| // Written in the D programming language. |
| |
| /** |
| * Contains the elementary mathematical functions (powers, roots, |
| * and trigonometric functions), and low-level floating-point operations. |
| * Mathematical special functions are available in $(D std.mathspecial). |
| * |
| $(SCRIPT inhibitQuickIndex = 1;) |
| |
| $(DIVC quickindex, |
| $(BOOKTABLE , |
| $(TR $(TH Category) $(TH Members) ) |
| $(TR $(TDNW Constants) $(TD |
| $(MYREF E) $(MYREF PI) $(MYREF PI_2) $(MYREF PI_4) $(MYREF M_1_PI) |
| $(MYREF M_2_PI) $(MYREF M_2_SQRTPI) $(MYREF LN10) $(MYREF LN2) |
| $(MYREF LOG2) $(MYREF LOG2E) $(MYREF LOG2T) $(MYREF LOG10E) |
| $(MYREF SQRT2) $(MYREF SQRT1_2) |
| )) |
| $(TR $(TDNW Classics) $(TD |
| $(MYREF abs) $(MYREF fabs) $(MYREF sqrt) $(MYREF cbrt) $(MYREF hypot) |
| $(MYREF poly) $(MYREF nextPow2) $(MYREF truncPow2) |
| )) |
| $(TR $(TDNW Trigonometry) $(TD |
| $(MYREF sin) $(MYREF cos) $(MYREF tan) $(MYREF asin) $(MYREF acos) |
| $(MYREF atan) $(MYREF atan2) $(MYREF sinh) $(MYREF cosh) $(MYREF tanh) |
| $(MYREF asinh) $(MYREF acosh) $(MYREF atanh) $(MYREF expi) |
| )) |
| $(TR $(TDNW Rounding) $(TD |
| $(MYREF ceil) $(MYREF floor) $(MYREF round) $(MYREF lround) |
| $(MYREF trunc) $(MYREF rint) $(MYREF lrint) $(MYREF nearbyint) |
| $(MYREF rndtol) $(MYREF quantize) |
| )) |
| $(TR $(TDNW Exponentiation & Logarithms) $(TD |
| $(MYREF pow) $(MYREF exp) $(MYREF exp2) $(MYREF expm1) $(MYREF ldexp) |
| $(MYREF frexp) $(MYREF log) $(MYREF log2) $(MYREF log10) $(MYREF logb) |
| $(MYREF ilogb) $(MYREF log1p) $(MYREF scalbn) |
| )) |
| $(TR $(TDNW Modulus) $(TD |
| $(MYREF fmod) $(MYREF modf) $(MYREF remainder) |
| )) |
| $(TR $(TDNW Floating-point operations) $(TD |
| $(MYREF approxEqual) $(MYREF feqrel) $(MYREF fdim) $(MYREF fmax) |
| $(MYREF fmin) $(MYREF fma) $(MYREF nextDown) $(MYREF nextUp) |
| $(MYREF nextafter) $(MYREF NaN) $(MYREF getNaNPayload) |
| $(MYREF cmp) |
| )) |
| $(TR $(TDNW Introspection) $(TD |
| $(MYREF isFinite) $(MYREF isIdentical) $(MYREF isInfinity) $(MYREF isNaN) |
| $(MYREF isNormal) $(MYREF isSubnormal) $(MYREF signbit) $(MYREF sgn) |
| $(MYREF copysign) $(MYREF isPowerOf2) |
| )) |
| $(TR $(TDNW Complex Numbers) $(TD |
| $(MYREF abs) $(MYREF conj) $(MYREF sin) $(MYREF cos) $(MYREF expi) |
| )) |
| $(TR $(TDNW Hardware Control) $(TD |
| $(MYREF IeeeFlags) $(MYREF FloatingPointControl) |
| )) |
| ) |
| ) |
| |
| * The functionality closely follows the IEEE754-2008 standard for |
| * floating-point arithmetic, including the use of camelCase names rather |
| * than C99-style lower case names. All of these functions behave correctly |
| * when presented with an infinity or NaN. |
| * |
| * The following IEEE 'real' formats are currently supported: |
| * $(UL |
| * $(LI 64 bit Big-endian 'double' (eg PowerPC)) |
| * $(LI 128 bit Big-endian 'quadruple' (eg SPARC)) |
| * $(LI 64 bit Little-endian 'double' (eg x86-SSE2)) |
| * $(LI 80 bit Little-endian, with implied bit 'real80' (eg x87, Itanium)) |
| * $(LI 128 bit Little-endian 'quadruple' (not implemented on any known processor!)) |
| * $(LI Non-IEEE 128 bit Big-endian 'doubledouble' (eg PowerPC) has partial support) |
| * ) |
| * Unlike C, there is no global 'errno' variable. Consequently, almost all of |
| * these functions are pure nothrow. |
| * |
| * Status: |
| * The semantics and names of feqrel and approxEqual will be revised. |
| * |
| * Macros: |
| * TABLE_SV = <table border="1" cellpadding="4" cellspacing="0"> |
| * <caption>Special Values</caption> |
| * $0</table> |
| * SVH = $(TR $(TH $1) $(TH $2)) |
| * SV = $(TR $(TD $1) $(TD $2)) |
| * TH3 = $(TR $(TH $1) $(TH $2) $(TH $3)) |
| * TD3 = $(TR $(TD $1) $(TD $2) $(TD $3)) |
| * TABLE_DOMRG = <table border="1" cellpadding="4" cellspacing="0"> |
| * $(SVH Domain X, Range Y) |
| $(SV $1, $2) |
| * </table> |
| * DOMAIN=$1 |
| * RANGE=$1 |
| |
| * NAN = $(RED NAN) |
| * SUP = <span style="vertical-align:super;font-size:smaller">$0</span> |
| * GAMMA = Γ |
| * THETA = θ |
| * INTEGRAL = ∫ |
| * INTEGRATE = $(BIG ∫<sub>$(SMALL $1)</sub><sup>$2</sup>) |
| * POWER = $1<sup>$2</sup> |
| * SUB = $1<sub>$2</sub> |
| * BIGSUM = $(BIG Σ <sup>$2</sup><sub>$(SMALL $1)</sub>) |
| * CHOOSE = $(BIG () <sup>$(SMALL $1)</sup><sub>$(SMALL $2)</sub> $(BIG )) |
| * PLUSMN = ± |
| * INFIN = ∞ |
| * PLUSMNINF = ±∞ |
| * PI = π |
| * LT = < |
| * GT = > |
| * SQRT = √ |
| * HALF = ½ |
| * |
| * Copyright: Copyright Digital Mars 2000 - 2011. |
| * D implementations of tan, atan, atan2, exp, expm1, exp2, log, log10, log1p, |
| * log2, floor, ceil and lrint functions are based on the CEPHES math library, |
| * which is Copyright (C) 2001 Stephen L. Moshier $(LT)steve@moshier.net$(GT) |
| * and are incorporated herein by permission of the author. The author |
| * reserves the right to distribute this material elsewhere under different |
| * copying permissions. These modifications are distributed here under |
| * the following terms: |
| * License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0). |
| * Authors: $(HTTP digitalmars.com, Walter Bright), Don Clugston, |
| * Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger |
| * Source: $(PHOBOSSRC std/_math.d) |
| */ |
| |
| /* NOTE: This file has been patched from the original DMD distribution to |
| * work with the GDC compiler. |
| */ |
| module std.math; |
| |
| version (Win64) |
| { |
| version (D_InlineAsm_X86_64) |
| version = Win64_DMD_InlineAsm; |
| } |
| |
| static import core.math; |
| static import core.stdc.math; |
| static import core.stdc.fenv; |
| import std.traits; // CommonType, isFloatingPoint, isIntegral, isSigned, isUnsigned, Largest, Unqual |
| |
| version (LDC) |
| { |
| import ldc.intrinsics; |
| } |
| |
| version (DigitalMars) |
| { |
| version = INLINE_YL2X; // x87 has opcodes for these |
| } |
| |
| version (X86) version = X86_Any; |
| version (X86_64) version = X86_Any; |
| version (PPC) version = PPC_Any; |
| version (PPC64) version = PPC_Any; |
| version (MIPS32) version = MIPS_Any; |
| version (MIPS64) version = MIPS_Any; |
| version (AArch64) version = ARM_Any; |
| version (ARM) version = ARM_Any; |
| version (S390) version = IBMZ_Any; |
| version (SPARC) version = SPARC_Any; |
| version (SPARC64) version = SPARC_Any; |
| version (SystemZ) version = IBMZ_Any; |
| version (RISCV32) version = RISCV_Any; |
| version (RISCV64) version = RISCV_Any; |
| |
| version (D_InlineAsm_X86) |
| { |
| version = InlineAsm_X86_Any; |
| } |
| else version (D_InlineAsm_X86_64) |
| { |
| version = InlineAsm_X86_Any; |
| } |
| |
| version (CRuntime_Microsoft) |
| { |
| version (InlineAsm_X86_Any) |
| version = MSVC_InlineAsm; |
| } |
| |
| version (X86_64) version = StaticallyHaveSSE; |
| version (X86) version (OSX) version = StaticallyHaveSSE; |
| |
| version (StaticallyHaveSSE) |
| { |
| private enum bool haveSSE = true; |
| } |
| else version (X86) |
| { |
| static import core.cpuid; |
| private alias haveSSE = core.cpuid.sse; |
| } |
| |
| version (D_SoftFloat) |
| { |
| // Some soft float implementations may support IEEE floating flags. |
| // The implementation here supports hardware flags only and is so currently |
| // only available for supported targets. |
| } |
| else version (X86_Any) version = IeeeFlagsSupport; |
| else version (PPC_Any) version = IeeeFlagsSupport; |
| else version (RISCV_Any) version = IeeeFlagsSupport; |
| else version (MIPS_Any) version = IeeeFlagsSupport; |
| else version (ARM_Any) version = IeeeFlagsSupport; |
| |
| // Struct FloatingPointControl is only available if hardware FP units are available. |
| version (D_HardFloat) |
| { |
| // FloatingPointControl.clearExceptions() depends on version IeeeFlagsSupport |
| version (IeeeFlagsSupport) version = FloatingPointControlSupport; |
| } |
| |
| version (GNU) |
| { |
| // The compiler can unexpectedly rearrange floating point operations and |
| // access to the floating point status flags when optimizing. This means |
| // ieeeFlags tests cannot be reliably checked in optimized code. |
| // See https://github.com/ldc-developers/ldc/issues/888 |
| } |
| else |
| { |
| version = IeeeFlagsUnittest; |
| version = FloatingPointControlUnittest; |
| } |
| |
| version (unittest) |
| { |
| import core.stdc.stdio; // : sprintf; |
| |
| static if (real.sizeof > double.sizeof) |
| enum uint useDigits = 16; |
| else |
| enum uint useDigits = 15; |
| |
| /****************************************** |
| * Compare floating point numbers to n decimal digits of precision. |
| * Returns: |
| * 1 match |
| * 0 nomatch |
| */ |
| |
| private bool equalsDigit(real x, real y, uint ndigits) |
| { |
| if (signbit(x) != signbit(y)) |
| return 0; |
| |
| if (isInfinity(x) && isInfinity(y)) |
| return 1; |
| if (isInfinity(x) || isInfinity(y)) |
| return 0; |
| |
| if (isNaN(x) && isNaN(y)) |
| return 1; |
| if (isNaN(x) || isNaN(y)) |
| return 0; |
| |
| char[30] bufx; |
| char[30] bufy; |
| assert(ndigits < bufx.length); |
| |
| int ix; |
| int iy; |
| version (CRuntime_Microsoft) |
| alias real_t = double; |
| else |
| alias real_t = real; |
| ix = sprintf(bufx.ptr, "%.*Lg", ndigits, cast(real_t) x); |
| iy = sprintf(bufy.ptr, "%.*Lg", ndigits, cast(real_t) y); |
| assert(ix < bufx.length && ix > 0); |
| assert(ix < bufy.length && ix > 0); |
| |
| return bufx[0 .. ix] == bufy[0 .. iy]; |
| } |
| } |
| |
| |
| |
| package: |
| // The following IEEE 'real' formats are currently supported. |
| version (LittleEndian) |
| { |
| static assert(real.mant_dig == 53 || real.mant_dig == 64 |
| || real.mant_dig == 113, |
| "Only 64-bit, 80-bit, and 128-bit reals"~ |
| " are supported for LittleEndian CPUs"); |
| } |
| else |
| { |
| static assert(real.mant_dig == 53 || real.mant_dig == 106 |
| || real.mant_dig == 113, |
| "Only 64-bit and 128-bit reals are supported for BigEndian CPUs."~ |
| " double-double reals have partial support"); |
| } |
| |
| // Underlying format exposed through floatTraits |
| enum RealFormat |
| { |
| ieeeHalf, |
| ieeeSingle, |
| ieeeDouble, |
| ieeeExtended, // x87 80-bit real |
| ieeeExtended53, // x87 real rounded to precision of double. |
| ibmExtended, // IBM 128-bit extended |
| ieeeQuadruple, |
| } |
| |
| // Constants used for extracting the components of the representation. |
| // They supplement the built-in floating point properties. |
| template floatTraits(T) |
| { |
| // EXPMASK is a ushort mask to select the exponent portion (without sign) |
| // EXPSHIFT is the number of bits the exponent is left-shifted by in its ushort |
| // EXPBIAS is the exponent bias - 1 (exp == EXPBIAS yields ×2^-1). |
| // EXPPOS_SHORT is the index of the exponent when represented as a ushort array. |
| // SIGNPOS_BYTE is the index of the sign when represented as a ubyte array. |
| // RECIP_EPSILON is the value such that (smallest_subnormal) * RECIP_EPSILON == T.min_normal |
| enum T RECIP_EPSILON = (1/T.epsilon); |
| static if (T.mant_dig == 24) |
| { |
| // Single precision float |
| enum ushort EXPMASK = 0x7F80; |
| enum ushort EXPSHIFT = 7; |
| enum ushort EXPBIAS = 0x3F00; |
| enum uint EXPMASK_INT = 0x7F80_0000; |
| enum uint MANTISSAMASK_INT = 0x007F_FFFF; |
| enum realFormat = RealFormat.ieeeSingle; |
| version (LittleEndian) |
| { |
| enum EXPPOS_SHORT = 1; |
| enum SIGNPOS_BYTE = 3; |
| } |
| else |
| { |
| enum EXPPOS_SHORT = 0; |
| enum SIGNPOS_BYTE = 0; |
| } |
| } |
| else static if (T.mant_dig == 53) |
| { |
| static if (T.sizeof == 8) |
| { |
| // Double precision float, or real == double |
| enum ushort EXPMASK = 0x7FF0; |
| enum ushort EXPSHIFT = 4; |
| enum ushort EXPBIAS = 0x3FE0; |
| enum uint EXPMASK_INT = 0x7FF0_0000; |
| enum uint MANTISSAMASK_INT = 0x000F_FFFF; // for the MSB only |
| enum realFormat = RealFormat.ieeeDouble; |
| version (LittleEndian) |
| { |
| enum EXPPOS_SHORT = 3; |
| enum SIGNPOS_BYTE = 7; |
| } |
| else |
| { |
| enum EXPPOS_SHORT = 0; |
| enum SIGNPOS_BYTE = 0; |
| } |
| } |
| else static if (T.sizeof == 12) |
| { |
| // Intel extended real80 rounded to double |
| enum ushort EXPMASK = 0x7FFF; |
| enum ushort EXPSHIFT = 0; |
| enum ushort EXPBIAS = 0x3FFE; |
| enum realFormat = RealFormat.ieeeExtended53; |
| version (LittleEndian) |
| { |
| enum EXPPOS_SHORT = 4; |
| enum SIGNPOS_BYTE = 9; |
| } |
| else |
| { |
| enum EXPPOS_SHORT = 0; |
| enum SIGNPOS_BYTE = 0; |
| } |
| } |
| else |
| static assert(false, "No traits support for " ~ T.stringof); |
| } |
| else static if (T.mant_dig == 64) |
| { |
| // Intel extended real80 |
| enum ushort EXPMASK = 0x7FFF; |
| enum ushort EXPSHIFT = 0; |
| enum ushort EXPBIAS = 0x3FFE; |
| enum realFormat = RealFormat.ieeeExtended; |
| version (LittleEndian) |
| { |
| enum EXPPOS_SHORT = 4; |
| enum SIGNPOS_BYTE = 9; |
| } |
| else |
| { |
| enum EXPPOS_SHORT = 0; |
| enum SIGNPOS_BYTE = 0; |
| } |
| } |
| else static if (T.mant_dig == 113) |
| { |
| // Quadruple precision float |
| enum ushort EXPMASK = 0x7FFF; |
| enum ushort EXPSHIFT = 0; |
| enum ushort EXPBIAS = 0x3FFE; |
| enum realFormat = RealFormat.ieeeQuadruple; |
| version (LittleEndian) |
| { |
| enum EXPPOS_SHORT = 7; |
| enum SIGNPOS_BYTE = 15; |
| } |
| else |
| { |
| enum EXPPOS_SHORT = 0; |
| enum SIGNPOS_BYTE = 0; |
| } |
| } |
| else static if (T.mant_dig == 106) |
| { |
| // IBM Extended doubledouble |
| enum ushort EXPMASK = 0x7FF0; |
| enum ushort EXPSHIFT = 4; |
| enum realFormat = RealFormat.ibmExtended; |
| |
| // For IBM doubledouble the larger magnitude double comes first. |
| // It's really a double[2] and arrays don't index differently |
| // between little and big-endian targets. |
| enum DOUBLEPAIR_MSB = 0; |
| enum DOUBLEPAIR_LSB = 1; |
| |
| // The exponent/sign byte is for most significant part. |
| version (LittleEndian) |
| { |
| enum EXPPOS_SHORT = 3; |
| enum SIGNPOS_BYTE = 7; |
| } |
| else |
| { |
| enum EXPPOS_SHORT = 0; |
| enum SIGNPOS_BYTE = 0; |
| } |
| } |
| else |
| static assert(false, "No traits support for " ~ T.stringof); |
| } |
| |
| // These apply to all floating-point types |
| version (LittleEndian) |
| { |
| enum MANTISSA_LSB = 0; |
| enum MANTISSA_MSB = 1; |
| } |
| else |
| { |
| enum MANTISSA_LSB = 1; |
| enum MANTISSA_MSB = 0; |
| } |
| |
| // Common code for math implementations. |
| |
| // Helper for floor/ceil |
| T floorImpl(T)(const T x) @trusted pure nothrow @nogc |
| { |
| alias F = floatTraits!(T); |
| // Take care not to trigger library calls from the compiler, |
| // while ensuring that we don't get defeated by some optimizers. |
| union floatBits |
| { |
| T rv; |
| ushort[T.sizeof/2] vu; |
| |
| // Other kinds of extractors for real formats. |
| static if (F.realFormat == RealFormat.ieeeSingle) |
| int vi; |
| } |
| floatBits y = void; |
| y.rv = x; |
| |
| // Find the exponent (power of 2) |
| // Do this by shifting the raw value so that the exponent lies in the low bits, |
| // then mask out the sign bit, and subtract the bias. |
| static if (F.realFormat == RealFormat.ieeeSingle) |
| { |
| int exp = ((y.vi >> (T.mant_dig - 1)) & 0xff) - 0x7f; |
| } |
| else static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| int exp = ((y.vu[F.EXPPOS_SHORT] >> 4) & 0x7ff) - 0x3ff; |
| |
| version (LittleEndian) |
| int pos = 0; |
| else |
| int pos = 3; |
| } |
| else static if (F.realFormat == RealFormat.ieeeExtended) |
| { |
| int exp = (y.vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff; |
| |
| version (LittleEndian) |
| int pos = 0; |
| else |
| int pos = 4; |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| int exp = (y.vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff; |
| |
| version (LittleEndian) |
| int pos = 0; |
| else |
| int pos = 7; |
| } |
| else |
| static assert(false, "Not implemented for this architecture"); |
| |
| if (exp < 0) |
| { |
| if (x < 0.0) |
| return -1.0; |
| else |
| return 0.0; |
| } |
| |
| static if (F.realFormat == RealFormat.ieeeSingle) |
| { |
| if (exp < (T.mant_dig - 1)) |
| { |
| // Clear all bits representing the fraction part. |
| const uint fraction_mask = F.MANTISSAMASK_INT >> exp; |
| |
| if ((y.vi & fraction_mask) != 0) |
| { |
| // If 'x' is negative, then first substract 1.0 from the value. |
| if (y.vi < 0) |
| y.vi += 0x00800000 >> exp; |
| y.vi &= ~fraction_mask; |
| } |
| } |
| } |
| else |
| { |
| exp = (T.mant_dig - 1) - exp; |
| |
| // Zero 16 bits at a time. |
| while (exp >= 16) |
| { |
| version (LittleEndian) |
| y.vu[pos++] = 0; |
| else |
| y.vu[pos--] = 0; |
| exp -= 16; |
| } |
| |
| // Clear the remaining bits. |
| if (exp > 0) |
| y.vu[pos] &= 0xffff ^ ((1 << exp) - 1); |
| |
| if ((x < 0.0) && (x != y.rv)) |
| y.rv -= 1.0; |
| } |
| |
| return y.rv; |
| } |
| |
| public: |
| |
| // Values obtained from Wolfram Alpha. 116 bits ought to be enough for anybody. |
| // Wolfram Alpha LLC. 2011. Wolfram|Alpha. http://www.wolframalpha.com/input/?i=e+in+base+16 (access July 6, 2011). |
| enum real E = 0x1.5bf0a8b1457695355fb8ac404e7a8p+1L; /** e = 2.718281... */ |
| enum real LOG2T = 0x1.a934f0979a3715fc9257edfe9b5fbp+1L; /** $(SUB log, 2)10 = 3.321928... */ |
| enum real LOG2E = 0x1.71547652b82fe1777d0ffda0d23a8p+0L; /** $(SUB log, 2)e = 1.442695... */ |
| enum real LOG2 = 0x1.34413509f79fef311f12b35816f92p-2L; /** $(SUB log, 10)2 = 0.301029... */ |
| enum real LOG10E = 0x1.bcb7b1526e50e32a6ab7555f5a67cp-2L; /** $(SUB log, 10)e = 0.434294... */ |
| enum real LN2 = 0x1.62e42fefa39ef35793c7673007e5fp-1L; /** ln 2 = 0.693147... */ |
| enum real LN10 = 0x1.26bb1bbb5551582dd4adac5705a61p+1L; /** ln 10 = 2.302585... */ |
| enum real PI = 0x1.921fb54442d18469898cc51701b84p+1L; /** $(_PI) = 3.141592... */ |
| enum real PI_2 = PI/2; /** $(PI) / 2 = 1.570796... */ |
| enum real PI_4 = PI/4; /** $(PI) / 4 = 0.785398... */ |
| enum real M_1_PI = 0x1.45f306dc9c882a53f84eafa3ea69cp-2L; /** 1 / $(PI) = 0.318309... */ |
| enum real M_2_PI = 2*M_1_PI; /** 2 / $(PI) = 0.636619... */ |
| enum real M_2_SQRTPI = 0x1.20dd750429b6d11ae3a914fed7fd8p+0L; /** 2 / $(SQRT)$(PI) = 1.128379... */ |
| enum real SQRT2 = 0x1.6a09e667f3bcc908b2fb1366ea958p+0L; /** $(SQRT)2 = 1.414213... */ |
| enum real SQRT1_2 = SQRT2/2; /** $(SQRT)$(HALF) = 0.707106... */ |
| // Note: Make sure the magic numbers in compiler backend for x87 match these. |
| |
| |
| /*********************************** |
| * Calculates the absolute value of a number |
| * |
| * Params: |
| * Num = (template parameter) type of number |
| * x = real number value |
| * z = complex number value |
| * y = imaginary number value |
| * |
| * Returns: |
| * The absolute value of the number. If floating-point or integral, |
| * the return type will be the same as the input; if complex or |
| * imaginary, the returned value will be the corresponding floating |
| * point type. |
| * |
| * For complex numbers, abs(z) = sqrt( $(POWER z.re, 2) + $(POWER z.im, 2) ) |
| * = hypot(z.re, z.im). |
| */ |
| Num abs(Num)(Num x) @safe pure nothrow |
| if (is(typeof(Num.init >= 0)) && is(typeof(-Num.init)) && |
| !(is(Num* : const(ifloat*)) || is(Num* : const(idouble*)) |
| || is(Num* : const(ireal*)))) |
| { |
| static if (isFloatingPoint!(Num)) |
| return fabs(x); |
| else |
| return x >= 0 ? x : -x; |
| } |
| |
| /// ditto |
| auto abs(Num)(Num z) @safe pure nothrow @nogc |
| if (is(Num* : const(cfloat*)) || is(Num* : const(cdouble*)) |
| || is(Num* : const(creal*))) |
| { |
| return hypot(z.re, z.im); |
| } |
| |
| /// ditto |
| auto abs(Num)(Num y) @safe pure nothrow @nogc |
| if (is(Num* : const(ifloat*)) || is(Num* : const(idouble*)) |
| || is(Num* : const(ireal*))) |
| { |
| return fabs(y.im); |
| } |
| |
| /// ditto |
| @safe pure nothrow @nogc unittest |
| { |
| assert(isIdentical(abs(-0.0L), 0.0L)); |
| assert(isNaN(abs(real.nan))); |
| assert(abs(-real.infinity) == real.infinity); |
| assert(abs(-3.2Li) == 3.2L); |
| assert(abs(71.6Li) == 71.6L); |
| assert(abs(-56) == 56); |
| assert(abs(2321312L) == 2321312L); |
| assert(abs(-1L+1i) == sqrt(2.0L)); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| import std.meta : AliasSeq; |
| foreach (T; AliasSeq!(float, double, real)) |
| { |
| T f = 3; |
| assert(abs(f) == f); |
| assert(abs(-f) == f); |
| } |
| foreach (T; AliasSeq!(cfloat, cdouble, creal)) |
| { |
| T f = -12+3i; |
| assert(abs(f) == hypot(f.re, f.im)); |
| assert(abs(-f) == hypot(f.re, f.im)); |
| } |
| } |
| |
| /*********************************** |
| * Complex conjugate |
| * |
| * conj(x + iy) = x - iy |
| * |
| * Note that z * conj(z) = $(POWER z.re, 2) - $(POWER z.im, 2) |
| * is always a real number |
| */ |
| auto conj(Num)(Num z) @safe pure nothrow @nogc |
| if (is(Num* : const(cfloat*)) || is(Num* : const(cdouble*)) |
| || is(Num* : const(creal*))) |
| { |
| //FIXME |
| //Issue 14206 |
| static if (is(Num* : const(cdouble*))) |
| return cast(cdouble) conj(cast(creal) z); |
| else |
| return z.re - z.im*1fi; |
| } |
| |
| /** ditto */ |
| auto conj(Num)(Num y) @safe pure nothrow @nogc |
| if (is(Num* : const(ifloat*)) || is(Num* : const(idouble*)) |
| || is(Num* : const(ireal*))) |
| { |
| return -y; |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| creal c = 7 + 3Li; |
| assert(conj(c) == 7-3Li); |
| ireal z = -3.2Li; |
| assert(conj(z) == -z); |
| } |
| //Issue 14206 |
| @safe pure nothrow @nogc unittest |
| { |
| cdouble c = 7 + 3i; |
| assert(conj(c) == 7-3i); |
| idouble z = -3.2i; |
| assert(conj(z) == -z); |
| } |
| //Issue 14206 |
| @safe pure nothrow @nogc unittest |
| { |
| cfloat c = 7f + 3fi; |
| assert(conj(c) == 7f-3fi); |
| ifloat z = -3.2fi; |
| assert(conj(z) == -z); |
| } |
| |
| /*********************************** |
| * Returns cosine of x. x is in radians. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH cos(x)) $(TH invalid?)) |
| * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) ) |
| * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes) ) |
| * ) |
| * Bugs: |
| * Results are undefined if |x| >= $(POWER 2,64). |
| */ |
| |
| real cos(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.cos(x); } |
| //FIXME |
| ///ditto |
| double cos(double x) @safe pure nothrow @nogc { return cos(cast(real) x); } |
| //FIXME |
| ///ditto |
| float cos(float x) @safe pure nothrow @nogc { return cos(cast(real) x); } |
| |
| @safe unittest |
| { |
| real function(real) pcos = &cos; |
| assert(pcos != null); |
| } |
| |
| /*********************************** |
| * Returns $(HTTP en.wikipedia.org/wiki/Sine, sine) of x. x is in $(HTTP en.wikipedia.org/wiki/Radian, radians). |
| * |
| * $(TABLE_SV |
| * $(TH3 x , sin(x) , invalid?) |
| * $(TD3 $(NAN) , $(NAN) , yes ) |
| * $(TD3 $(PLUSMN)0.0, $(PLUSMN)0.0, no ) |
| * $(TD3 $(PLUSMNINF), $(NAN) , yes ) |
| * ) |
| * |
| * Params: |
| * x = angle in radians (not degrees) |
| * Returns: |
| * sine of x |
| * See_Also: |
| * $(MYREF cos), $(MYREF tan), $(MYREF asin) |
| * Bugs: |
| * Results are undefined if |x| >= $(POWER 2,64). |
| */ |
| |
| real sin(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.sin(x); } |
| //FIXME |
| ///ditto |
| double sin(double x) @safe pure nothrow @nogc { return sin(cast(real) x); } |
| //FIXME |
| ///ditto |
| float sin(float x) @safe pure nothrow @nogc { return sin(cast(real) x); } |
| |
| /// |
| @safe unittest |
| { |
| import std.math : sin, PI; |
| import std.stdio : writefln; |
| |
| void someFunc() |
| { |
| real x = 30.0; |
| auto result = sin(x * (PI / 180)); // convert degrees to radians |
| writefln("The sine of %s degrees is %s", x, result); |
| } |
| } |
| |
| @safe unittest |
| { |
| real function(real) psin = &sin; |
| assert(psin != null); |
| } |
| |
| /*********************************** |
| * Returns sine for complex and imaginary arguments. |
| * |
| * sin(z) = sin(z.re)*cosh(z.im) + cos(z.re)*sinh(z.im)i |
| * |
| * If both sin($(THETA)) and cos($(THETA)) are required, |
| * it is most efficient to use expi($(THETA)). |
| */ |
| creal sin(creal z) @safe pure nothrow @nogc |
| { |
| const creal cs = expi(z.re); |
| const creal csh = coshisinh(z.im); |
| return cs.im * csh.re + cs.re * csh.im * 1i; |
| } |
| |
| /** ditto */ |
| ireal sin(ireal y) @safe pure nothrow @nogc |
| { |
| return cosh(y.im)*1i; |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert(sin(0.0+0.0i) == 0.0); |
| assert(sin(2.0+0.0i) == sin(2.0L) ); |
| } |
| |
| /*********************************** |
| * cosine, complex and imaginary |
| * |
| * cos(z) = cos(z.re)*cosh(z.im) - sin(z.re)*sinh(z.im)i |
| */ |
| creal cos(creal z) @safe pure nothrow @nogc |
| { |
| const creal cs = expi(z.re); |
| const creal csh = coshisinh(z.im); |
| return cs.re * csh.re - cs.im * csh.im * 1i; |
| } |
| |
| /** ditto */ |
| real cos(ireal y) @safe pure nothrow @nogc |
| { |
| return cosh(y.im); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert(cos(0.0+0.0i)==1.0); |
| assert(cos(1.3L+0.0i)==cos(1.3L)); |
| assert(cos(5.2Li)== cosh(5.2L)); |
| } |
| |
| /**************************************************************************** |
| * Returns tangent of x. x is in radians. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH tan(x)) $(TH invalid?)) |
| * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) |
| * $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD yes)) |
| * ) |
| */ |
| |
| real tan(real x) @trusted pure nothrow @nogc |
| { |
| version (D_InlineAsm_X86) |
| { |
| asm pure nothrow @nogc |
| { |
| fld x[EBP] ; // load theta |
| fxam ; // test for oddball values |
| fstsw AX ; |
| sahf ; |
| jc trigerr ; // x is NAN, infinity, or empty |
| // 387's can handle subnormals |
| SC18: fptan ; |
| fstsw AX ; |
| sahf ; |
| jnp Clear1 ; // C2 = 1 (x is out of range) |
| |
| // Do argument reduction to bring x into range |
| fldpi ; |
| fxch ; |
| SC17: fprem1 ; |
| fstsw AX ; |
| sahf ; |
| jp SC17 ; |
| fstp ST(1) ; // remove pi from stack |
| jmp SC18 ; |
| |
| trigerr: |
| jnp Lret ; // if theta is NAN, return theta |
| fstp ST(0) ; // dump theta |
| } |
| return real.nan; |
| |
| Clear1: asm pure nothrow @nogc{ |
| fstp ST(0) ; // dump X, which is always 1 |
| } |
| |
| Lret: {} |
| } |
| else version (D_InlineAsm_X86_64) |
| { |
| version (Win64) |
| { |
| asm pure nothrow @nogc |
| { |
| fld real ptr [RCX] ; // load theta |
| } |
| } |
| else |
| { |
| asm pure nothrow @nogc |
| { |
| fld x[RBP] ; // load theta |
| } |
| } |
| asm pure nothrow @nogc |
| { |
| fxam ; // test for oddball values |
| fstsw AX ; |
| test AH,1 ; |
| jnz trigerr ; // x is NAN, infinity, or empty |
| // 387's can handle subnormals |
| SC18: fptan ; |
| fstsw AX ; |
| test AH,4 ; |
| jz Clear1 ; // C2 = 1 (x is out of range) |
| |
| // Do argument reduction to bring x into range |
| fldpi ; |
| fxch ; |
| SC17: fprem1 ; |
| fstsw AX ; |
| test AH,4 ; |
| jnz SC17 ; |
| fstp ST(1) ; // remove pi from stack |
| jmp SC18 ; |
| |
| trigerr: |
| test AH,4 ; |
| jz Lret ; // if theta is NAN, return theta |
| fstp ST(0) ; // dump theta |
| } |
| return real.nan; |
| |
| Clear1: asm pure nothrow @nogc{ |
| fstp ST(0) ; // dump X, which is always 1 |
| } |
| |
| Lret: {} |
| } |
| else |
| { |
| // Coefficients for tan(x) and PI/4 split into three parts. |
| static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple) |
| { |
| static immutable real[6] P = [ |
| 2.883414728874239697964612246732416606301E10L, |
| -2.307030822693734879744223131873392503321E9L, |
| 5.160188250214037865511600561074819366815E7L, |
| -4.249691853501233575668486667664718192660E5L, |
| 1.272297782199996882828849455156962260810E3L, |
| -9.889929415807650724957118893791829849557E-1L |
| ]; |
| static immutable real[7] Q = [ |
| 8.650244186622719093893836740197250197602E10L, |
| -4.152206921457208101480801635640958361612E10L, |
| 2.758476078803232151774723646710890525496E9L, |
| -5.733709132766856723608447733926138506824E7L, |
| 4.529422062441341616231663543669583527923E5L, |
| -1.317243702830553658702531997959756728291E3L, |
| 1.0 |
| ]; |
| |
| enum real P1 = |
| 7.853981633974483067550664827649598009884357452392578125E-1L; |
| enum real P2 = |
| 2.8605943630549158983813312792950660807511260829685741796657E-18L; |
| enum real P3 = |
| 2.1679525325309452561992610065108379921905808E-35L; |
| } |
| else |
| { |
| static immutable real[3] P = [ |
| -1.7956525197648487798769E7L, |
| 1.1535166483858741613983E6L, |
| -1.3093693918138377764608E4L, |
| ]; |
| static immutable real[5] Q = [ |
| -5.3869575592945462988123E7L, |
| 2.5008380182335791583922E7L, |
| -1.3208923444021096744731E6L, |
| 1.3681296347069295467845E4L, |
| 1.0000000000000000000000E0L, |
| ]; |
| |
| enum real P1 = 7.853981554508209228515625E-1L; |
| enum real P2 = 7.946627356147928367136046290398E-9L; |
| enum real P3 = 3.061616997868382943065164830688E-17L; |
| } |
| |
| // Special cases. |
