| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT RUNTIME COMPONENTS -- |
| -- -- |
| -- A D A . N U M E R I C S . A U X -- |
| -- -- |
| -- B o d y -- |
| -- (Machine Version for x86) -- |
| -- -- |
| -- Copyright (C) 1998-2001 Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 2, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- |
| -- for more details. You should have received a copy of the GNU General -- |
| -- Public License distributed with GNAT; see file COPYING. If not, write -- |
| -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- |
| -- MA 02111-1307, USA. -- |
| -- -- |
| -- As a special exception, if other files instantiate generics from this -- |
| -- unit, or you link this unit with other files to produce an executable, -- |
| -- this unit does not by itself cause the resulting executable to be -- |
| -- covered by the GNU General Public License. This exception does not -- |
| -- however invalidate any other reasons why the executable file might be -- |
| -- covered by the GNU Public License. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| -- File a-numaux.adb <- 86numaux.adb |
| |
| -- This version of Numerics.Aux is for the IEEE Double Extended floating |
| -- point format on x86. |
| |
| with System.Machine_Code; use System.Machine_Code; |
| |
| package body Ada.Numerics.Aux is |
| |
| NL : constant String := ASCII.LF & ASCII.HT; |
| |
| type FPU_Stack_Pointer is range 0 .. 7; |
| for FPU_Stack_Pointer'Size use 3; |
| |
| type FPU_Status_Word is record |
| B : Boolean; -- FPU Busy (for 8087 compatibility only) |
| ES : Boolean; -- Error Summary Status |
| SF : Boolean; -- Stack Fault |
| |
| Top : FPU_Stack_Pointer; |
| |
| -- Condition Code Flags |
| |
| -- C2 is set by FPREM and FPREM1 to indicate incomplete reduction. |
| -- In case of successfull recorction, C0, C3 and C1 are set to the |
| -- three least significant bits of the result (resp. Q2, Q1 and Q0). |
| |
| -- C2 is used by FPTAN, FSIN, FCOS, and FSINCOS to indicate that |
| -- that source operand is beyond the allowable range of |
| -- -2.0**63 .. 2.0**63. |
| |
| C3 : Boolean; |
| C2 : Boolean; |
| C1 : Boolean; |
| C0 : Boolean; |
| |
| -- Exception Flags |
| |
| PE : Boolean; -- Precision |
| UE : Boolean; -- Underflow |
| OE : Boolean; -- Overflow |
| ZE : Boolean; -- Zero Divide |
| DE : Boolean; -- Denormalized Operand |
| IE : Boolean; -- Invalid Operation |
| end record; |
| |
| for FPU_Status_Word use record |
| B at 0 range 15 .. 15; |
| C3 at 0 range 14 .. 14; |
| Top at 0 range 11 .. 13; |
| C2 at 0 range 10 .. 10; |
| C1 at 0 range 9 .. 9; |
| C0 at 0 range 8 .. 8; |
| ES at 0 range 7 .. 7; |
| SF at 0 range 6 .. 6; |
| PE at 0 range 5 .. 5; |
| UE at 0 range 4 .. 4; |
| OE at 0 range 3 .. 3; |
| ZE at 0 range 2 .. 2; |
| DE at 0 range 1 .. 1; |
| IE at 0 range 0 .. 0; |
| end record; |
| |
| for FPU_Status_Word'Size use 16; |
| |
| ----------------------- |
| -- Local subprograms -- |
| ----------------------- |
| |
| function Is_Nan (X : Double) return Boolean; |
| -- Return True iff X is a IEEE NaN value |
| |
| function Logarithmic_Pow (X, Y : Double) return Double; |
| -- Implementation of X**Y using Exp and Log functions (binary base) |
| -- to calculate the exponentiation. This is used by Pow for values |
| -- for values of Y in the open interval (-0.25, 0.25) |
| |
| function Reduce (X : Double) return Double; |
| -- Implement partial reduction of X by Pi in the x86. |
| |
| -- Note that for the Sin, Cos and Tan functions completely accurate |
| -- reduction of the argument is done for arguments in the range of |
