |
| clear_unused_block_pointer (); |
| |
| BITMAP_FREE (usedvars); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Scope blocks after cleanups:\n"); |
| dump_scope_blocks (dump_file, dump_flags); |
| } |
| |
| timevar_pop (TV_REMOVE_UNUSED); |
| } |
| |
| /* Allocate and return a new live range information object base on MAP. */ |
| |
| static tree_live_info_p |
| new_tree_live_info (var_map map) |
| { |
| tree_live_info_p live; |
| basic_block bb; |
| |
| live = XNEW (struct tree_live_info_d); |
| live->map = map; |
| live->num_blocks = last_basic_block_for_fn (cfun); |
| |
| bitmap_obstack_initialize (&live->livein_obstack); |
| bitmap_obstack_initialize (&live->liveout_obstack); |
| |
| live->livein = XCNEWVEC (bitmap_head, last_basic_block_for_fn (cfun)); |
| live->liveout = XCNEWVEC (bitmap_head, last_basic_block_for_fn (cfun)); |
| for (unsigned i = 0; map->vec_bbs.iterate (i, &bb); ++i) |
| { |
| bitmap_initialize (&live->livein[bb->index], &live->livein_obstack); |
| bitmap_initialize (&live->liveout[bb->index], &live->liveout_obstack); |
| } |
| |
| live->work_stack = XNEWVEC (int, last_basic_block_for_fn (cfun)); |
| live->stack_top = live->work_stack; |
| |
| live->global = BITMAP_ALLOC (NULL); |
| return live; |
| } |
| |
| |
| /* Free storage for live range info object LIVE. */ |
| |
| void |
| delete_tree_live_info (tree_live_info_p live) |
| { |
| if (live->livein) |
| { |
| bitmap_obstack_release (&live->livein_obstack); |
| free (live->livein); |
| } |
| if (live->liveout) |
| { |
| bitmap_obstack_release (&live->liveout_obstack); |
| free (live->liveout); |
| } |
| BITMAP_FREE (live->global); |
| free (live->work_stack); |
| free (live); |
| } |
| |
| |
| /* Visit basic block BB and propagate any required live on entry bits from |
| LIVE into the predecessors. VISITED is the bitmap of visited blocks. |
| TMP is a temporary work bitmap which is passed in to avoid reallocating |
| it each time. */ |
| |
| static void |
| loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited) |
| { |
| edge e; |
| bool change; |
| edge_iterator ei; |
| basic_block pred_bb; |
| bitmap loe; |
| |
| gcc_checking_assert (!bitmap_bit_p (visited, bb->index)); |
| bitmap_set_bit (visited, bb->index); |
| |
| loe = live_on_entry (live, bb); |
| |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| { |
| pred_bb = e->src; |
| if (!region_contains_p (live->map, pred_bb)) |
| continue; |
| /* Variables live-on-entry from BB that aren't defined in the |
| predecessor block. This should be the live on entry vars to pred. |
| Note that liveout is the DEFs in a block while live on entry is |
| being calculated. |
| Add these bits to live-on-entry for the pred. if there are any |
| changes, and pred_bb has been visited already, add it to the |
| revisit stack. */ |
| change = bitmap_ior_and_compl_into (live_on_entry (live, pred_bb), |
| loe, &live->liveout[pred_bb->index]); |
| if (change |
| && bitmap_bit_p (visited, pred_bb->index)) |
| { |
| bitmap_clear_bit (visited, pred_bb->index); |
| *(live->stack_top)++ = pred_bb->index; |
| } |
| } |
| } |
| |
| |
| /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses |
| of all the variables. */ |
| |
| static void |
| live_worklist (tree_live_info_p live) |
| { |
| unsigned b; |
| basic_block bb; |
| auto_sbitmap visited (last_basic_block_for_fn (cfun) + 1); |
| |
| bitmap_clear (visited); |
| |
| /* Visit region's blocks in reverse order and propagate live on entry values |
| into the predecessors blocks. */ |
| for (unsigned i = live->map->vec_bbs.length () - 1; |
| live->map->vec_bbs.iterate (i, &bb); --i) |
| loe_visit_block (live, bb, visited); |
| |
| /* Process any blocks which require further iteration. */ |
| while (live->stack_top != live->work_stack) |
| { |