| if (x == 0.0 || isNaN(x)) |
| return x; |
| if (isInfinity(x)) |
| return real.nan; |
| |
| // Make argument positive but save the sign. |
| bool sign = false; |
| if (signbit(x)) |
| { |
| sign = true; |
| x = -x; |
| } |
| |
| // Compute x mod PI/4. |
| real y = floor(x / PI_4); |
| // Strip high bits of integer part. |
| real z = ldexp(y, -4); |
| // Compute y - 16 * (y / 16). |
| z = y - ldexp(floor(z), 4); |
| |
| // Integer and fraction part modulo one octant. |
| int j = cast(int)(z); |
| |
| // Map zeros and singularities to origin. |
| if (j & 1) |
| { |
| j += 1; |
| y += 1.0; |
| } |
| |
| z = ((x - y * P1) - y * P2) - y * P3; |
| const real zz = z * z; |
| |
| if (zz > 1.0e-20L) |
| y = z + z * (zz * poly(zz, P) / poly(zz, Q)); |
| else |
| y = z; |
| |
| if (j & 2) |
| y = -1.0 / y; |
| |
| return (sign) ? -y : y; |
| } |
| } |
| |
| @safe nothrow @nogc unittest |
| { |
| static real[2][] vals = // angle,tan |
| [ |
| [ 0, 0], |
| [ .5, .5463024898], |
| [ 1, 1.557407725], |
| [ 1.5, 14.10141995], |
| [ 2, -2.185039863], |
| [ 2.5,-.7470222972], |
| [ 3, -.1425465431], |
| [ 3.5, .3745856402], |
| [ 4, 1.157821282], |
| [ 4.5, 4.637332055], |
| [ 5, -3.380515006], |
| [ 5.5,-.9955840522], |
| [ 6, -.2910061914], |
| [ 6.5, .2202772003], |
| [ 10, .6483608275], |
| |
| // special angles |
| [ PI_4, 1], |
| //[ PI_2, real.infinity], // PI_2 is not _exactly_ pi/2. |
| [ 3*PI_4, -1], |
| [ PI, 0], |
| [ 5*PI_4, 1], |
| //[ 3*PI_2, -real.infinity], |
| [ 7*PI_4, -1], |
| [ 2*PI, 0], |
| ]; |
| int i; |
| |
| for (i = 0; i < vals.length; i++) |
| { |
| real x = vals[i][0]; |
| real r = vals[i][1]; |
| real t = tan(x); |
| |
| //printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r); |
| if (!isIdentical(r, t)) assert(fabs(r-t) <= .0000001); |
| |
| x = -x; |
| r = -r; |
| t = tan(x); |
| //printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r); |
| if (!isIdentical(r, t) && !(r != r && t != t)) assert(fabs(r-t) <= .0000001); |
| } |
| // overflow |
| assert(isNaN(tan(real.infinity))); |
| assert(isNaN(tan(-real.infinity))); |
| // NaN propagation |
| assert(isIdentical( tan(NaN(0x0123L)), NaN(0x0123L) )); |
| } |
| |
| @system unittest |
| { |
| assert(equalsDigit(tan(PI / 3), std.math.sqrt(3.0), useDigits)); |
| } |
| |
| /*************** |
| * Calculates the arc cosine of x, |
| * returning a value ranging from 0 to $(PI). |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH acos(x)) $(TH invalid?)) |
| * $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes)) |
| * $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes)) |
| * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) |
| * ) |
| */ |
| real acos(real x) @safe pure nothrow @nogc |
| { |
| return atan2(sqrt(1-x*x), x); |
| } |
| |
| /// ditto |
| double acos(double x) @safe pure nothrow @nogc { return acos(cast(real) x); } |
| |
| /// ditto |
| float acos(float x) @safe pure nothrow @nogc { return acos(cast(real) x); } |
| |
| @system unittest |
| { |
| assert(equalsDigit(acos(0.5), std.math.PI / 3, useDigits)); |
| } |
| |
| /*************** |
| * Calculates the arc sine of x, |
| * returning a value ranging from -$(PI)/2 to $(PI)/2. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH asin(x)) $(TH invalid?)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) |
| * $(TR $(TD $(GT)1.0) $(TD $(NAN)) $(TD yes)) |
| * $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD yes)) |
| * ) |
| */ |
| real asin(real x) @safe pure nothrow @nogc |
| { |
| return atan2(x, sqrt(1-x*x)); |
| } |
| |
| /// ditto |
| double asin(double x) @safe pure nothrow @nogc { return asin(cast(real) x); } |
| |
| /// ditto |
| float asin(float x) @safe pure nothrow @nogc { return asin(cast(real) x); } |
| |
| @system unittest |
| { |
| assert(equalsDigit(asin(0.5), PI / 6, useDigits)); |
| } |
| |
| /*************** |
| * Calculates the arc tangent of x, |
| * returning a value ranging from -$(PI)/2 to $(PI)/2. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH atan(x)) $(TH invalid?)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) |
| * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes)) |
| * ) |
| */ |
| real atan(real x) @safe pure nothrow @nogc |
| { |
| version (InlineAsm_X86_Any) |
| { |
| return atan2(x, 1.0L); |
| } |
| else |
| { |
| // Coefficients for atan(x) |
| static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple) |
| { |
| static immutable real[9] P = [ |
| -6.880597774405940432145577545328795037141E2L, |
| -2.514829758941713674909996882101723647996E3L, |
| -3.696264445691821235400930243493001671932E3L, |
| -2.792272753241044941703278827346430350236E3L, |
| -1.148164399808514330375280133523543970854E3L, |
| -2.497759878476618348858065206895055957104E2L, |
| -2.548067867495502632615671450650071218995E1L, |
| -8.768423468036849091777415076702113400070E-1L, |
| -6.635810778635296712545011270011752799963E-4L |
| ]; |
| static immutable real[9] Q = [ |
| 2.064179332321782129643673263598686441900E3L, |
| 8.782996876218210302516194604424986107121E3L, |
| 1.547394317752562611786521896296215170819E4L, |
| 1.458510242529987155225086911411015961174E4L, |
| 7.928572347062145288093560392463784743935E3L, |
| 2.494680540950601626662048893678584497900E3L, |
| 4.308348370818927353321556740027020068897E2L, |
| 3.566239794444800849656497338030115886153E1L, |
| 1.0 |
| ]; |
| } |
| else |
| { |
| static immutable real[5] P = [ |
| -5.0894116899623603312185E1L, |
| -9.9988763777265819915721E1L, |
| -6.3976888655834347413154E1L, |
| -1.4683508633175792446076E1L, |
| -8.6863818178092187535440E-1L, |
| ]; |
| static immutable real[6] Q = [ |
| 1.5268235069887081006606E2L, |
| 3.9157570175111990631099E2L, |
| 3.6144079386152023162701E2L, |
| 1.4399096122250781605352E2L, |
| 2.2981886733594175366172E1L, |
| 1.0000000000000000000000E0L, |
| ]; |
| } |
| |
| // tan(PI/8) |
| enum real TAN_PI_8 = 0.414213562373095048801688724209698078569672L; |
| // tan(3 * PI/8) |
| enum real TAN3_PI_8 = 2.414213562373095048801688724209698078569672L; |
| |
| // Special cases. |
| if (x == 0.0) |
| return x; |
| if (isInfinity(x)) |
| return copysign(PI_2, x); |
| |
| // Make argument positive but save the sign. |
| bool sign = false; |
| if (signbit(x)) |
| { |
| sign = true; |
| x = -x; |
| } |
| |
| // Range reduction. |
| real y; |
| if (x > TAN3_PI_8) |
| { |
| y = PI_2; |
| x = -(1.0 / x); |
| } |
| else if (x > TAN_PI_8) |
| { |
| y = PI_4; |
| x = (x - 1.0)/(x + 1.0); |
| } |
| else |
| y = 0.0; |
| |
| // Rational form in x^^2. |
| const real z = x * x; |
| y = y + (poly(z, P) / poly(z, Q)) * z * x + x; |
| |
| return (sign) ? -y : y; |
| } |
| } |
| |
| /// ditto |
| double atan(double x) @safe pure nothrow @nogc { return atan(cast(real) x); } |
| |
| /// ditto |
| float atan(float x) @safe pure nothrow @nogc { return atan(cast(real) x); } |
| |
| @system unittest |
| { |
| assert(equalsDigit(atan(std.math.sqrt(3.0)), PI / 3, useDigits)); |
| } |
| |
| /*************** |
| * Calculates the arc tangent of y / x, |
| * returning a value ranging from -$(PI) to $(PI). |
| * |
| * $(TABLE_SV |
| * $(TR $(TH y) $(TH x) $(TH atan(y, x))) |
| * $(TR $(TD $(NAN)) $(TD anything) $(TD $(NAN)) ) |
| * $(TR $(TD anything) $(TD $(NAN)) $(TD $(NAN)) ) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) ) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) $(TD $(PLUSMN)0.0) ) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD $(LT)0.0) $(TD $(PLUSMN)$(PI))) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD -0.0) $(TD $(PLUSMN)$(PI))) |
| * $(TR $(TD $(GT)0.0) $(TD $(PLUSMN)0.0) $(TD $(PI)/2) ) |
| * $(TR $(TD $(LT)0.0) $(TD $(PLUSMN)0.0) $(TD -$(PI)/2) ) |
| * $(TR $(TD $(GT)0.0) $(TD $(INFIN)) $(TD $(PLUSMN)0.0) ) |
| * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD anything) $(TD $(PLUSMN)$(PI)/2)) |
| * $(TR $(TD $(GT)0.0) $(TD -$(INFIN)) $(TD $(PLUSMN)$(PI)) ) |
| * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(INFIN)) $(TD $(PLUSMN)$(PI)/4)) |
| * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD -$(INFIN)) $(TD $(PLUSMN)3$(PI)/4)) |
| * ) |
| */ |
| real atan2(real y, real x) @trusted pure nothrow @nogc |
| { |
| version (InlineAsm_X86_Any) |
| { |
| version (Win64) |
| { |
| asm pure nothrow @nogc { |
| naked; |
| fld real ptr [RDX]; // y |
| fld real ptr [RCX]; // x |
| fpatan; |
| ret; |
| } |
| } |
| else |
| { |
| asm pure nothrow @nogc { |
| fld y; |
| fld x; |
| fpatan; |
| } |
| } |
| } |
| else |
| { |
| // Special cases. |
| if (isNaN(x) || isNaN(y)) |
| return real.nan; |
| if (y == 0.0) |
| { |
| if (x >= 0 && !signbit(x)) |
| return copysign(0, y); |
| else |
| return copysign(PI, y); |
| } |
| if (x == 0.0) |
| return copysign(PI_2, y); |
| if (isInfinity(x)) |
| { |
| if (signbit(x)) |
| { |
| if (isInfinity(y)) |
| return copysign(3*PI_4, y); |
| else |
| return copysign(PI, y); |
| } |
| else |
| { |
| if (isInfinity(y)) |
| return copysign(PI_4, y); |
| else |
| return copysign(0.0, y); |
| } |
| } |
| if (isInfinity(y)) |
| return copysign(PI_2, y); |
| |
| // Call atan and determine the quadrant. |
| real z = atan(y / x); |
| |
| if (signbit(x)) |
| { |
| if (signbit(y)) |
| z = z - PI; |
| else |
| z = z + PI; |
| } |
| |
| if (z == 0.0) |
| return copysign(z, y); |
| |
| return z; |
| } |
| } |
| |
| /// ditto |
| double atan2(double y, double x) @safe pure nothrow @nogc |
| { |
| return atan2(cast(real) y, cast(real) x); |
| } |
| |
| /// ditto |
| float atan2(float y, float x) @safe pure nothrow @nogc |
| { |
| return atan2(cast(real) y, cast(real) x); |
| } |
| |
| @system unittest |
| { |
| assert(equalsDigit(atan2(1.0L, std.math.sqrt(3.0L)), PI / 6, useDigits)); |
| } |
| |
| /*********************************** |
| * Calculates the hyperbolic cosine of x. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH cosh(x)) $(TH invalid?)) |
| * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)0.0) $(TD no) ) |
| * ) |
| */ |
| real cosh(real x) @safe pure nothrow @nogc |
| { |
| // cosh = (exp(x)+exp(-x))/2. |
| // The naive implementation works correctly. |
| const real y = exp(x); |
| return (y + 1.0/y) * 0.5; |
| } |
| |
| /// ditto |
| double cosh(double x) @safe pure nothrow @nogc { return cosh(cast(real) x); } |
| |
| /// ditto |
| float cosh(float x) @safe pure nothrow @nogc { return cosh(cast(real) x); } |
| |
| @system unittest |
| { |
| assert(equalsDigit(cosh(1.0), (E + 1.0 / E) / 2, useDigits)); |
| } |
| |
| /*********************************** |
| * Calculates the hyperbolic sine of x. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH sinh(x)) $(TH invalid?)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) |
| * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no)) |
| * ) |
| */ |
| real sinh(real x) @safe pure nothrow @nogc |
| { |
| // sinh(x) = (exp(x)-exp(-x))/2; |
| // Very large arguments could cause an overflow, but |
| // the maximum value of x for which exp(x) + exp(-x)) != exp(x) |
| // is x = 0.5 * (real.mant_dig) * LN2. // = 22.1807 for real80. |
| if (fabs(x) > real.mant_dig * LN2) |
| { |
| return copysign(0.5 * exp(fabs(x)), x); |
| } |
| |
| const real y = expm1(x); |
| return 0.5 * y / (y+1) * (y+2); |
| } |
| |
| /// ditto |
| double sinh(double x) @safe pure nothrow @nogc { return sinh(cast(real) x); } |
| |
| /// ditto |
| float sinh(float x) @safe pure nothrow @nogc { return sinh(cast(real) x); } |
| |
| @system unittest |
| { |
| assert(equalsDigit(sinh(1.0), (E - 1.0 / E) / 2, useDigits)); |
| } |
| |
| /*********************************** |
| * Calculates the hyperbolic tangent of x. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH tanh(x)) $(TH invalid?)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) ) |
| * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)1.0) $(TD no)) |
| * ) |
| */ |
| real tanh(real x) @safe pure nothrow @nogc |
| { |
| // tanh(x) = (exp(x) - exp(-x))/(exp(x)+exp(-x)) |
| if (fabs(x) > real.mant_dig * LN2) |
| { |
| return copysign(1, x); |
| } |
| |
| const real y = expm1(2*x); |
| return y / (y + 2); |
| } |
| |
| /// ditto |
| double tanh(double x) @safe pure nothrow @nogc { return tanh(cast(real) x); } |
| |
| /// ditto |
| float tanh(float x) @safe pure nothrow @nogc { return tanh(cast(real) x); } |
| |
| @system unittest |
| { |
| assert(equalsDigit(tanh(1.0), sinh(1.0) / cosh(1.0), 15)); |
| } |
| |
| package: |
| |
| /* Returns cosh(x) + I * sinh(x) |
| * Only one call to exp() is performed. |
| */ |
| creal coshisinh(real x) @safe pure nothrow @nogc |
| { |
| // See comments for cosh, sinh. |
| if (fabs(x) > real.mant_dig * LN2) |
| { |
| const real y = exp(fabs(x)); |
| return y * 0.5 + 0.5i * copysign(y, x); |
| } |
| else |
| { |
| const real y = expm1(x); |
| return (y + 1.0 + 1.0/(y + 1.0)) * 0.5 + 0.5i * y / (y+1) * (y+2); |
| } |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| creal c = coshisinh(3.0L); |
| assert(c.re == cosh(3.0L)); |
| assert(c.im == sinh(3.0L)); |
| } |
| |
| public: |
| |
| /*********************************** |
| * Calculates the inverse hyperbolic cosine of x. |
| * |
| * Mathematically, acosh(x) = log(x + sqrt( x*x - 1)) |
| * |
| * $(TABLE_DOMRG |
| * $(DOMAIN 1..$(INFIN)), |
| * $(RANGE 0..$(INFIN)) |
| * ) |
| * |
| * $(TABLE_SV |
| * $(SVH x, acosh(x) ) |
| * $(SV $(NAN), $(NAN) ) |
| * $(SV $(LT)1, $(NAN) ) |
| * $(SV 1, 0 ) |
| * $(SV +$(INFIN),+$(INFIN)) |
| * ) |
| */ |
| real acosh(real x) @safe pure nothrow @nogc |
| { |
| if (x > 1/real.epsilon) |
| return LN2 + log(x); |
| else |
| return log(x + sqrt(x*x - 1)); |
| } |
| |
| /// ditto |
| double acosh(double x) @safe pure nothrow @nogc { return acosh(cast(real) x); } |
| |
| /// ditto |
| float acosh(float x) @safe pure nothrow @nogc { return acosh(cast(real) x); } |
| |
| |
| @system unittest |
| { |
| assert(isNaN(acosh(0.9))); |
| assert(isNaN(acosh(real.nan))); |
| assert(acosh(1.0)==0.0); |
| assert(acosh(real.infinity) == real.infinity); |
| assert(isNaN(acosh(0.5))); |
| assert(equalsDigit(acosh(cosh(3.0)), 3, useDigits)); |
| } |
| |
| /*********************************** |
| * Calculates the inverse hyperbolic sine of x. |
| * |
| * Mathematically, |
| * --------------- |
| * asinh(x) = log( x + sqrt( x*x + 1 )) // if x >= +0 |
| * asinh(x) = -log(-x + sqrt( x*x + 1 )) // if x <= -0 |
| * ------------- |
| * |
| * $(TABLE_SV |
| * $(SVH x, asinh(x) ) |
| * $(SV $(NAN), $(NAN) ) |
| * $(SV $(PLUSMN)0, $(PLUSMN)0 ) |
| * $(SV $(PLUSMN)$(INFIN),$(PLUSMN)$(INFIN)) |
| * ) |
| */ |
| real asinh(real x) @safe pure nothrow @nogc |
| { |
| return (fabs(x) > 1 / real.epsilon) |
| // beyond this point, x*x + 1 == x*x |
| ? copysign(LN2 + log(fabs(x)), x) |
| // sqrt(x*x + 1) == 1 + x * x / ( 1 + sqrt(x*x + 1) ) |
| : copysign(log1p(fabs(x) + x*x / (1 + sqrt(x*x + 1)) ), x); |
| } |
| |
| /// ditto |
| double asinh(double x) @safe pure nothrow @nogc { return asinh(cast(real) x); } |
| |
| /// ditto |
| float asinh(float x) @safe pure nothrow @nogc { return asinh(cast(real) x); } |
| |
| @system unittest |
| { |
| assert(isIdentical(asinh(0.0), 0.0)); |
| assert(isIdentical(asinh(-0.0), -0.0)); |
| assert(asinh(real.infinity) == real.infinity); |
| assert(asinh(-real.infinity) == -real.infinity); |
| assert(isNaN(asinh(real.nan))); |
| assert(equalsDigit(asinh(sinh(3.0)), 3, useDigits)); |
| } |
| |
| /*********************************** |
| * Calculates the inverse hyperbolic tangent of x, |
| * returning a value from ranging from -1 to 1. |
| * |
| * Mathematically, atanh(x) = log( (1+x)/(1-x) ) / 2 |
| * |
| * $(TABLE_DOMRG |
| * $(DOMAIN -$(INFIN)..$(INFIN)), |
| * $(RANGE -1 .. 1) |
| * ) |
| * $(BR) |
| * $(TABLE_SV |
| * $(SVH x, acosh(x) ) |
| * $(SV $(NAN), $(NAN) ) |
| * $(SV $(PLUSMN)0, $(PLUSMN)0) |
| * $(SV -$(INFIN), -0) |
| * ) |
| */ |
| real atanh(real x) @safe pure nothrow @nogc |
| { |
| // log( (1+x)/(1-x) ) == log ( 1 + (2*x)/(1-x) ) |
| return 0.5 * log1p( 2 * x / (1 - x) ); |
| } |
| |
| /// ditto |
| double atanh(double x) @safe pure nothrow @nogc { return atanh(cast(real) x); } |
| |
| /// ditto |
| float atanh(float x) @safe pure nothrow @nogc { return atanh(cast(real) x); } |
| |
| |
| @system unittest |
| { |
| assert(isIdentical(atanh(0.0), 0.0)); |
| assert(isIdentical(atanh(-0.0),-0.0)); |
| assert(isNaN(atanh(real.nan))); |
| assert(isNaN(atanh(-real.infinity))); |
| assert(atanh(0.0) == 0); |
| assert(equalsDigit(atanh(tanh(0.5L)), 0.5, useDigits)); |
| } |
| |
| /***************************************** |
| * Returns x rounded to a long value using the current rounding mode. |
| * If the integer value of x is |
| * greater than long.max, the result is |
| * indeterminate. |
| */ |
| long rndtol(real x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.rndtol(x); } |
| //FIXME |
| ///ditto |
| long rndtol(double x) @safe pure nothrow @nogc { return rndtol(cast(real) x); } |
| //FIXME |
| ///ditto |
| long rndtol(float x) @safe pure nothrow @nogc { return rndtol(cast(real) x); } |
| |
| @safe unittest |
| { |
| long function(real) prndtol = &rndtol; |
| assert(prndtol != null); |
| } |
| |
| /***************************************** |
| * Returns x rounded to a long value using the FE_TONEAREST rounding mode. |
| * If the integer value of x is |
| * greater than long.max, the result is |
| * indeterminate. |
| */ |
| extern (C) real rndtonl(real x); |
| |
| /*************************************** |
| * Compute square root of x. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH sqrt(x)) $(TH invalid?)) |
| * $(TR $(TD -0.0) $(TD -0.0) $(TD no)) |
| * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD yes)) |
| * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no)) |
| * ) |
| */ |
| float sqrt(float x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.sqrt(x); } |
| |
| /// ditto |
| double sqrt(double x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.sqrt(x); } |
| |
| /// ditto |
| real sqrt(real x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.sqrt(x); } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| //ctfe |
| enum ZX80 = sqrt(7.0f); |
| enum ZX81 = sqrt(7.0); |
| enum ZX82 = sqrt(7.0L); |
| |
| assert(isNaN(sqrt(-1.0f))); |
| assert(isNaN(sqrt(-1.0))); |
| assert(isNaN(sqrt(-1.0L))); |
| } |
| |
| @safe unittest |
| { |
| float function(float) psqrtf = &sqrt; |
| assert(psqrtf != null); |
| double function(double) psqrtd = &sqrt; |
| assert(psqrtd != null); |
| real function(real) psqrtr = &sqrt; |
| assert(psqrtr != null); |
| } |
| |
| creal sqrt(creal z) @nogc @safe pure nothrow |
| { |
| creal c; |
| real x,y,w,r; |
| |
| if (z == 0) |
| { |
| c = 0 + 0i; |
| } |
| else |
| { |
| const real z_re = z.re; |
| const real z_im = z.im; |
| |
| x = fabs(z_re); |
| y = fabs(z_im); |
| if (x >= y) |
| { |
| r = y / x; |
| w = sqrt(x) * sqrt(0.5 * (1 + sqrt(1 + r * r))); |
| } |
| else |
| { |
| r = x / y; |
| w = sqrt(y) * sqrt(0.5 * (r + sqrt(1 + r * r))); |
| } |
| |
| if (z_re >= 0) |
| { |
| c = w + (z_im / (w + w)) * 1.0i; |
| } |
| else |
| { |
| if (z_im < 0) |
| w = -w; |
| c = z_im / (w + w) + w * 1.0i; |
| } |
| } |
| return c; |
| } |
| |
| /** |
| * Calculates e$(SUPERSCRIPT x). |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH e$(SUPERSCRIPT x)) ) |
| * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) ) |
| * $(TR $(TD -$(INFIN)) $(TD +0.0) ) |
| * $(TR $(TD $(NAN)) $(TD $(NAN)) ) |
| * ) |
| */ |
| real exp(real x) @trusted pure nothrow @nogc |
| { |
| version (D_InlineAsm_X86) |
| { |
| // e^^x = 2^^(LOG2E*x) |
| // (This is valid because the overflow & underflow limits for exp |
| // and exp2 are so similar). |
| return exp2(LOG2E*x); |
| } |
| else version (D_InlineAsm_X86_64) |
| { |
| // e^^x = 2^^(LOG2E*x) |
| // (This is valid because the overflow & underflow limits for exp |
| // and exp2 are so similar). |
| return exp2(LOG2E*x); |
| } |
| else |
| { |
| alias F = floatTraits!real; |
| static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| // Coefficients for exp(x) |
| static immutable real[3] P = [ |
| 9.99999999999999999910E-1L, |
| 3.02994407707441961300E-2L, |
| 1.26177193074810590878E-4L, |
| ]; |
| static immutable real[4] Q = [ |
| 2.00000000000000000009E0L, |
| 2.27265548208155028766E-1L, |
| 2.52448340349684104192E-3L, |
| 3.00198505138664455042E-6L, |
| ]; |
| |
| // C1 + C2 = LN2. |
| enum real C1 = 6.93145751953125E-1; |
| enum real C2 = 1.42860682030941723212E-6; |
| |
| // Overflow and Underflow limits. |
| enum real OF = 7.09782712893383996732E2; // ln((1-2^-53) * 2^1024) |
| enum real UF = -7.451332191019412076235E2; // ln(2^-1075) |
| } |
| else static if (F.realFormat == RealFormat.ieeeExtended) |
| { |
| // Coefficients for exp(x) |
| static immutable real[3] P = [ |
| 9.9999999999999999991025E-1L, |
| 3.0299440770744196129956E-2L, |
| 1.2617719307481059087798E-4L, |
| ]; |
| static immutable real[4] Q = [ |
| 2.0000000000000000000897E0L, |
| 2.2726554820815502876593E-1L, |
| 2.5244834034968410419224E-3L, |
| 3.0019850513866445504159E-6L, |
| ]; |
| |
| // C1 + C2 = LN2. |
| enum real C1 = 6.9314575195312500000000E-1L; |
| enum real C2 = 1.4286068203094172321215E-6L; |
| |
| // Overflow and Underflow limits. |
| enum real OF = 1.1356523406294143949492E4L; // ln((1-2^-64) * 2^16384) |
| enum real UF = -1.13994985314888605586758E4L; // ln(2^-16446) |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| // Coefficients for exp(x) - 1 |
| static immutable real[5] P = [ |
| 9.999999999999999999999999999999999998502E-1L, |
| 3.508710990737834361215404761139478627390E-2L, |
| 2.708775201978218837374512615596512792224E-4L, |
| 6.141506007208645008909088812338454698548E-7L, |
| 3.279723985560247033712687707263393506266E-10L |
| ]; |
| static immutable real[6] Q = [ |
| 2.000000000000000000000000000000000000150E0, |
| 2.368408864814233538909747618894558968880E-1L, |
| 3.611828913847589925056132680618007270344E-3L, |
| 1.504792651814944826817779302637284053660E-5L, |
| 1.771372078166251484503904874657985291164E-8L, |
| 2.980756652081995192255342779918052538681E-12L |
| ]; |
| |
| // C1 + C2 = LN2. |
| enum real C1 = 6.93145751953125E-1L; |
| enum real C2 = 1.428606820309417232121458176568075500134E-6L; |
| |
| // Overflow and Underflow limits. |
| enum real OF = 1.135583025911358400418251384584930671458833e4L; |
| enum real UF = -1.143276959615573793352782661133116431383730e4L; |
| } |
| else |
| static assert(0, "Not implemented for this architecture"); |
| |
| // Special cases. Raises an overflow or underflow flag accordingly, |
| // except in the case for CTFE, where there are no hardware controls. |
| if (isNaN(x)) |
| return x; |
| if (x > OF) |
| return real.infinity; |
| if (x < UF) |
| return 0.0; |
| |
| // Express: e^^x = e^^g * 2^^n |
| // = e^^g * e^^(n * LOG2E) |
| // = e^^(g + n * LOG2E) |
| int n = cast(int) floor(LOG2E * x + 0.5); |
| x -= n * C1; |
| x -= n * C2; |
| |
| // Rational approximation for exponential of the fractional part: |
| // e^^x = 1 + 2x P(x^^2) / (Q(x^^2) - P(x^^2)) |
| const real xx = x * x; |
| const real px = x * poly(xx, P); |
| x = px / (poly(xx, Q) - px); |
| x = 1.0 + ldexp(x, 1); |
| |
| // Scale by power of 2. |
| x = ldexp(x, n); |
| |
| return x; |
| } |
| } |
| |
| /// ditto |
| double exp(double x) @safe pure nothrow @nogc { return exp(cast(real) x); } |
| |
| /// ditto |
| float exp(float x) @safe pure nothrow @nogc { return exp(cast(real) x); } |
| |
| @system unittest |
| { |
| assert(equalsDigit(exp(3.0L), E * E * E, useDigits)); |
| } |
| |
| /** |
| * Calculates the value of the natural logarithm base (e) |
| * raised to the power of x, minus 1. |
| * |
| * For very small x, expm1(x) is more accurate |
| * than exp(x)-1. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH e$(SUPERSCRIPT x)-1) ) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) ) |
| * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) ) |
| * $(TR $(TD -$(INFIN)) $(TD -1.0) ) |
| * $(TR $(TD $(NAN)) $(TD $(NAN)) ) |
| * ) |
| */ |
| real expm1(real x) @trusted pure nothrow @nogc |
| { |
| version (D_InlineAsm_X86) |
| { |
| enum PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC); // always a multiple of 4 |
| asm pure nothrow @nogc |
| { |
| /* expm1() for x87 80-bit reals, IEEE754-2008 conformant. |
| * Author: Don Clugston. |
| * |
| * expm1(x) = 2^^(rndint(y))* 2^^(y-rndint(y)) - 1 where y = LN2*x. |
| * = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^^(rndint(y)) |
| * and 2ym1 = (2^^(y-rndint(y))-1). |
| * If 2rndy < 0.5*real.epsilon, result is -1. |
| * Implementation is otherwise the same as for exp2() |
| */ |
| naked; |
| fld real ptr [ESP+4] ; // x |
| mov AX, [ESP+4+8]; // AX = exponent and sign |
| sub ESP, 12+8; // Create scratch space on the stack |
| // [ESP,ESP+2] = scratchint |
| // [ESP+4..+6, +8..+10, +10] = scratchreal |
| // set scratchreal mantissa = 1.0 |
| mov dword ptr [ESP+8], 0; |
| mov dword ptr [ESP+8+4], 0x80000000; |
| and AX, 0x7FFF; // drop sign bit |
| cmp AX, 0x401D; // avoid InvalidException in fist |
| jae L_extreme; |
| fldl2e; |
| fmulp ST(1), ST; // y = x*log2(e) |
| fist dword ptr [ESP]; // scratchint = rndint(y) |
| fisub dword ptr [ESP]; // y - rndint(y) |
| // and now set scratchreal exponent |
| mov EAX, [ESP]; |
| add EAX, 0x3fff; |
| jle short L_largenegative; |
| cmp EAX,0x8000; |
| jge short L_largepositive; |
| mov [ESP+8+8],AX; |
| f2xm1; // 2ym1 = 2^^(y-rndint(y)) -1 |
| fld real ptr [ESP+8] ; // 2rndy = 2^^rndint(y) |
| fmul ST(1), ST; // ST=2rndy, ST(1)=2rndy*2ym1 |
| fld1; |
| fsubp ST(1), ST; // ST = 2rndy-1, ST(1) = 2rndy * 2ym1 - 1 |
| faddp ST(1), ST; // ST = 2rndy * 2ym1 + 2rndy - 1 |
| add ESP,12+8; |
| ret PARAMSIZE; |
| |
| L_extreme: // Extreme exponent. X is very large positive, very |
| // large negative, infinity, or NaN. |
| fxam; |
| fstsw AX; |
| test AX, 0x0400; // NaN_or_zero, but we already know x != 0 |
| jz L_was_nan; // if x is NaN, returns x |
| test AX, 0x0200; |
| jnz L_largenegative; |
| L_largepositive: |
| // Set scratchreal = real.max. |
| // squaring it will create infinity, and set overflow flag. |
| mov word ptr [ESP+8+8], 0x7FFE; |
| fstp ST(0); |
| fld real ptr [ESP+8]; // load scratchreal |
| fmul ST(0), ST; // square it, to create havoc! |
| L_was_nan: |
| add ESP,12+8; |
| ret PARAMSIZE; |
| L_largenegative: |
| fstp ST(0); |
| fld1; |
| fchs; // return -1. Underflow flag is not set. |
| add ESP,12+8; |
| ret PARAMSIZE; |
| } |
| } |
| else version (D_InlineAsm_X86_64) |
| { |
| asm pure nothrow @nogc |
| { |
| naked; |
| } |
| version (Win64) |
| { |
| asm pure nothrow @nogc |
| { |
| fld real ptr [RCX]; // x |
| mov AX,[RCX+8]; // AX = exponent and sign |
| } |
| } |
| else |
| { |
| asm pure nothrow @nogc |
| { |
| fld real ptr [RSP+8]; // x |
| mov AX,[RSP+8+8]; // AX = exponent and sign |
| } |
| } |
| asm pure nothrow @nogc |
| { |
| /* expm1() for x87 80-bit reals, IEEE754-2008 conformant. |
| * Author: Don Clugston. |
| * |
| * expm1(x) = 2^(rndint(y))* 2^(y-rndint(y)) - 1 where y = LN2*x. |
| * = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^(rndint(y)) |
| * and 2ym1 = (2^(y-rndint(y))-1). |
| * If 2rndy < 0.5*real.epsilon, result is -1. |
| * Implementation is otherwise the same as for exp2() |
| */ |
| sub RSP, 24; // Create scratch space on the stack |
| // [RSP,RSP+2] = scratchint |
| // [RSP+4..+6, +8..+10, +10] = scratchreal |
| // set scratchreal mantissa = 1.0 |
| mov dword ptr [RSP+8], 0; |
| mov dword ptr [RSP+8+4], 0x80000000; |
| and AX, 0x7FFF; // drop sign bit |
| cmp AX, 0x401D; // avoid InvalidException in fist |
| jae L_extreme; |
| fldl2e; |
| fmul ; // y = x*log2(e) |
| fist dword ptr [RSP]; // scratchint = rndint(y) |
| fisub dword ptr [RSP]; // y - rndint(y) |
| // and now set scratchreal exponent |
| mov EAX, [RSP]; |
| add EAX, 0x3fff; |
| jle short L_largenegative; |
| cmp EAX,0x8000; |
| jge short L_largepositive; |
| mov [RSP+8+8],AX; |
| f2xm1; // 2^(y-rndint(y)) -1 |
| fld real ptr [RSP+8] ; // 2^rndint(y) |
| fmul ST(1), ST; |
| fld1; |
| fsubp ST(1), ST; |
| fadd; |
| add RSP,24; |
| ret; |
| |
| L_extreme: // Extreme exponent. X is very large positive, very |
| // large negative, infinity, or NaN. |
| fxam; |
| fstsw AX; |
| test AX, 0x0400; // NaN_or_zero, but we already know x != 0 |
| jz L_was_nan; // if x is NaN, returns x |
| test AX, 0x0200; |
| jnz L_largenegative; |
| L_largepositive: |
| // Set scratchreal = real.max. |
| // squaring it will create infinity, and set overflow flag. |
| mov word ptr [RSP+8+8], 0x7FFE; |
| fstp ST(0); |
| fld real ptr [RSP+8]; // load scratchreal |
| fmul ST(0), ST; // square it, to create havoc! |
| L_was_nan: |
