| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT COMPILER COMPONENTS -- |
| -- -- |
| -- E X P _ A T T R -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1992-2003 Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 2, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- |
| -- for more details. You should have received a copy of the GNU General -- |
| -- Public License distributed with GNAT; see file COPYING. If not, write -- |
| -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- |
| -- MA 02111-1307, USA. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| with Atree; use Atree; |
| with Checks; use Checks; |
| with Einfo; use Einfo; |
| with Exp_Ch2; use Exp_Ch2; |
| with Exp_Ch9; use Exp_Ch9; |
| with Exp_Imgv; use Exp_Imgv; |
| with Exp_Pakd; use Exp_Pakd; |
| with Exp_Strm; use Exp_Strm; |
| with Exp_Tss; use Exp_Tss; |
| with Exp_Util; use Exp_Util; |
| with Gnatvsn; use Gnatvsn; |
| with Hostparm; use Hostparm; |
| with Lib; use Lib; |
| with Namet; use Namet; |
| with Nmake; use Nmake; |
| with Nlists; use Nlists; |
| with Opt; use Opt; |
| with Restrict; use Restrict; |
| with Rtsfind; use Rtsfind; |
| with Sem; use Sem; |
| with Sem_Ch7; use Sem_Ch7; |
| with Sem_Ch8; use Sem_Ch8; |
| with Sem_Eval; use Sem_Eval; |
| with Sem_Res; use Sem_Res; |
| with Sem_Util; use Sem_Util; |
| with Sinfo; use Sinfo; |
| with Snames; use Snames; |
| with Stand; use Stand; |
| with Stringt; use Stringt; |
| with Tbuild; use Tbuild; |
| with Ttypes; use Ttypes; |
| with Uintp; use Uintp; |
| with Uname; use Uname; |
| with Validsw; use Validsw; |
| |
| package body Exp_Attr is |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| procedure Compile_Stream_Body_In_Scope |
| (N : Node_Id; |
| Decl : Node_Id; |
| Arr : Entity_Id; |
| Check : Boolean); |
| -- The body for a stream subprogram may be generated outside of the scope |
| -- of the type. If the type is fully private, it may depend on the full |
| -- view of other types (e.g. indices) that are currently private as well. |
| -- We install the declarations of the package in which the type is declared |
| -- before compiling the body in what is its proper environment. The Check |
| -- parameter indicates if checks are to be suppressed for the stream body. |
| -- We suppress checks for array/record reads, since the rule is that these |
| -- are like assignments, out of range values due to uninitialized storage, |
| -- or other invalid values do NOT cause a Constraint_Error to be raised. |
| |
| procedure Expand_Fpt_Attribute |
| (N : Node_Id; |
| Rtp : Entity_Id; |
| Nam : Name_Id; |
| Args : List_Id); |
| -- This procedure expands a call to a floating-point attribute function. |
| -- N is the attribute reference node, and Args is a list of arguments to |
| -- be passed to the function call. Rtp is the root type of the floating |
| -- point type involved (used to select the proper generic instantiation |
| -- of the package containing the attribute routines). The Nam argument |
| -- is the attribute processing routine to be called. This is normally |
| -- the same as the attribute name, except in the Unaligned_Valid case. |
| |
| procedure Expand_Fpt_Attribute_R (N : Node_Id); |
| -- This procedure expands a call to a floating-point attribute function |
| -- that takes a single floating-point argument. The function to be called |
| -- is always the same as the attribute name. |
| |
| procedure Expand_Fpt_Attribute_RI (N : Node_Id); |
| -- This procedure expands a call to a floating-point attribute function |
| -- that takes one floating-point argument and one integer argument. The |
| -- function to be called is always the same as the attribute name. |
| |
| procedure Expand_Fpt_Attribute_RR (N : Node_Id); |
| -- This procedure expands a call to a floating-point attribute function |
| -- that takes two floating-point arguments. The function to be called |
| -- is always the same as the attribute name. |
| |
| procedure Expand_Pred_Succ (N : Node_Id); |