| b = *--(live->stack_top); |
| loe_visit_block (live, BASIC_BLOCK_FOR_FN (cfun, b), visited); |
| } |
| } |
| |
| |
| /* Calculate the initial live on entry vector for SSA_NAME using immediate_use |
| links. Set the live on entry fields in LIVE. Def's are marked temporarily |
| in the liveout vector. */ |
| |
| static void |
| set_var_live_on_entry (tree ssa_name, tree_live_info_p live) |
| { |
| int p; |
| gimple *stmt; |
| use_operand_p use; |
| basic_block def_bb = NULL; |
| imm_use_iterator imm_iter; |
| bool global = false; |
| |
| p = var_to_partition (live->map, ssa_name); |
| if (p == NO_PARTITION) |
| return; |
| |
| stmt = SSA_NAME_DEF_STMT (ssa_name); |
| if (stmt) |
| { |
| def_bb = gimple_bb (stmt); |
| /* Mark defs in liveout bitmap temporarily. */ |
| if (def_bb && region_contains_p (live->map, def_bb)) |
| bitmap_set_bit (&live->liveout[def_bb->index], p); |
| } |
| else |
| def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); |
| |
| /* An undefined local variable does not need to be very alive. */ |
| if (ssa_undefined_value_p (ssa_name, false)) |
| return; |
| |
| /* Visit each use of SSA_NAME and if it isn't in the same block as the def, |
| add it to the list of live on entry blocks. */ |
| FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name) |
| { |
| gimple *use_stmt = USE_STMT (use); |
| basic_block add_block = NULL; |
| |
| if (gimple_code (use_stmt) == GIMPLE_PHI) |
| { |
| /* Uses in PHI's are considered to be live at exit of the SRC block |
| as this is where a copy would be inserted. Check to see if it is |
| defined in that block, or whether its live on entry. */ |
| int index = PHI_ARG_INDEX_FROM_USE (use); |
| edge e = gimple_phi_arg_edge (as_a <gphi *> (use_stmt), index); |
| if (e->src != def_bb && region_contains_p (live->map, e->src)) |
| add_block = e->src; |
| } |
| else if (is_gimple_debug (use_stmt)) |
| continue; |
| else |
| { |
| /* If its not defined in this block, its live on entry. */ |
| basic_block use_bb = gimple_bb (use_stmt); |
| if (use_bb != def_bb && region_contains_p (live->map, use_bb)) |
| add_block = use_bb; |
| } |
| |
| /* If there was a live on entry use, set the bit. */ |
| if (add_block) |
| { |
| global = true; |
| bitmap_set_bit (&live->livein[add_block->index], p); |
| } |
| } |
| |
| /* If SSA_NAME is live on entry to at least one block, fill in all the live |
| on entry blocks between the def and all the uses. */ |
| if (global) |
| bitmap_set_bit (live->global, p); |
| } |
| |
| |
| /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */ |
| |
| static void |
| calculate_live_on_exit (tree_live_info_p liveinfo) |
| { |
| basic_block bb; |
| edge e; |
| edge_iterator ei; |
| |
| /* live on entry calculations used liveout vectors for defs, clear them. */ |
| for (unsigned i = 0; liveinfo->map->vec_bbs.iterate (i, &bb); ++i) |
| bitmap_clear (&liveinfo->liveout[bb->index]); |
| |
| /* Set all the live-on-exit bits for uses in PHIs. */ |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| gphi_iterator gsi; |
| size_t i; |
| |
| /* Mark the PHI arguments which are live on exit to the pred block. */ |
| for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gphi *phi = gsi.phi (); |
| if (virtual_operand_p (gimple_phi_result (phi))) |
| continue; |
| for (i = 0; i < gimple_phi_num_args (phi); i++) |
| { |
| tree t = PHI_ARG_DEF (phi, i); |
| int p; |
| |
| if (TREE_CODE (t) != SSA_NAME) |
| continue; |
| |
| p = var_to_partition (liveinfo->map, t); |
| if (p == NO_PARTITION) |
| continue; |
| e = gimple_phi_arg_edge (phi, i); |
| if (region_contains_p (liveinfo->map, e->src)) |
| bitmap_set_bit (&liveinfo->liveout[e->src->index], p); |
| } |
| } |
| |
| if (!region_contains_p (liveinfo->map, bb)) |
| continue; |
| |