| add RSP,24; |
| ret; |
| |
| L_largenegative: |
| fstp ST(0); |
| fld1; |
| fchs; // return -1. Underflow flag is not set. |
| add RSP,24; |
| ret; |
| } |
| } |
| else |
| { |
| // Coefficients for exp(x) - 1 and overflow/underflow limits. |
| static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple) |
| { |
| static immutable real[8] P = [ |
| 2.943520915569954073888921213330863757240E8L, |
| -5.722847283900608941516165725053359168840E7L, |
| 8.944630806357575461578107295909719817253E6L, |
| -7.212432713558031519943281748462837065308E5L, |
| 4.578962475841642634225390068461943438441E4L, |
| -1.716772506388927649032068540558788106762E3L, |
| 4.401308817383362136048032038528753151144E1L, |
| -4.888737542888633647784737721812546636240E-1L |
| ]; |
| |
| static immutable real[9] Q = [ |
| 1.766112549341972444333352727998584753865E9L, |
| -7.848989743695296475743081255027098295771E8L, |
| 1.615869009634292424463780387327037251069E8L, |
| -2.019684072836541751428967854947019415698E7L, |
| 1.682912729190313538934190635536631941751E6L, |
| -9.615511549171441430850103489315371768998E4L, |
| 3.697714952261803935521187272204485251835E3L, |
| -8.802340681794263968892934703309274564037E1L, |
| 1.0 |
| ]; |
| |
| enum real OF = 1.1356523406294143949491931077970764891253E4L; |
| enum real UF = -1.143276959615573793352782661133116431383730e4L; |
| } |
| else |
| { |
| static immutable real[5] P = [ |
| -1.586135578666346600772998894928250240826E4L, |
| 2.642771505685952966904660652518429479531E3L, |
| -3.423199068835684263987132888286791620673E2L, |
| 1.800826371455042224581246202420972737840E1L, |
| -5.238523121205561042771939008061958820811E-1L, |
| ]; |
| static immutable real[6] Q = [ |
| -9.516813471998079611319047060563358064497E4L, |
| 3.964866271411091674556850458227710004570E4L, |
| -7.207678383830091850230366618190187434796E3L, |
| 7.206038318724600171970199625081491823079E2L, |
| -4.002027679107076077238836622982900945173E1L, |
| 1.0 |
| ]; |
| |
| enum real OF = 1.1356523406294143949492E4L; |
| enum real UF = -4.5054566736396445112120088E1L; |
| } |
| |
| |
| // C1 + C2 = LN2. |
| enum real C1 = 6.9314575195312500000000E-1L; |
| enum real C2 = 1.428606820309417232121458176568075500134E-6L; |
| |
| // Special cases. Raises an overflow flag, except in the case |
| // for CTFE, where there are no hardware controls. |
| if (x > OF) |
| return real.infinity; |
| if (x == 0.0) |
| return x; |
| if (x < UF) |
| return -1.0; |
| |
| // Express x = LN2 (n + remainder), remainder not exceeding 1/2. |
| int n = cast(int) floor(0.5 + x / LN2); |
| x -= n * C1; |
| x -= n * C2; |
| |
| // Rational approximation: |
| // exp(x) - 1 = x + 0.5 x^^2 + x^^3 P(x) / Q(x) |
| real px = x * poly(x, P); |
| real qx = poly(x, Q); |
| const real xx = x * x; |
| qx = x + (0.5 * xx + xx * px / qx); |
| |
| // We have qx = exp(remainder LN2) - 1, so: |
| // exp(x) - 1 = 2^^n (qx + 1) - 1 = 2^^n qx + 2^^n - 1. |
| px = ldexp(1.0, n); |
| x = px * qx + (px - 1.0); |
| |
| return x; |
| } |
| } |
| |
| |
| |
| /** |
| * Calculates 2$(SUPERSCRIPT x). |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH exp2(x)) ) |
| * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) ) |
| * $(TR $(TD -$(INFIN)) $(TD +0.0) ) |
| * $(TR $(TD $(NAN)) $(TD $(NAN)) ) |
| * ) |
| */ |
| pragma(inline, true) |
| real exp2(real x) @nogc @trusted pure nothrow |
| { |
| version (InlineAsm_X86_Any) |
| { |
| if (!__ctfe) |
| return exp2Asm(x); |
| else |
| return exp2Impl(x); |
| } |
| else |
| { |
| return exp2Impl(x); |
| } |
| } |
| |
| version (InlineAsm_X86_Any) |
| private real exp2Asm(real x) @nogc @trusted pure nothrow |
| { |
| version (D_InlineAsm_X86) |
| { |
| enum PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC); // always a multiple of 4 |
| |
| asm pure nothrow @nogc |
| { |
| /* exp2() for x87 80-bit reals, IEEE754-2008 conformant. |
| * Author: Don Clugston. |
| * |
| * exp2(x) = 2^^(rndint(x))* 2^^(y-rndint(x)) |
| * The trick for high performance is to avoid the fscale(28cycles on core2), |
| * frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction. |
| * |
| * We can do frndint by using fist. BUT we can't use it for huge numbers, |
| * because it will set the Invalid Operation flag if overflow or NaN occurs. |
| * Fortunately, whenever this happens the result would be zero or infinity. |
| * |
| * We can perform fscale by directly poking into the exponent. BUT this doesn't |
| * work for the (very rare) cases where the result is subnormal. So we fall back |
| * to the slow method in that case. |
| */ |
| naked; |
| fld real ptr [ESP+4] ; // x |
| mov AX, [ESP+4+8]; // AX = exponent and sign |
| sub ESP, 12+8; // Create scratch space on the stack |
| // [ESP,ESP+2] = scratchint |
| // [ESP+4..+6, +8..+10, +10] = scratchreal |
| // set scratchreal mantissa = 1.0 |
| mov dword ptr [ESP+8], 0; |
| mov dword ptr [ESP+8+4], 0x80000000; |
| and AX, 0x7FFF; // drop sign bit |
| cmp AX, 0x401D; // avoid InvalidException in fist |
| jae L_extreme; |
| fist dword ptr [ESP]; // scratchint = rndint(x) |
| fisub dword ptr [ESP]; // x - rndint(x) |
| // and now set scratchreal exponent |
| mov EAX, [ESP]; |
| add EAX, 0x3fff; |
| jle short L_subnormal; |
| cmp EAX,0x8000; |
| jge short L_overflow; |
| mov [ESP+8+8],AX; |
| L_normal: |
| f2xm1; |
| fld1; |
| faddp ST(1), ST; // 2^^(x-rndint(x)) |
| fld real ptr [ESP+8] ; // 2^^rndint(x) |
| add ESP,12+8; |
| fmulp ST(1), ST; |
| ret PARAMSIZE; |
| |
| L_subnormal: |
| // Result will be subnormal. |
| // In this rare case, the simple poking method doesn't work. |
| // The speed doesn't matter, so use the slow fscale method. |
| fild dword ptr [ESP]; // scratchint |
| fld1; |
| fscale; |
| fstp real ptr [ESP+8]; // scratchreal = 2^^scratchint |
| fstp ST(0); // drop scratchint |
| jmp L_normal; |
| |
| L_extreme: // Extreme exponent. X is very large positive, very |
| // large negative, infinity, or NaN. |
| fxam; |
| fstsw AX; |
| test AX, 0x0400; // NaN_or_zero, but we already know x != 0 |
| jz L_was_nan; // if x is NaN, returns x |
| // set scratchreal = real.min_normal |
| // squaring it will return 0, setting underflow flag |
| mov word ptr [ESP+8+8], 1; |
| test AX, 0x0200; |
| jnz L_waslargenegative; |
| L_overflow: |
| // Set scratchreal = real.max. |
| // squaring it will create infinity, and set overflow flag. |
| mov word ptr [ESP+8+8], 0x7FFE; |
| L_waslargenegative: |
| fstp ST(0); |
| fld real ptr [ESP+8]; // load scratchreal |
| fmul ST(0), ST; // square it, to create havoc! |
| L_was_nan: |
| add ESP,12+8; |
| ret PARAMSIZE; |
| } |
| } |
| else version (D_InlineAsm_X86_64) |
| { |
| asm pure nothrow @nogc |
| { |
| naked; |
| } |
| version (Win64) |
| { |
| asm pure nothrow @nogc |
| { |
| fld real ptr [RCX]; // x |
| mov AX,[RCX+8]; // AX = exponent and sign |
| } |
| } |
| else |
| { |
| asm pure nothrow @nogc |
| { |
| fld real ptr [RSP+8]; // x |
| mov AX,[RSP+8+8]; // AX = exponent and sign |
| } |
| } |
| asm pure nothrow @nogc |
| { |
| /* exp2() for x87 80-bit reals, IEEE754-2008 conformant. |
| * Author: Don Clugston. |
| * |
| * exp2(x) = 2^(rndint(x))* 2^(y-rndint(x)) |
| * The trick for high performance is to avoid the fscale(28cycles on core2), |
| * frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction. |
| * |
| * We can do frndint by using fist. BUT we can't use it for huge numbers, |
| * because it will set the Invalid Operation flag is overflow or NaN occurs. |
| * Fortunately, whenever this happens the result would be zero or infinity. |
| * |
| * We can perform fscale by directly poking into the exponent. BUT this doesn't |
| * work for the (very rare) cases where the result is subnormal. So we fall back |
| * to the slow method in that case. |
| */ |
| sub RSP, 24; // Create scratch space on the stack |
| // [RSP,RSP+2] = scratchint |
| // [RSP+4..+6, +8..+10, +10] = scratchreal |
| // set scratchreal mantissa = 1.0 |
| mov dword ptr [RSP+8], 0; |
| mov dword ptr [RSP+8+4], 0x80000000; |
| and AX, 0x7FFF; // drop sign bit |
| cmp AX, 0x401D; // avoid InvalidException in fist |
| jae L_extreme; |
| fist dword ptr [RSP]; // scratchint = rndint(x) |
| fisub dword ptr [RSP]; // x - rndint(x) |
| // and now set scratchreal exponent |
| mov EAX, [RSP]; |
| add EAX, 0x3fff; |
| jle short L_subnormal; |
| cmp EAX,0x8000; |
| jge short L_overflow; |
| mov [RSP+8+8],AX; |
| L_normal: |
| f2xm1; |
| fld1; |
| fadd; // 2^(x-rndint(x)) |
| fld real ptr [RSP+8] ; // 2^rndint(x) |
| add RSP,24; |
| fmulp ST(1), ST; |
| ret; |
| |
| L_subnormal: |
| // Result will be subnormal. |
| // In this rare case, the simple poking method doesn't work. |
| // The speed doesn't matter, so use the slow fscale method. |
| fild dword ptr [RSP]; // scratchint |
| fld1; |
| fscale; |
| fstp real ptr [RSP+8]; // scratchreal = 2^scratchint |
| fstp ST(0); // drop scratchint |
| jmp L_normal; |
| |
| L_extreme: // Extreme exponent. X is very large positive, very |
| // large negative, infinity, or NaN. |
| fxam; |
| fstsw AX; |
| test AX, 0x0400; // NaN_or_zero, but we already know x != 0 |
| jz L_was_nan; // if x is NaN, returns x |
| // set scratchreal = real.min |
| // squaring it will return 0, setting underflow flag |
| mov word ptr [RSP+8+8], 1; |
| test AX, 0x0200; |
| jnz L_waslargenegative; |
| L_overflow: |
| // Set scratchreal = real.max. |
| // squaring it will create infinity, and set overflow flag. |
| mov word ptr [RSP+8+8], 0x7FFE; |
| L_waslargenegative: |
| fstp ST(0); |
| fld real ptr [RSP+8]; // load scratchreal |
| fmul ST(0), ST; // square it, to create havoc! |
| L_was_nan: |
| add RSP,24; |
| ret; |
| } |
| } |
| else |
| static assert(0); |
| } |
| |
| private real exp2Impl(real x) @nogc @trusted pure nothrow |
| { |
| // Coefficients for exp2(x) |
| static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple) |
| { |
| static immutable real[5] P = [ |
| 9.079594442980146270952372234833529694788E12L, |
| 1.530625323728429161131811299626419117557E11L, |
| 5.677513871931844661829755443994214173883E8L, |
| 6.185032670011643762127954396427045467506E5L, |
| 1.587171580015525194694938306936721666031E2L |
| ]; |
| |
| static immutable real[6] Q = [ |
| 2.619817175234089411411070339065679229869E13L, |
| 1.490560994263653042761789432690793026977E12L, |
| 1.092141473886177435056423606755843616331E10L, |
| 2.186249607051644894762167991800811827835E7L, |
| 1.236602014442099053716561665053645270207E4L, |
| 1.0 |
| ]; |
| } |
| else |
| { |
| static immutable real[3] P = [ |
| 2.0803843631901852422887E6L, |
| 3.0286971917562792508623E4L, |
| 6.0614853552242266094567E1L, |
| ]; |
| static immutable real[4] Q = [ |
| 6.0027204078348487957118E6L, |
| 3.2772515434906797273099E5L, |
| 1.7492876999891839021063E3L, |
| 1.0000000000000000000000E0L, |
| ]; |
| } |
| |
| // Overflow and Underflow limits. |
| enum real OF = 16_384.0L; |
| enum real UF = -16_382.0L; |
| |
| // Special cases. Raises an overflow or underflow flag accordingly, |
| // except in the case for CTFE, where there are no hardware controls. |
| if (isNaN(x)) |
| return x; |
| if (x > OF) |
| return real.infinity; |
| if (x < UF) |
| return 0.0; |
| |
| // Separate into integer and fractional parts. |
| int n = cast(int) floor(x + 0.5); |
| x -= n; |
| |
| // Rational approximation: |
| // exp2(x) = 1.0 + 2x P(x^^2) / (Q(x^^2) - P(x^^2)) |
| const real xx = x * x; |
| const real px = x * poly(xx, P); |
| x = px / (poly(xx, Q) - px); |
| x = 1.0 + ldexp(x, 1); |
| |
| // Scale by power of 2. |
| x = ldexp(x, n); |
| |
| return x; |
| } |
| |
| /// |
| @safe unittest |
| { |
| assert(feqrel(exp2(0.5L), SQRT2) >= real.mant_dig -1); |
| assert(exp2(8.0L) == 256.0); |
| assert(exp2(-9.0L)== 1.0L/512.0); |
| } |
| |
| @safe unittest |
| { |
| version (CRuntime_Microsoft) {} else // aexp2/exp2f/exp2l not implemented |
| { |
| assert( core.stdc.math.exp2f(0.0f) == 1 ); |
| assert( core.stdc.math.exp2 (0.0) == 1 ); |
| assert( core.stdc.math.exp2l(0.0L) == 1 ); |
| } |
| } |
| |
| @system unittest |
| { |
| version (FloatingPointControlSupport) |
| { |
| FloatingPointControl ctrl; |
| if (FloatingPointControl.hasExceptionTraps) |
| ctrl.disableExceptions(FloatingPointControl.allExceptions); |
| ctrl.rounding = FloatingPointControl.roundToNearest; |
| } |
| |
| static if (real.mant_dig == 113) |
| { |
| static immutable real[2][] exptestpoints = |
| [ // x exp(x) |
| [ 1.0L, E ], |
| [ 0.5L, 0x1.a61298e1e069bc972dfefab6df34p+0L ], |
| [ 3.0L, E*E*E ], |
| [ 0x1.6p+13L, 0x1.6e509d45728655cdb4840542acb5p+16250L ], // near overflow |
| [ 0x1.7p+13L, real.infinity ], // close overflow |
| [ 0x1p+80L, real.infinity ], // far overflow |
| [ real.infinity, real.infinity ], |
| [-0x1.18p+13L, 0x1.5e4bf54b4807034ea97fef0059a6p-12927L ], // near underflow |
| [-0x1.625p+13L, 0x1.a6bd68a39d11fec3a250cd97f524p-16358L ], // ditto |
| [-0x1.62dafp+13L, 0x0.cb629e9813b80ed4d639e875be6cp-16382L ], // near underflow - subnormal |
| [-0x1.6549p+13L, 0x0.0000000000000000000000000001p-16382L ], // ditto |
| [-0x1.655p+13L, 0 ], // close underflow |
| [-0x1p+30L, 0 ], // far underflow |
| ]; |
| } |
| else static if (real.mant_dig == 64) // 80-bit reals |
| { |
| static immutable real[2][] exptestpoints = |
| [ // x exp(x) |
| [ 1.0L, E ], |
| [ 0.5L, 0x1.a61298e1e069bc97p+0L ], |
| [ 3.0L, E*E*E ], |
| [ 0x1.1p+13L, 0x1.29aeffefc8ec645p+12557L ], // near overflow |
| [ 0x1.7p+13L, real.infinity ], // close overflow |
| [ 0x1p+80L, real.infinity ], // far overflow |
| [ real.infinity, real.infinity ], |
| [-0x1.18p+13L, 0x1.5e4bf54b4806db9p-12927L ], // near underflow |
| [-0x1.625p+13L, 0x1.a6bd68a39d11f35cp-16358L ], // ditto |
| [-0x1.62dafp+13L, 0x1.96c53d30277021dp-16383L ], // near underflow - subnormal |
| [-0x1.643p+13L, 0x1p-16444L ], // ditto |
| [-0x1.645p+13L, 0 ], // close underflow |
| [-0x1p+30L, 0 ], // far underflow |
| ]; |
| } |
| else static if (real.mant_dig == 53) // 64-bit reals |
| { |
| static immutable real[2][] exptestpoints = |
| [ // x, exp(x) |
| [ 1.0L, E ], |
| [ 0.5L, 0x1.a61298e1e069cp+0L ], |
| [ 3.0L, E*E*E ], |
| [ 0x1.6p+9L, 0x1.93bf4ec282efbp+1015L ], // near overflow |
| [ 0x1.7p+9L, real.infinity ], // close overflow |
| [ 0x1p+80L, real.infinity ], // far overflow |
| [ real.infinity, real.infinity ], |
| [-0x1.6p+9L, 0x1.44a3824e5285fp-1016L ], // near underflow |
| [-0x1.64p+9L, 0x0.06f84920bb2d3p-1022L ], // near underflow - subnormal |
| [-0x1.743p+9L, 0x0.0000000000001p-1022L ], // ditto |
| [-0x1.8p+9L, 0 ], // close underflow |
| [-0x1p30L, 0 ], // far underflow |
| ]; |
| } |
| else |
| static assert(0, "No exp() tests for real type!"); |
| |
| const minEqualDecimalDigits = real.dig - 3; |
| real x; |
| version (IeeeFlagsSupport) IeeeFlags f; |
| foreach (ref pair; exptestpoints) |
| { |
| version (IeeeFlagsSupport) resetIeeeFlags(); |
| x = exp(pair[0]); |
| assert(equalsDigit(x, pair[1], minEqualDecimalDigits)); |
| } |
| |
| // Ideally, exp(0) would not set the inexact flag. |
| // Unfortunately, fldl2e sets it! |
| // So it's not realistic to avoid setting it. |
| assert(exp(0.0L) == 1.0); |
| |
| // NaN propagation. Doesn't set flags, bcos was already NaN. |
| version (IeeeFlagsSupport) |
| { |
| resetIeeeFlags(); |
| x = exp(real.nan); |
| f = ieeeFlags; |
| assert(isIdentical(abs(x), real.nan)); |
| assert(f.flags == 0); |
| |
| resetIeeeFlags(); |
| x = exp(-real.nan); |
| f = ieeeFlags; |
| assert(isIdentical(abs(x), real.nan)); |
| assert(f.flags == 0); |
| } |
| else |
| { |
| x = exp(real.nan); |
| assert(isIdentical(abs(x), real.nan)); |
| |
| x = exp(-real.nan); |
| assert(isIdentical(abs(x), real.nan)); |
| } |
| |
| x = exp(NaN(0x123)); |
| assert(isIdentical(x, NaN(0x123))); |
| |
| // High resolution test (verified against GNU MPFR/Mathematica). |
| assert(exp(0.5L) == 0x1.A612_98E1_E069_BC97_2DFE_FAB6_DF34p+0L); |
| } |
| |
| |
| /** |
| * Calculate cos(y) + i sin(y). |
| * |
| * On many CPUs (such as x86), this is a very efficient operation; |
| * almost twice as fast as calculating sin(y) and cos(y) separately, |
| * and is the preferred method when both are required. |
| */ |
| creal expi(real y) @trusted pure nothrow @nogc |
| { |
| version (InlineAsm_X86_Any) |
| { |
| version (Win64) |
| { |
| asm pure nothrow @nogc |
| { |
| naked; |
| fld real ptr [ECX]; |
| fsincos; |
| fxch ST(1), ST(0); |
| ret; |
| } |
| } |
| else |
| { |
| asm pure nothrow @nogc |
| { |
| fld y; |
| fsincos; |
| fxch ST(1), ST(0); |
| } |
| } |
| } |
| else |
| { |
| return cos(y) + sin(y)*1i; |
| } |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert(expi(1.3e5L) == cos(1.3e5L) + sin(1.3e5L) * 1i); |
| assert(expi(0.0L) == 1L + 0.0Li); |
| } |
| |
| /********************************************************************* |
| * Separate floating point value into significand and exponent. |
| * |
| * Returns: |
| * Calculate and return $(I x) and $(I exp) such that |
| * value =$(I x)*2$(SUPERSCRIPT exp) and |
| * .5 $(LT)= |$(I x)| $(LT) 1.0 |
| * |
| * $(I x) has same sign as value. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH value) $(TH returns) $(TH exp)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD 0)) |
| * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD int.max)) |
| * $(TR $(TD -$(INFIN)) $(TD -$(INFIN)) $(TD int.min)) |
| * $(TR $(TD $(PLUSMN)$(NAN)) $(TD $(PLUSMN)$(NAN)) $(TD int.min)) |
| * ) |
| */ |
| T frexp(T)(const T value, out int exp) @trusted pure nothrow @nogc |
| if (isFloatingPoint!T) |
| { |
| Unqual!T vf = value; |
| ushort* vu = cast(ushort*)&vf; |
| static if (is(Unqual!T == float)) |
| int* vi = cast(int*)&vf; |
| else |
| long* vl = cast(long*)&vf; |
| int ex; |
| alias F = floatTraits!T; |
| |
| ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; |
| static if (F.realFormat == RealFormat.ieeeExtended) |
| { |
| if (ex) |
| { // If exponent is non-zero |
| if (ex == F.EXPMASK) // infinity or NaN |
| { |
| if (*vl & 0x7FFF_FFFF_FFFF_FFFF) // NaN |
| { |
| *vl |= 0xC000_0000_0000_0000; // convert NaNS to NaNQ |
| exp = int.min; |
| } |
| else if (vu[F.EXPPOS_SHORT] & 0x8000) // negative infinity |
| exp = int.min; |
| else // positive infinity |
| exp = int.max; |
| |
| } |
| else |
| { |
| exp = ex - F.EXPBIAS; |
| vu[F.EXPPOS_SHORT] = (0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE; |
| } |
| } |
| else if (!*vl) |
| { |
| // vf is +-0.0 |
| exp = 0; |
| } |
| else |
| { |
| // subnormal |
| |
| vf *= F.RECIP_EPSILON; |
| ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; |
| exp = ex - F.EXPBIAS - T.mant_dig + 1; |
| vu[F.EXPPOS_SHORT] = ((-1 - F.EXPMASK) & vu[F.EXPPOS_SHORT]) | 0x3FFE; |
| } |
| return vf; |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| if (ex) // If exponent is non-zero |
| { |
| if (ex == F.EXPMASK) |
| { |
| // infinity or NaN |
| if (vl[MANTISSA_LSB] | |
| (vl[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) // NaN |
| { |
| // convert NaNS to NaNQ |
| vl[MANTISSA_MSB] |= 0x0000_8000_0000_0000; |
| exp = int.min; |
| } |
| else if (vu[F.EXPPOS_SHORT] & 0x8000) // negative infinity |
| exp = int.min; |
| else // positive infinity |
| exp = int.max; |
| } |
| else |
| { |
| exp = ex - F.EXPBIAS; |
| vu[F.EXPPOS_SHORT] = F.EXPBIAS | (0x8000 & vu[F.EXPPOS_SHORT]); |
| } |
| } |
| else if ((vl[MANTISSA_LSB] | |
| (vl[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) == 0) |
| { |
| // vf is +-0.0 |
| exp = 0; |
| } |
| else |
| { |
| // subnormal |
| vf *= F.RECIP_EPSILON; |
| ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; |
| exp = ex - F.EXPBIAS - T.mant_dig + 1; |
| vu[F.EXPPOS_SHORT] = F.EXPBIAS | (0x8000 & vu[F.EXPPOS_SHORT]); |
| } |
| return vf; |
| } |
| else static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| if (ex) // If exponent is non-zero |
| { |
| if (ex == F.EXPMASK) // infinity or NaN |
| { |
| if (*vl == 0x7FF0_0000_0000_0000) // positive infinity |
| { |
| exp = int.max; |
| } |
| else if (*vl == 0xFFF0_0000_0000_0000) // negative infinity |
| exp = int.min; |
| else |
| { // NaN |
| *vl |= 0x0008_0000_0000_0000; // convert NaNS to NaNQ |
| exp = int.min; |
| } |
| } |
| else |
| { |
| exp = (ex - F.EXPBIAS) >> 4; |
| vu[F.EXPPOS_SHORT] = cast(ushort)((0x800F & vu[F.EXPPOS_SHORT]) | 0x3FE0); |
| } |
| } |
| else if (!(*vl & 0x7FFF_FFFF_FFFF_FFFF)) |
| { |
| // vf is +-0.0 |
| exp = 0; |
| } |
| else |
| { |
| // subnormal |
| vf *= F.RECIP_EPSILON; |
| ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; |
| exp = ((ex - F.EXPBIAS) >> 4) - T.mant_dig + 1; |
| vu[F.EXPPOS_SHORT] = |
| cast(ushort)(((-1 - F.EXPMASK) & vu[F.EXPPOS_SHORT]) | 0x3FE0); |
| } |
| return vf; |
| } |
| else static if (F.realFormat == RealFormat.ieeeSingle) |
| { |
| if (ex) // If exponent is non-zero |
| { |
| if (ex == F.EXPMASK) // infinity or NaN |
| { |
| if (*vi == 0x7F80_0000) // positive infinity |
| { |
| exp = int.max; |
| } |
| else if (*vi == 0xFF80_0000) // negative infinity |
| exp = int.min; |
| else |
| { // NaN |
| *vi |= 0x0040_0000; // convert NaNS to NaNQ |
| exp = int.min; |
| } |
| } |
| else |
| { |
| exp = (ex - F.EXPBIAS) >> 7; |
| vu[F.EXPPOS_SHORT] = cast(ushort)((0x807F & vu[F.EXPPOS_SHORT]) | 0x3F00); |
| } |
| } |
| else if (!(*vi & 0x7FFF_FFFF)) |
| { |
| // vf is +-0.0 |
| exp = 0; |
| } |
| else |
| { |
| // subnormal |
| vf *= F.RECIP_EPSILON; |
| ex = vu[F.EXPPOS_SHORT] & F.EXPMASK; |
| exp = ((ex - F.EXPBIAS) >> 7) - T.mant_dig + 1; |
| vu[F.EXPPOS_SHORT] = |
| cast(ushort)(((-1 - F.EXPMASK) & vu[F.EXPPOS_SHORT]) | 0x3F00); |
| } |
| return vf; |
| } |
| else // static if (F.realFormat == RealFormat.ibmExtended) |
| { |
| assert(0, "frexp not implemented"); |
| } |
| } |
| |
| /// |
| @system unittest |
| { |
| int exp; |
| real mantissa = frexp(123.456L, exp); |
| |
| // check if values are equal to 19 decimal digits of precision |
| assert(equalsDigit(mantissa * pow(2.0L, cast(real) exp), 123.456L, 19)); |
| |
| assert(frexp(-real.nan, exp) && exp == int.min); |
| assert(frexp(real.nan, exp) && exp == int.min); |
| assert(frexp(-real.infinity, exp) == -real.infinity && exp == int.min); |
| assert(frexp(real.infinity, exp) == real.infinity && exp == int.max); |
| assert(frexp(-0.0, exp) == -0.0 && exp == 0); |
| assert(frexp(0.0, exp) == 0.0 && exp == 0); |
| } |
| |
| @safe unittest |
| { |
| import std.meta : AliasSeq; |
| import std.typecons : tuple, Tuple; |
| |
| foreach (T; AliasSeq!(real, double, float)) |
| { |
| Tuple!(T, T, int)[] vals = // x,frexp,exp |
| [ |
| tuple(T(0.0), T( 0.0 ), 0), |
| tuple(T(-0.0), T( -0.0), 0), |
| tuple(T(1.0), T( .5 ), 1), |
| tuple(T(-1.0), T( -.5 ), 1), |
| tuple(T(2.0), T( .5 ), 2), |
| tuple(T(float.min_normal/2.0f), T(.5), -126), |
| tuple(T.infinity, T.infinity, int.max), |
| tuple(-T.infinity, -T.infinity, int.min), |
| tuple(T.nan, T.nan, int.min), |
| tuple(-T.nan, -T.nan, int.min), |
| |
| // Phobos issue #16026: |
| tuple(3 * (T.min_normal * T.epsilon), T( .75), (T.min_exp - T.mant_dig) + 2) |
| ]; |
| |
| foreach (elem; vals) |
| { |
| T x = elem[0]; |
| T e = elem[1]; |
| int exp = elem[2]; |
| int eptr; |
| T v = frexp(x, eptr); |
| assert(isIdentical(e, v)); |
| assert(exp == eptr); |
| |
| } |
| |
| static if (floatTraits!(T).realFormat == RealFormat.ieeeExtended) |
| { |
| static T[3][] extendedvals = [ // x,frexp,exp |
| [0x1.a5f1c2eb3fe4efp+73L, 0x1.A5F1C2EB3FE4EFp-1L, 74], // normal |
| [0x1.fa01712e8f0471ap-1064L, 0x1.fa01712e8f0471ap-1L, -1063], |
| [T.min_normal, .5, -16381], |
| [T.min_normal/2.0L, .5, -16382] // subnormal |
| ]; |
| foreach (elem; extendedvals) |
| { |
| T x = elem[0]; |
| T e = elem[1]; |
| int exp = cast(int) elem[2]; |
| int eptr; |
| T v = frexp(x, eptr); |
| assert(isIdentical(e, v)); |
| assert(exp == eptr); |
| |
| } |
| } |
| } |
| } |
| |
| @safe unittest |
| { |
| import std.meta : AliasSeq; |
| void foo() { |
| foreach (T; AliasSeq!(real, double, float)) |
| { |
| int exp; |
| const T a = 1; |
| immutable T b = 2; |
| auto c = frexp(a, exp); |
| auto d = frexp(b, exp); |
| } |
| } |
| } |
| |
| /****************************************** |
| * Extracts the exponent of x as a signed integral value. |
| * |
| * If x is not a special value, the result is the same as |
| * $(D cast(int) logb(x)). |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH ilogb(x)) $(TH Range error?)) |
| * $(TR $(TD 0) $(TD FP_ILOGB0) $(TD yes)) |
| * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD int.max) $(TD no)) |
| * $(TR $(TD $(NAN)) $(TD FP_ILOGBNAN) $(TD no)) |
| * ) |
| */ |
| int ilogb(T)(const T x) @trusted pure nothrow @nogc |
| if (isFloatingPoint!T) |
| { |
| import core.bitop : bsr; |
| alias F = floatTraits!T; |
| |
| union floatBits |
| { |
| T rv; |
| ushort[T.sizeof/2] vu; |
| uint[T.sizeof/4] vui; |
| static if (T.sizeof >= 8) |
| ulong[T.sizeof/8] vul; |
| } |
| floatBits y = void; |
| y.rv = x; |
| |
| int ex = y.vu[F.EXPPOS_SHORT] & F.EXPMASK; |
| static if (F.realFormat == RealFormat.ieeeExtended) |
| { |
| if (ex) |
| { |
| // If exponent is non-zero |
| if (ex == F.EXPMASK) // infinity or NaN |
| { |
| if (y.vul[0] & 0x7FFF_FFFF_FFFF_FFFF) // NaN |
| return FP_ILOGBNAN; |
| else // +-infinity |
| return int.max; |
| } |
| else |
| { |
| return ex - F.EXPBIAS - 1; |
| } |
| } |
| else if (!y.vul[0]) |
| { |
| // vf is +-0.0 |
| return FP_ILOGB0; |
| } |
| else |
| { |
| // subnormal |
| return ex - F.EXPBIAS - T.mant_dig + 1 + bsr(y.vul[0]); |
| } |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| if (ex) // If exponent is non-zero |
| { |
| if (ex == F.EXPMASK) |
| { |
| // infinity or NaN |
| if (y.vul[MANTISSA_LSB] | ( y.vul[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) // NaN |
| return FP_ILOGBNAN; |
| else // +- infinity |
| return int.max; |
| } |
| else |
| { |
| return ex - F.EXPBIAS - 1; |
| } |
| } |
| else if ((y.vul[MANTISSA_LSB] | (y.vul[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) == 0) |
| { |
| // vf is +-0.0 |
| return FP_ILOGB0; |
| } |
| else |
| { |
| // subnormal |
| const ulong msb = y.vul[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF; |
| const ulong lsb = y.vul[MANTISSA_LSB]; |
| if (msb) |
| return ex - F.EXPBIAS - T.mant_dig + 1 + bsr(msb) + 64; |
| else |
| return ex - F.EXPBIAS - T.mant_dig + 1 + bsr(lsb); |
| } |
| } |
| else static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| if (ex) // If exponent is non-zero |
| { |
| if (ex == F.EXPMASK) // infinity or NaN |
| { |
| if ((y.vul[0] & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FF0_0000_0000_0000) // +- infinity |
| return int.max; |
| else // NaN |
| return FP_ILOGBNAN; |
| } |
| else |
| { |
| return ((ex - F.EXPBIAS) >> 4) - 1; |
| } |
| } |
| else if (!(y.vul[0] & 0x7FFF_FFFF_FFFF_FFFF)) |
| { |
| // vf is +-0.0 |
| return FP_ILOGB0; |
| } |
| else |
| { |
| // subnormal |
| enum MANTISSAMASK_64 = ((cast(ulong) F.MANTISSAMASK_INT) << 32) | 0xFFFF_FFFF; |
| return ((ex - F.EXPBIAS) >> 4) - T.mant_dig + 1 + bsr(y.vul[0] & MANTISSAMASK_64); |
| } |
| } |
| else static if (F.realFormat == RealFormat.ieeeSingle) |
| { |
| if (ex) // If exponent is non-zero |
| { |
| if (ex == F.EXPMASK) // infinity or NaN |
| { |
| if ((y.vui[0] & 0x7FFF_FFFF) == 0x7F80_0000) // +- infinity |
| return int.max; |
| else // NaN |
| return FP_ILOGBNAN; |
| } |
| else |
| { |
| return ((ex - F.EXPBIAS) >> 7) - 1; |
| } |
| } |
| else if (!(y.vui[0] & 0x7FFF_FFFF)) |
| { |
| // vf is +-0.0 |
| return FP_ILOGB0; |
| } |
| else |
| { |
| // subnormal |
| const uint mantissa = y.vui[0] & F.MANTISSAMASK_INT; |
| return ((ex - F.EXPBIAS) >> 7) - T.mant_dig + 1 + bsr(mantissa); |
| } |
| } |
| else // static if (F.realFormat == RealFormat.ibmExtended) |
| { |
| core.stdc.math.ilogbl(x); |
| } |
| } |
| /// ditto |
| int ilogb(T)(const T x) @safe pure nothrow @nogc |
| if (isIntegral!T && isUnsigned!T) |
| { |
| import core.bitop : bsr; |
| if (x == 0) |
| return FP_ILOGB0; |
| else |
| { |
| static assert(T.sizeof <= ulong.sizeof, "integer size too large for the current ilogb implementation"); |
| return bsr(x); |
| } |
| } |
| /// ditto |
| int ilogb(T)(const T x) @safe pure nothrow @nogc |
| if (isIntegral!T && isSigned!T) |
| { |
| import std.traits : Unsigned; |
| // Note: abs(x) can not be used because the return type is not Unsigned and |
| // the return value would be wrong for x == int.min |
| Unsigned!T absx = x >= 0 ? x : -x; |
| return ilogb(absx); |
| } |
| |
| alias FP_ILOGB0 = core.stdc.math.FP_ILOGB0; |
| alias FP_ILOGBNAN = core.stdc.math.FP_ILOGBNAN; |
| |
| @system nothrow @nogc unittest |
| { |
| import std.meta : AliasSeq; |
| import std.typecons : Tuple; |