| -- Handles expansion of Pred or Succ attributes for case of non-real |
| -- operand with overflow checking required. |
| |
| function Get_Index_Subtype (N : Node_Id) return Entity_Id; |
| -- Used for Last, Last, and Length, when the prefix is an array type, |
| -- Obtains the corresponding index subtype. |
| |
| procedure Expand_Access_To_Type (N : Node_Id); |
| -- A reference to a type within its own scope is resolved to a reference |
| -- to the current instance of the type in its initialization procedure. |
| |
| function Find_Inherited_TSS |
| (Typ : Entity_Id; |
| Nam : TSS_Name_Type) return Entity_Id; |
| -- Returns the TSS of name Nam of Typ, or of its closest ancestor defining |
| -- such a TSS. Empty is returned is neither Typ nor any of its ancestors |
| -- have such a TSS. |
| |
| function Find_Stream_Subprogram |
| (Typ : Entity_Id; |
| Nam : TSS_Name_Type) return Entity_Id; |
| -- Returns the stream-oriented subprogram attribute for Typ. For tagged |
| -- types, the corresponding primitive operation is looked up, else the |
| -- appropriate TSS from the type itself, or from its closest ancestor |
| -- defining it, is returned. In both cases, inheritance of representation |
| -- aspects is thus taken into account. |
| |
| function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean; |
| -- Utility for array attributes, returns true on packed constrained |
| -- arrays, and on access to same. |
| |
| ---------------------------------- |
| -- Compile_Stream_Body_In_Scope -- |
| ---------------------------------- |
| |
| procedure Compile_Stream_Body_In_Scope |
| (N : Node_Id; |
| Decl : Node_Id; |
| Arr : Entity_Id; |
| Check : Boolean) |
| is |
| Installed : Boolean := False; |
| Scop : constant Entity_Id := Scope (Arr); |
| Curr : constant Entity_Id := Current_Scope; |
| |
| begin |
| if Is_Hidden (Arr) |
| and then not In_Open_Scopes (Scop) |
| and then Ekind (Scop) = E_Package |
| then |
| New_Scope (Scop); |
| Install_Visible_Declarations (Scop); |
| Install_Private_Declarations (Scop); |
| Installed := True; |
| |
| -- The entities in the package are now visible, but the generated |
| -- stream entity must appear in the current scope (usually an |
| -- enclosing stream function) so that itypes all have their proper |
| -- scopes. |
| |
| New_Scope (Curr); |
| end if; |
| |
| if Check then |
| Insert_Action (N, Decl); |
| else |
| Insert_Action (N, Decl, All_Checks); |
| end if; |
| |
| if Installed then |
| |
| -- Remove extra copy of current scope, and package itself |
| |
| Pop_Scope; |
| End_Package_Scope (Scop); |
| end if; |
| end Compile_Stream_Body_In_Scope; |
| |
| --------------------------- |
| -- Expand_Access_To_Type -- |
| --------------------------- |
| |
| procedure Expand_Access_To_Type (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| Typ : constant Entity_Id := Etype (N); |
| Pref : constant Node_Id := Prefix (N); |
| Par : Node_Id; |
| Formal : Entity_Id; |
| |
| begin |
| if Is_Entity_Name (Pref) |
| and then Is_Type (Entity (Pref)) |
| then |
| -- If the current instance name denotes a task type, |
| -- then the access attribute is rewritten to be the |
| -- name of the "_task" parameter associated with the |
| -- task type's task body procedure. An unchecked |
| -- conversion is applied to ensure a type match in |
| -- cases of expander-generated calls (e.g., init procs). |
| |
| if Is_Task_Type (Entity (Pref)) then |
| Formal := |
| First_Entity (Get_Task_Body_Procedure (Entity (Pref))); |
| |
| while Present (Formal) loop |
| exit when Chars (Formal) = Name_uTask; |
| Next_Entity (Formal); |
| end loop; |
| |
| pragma Assert (Present (Formal)); |
| |
| Rewrite (N, |
| Unchecked_Convert_To (Typ, New_Occurrence_Of (Formal, Loc))); |
| Set_Etype (N, Typ); |
| |
| -- The expression must appear in a default expression, |
| -- (which in the initialization procedure is the rhs of |
| -- an assignment), and not in a discriminant constraint. |
| |
| else |
| Par := Parent (N); |