| /* Add each successors live on entry to this bock live on exit. */ |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (region_contains_p (liveinfo->map, e->dest)) |
| bitmap_ior_into (&liveinfo->liveout[bb->index], |
| live_on_entry (liveinfo, e->dest)); |
| } |
| } |
| |
| |
| /* Given partition map MAP, calculate all the live on entry bitmaps for |
| each partition. Return a new live info object. */ |
| |
| tree_live_info_p |
| calculate_live_ranges (var_map map, bool want_livein) |
| { |
| tree var; |
| unsigned i; |
| tree_live_info_p live; |
| |
| live = new_tree_live_info (map); |
| for (i = 0; i < num_var_partitions (map); i++) |
| { |
| var = partition_to_var (map, i); |
| if (var != NULL_TREE) |
| set_var_live_on_entry (var, live); |
| } |
| |
| live_worklist (live); |
| |
| if (flag_checking) |
| verify_live_on_entry (live); |
| |
| calculate_live_on_exit (live); |
| |
| if (!want_livein) |
| { |
| bitmap_obstack_release (&live->livein_obstack); |
| free (live->livein); |
| live->livein = NULL; |
| } |
| |
| return live; |
| } |
| |
| /* Data structure for compute_live_vars* functions. */ |
| |
| struct compute_live_vars_data { |
| /* Vector of bitmaps for live vars indices at the end of basic blocks, |
| indexed by bb->index. ACTIVE[ENTRY_BLOCK] must be empty bitmap, |
| ACTIVE[EXIT_BLOCK] is used for STOP_AFTER. */ |
| vec<bitmap_head> active; |
| /* Work bitmap of currently live variables. */ |
| bitmap work; |
| /* Set of interesting variables. Variables with uids not in this |
| hash_map are not tracked. */ |
| live_vars_map *vars; |
| }; |
| |
| /* Callback for walk_stmt_load_store_addr_ops. If OP is a VAR_DECL with |
| uid set in DATA->vars, enter its corresponding index into bitmap |
| DATA->work. */ |
| |
| static bool |
| compute_live_vars_visit (gimple *, tree op, tree, void *pdata) |
| { |
| compute_live_vars_data *data = (compute_live_vars_data *) pdata; |
| op = get_base_address (op); |
| if (op && VAR_P (op)) |
| if (unsigned int *v = data->vars->get (DECL_UID (op))) |
| bitmap_set_bit (data->work, *v); |
| return false; |
| } |
| |
| /* Helper routine for compute_live_vars, calculating the sets of live |
| variables at the end of BB, leaving the result in DATA->work. |
| If STOP_AFTER is non-NULL, stop processing after that stmt. */ |
| |
| static void |
| compute_live_vars_1 (basic_block bb, compute_live_vars_data *data, |
| gimple *stop_after) |
| { |
| edge e; |
| edge_iterator ei; |
| gimple_stmt_iterator gsi; |
| walk_stmt_load_store_addr_fn visit = compute_live_vars_visit; |
| |
| bitmap_clear (data->work); |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| bitmap_ior_into (data->work, &data->active[e->src->index]); |
| |
| for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| walk_stmt_load_store_addr_ops (gsi_stmt (gsi), data, NULL, NULL, visit); |
| for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple *stmt = gsi_stmt (gsi); |
| |
| if (gimple_clobber_p (stmt)) |
| { |
| tree lhs = gimple_assign_lhs (stmt); |
| if (VAR_P (lhs)) |
| if (unsigned int *v = data->vars->get (DECL_UID (lhs))) |
| bitmap_clear_bit (data->work, *v); |
| } |
| else if (!is_gimple_debug (stmt)) |
| walk_stmt_load_store_addr_ops (stmt, data, visit, visit, visit); |
| if (stmt == stop_after) |
| break; |
| } |
| } |
| |
| /* For function FN and live_vars_map (hash map from DECL_UIDs to a dense set of |
| indexes of automatic variables VARS, compute which of those variables are |
| (might be) live at the end of each basic block. */ |
| |
| vec<bitmap_head> |
| compute_live_vars (struct function *fn, live_vars_map *vars) |
| { |
| vec<bitmap_head> active; |
| |
| /* We approximate the live range of a stack variable by taking the first |
| mention of its name as starting point(s), and by the end-of-scope |