| foreach (F; AliasSeq!(float, double, real)) |
| { |
| alias T = Tuple!(F, int); |
| T[13] vals = // x, ilogb(x) |
| [ |
| T( F.nan , FP_ILOGBNAN ), |
| T( -F.nan , FP_ILOGBNAN ), |
| T( F.infinity, int.max ), |
| T( -F.infinity, int.max ), |
| T( 0.0 , FP_ILOGB0 ), |
| T( -0.0 , FP_ILOGB0 ), |
| T( 2.0 , 1 ), |
| T( 2.0001 , 1 ), |
| T( 1.9999 , 0 ), |
| T( 0.5 , -1 ), |
| T( 123.123 , 6 ), |
| T( -123.123 , 6 ), |
| T( 0.123 , -4 ), |
| ]; |
| |
| foreach (elem; vals) |
| { |
| assert(ilogb(elem[0]) == elem[1]); |
| } |
| } |
| |
| // min_normal and subnormals |
| assert(ilogb(-float.min_normal) == -126); |
| assert(ilogb(nextUp(-float.min_normal)) == -127); |
| assert(ilogb(nextUp(-float(0.0))) == -149); |
| assert(ilogb(-double.min_normal) == -1022); |
| assert(ilogb(nextUp(-double.min_normal)) == -1023); |
| assert(ilogb(nextUp(-double(0.0))) == -1074); |
| static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended) |
| { |
| assert(ilogb(-real.min_normal) == -16382); |
| assert(ilogb(nextUp(-real.min_normal)) == -16383); |
| assert(ilogb(nextUp(-real(0.0))) == -16445); |
| } |
| else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble) |
| { |
| assert(ilogb(-real.min_normal) == -1022); |
| assert(ilogb(nextUp(-real.min_normal)) == -1023); |
| assert(ilogb(nextUp(-real(0.0))) == -1074); |
| } |
| |
| // test integer types |
| assert(ilogb(0) == FP_ILOGB0); |
| assert(ilogb(int.max) == 30); |
| assert(ilogb(int.min) == 31); |
| assert(ilogb(uint.max) == 31); |
| assert(ilogb(long.max) == 62); |
| assert(ilogb(long.min) == 63); |
| assert(ilogb(ulong.max) == 63); |
| } |
| |
| /******************************************* |
| * Compute n * 2$(SUPERSCRIPT exp) |
| * References: frexp |
| */ |
| |
| real ldexp(real n, int exp) @nogc @safe pure nothrow { pragma(inline, true); return core.math.ldexp(n, exp); } |
| //FIXME |
| ///ditto |
| double ldexp(double n, int exp) @safe pure nothrow @nogc { return ldexp(cast(real) n, exp); } |
| //FIXME |
| ///ditto |
| float ldexp(float n, int exp) @safe pure nothrow @nogc { return ldexp(cast(real) n, exp); } |
| |
| /// |
| @nogc @safe pure nothrow unittest |
| { |
| import std.meta : AliasSeq; |
| foreach (T; AliasSeq!(float, double, real)) |
| { |
| T r; |
| |
| r = ldexp(3.0L, 3); |
| assert(r == 24); |
| |
| r = ldexp(cast(T) 3.0, cast(int) 3); |
| assert(r == 24); |
| |
| T n = 3.0; |
| int exp = 3; |
| r = ldexp(n, exp); |
| assert(r == 24); |
| } |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended || |
| floatTraits!(real).realFormat == RealFormat.ieeeQuadruple) |
| { |
| assert(ldexp(1.0L, -16384) == 0x1p-16384L); |
| assert(ldexp(1.0L, -16382) == 0x1p-16382L); |
| int x; |
| real n = frexp(0x1p-16384L, x); |
| assert(n == 0.5L); |
| assert(x==-16383); |
| assert(ldexp(n, x)==0x1p-16384L); |
| } |
| else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble) |
| { |
| assert(ldexp(1.0L, -1024) == 0x1p-1024L); |
| assert(ldexp(1.0L, -1022) == 0x1p-1022L); |
| int x; |
| real n = frexp(0x1p-1024L, x); |
| assert(n == 0.5L); |
| assert(x==-1023); |
| assert(ldexp(n, x)==0x1p-1024L); |
| } |
| else static assert(false, "Floating point type real not supported"); |
| } |
| |
| /* workaround Issue 14718, float parsing depends on platform strtold |
| @safe pure nothrow @nogc unittest |
| { |
| assert(ldexp(1.0, -1024) == 0x1p-1024); |
| assert(ldexp(1.0, -1022) == 0x1p-1022); |
| int x; |
| double n = frexp(0x1p-1024, x); |
| assert(n == 0.5); |
| assert(x==-1023); |
| assert(ldexp(n, x)==0x1p-1024); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| assert(ldexp(1.0f, -128) == 0x1p-128f); |
| assert(ldexp(1.0f, -126) == 0x1p-126f); |
| int x; |
| float n = frexp(0x1p-128f, x); |
| assert(n == 0.5f); |
| assert(x==-127); |
| assert(ldexp(n, x)==0x1p-128f); |
| } |
| */ |
| |
| @system unittest |
| { |
| static real[3][] vals = // value,exp,ldexp |
| [ |
| [ 0, 0, 0], |
| [ 1, 0, 1], |
| [ -1, 0, -1], |
| [ 1, 1, 2], |
| [ 123, 10, 125952], |
| [ real.max, int.max, real.infinity], |
| [ real.max, -int.max, 0], |
| [ real.min_normal, -int.max, 0], |
| ]; |
| int i; |
| |
| for (i = 0; i < vals.length; i++) |
| { |
| real x = vals[i][0]; |
| int exp = cast(int) vals[i][1]; |
| real z = vals[i][2]; |
| real l = ldexp(x, exp); |
| |
| assert(equalsDigit(z, l, 7)); |
| } |
| |
| real function(real, int) pldexp = &ldexp; |
| assert(pldexp != null); |
| } |
| |
| private |
| { |
| version (INLINE_YL2X) {} else |
| { |
| static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple) |
| { |
| // Coefficients for log(1 + x) = x - x**2/2 + x**3 P(x)/Q(x) |
| static immutable real[13] logCoeffsP = [ |
| 1.313572404063446165910279910527789794488E4L, |
| 7.771154681358524243729929227226708890930E4L, |
| 2.014652742082537582487669938141683759923E5L, |
| 3.007007295140399532324943111654767187848E5L, |
| 2.854829159639697837788887080758954924001E5L, |
| 1.797628303815655343403735250238293741397E5L, |
| 7.594356839258970405033155585486712125861E4L, |
| 2.128857716871515081352991964243375186031E4L, |
| 3.824952356185897735160588078446136783779E3L, |
| 4.114517881637811823002128927449878962058E2L, |
| 2.321125933898420063925789532045674660756E1L, |
| 4.998469661968096229986658302195402690910E-1L, |
| 1.538612243596254322971797716843006400388E-6L |
| ]; |
| static immutable real[13] logCoeffsQ = [ |
| 3.940717212190338497730839731583397586124E4L, |
| 2.626900195321832660448791748036714883242E5L, |
| 7.777690340007566932935753241556479363645E5L, |
| 1.347518538384329112529391120390701166528E6L, |
| 1.514882452993549494932585972882995548426E6L, |
| 1.158019977462989115839826904108208787040E6L, |
| 6.132189329546557743179177159925690841200E5L, |
| 2.248234257620569139969141618556349415120E5L, |
| 5.605842085972455027590989944010492125825E4L, |
| 9.147150349299596453976674231612674085381E3L, |
| 9.104928120962988414618126155557301584078E2L, |
| 4.839208193348159620282142911143429644326E1L, |
| 1.0 |
| ]; |
| |
| // Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2) |
| // where z = 2(x-1)/(x+1) |
| static immutable real[6] logCoeffsR = [ |
| -8.828896441624934385266096344596648080902E-1L, |
| 8.057002716646055371965756206836056074715E1L, |
| -2.024301798136027039250415126250455056397E3L, |
| 2.048819892795278657810231591630928516206E4L, |
| -8.977257995689735303686582344659576526998E4L, |
| 1.418134209872192732479751274970992665513E5L |
| ]; |
| static immutable real[6] logCoeffsS = [ |
| 1.701761051846631278975701529965589676574E6L |
| -1.332535117259762928288745111081235577029E6L, |
| 4.001557694070773974936904547424676279307E5L, |
| -5.748542087379434595104154610899551484314E4L, |
| 3.998526750980007367835804959888064681098E3L, |
| -1.186359407982897997337150403816839480438E2L, |
| 1.0 |
| ]; |
| } |
| else |
| { |
| // Coefficients for log(1 + x) = x - x**2/2 + x**3 P(x)/Q(x) |
| static immutable real[7] logCoeffsP = [ |
| 2.0039553499201281259648E1L, |
| 5.7112963590585538103336E1L, |
| 6.0949667980987787057556E1L, |
| 2.9911919328553073277375E1L, |
| 6.5787325942061044846969E0L, |
| 4.9854102823193375972212E-1L, |
| 4.5270000862445199635215E-5L, |
| ]; |
| static immutable real[7] logCoeffsQ = [ |
| 6.0118660497603843919306E1L, |
| 2.1642788614495947685003E2L, |
| 3.0909872225312059774938E2L, |
| 2.2176239823732856465394E2L, |
| 8.3047565967967209469434E1L, |
| 1.5062909083469192043167E1L, |
| 1.0000000000000000000000E0L, |
| ]; |
| |
| // Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2) |
| // where z = 2(x-1)/(x+1) |
| static immutable real[4] logCoeffsR = [ |
| -3.5717684488096787370998E1L, |
| 1.0777257190312272158094E1L, |
| -7.1990767473014147232598E-1L, |
| 1.9757429581415468984296E-3L, |
| ]; |
| static immutable real[4] logCoeffsS = [ |
| -4.2861221385716144629696E2L, |
| 1.9361891836232102174846E2L, |
| -2.6201045551331104417768E1L, |
| 1.0000000000000000000000E0L, |
| ]; |
| } |
| } |
| } |
| |
| /************************************** |
| * Calculate the natural logarithm of x. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH log(x)) $(TH divide by 0?) $(TH invalid?)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) |
| * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes)) |
| * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no)) |
| * ) |
| */ |
| real log(real x) @safe pure nothrow @nogc |
| { |
| version (INLINE_YL2X) |
| return core.math.yl2x(x, LN2); |
| else |
| { |
| // C1 + C2 = LN2. |
| enum real C1 = 6.93145751953125E-1L; |
| enum real C2 = 1.428606820309417232121458176568075500134E-6L; |
| |
| // Special cases. |
| if (isNaN(x)) |
| return x; |
| if (isInfinity(x) && !signbit(x)) |
| return x; |
| if (x == 0.0) |
| return -real.infinity; |
| if (x < 0.0) |
| return real.nan; |
| |
| // Separate mantissa from exponent. |
| // Note, frexp is used so that denormal numbers will be handled properly. |
| real y, z; |
| int exp; |
| |
| x = frexp(x, exp); |
| |
| // Logarithm using log(x) = z + z^^3 R(z) / S(z), |
| // where z = 2(x - 1)/(x + 1) |
| if ((exp > 2) || (exp < -2)) |
| { |
| if (x < SQRT1_2) |
| { // 2(2x - 1)/(2x + 1) |
| exp -= 1; |
| z = x - 0.5; |
| y = 0.5 * z + 0.5; |
| } |
| else |
| { // 2(x - 1)/(x + 1) |
| z = x - 0.5; |
| z -= 0.5; |
| y = 0.5 * x + 0.5; |
| } |
| x = z / y; |
| z = x * x; |
| z = x * (z * poly(z, logCoeffsR) / poly(z, logCoeffsS)); |
| z += exp * C2; |
| z += x; |
| z += exp * C1; |
| |
| return z; |
| } |
| |
| // Logarithm using log(1 + x) = x - .5x^^2 + x^^3 P(x) / Q(x) |
| if (x < SQRT1_2) |
| { // 2x - 1 |
| exp -= 1; |
| x = ldexp(x, 1) - 1.0; |
| } |
| else |
| { |
| x = x - 1.0; |
| } |
| z = x * x; |
| y = x * (z * poly(x, logCoeffsP) / poly(x, logCoeffsQ)); |
| y += exp * C2; |
| z = y - ldexp(z, -1); |
| |
| // Note, the sum of above terms does not exceed x/4, |
| // so it contributes at most about 1/4 lsb to the error. |
| z += x; |
| z += exp * C1; |
| |
| return z; |
| } |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert(log(E) == 1); |
| } |
| |
| /************************************** |
| * Calculate the base-10 logarithm of x. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH log10(x)) $(TH divide by 0?) $(TH invalid?)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) |
| * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes)) |
| * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no)) |
| * ) |
| */ |
| real log10(real x) @safe pure nothrow @nogc |
| { |
| version (INLINE_YL2X) |
| return core.math.yl2x(x, LOG2); |
| else |
| { |
| // log10(2) split into two parts. |
| enum real L102A = 0.3125L; |
| enum real L102B = -1.14700043360188047862611052755069732318101185E-2L; |
| |
| // log10(e) split into two parts. |
| enum real L10EA = 0.5L; |
| enum real L10EB = -6.570551809674817234887108108339491770560299E-2L; |
| |
| // Special cases are the same as for log. |
| if (isNaN(x)) |
| return x; |
| if (isInfinity(x) && !signbit(x)) |
| return x; |
| if (x == 0.0) |
| return -real.infinity; |
| if (x < 0.0) |
| return real.nan; |
| |
| // Separate mantissa from exponent. |
| // Note, frexp is used so that denormal numbers will be handled properly. |
| real y, z; |
| int exp; |
| |
| x = frexp(x, exp); |
| |
| // Logarithm using log(x) = z + z^^3 R(z) / S(z), |
| // where z = 2(x - 1)/(x + 1) |
| if ((exp > 2) || (exp < -2)) |
| { |
| if (x < SQRT1_2) |
| { // 2(2x - 1)/(2x + 1) |
| exp -= 1; |
| z = x - 0.5; |
| y = 0.5 * z + 0.5; |
| } |
| else |
| { // 2(x - 1)/(x + 1) |
| z = x - 0.5; |
| z -= 0.5; |
| y = 0.5 * x + 0.5; |
| } |
| x = z / y; |
| z = x * x; |
| y = x * (z * poly(z, logCoeffsR) / poly(z, logCoeffsS)); |
| goto Ldone; |
| } |
| |
| // Logarithm using log(1 + x) = x - .5x^^2 + x^^3 P(x) / Q(x) |
| if (x < SQRT1_2) |
| { // 2x - 1 |
| exp -= 1; |
| x = ldexp(x, 1) - 1.0; |
| } |
| else |
| x = x - 1.0; |
| |
| z = x * x; |
| y = x * (z * poly(x, logCoeffsP) / poly(x, logCoeffsQ)); |
| y = y - ldexp(z, -1); |
| |
| // Multiply log of fraction by log10(e) and base 2 exponent by log10(2). |
| // This sequence of operations is critical and it may be horribly |
| // defeated by some compiler optimizers. |
| Ldone: |
| z = y * L10EB; |
| z += x * L10EB; |
| z += exp * L102B; |
| z += y * L10EA; |
| z += x * L10EA; |
| z += exp * L102A; |
| |
| return z; |
| } |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert(fabs(log10(1000) - 3) < .000001); |
| } |
| |
| /****************************************** |
| * Calculates the natural logarithm of 1 + x. |
| * |
| * For very small x, log1p(x) will be more accurate than |
| * log(1 + x). |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH log1p(x)) $(TH divide by 0?) $(TH invalid?)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) $(TD no)) |
| * $(TR $(TD -1.0) $(TD -$(INFIN)) $(TD yes) $(TD no)) |
| * $(TR $(TD $(LT)-1.0) $(TD $(NAN)) $(TD no) $(TD yes)) |
| * $(TR $(TD +$(INFIN)) $(TD -$(INFIN)) $(TD no) $(TD no)) |
| * ) |
| */ |
| real log1p(real x) @safe pure nothrow @nogc |
| { |
| version (INLINE_YL2X) |
| { |
| // On x87, yl2xp1 is valid if and only if -0.5 <= lg(x) <= 0.5, |
| // ie if -0.29 <= x <= 0.414 |
| return (fabs(x) <= 0.25) ? core.math.yl2xp1(x, LN2) : core.math.yl2x(x+1, LN2); |
| } |
| else |
| { |
| // Special cases. |
| if (isNaN(x) || x == 0.0) |
| return x; |
| if (isInfinity(x) && !signbit(x)) |
| return x; |
| if (x == -1.0) |
| return -real.infinity; |
| if (x < -1.0) |
| return real.nan; |
| |
| return log(x + 1.0); |
| } |
| } |
| |
| /*************************************** |
| * Calculates the base-2 logarithm of x: |
| * $(SUB log, 2)x |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH log2(x)) $(TH divide by 0?) $(TH invalid?)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) $(TD no) ) |
| * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD no) $(TD yes) ) |
| * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no) $(TD no) ) |
| * ) |
| */ |
| real log2(real x) @safe pure nothrow @nogc |
| { |
| version (INLINE_YL2X) |
| return core.math.yl2x(x, 1); |
| else |
| { |
| // Special cases are the same as for log. |
| if (isNaN(x)) |
| return x; |
| if (isInfinity(x) && !signbit(x)) |
| return x; |
| if (x == 0.0) |
| return -real.infinity; |
| if (x < 0.0) |
| return real.nan; |
| |
| // Separate mantissa from exponent. |
| // Note, frexp is used so that denormal numbers will be handled properly. |
| real y, z; |
| int exp; |
| |
| x = frexp(x, exp); |
| |
| // Logarithm using log(x) = z + z^^3 R(z) / S(z), |
| // where z = 2(x - 1)/(x + 1) |
| if ((exp > 2) || (exp < -2)) |
| { |
| if (x < SQRT1_2) |
| { // 2(2x - 1)/(2x + 1) |
| exp -= 1; |
| z = x - 0.5; |
| y = 0.5 * z + 0.5; |
| } |
| else |
| { // 2(x - 1)/(x + 1) |
| z = x - 0.5; |
| z -= 0.5; |
| y = 0.5 * x + 0.5; |
| } |
| x = z / y; |
| z = x * x; |
| y = x * (z * poly(z, logCoeffsR) / poly(z, logCoeffsS)); |
| goto Ldone; |
| } |
| |
| // Logarithm using log(1 + x) = x - .5x^^2 + x^^3 P(x) / Q(x) |
| if (x < SQRT1_2) |
| { // 2x - 1 |
| exp -= 1; |
| x = ldexp(x, 1) - 1.0; |
| } |
| else |
| x = x - 1.0; |
| |
| z = x * x; |
| y = x * (z * poly(x, logCoeffsP) / poly(x, logCoeffsQ)); |
| y = y - ldexp(z, -1); |
| |
| // Multiply log of fraction by log10(e) and base 2 exponent by log10(2). |
| // This sequence of operations is critical and it may be horribly |
| // defeated by some compiler optimizers. |
| Ldone: |
| z = y * (LOG2E - 1.0); |
| z += x * (LOG2E - 1.0); |
| z += y; |
| z += x; |
| z += exp; |
| |
| return z; |
| } |
| } |
| |
| /// |
| @system unittest |
| { |
| // check if values are equal to 19 decimal digits of precision |
| assert(equalsDigit(log2(1024.0L), 10, 19)); |
| } |
| |
| /***************************************** |
| * Extracts the exponent of x as a signed integral value. |
| * |
| * If x is subnormal, it is treated as if it were normalized. |
| * For a positive, finite x: |
| * |
| * 1 $(LT)= $(I x) * FLT_RADIX$(SUPERSCRIPT -logb(x)) $(LT) FLT_RADIX |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH logb(x)) $(TH divide by 0?) ) |
| * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) $(TD no)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes) ) |
| * ) |
| */ |
| real logb(real x) @trusted nothrow @nogc |
| { |
| version (Win64_DMD_InlineAsm) |
| { |
| asm pure nothrow @nogc |
| { |
| naked ; |
| fld real ptr [RCX] ; |
| fxtract ; |
| fstp ST(0) ; |
| ret ; |
| } |
| } |
| else version (MSVC_InlineAsm) |
| { |
| asm pure nothrow @nogc |
| { |
| fld x ; |
| fxtract ; |
| fstp ST(0) ; |
| } |
| } |
| else |
| return core.stdc.math.logbl(x); |
| } |
| |
| /************************************ |
| * Calculates the remainder from the calculation x/y. |
| * Returns: |
| * The value of x - i * y, where i is the number of times that y can |
| * be completely subtracted from x. The result has the same sign as x. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH y) $(TH fmod(x, y)) $(TH invalid?)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD no)) |
| * $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD yes)) |
| * $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD yes)) |
| * $(TR $(TD !=$(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD no)) |
| * ) |
| */ |
| real fmod(real x, real y) @trusted nothrow @nogc |
| { |
| version (CRuntime_Microsoft) |
| { |
| return x % y; |
| } |
| else |
| return core.stdc.math.fmodl(x, y); |
| } |
| |
| /************************************ |
| * Breaks x into an integral part and a fractional part, each of which has |
| * the same sign as x. The integral part is stored in i. |
| * Returns: |
| * The fractional part of x. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH i (on input)) $(TH modf(x, i)) $(TH i (on return))) |
| * $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(PLUSMNINF))) |
| * ) |
| */ |
| real modf(real x, ref real i) @trusted nothrow @nogc |
| { |
| version (CRuntime_Microsoft) |
| { |
| i = trunc(x); |
| return copysign(isInfinity(x) ? 0.0 : x - i, x); |
| } |
| else |
| return core.stdc.math.modfl(x,&i); |
| } |
| |
| /************************************* |
| * Efficiently calculates x * 2$(SUPERSCRIPT n). |
| * |
| * scalbn handles underflow and overflow in |
| * the same fashion as the basic arithmetic operators. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH scalb(x))) |
| * $(TR $(TD $(PLUSMNINF)) $(TD $(PLUSMNINF)) ) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) ) |
| * ) |
| */ |
| real scalbn(real x, int n) @trusted nothrow @nogc |
| { |
| version (InlineAsm_X86_Any) |
| { |
| // scalbnl is not supported on DMD-Windows, so use asm pure nothrow @nogc. |
| version (Win64) |
| { |
| asm pure nothrow @nogc { |
| naked ; |
| mov 16[RSP],RCX ; |
| fild word ptr 16[RSP] ; |
| fld real ptr [RDX] ; |
| fscale ; |
| fstp ST(1) ; |
| ret ; |
| } |
| } |
| else |
| { |
| asm pure nothrow @nogc { |
| fild n; |
| fld x; |
| fscale; |
| fstp ST(1); |
| } |
| } |
| } |
| else |
| { |
| return core.stdc.math.scalbnl(x, n); |
| } |
| } |
| |
| /// |
| @safe nothrow @nogc unittest |
| { |
| assert(scalbn(-real.infinity, 5) == -real.infinity); |
| } |
| |
| /*************** |
| * Calculates the cube root of x. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH $(I x)) $(TH cbrt(x)) $(TH invalid?)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no) ) |
| * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) ) |
| * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no) ) |
| * ) |
| */ |
| real cbrt(real x) @trusted nothrow @nogc |
| { |
| version (CRuntime_Microsoft) |
| { |
| version (INLINE_YL2X) |
| return copysign(exp2(core.math.yl2x(fabs(x), 1.0L/3.0L)), x); |
| else |
| return core.stdc.math.cbrtl(x); |
| } |
| else |
| return core.stdc.math.cbrtl(x); |
| } |
| |
| |
| /******************************* |
| * Returns |x| |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH fabs(x))) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) ) |
| * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) ) |
| * ) |
| */ |
| real fabs(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.fabs(x); } |
| //FIXME |
| ///ditto |
| double fabs(double x) @safe pure nothrow @nogc { return fabs(cast(real) x); } |
| //FIXME |
| ///ditto |
| float fabs(float x) @safe pure nothrow @nogc { return fabs(cast(real) x); } |
| |
| @safe unittest |
| { |
| real function(real) pfabs = &fabs; |
| assert(pfabs != null); |
| } |
| |
| /*********************************************************************** |
| * Calculates the length of the |
| * hypotenuse of a right-angled triangle with sides of length x and y. |
| * The hypotenuse is the value of the square root of |
| * the sums of the squares of x and y: |
| * |
| * sqrt($(POWER x, 2) + $(POWER y, 2)) |
| * |
| * Note that hypot(x, y), hypot(y, x) and |
| * hypot(x, -y) are equivalent. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH y) $(TH hypot(x, y)) $(TH invalid?)) |
| * $(TR $(TD x) $(TD $(PLUSMN)0.0) $(TD |x|) $(TD no)) |
| * $(TR $(TD $(PLUSMNINF)) $(TD y) $(TD +$(INFIN)) $(TD no)) |
| * $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD +$(INFIN)) $(TD no)) |
| * ) |
| */ |
| |
| real hypot(real x, real y) @safe pure nothrow @nogc |
| { |
| // Scale x and y to avoid underflow and overflow. |
| // If one is huge and the other tiny, return the larger. |
| // If both are huge, avoid overflow by scaling by 1/sqrt(real.max/2). |
| // If both are tiny, avoid underflow by scaling by sqrt(real.min_normal*real.epsilon). |
| |
| enum real SQRTMIN = 0.5 * sqrt(real.min_normal); // This is a power of 2. |
| enum real SQRTMAX = 1.0L / SQRTMIN; // 2^^((max_exp)/2) = nextUp(sqrt(real.max)) |
| |
| static assert(2*(SQRTMAX/2)*(SQRTMAX/2) <= real.max); |
| |
| // Proves that sqrt(real.max) ~~ 0.5/sqrt(real.min_normal) |
| static assert(real.min_normal*real.max > 2 && real.min_normal*real.max <= 4); |
| |
| real u = fabs(x); |
| real v = fabs(y); |
| if (!(u >= v)) // check for NaN as well. |
| { |
| v = u; |
| u = fabs(y); |
| if (u == real.infinity) return u; // hypot(inf, nan) == inf |
| if (v == real.infinity) return v; // hypot(nan, inf) == inf |
| } |
| |
| // Now u >= v, or else one is NaN. |
| if (v >= SQRTMAX*0.5) |
| { |
| // hypot(huge, huge) -- avoid overflow |
| u *= SQRTMIN*0.5; |
| v *= SQRTMIN*0.5; |
| return sqrt(u*u + v*v) * SQRTMAX * 2.0; |
| } |
| |
| if (u <= SQRTMIN) |
| { |
| // hypot (tiny, tiny) -- avoid underflow |
| // This is only necessary to avoid setting the underflow |
| // flag. |
| u *= SQRTMAX / real.epsilon; |
| v *= SQRTMAX / real.epsilon; |
| return sqrt(u*u + v*v) * SQRTMIN * real.epsilon; |
| } |
| |
| if (u * real.epsilon > v) |
| { |
| // hypot (huge, tiny) = huge |
| return u; |
| } |
| |
| // both are in the normal range |
| return sqrt(u*u + v*v); |
| } |
| |
| @safe unittest |
| { |
| static real[3][] vals = // x,y,hypot |
| [ |
| [ 0.0, 0.0, 0.0], |
| [ 0.0, -0.0, 0.0], |
| [ -0.0, -0.0, 0.0], |
| [ 3.0, 4.0, 5.0], |
| [ -300, -400, 500], |
| [0.0, 7.0, 7.0], |
| [9.0, 9*real.epsilon, 9.0], |
| [88/(64*sqrt(real.min_normal)), 105/(64*sqrt(real.min_normal)), 137/(64*sqrt(real.min_normal))], |
| [88/(128*sqrt(real.min_normal)), 105/(128*sqrt(real.min_normal)), 137/(128*sqrt(real.min_normal))], |
| [3*real.min_normal*real.epsilon, 4*real.min_normal*real.epsilon, 5*real.min_normal*real.epsilon], |
| [ real.min_normal, real.min_normal, sqrt(2.0L)*real.min_normal], |
| [ real.max/sqrt(2.0L), real.max/sqrt(2.0L), real.max], |
| [ real.infinity, real.nan, real.infinity], |
| [ real.nan, real.infinity, real.infinity], |
| [ real.nan, real.nan, real.nan], |
| [ real.nan, real.max, real.nan], |
| [ real.max, real.nan, real.nan], |
| ]; |
| for (int i = 0; i < vals.length; i++) |
| { |
| real x = vals[i][0]; |
| real y = vals[i][1]; |
| real z = vals[i][2]; |
| real h = hypot(x, y); |
| assert(isIdentical(z,h) || feqrel(z, h) >= real.mant_dig - 1); |
| } |
| } |
| |
| /************************************** |
| * Returns the value of x rounded upward to the next integer |
| * (toward positive infinity). |
| */ |
| real ceil(real x) @trusted pure nothrow @nogc |
| { |
| version (Win64_DMD_InlineAsm) |
| { |
| asm pure nothrow @nogc |
| { |
| naked ; |
| fld real ptr [RCX] ; |
| fstcw 8[RSP] ; |
| mov AL,9[RSP] ; |
| mov DL,AL ; |
| and AL,0xC3 ; |
| or AL,0x08 ; // round to +infinity |
| mov 9[RSP],AL ; |
| fldcw 8[RSP] ; |
| frndint ; |
| mov 9[RSP],DL ; |
| fldcw 8[RSP] ; |
| ret ; |
| } |
| } |
| else version (MSVC_InlineAsm) |
| { |
| short cw; |
| asm pure nothrow @nogc |
| { |
| fld x ; |
| fstcw cw ; |
| mov AL,byte ptr cw+1 ; |
| mov DL,AL ; |
| and AL,0xC3 ; |
| or AL,0x08 ; // round to +infinity |
| mov byte ptr cw+1,AL ; |
| fldcw cw ; |
| frndint ; |
| mov byte ptr cw+1,DL ; |
| fldcw cw ; |
| } |
| } |
| else |
| { |
| // Special cases. |
| if (isNaN(x) || isInfinity(x)) |
| return x; |
| |
| real y = floorImpl(x); |
| if (y < x) |
| y += 1.0; |
| |
| return y; |
| } |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert(ceil(+123.456L) == +124); |
| assert(ceil(-123.456L) == -123); |
| assert(ceil(-1.234L) == -1); |
| assert(ceil(-0.123L) == 0); |
| assert(ceil(0.0L) == 0); |
| assert(ceil(+0.123L) == 1); |
| assert(ceil(+1.234L) == 2); |
| assert(ceil(real.infinity) == real.infinity); |
| assert(isNaN(ceil(real.nan))); |
| assert(isNaN(ceil(real.init))); |
| } |
| |
| // ditto |
| double ceil(double x) @trusted pure nothrow @nogc |
| { |
| // Special cases. |
| if (isNaN(x) || isInfinity(x)) |
| return x; |
| |
| double y = floorImpl(x); |
| if (y < x) |
| y += 1.0; |
| |
| return y; |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| assert(ceil(+123.456) == +124); |
| assert(ceil(-123.456) == -123); |
| assert(ceil(-1.234) == -1); |
| assert(ceil(-0.123) == 0); |
| assert(ceil(0.0) == 0); |
| assert(ceil(+0.123) == 1); |
| assert(ceil(+1.234) == 2); |
| assert(ceil(double.infinity) == double.infinity); |
| assert(isNaN(ceil(double.nan))); |
| assert(isNaN(ceil(double.init))); |
| } |
| |
| // ditto |
| float ceil(float x) @trusted pure nothrow @nogc |
| { |
| // Special cases. |
| if (isNaN(x) || isInfinity(x)) |
| return x; |
| |
| float y = floorImpl(x); |
| if (y < x) |
| y += 1.0; |
| |
| return y; |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| assert(ceil(+123.456f) == +124); |
| assert(ceil(-123.456f) == -123); |
| assert(ceil(-1.234f) == -1); |
| assert(ceil(-0.123f) == 0); |
| assert(ceil(0.0f) == 0); |
| assert(ceil(+0.123f) == 1); |
| assert(ceil(+1.234f) == 2); |
| assert(ceil(float.infinity) == float.infinity); |
| assert(isNaN(ceil(float.nan))); |
| assert(isNaN(ceil(float.init))); |
| } |
| |
| /************************************** |
| * Returns the value of x rounded downward to the next integer |
| * (toward negative infinity). |
| */ |
| real floor(real x) @trusted pure nothrow @nogc |
| { |
| version (Win64_DMD_InlineAsm) |
| { |
| asm pure nothrow @nogc |
| { |
| naked ; |
| fld real ptr [RCX] ; |
| fstcw 8[RSP] ; |
| mov AL,9[RSP] ; |
| mov DL,AL ; |
| and AL,0xC3 ; |
| or AL,0x04 ; // round to -infinity |
| mov 9[RSP],AL ; |
| fldcw 8[RSP] ; |
| frndint ; |
| mov 9[RSP],DL ; |
| fldcw 8[RSP] ; |
| ret ; |
| } |
| } |
| else version (MSVC_InlineAsm) |
| { |
| short cw; |
| asm pure nothrow @nogc |
| { |
| fld x ; |
| fstcw cw ; |
| mov AL,byte ptr cw+1 ; |
| mov DL,AL ; |
| and AL,0xC3 ; |
| or AL,0x04 ; // round to -infinity |
| mov byte ptr cw+1,AL ; |
| fldcw cw ; |
| frndint ; |
| mov byte ptr cw+1,DL ; |
| fldcw cw ; |
| } |
| } |
| else |
| { |
| // Special cases. |
| if (isNaN(x) || isInfinity(x) || x == 0.0) |
| return x; |
| |
| return floorImpl(x); |
| } |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert(floor(+123.456L) == +123); |
| assert(floor(-123.456L) == -124); |
| assert(floor(-1.234L) == -2); |
| assert(floor(-0.123L) == -1); |
| assert(floor(0.0L) == 0); |
| assert(floor(+0.123L) == 0); |
| assert(floor(+1.234L) == 1); |
| assert(floor(real.infinity) == real.infinity); |
| assert(isNaN(floor(real.nan))); |
| assert(isNaN(floor(real.init))); |
| } |
| |
| // ditto |
| double floor(double x) @trusted pure nothrow @nogc |
| { |
| // Special cases. |
| if (isNaN(x) || isInfinity(x) || x == 0.0) |
| return x; |
| |
| return floorImpl(x); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| assert(floor(+123.456) == +123); |
| assert(floor(-123.456) == -124); |
| assert(floor(-1.234) == -2); |
| assert(floor(-0.123) == -1); |
| assert(floor(0.0) == 0); |
| assert(floor(+0.123) == 0); |
| assert(floor(+1.234) == 1); |
| assert(floor(double.infinity) == double.infinity); |
| assert(isNaN(floor(double.nan))); |
| assert(isNaN(floor(double.init))); |
| } |
| |
