blob: 58314e032501407486e24134d6818eb38b6192e3 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- A D A . N U M E R I C S . D I S C R E T E _ R A N D O M --
-- --
-- S p e c --
-- --
-- Copyright (C) 1992-2003 Free Software Foundation, Inc. --
-- --
-- This specification is derived from the Ada Reference Manual for use with --
-- GNAT. The copyright notice above, and the license provisions that follow --
-- apply solely to the contents of the part following the private keyword. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- Note: the implementation used in this package was contributed by
-- Robert Eachus. It is based on the work of L. Blum, M. Blum, and
-- M. Shub, SIAM Journal of Computing, Vol 15. No 2, May 1986. The
-- particular choices for P and Q chosen here guarantee a period of
-- 562,085,314,430,582 (about 2**49), and the generated sequence has
-- excellent randomness properties. For further details, see the
-- paper "Fast Generation of Trustworthy Random Numbers", by Robert
-- Eachus, which describes both the algorithm and the efficient
-- implementation approach used here.
with Interfaces;
generic
type Result_Subtype is (<>);
package Ada.Numerics.Discrete_Random is
-- The algorithm used here is reliable from a required statistical point
-- of view only up to 48 bits. We try to behave reasonably in the case
-- of larger types, but we can't guarantee the required properties.
-- So generate a warning for these (slightly) dubious cases.
pragma Compile_Time_Warning
(Result_Subtype'Size > 48,
"statistical properties not guaranteed for size '> 48");
-- Basic facilities.
type Generator is limited private;
function Random (Gen : Generator) return Result_Subtype;
procedure Reset (Gen : Generator);
procedure Reset (Gen : Generator; Initiator : Integer);
-- Advanced facilities.
type State is private;
procedure Save (Gen : Generator; To_State : out State);
procedure Reset (Gen : Generator; From_State : State);
Max_Image_Width : constant := 80;
function Image (Of_State : State) return String;
function Value (Coded_State : String) return State;
private
subtype Int is Interfaces.Integer_32;
subtype Rst is Result_Subtype;
-- We prefer to use 14 digits for Flt, but some targets are more limited
type Flt is digits Positive'Min (14, Long_Long_Float'Digits);
RstF : constant Flt := Flt (Rst'Pos (Rst'First));
RstL : constant Flt := Flt (Rst'Pos (Rst'Last));
Offs : constant Flt := RstF - 0.5;
K1 : constant := 94_833_359;
K1F : constant := 94_833_359.0;
K2 : constant := 47_416_679;
K2F : constant := 47_416_679.0;
Scal : constant Flt := (RstL - RstF + 1.0) / (K1F * K2F);
type State is record
X1 : Int := Int (2999 ** 2);
X2 : Int := Int (1439 ** 2);
P : Int := K1;
Q : Int := K2;
FP : Flt := K1F;
Scl : Flt := Scal;
end record;
type Generator is limited record
Gen_State : State;
end record;
end Ada.Numerics.Discrete_Random;