| death clobber added by gimplify as ending point(s) of the range. |
| This overapproximates in the case we for instance moved an address-taken |
| operation upward, without also moving a dereference to it upwards. |
| But it's conservatively correct as a variable never can hold values |
| before its name is mentioned at least once. |
| |
| We then do a mostly classical bitmap liveness algorithm. */ |
| |
| active.create (last_basic_block_for_fn (fn)); |
| active.quick_grow (last_basic_block_for_fn (fn)); |
| for (int i = 0; i < last_basic_block_for_fn (fn); i++) |
| bitmap_initialize (&active[i], &bitmap_default_obstack); |
| |
| bitmap work = BITMAP_ALLOC (NULL); |
| |
| int *rpo = XNEWVEC (int, last_basic_block_for_fn (fn)); |
| int n_bbs = pre_and_rev_post_order_compute_fn (fn, NULL, rpo, false); |
| |
| bool changed = true; |
| compute_live_vars_data data = { active, work, vars }; |
| while (changed) |
| { |
| int i; |
| changed = false; |
| for (i = 0; i < n_bbs; i++) |
| { |
| basic_block bb = BASIC_BLOCK_FOR_FN (fn, rpo[i]); |
| compute_live_vars_1 (bb, &data, NULL); |
| if (bitmap_ior_into (&active[bb->index], work)) |
| changed = true; |
| } |
| } |
| |
| free (rpo); |
| BITMAP_FREE (work); |
| |
| return active; |
| } |
| |
| /* For ACTIVE computed by compute_live_vars, compute a bitmap of variables |
| live after the STOP_AFTER statement and return that bitmap. */ |
| |
| bitmap |
| live_vars_at_stmt (vec<bitmap_head> &active, live_vars_map *vars, |
| gimple *stop_after) |
| { |
| bitmap work = BITMAP_ALLOC (NULL); |
| compute_live_vars_data data = { active, work, vars }; |
| basic_block bb = gimple_bb (stop_after); |
| compute_live_vars_1 (bb, &data, stop_after); |
| return work; |
| } |
| |
| /* Destroy what compute_live_vars has returned when it is no longer needed. */ |
| |
| void |
| destroy_live_vars (vec<bitmap_head> &active) |
| { |
| unsigned len = active.length (); |
| for (unsigned i = 0; i < len; i++) |
| bitmap_clear (&active[i]); |
| |
| active.release (); |
| } |
| |
| /* Output partition map MAP to file F. */ |
| |
| void |
| dump_var_map (FILE *f, var_map map) |
| { |
| int t; |
| unsigned x, y; |
| int p; |
| |
| fprintf (f, "\nPartition map \n\n"); |
| |
| for (x = 0; x < map->num_partitions; x++) |
| { |
| if (map->view_to_partition != NULL) |
| p = map->view_to_partition[x]; |
| else |
| p = x; |
| |
| if (ssa_name (p) == NULL_TREE |
| || virtual_operand_p (ssa_name (p))) |
| continue; |
| |
| t = 0; |
| for (y = 1; y < num_ssa_names; y++) |
| { |
| p = partition_find (map->var_partition, y); |
| if (map->partition_to_view) |
| p = map->partition_to_view[p]; |
| if (p == (int)x) |
| { |
| if (t++ == 0) |
| { |
| fprintf (f, "Partition %d (", x); |
| print_generic_expr (f, partition_to_var (map, p), TDF_SLIM); |
| fprintf (f, " - "); |
| } |
| fprintf (f, "%d ", y); |
| } |
| } |
| if (t != 0) |
| fprintf (f, ")\n"); |
| } |
| fprintf (f, "\n"); |
| } |
| |
| |
| /* Generic dump for the above. */ |
| |
| DEBUG_FUNCTION void |
| debug (_var_map &ref) |
| { |
| dump_var_map (stderr, &ref); |
| } |
| |
| DEBUG_FUNCTION void |
| debug (_var_map *ptr) |
| { |
| if (ptr) |
| debug (*ptr); |
| else |
| fprintf (stderr, "<nil>\n"); |
| } |
| |
| |
| /* Output live range info LIVE to file F, controlled by FLAG. */ |
| |
| void |
| dump_live_info (FILE *f, tree_live_info_p live, int flag) |
| { |
| basic_block bb; |
| unsigned i; |
| var_map map = live->map; |
| bitmap_iterator bi; |
| |
| if ((flag & LIVEDUMP_ENTRY) && live->livein) |
| { |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| fprintf (f, "\nLive on entry to BB%d : ", bb->index); |
| EXECUTE_IF_SET_IN_BITMAP (&live->livein[bb->index], 0, i, bi) |
| { |
| print_generic_expr (f, partition_to_var (map, i), TDF_SLIM); |
| fprintf (f, " "); |
| } |