| // ditto |
| float floor(float x) @trusted pure nothrow @nogc |
| { |
| // Special cases. |
| if (isNaN(x) || isInfinity(x) || x == 0.0) |
| return x; |
| |
| return floorImpl(x); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| assert(floor(+123.456f) == +123); |
| assert(floor(-123.456f) == -124); |
| assert(floor(-1.234f) == -2); |
| assert(floor(-0.123f) == -1); |
| assert(floor(0.0f) == 0); |
| assert(floor(+0.123f) == 0); |
| assert(floor(+1.234f) == 1); |
| assert(floor(float.infinity) == float.infinity); |
| assert(isNaN(floor(float.nan))); |
| assert(isNaN(floor(float.init))); |
| } |
| |
| /** |
| * Round `val` to a multiple of `unit`. `rfunc` specifies the rounding |
| * function to use; by default this is `rint`, which uses the current |
| * rounding mode. |
| */ |
| Unqual!F quantize(alias rfunc = rint, F)(const F val, const F unit) |
| if (is(typeof(rfunc(F.init)) : F) && isFloatingPoint!F) |
| { |
| typeof(return) ret = val; |
| if (unit != 0) |
| { |
| const scaled = val / unit; |
| if (!scaled.isInfinity) |
| ret = rfunc(scaled) * unit; |
| } |
| return ret; |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert(12345.6789L.quantize(0.01L) == 12345.68L); |
| assert(12345.6789L.quantize!floor(0.01L) == 12345.67L); |
| assert(12345.6789L.quantize(22.0L) == 12342.0L); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert(12345.6789L.quantize(0) == 12345.6789L); |
| assert(12345.6789L.quantize(real.infinity).isNaN); |
| assert(12345.6789L.quantize(real.nan).isNaN); |
| assert(real.infinity.quantize(0.01L) == real.infinity); |
| assert(real.infinity.quantize(real.nan).isNaN); |
| assert(real.nan.quantize(0.01L).isNaN); |
| assert(real.nan.quantize(real.infinity).isNaN); |
| assert(real.nan.quantize(real.nan).isNaN); |
| } |
| |
| /** |
| * Round `val` to a multiple of `pow(base, exp)`. `rfunc` specifies the |
| * rounding function to use; by default this is `rint`, which uses the |
| * current rounding mode. |
| */ |
| Unqual!F quantize(real base, alias rfunc = rint, F, E)(const F val, const E exp) |
| if (is(typeof(rfunc(F.init)) : F) && isFloatingPoint!F && isIntegral!E) |
| { |
| // TODO: Compile-time optimization for power-of-two bases? |
| return quantize!rfunc(val, pow(cast(F) base, exp)); |
| } |
| |
| /// ditto |
| Unqual!F quantize(real base, long exp = 1, alias rfunc = rint, F)(const F val) |
| if (is(typeof(rfunc(F.init)) : F) && isFloatingPoint!F) |
| { |
| enum unit = cast(F) pow(base, exp); |
| return quantize!rfunc(val, unit); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert(12345.6789L.quantize!10(-2) == 12345.68L); |
| assert(12345.6789L.quantize!(10, -2) == 12345.68L); |
| assert(12345.6789L.quantize!(10, floor)(-2) == 12345.67L); |
| assert(12345.6789L.quantize!(10, -2, floor) == 12345.67L); |
| |
| assert(12345.6789L.quantize!22(1) == 12342.0L); |
| assert(12345.6789L.quantize!22 == 12342.0L); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| import std.meta : AliasSeq; |
| |
| foreach (F; AliasSeq!(real, double, float)) |
| { |
| const maxL10 = cast(int) F.max.log10.floor; |
| const maxR10 = pow(cast(F) 10, maxL10); |
| assert((cast(F) 0.9L * maxR10).quantize!10(maxL10) == maxR10); |
| assert((cast(F)-0.9L * maxR10).quantize!10(maxL10) == -maxR10); |
| |
| assert(F.max.quantize(F.min_normal) == F.max); |
| assert((-F.max).quantize(F.min_normal) == -F.max); |
| assert(F.min_normal.quantize(F.max) == 0); |
| assert((-F.min_normal).quantize(F.max) == 0); |
| assert(F.min_normal.quantize(F.min_normal) == F.min_normal); |
| assert((-F.min_normal).quantize(F.min_normal) == -F.min_normal); |
| } |
| } |
| |
| /****************************************** |
| * Rounds x to the nearest integer value, using the current rounding |
| * mode. |
| * |
| * Unlike the rint functions, nearbyint does not raise the |
| * FE_INEXACT exception. |
| */ |
| real nearbyint(real x) @trusted nothrow @nogc |
| { |
| version (CRuntime_Microsoft) |
| { |
| assert(0); // not implemented in C library |
| } |
| else |
| return core.stdc.math.nearbyintl(x); |
| } |
| |
| /********************************** |
| * Rounds x to the nearest integer value, using the current rounding |
| * mode. |
| * If the return value is not equal to x, the FE_INEXACT |
| * exception is raised. |
| * $(B nearbyint) performs |
| * the same operation, but does not set the FE_INEXACT exception. |
| */ |
| real rint(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.rint(x); } |
| //FIXME |
| ///ditto |
| double rint(double x) @safe pure nothrow @nogc { return rint(cast(real) x); } |
| //FIXME |
| ///ditto |
| float rint(float x) @safe pure nothrow @nogc { return rint(cast(real) x); } |
| |
| @safe unittest |
| { |
| real function(real) print = &rint; |
| assert(print != null); |
| } |
| |
| /*************************************** |
| * Rounds x to the nearest integer value, using the current rounding |
| * mode. |
| * |
| * This is generally the fastest method to convert a floating-point number |
| * to an integer. Note that the results from this function |
| * depend on the rounding mode, if the fractional part of x is exactly 0.5. |
| * If using the default rounding mode (ties round to even integers) |
| * lrint(4.5) == 4, lrint(5.5)==6. |
| */ |
| long lrint(real x) @trusted pure nothrow @nogc |
| { |
| version (InlineAsm_X86_Any) |
| { |
| version (Win64) |
| { |
| asm pure nothrow @nogc |
| { |
| naked; |
| fld real ptr [RCX]; |
| fistp qword ptr 8[RSP]; |
| mov RAX,8[RSP]; |
| ret; |
| } |
| } |
| else |
| { |
| long n; |
| asm pure nothrow @nogc |
| { |
| fld x; |
| fistp n; |
| } |
| return n; |
| } |
| } |
| else |
| { |
| alias F = floatTraits!(real); |
| static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| long result; |
| |
| // Rounding limit when casting from real(double) to ulong. |
| enum real OF = 4.50359962737049600000E15L; |
| |
| uint* vi = cast(uint*)(&x); |
| |
| // Find the exponent and sign |
| uint msb = vi[MANTISSA_MSB]; |
| uint lsb = vi[MANTISSA_LSB]; |
| int exp = ((msb >> 20) & 0x7ff) - 0x3ff; |
| const int sign = msb >> 31; |
| msb &= 0xfffff; |
| msb |= 0x100000; |
| |
| if (exp < 63) |
| { |
| if (exp >= 52) |
| result = (cast(long) msb << (exp - 20)) | (lsb << (exp - 52)); |
| else |
| { |
| // Adjust x and check result. |
| const real j = sign ? -OF : OF; |
| x = (j + x) - j; |
| msb = vi[MANTISSA_MSB]; |
| lsb = vi[MANTISSA_LSB]; |
| exp = ((msb >> 20) & 0x7ff) - 0x3ff; |
| msb &= 0xfffff; |
| msb |= 0x100000; |
| |
| if (exp < 0) |
| result = 0; |
| else if (exp < 20) |
| result = cast(long) msb >> (20 - exp); |
| else if (exp == 20) |
| result = cast(long) msb; |
| else |
| result = (cast(long) msb << (exp - 20)) | (lsb >> (52 - exp)); |
| } |
| } |
| else |
| { |
| // It is left implementation defined when the number is too large. |
| return cast(long) x; |
| } |
| |
| return sign ? -result : result; |
| } |
| else static if (F.realFormat == RealFormat.ieeeExtended) |
| { |
| long result; |
| |
| // Rounding limit when casting from real(80-bit) to ulong. |
| enum real OF = 9.22337203685477580800E18L; |
| |
| ushort* vu = cast(ushort*)(&x); |
| uint* vi = cast(uint*)(&x); |
| |
| // Find the exponent and sign |
| int exp = (vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff; |
| const int sign = (vu[F.EXPPOS_SHORT] >> 15) & 1; |
| |
| if (exp < 63) |
| { |
| // Adjust x and check result. |
| const real j = sign ? -OF : OF; |
| x = (j + x) - j; |
| exp = (vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff; |
| |
| version (LittleEndian) |
| { |
| if (exp < 0) |
| result = 0; |
| else if (exp <= 31) |
| result = vi[1] >> (31 - exp); |
| else |
| result = (cast(long) vi[1] << (exp - 31)) | (vi[0] >> (63 - exp)); |
| } |
| else |
| { |
| if (exp < 0) |
| result = 0; |
| else if (exp <= 31) |
| result = vi[1] >> (31 - exp); |
| else |
| result = (cast(long) vi[1] << (exp - 31)) | (vi[2] >> (63 - exp)); |
| } |
| } |
| else |
| { |
| // It is left implementation defined when the number is too large |
| // to fit in a 64bit long. |
| return cast(long) x; |
| } |
| |
| return sign ? -result : result; |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| const vu = cast(ushort*)(&x); |
| |
| // Find the exponent and sign |
| const sign = (vu[F.EXPPOS_SHORT] >> 15) & 1; |
| if ((vu[F.EXPPOS_SHORT] & F.EXPMASK) - (F.EXPBIAS + 1) > 63) |
| { |
| // The result is left implementation defined when the number is |
| // too large to fit in a 64 bit long. |
| return cast(long) x; |
| } |
| |
| // Force rounding of lower bits according to current rounding |
| // mode by adding ±2^-112 and subtracting it again. |
| enum OF = 5.19229685853482762853049632922009600E33L; |
| const j = sign ? -OF : OF; |
| x = (j + x) - j; |
| |
| const exp = (vu[F.EXPPOS_SHORT] & F.EXPMASK) - (F.EXPBIAS + 1); |
| const implicitOne = 1UL << 48; |
| auto vl = cast(ulong*)(&x); |
| vl[MANTISSA_MSB] &= implicitOne - 1; |
| vl[MANTISSA_MSB] |= implicitOne; |
| |
| long result; |
| |
| if (exp < 0) |
| result = 0; |
| else if (exp <= 48) |
| result = vl[MANTISSA_MSB] >> (48 - exp); |
| else |
| result = (vl[MANTISSA_MSB] << (exp - 48)) | (vl[MANTISSA_LSB] >> (112 - exp)); |
| |
| return sign ? -result : result; |
| } |
| else |
| { |
| static assert(false, "real type not supported by lrint()"); |
| } |
| } |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert(lrint(4.5) == 4); |
| assert(lrint(5.5) == 6); |
| assert(lrint(-4.5) == -4); |
| assert(lrint(-5.5) == -6); |
| |
| assert(lrint(int.max - 0.5) == 2147483646L); |
| assert(lrint(int.max + 0.5) == 2147483648L); |
| assert(lrint(int.min - 0.5) == -2147483648L); |
| assert(lrint(int.min + 0.5) == -2147483648L); |
| } |
| |
| static if (real.mant_dig >= long.sizeof * 8) |
| { |
| @safe pure nothrow @nogc unittest |
| { |
| assert(lrint(long.max - 1.5L) == long.max - 1); |
| assert(lrint(long.max - 0.5L) == long.max - 1); |
| assert(lrint(long.min + 0.5L) == long.min); |
| assert(lrint(long.min + 1.5L) == long.min + 2); |
| } |
| } |
| |
| /******************************************* |
| * Return the value of x rounded to the nearest integer. |
| * If the fractional part of x is exactly 0.5, the return value is |
| * rounded away from zero. |
| */ |
| real round(real x) @trusted nothrow @nogc |
| { |
| version (CRuntime_Microsoft) |
| { |
| auto old = FloatingPointControl.getControlState(); |
| FloatingPointControl.setControlState( |
| (old & ~FloatingPointControl.roundingMask) | FloatingPointControl.roundToZero |
| ); |
| x = rint((x >= 0) ? x + 0.5 : x - 0.5); |
| FloatingPointControl.setControlState(old); |
| return x; |
| } |
| else |
| return core.stdc.math.roundl(x); |
| } |
| |
| /********************************************** |
| * Return the value of x rounded to the nearest integer. |
| * |
| * If the fractional part of x is exactly 0.5, the return value is rounded |
| * away from zero. |
| * |
| * $(BLUE This function is Posix-Only.) |
| */ |
| long lround(real x) @trusted nothrow @nogc |
| { |
| version (Posix) |
| return core.stdc.math.llroundl(x); |
| else |
| assert(0, "lround not implemented"); |
| } |
| |
| version (Posix) |
| { |
| @safe nothrow @nogc unittest |
| { |
| assert(lround(0.49) == 0); |
| assert(lround(0.5) == 1); |
| assert(lround(1.5) == 2); |
| } |
| } |
| |
| /**************************************************** |
| * Returns the integer portion of x, dropping the fractional portion. |
| * |
| * This is also known as "chop" rounding. |
| */ |
| real trunc(real x) @trusted nothrow @nogc |
| { |
| version (Win64_DMD_InlineAsm) |
| { |
| asm pure nothrow @nogc |
| { |
| naked ; |
| fld real ptr [RCX] ; |
| fstcw 8[RSP] ; |
| mov AL,9[RSP] ; |
| mov DL,AL ; |
| and AL,0xC3 ; |
| or AL,0x0C ; // round to 0 |
| mov 9[RSP],AL ; |
| fldcw 8[RSP] ; |
| frndint ; |
| mov 9[RSP],DL ; |
| fldcw 8[RSP] ; |
| ret ; |
| } |
| } |
| else version (MSVC_InlineAsm) |
| { |
| short cw; |
| asm pure nothrow @nogc |
| { |
| fld x ; |
| fstcw cw ; |
| mov AL,byte ptr cw+1 ; |
| mov DL,AL ; |
| and AL,0xC3 ; |
| or AL,0x0C ; // round to 0 |
| mov byte ptr cw+1,AL ; |
| fldcw cw ; |
| frndint ; |
| mov byte ptr cw+1,DL ; |
| fldcw cw ; |
| } |
| } |
| else |
| return core.stdc.math.truncl(x); |
| } |
| |
| /**************************************************** |
| * Calculate the remainder x REM y, following IEC 60559. |
| * |
| * REM is the value of x - y * n, where n is the integer nearest the exact |
| * value of x / y. |
| * If |n - x / y| == 0.5, n is even. |
| * If the result is zero, it has the same sign as x. |
| * Otherwise, the sign of the result is the sign of x / y. |
| * Precision mode has no effect on the remainder functions. |
| * |
| * remquo returns n in the parameter n. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH y) $(TH remainder(x, y)) $(TH n) $(TH invalid?)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD not 0.0) $(TD $(PLUSMN)0.0) $(TD 0.0) $(TD no)) |
| * $(TR $(TD $(PLUSMNINF)) $(TD anything) $(TD $(NAN)) $(TD ?) $(TD yes)) |
| * $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD $(NAN)) $(TD ?) $(TD yes)) |
| * $(TR $(TD != $(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x) $(TD ?) $(TD no)) |
| * ) |
| * |
| * $(BLUE `remquo` and `remainder` not supported on Windows.) |
| */ |
| real remainder(real x, real y) @trusted nothrow @nogc |
| { |
| version (CRuntime_Microsoft) |
| { |
| int n; |
| return remquo(x, y, n); |
| } |
| else |
| return core.stdc.math.remainderl(x, y); |
| } |
| |
| real remquo(real x, real y, out int n) @trusted nothrow @nogc /// ditto |
| { |
| version (Posix) |
| return core.stdc.math.remquol(x, y, &n); |
| else |
| assert(0, "remquo not implemented"); |
| } |
| |
| |
| version (IeeeFlagsSupport) |
| { |
| |
| /** IEEE exception status flags ('sticky bits') |
| |
| These flags indicate that an exceptional floating-point condition has occurred. |
| They indicate that a NaN or an infinity has been generated, that a result |
| is inexact, or that a signalling NaN has been encountered. If floating-point |
| exceptions are enabled (unmasked), a hardware exception will be generated |
| instead of setting these flags. |
| */ |
| struct IeeeFlags |
| { |
| private: |
| // The x87 FPU status register is 16 bits. |
| // The Pentium SSE2 status register is 32 bits. |
| // The ARM and PowerPC FPSCR is a 32-bit register. |
| // The SPARC FSR is a 32bit register (64 bits for SPARC 7 & 8, but high bits are uninteresting). |
| // The RISC-V (32 & 64 bit) fcsr is 32-bit register. |
| uint flags; |
| |
| version (CRuntime_Microsoft) |
| { |
| // Microsoft uses hardware-incompatible custom constants in fenv.h (core.stdc.fenv). |
| // Applies to both x87 status word (16 bits) and SSE2 status word(32 bits). |
| enum : int |
| { |
| INEXACT_MASK = 0x20, |
| UNDERFLOW_MASK = 0x10, |
| OVERFLOW_MASK = 0x08, |
| DIVBYZERO_MASK = 0x04, |
| INVALID_MASK = 0x01, |
| |
| EXCEPTIONS_MASK = 0b11_1111 |
| } |
| // Don't bother about subnormals, they are not supported on most CPUs. |
| // SUBNORMAL_MASK = 0x02; |
| } |
| else |
| { |
| enum : int |
| { |
| INEXACT_MASK = core.stdc.fenv.FE_INEXACT, |
| UNDERFLOW_MASK = core.stdc.fenv.FE_UNDERFLOW, |
| OVERFLOW_MASK = core.stdc.fenv.FE_OVERFLOW, |
| DIVBYZERO_MASK = core.stdc.fenv.FE_DIVBYZERO, |
| INVALID_MASK = core.stdc.fenv.FE_INVALID, |
| EXCEPTIONS_MASK = core.stdc.fenv.FE_ALL_EXCEPT, |
| } |
| } |
| |
| private: |
| static uint getIeeeFlags() |
| { |
| version (GNU) |
| { |
| version (X86_Any) |
| { |
| ushort sw; |
| asm pure nothrow @nogc |
| { |
| "fstsw %0" : "=a" (sw); |
| } |
| // OR the result with the SSE2 status register (MXCSR). |
| if (haveSSE) |
| { |
| uint mxcsr; |
| asm pure nothrow @nogc |
| { |
| "stmxcsr %0" : "=m" (mxcsr); |
| } |
| return (sw | mxcsr) & EXCEPTIONS_MASK; |
| } |
| else |
| return sw & EXCEPTIONS_MASK; |
| } |
| else version (ARM) |
| { |
| version (ARM_SoftFloat) |
| return 0; |
| else |
| { |
| uint result = void; |
| asm pure nothrow @nogc |
| { |
| "vmrs %0, FPSCR; and %0, %0, #0x1F;" : "=r" (result); |
| } |
| return result; |
| } |
| } |
| else version (RISCV_Any) |
| { |
| version (D_SoftFloat) |
| return 0; |
| else |
| { |
| uint result = void; |
| asm pure nothrow @nogc |
| { |
| "frflags %0" : "=r" (result); |
| } |
| return result; |
| } |
| } |
| else |
| assert(0, "Not yet supported"); |
| } |
| else |
| version (InlineAsm_X86_Any) |
| { |
| ushort sw; |
| asm pure nothrow @nogc { fstsw sw; } |
| |
| // OR the result with the SSE2 status register (MXCSR). |
| if (haveSSE) |
| { |
| uint mxcsr; |
| asm pure nothrow @nogc { stmxcsr mxcsr; } |
| return (sw | mxcsr) & EXCEPTIONS_MASK; |
| } |
| else return sw & EXCEPTIONS_MASK; |
| } |
| else version (SPARC) |
| { |
| /* |
| int retval; |
| asm pure nothrow @nogc { st %fsr, retval; } |
| return retval; |
| */ |
| assert(0, "Not yet supported"); |
| } |
| else version (ARM) |
| { |
| assert(false, "Not yet supported."); |
| } |
| else |
| assert(0, "Not yet supported"); |
| } |
| |
| static void resetIeeeFlags() @nogc |
| { |
| version (GNU) |
| { |
| version (X86_Any) |
| { |
| asm nothrow @nogc |
| { |
| "fnclex"; |
| } |
| |
| // Also clear exception flags in MXCSR, SSE's control register. |
| if (haveSSE) |
| { |
| uint mxcsr; |
| asm nothrow @nogc |
| { |
| "stmxcsr %0" : "=m" (mxcsr); |
| } |
| mxcsr &= ~EXCEPTIONS_MASK; |
| asm nothrow @nogc |
| { |
| "ldmxcsr %0" : : "m" (mxcsr); |
| } |
| } |
| } |
| else version (ARM) |
| { |
| version (ARM_SoftFloat) |
| return; |
| else |
| { |
| uint old = FloatingPointControl.getControlState(); |
| old &= ~0b11111; // http://infocenter.arm.com/help/topic/com.arm.doc.ddi0408i/Chdfifdc.html |
| asm nothrow @nogc |
| { |
| "vmsr FPSCR, %0" : : "r" (old); |
| } |
| } |
| } |
| else version (RISCV_Any) |
| { |
| version (D_SoftFloat) |
| return; |
| else |
| { |
| uint newValues = 0x0; |
| asm nothrow @nogc |
| { |
| "fsflags %0" : : "r" (newValues); |
| } |
| } |
| } |
| else |
| assert(0, "Not yet supported"); |
| } |
| else |
| version (InlineAsm_X86_Any) |
| { |
| asm nothrow @nogc |
| { |
| fnclex; |
| } |
| |
| // Also clear exception flags in MXCSR, SSE's control register. |
| if (haveSSE) |
| { |
| uint mxcsr; |
| asm nothrow @nogc { stmxcsr mxcsr; } |
| mxcsr &= ~EXCEPTIONS_MASK; |
| asm nothrow @nogc { ldmxcsr mxcsr; } |
| } |
| } |
| else |
| { |
| /* SPARC: |
| int tmpval; |
| asm pure nothrow @nogc { st %fsr, tmpval; } |
| tmpval &=0xFFFF_FC00; |
| asm pure nothrow @nogc { ld tmpval, %fsr; } |
| */ |
| assert(0, "Not yet supported"); |
| } |
| } |
| public: |
| version (IeeeFlagsSupport) |
| { |
| |
| /** |
| * The result cannot be represented exactly, so rounding occurred. |
| * Example: `x = sin(0.1);` |
| */ |
| @property bool inexact() const { return (flags & INEXACT_MASK) != 0; } |
| |
| /** |
| * A zero was generated by underflow |
| * Example: `x = real.min*real.epsilon/2;` |
| */ |
| @property bool underflow() const { return (flags & UNDERFLOW_MASK) != 0; } |
| |
| /** |
| * An infinity was generated by overflow |
| * Example: `x = real.max*2;` |
| */ |
| @property bool overflow() const { return (flags & OVERFLOW_MASK) != 0; } |
| |
| /** |
| * An infinity was generated by division by zero |
| * Example: `x = 3/0.0;` |
| */ |
| @property bool divByZero() const { return (flags & DIVBYZERO_MASK) != 0; } |
| |
| /** |
| * A machine NaN was generated. |
| * Example: `x = real.infinity * 0.0;` |
| */ |
| @property bool invalid() const { return (flags & INVALID_MASK) != 0; } |
| |
| } |
| } |
| |
| /// |
| version (IeeeFlagsUnittest) |
| @system unittest |
| { |
| static void func() { |
| int a = 10 * 10; |
| } |
| pragma(inline, false) static void blockopt(ref real x) {} |
| real a = 3.5; |
| // Set all the flags to zero |
| resetIeeeFlags(); |
| assert(!ieeeFlags.divByZero); |
| blockopt(a); // avoid constant propagation by the optimizer |
| // Perform a division by zero. |
| a /= 0.0L; |
| assert(a == real.infinity); |
| assert(ieeeFlags.divByZero); |
| blockopt(a); // avoid constant propagation by the optimizer |
| // Create a NaN |
| a *= 0.0L; |
| assert(ieeeFlags.invalid); |
| assert(isNaN(a)); |
| |
| // Check that calling func() has no effect on the |
| // status flags. |
| IeeeFlags f = ieeeFlags; |
| func(); |
| assert(ieeeFlags == f); |
| } |
| |
| version (IeeeFlagsUnittest) |
| @system unittest |
| { |
| import std.meta : AliasSeq; |
| |
| static struct Test |
| { |
| void delegate() action; |
| bool function() ieeeCheck; |
| } |
| |
| foreach (T; AliasSeq!(float, double, real)) |
| { |
| T x; /* Needs to be here to trick -O. It would optimize away the |
| calculations if x were local to the function literals. */ |
| auto tests = [ |
| Test( |
| () { x = 1; x += 0.1; }, |
| () => ieeeFlags.inexact |
| ), |
| Test( |
| () { x = T.min_normal; x /= T.max; }, |
| () => ieeeFlags.underflow |
| ), |
| Test( |
| () { x = T.max; x += T.max; }, |
| () => ieeeFlags.overflow |
| ), |
| Test( |
| () { x = 1; x /= 0; }, |
| () => ieeeFlags.divByZero |
| ), |
| Test( |
| () { x = 0; x /= 0; }, |
| () => ieeeFlags.invalid |
| ) |
| ]; |
| foreach (test; tests) |
| { |
| resetIeeeFlags(); |
| assert(!test.ieeeCheck()); |
| test.action(); |
| assert(test.ieeeCheck()); |
| } |
| } |
| } |
| |
| /// Set all of the floating-point status flags to false. |
| void resetIeeeFlags() @nogc { IeeeFlags.resetIeeeFlags(); } |
| |
| /// Returns: snapshot of the current state of the floating-point status flags |
| @property IeeeFlags ieeeFlags() |
| { |
| return IeeeFlags(IeeeFlags.getIeeeFlags()); |
| } |
| |
| } // IeeeFlagsSupport |
| |
| |
| version (FloatingPointControlSupport) |
| { |
| |
| /** Control the Floating point hardware |
| |
| Change the IEEE754 floating-point rounding mode and the floating-point |
| hardware exceptions. |
| |
| By default, the rounding mode is roundToNearest and all hardware exceptions |
| are disabled. For most applications, debugging is easier if the $(I division |
| by zero), $(I overflow), and $(I invalid operation) exceptions are enabled. |
| These three are combined into a $(I severeExceptions) value for convenience. |
| Note in particular that if $(I invalidException) is enabled, a hardware trap |
| will be generated whenever an uninitialized floating-point variable is used. |
| |
| All changes are temporary. The previous state is restored at the |
| end of the scope. |
| |
| |
| Example: |
| ---- |
| { |
| FloatingPointControl fpctrl; |
| |
| // Enable hardware exceptions for division by zero, overflow to infinity, |
| // invalid operations, and uninitialized floating-point variables. |
| fpctrl.enableExceptions(FloatingPointControl.severeExceptions); |
| |
| // This will generate a hardware exception, if x is a |
| // default-initialized floating point variable: |
| real x; // Add `= 0` or even `= real.nan` to not throw the exception. |
| real y = x * 3.0; |
| |
| // The exception is only thrown for default-uninitialized NaN-s. |
| // NaN-s with other payload are valid: |
| real z = y * real.nan; // ok |
| |
| // Changing the rounding mode: |
| fpctrl.rounding = FloatingPointControl.roundUp; |
| assert(rint(1.1) == 2); |
| |
| // The set hardware exceptions will be disabled when leaving this scope. |
| // The original rounding mode will also be restored. |
| } |
| |
| // Ensure previous values are returned: |
| assert(!FloatingPointControl.enabledExceptions); |
| assert(FloatingPointControl.rounding == FloatingPointControl.roundToNearest); |
| assert(rint(1.1) == 1); |
| ---- |
| |
| */ |
| struct FloatingPointControl |
| { |
| alias RoundingMode = uint; /// |
| |
| version (StdDdoc) |
| { |
| enum : RoundingMode |
| { |
| /** IEEE rounding modes. |
| * The default mode is roundToNearest. |
| * |
| * roundingMask = A mask of all rounding modes. |
| */ |
| roundToNearest, |
| roundDown, /// ditto |
| roundUp, /// ditto |
| roundToZero, /// ditto |
| roundingMask, /// ditto |
| } |
| } |
| else version (CRuntime_Microsoft) |
| { |
| // Microsoft uses hardware-incompatible custom constants in fenv.h (core.stdc.fenv). |
| enum : RoundingMode |
| { |
| roundToNearest = 0x0000, |
| roundDown = 0x0400, |
| roundUp = 0x0800, |
| roundToZero = 0x0C00, |
| roundingMask = roundToNearest | roundDown |
| | roundUp | roundToZero, |
| } |
| } |
| else |
| { |
| enum : RoundingMode |
| { |
| roundToNearest = core.stdc.fenv.FE_TONEAREST, |
| roundDown = core.stdc.fenv.FE_DOWNWARD, |
| roundUp = core.stdc.fenv.FE_UPWARD, |
| roundToZero = core.stdc.fenv.FE_TOWARDZERO, |
| roundingMask = roundToNearest | roundDown |
| | roundUp | roundToZero, |
| } |
| } |
| |
| //// Change the floating-point hardware rounding mode |
| @property void rounding(RoundingMode newMode) @nogc |
| { |
| initialize(); |
| setControlState(cast(ushort)((getControlState() & (-1 - roundingMask)) | (newMode & roundingMask))); |
| } |
| |
| /// Returns: the currently active rounding mode |
| @property static RoundingMode rounding() @nogc |
| { |
| return cast(RoundingMode)(getControlState() & roundingMask); |
| } |
| |
| alias ExceptionMask = uint; /// |
| |
| version (StdDdoc) |
| { |
| enum : ExceptionMask |
| { |
| /** IEEE hardware exceptions. |
| * By default, all exceptions are masked (disabled). |
| * |
| * severeExceptions = The overflow, division by zero, and invalid |
| * exceptions. |
| */ |
| subnormalException, |
| inexactException, /// ditto |
| underflowException, /// ditto |
| overflowException, /// ditto |
| divByZeroException, /// ditto |
| invalidException, /// ditto |
| severeExceptions, /// ditto |
| allExceptions, /// ditto |
| } |
| } |
| else version (ARM_Any) |
| { |
| enum : ExceptionMask |
| { |
| subnormalException = 0x8000, |
| inexactException = 0x1000, |
| underflowException = 0x0800, |
| overflowException = 0x0400, |
| divByZeroException = 0x0200, |
| invalidException = 0x0100, |
| severeExceptions = overflowException | divByZeroException |
| | invalidException, |
| allExceptions = severeExceptions | underflowException |
| | inexactException | subnormalException, |
| } |
| } |
| else version (PPC_Any) |
| { |
| enum : ExceptionMask |
| { |
| inexactException = 0x0008, |
| divByZeroException = 0x0010, |
| underflowException = 0x0020, |
| overflowException = 0x0040, |
| invalidException = 0x0080, |
| severeExceptions = overflowException | divByZeroException |
| | invalidException, |
| allExceptions = severeExceptions | underflowException |
| | inexactException, |
| } |
| } |
| else version (HPPA) |
| { |
| enum : ExceptionMask |
| { |
| inexactException = 0x01, |
| underflowException = 0x02, |
| overflowException = 0x04, |
| divByZeroException = 0x08, |
| invalidException = 0x10, |
| severeExceptions = overflowException | divByZeroException |
| | invalidException, |
| allExceptions = severeExceptions | underflowException |
| | inexactException, |
| } |
| } |
| else version (MIPS_Any) |
| { |
| enum : ExceptionMask |
| { |
| inexactException = 0x0080, |
| divByZeroException = 0x0400, |
| overflowException = 0x0200, |
| underflowException = 0x0100, |
| invalidException = 0x0800, |
| severeExceptions = overflowException | divByZeroException |
| | invalidException, |
| allExceptions = severeExceptions | underflowException |
| | inexactException, |
| } |
| } |
| else version (SPARC_Any) |
| { |
| enum : ExceptionMask |
| { |
| inexactException = 0x0800000, |
| divByZeroException = 0x1000000, |
| overflowException = 0x4000000, |
| underflowException = 0x2000000, |
| invalidException = 0x8000000, |
| severeExceptions = overflowException | divByZeroException |
| | invalidException, |
| allExceptions = severeExceptions | underflowException |
| | inexactException, |
| } |
| } |
| else version (IBMZ_Any) |
| { |
| enum : ExceptionMask |
| { |
| inexactException = 0x08000000, |
| divByZeroException = 0x40000000, |
| overflowException = 0x20000000, |
| underflowException = 0x10000000, |
| invalidException = 0x80000000, |
| severeExceptions = overflowException | divByZeroException |
| | invalidException, |
| allExceptions = severeExceptions | underflowException |
| | inexactException, |
| } |
| } |
| else version (RISCV_Any) |
| { |
| enum : ExceptionMask |
| { |
| inexactException = 0x01, |
| divByZeroException = 0x02, |
| underflowException = 0x04, |
| overflowException = 0x08, |
| invalidException = 0x10, |
| severeExceptions = overflowException | divByZeroException |
| | invalidException, |
| allExceptions = severeExceptions | underflowException |
| | inexactException, |
| } |
| } |
| else version (X86_Any) |
| { |
| enum : ExceptionMask |
| { |
| inexactException = 0x20, |
| underflowException = 0x10, |
| overflowException = 0x08, |