| -- -2.0**63 .. 2.0**63, using a 66-bit approximation of Pi. |
| |
| pragma Inline (Is_Nan); |
| pragma Inline (Reduce); |
| |
| --------------------------------- |
| -- Basic Elementary Functions -- |
| --------------------------------- |
| |
| -- This section implements a few elementary functions that are |
| -- used to build the more complex ones. This ordering enables |
| -- better inlining. |
| |
| ---------- |
| -- Atan -- |
| ---------- |
| |
| function Atan (X : Double) return Double is |
| Result : Double; |
| |
| begin |
| Asm (Template => |
| "fld1" & NL |
| & "fpatan", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", X)); |
| |
| -- The result value is NaN iff input was invalid |
| |
| if not (Result = Result) then |
| raise Argument_Error; |
| end if; |
| |
| return Result; |
| end Atan; |
| |
| --------- |
| -- Exp -- |
| --------- |
| |
| function Exp (X : Double) return Double is |
| Result : Double; |
| begin |
| Asm (Template => |
| "fldl2e " & NL |
| & "fmulp %%st, %%st(1)" & NL -- X * log2 (E) |
| & "fld %%st(0) " & NL |
| & "frndint " & NL -- Integer (X * Log2 (E)) |
| & "fsubr %%st, %%st(1)" & NL -- Fraction (X * Log2 (E)) |
| & "fxch " & NL |
| & "f2xm1 " & NL -- 2**(...) - 1 |
| & "fld1 " & NL |
| & "faddp %%st, %%st(1)" & NL -- 2**(Fraction (X * Log2 (E))) |
| & "fscale " & NL -- E ** X |
| & "fstp %%st(1) ", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", X)); |
| return Result; |
| end Exp; |
| |
| ------------ |
| -- Is_Nan -- |
| ------------ |
| |
| function Is_Nan (X : Double) return Boolean is |
| begin |
| -- The IEEE NaN values are the only ones that do not equal themselves |
| |
| return not (X = X); |
| end Is_Nan; |
| |
| --------- |
| -- Log -- |
| --------- |
| |
| function Log (X : Double) return Double is |
| Result : Double; |
| |
| begin |
| Asm (Template => |
| "fldln2 " & NL |
| & "fxch " & NL |
| & "fyl2x " & NL, |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", X)); |
| return Result; |
| end Log; |
| |
| ------------ |
| -- Reduce -- |
| ------------ |
| |
| function Reduce (X : Double) return Double is |
| Result : Double; |
| begin |
| Asm |
| (Template => |
| -- Partial argument reduction |
| "fldpi " & NL |
| & "fadd %%st(0), %%st" & NL |
| & "fxch %%st(1) " & NL |
| & "fprem1 " & NL |
| & "fstp %%st(1) ", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", X)); |
| return Result; |
| end Reduce; |
| |
| ---------- |
| -- Sqrt -- |
| ---------- |
| |
| function Sqrt (X : Double) return Double is |
| Result : Double; |
| |
| begin |
| if X < 0.0 then |
| raise Argument_Error; |
| end if; |
| |
| Asm (Template => "fsqrt", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => Double'Asm_Input ("0", X)); |
| |
| return Result; |
| end Sqrt; |
| |
| --------------------------------- |
| -- Other Elementary Functions -- |
| --------------------------------- |
| |
| -- These are built using the previously implemented basic functions |
| |
| ---------- |
| -- Acos -- |
| ---------- |
| |
| function Acos (X : Double) return Double is |
| Result : Double; |
| begin |
| Result := 2.0 * Atan (Sqrt ((1.0 - X) / (1.0 + X))); |
| |
| -- The result value is NaN iff input was invalid |
| |
| if Is_Nan (Result) then |
| raise Argument_Error; |
| end if; |
| |
| return Result; |
| end Acos; |
| |
| ---------- |
| -- Asin -- |
| ---------- |
| |
| function Asin (X : Double) return Double is |
| Result : Double; |
| begin |
| |
| Result := Atan (X / Sqrt ((1.0 - X) * (1.0 + X))); |
| |
| -- The result value is NaN iff input was invalid |
| |