| fprintf (f, "\n"); |
| } |
| } |
| |
| if ((flag & LIVEDUMP_EXIT) && live->liveout) |
| { |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| fprintf (f, "\nLive on exit from BB%d : ", bb->index); |
| EXECUTE_IF_SET_IN_BITMAP (&live->liveout[bb->index], 0, i, bi) |
| { |
| print_generic_expr (f, partition_to_var (map, i), TDF_SLIM); |
| fprintf (f, " "); |
| } |
| fprintf (f, "\n"); |
| } |
| } |
| } |
| |
| |
| /* Generic dump for the above. */ |
| |
| DEBUG_FUNCTION void |
| debug (tree_live_info_d &ref) |
| { |
| dump_live_info (stderr, &ref, 0); |
| } |
| |
| DEBUG_FUNCTION void |
| debug (tree_live_info_d *ptr) |
| { |
| if (ptr) |
| debug (*ptr); |
| else |
| fprintf (stderr, "<nil>\n"); |
| } |
| |
| |
| /* Verify that the info in LIVE matches the current cfg. */ |
| |
| static void |
| verify_live_on_entry (tree_live_info_p live) |
| { |
| unsigned i; |
| tree var; |
| gimple *stmt; |
| basic_block bb; |
| edge e; |
| int num; |
| edge_iterator ei; |
| var_map map = live->map; |
| |
| /* Check for live on entry partitions and report those with a DEF in |
| the program. This will typically mean an optimization has done |
| something wrong. */ |
| bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); |
| num = 0; |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| int entry_block = e->dest->index; |
| if (!region_contains_p (live->map, e->dest)) |
| continue; |
| for (i = 0; i < (unsigned)num_var_partitions (map); i++) |
| { |
| basic_block tmp; |
| tree d = NULL_TREE; |
| bitmap loe; |
| var = partition_to_var (map, i); |
| stmt = SSA_NAME_DEF_STMT (var); |
| tmp = gimple_bb (stmt); |
| if (SSA_NAME_VAR (var)) |
| d = ssa_default_def (cfun, SSA_NAME_VAR (var)); |
| |
| loe = live_on_entry (live, e->dest); |
| if (loe && bitmap_bit_p (loe, i)) |
| { |
| if (!gimple_nop_p (stmt)) |
| { |
| num++; |
| print_generic_expr (stderr, var, TDF_SLIM); |
| fprintf (stderr, " is defined "); |
| if (tmp) |
| fprintf (stderr, " in BB%d, ", tmp->index); |
| fprintf (stderr, "by:\n"); |
| print_gimple_stmt (stderr, stmt, 0, TDF_SLIM); |
| fprintf (stderr, "\nIt is also live-on-entry to entry BB %d", |
| entry_block); |
| fprintf (stderr, " So it appears to have multiple defs.\n"); |
| } |
| else |
| { |
| if (d != var) |
| { |
| num++; |
| print_generic_expr (stderr, var, TDF_SLIM); |
| fprintf (stderr, " is live-on-entry to BB%d ", |
| entry_block); |
| if (d) |
| { |
| fprintf (stderr, " but is not the default def of "); |
| print_generic_expr (stderr, d, TDF_SLIM); |
| fprintf (stderr, "\n"); |
| } |
| else |
| fprintf (stderr, " and there is no default def.\n"); |
| } |
| } |
| } |
| else |
| if (d == var) |
| { |
| /* An undefined local variable does not need to be very |
| alive. */ |
| if (ssa_undefined_value_p (var, false)) |
| continue; |
| |
| /* The only way this var shouldn't be marked live on entry is |
| if it occurs in a PHI argument of the block. */ |
| size_t z; |
| bool ok = false; |
| gphi_iterator gsi; |
| for (gsi = gsi_start_phis (e->dest); |
| !gsi_end_p (gsi) && !ok; |
| gsi_next (&gsi)) |
| { |
| gphi *phi = gsi.phi (); |
| if (virtual_operand_p (gimple_phi_result (phi))) |
| continue; |
| for (z = 0; z < gimple_phi_num_args (phi); z++) |
| if (var == gimple_phi_arg_def (phi, z)) |
| { |
| ok = true; |
| break; |
| } |
| } |
| if (ok) |
| continue; |
| /* Expand adds unused default defs for PARM_DECLs and |
| RESULT_DECLs. They're ok. */ |
| if (has_zero_uses (var) |
| && SSA_NAME_VAR (var) |
| && !VAR_P (SSA_NAME_VAR (var))) |
| continue; |
| num++; |
| print_generic_expr (stderr, var, TDF_SLIM); |
| fprintf (stderr, " is not marked live-on-entry to entry BB%d ", |
| entry_block); |
| fprintf (stderr, "but it is a default def so it should be.\n"); |
| } |
| } |
| } |
| gcc_assert (num <= 0); |
| } |