| divByZeroException = 0x04, |
| subnormalException = 0x02, |
| invalidException = 0x01, |
| severeExceptions = overflowException | divByZeroException |
| | invalidException, |
| allExceptions = severeExceptions | underflowException |
| | inexactException | subnormalException, |
| } |
| } |
| else |
| static assert(false, "Not implemented for this architecture"); |
| |
| public: |
| /// Returns: true if the current FPU supports exception trapping |
| @property static bool hasExceptionTraps() @safe nothrow @nogc |
| { |
| version (X86_Any) |
| return true; |
| else version (PPC_Any) |
| return true; |
| else version (MIPS_Any) |
| return true; |
| else version (ARM_Any) |
| { |
| auto oldState = getControlState(); |
| // If exceptions are not supported, we set the bit but read it back as zero |
| // https://sourceware.org/ml/libc-ports/2012-06/msg00091.html |
| setControlState(oldState | divByZeroException); |
| immutable result = (getControlState() & allExceptions) != 0; |
| setControlState(oldState); |
| return result; |
| } |
| else |
| assert(0, "Not yet supported"); |
| } |
| |
| /// Enable (unmask) specific hardware exceptions. Multiple exceptions may be ORed together. |
| void enableExceptions(ExceptionMask exceptions) @nogc |
| { |
| assert(hasExceptionTraps); |
| initialize(); |
| version (X86_Any) |
| setControlState(getControlState() & ~(exceptions & allExceptions)); |
| else |
| setControlState(getControlState() | (exceptions & allExceptions)); |
| } |
| |
| /// Disable (mask) specific hardware exceptions. Multiple exceptions may be ORed together. |
| void disableExceptions(ExceptionMask exceptions) @nogc |
| { |
| assert(hasExceptionTraps); |
| initialize(); |
| version (X86_Any) |
| setControlState(getControlState() | (exceptions & allExceptions)); |
| else |
| setControlState(getControlState() & ~(exceptions & allExceptions)); |
| } |
| |
| /// Returns: the exceptions which are currently enabled (unmasked) |
| @property static ExceptionMask enabledExceptions() @nogc |
| { |
| assert(hasExceptionTraps); |
| version (X86_Any) |
| return (getControlState() & allExceptions) ^ allExceptions; |
| else |
| return (getControlState() & allExceptions); |
| } |
| |
| /// Clear all pending exceptions, then restore the original exception state and rounding mode. |
| ~this() @nogc |
| { |
| clearExceptions(); |
| if (initialized) |
| setControlState(savedState); |
| } |
| |
| private: |
| ControlState savedState; |
| |
| bool initialized = false; |
| |
| version (ARM_Any) |
| { |
| alias ControlState = uint; |
| } |
| else version (HPPA) |
| { |
| alias ControlState = uint; |
| } |
| else version (PPC_Any) |
| { |
| alias ControlState = uint; |
| } |
| else version (MIPS_Any) |
| { |
| alias ControlState = uint; |
| } |
| else version (SPARC_Any) |
| { |
| alias ControlState = ulong; |
| } |
| else version (IBMZ_Any) |
| { |
| alias ControlState = uint; |
| } |
| else version (RISCV_Any) |
| { |
| alias ControlState = uint; |
| } |
| else version (X86_Any) |
| { |
| alias ControlState = ushort; |
| } |
| else |
| static assert(false, "Not implemented for this architecture"); |
| |
| void initialize() @nogc |
| { |
| // BUG: This works around the absence of this() constructors. |
| if (initialized) return; |
| clearExceptions(); |
| savedState = getControlState(); |
| initialized = true; |
| } |
| |
| // Clear all pending exceptions |
| static void clearExceptions() @nogc |
| { |
| version (IeeeFlagsSupport) |
| resetIeeeFlags(); |
| else |
| static assert(false, "Not implemented for this architecture"); |
| } |
| |
| // Read from the control register |
| static ControlState getControlState() @trusted nothrow @nogc |
| { |
| version (GNU) |
| { |
| version (X86_Any) |
| { |
| ControlState cont; |
| asm pure nothrow @nogc |
| { |
| "fstcw %0" : "=m" (cont); |
| } |
| return cont; |
| } |
| else version (AArch64) |
| { |
| ControlState cont; |
| asm pure nothrow @nogc |
| { |
| "mrs %0, FPCR;" : "=r" (cont); |
| } |
| return cont; |
| } |
| else version (ARM) |
| { |
| ControlState cont; |
| version (ARM_SoftFloat) |
| cont = 0; |
| else |
| { |
| asm pure nothrow @nogc |
| { |
| "vmrs %0, FPSCR" : "=r" (cont); |
| } |
| } |
| return cont; |
| } |
| else version (RISCV_Any) |
| { |
| version (D_SoftFloat) |
| return 0; |
| else |
| { |
| ControlState cont; |
| asm pure nothrow @nogc |
| { |
| "frcsr %0" : "=r" (cont); |
| } |
| return cont; |
| } |
| } |
| else |
| assert(0, "Not yet supported"); |
| } |
| else |
| version (D_InlineAsm_X86) |
| { |
| short cont; |
| asm pure nothrow @nogc |
| { |
| xor EAX, EAX; |
| fstcw cont; |
| } |
| return cont; |
| } |
| else |
| version (D_InlineAsm_X86_64) |
| { |
| short cont; |
| asm pure nothrow @nogc |
| { |
| xor RAX, RAX; |
| fstcw cont; |
| } |
| return cont; |
| } |
| else |
| assert(0, "Not yet supported"); |
| } |
| |
| // Set the control register |
| static void setControlState(ControlState newState) @trusted nothrow @nogc |
| { |
| version (GNU) |
| { |
| version (X86_Any) |
| { |
| asm nothrow @nogc |
| { |
| "fclex; fldcw %0" : : "m" (newState); |
| } |
| |
| // Also update MXCSR, SSE's control register. |
| if (haveSSE) |
| { |
| uint mxcsr; |
| asm nothrow @nogc |
| { |
| "stmxcsr %0" : "=m" (mxcsr); |
| } |
| |
| /* In the FPU control register, rounding mode is in bits 10 and |
| 11. In MXCSR it's in bits 13 and 14. */ |
| mxcsr &= ~(roundingMask << 3); // delete old rounding mode |
| mxcsr |= (newState & roundingMask) << 3; // write new rounding mode |
| |
| /* In the FPU control register, masks are bits 0 through 5. |
| In MXCSR they're 7 through 12. */ |
| mxcsr &= ~(allExceptions << 7); // delete old masks |
| mxcsr |= (newState & allExceptions) << 7; // write new exception masks |
| |
| asm nothrow @nogc |
| { |
| "ldmxcsr %0" : : "m" (mxcsr); |
| } |
| } |
| } |
| else version (AArch64) |
| { |
| asm nothrow @nogc |
| { |
| "msr FPCR, %0;" : : "r" (newState); |
| } |
| } |
| else version (ARM) |
| { |
| version (ARM_SoftFloat) |
| return; |
| else |
| { |
| asm nothrow @nogc |
| { |
| "vmsr FPSCR, %0" : : "r" (newState); |
| } |
| } |
| } |
| else version (RISCV_Any) |
| { |
| version (D_SoftFloat) |
| return; |
| else |
| { |
| asm nothrow @nogc |
| { |
| "fscsr %0" : : "r" (newState); |
| } |
| } |
| } |
| else |
| assert(0, "Not yet supported"); |
| } |
| else |
| version (InlineAsm_X86_Any) |
| { |
| asm nothrow @nogc |
| { |
| fclex; |
| fldcw newState; |
| } |
| |
| // Also update MXCSR, SSE's control register. |
| if (haveSSE) |
| { |
| uint mxcsr; |
| asm nothrow @nogc { stmxcsr mxcsr; } |
| |
| /* In the FPU control register, rounding mode is in bits 10 and |
| 11. In MXCSR it's in bits 13 and 14. */ |
| mxcsr &= ~(roundingMask << 3); // delete old rounding mode |
| mxcsr |= (newState & roundingMask) << 3; // write new rounding mode |
| |
| /* In the FPU control register, masks are bits 0 through 5. |
| In MXCSR they're 7 through 12. */ |
| mxcsr &= ~(allExceptions << 7); // delete old masks |
| mxcsr |= (newState & allExceptions) << 7; // write new exception masks |
| |
| asm nothrow @nogc { ldmxcsr mxcsr; } |
| } |
| } |
| else |
| assert(0, "Not yet supported"); |
| } |
| } |
| |
| @system unittest |
| { |
| void ensureDefaults() |
| { |
| assert(FloatingPointControl.rounding |
| == FloatingPointControl.roundToNearest); |
| if (FloatingPointControl.hasExceptionTraps) |
| assert(FloatingPointControl.enabledExceptions == 0); |
| } |
| |
| { |
| FloatingPointControl ctrl; |
| } |
| ensureDefaults(); |
| |
| { |
| FloatingPointControl ctrl; |
| ctrl.rounding = FloatingPointControl.roundDown; |
| assert(FloatingPointControl.rounding == FloatingPointControl.roundDown); |
| } |
| ensureDefaults(); |
| |
| if (FloatingPointControl.hasExceptionTraps) |
| { |
| FloatingPointControl ctrl; |
| ctrl.enableExceptions(FloatingPointControl.divByZeroException |
| | FloatingPointControl.overflowException); |
| assert(ctrl.enabledExceptions == |
| (FloatingPointControl.divByZeroException |
| | FloatingPointControl.overflowException)); |
| |
| ctrl.rounding = FloatingPointControl.roundUp; |
| assert(FloatingPointControl.rounding == FloatingPointControl.roundUp); |
| } |
| ensureDefaults(); |
| } |
| |
| version (FloatingPointControlUnittest) |
| @system unittest // rounding |
| { |
| import std.meta : AliasSeq; |
| |
| foreach (T; AliasSeq!(float, double, real)) |
| { |
| /* Be careful with changing the rounding mode, it interferes |
| * with common subexpressions. Changing rounding modes should |
| * be done with separate functions that are not inlined. |
| */ |
| |
| { |
| static T addRound(T)(uint rm) |
| { |
| pragma(inline, false) static void blockopt(ref T x) {} |
| pragma(inline, false); |
| FloatingPointControl fpctrl; |
| fpctrl.rounding = rm; |
| T x = 1; |
| blockopt(x); // avoid constant propagation by the optimizer |
| x += 0.1; |
| return x; |
| } |
| |
| T u = addRound!(T)(FloatingPointControl.roundUp); |
| T d = addRound!(T)(FloatingPointControl.roundDown); |
| T z = addRound!(T)(FloatingPointControl.roundToZero); |
| |
| assert(u > d); |
| assert(z == d); |
| } |
| |
| { |
| static T subRound(T)(uint rm) |
| { |
| pragma(inline, false) static void blockopt(ref T x) {} |
| pragma(inline, false); |
| FloatingPointControl fpctrl; |
| fpctrl.rounding = rm; |
| T x = -1; |
| blockopt(x); // avoid constant propagation by the optimizer |
| x -= 0.1; |
| return x; |
| } |
| |
| T u = subRound!(T)(FloatingPointControl.roundUp); |
| T d = subRound!(T)(FloatingPointControl.roundDown); |
| T z = subRound!(T)(FloatingPointControl.roundToZero); |
| |
| assert(u > d); |
| assert(z == u); |
| } |
| } |
| } |
| |
| } // FloatingPointControlSupport |
| |
| |
| /********************************* |
| * Determines if $(D_PARAM x) is NaN. |
| * Params: |
| * x = a floating point number. |
| * Returns: |
| * $(D true) if $(D_PARAM x) is Nan. |
| */ |
| bool isNaN(X)(X x) @nogc @trusted pure nothrow |
| if (isFloatingPoint!(X)) |
| { |
| alias F = floatTraits!(X); |
| static if (F.realFormat == RealFormat.ieeeSingle) |
| { |
| const uint p = *cast(uint *)&x; |
| return ((p & 0x7F80_0000) == 0x7F80_0000) |
| && p & 0x007F_FFFF; // not infinity |
| } |
| else static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| const ulong p = *cast(ulong *)&x; |
| return ((p & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000) |
| && p & 0x000F_FFFF_FFFF_FFFF; // not infinity |
| } |
| else static if (F.realFormat == RealFormat.ieeeExtended) |
| { |
| const ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; |
| const ulong ps = *cast(ulong *)&x; |
| return e == F.EXPMASK && |
| ps & 0x7FFF_FFFF_FFFF_FFFF; // not infinity |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| const ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; |
| const ulong psLsb = (cast(ulong *)&x)[MANTISSA_LSB]; |
| const ulong psMsb = (cast(ulong *)&x)[MANTISSA_MSB]; |
| return e == F.EXPMASK && |
| (psLsb | (psMsb& 0x0000_FFFF_FFFF_FFFF)) != 0; |
| } |
| else |
| { |
| return x != x; |
| } |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert( isNaN(float.init)); |
| assert( isNaN(-double.init)); |
| assert( isNaN(real.nan)); |
| assert( isNaN(-real.nan)); |
| assert(!isNaN(cast(float) 53.6)); |
| assert(!isNaN(cast(real)-53.6)); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| import std.meta : AliasSeq; |
| |
| foreach (T; AliasSeq!(float, double, real)) |
| { |
| // CTFE-able tests |
| assert(isNaN(T.init)); |
| assert(isNaN(-T.init)); |
| assert(isNaN(T.nan)); |
| assert(isNaN(-T.nan)); |
| assert(!isNaN(T.infinity)); |
| assert(!isNaN(-T.infinity)); |
| assert(!isNaN(cast(T) 53.6)); |
| assert(!isNaN(cast(T)-53.6)); |
| |
| // Runtime tests |
| shared T f; |
| f = T.init; |
| assert(isNaN(f)); |
| assert(isNaN(-f)); |
| f = T.nan; |
| assert(isNaN(f)); |
| assert(isNaN(-f)); |
| f = T.infinity; |
| assert(!isNaN(f)); |
| assert(!isNaN(-f)); |
| f = cast(T) 53.6; |
| assert(!isNaN(f)); |
| assert(!isNaN(-f)); |
| } |
| } |
| |
| /********************************* |
| * Determines if $(D_PARAM x) is finite. |
| * Params: |
| * x = a floating point number. |
| * Returns: |
| * $(D true) if $(D_PARAM x) is finite. |
| */ |
| bool isFinite(X)(X x) @trusted pure nothrow @nogc |
| { |
| alias F = floatTraits!(X); |
| ushort* pe = cast(ushort *)&x; |
| return (pe[F.EXPPOS_SHORT] & F.EXPMASK) != F.EXPMASK; |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert( isFinite(1.23f)); |
| assert( isFinite(float.max)); |
| assert( isFinite(float.min_normal)); |
| assert(!isFinite(float.nan)); |
| assert(!isFinite(float.infinity)); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| assert(isFinite(1.23)); |
| assert(isFinite(double.max)); |
| assert(isFinite(double.min_normal)); |
| assert(!isFinite(double.nan)); |
| assert(!isFinite(double.infinity)); |
| |
| assert(isFinite(1.23L)); |
| assert(isFinite(real.max)); |
| assert(isFinite(real.min_normal)); |
| assert(!isFinite(real.nan)); |
| assert(!isFinite(real.infinity)); |
| } |
| |
| |
| /********************************* |
| * Determines if $(D_PARAM x) is normalized. |
| * |
| * A normalized number must not be zero, subnormal, infinite nor $(NAN). |
| * |
| * Params: |
| * x = a floating point number. |
| * Returns: |
| * $(D true) if $(D_PARAM x) is normalized. |
| */ |
| |
| /* Need one for each format because subnormal floats might |
| * be converted to normal reals. |
| */ |
| bool isNormal(X)(X x) @trusted pure nothrow @nogc |
| { |
| alias F = floatTraits!(X); |
| static if (F.realFormat == RealFormat.ibmExtended) |
| { |
| // doubledouble is normal if the least significant part is normal. |
| return isNormal((cast(double*)&x)[MANTISSA_LSB]); |
| } |
| else |
| { |
| ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; |
| return (e != F.EXPMASK && e != 0); |
| } |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| float f = 3; |
| double d = 500; |
| real e = 10e+48; |
| |
| assert(isNormal(f)); |
| assert(isNormal(d)); |
| assert(isNormal(e)); |
| f = d = e = 0; |
| assert(!isNormal(f)); |
| assert(!isNormal(d)); |
| assert(!isNormal(e)); |
| assert(!isNormal(real.infinity)); |
| assert(isNormal(-real.max)); |
| assert(!isNormal(real.min_normal/4)); |
| |
| } |
| |
| /********************************* |
| * Determines if $(D_PARAM x) is subnormal. |
| * |
| * Subnormals (also known as "denormal number"), have a 0 exponent |
| * and a 0 most significant mantissa bit. |
| * |
| * Params: |
| * x = a floating point number. |
| * Returns: |
| * $(D true) if $(D_PARAM x) is a denormal number. |
| */ |
| bool isSubnormal(X)(X x) @trusted pure nothrow @nogc |
| { |
| /* |
| Need one for each format because subnormal floats might |
| be converted to normal reals. |
| */ |
| alias F = floatTraits!(X); |
| static if (F.realFormat == RealFormat.ieeeSingle) |
| { |
| uint *p = cast(uint *)&x; |
| return (*p & F.EXPMASK_INT) == 0 && *p & F.MANTISSAMASK_INT; |
| } |
| else static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| uint *p = cast(uint *)&x; |
| return (p[MANTISSA_MSB] & F.EXPMASK_INT) == 0 |
| && (p[MANTISSA_LSB] || p[MANTISSA_MSB] & F.MANTISSAMASK_INT); |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; |
| long* ps = cast(long *)&x; |
| return (e == 0 && |
| ((ps[MANTISSA_LSB]|(ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF)) != 0)); |
| } |
| else static if (F.realFormat == RealFormat.ieeeExtended) |
| { |
| ushort* pe = cast(ushort *)&x; |
| long* ps = cast(long *)&x; |
| |
| return (pe[F.EXPPOS_SHORT] & F.EXPMASK) == 0 && *ps > 0; |
| } |
| else static if (F.realFormat == RealFormat.ibmExtended) |
| { |
| return isSubnormal((cast(double*)&x)[MANTISSA_MSB]); |
| } |
| else |
| { |
| static assert(false, "Not implemented for this architecture"); |
| } |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| import std.meta : AliasSeq; |
| |
| foreach (T; AliasSeq!(float, double, real)) |
| { |
| T f; |
| for (f = 1.0; !isSubnormal(f); f /= 2) |
| assert(f != 0); |
| } |
| } |
| |
| /********************************* |
| * Determines if $(D_PARAM x) is $(PLUSMN)$(INFIN). |
| * Params: |
| * x = a floating point number. |
| * Returns: |
| * $(D true) if $(D_PARAM x) is $(PLUSMN)$(INFIN). |
| */ |
| bool isInfinity(X)(X x) @nogc @trusted pure nothrow |
| if (isFloatingPoint!(X)) |
| { |
| alias F = floatTraits!(X); |
| static if (F.realFormat == RealFormat.ieeeSingle) |
| { |
| return ((*cast(uint *)&x) & 0x7FFF_FFFF) == 0x7F80_0000; |
| } |
| else static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| return ((*cast(ulong *)&x) & 0x7FFF_FFFF_FFFF_FFFF) |
| == 0x7FF0_0000_0000_0000; |
| } |
| else static if (F.realFormat == RealFormat.ieeeExtended) |
| { |
| const ushort e = cast(ushort)(F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]); |
| const ulong ps = *cast(ulong *)&x; |
| |
| // On Motorola 68K, infinity can have hidden bit = 1 or 0. On x86, it is always 1. |
| return e == F.EXPMASK && (ps & 0x7FFF_FFFF_FFFF_FFFF) == 0; |
| } |
| else static if (F.realFormat == RealFormat.ibmExtended) |
| { |
| return (((cast(ulong *)&x)[MANTISSA_MSB]) & 0x7FFF_FFFF_FFFF_FFFF) |
| == 0x7FF8_0000_0000_0000; |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| const long psLsb = (cast(long *)&x)[MANTISSA_LSB]; |
| const long psMsb = (cast(long *)&x)[MANTISSA_MSB]; |
| return (psLsb == 0) |
| && (psMsb & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_0000_0000_0000; |
| } |
| else |
| { |
| return (x < -X.max) || (X.max < x); |
| } |
| } |
| |
| /// |
| @nogc @safe pure nothrow unittest |
| { |
| assert(!isInfinity(float.init)); |
| assert(!isInfinity(-float.init)); |
| assert(!isInfinity(float.nan)); |
| assert(!isInfinity(-float.nan)); |
| assert(isInfinity(float.infinity)); |
| assert(isInfinity(-float.infinity)); |
| assert(isInfinity(-1.0f / 0.0f)); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| // CTFE-able tests |
| assert(!isInfinity(double.init)); |
| assert(!isInfinity(-double.init)); |
| assert(!isInfinity(double.nan)); |
| assert(!isInfinity(-double.nan)); |
| assert(isInfinity(double.infinity)); |
| assert(isInfinity(-double.infinity)); |
| assert(isInfinity(-1.0 / 0.0)); |
| |
| assert(!isInfinity(real.init)); |
| assert(!isInfinity(-real.init)); |
| assert(!isInfinity(real.nan)); |
| assert(!isInfinity(-real.nan)); |
| assert(isInfinity(real.infinity)); |
| assert(isInfinity(-real.infinity)); |
| assert(isInfinity(-1.0L / 0.0L)); |
| |
| // Runtime tests |
| shared float f; |
| f = float.init; |
| assert(!isInfinity(f)); |
| assert(!isInfinity(-f)); |
| f = float.nan; |
| assert(!isInfinity(f)); |
| assert(!isInfinity(-f)); |
| f = float.infinity; |
| assert(isInfinity(f)); |
| assert(isInfinity(-f)); |
| f = (-1.0f / 0.0f); |
| assert(isInfinity(f)); |
| |
| shared double d; |
| d = double.init; |
| assert(!isInfinity(d)); |
| assert(!isInfinity(-d)); |
| d = double.nan; |
| assert(!isInfinity(d)); |
| assert(!isInfinity(-d)); |
| d = double.infinity; |
| assert(isInfinity(d)); |
| assert(isInfinity(-d)); |
| d = (-1.0 / 0.0); |
| assert(isInfinity(d)); |
| |
| shared real e; |
| e = real.init; |
| assert(!isInfinity(e)); |
| assert(!isInfinity(-e)); |
| e = real.nan; |
| assert(!isInfinity(e)); |
| assert(!isInfinity(-e)); |
| e = real.infinity; |
| assert(isInfinity(e)); |
| assert(isInfinity(-e)); |
| e = (-1.0L / 0.0L); |
| assert(isInfinity(e)); |
| } |
| |
| /********************************* |
| * Is the binary representation of x identical to y? |
| * |
| * Same as ==, except that positive and negative zero are not identical, |
| * and two $(NAN)s are identical if they have the same 'payload'. |
| */ |
| bool isIdentical(real x, real y) @trusted pure nothrow @nogc |
| { |
| // We're doing a bitwise comparison so the endianness is irrelevant. |
| long* pxs = cast(long *)&x; |
| long* pys = cast(long *)&y; |
| alias F = floatTraits!(real); |
| static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| return pxs[0] == pys[0]; |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple |
| || F.realFormat == RealFormat.ibmExtended) |
| { |
| return pxs[0] == pys[0] && pxs[1] == pys[1]; |
| } |
| else |
| { |
| ushort* pxe = cast(ushort *)&x; |
| ushort* pye = cast(ushort *)&y; |
| return pxe[4] == pye[4] && pxs[0] == pys[0]; |
| } |
| } |
| |
| /********************************* |
| * Return 1 if sign bit of e is set, 0 if not. |
| */ |
| int signbit(X)(X x) @nogc @trusted pure nothrow |
| { |
| alias F = floatTraits!(X); |
| return ((cast(ubyte *)&x)[F.SIGNPOS_BYTE] & 0x80) != 0; |
| } |
| |
| /// |
| @nogc @safe pure nothrow unittest |
| { |
| assert(!signbit(float.nan)); |
| assert(signbit(-float.nan)); |
| assert(!signbit(168.1234f)); |
| assert(signbit(-168.1234f)); |
| assert(!signbit(0.0f)); |
| assert(signbit(-0.0f)); |
| assert(signbit(-float.max)); |
| assert(!signbit(float.max)); |
| |
| assert(!signbit(double.nan)); |
| assert(signbit(-double.nan)); |
| assert(!signbit(168.1234)); |
| assert(signbit(-168.1234)); |
| assert(!signbit(0.0)); |
| assert(signbit(-0.0)); |
| assert(signbit(-double.max)); |
| assert(!signbit(double.max)); |
| |
| assert(!signbit(real.nan)); |
| assert(signbit(-real.nan)); |
| assert(!signbit(168.1234L)); |
| assert(signbit(-168.1234L)); |
| assert(!signbit(0.0L)); |
| assert(signbit(-0.0L)); |
| assert(signbit(-real.max)); |
| assert(!signbit(real.max)); |
| } |
| |
| |
| /********************************* |
| * Return a value composed of to with from's sign bit. |
| */ |
| R copysign(R, X)(R to, X from) @trusted pure nothrow @nogc |
| if (isFloatingPoint!(R) && isFloatingPoint!(X)) |
| { |
| ubyte* pto = cast(ubyte *)&to; |
| const ubyte* pfrom = cast(ubyte *)&from; |
| |
| alias T = floatTraits!(R); |
| alias F = floatTraits!(X); |
| pto[T.SIGNPOS_BYTE] &= 0x7F; |
| pto[T.SIGNPOS_BYTE] |= pfrom[F.SIGNPOS_BYTE] & 0x80; |
| return to; |
| } |
| |
| // ditto |
| R copysign(R, X)(X to, R from) @trusted pure nothrow @nogc |
| if (isIntegral!(X) && isFloatingPoint!(R)) |
| { |
| return copysign(cast(R) to, from); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| import std.meta : AliasSeq; |
| |
| foreach (X; AliasSeq!(float, double, real, int, long)) |
| { |
| foreach (Y; AliasSeq!(float, double, real)) |
| (){ // avoid slow optimizations for large functions @@@BUG@@@ 2396 |
| X x = 21; |
| Y y = 23.8; |
| Y e = void; |
| |
| e = copysign(x, y); |
| assert(e == 21.0); |
| |
| e = copysign(-x, y); |
| assert(e == 21.0); |
| |
| e = copysign(x, -y); |
| assert(e == -21.0); |
| |
| e = copysign(-x, -y); |
| assert(e == -21.0); |
| |
| static if (isFloatingPoint!X) |
| { |
| e = copysign(X.nan, y); |
| assert(isNaN(e) && !signbit(e)); |
| |
| e = copysign(X.nan, -y); |
| assert(isNaN(e) && signbit(e)); |
| } |
| }(); |
| } |
| } |
| |
| /********************************* |
| Returns $(D -1) if $(D x < 0), $(D x) if $(D x == 0), $(D 1) if |
| $(D x > 0), and $(NAN) if x==$(NAN). |
| */ |
| F sgn(F)(F x) @safe pure nothrow @nogc |
| { |
| // @@@TODO@@@: make this faster |
| return x > 0 ? 1 : x < 0 ? -1 : x; |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert(sgn(168.1234) == 1); |
| assert(sgn(-168.1234) == -1); |
| assert(sgn(0.0) == 0); |
| assert(sgn(-0.0) == 0); |
| } |
| |
| // Functions for NaN payloads |
| /* |
| * A 'payload' can be stored in the significand of a $(NAN). One bit is required |
| * to distinguish between a quiet and a signalling $(NAN). This leaves 22 bits |
| * of payload for a float; 51 bits for a double; 62 bits for an 80-bit real; |
| * and 111 bits for a 128-bit quad. |
| */ |
| /** |
| * Create a quiet $(NAN), storing an integer inside the payload. |
| * |
| * For floats, the largest possible payload is 0x3F_FFFF. |
| * For doubles, it is 0x3_FFFF_FFFF_FFFF. |
| * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. |
| */ |
| real NaN(ulong payload) @trusted pure nothrow @nogc |
| { |
| alias F = floatTraits!(real); |
| static if (F.realFormat == RealFormat.ieeeExtended) |
| { |
| // real80 (in x86 real format, the implied bit is actually |
| // not implied but a real bit which is stored in the real) |
| ulong v = 3; // implied bit = 1, quiet bit = 1 |
| } |
| else |
| { |
| ulong v = 1; // no implied bit. quiet bit = 1 |
| } |
| |
| ulong a = payload; |
| |
| // 22 Float bits |
| ulong w = a & 0x3F_FFFF; |
| a -= w; |
| |
| v <<=22; |
| v |= w; |
| a >>=22; |
| |
| // 29 Double bits |
| v <<=29; |
| w = a & 0xFFF_FFFF; |
| v |= w; |
| a -= w; |
| a >>=29; |
| |
| static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| v |= 0x7FF0_0000_0000_0000; |
| real x; |
| * cast(ulong *)(&x) = v; |
| return x; |
| } |
| else |
| { |
| v <<=11; |
| a &= 0x7FF; |
| v |= a; |
| real x = real.nan; |
| |
| // Extended real bits |
| static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| v <<= 1; // there's no implicit bit |
| |
| version (LittleEndian) |
| { |
| *cast(ulong*)(6+cast(ubyte*)(&x)) = v; |
| } |
| else |
| { |
| *cast(ulong*)(2+cast(ubyte*)(&x)) = v; |
| } |
| } |
| else |
| { |
| *cast(ulong *)(&x) = v; |
| } |
| return x; |
| } |
| } |
| |
| @system pure nothrow @nogc unittest // not @safe because taking address of local. |
| { |
| static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble) |
| { |
| auto x = NaN(1); |
| auto xl = *cast(ulong*)&x; |
| assert(xl & 0x8_0000_0000_0000UL); //non-signaling bit, bit 52 |
| assert((xl & 0x7FF0_0000_0000_0000UL) == 0x7FF0_0000_0000_0000UL); //all exp bits set |
| } |
| } |
| |
| /** |
| * Extract an integral payload from a $(NAN). |
| * |
| * Returns: |
| * the integer payload as a ulong. |
| * |
| * For floats, the largest possible payload is 0x3F_FFFF. |
| * For doubles, it is 0x3_FFFF_FFFF_FFFF. |
| * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. |
| */ |
| ulong getNaNPayload(real x) @trusted pure nothrow @nogc |
| { |
| // assert(isNaN(x)); |
| alias F = floatTraits!(real); |
| static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| ulong m = *cast(ulong *)(&x); |
| // Make it look like an 80-bit significand. |
| // Skip exponent, and quiet bit |
| m &= 0x0007_FFFF_FFFF_FFFF; |
| m <<= 11; |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| version (LittleEndian) |
| { |
| ulong m = *cast(ulong*)(6+cast(ubyte*)(&x)); |
| } |
| else |
| { |
| ulong m = *cast(ulong*)(2+cast(ubyte*)(&x)); |
| } |
| |
| m >>= 1; // there's no implicit bit |
| } |
| else |
| { |
| ulong m = *cast(ulong *)(&x); |
| } |
| |
| // ignore implicit bit and quiet bit |
| |
| const ulong f = m & 0x3FFF_FF00_0000_0000L; |
| |
| ulong w = f >>> 40; |
| w |= (m & 0x00FF_FFFF_F800L) << (22 - 11); |
| w |= (m & 0x7FF) << 51; |
| return w; |
| } |
| |
| debug(UnitTest) |
| { |
| @safe pure nothrow @nogc unittest |
| { |
| real nan4 = NaN(0x789_ABCD_EF12_3456); |
| static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended |
| || floatTraits!(real).realFormat == RealFormat.ieeeQuadruple) |
| { |
| assert(getNaNPayload(nan4) == 0x789_ABCD_EF12_3456); |
| } |
| else |
| { |
| assert(getNaNPayload(nan4) == 0x1_ABCD_EF12_3456); |
| } |
| double nan5 = nan4; |
| assert(getNaNPayload(nan5) == 0x1_ABCD_EF12_3456); |
| float nan6 = nan4; |
| assert(getNaNPayload(nan6) == 0x12_3456); |
| nan4 = NaN(0xFABCD); |
| assert(getNaNPayload(nan4) == 0xFABCD); |
| nan6 = nan4; |
| assert(getNaNPayload(nan6) == 0xFABCD); |
| nan5 = NaN(0x100_0000_0000_3456); |
| assert(getNaNPayload(nan5) == 0x0000_0000_3456); |
| } |
| } |
| |
| /** |
| * Calculate the next largest floating point value after x. |
| * |
| * Return the least number greater than x that is representable as a real; |
| * thus, it gives the next point on the IEEE number line. |
| * |
| * $(TABLE_SV |
| * $(SVH x, nextUp(x) ) |
| * $(SV -$(INFIN), -real.max ) |
| * $(SV $(PLUSMN)0.0, real.min_normal*real.epsilon ) |
| * $(SV real.max, $(INFIN) ) |
| * $(SV $(INFIN), $(INFIN) ) |
| * $(SV $(NAN), $(NAN) ) |
| * ) |
| */ |
| real nextUp(real x) @trusted pure nothrow @nogc |
| { |
| alias F = floatTraits!(real); |
| static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| return nextUp(cast(double) x); |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; |
| if (e == F.EXPMASK) |
| { |
| // NaN or Infinity |
| if (x == -real.infinity) return -real.max; |
| return x; // +Inf and NaN are unchanged. |
| } |
| |
| auto ps = cast(ulong *)&x; |
| if (ps[MANTISSA_MSB] & 0x8000_0000_0000_0000) |
| { |
| // Negative number |
| if (ps[MANTISSA_LSB] == 0 && ps[MANTISSA_MSB] == 0x8000_0000_0000_0000) |
| { |
| // it was negative zero, change to smallest subnormal |
| ps[MANTISSA_LSB] = 1; |
| ps[MANTISSA_MSB] = 0; |
| return x; |
| } |
| if (ps[MANTISSA_LSB] == 0) --ps[MANTISSA_MSB]; |