| if Is_Nan (Result) then |
| raise Argument_Error; |
| end if; |
| |
| return Result; |
| end Asin; |
| |
| --------- |
| -- Cos -- |
| --------- |
| |
| function Cos (X : Double) return Double is |
| Reduced_X : Double := X; |
| Result : Double; |
| Status : FPU_Status_Word; |
| |
| begin |
| |
| loop |
| Asm |
| (Template => |
| "fcos " & NL |
| & "xorl %%eax, %%eax " & NL |
| & "fnstsw %%ax ", |
| Outputs => (Double'Asm_Output ("=t", Result), |
| FPU_Status_Word'Asm_Output ("=a", Status)), |
| Inputs => Double'Asm_Input ("0", Reduced_X)); |
| |
| exit when not Status.C2; |
| |
| -- Original argument was not in range and the result |
| -- is the unmodified argument. |
| |
| Reduced_X := Reduce (Result); |
| end loop; |
| |
| return Result; |
| end Cos; |
| |
| --------------------- |
| -- Logarithmic_Pow -- |
| --------------------- |
| |
| function Logarithmic_Pow (X, Y : Double) return Double is |
| Result : Double; |
| |
| begin |
| Asm (Template => "" -- X : Y |
| & "fyl2x " & NL -- Y * Log2 (X) |
| & "fst %%st(1) " & NL -- Y * Log2 (X) : Y * Log2 (X) |
| & "frndint " & NL -- Int (...) : Y * Log2 (X) |
| & "fsubr %%st, %%st(1)" & NL -- Int (...) : Fract (...) |
| & "fxch " & NL -- Fract (...) : Int (...) |
| & "f2xm1 " & NL -- 2**Fract (...) - 1 : Int (...) |
| & "fld1 " & NL -- 1 : 2**Fract (...) - 1 : Int (...) |
| & "faddp %%st, %%st(1)" & NL -- 2**Fract (...) : Int (...) |
| & "fscale " & NL -- 2**(Fract (...) + Int (...)) |
| & "fstp %%st(1) ", |
| Outputs => Double'Asm_Output ("=t", Result), |
| Inputs => |
| (Double'Asm_Input ("0", X), |
| Double'Asm_Input ("u", Y))); |
| |
| return Result; |
| end Logarithmic_Pow; |
| |
| --------- |
| -- Pow -- |
| --------- |
| |
| function Pow (X, Y : Double) return Double is |
| type Mantissa_Type is mod 2**Double'Machine_Mantissa; |
| -- Modular type that can hold all bits of the mantissa of Double |
| |
| -- For negative exponents, a division is done |
| -- at the end of the processing. |
| |
| Negative_Y : constant Boolean := Y < 0.0; |
| Abs_Y : constant Double := abs Y; |
| |
| -- During this function the following invariant is kept: |
| -- X ** (abs Y) = Base**(Exp_High + Exp_Mid + Exp_Low) * Factor |
| |
| Base : Double := X; |
| |
| Exp_High : Double := Double'Floor (Abs_Y); |
| Exp_Mid : Double; |
| Exp_Low : Double; |
| Exp_Int : Mantissa_Type; |
| |
| Factor : Double := 1.0; |
| |
| begin |
| -- Select algorithm for calculating Pow: |
| -- integer cases fall through |
| |
| if Exp_High >= 2.0**Double'Machine_Mantissa then |
| |
| -- In case of Y that is IEEE infinity, just raise constraint error |
| |
| if Exp_High > Double'Safe_Last then |
| raise Constraint_Error; |
| end if; |
| |
| -- Large values of Y are even integers and will stay integer |
| -- after division by two. |
| |
| loop |
| -- Exp_Mid and Exp_Low are zero, so |
| -- X**(abs Y) = Base ** Exp_High = (Base**2) ** (Exp_High / 2) |
| |
| Exp_High := Exp_High / 2.0; |
| Base := Base * Base; |
| exit when Exp_High < 2.0**Double'Machine_Mantissa; |
| end loop; |
| |
| elsif Exp_High /= Abs_Y then |
| Exp_Low := Abs_Y - Exp_High; |
| |
| Factor := 1.0; |
| |
| if Exp_Low /= 0.0 then |
| |
| -- Exp_Low now is in interval (0.0, 1.0) |
| -- Exp_Mid := Double'Floor (Exp_Low * 4.0) / 4.0; |
| |
| Exp_Mid := 0.0; |
| Exp_Low := Exp_Low - Exp_Mid; |
| |
| if Exp_Low >= 0.5 then |
| Factor := Sqrt (X); |
| Exp_Low := Exp_Low - 0.5; -- exact |
| |
| if Exp_Low >= 0.25 then |
| Factor := Factor * Sqrt (Factor); |
| Exp_Low := Exp_Low - 0.25; -- exact |
| end if; |
| |
| elsif Exp_Low >= 0.25 then |