| --ps[MANTISSA_LSB]; |
| } |
| else |
| { |
| // Positive number |
| ++ps[MANTISSA_LSB]; |
| if (ps[MANTISSA_LSB] == 0) ++ps[MANTISSA_MSB]; |
| } |
| return x; |
| } |
| else static if (F.realFormat == RealFormat.ieeeExtended) |
| { |
| // For 80-bit reals, the "implied bit" is a nuisance... |
| ushort *pe = cast(ushort *)&x; |
| ulong *ps = cast(ulong *)&x; |
| |
| if ((pe[F.EXPPOS_SHORT] & F.EXPMASK) == F.EXPMASK) |
| { |
| // First, deal with NANs and infinity |
| if (x == -real.infinity) return -real.max; |
| return x; // +Inf and NaN are unchanged. |
| } |
| if (pe[F.EXPPOS_SHORT] & 0x8000) |
| { |
| // Negative number -- need to decrease the significand |
| --*ps; |
| // Need to mask with 0x7FFF... so subnormals are treated correctly. |
| if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_FFFF_FFFF_FFFF) |
| { |
| if (pe[F.EXPPOS_SHORT] == 0x8000) // it was negative zero |
| { |
| *ps = 1; |
| pe[F.EXPPOS_SHORT] = 0; // smallest subnormal. |
| return x; |
| } |
| |
| --pe[F.EXPPOS_SHORT]; |
| |
| if (pe[F.EXPPOS_SHORT] == 0x8000) |
| return x; // it's become a subnormal, implied bit stays low. |
| |
| *ps = 0xFFFF_FFFF_FFFF_FFFF; // set the implied bit |
| return x; |
| } |
| return x; |
| } |
| else |
| { |
| // Positive number -- need to increase the significand. |
| // Works automatically for positive zero. |
| ++*ps; |
| if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0) |
| { |
| // change in exponent |
| ++pe[F.EXPPOS_SHORT]; |
| *ps = 0x8000_0000_0000_0000; // set the high bit |
| } |
| } |
| return x; |
| } |
| else // static if (F.realFormat == RealFormat.ibmExtended) |
| { |
| assert(0, "nextUp not implemented"); |
| } |
| } |
| |
| /** ditto */ |
| double nextUp(double x) @trusted pure nothrow @nogc |
| { |
| ulong *ps = cast(ulong *)&x; |
| |
| if ((*ps & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000) |
| { |
| // First, deal with NANs and infinity |
| if (x == -x.infinity) return -x.max; |
| return x; // +INF and NAN are unchanged. |
| } |
| if (*ps & 0x8000_0000_0000_0000) // Negative number |
| { |
| if (*ps == 0x8000_0000_0000_0000) // it was negative zero |
| { |
| *ps = 0x0000_0000_0000_0001; // change to smallest subnormal |
| return x; |
| } |
| --*ps; |
| } |
| else |
| { // Positive number |
| ++*ps; |
| } |
| return x; |
| } |
| |
| /** ditto */ |
| float nextUp(float x) @trusted pure nothrow @nogc |
| { |
| uint *ps = cast(uint *)&x; |
| |
| if ((*ps & 0x7F80_0000) == 0x7F80_0000) |
| { |
| // First, deal with NANs and infinity |
| if (x == -x.infinity) return -x.max; |
| |
| return x; // +INF and NAN are unchanged. |
| } |
| if (*ps & 0x8000_0000) // Negative number |
| { |
| if (*ps == 0x8000_0000) // it was negative zero |
| { |
| *ps = 0x0000_0001; // change to smallest subnormal |
| return x; |
| } |
| |
| --*ps; |
| } |
| else |
| { |
| // Positive number |
| ++*ps; |
| } |
| return x; |
| } |
| |
| /** |
| * Calculate the next smallest floating point value before x. |
| * |
| * Return the greatest number less than x that is representable as a real; |
| * thus, it gives the previous point on the IEEE number line. |
| * |
| * $(TABLE_SV |
| * $(SVH x, nextDown(x) ) |
| * $(SV $(INFIN), real.max ) |
| * $(SV $(PLUSMN)0.0, -real.min_normal*real.epsilon ) |
| * $(SV -real.max, -$(INFIN) ) |
| * $(SV -$(INFIN), -$(INFIN) ) |
| * $(SV $(NAN), $(NAN) ) |
| * ) |
| */ |
| real nextDown(real x) @safe pure nothrow @nogc |
| { |
| return -nextUp(-x); |
| } |
| |
| /** ditto */ |
| double nextDown(double x) @safe pure nothrow @nogc |
| { |
| return -nextUp(-x); |
| } |
| |
| /** ditto */ |
| float nextDown(float x) @safe pure nothrow @nogc |
| { |
| return -nextUp(-x); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| assert( nextDown(1.0 + real.epsilon) == 1.0); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended) |
| { |
| |
| // Tests for 80-bit reals |
| assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC))); |
| // negative numbers |
| assert( nextUp(-real.infinity) == -real.max ); |
| assert( nextUp(-1.0L-real.epsilon) == -1.0 ); |
| assert( nextUp(-2.0L) == -2.0 + real.epsilon); |
| // subnormals and zero |
| assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) ); |
| assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) ); |
| assert( isIdentical(-0.0L, nextUp(-real.min_normal*real.epsilon)) ); |
| assert( nextUp(-0.0L) == real.min_normal*real.epsilon ); |
| assert( nextUp(0.0L) == real.min_normal*real.epsilon ); |
| assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal ); |
| assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) ); |
| // positive numbers |
| assert( nextUp(1.0L) == 1.0 + real.epsilon ); |
| assert( nextUp(2.0L-real.epsilon) == 2.0 ); |
| assert( nextUp(real.max) == real.infinity ); |
| assert( nextUp(real.infinity)==real.infinity ); |
| } |
| |
| double n = NaN(0xABC); |
| assert(isIdentical(nextUp(n), n)); |
| // negative numbers |
| assert( nextUp(-double.infinity) == -double.max ); |
| assert( nextUp(-1-double.epsilon) == -1.0 ); |
| assert( nextUp(-2.0) == -2.0 + double.epsilon); |
| // subnormals and zero |
| |
| assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) ); |
| assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) ); |
| assert( isIdentical(-0.0, nextUp(-double.min_normal*double.epsilon)) ); |
| assert( nextUp(0.0) == double.min_normal*double.epsilon ); |
| assert( nextUp(-0.0) == double.min_normal*double.epsilon ); |
| assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal ); |
| assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) ); |
| // positive numbers |
| assert( nextUp(1.0) == 1.0 + double.epsilon ); |
| assert( nextUp(2.0-double.epsilon) == 2.0 ); |
| assert( nextUp(double.max) == double.infinity ); |
| |
| float fn = NaN(0xABC); |
| assert(isIdentical(nextUp(fn), fn)); |
| float f = -float.min_normal*(1-float.epsilon); |
| float f1 = -float.min_normal; |
| assert( nextUp(f1) == f); |
| f = 1.0f+float.epsilon; |
| f1 = 1.0f; |
| assert( nextUp(f1) == f ); |
| f1 = -0.0f; |
| assert( nextUp(f1) == float.min_normal*float.epsilon); |
| assert( nextUp(float.infinity)==float.infinity ); |
| |
| assert(nextDown(1.0L+real.epsilon)==1.0); |
| assert(nextDown(1.0+double.epsilon)==1.0); |
| f = 1.0f+float.epsilon; |
| assert(nextDown(f)==1.0); |
| assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0); |
| } |
| |
| |
| |
| /****************************************** |
| * Calculates the next representable value after x in the direction of y. |
| * |
| * If y > x, the result will be the next largest floating-point value; |
| * if y < x, the result will be the next smallest value. |
| * If x == y, the result is y. |
| * |
| * Remarks: |
| * This function is not generally very useful; it's almost always better to use |
| * the faster functions nextUp() or nextDown() instead. |
| * |
| * The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and |
| * the function result is infinite. The FE_INEXACT and FE_UNDERFLOW |
| * exceptions will be raised if the function value is subnormal, and x is |
| * not equal to y. |
| */ |
| T nextafter(T)(const T x, const T y) @safe pure nothrow @nogc |
| { |
| if (x == y) return y; |
| return ((y>x) ? nextUp(x) : nextDown(x)); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| float a = 1; |
| assert(is(typeof(nextafter(a, a)) == float)); |
| assert(nextafter(a, a.infinity) > a); |
| |
| double b = 2; |
| assert(is(typeof(nextafter(b, b)) == double)); |
| assert(nextafter(b, b.infinity) > b); |
| |
| real c = 3; |
| assert(is(typeof(nextafter(c, c)) == real)); |
| assert(nextafter(c, c.infinity) > c); |
| } |
| |
| //real nexttoward(real x, real y) { return core.stdc.math.nexttowardl(x, y); } |
| |
| /******************************************* |
| * Returns the positive difference between x and y. |
| * Returns: |
| * $(TABLE_SV |
| * $(TR $(TH x, y) $(TH fdim(x, y))) |
| * $(TR $(TD x $(GT) y) $(TD x - y)) |
| * $(TR $(TD x $(LT)= y) $(TD +0.0)) |
| * ) |
| */ |
| real fdim(real x, real y) @safe pure nothrow @nogc { return (x > y) ? x - y : +0.0; } |
| |
| /**************************************** |
| * Returns the larger of x and y. |
| */ |
| real fmax(real x, real y) @safe pure nothrow @nogc { return x > y ? x : y; } |
| |
| /**************************************** |
| * Returns the smaller of x and y. |
| */ |
| real fmin(real x, real y) @safe pure nothrow @nogc { return x < y ? x : y; } |
| |
| /************************************** |
| * Returns (x * y) + z, rounding only once according to the |
| * current rounding mode. |
| * |
| * BUGS: Not currently implemented - rounds twice. |
| */ |
| real fma(real x, real y, real z) @safe pure nothrow @nogc { return (x * y) + z; } |
| |
| /******************************************************************* |
| * Compute the value of x $(SUPERSCRIPT n), where n is an integer |
| */ |
| Unqual!F pow(F, G)(F x, G n) @nogc @trusted pure nothrow |
| if (isFloatingPoint!(F) && isIntegral!(G)) |
| { |
| import std.traits : Unsigned; |
| real p = 1.0, v = void; |
| Unsigned!(Unqual!G) m = n; |
| if (n < 0) |
| { |
| switch (n) |
| { |
| case -1: |
| return 1 / x; |
| case -2: |
| return 1 / (x * x); |
| default: |
| } |
| |
| m = cast(typeof(m))(0 - n); |
| v = p / x; |
| } |
| else |
| { |
| switch (n) |
| { |
| case 0: |
| return 1.0; |
| case 1: |
| return x; |
| case 2: |
| return x * x; |
| default: |
| } |
| |
| v = x; |
| } |
| |
| while (1) |
| { |
| if (m & 1) |
| p *= v; |
| m >>= 1; |
| if (!m) |
| break; |
| v *= v; |
| } |
| return p; |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| // Make sure it instantiates and works properly on immutable values and |
| // with various integer and float types. |
| immutable real x = 46; |
| immutable float xf = x; |
| immutable double xd = x; |
| immutable uint one = 1; |
| immutable ushort two = 2; |
| immutable ubyte three = 3; |
| immutable ulong eight = 8; |
| |
| immutable int neg1 = -1; |
| immutable short neg2 = -2; |
| immutable byte neg3 = -3; |
| immutable long neg8 = -8; |
| |
| |
| assert(pow(x,0) == 1.0); |
| assert(pow(xd,one) == x); |
| assert(pow(xf,two) == x * x); |
| assert(pow(x,three) == x * x * x); |
| assert(pow(x,eight) == (x * x) * (x * x) * (x * x) * (x * x)); |
| |
| assert(pow(x, neg1) == 1 / x); |
| |
| // Test disabled on most targets. |
| // See https://issues.dlang.org/show_bug.cgi?id=5628 |
| version (X86_64) enum BUG5628 = false; |
| else version (ARM) enum BUG5628 = false; |
| else version (GNU) enum BUG5628 = false; |
| else enum BUG5628 = true; |
| |
| static if (BUG5628) |
| { |
| assert(pow(xd, neg2) == 1 / (x * x)); |
| assert(pow(xf, neg8) == 1 / ((x * x) * (x * x) * (x * x) * (x * x))); |
| } |
| |
| assert(feqrel(pow(x, neg3), 1 / (x * x * x)) >= real.mant_dig - 1); |
| } |
| |
| @system unittest |
| { |
| assert(equalsDigit(pow(2.0L, 10.0L), 1024, 19)); |
| } |
| |
| /** Compute the value of an integer x, raised to the power of a positive |
| * integer n. |
| * |
| * If both x and n are 0, the result is 1. |
| * If n is negative, an integer divide error will occur at runtime, |
| * regardless of the value of x. |
| */ |
| typeof(Unqual!(F).init * Unqual!(G).init) pow(F, G)(F x, G n) @nogc @trusted pure nothrow |
| if (isIntegral!(F) && isIntegral!(G)) |
| { |
| if (n<0) return x/0; // Only support positive powers |
| typeof(return) p, v = void; |
| Unqual!G m = n; |
| |
| switch (m) |
| { |
| case 0: |
| p = 1; |
| break; |
| |
| case 1: |
| p = x; |
| break; |
| |
| case 2: |
| p = x * x; |
| break; |
| |
| default: |
| v = x; |
| p = 1; |
| while (1) |
| { |
| if (m & 1) |
| p *= v; |
| m >>= 1; |
| if (!m) |
| break; |
| v *= v; |
| } |
| break; |
| } |
| return p; |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| immutable int one = 1; |
| immutable byte two = 2; |
| immutable ubyte three = 3; |
| immutable short four = 4; |
| immutable long ten = 10; |
| |
| assert(pow(two, three) == 8); |
| assert(pow(two, ten) == 1024); |
| assert(pow(one, ten) == 1); |
| assert(pow(ten, four) == 10_000); |
| assert(pow(four, 10) == 1_048_576); |
| assert(pow(three, four) == 81); |
| |
| } |
| |
| /**Computes integer to floating point powers.*/ |
| real pow(I, F)(I x, F y) @nogc @trusted pure nothrow |
| if (isIntegral!I && isFloatingPoint!F) |
| { |
| return pow(cast(real) x, cast(Unqual!F) y); |
| } |
| |
| /********************************************* |
| * Calculates x$(SUPERSCRIPT y). |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH y) $(TH pow(x, y)) |
| * $(TH div 0) $(TH invalid?)) |
| * $(TR $(TD anything) $(TD $(PLUSMN)0.0) $(TD 1.0) |
| * $(TD no) $(TD no) ) |
| * $(TR $(TD |x| $(GT) 1) $(TD +$(INFIN)) $(TD +$(INFIN)) |
| * $(TD no) $(TD no) ) |
| * $(TR $(TD |x| $(LT) 1) $(TD +$(INFIN)) $(TD +0.0) |
| * $(TD no) $(TD no) ) |
| * $(TR $(TD |x| $(GT) 1) $(TD -$(INFIN)) $(TD +0.0) |
| * $(TD no) $(TD no) ) |
| * $(TR $(TD |x| $(LT) 1) $(TD -$(INFIN)) $(TD +$(INFIN)) |
| * $(TD no) $(TD no) ) |
| * $(TR $(TD +$(INFIN)) $(TD $(GT) 0.0) $(TD +$(INFIN)) |
| * $(TD no) $(TD no) ) |
| * $(TR $(TD +$(INFIN)) $(TD $(LT) 0.0) $(TD +0.0) |
| * $(TD no) $(TD no) ) |
| * $(TR $(TD -$(INFIN)) $(TD odd integer $(GT) 0.0) $(TD -$(INFIN)) |
| * $(TD no) $(TD no) ) |
| * $(TR $(TD -$(INFIN)) $(TD $(GT) 0.0, not odd integer) $(TD +$(INFIN)) |
| * $(TD no) $(TD no)) |
| * $(TR $(TD -$(INFIN)) $(TD odd integer $(LT) 0.0) $(TD -0.0) |
| * $(TD no) $(TD no) ) |
| * $(TR $(TD -$(INFIN)) $(TD $(LT) 0.0, not odd integer) $(TD +0.0) |
| * $(TD no) $(TD no) ) |
| * $(TR $(TD $(PLUSMN)1.0) $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) |
| * $(TD no) $(TD yes) ) |
| * $(TR $(TD $(LT) 0.0) $(TD finite, nonintegral) $(TD $(NAN)) |
| * $(TD no) $(TD yes)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(LT) 0.0) $(TD $(PLUSMNINF)) |
| * $(TD yes) $(TD no) ) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD $(LT) 0.0, not odd integer) $(TD +$(INFIN)) |
| * $(TD yes) $(TD no)) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD odd integer $(GT) 0.0) $(TD $(PLUSMN)0.0) |
| * $(TD no) $(TD no) ) |
| * $(TR $(TD $(PLUSMN)0.0) $(TD $(GT) 0.0, not odd integer) $(TD +0.0) |
| * $(TD no) $(TD no) ) |
| * ) |
| */ |
| Unqual!(Largest!(F, G)) pow(F, G)(F x, G y) @nogc @trusted pure nothrow |
| if (isFloatingPoint!(F) && isFloatingPoint!(G)) |
| { |
| alias Float = typeof(return); |
| |
| static real impl(real x, real y) @nogc pure nothrow |
| { |
| // Special cases. |
| if (isNaN(y)) |
| return y; |
| if (isNaN(x) && y != 0.0) |
| return x; |
| |
| // Even if x is NaN. |
| if (y == 0.0) |
| return 1.0; |
| if (y == 1.0) |
| return x; |
| |
| if (isInfinity(y)) |
| { |
| if (fabs(x) > 1) |
| { |
| if (signbit(y)) |
| return +0.0; |
| else |
| return F.infinity; |
| } |
| else if (fabs(x) == 1) |
| { |
| return y * 0; // generate NaN. |
| } |
| else // < 1 |
| { |
| if (signbit(y)) |
| return F.infinity; |
| else |
| return +0.0; |
| } |
| } |
| if (isInfinity(x)) |
| { |
| if (signbit(x)) |
| { |
| long i = cast(long) y; |
| if (y > 0.0) |
| { |
| if (i == y && i & 1) |
| return -F.infinity; |
| else |
| return F.infinity; |
| } |
| else if (y < 0.0) |
| { |
| if (i == y && i & 1) |
| return -0.0; |
| else |
| return +0.0; |
| } |
| } |
| else |
| { |
| if (y > 0.0) |
| return F.infinity; |
| else if (y < 0.0) |
| return +0.0; |
| } |
| } |
| |
| if (x == 0.0) |
| { |
| if (signbit(x)) |
| { |
| long i = cast(long) y; |
| if (y > 0.0) |
| { |
| if (i == y && i & 1) |
| return -0.0; |
| else |
| return +0.0; |
| } |
| else if (y < 0.0) |
| { |
| if (i == y && i & 1) |
| return -F.infinity; |
| else |
| return F.infinity; |
| } |
| } |
| else |
| { |
| if (y > 0.0) |
| return +0.0; |
| else if (y < 0.0) |
| return F.infinity; |
| } |
| } |
| if (x == 1.0) |
| return 1.0; |
| |
| if (y >= F.max) |
| { |
| if ((x > 0.0 && x < 1.0) || (x > -1.0 && x < 0.0)) |
| return 0.0; |
| if (x > 1.0 || x < -1.0) |
| return F.infinity; |
| } |
| if (y <= -F.max) |
| { |
| if ((x > 0.0 && x < 1.0) || (x > -1.0 && x < 0.0)) |
| return F.infinity; |
| if (x > 1.0 || x < -1.0) |
| return 0.0; |
| } |
| |
| if (x >= F.max) |
| { |
| if (y > 0.0) |
| return F.infinity; |
| else |
| return 0.0; |
| } |
| if (x <= -F.max) |
| { |
| long i = cast(long) y; |
| if (y > 0.0) |
| { |
| if (i == y && i & 1) |
| return -F.infinity; |
| else |
| return F.infinity; |
| } |
| else if (y < 0.0) |
| { |
| if (i == y && i & 1) |
| return -0.0; |
| else |
| return +0.0; |
| } |
| } |
| |
| // Integer power of x. |
| long iy = cast(long) y; |
| if (iy == y && fabs(y) < 32_768.0) |
| return pow(x, iy); |
| |
| real sign = 1.0; |
| if (x < 0) |
| { |
| // Result is real only if y is an integer |
| // Check for a non-zero fractional part |
| enum maxOdd = pow(2.0L, real.mant_dig) - 1.0L; |
| static if (maxOdd > ulong.max) |
| { |
| // Generic method, for any FP type |
| if (floor(y) != y) |
| return sqrt(x); // Complex result -- create a NaN |
| |
| const hy = ldexp(y, -1); |
| if (floor(hy) != hy) |
| sign = -1.0; |
| } |
| else |
| { |
| // Much faster, if ulong has enough precision |
| const absY = fabs(y); |
| if (absY <= maxOdd) |
| { |
| const uy = cast(ulong) absY; |
| if (uy != absY) |
| return sqrt(x); // Complex result -- create a NaN |
| |
| if (uy & 1) |
| sign = -1.0; |
| } |
| } |
| x = -x; |
| } |
| version (INLINE_YL2X) |
| { |
| // If x > 0, x ^^ y == 2 ^^ ( y * log2(x) ) |
| // TODO: This is not accurate in practice. A fast and accurate |
| // (though complicated) method is described in: |
| // "An efficient rounding boundary test for pow(x, y) |
| // in double precision", C.Q. Lauter and V. Lefèvre, INRIA (2007). |
| return sign * exp2( core.math.yl2x(x, y) ); |
| } |
| else |
| { |
| // If x > 0, x ^^ y == 2 ^^ ( y * log2(x) ) |
| // TODO: This is not accurate in practice. A fast and accurate |
| // (though complicated) method is described in: |
| // "An efficient rounding boundary test for pow(x, y) |
| // in double precision", C.Q. Lauter and V. Lefèvre, INRIA (2007). |
| Float w = exp2(y * log2(x)); |
| return sign * w; |
| } |
| } |
| return impl(x, y); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| // Test all the special values. These unittests can be run on Windows |
| // by temporarily changing the version (linux) to version (all). |
| immutable float zero = 0; |
| immutable real one = 1; |
| immutable double two = 2; |
| immutable float three = 3; |
| immutable float fnan = float.nan; |
| immutable double dnan = double.nan; |
| immutable real rnan = real.nan; |
| immutable dinf = double.infinity; |
| immutable rninf = -real.infinity; |
| |
| assert(pow(fnan, zero) == 1); |
| assert(pow(dnan, zero) == 1); |
| assert(pow(rnan, zero) == 1); |
| |
| assert(pow(two, dinf) == double.infinity); |
| assert(isIdentical(pow(0.2f, dinf), +0.0)); |
| assert(pow(0.99999999L, rninf) == real.infinity); |
| assert(isIdentical(pow(1.000000001, rninf), +0.0)); |
| assert(pow(dinf, 0.001) == dinf); |
| assert(isIdentical(pow(dinf, -0.001), +0.0)); |
| assert(pow(rninf, 3.0L) == rninf); |
| assert(pow(rninf, 2.0L) == real.infinity); |
| assert(isIdentical(pow(rninf, -3.0), -0.0)); |
| assert(isIdentical(pow(rninf, -2.0), +0.0)); |
| |
| // @@@BUG@@@ somewhere |
| version (OSX) {} else assert(isNaN(pow(one, dinf))); |
| version (OSX) {} else assert(isNaN(pow(-one, dinf))); |
| assert(isNaN(pow(-0.2, PI))); |
| // boundary cases. Note that epsilon == 2^^-n for some n, |
| // so 1/epsilon == 2^^n is always even. |
| assert(pow(-1.0L, 1/real.epsilon - 1.0L) == -1.0L); |
| assert(pow(-1.0L, 1/real.epsilon) == 1.0L); |
| assert(isNaN(pow(-1.0L, 1/real.epsilon-0.5L))); |
| assert(isNaN(pow(-1.0L, -1/real.epsilon+0.5L))); |
| |
| assert(pow(0.0, -3.0) == double.infinity); |
| assert(pow(-0.0, -3.0) == -double.infinity); |
| assert(pow(0.0, -PI) == double.infinity); |
| assert(pow(-0.0, -PI) == double.infinity); |
| assert(isIdentical(pow(0.0, 5.0), 0.0)); |
| assert(isIdentical(pow(-0.0, 5.0), -0.0)); |
| assert(isIdentical(pow(0.0, 6.0), 0.0)); |
| assert(isIdentical(pow(-0.0, 6.0), 0.0)); |
| |
| // Issue #14786 fixed |
| immutable real maxOdd = pow(2.0L, real.mant_dig) - 1.0L; |
| assert(pow(-1.0L, maxOdd) == -1.0L); |
| assert(pow(-1.0L, -maxOdd) == -1.0L); |
| assert(pow(-1.0L, maxOdd + 1.0L) == 1.0L); |
| assert(pow(-1.0L, -maxOdd + 1.0L) == 1.0L); |
| assert(pow(-1.0L, maxOdd - 1.0L) == 1.0L); |
| assert(pow(-1.0L, -maxOdd - 1.0L) == 1.0L); |
| |
| // Now, actual numbers. |
| assert(approxEqual(pow(two, three), 8.0)); |
| assert(approxEqual(pow(two, -2.5), 0.1767767)); |
| |
| // Test integer to float power. |
| immutable uint twoI = 2; |
| assert(approxEqual(pow(twoI, three), 8.0)); |
| } |
| |
| /************************************** |
| * To what precision is x equal to y? |
| * |
| * Returns: the number of mantissa bits which are equal in x and y. |
| * eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision. |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH y) $(TH feqrel(x, y))) |
| * $(TR $(TD x) $(TD x) $(TD real.mant_dig)) |
| * $(TR $(TD x) $(TD $(GT)= 2*x) $(TD 0)) |
| * $(TR $(TD x) $(TD $(LT)= x/2) $(TD 0)) |
| * $(TR $(TD $(NAN)) $(TD any) $(TD 0)) |
| * $(TR $(TD any) $(TD $(NAN)) $(TD 0)) |
| * ) |
| */ |
| int feqrel(X)(const X x, const X y) @trusted pure nothrow @nogc |
| if (isFloatingPoint!(X)) |
| { |
| /* Public Domain. Author: Don Clugston, 18 Aug 2005. |
| */ |
| alias F = floatTraits!(X); |
| static if (F.realFormat == RealFormat.ibmExtended) |
| { |
| if (cast(double*)(&x)[MANTISSA_MSB] == cast(double*)(&y)[MANTISSA_MSB]) |
| { |
| return double.mant_dig |
| + feqrel(cast(double*)(&x)[MANTISSA_LSB], |
| cast(double*)(&y)[MANTISSA_LSB]); |
| } |
| else |
| { |
| return feqrel(cast(double*)(&x)[MANTISSA_MSB], |
| cast(double*)(&y)[MANTISSA_MSB]); |
| } |
| } |
| else |
| { |
| static assert(F.realFormat == RealFormat.ieeeSingle |
| || F.realFormat == RealFormat.ieeeDouble |
| || F.realFormat == RealFormat.ieeeExtended |
| || F.realFormat == RealFormat.ieeeQuadruple); |
| |
| if (x == y) |
| return X.mant_dig; // ensure diff != 0, cope with INF. |
| |
| Unqual!X diff = fabs(x - y); |
| |
| ushort *pa = cast(ushort *)(&x); |
| ushort *pb = cast(ushort *)(&y); |
| ushort *pd = cast(ushort *)(&diff); |
| |
| |
| // The difference in abs(exponent) between x or y and abs(x-y) |
| // is equal to the number of significand bits of x which are |
| // equal to y. If negative, x and y have different exponents. |
| // If positive, x and y are equal to 'bitsdiff' bits. |
| // AND with 0x7FFF to form the absolute value. |
| // To avoid out-by-1 errors, we subtract 1 so it rounds down |
| // if the exponents were different. This means 'bitsdiff' is |
| // always 1 lower than we want, except that if bitsdiff == 0, |
| // they could have 0 or 1 bits in common. |
| |
| int bitsdiff = ((( (pa[F.EXPPOS_SHORT] & F.EXPMASK) |
| + (pb[F.EXPPOS_SHORT] & F.EXPMASK) |
| - (1 << F.EXPSHIFT)) >> 1) |
| - (pd[F.EXPPOS_SHORT] & F.EXPMASK)) >> F.EXPSHIFT; |
| if ( (pd[F.EXPPOS_SHORT] & F.EXPMASK) == 0) |
| { // Difference is subnormal |
| // For subnormals, we need to add the number of zeros that |
| // lie at the start of diff's significand. |
| // We do this by multiplying by 2^^real.mant_dig |
| diff *= F.RECIP_EPSILON; |
| return bitsdiff + X.mant_dig - ((pd[F.EXPPOS_SHORT] & F.EXPMASK) >> F.EXPSHIFT); |
| } |
| |
| if (bitsdiff > 0) |
| return bitsdiff + 1; // add the 1 we subtracted before |
| |
| // Avoid out-by-1 errors when factor is almost 2. |
| if (bitsdiff == 0 |
| && ((pa[F.EXPPOS_SHORT] ^ pb[F.EXPPOS_SHORT]) & F.EXPMASK) == 0) |
| { |
| return 1; |
| } else return 0; |
| } |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| void testFeqrel(F)() |
| { |
| // Exact equality |
| assert(feqrel(F.max, F.max) == F.mant_dig); |
| assert(feqrel!(F)(0.0, 0.0) == F.mant_dig); |
| assert(feqrel(F.infinity, F.infinity) == F.mant_dig); |
| |
| // a few bits away from exact equality |
| F w=1; |
| for (int i = 1; i < F.mant_dig - 1; ++i) |
| { |
| assert(feqrel!(F)(1.0 + w * F.epsilon, 1.0) == F.mant_dig-i); |
| assert(feqrel!(F)(1.0 - w * F.epsilon, 1.0) == F.mant_dig-i); |
| assert(feqrel!(F)(1.0, 1 + (w-1) * F.epsilon) == F.mant_dig - i + 1); |
| w*=2; |
| } |
| |
| assert(feqrel!(F)(1.5+F.epsilon, 1.5) == F.mant_dig-1); |
| assert(feqrel!(F)(1.5-F.epsilon, 1.5) == F.mant_dig-1); |
| assert(feqrel!(F)(1.5-F.epsilon, 1.5+F.epsilon) == F.mant_dig-2); |
| |
| |
| // Numbers that are close |
| assert(feqrel!(F)(0x1.Bp+84, 0x1.B8p+84) == 5); |
| assert(feqrel!(F)(0x1.8p+10, 0x1.Cp+10) == 2); |
| assert(feqrel!(F)(1.5 * (1 - F.epsilon), 1.0L) == 2); |
| assert(feqrel!(F)(1.5, 1.0) == 1); |
| assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1); |
| |
| // Factors of 2 |
| assert(feqrel(F.max, F.infinity) == 0); |
| assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1); |
| assert(feqrel!(F)(1.0, 2.0) == 0); |
| assert(feqrel!(F)(4.0, 1.0) == 0); |
| |
| // Extreme inequality |
| assert(feqrel(F.nan, F.nan) == 0); |
| assert(feqrel!(F)(0.0L, -F.nan) == 0); |
| assert(feqrel(F.nan, F.infinity) == 0); |
| assert(feqrel(F.infinity, -F.infinity) == 0); |
| assert(feqrel(F.max, -F.max) == 0); |
| |
| assert(feqrel(F.min_normal / 8, F.min_normal / 17) == 3); |
| |
| const F Const = 2; |
| immutable F Immutable = 2; |
| auto Compiles = feqrel(Const, Immutable); |
| } |
| |
| assert(feqrel(7.1824L, 7.1824L) == real.mant_dig); |
| |
| testFeqrel!(real)(); |
| testFeqrel!(double)(); |
| testFeqrel!(float)(); |
| } |
| |
| package: // Not public yet |
| /* Return the value that lies halfway between x and y on the IEEE number line. |
| * |
| * Formally, the result is the arithmetic mean of the binary significands of x |
| * and y, multiplied by the geometric mean of the binary exponents of x and y. |
| * x and y must have the same sign, and must not be NaN. |
| * Note: this function is useful for ensuring O(log n) behaviour in algorithms |
| * involving a 'binary chop'. |
| * |
| * Special cases: |
| * If x and y are within a factor of 2, (ie, feqrel(x, y) > 0), the return value |
| * is the arithmetic mean (x + y) / 2. |
| * If x and y are even powers of 2, the return value is the geometric mean, |
| * ieeeMean(x, y) = sqrt(x * y). |
| * |
| */ |
| T ieeeMean(T)(const T x, const T y) @trusted pure nothrow @nogc |
| in |
| { |
| // both x and y must have the same sign, and must not be NaN. |
| assert(signbit(x) == signbit(y)); |
| assert(x == x && y == y); |
| } |
| body |
| { |
| // Runtime behaviour for contract violation: |
| // If signs are opposite, or one is a NaN, return 0. |
| if (!((x >= 0 && y >= 0) || (x <= 0 && y <= 0))) return 0.0; |
| |
| // The implementation is simple: cast x and y to integers, |
| // average them (avoiding overflow), and cast the result back to a floating-point number. |
| |
| alias F = floatTraits!(T); |
| T u; |
| static if (F.realFormat == RealFormat.ieeeExtended) |
| { |
| // There's slight additional complexity because they are actually |
| // 79-bit reals... |
| ushort *ue = cast(ushort *)&u; |
| ulong *ul = cast(ulong *)&u; |
| ushort *xe = cast(ushort *)&x; |
| ulong *xl = cast(ulong *)&x; |
| ushort *ye = cast(ushort *)&y; |
| ulong *yl = cast(ulong *)&y; |
| |
| // Ignore the useless implicit bit. (Bonus: this prevents overflows) |
| ulong m = ((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL); |
| |
| // @@@ BUG? @@@ |
| // Cast shouldn't be here |
| ushort e = cast(ushort) ((xe[F.EXPPOS_SHORT] & F.EXPMASK) |
| + (ye[F.EXPPOS_SHORT] & F.EXPMASK)); |
| if (m & 0x8000_0000_0000_0000L) |
| { |
| ++e; |
| m &= 0x7FFF_FFFF_FFFF_FFFFL; |
| } |
| // Now do a multi-byte right shift |
| const uint c = e & 1; // carry |
| e >>= 1; |
| m >>>= 1; |
| if (c) |
| m |= 0x4000_0000_0000_0000L; // shift carry into significand |
| if (e) |
| *ul = m | 0x8000_0000_0000_0000L; // set implicit bit... |
| else |
| *ul = m; // ... unless exponent is 0 (subnormal or zero). |
| |
| ue[4]= e | (xe[F.EXPPOS_SHORT]& 0x8000); // restore sign bit |
| } |
| else static if (F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| // This would be trivial if 'ucent' were implemented... |
| ulong *ul = cast(ulong *)&u; |
| ulong *xl = cast(ulong *)&x; |
| ulong *yl = cast(ulong *)&y; |
| |
| // Multi-byte add, then multi-byte right shift. |
| import core.checkedint : addu; |
| bool carry; |
| ulong ml = addu(xl[MANTISSA_LSB], yl[MANTISSA_LSB], carry); |
| |
| ulong mh = carry + (xl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL) + |
| (yl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL); |
| |
| ul[MANTISSA_MSB] = (mh >>> 1) | (xl[MANTISSA_MSB] & 0x8000_0000_0000_0000); |
| ul[MANTISSA_LSB] = (ml >>> 1) | (mh & 1) << 63; |
| } |
| else static if (F.realFormat == RealFormat.ieeeDouble) |
| { |
| ulong *ul = cast(ulong *)&u; |
| ulong *xl = cast(ulong *)&x; |
| ulong *yl = cast(ulong *)&y; |
| ulong m = (((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) |
| + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL)) >>> 1; |
| m |= ((*xl) & 0x8000_0000_0000_0000L); |
| *ul = m; |
| } |
| else static if (F.realFormat == RealFormat.ieeeSingle) |
| { |
| uint *ul = cast(uint *)&u; |
| uint *xl = cast(uint *)&x; |
| uint *yl = cast(uint *)&y; |
| uint m = (((*xl) & 0x7FFF_FFFF) + ((*yl) & 0x7FFF_FFFF)) >>> 1; |
| m |= ((*xl) & 0x8000_0000); |
| *ul = m; |
| } |
| else |
| { |
| assert(0, "Not implemented"); |
| } |
| return u; |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| assert(ieeeMean(-0.0,-1e-20)<0); |
| assert(ieeeMean(0.0,1e-20)>0); |
| |
| assert(ieeeMean(1.0L,4.0L)==2L); |
| assert(ieeeMean(2.0*1.013,8.0*1.013)==4*1.013); |
| assert(ieeeMean(-1.0L,-4.0L)==-2L); |
| assert(ieeeMean(-1.0,-4.0)==-2); |
| assert(ieeeMean(-1.0f,-4.0f)==-2f); |
| assert(ieeeMean(-1.0,-2.0)==-1.5); |
| assert(ieeeMean(-1*(1+8*real.epsilon),-2*(1+8*real.epsilon)) |
| ==-1.5*(1+5*real.epsilon)); |
| assert(ieeeMean(0x1p60,0x1p-10)==0x1p25); |
| |
| static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended) |
| { |
| assert(ieeeMean(1.0L,real.infinity)==0x1p8192L); |
| assert(ieeeMean(0.0L,real.infinity)==1.5); |
| } |
| assert(ieeeMean(0.5*real.min_normal*(1-4*real.epsilon),0.5*real.min_normal) |
| == 0.5*real.min_normal*(1-2*real.epsilon)); |
| } |
| |
| public: |
| |
| |
| /*********************************** |
| * Evaluate polynomial A(x) = $(SUB a, 0) + $(SUB a, 1)x + $(SUB a, 2)$(POWER x,2) |
| * + $(SUB a,3)$(POWER x,3); ... |
| * |
| * Uses Horner's rule A(x) = $(SUB a, 0) + x($(SUB a, 1) + x($(SUB a, 2) |
| * + x($(SUB a, 3) + ...))) |
| * Params: |
| * x = the value to evaluate. |
| * A = array of coefficients $(SUB a, 0), $(SUB a, 1), etc. |
| */ |
| Unqual!(CommonType!(T1, T2)) poly(T1, T2)(T1 x, in T2[] A) @trusted pure nothrow @nogc |
| if (isFloatingPoint!T1 && isFloatingPoint!T2) |
| in |
| { |
| assert(A.length > 0); |
| } |
| body |
| { |
| static if (is(Unqual!T2 == real)) |
| { |
| return polyImpl(x, A); |
| } |
| else |
| { |
| return polyImplBase(x, A); |
| } |
| } |
| |
| /// |
| @safe nothrow @nogc unittest |
| { |
| real x = 3.1; |
| static real[] pp = [56.1, 32.7, 6]; |
| |
| assert(poly(x, pp) == (56.1L + (32.7L + 6.0L * x) * x)); |
| } |
| |
| @safe nothrow @nogc unittest |
| { |
| double x = 3.1; |
| static double[] pp = [56.1, 32.7, 6]; |
| double y = x; |
| y *= 6.0; |
| y += 32.7; |
| y *= x; |
| y += 56.1; |
| assert(poly(x, pp) == y); |
| } |
| |
| @safe unittest |
| { |
| static assert(poly(3.0, [1.0, 2.0, 3.0]) == 34); |
| } |
| |
| private Unqual!(CommonType!(T1, T2)) polyImplBase(T1, T2)(T1 x, in T2[] A) @trusted pure nothrow @nogc |
| if (isFloatingPoint!T1 && isFloatingPoint!T2) |
| { |
| ptrdiff_t i = A.length - 1; |
| typeof(return) r = A[i]; |
| while (--i >= 0) |
| { |
| r *= x; |
| r += A[i]; |
| } |
| return r; |
| } |
| |
| private real polyImpl(real x, in real[] A) @trusted pure nothrow @nogc |
| { |
| version (D_InlineAsm_X86) |
| { |
| if (__ctfe) |
| { |
| return polyImplBase(x, A); |
| } |
| version (Windows) |
| { |
| // BUG: This code assumes a frame pointer in EBP. |
| asm pure nothrow @nogc // assembler by W. Bright |
| { |
| // EDX = (A.length - 1) * real.sizeof |
| mov ECX,A[EBP] ; // ECX = A.length |
| dec ECX ; |
| lea EDX,[ECX][ECX*8] ; |
| add EDX,ECX ; |
| add EDX,A+4[EBP] ; |
| fld real ptr [EDX] ; // ST0 = coeff[ECX] |
| jecxz return_ST ; |
| fld x[EBP] ; // ST0 = x |
| fxch ST(1) ; // ST1 = x, ST0 = r |
| align 4 ; |
| L2: fmul ST,ST(1) ; // r *= x |
| fld real ptr -10[EDX] ; |
| sub EDX,10 ; // deg-- |
| faddp ST(1),ST ; |
| dec ECX ; |
| jne L2 ; |
| fxch ST(1) ; // ST1 = r, ST0 = x |
| fstp ST(0) ; // dump x |
| align 4 ; |
| return_ST: ; |
| ; |
| } |
| } |
| else version (linux) |
| { |
| asm pure nothrow @nogc // assembler by W. Bright |
| { |
| // EDX = (A.length - 1) * real.sizeof |
| mov ECX,A[EBP] ; // ECX = A.length |
| dec ECX ; |
| lea EDX,[ECX*8] ; |
| lea EDX,[EDX][ECX*4] ; |
| add EDX,A+4[EBP] ; |
| fld real ptr [EDX] ; // ST0 = coeff[ECX] |
| jecxz return_ST ; |
| fld x[EBP] ; // ST0 = x |
| fxch ST(1) ; // ST1 = x, ST0 = r |
| align 4 ; |
| L2: fmul ST,ST(1) ; // r *= x |
| fld real ptr -12[EDX] ; |
| sub EDX,12 ; // deg-- |
| faddp ST(1),ST ; |
| dec ECX ; |
| jne L2 ; |
| fxch ST(1) ; // ST1 = r, ST0 = x |
| fstp ST(0) ; // dump x |
| align 4 ; |
| return_ST: ; |
| ; |
| } |
| } |
| else version (OSX) |
| { |
| asm pure nothrow @nogc // assembler by W. Bright |
| { |
| // EDX = (A.length - 1) * real.sizeof |
| mov ECX,A[EBP] ; // ECX = A.length |
| dec ECX ; |
| lea EDX,[ECX*8] ; |
| add EDX,EDX ; |
| add EDX,A+4[EBP] ; |
| fld real ptr [EDX] ; // ST0 = coeff[ECX] |
| jecxz return_ST ; |
| fld x[EBP] ; // ST0 = x |
| fxch ST(1) ; // ST1 = x, ST0 = r |
| align 4 ; |
| L2: fmul ST,ST(1) ; // r *= x |
| fld real ptr -16[EDX] ; |
| sub EDX,16 ; // deg-- |
| faddp ST(1),ST ; |
| dec ECX ; |
| jne L2 ; |
| fxch ST(1) ; // ST1 = r, ST0 = x |
| fstp ST(0) ; // dump x |
| align 4 ; |
| return_ST: ; |
| ; |
| } |
| } |
| else version (FreeBSD) |
| { |
| asm pure nothrow @nogc // assembler by W. Bright |
| { |
| // EDX = (A.length - 1) * real.sizeof |
| mov ECX,A[EBP] ; // ECX = A.length |
| dec ECX ; |
| lea EDX,[ECX*8] ; |
| lea EDX,[EDX][ECX*4] ; |
| add EDX,A+4[EBP] ; |
| fld real ptr [EDX] ; // ST0 = coeff[ECX] |
| jecxz return_ST ; |
| fld x[EBP] ; // ST0 = x |
| fxch ST(1) ; // ST1 = x, ST0 = r |
| align 4 ; |
| L2: fmul ST,ST(1) ; // r *= x |
| fld real ptr -12[EDX] ; |
| sub EDX,12 ; // deg-- |
| faddp ST(1),ST ; |
| dec ECX ; |
| jne L2 ; |
| fxch ST(1) ; // ST1 = r, ST0 = x |
| fstp ST(0) ; // dump x |
| align 4 ; |
| return_ST: ; |
| ; |
| } |
| } |
| else version (Solaris) |
| { |
| asm pure nothrow @nogc // assembler by W. Bright |
| { |
| // EDX = (A.length - 1) * real.sizeof |
| mov ECX,A[EBP] ; // ECX = A.length |
| dec ECX ; |
| lea EDX,[ECX*8] ; |
| lea EDX,[EDX][ECX*4] ; |
| add EDX,A+4[EBP] ; |
| fld real ptr [EDX] ; // ST0 = coeff[ECX] |
| jecxz return_ST ; |
| fld x[EBP] ; // ST0 = x |
| fxch ST(1) ; // ST1 = x, ST0 = r |
| align 4 ; |
| L2: fmul ST,ST(1) ; // r *= x |
| fld real ptr -12[EDX] ; |
| sub EDX,12 ; // deg-- |
| faddp ST(1),ST ; |
| dec ECX ; |
| jne L2 ; |
| fxch ST(1) ; // ST1 = r, ST0 = x |
| fstp ST(0) ; // dump x |
| align 4 ; |
| return_ST: ; |
| ; |
| } |
| } |
| else version (DragonFlyBSD) |
| { |
| asm pure nothrow @nogc // assembler by W. Bright |
| { |
| // EDX = (A.length - 1) * real.sizeof |
| mov ECX,A[EBP] ; // ECX = A.length |
| dec ECX ; |
| lea EDX,[ECX*8] ; |
| lea EDX,[EDX][ECX*4] ; |
| add EDX,A+4[EBP] ; |
| fld real ptr [EDX] ; // ST0 = coeff[ECX] |
| jecxz return_ST ; |
| fld x[EBP] ; // ST0 = x |
| fxch ST(1) ; // ST1 = x, ST0 = r |
| align 4 ; |
| L2: fmul ST,ST(1) ; // r *= x |
| fld real ptr -12[EDX] ; |
| sub EDX,12 ; // deg-- |
| faddp ST(1),ST ; |
| dec ECX ; |
| jne L2 ; |
| fxch ST(1) ; // ST1 = r, ST0 = x |
| fstp ST(0) ; // dump x |
| align 4 ; |
| return_ST: ; |
| ; |
| } |
| } |
| else |
| { |
| static assert(0); |
| } |
| } |
| else |
| { |
| return polyImplBase(x, A); |
| } |
| } |
| |
| |
| /** |
| Computes whether two values are approximately equal, admitting a maximum |
| relative difference, and a maximum absolute difference. |
| |
| Params: |
| lhs = First item to compare. |
| rhs = Second item to compare. |
| maxRelDiff = Maximum allowable difference relative to `rhs`. |
| maxAbsDiff = Maximum absolute difference. |
| |
| Returns: |
| `true` if the two items are approximately equal under either criterium. |
| If one item is a range, and the other is a single value, then the result |
| is the logical and-ing of calling `approxEqual` on each element of the |
| ranged item against the single item. If both items are ranges, then |
| `approxEqual` returns `true` if and only if the ranges have the same |
| number of elements and if `approxEqual` evaluates to `true` for each |
| pair of elements. |
| */ |
| bool approxEqual(T, U, V)(T lhs, U rhs, V maxRelDiff, V maxAbsDiff = 1e-5) |
| { |
| import std.range.primitives : empty, front, isInputRange, popFront; |
| static if (isInputRange!T) |
| { |
| static if (isInputRange!U) |
| { |
| // Two ranges |
| for (;; lhs.popFront(), rhs.popFront()) |
| { |
| if (lhs.empty) return rhs.empty; |
| if (rhs.empty) return lhs.empty; |
| if (!approxEqual(lhs.front, rhs.front, maxRelDiff, maxAbsDiff)) |
| return false; |
| } |
| } |
| else static if (isIntegral!U) |
| { |
| // convert rhs to real |
| return approxEqual(lhs, real(rhs), maxRelDiff, maxAbsDiff); |
| } |
| else |
| { |
| // lhs is range, rhs is number |
| for (; !lhs.empty; lhs.popFront()) |
| { |
| if (!approxEqual(lhs.front, rhs, maxRelDiff, maxAbsDiff)) |
| return false; |
| } |
| return true; |
| } |
| } |
| else |
| { |
| static if (isInputRange!U) |
| { |
| // lhs is number, rhs is range |
| for (; !rhs.empty; rhs.popFront()) |
| { |
| if (!approxEqual(lhs, rhs.front, maxRelDiff, maxAbsDiff)) |
| return false; |
| } |
| return true; |
| } |
| else static if (isIntegral!T || isIntegral!U) |
| { |
| // convert both lhs and rhs to real |
| return approxEqual(real(lhs), real(rhs), maxRelDiff, maxAbsDiff); |
| } |
| else |
| { |
| // two numbers |
| //static assert(is(T : real) && is(U : real)); |
| if (rhs == 0) |
| { |
| return fabs(lhs) <= maxAbsDiff; |
| } |
| static if (is(typeof(lhs.infinity)) && is(typeof(rhs.infinity))) |
| { |
| if (lhs == lhs.infinity && rhs == rhs.infinity || |
| lhs == -lhs.infinity && rhs == -rhs.infinity) return true; |
| } |
| return fabs((lhs - rhs) / rhs) <= maxRelDiff |
| || maxAbsDiff != 0 && fabs(lhs - rhs) <= maxAbsDiff; |
| } |
| } |
| } |
| |
| /** |
| Returns $(D approxEqual(lhs, rhs, 1e-2, 1e-5)). |
| */ |
| bool approxEqual(T, U)(T lhs, U rhs) |
| { |
| return approxEqual(lhs, rhs, 1e-2, 1e-5); |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| assert(approxEqual(1.0, 1.0099)); |
| assert(!approxEqual(1.0, 1.011)); |
| float[] arr1 = [ 1.0, 2.0, 3.0 ]; |
| double[] arr2 = [ 1.001, 1.999, 3 ]; |
| assert(approxEqual(arr1, arr2)); |
| |
| real num = real.infinity; |
| assert(num == real.infinity); // Passes. |
| assert(approxEqual(num, real.infinity)); // Fails. |
| num = -real.infinity; |
| assert(num == -real.infinity); // Passes. |
| assert(approxEqual(num, -real.infinity)); // Fails. |
| |
| assert(!approxEqual(3, 0)); |
| assert(approxEqual(3, 3)); |
| assert(approxEqual(3.0, 3)); |
| assert(approxEqual([3, 3, 3], 3.0)); |
| assert(approxEqual([3.0, 3.0, 3.0], 3)); |
| int a = 10; |
| assert(approxEqual(10, a)); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| real num = real.infinity; |
| assert(num == real.infinity); // Passes. |
| assert(approxEqual(num, real.infinity)); // Fails. |
| } |
| |
| |
| @safe pure nothrow @nogc unittest |
| { |
| float f = sqrt(2.0f); |
| assert(fabs(f * f - 2.0f) < .00001); |
| |
| double d = sqrt(2.0); |
| assert(fabs(d * d - 2.0) < .00001); |
| |
| real r = sqrt(2.0L); |
| assert(fabs(r * r - 2.0) < .00001); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| float f = fabs(-2.0f); |
| assert(f == 2); |
| |
| double d = fabs(-2.0); |
| assert(d == 2); |
| |
| real r = fabs(-2.0L); |
| assert(r == 2); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| float f = sin(-2.0f); |
| assert(fabs(f - -0.909297f) < .00001); |
| |
| double d = sin(-2.0); |
| assert(fabs(d - -0.909297f) < .00001); |
| |
| real r = sin(-2.0L); |
| assert(fabs(r - -0.909297f) < .00001); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| float f = cos(-2.0f); |
| assert(fabs(f - -0.416147f) < .00001); |
| |
| double d = cos(-2.0); |
| assert(fabs(d - -0.416147f) < .00001); |
| |
| real r = cos(-2.0L); |
| assert(fabs(r - -0.416147f) < .00001); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| float f = tan(-2.0f); |
| assert(fabs(f - 2.18504f) < .00001); |
| |
| double d = tan(-2.0); |
| assert(fabs(d - 2.18504f) < .00001); |
| |
| real r = tan(-2.0L); |
| assert(fabs(r - 2.18504f) < .00001); |
| |
| // Verify correct behavior for large inputs |
| assert(!isNaN(tan(0x1p63))); |
| assert(!isNaN(tan(0x1p300L))); |
| assert(!isNaN(tan(-0x1p63))); |
| assert(!isNaN(tan(-0x1p300L))); |
| } |
| |
| @safe pure nothrow unittest |
| { |
| // issue 6381: floor/ceil should be usable in pure function. |
| auto x = floor(1.2); |
| auto y = ceil(1.2); |
| } |
| |
| @safe pure nothrow unittest |
| { |
| // relative comparison depends on rhs, make sure proper side is used when |
| // comparing range to single value. Based on bugzilla issue 15763 |
| auto a = [2e-3 - 1e-5]; |
| auto b = 2e-3 + 1e-5; |
| assert(a[0].approxEqual(b)); |
| assert(!b.approxEqual(a[0])); |
| assert(a.approxEqual(b)); |
| assert(!b.approxEqual(a)); |
| } |
| |
| /*********************************** |
| * Defines a total order on all floating-point numbers. |
| * |
| * The order is defined as follows: |
| * $(UL |
| * $(LI All numbers in [-$(INFIN), +$(INFIN)] are ordered |
| * the same way as by built-in comparison, with the exception of |
| * -0.0, which is less than +0.0;) |
| * $(LI If the sign bit is set (that is, it's 'negative'), $(NAN) is less |
| * than any number; if the sign bit is not set (it is 'positive'), |
| * $(NAN) is greater than any number;) |
| * $(LI $(NAN)s of the same sign are ordered by the payload ('negative' |
| * ones - in reverse order).) |
| * ) |
| * |
| * Returns: |
| * negative value if $(D x) precedes $(D y) in the order specified above; |
| * 0 if $(D x) and $(D y) are identical, and positive value otherwise. |
| * |
| * See_Also: |
| * $(MYREF isIdentical) |
| * Standards: Conforms to IEEE 754-2008 |
| */ |
| int cmp(T)(const(T) x, const(T) y) @nogc @trusted pure nothrow |
| if (isFloatingPoint!T) |
| { |
| alias F = floatTraits!T; |
| |
| static if (F.realFormat == RealFormat.ieeeSingle |
| || F.realFormat == RealFormat.ieeeDouble) |
| { |
| static if (T.sizeof == 4) |
| alias UInt = uint; |
| else |
| alias UInt = ulong; |
| |
| union Repainter |
| { |
| T number; |
| UInt bits; |
| } |
| |
| enum msb = ~(UInt.max >>> 1); |
| |
| import std.typecons : Tuple; |
| Tuple!(Repainter, Repainter) vars = void; |
| vars[0].number = x; |
| vars[1].number = y; |
| |
| foreach (ref var; vars) |
| if (var.bits & msb) |
| var.bits = ~var.bits; |
| else |
| var.bits |= msb; |
| |
| if (vars[0].bits < vars[1].bits) |
| return -1; |
| else if (vars[0].bits > vars[1].bits) |
| return 1; |
| else |
| return 0; |
| } |
| else static if (F.realFormat == RealFormat.ieeeExtended53 |
| || F.realFormat == RealFormat.ieeeExtended |
| || F.realFormat == RealFormat.ieeeQuadruple) |
| { |
| static if (F.realFormat == RealFormat.ieeeQuadruple) |
| alias RemT = ulong; |
| else |
| alias RemT = ushort; |
| |
| struct Bits |
| { |
| ulong bulk; |
| RemT rem; |
| } |
| |
| union Repainter |
| { |
| T number; |
| Bits bits; |
| ubyte[T.sizeof] bytes; |
| } |
| |
| import std.typecons : Tuple; |
| Tuple!(Repainter, Repainter) vars = void; |
| vars[0].number = x; |
| vars[1].number = y; |
| |
| foreach (ref var; vars) |
| if (var.bytes[F.SIGNPOS_BYTE] & 0x80) |
| { |
| var.bits.bulk = ~var.bits.bulk; |
| var.bits.rem = cast(typeof(var.bits.rem))(-1 - var.bits.rem); // ~var.bits.rem |
| } |
| else |
| { |
| var.bytes[F.SIGNPOS_BYTE] |= 0x80; |
| } |
| |
| version (LittleEndian) |
| { |
| if (vars[0].bits.rem < vars[1].bits.rem) |
| return -1; |
| else if (vars[0].bits.rem > vars[1].bits.rem) |
| return 1; |
| else if (vars[0].bits.bulk < vars[1].bits.bulk) |
| return -1; |
| else if (vars[0].bits.bulk > vars[1].bits.bulk) |
| return 1; |
| else |
| return 0; |
| } |
| else |
| { |
| if (vars[0].bits.bulk < vars[1].bits.bulk) |
| return -1; |
| else if (vars[0].bits.bulk > vars[1].bits.bulk) |
| return 1; |
| else if (vars[0].bits.rem < vars[1].bits.rem) |
| return -1; |
| else if (vars[0].bits.rem > vars[1].bits.rem) |
| return 1; |
| else |
| return 0; |
| } |
| } |
| else |
| { |
| // IBM Extended doubledouble does not follow the general |
| // sign-exponent-significand layout, so has to be handled generically |
| |
| const int xSign = signbit(x), |
| ySign = signbit(y); |
| |
| if (xSign == 1 && ySign == 1) |
| return cmp(-y, -x); |
| else if (xSign == 1) |
| return -1; |
| else if (ySign == 1) |
| return 1; |
| else if (x < y) |
| return -1; |
| else if (x == y) |
| return 0; |
| else if (x > y) |
| return 1; |
| else if (isNaN(x) && !isNaN(y)) |
| return 1; |
| else if (isNaN(y) && !isNaN(x)) |
| return -1; |
| else if (getNaNPayload(x) < getNaNPayload(y)) |
| return -1; |
| else if (getNaNPayload(x) > getNaNPayload(y)) |
| return 1; |
| else |
| return 0; |
| } |
| } |
| |
| /// Most numbers are ordered naturally. |
| @safe unittest |
| { |
| assert(cmp(-double.infinity, -double.max) < 0); |
| assert(cmp(-double.max, -100.0) < 0); |
| assert(cmp(-100.0, -0.5) < 0); |
| assert(cmp(-0.5, 0.0) < 0); |
| assert(cmp(0.0, 0.5) < 0); |
| assert(cmp(0.5, 100.0) < 0); |
| assert(cmp(100.0, double.max) < 0); |
| assert(cmp(double.max, double.infinity) < 0); |
| |
| assert(cmp(1.0, 1.0) == 0); |
| } |
| |
| /// Positive and negative zeroes are distinct. |
| @safe unittest |
| { |
| assert(cmp(-0.0, +0.0) < 0); |
| assert(cmp(+0.0, -0.0) > 0); |
| } |
| |
| /// Depending on the sign, $(NAN)s go to either end of the spectrum. |
| @safe unittest |
| { |
| assert(cmp(-double.nan, -double.infinity) < 0); |
| assert(cmp(double.infinity, double.nan) < 0); |
| assert(cmp(-double.nan, double.nan) < 0); |
| } |
| |
| /// $(NAN)s of the same sign are ordered by the payload. |
| @safe unittest |
| { |
| assert(cmp(NaN(10), NaN(20)) < 0); |
| assert(cmp(-NaN(20), -NaN(10)) < 0); |
| } |
| |
| @safe unittest |
| { |
| import std.meta : AliasSeq; |
| foreach (T; AliasSeq!(float, double, real)) |
| { |
| T[] values = [-cast(T) NaN(20), -cast(T) NaN(10), -T.nan, -T.infinity, |
| -T.max, -T.max / 2, T(-16.0), T(-1.0).nextDown, |
| T(-1.0), T(-1.0).nextUp, |
| T(-0.5), -T.min_normal, (-T.min_normal).nextUp, |
| -2 * T.min_normal * T.epsilon, |
| -T.min_normal * T.epsilon, |
| T(-0.0), T(0.0), |
| T.min_normal * T.epsilon, |
| 2 * T.min_normal * T.epsilon, |
| T.min_normal.nextDown, T.min_normal, T(0.5), |
| T(1.0).nextDown, T(1.0), |
| T(1.0).nextUp, T(16.0), T.max / 2, T.max, |
| T.infinity, T.nan, cast(T) NaN(10), cast(T) NaN(20)]; |
| |
| foreach (i, x; values) |
| { |
| foreach (y; values[i + 1 .. $]) |
| { |
| assert(cmp(x, y) < 0); |
| assert(cmp(y, x) > 0); |
| } |
| assert(cmp(x, x) == 0); |
| } |
| } |
| } |
| |
| private enum PowType |
| { |
| floor, |
| ceil |
| } |
| |
| pragma(inline, true) |
| private T powIntegralImpl(PowType type, T)(T val) |
| { |
| import core.bitop : bsr; |
| |
| if (val == 0 || (type == PowType.ceil && (val > T.max / 2 || val == T.min))) |
| return 0; |
| else |
| { |
| static if (isSigned!T) |
| return cast(Unqual!T) (val < 0 ? -(T(1) << bsr(0 - val) + type) : T(1) << bsr(val) + type); |
| else |
| return cast(Unqual!T) (T(1) << bsr(val) + type); |
| } |
| } |
| |
| private T powFloatingPointImpl(PowType type, T)(T x) |
| { |
| if (!x.isFinite) |
| return x; |
| |
| if (!x) |
| return x; |
| |
| int exp; |
| auto y = frexp(x, exp); |
| |
| static if (type == PowType.ceil) |
| y = ldexp(cast(T) 0.5, exp + 1); |
| else |
| y = ldexp(cast(T) 0.5, exp); |
| |
| if (!y.isFinite) |
| return cast(T) 0.0; |
| |
| y = copysign(y, x); |
| |
| return y; |
| } |
| |
| /** |
| * Gives the next power of two after $(D val). `T` can be any built-in |
| * numerical type. |
| * |
| * If the operation would lead to an over/underflow, this function will |
| * return `0`. |
| * |
| * Params: |
| * val = any number |
| * |
| * Returns: |
| * the next power of two after $(D val) |
| */ |
| T nextPow2(T)(const T val) |
| if (isIntegral!T) |
| { |
| return powIntegralImpl!(PowType.ceil)(val); |
| } |
| |
| /// ditto |
| T nextPow2(T)(const T val) |
| if (isFloatingPoint!T) |
| { |
| return powFloatingPointImpl!(PowType.ceil)(val); |
| } |
| |
| /// |
| @safe @nogc pure nothrow unittest |
| { |
| assert(nextPow2(2) == 4); |
| assert(nextPow2(10) == 16); |
| assert(nextPow2(4000) == 4096); |
| |
| assert(nextPow2(-2) == -4); |
| assert(nextPow2(-10) == -16); |
| |
| assert(nextPow2(uint.max) == 0); |
| assert(nextPow2(uint.min) == 0); |
| assert(nextPow2(size_t.max) == 0); |
| assert(nextPow2(size_t.min) == 0); |
| |
| assert(nextPow2(int.max) == 0); |
| assert(nextPow2(int.min) == 0); |
| assert(nextPow2(long.max) == 0); |
| assert(nextPow2(long.min) == 0); |
| } |
| |
| /// |
| @safe @nogc pure nothrow unittest |
| { |
| assert(nextPow2(2.1) == 4.0); |
| assert(nextPow2(-2.0) == -4.0); |
| assert(nextPow2(0.25) == 0.5); |
| assert(nextPow2(-4.0) == -8.0); |
| |
| assert(nextPow2(double.max) == 0.0); |
| assert(nextPow2(double.infinity) == double.infinity); |
| } |
| |
| @safe @nogc pure nothrow unittest |
| { |
| assert(nextPow2(ubyte(2)) == 4); |
| assert(nextPow2(ubyte(10)) == 16); |
| |
| assert(nextPow2(byte(2)) == 4); |
| assert(nextPow2(byte(10)) == 16); |
| |
| assert(nextPow2(short(2)) == 4); |
| assert(nextPow2(short(10)) == 16); |
| assert(nextPow2(short(4000)) == 4096); |
| |
| assert(nextPow2(ushort(2)) == 4); |
| assert(nextPow2(ushort(10)) == 16); |
| assert(nextPow2(ushort(4000)) == 4096); |
| } |
| |
| @safe @nogc pure nothrow unittest |
| { |
| foreach (ulong i; 1 .. 62) |
| { |
| assert(nextPow2(1UL << i) == 2UL << i); |
| assert(nextPow2((1UL << i) - 1) == 1UL << i); |
| assert(nextPow2((1UL << i) + 1) == 2UL << i); |
| assert(nextPow2((1UL << i) + (1UL<<(i-1))) == 2UL << i); |
| } |
| } |
| |
| @safe @nogc pure nothrow unittest |
| { |
| import std.meta : AliasSeq; |
| |
| foreach (T; AliasSeq!(float, double, real)) |
| { |
| enum T subNormal = T.min_normal / 2; |
| |
| static if (subNormal) assert(nextPow2(subNormal) == T.min_normal); |
| |
| assert(nextPow2(T(0.0)) == 0.0); |
| |
| assert(nextPow2(T(2.0)) == 4.0); |
| assert(nextPow2(T(2.1)) == 4.0); |
| assert(nextPow2(T(3.1)) == 4.0); |
| assert(nextPow2(T(4.0)) == 8.0); |
| assert(nextPow2(T(0.25)) == 0.5); |
| |
| assert(nextPow2(T(-2.0)) == -4.0); |
| assert(nextPow2(T(-2.1)) == -4.0); |
| assert(nextPow2(T(-3.1)) == -4.0); |
| assert(nextPow2(T(-4.0)) == -8.0); |
| assert(nextPow2(T(-0.25)) == -0.5); |
| |
| assert(nextPow2(T.max) == 0); |
| assert(nextPow2(-T.max) == 0); |
| |
| assert(nextPow2(T.infinity) == T.infinity); |
| assert(nextPow2(T.init).isNaN); |
| } |
| } |
| |
| @safe @nogc pure nothrow unittest // Issue 15973 |
| { |
| assert(nextPow2(uint.max / 2) == uint.max / 2 + 1); |
| assert(nextPow2(uint.max / 2 + 2) == 0); |
| assert(nextPow2(int.max / 2) == int.max / 2 + 1); |
| assert(nextPow2(int.max / 2 + 2) == 0); |
| assert(nextPow2(int.min + 1) == int.min); |
| } |
| |
| /** |
| * Gives the last power of two before $(D val). $(T) can be any built-in |
| * numerical type. |
| * |
| * Params: |
| * val = any number |
| * |
| * Returns: |
| * the last power of two before $(D val) |
| */ |
| T truncPow2(T)(const T val) |
| if (isIntegral!T) |
| { |
| return powIntegralImpl!(PowType.floor)(val); |
| } |
| |
| /// ditto |
| T truncPow2(T)(const T val) |
| if (isFloatingPoint!T) |
| { |
| return powFloatingPointImpl!(PowType.floor)(val); |
| } |
| |
| /// |
| @safe @nogc pure nothrow unittest |
| { |
| assert(truncPow2(3) == 2); |
| assert(truncPow2(4) == 4); |
| assert(truncPow2(10) == 8); |
| assert(truncPow2(4000) == 2048); |
| |
| assert(truncPow2(-5) == -4); |
| assert(truncPow2(-20) == -16); |
| |
| assert(truncPow2(uint.max) == int.max + 1); |
| assert(truncPow2(uint.min) == 0); |
| assert(truncPow2(ulong.max) == long.max + 1); |
| assert(truncPow2(ulong.min) == 0); |
| |
| assert(truncPow2(int.max) == (int.max / 2) + 1); |
| assert(truncPow2(int.min) == int.min); |
| assert(truncPow2(long.max) == (long.max / 2) + 1); |
| assert(truncPow2(long.min) == long.min); |
| } |
| |
| /// |
| @safe @nogc pure nothrow unittest |
| { |
| assert(truncPow2(2.1) == 2.0); |
| assert(truncPow2(7.0) == 4.0); |
| assert(truncPow2(-1.9) == -1.0); |
| assert(truncPow2(0.24) == 0.125); |
| assert(truncPow2(-7.0) == -4.0); |
| |
| assert(truncPow2(double.infinity) == double.infinity); |
| } |
| |
| @safe @nogc pure nothrow unittest |
| { |
| assert(truncPow2(ubyte(3)) == 2); |
| assert(truncPow2(ubyte(4)) == 4); |
| assert(truncPow2(ubyte(10)) == 8); |
| |
| assert(truncPow2(byte(3)) == 2); |
| assert(truncPow2(byte(4)) == 4); |
| assert(truncPow2(byte(10)) == 8); |
| |
| assert(truncPow2(ushort(3)) == 2); |
| assert(truncPow2(ushort(4)) == 4); |
| assert(truncPow2(ushort(10)) == 8); |
| assert(truncPow2(ushort(4000)) == 2048); |
| |
| assert(truncPow2(short(3)) == 2); |
| assert(truncPow2(short(4)) == 4); |
| assert(truncPow2(short(10)) == 8); |
| assert(truncPow2(short(4000)) == 2048); |
| } |
| |
| @safe @nogc pure nothrow unittest |
| { |
| foreach (ulong i; 1 .. 62) |
| { |
| assert(truncPow2(2UL << i) == 2UL << i); |
| assert(truncPow2((2UL << i) + 1) == 2UL << i); |
| assert(truncPow2((2UL << i) - 1) == 1UL << i); |
| assert(truncPow2((2UL << i) - (2UL<<(i-1))) == 1UL << i); |
| } |
| } |
| |
| @safe @nogc pure nothrow unittest |
| { |
| import std.meta : AliasSeq; |
| |
| foreach (T; AliasSeq!(float, double, real)) |
| { |
| assert(truncPow2(T(0.0)) == 0.0); |
| |
| assert(truncPow2(T(4.0)) == 4.0); |
| assert(truncPow2(T(2.1)) == 2.0); |
| assert(truncPow2(T(3.5)) == 2.0); |
| assert(truncPow2(T(7.0)) == 4.0); |
| assert(truncPow2(T(0.24)) == 0.125); |
| |
| assert(truncPow2(T(-2.0)) == -2.0); |
| assert(truncPow2(T(-2.1)) == -2.0); |
| assert(truncPow2(T(-3.1)) == -2.0); |
| assert(truncPow2(T(-7.0)) == -4.0); |
| assert(truncPow2(T(-0.24)) == -0.125); |
| |
| assert(truncPow2(T.infinity) == T.infinity); |
| assert(truncPow2(T.init).isNaN); |
| } |
| } |
| |
| /** |
| Check whether a number is an integer power of two. |
| |
| Note that only positive numbers can be integer powers of two. This |
| function always return `false` if `x` is negative or zero. |
| |
| Params: |
| x = the number to test |
| |
| Returns: |
| `true` if `x` is an integer power of two. |
| */ |
| bool isPowerOf2(X)(const X x) pure @safe nothrow @nogc |
| if (isNumeric!X) |
| { |
| static if (isFloatingPoint!X) |
| { |
| int exp; |
| const X sig = frexp(x, exp); |
| |
| return (exp != int.min) && (sig is cast(X) 0.5L); |
| } |
| else |
| { |
| static if (isSigned!X) |
| { |
| auto y = cast(typeof(x + 0))x; |
| return y > 0 && !(y & (y - 1)); |
| } |
| else |
| { |
| auto y = cast(typeof(x + 0u))x; |
| return (y & -y) > (y - 1); |
| } |
| } |
| } |
| /// |
| @safe unittest |
| { |
| assert( isPowerOf2(1.0L)); |
| assert( isPowerOf2(2.0L)); |
| assert( isPowerOf2(0.5L)); |
| assert( isPowerOf2(pow(2.0L, 96))); |
| assert( isPowerOf2(pow(2.0L, -77))); |
| |
| assert(!isPowerOf2(-2.0L)); |
| assert(!isPowerOf2(-0.5L)); |
| assert(!isPowerOf2(0.0L)); |
| assert(!isPowerOf2(4.315)); |
| assert(!isPowerOf2(1.0L / 3.0L)); |
| |
| assert(!isPowerOf2(real.nan)); |
| assert(!isPowerOf2(real.infinity)); |
| } |
| /// |
| @safe unittest |
| { |
| assert( isPowerOf2(1)); |
| assert( isPowerOf2(2)); |
| assert( isPowerOf2(1uL << 63)); |
| |
| assert(!isPowerOf2(-4)); |
| assert(!isPowerOf2(0)); |
| assert(!isPowerOf2(1337u)); |
| } |
| |
| @safe unittest |
| { |
| import std.meta : AliasSeq; |
| |
| immutable smallP2 = pow(2.0L, -62); |
| immutable bigP2 = pow(2.0L, 50); |
| immutable smallP7 = pow(7.0L, -35); |
| immutable bigP7 = pow(7.0L, 30); |
| |
| foreach (X; AliasSeq!(float, double, real)) |
| { |
| immutable min_sub = X.min_normal * X.epsilon; |
| |
| foreach (x; AliasSeq!(smallP2, min_sub, X.min_normal, .25L, 0.5L, 1.0L, |
| 2.0L, 8.0L, pow(2.0L, X.max_exp - 1), bigP2)) |
| { |
| assert( isPowerOf2(cast(X) x)); |
| assert(!isPowerOf2(cast(X)-x)); |
| } |
| |
| foreach (x; AliasSeq!(0.0L, 3 * min_sub, smallP7, 0.1L, 1337.0L, bigP7, X.max, real.nan, real.infinity)) |
| { |
| assert(!isPowerOf2(cast(X) x)); |
| assert(!isPowerOf2(cast(X)-x)); |
| } |
| } |
| |
| foreach (X; AliasSeq!(byte, ubyte, short, ushort, int, uint, long, ulong)) |
| { |
| foreach (x; [1, 2, 4, 8, (X.max >>> 1) + 1]) |
| { |
| assert( isPowerOf2(cast(X) x)); |
| static if (isSigned!X) |
| assert(!isPowerOf2(cast(X)-x)); |
| } |
| |
| foreach (x; [0, 3, 5, 13, 77, X.min, X.max]) |
| assert(!isPowerOf2(cast(X) x)); |
| } |
| } |