| Factor := Sqrt (Sqrt (X)); |
| Exp_Low := Exp_Low - 0.25; -- exact |
| end if; |
| |
| -- Exp_Low now is in interval (0.0, 0.25) |
| |
| -- This means it is safe to call Logarithmic_Pow |
| -- for the remaining part. |
| |
| Factor := Factor * Logarithmic_Pow (X, Exp_Low); |
| end if; |
| |
| elsif X = 0.0 then |
| return 0.0; |
| end if; |
| |
| -- Exp_High is non-zero integer smaller than 2**Double'Machine_Mantissa |
| |
| Exp_Int := Mantissa_Type (Exp_High); |
| |
| -- Standard way for processing integer powers > 0 |
| |
| while Exp_Int > 1 loop |
| if (Exp_Int and 1) = 1 then |
| |
| -- Base**Y = Base**(Exp_Int - 1) * Exp_Int for Exp_Int > 0 |
| |
| Factor := Factor * Base; |
| end if; |
| |
| -- Exp_Int is even and Exp_Int > 0, so |
| -- Base**Y = (Base**2)**(Exp_Int / 2) |
| |
| Base := Base * Base; |
| Exp_Int := Exp_Int / 2; |
| end loop; |
| |
| -- Exp_Int = 1 or Exp_Int = 0 |
| |
| if Exp_Int = 1 then |
| Factor := Base * Factor; |
| end if; |
| |
| if Negative_Y then |
| Factor := 1.0 / Factor; |
| end if; |
| |
| return Factor; |
| end Pow; |
| |
| --------- |
| -- Sin -- |
| --------- |
| |
| function Sin (X : Double) return Double is |
| Reduced_X : Double := X; |
| Result : Double; |
| Status : FPU_Status_Word; |
| |
| begin |
| |
| loop |
| Asm |
| (Template => |
| "fsin " & NL |
| & "xorl %%eax, %%eax " & NL |
| & "fnstsw %%ax ", |
| Outputs => (Double'Asm_Output ("=t", Result), |
| FPU_Status_Word'Asm_Output ("=a", Status)), |
| Inputs => Double'Asm_Input ("0", Reduced_X)); |
| |
| exit when not Status.C2; |
| |
| -- Original argument was not in range and the result |
| -- is the unmodified argument. |
| |
| Reduced_X := Reduce (Result); |
| end loop; |
| |
| return Result; |
| end Sin; |
| |
| --------- |
| -- Tan -- |
| --------- |
| |
| function Tan (X : Double) return Double is |
| Reduced_X : Double := X; |
| Result : Double; |
| Status : FPU_Status_Word; |
| |
| begin |
| |
| loop |
| Asm |
| (Template => |
| "fptan " & NL |
| & "xorl %%eax, %%eax " & NL |
| & "fnstsw %%ax " & NL |
| & "ffree %%st(0) " & NL |
| & "fincstp ", |
| |
| Outputs => (Double'Asm_Output ("=t", Result), |
| FPU_Status_Word'Asm_Output ("=a", Status)), |
| Inputs => Double'Asm_Input ("0", Reduced_X)); |
| |
| exit when not Status.C2; |
| |
| -- Original argument was not in range and the result |
| -- is the unmodified argument. |
| |
| Reduced_X := Reduce (Result); |
| end loop; |
| |
| return Result; |
| end Tan; |
| |
| ---------- |
| -- Sinh -- |
| ---------- |
| |
| function Sinh (X : Double) return Double is |
| begin |
| -- Mathematically Sinh (x) is defined to be (Exp (X) - Exp (-X)) / 2.0 |
| |
| if abs X < 25.0 then |
| return (Exp (X) - Exp (-X)) / 2.0; |
| |
| else |
| return Exp (X) / 2.0; |
| end if; |
| |
| end Sinh; |
| |
| ---------- |
| -- Cosh -- |
| ---------- |
| |
| function Cosh (X : Double) return Double is |
| begin |
| -- Mathematically Cosh (X) is defined to be (Exp (X) + Exp (-X)) / 2.0 |
| |
| if abs X < 22.0 then |
| return (Exp (X) + Exp (-X)) / 2.0; |
| |
| else |
| return Exp (X) / 2.0; |
| end if; |
| |
| end Cosh; |
| |
| ---------- |
| -- Tanh -- |
| ---------- |
| |
| function Tanh (X : Double) return Double is |
| begin |
| -- Return the Hyperbolic Tangent of x |
| -- |
| -- x -x |
| -- e - e Sinh (X) |
| -- Tanh (X) is defined to be ----------- = -------- |
| -- x -x Cosh (X) |
| -- e + e |
| |
| if abs X > 23.0 then |
| return Double'Copy_Sign (1.0, X); |
| end if; |
| |
| return 1.0 / (1.0 + Exp (-2.0 * X)) - 1.0 / (1.0 + Exp (2.0 * X)); |
| |
| end Tanh; |
| |
| end Ada.Numerics.Aux; |