| |
| while Present (Par) loop |
| exit when Nkind (Par) = N_Assignment_Statement; |
| |
| if Nkind (Par) = N_Component_Declaration then |
| return; |
| end if; |
| |
| Par := Parent (Par); |
| end loop; |
| |
| if Present (Par) then |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => Make_Identifier (Loc, Name_uInit), |
| Attribute_Name => Attribute_Name (N))); |
| |
| Analyze_And_Resolve (N, Typ); |
| end if; |
| end if; |
| end if; |
| end Expand_Access_To_Type; |
| |
| -------------------------- |
| -- Expand_Fpt_Attribute -- |
| -------------------------- |
| |
| procedure Expand_Fpt_Attribute |
| (N : Node_Id; |
| Rtp : Entity_Id; |
| Nam : Name_Id; |
| Args : List_Id) |
| is |
| Loc : constant Source_Ptr := Sloc (N); |
| Typ : constant Entity_Id := Etype (N); |
| Pkg : RE_Id; |
| Fnm : Node_Id; |
| |
| begin |
| -- The function name is the selected component Fat_xxx.yyy where xxx |
| -- is the floating-point root type, and yyy is the argument Nam. |
| |
| -- Note: it would be more usual to have separate RE entries for each |
| -- of the entities in the Fat packages, but first they have identical |
| -- names (so we would have to have lots of renaming declarations to |
| -- meet the normal RE rule of separate names for all runtime entities), |
| -- and second there would be an awful lot of them! |
| |
| if Rtp = Standard_Short_Float then |
| Pkg := RE_Fat_Short_Float; |
| elsif Rtp = Standard_Float then |
| Pkg := RE_Fat_Float; |
| elsif Rtp = Standard_Long_Float then |
| Pkg := RE_Fat_Long_Float; |
| else |
| Pkg := RE_Fat_Long_Long_Float; |
| end if; |
| |
| Fnm := |
| Make_Selected_Component (Loc, |
| Prefix => New_Reference_To (RTE (Pkg), Loc), |
| Selector_Name => Make_Identifier (Loc, Nam)); |
| |
| -- The generated call is given the provided set of parameters, and then |
| -- wrapped in a conversion which converts the result to the target type |
| |
| Rewrite (N, |
| Unchecked_Convert_To (Etype (N), |
| Make_Function_Call (Loc, |
| Name => Fnm, |
| Parameter_Associations => Args))); |
| |
| Analyze_And_Resolve (N, Typ); |
| end Expand_Fpt_Attribute; |
| |
| ---------------------------- |
| -- Expand_Fpt_Attribute_R -- |
| ---------------------------- |
| |
| -- The single argument is converted to its root type to call the |
| -- appropriate runtime function, with the actual call being built |
| -- by Expand_Fpt_Attribute |
| |
| procedure Expand_Fpt_Attribute_R (N : Node_Id) is |
| E1 : constant Node_Id := First (Expressions (N)); |
| Rtp : constant Entity_Id := Root_Type (Etype (E1)); |
| |
| begin |
| Expand_Fpt_Attribute |
| (N, Rtp, Attribute_Name (N), |
| New_List (Unchecked_Convert_To (Rtp, Relocate_Node (E1)))); |
| end Expand_Fpt_Attribute_R; |
| |
| ----------------------------- |
| -- Expand_Fpt_Attribute_RI -- |
| ----------------------------- |
| |
| -- The first argument is converted to its root type and the second |
| -- argument is converted to standard long long integer to call the |
| -- appropriate runtime function, with the actual call being built |
| -- by Expand_Fpt_Attribute |
| |
| procedure Expand_Fpt_Attribute_RI (N : Node_Id) is |
| E1 : constant Node_Id := First (Expressions (N)); |
| Rtp : constant Entity_Id := Root_Type (Etype (E1)); |
| E2 : constant Node_Id := Next (E1); |
| |
| begin |
| Expand_Fpt_Attribute |
| (N, Rtp, Attribute_Name (N), |
| New_List ( |
| Unchecked_Convert_To (Rtp, Relocate_Node (E1)), |
| Unchecked_Convert_To (Standard_Integer, Relocate_Node (E2)))); |
| end Expand_Fpt_Attribute_RI; |
| |
| ----------------------------- |
| -- Expand_Fpt_Attribute_RR -- |
| ----------------------------- |
| |
| -- The two arguments is converted to their root types to call the |
| -- appropriate runtime function, with the actual call being built |
| -- by Expand_Fpt_Attribute |
| |
| procedure Expand_Fpt_Attribute_RR (N : Node_Id) is |
| E1 : constant Node_Id := First (Expressions (N)); |
| Rtp : constant Entity_Id := Root_Type (Etype (E1)); |
| E2 : constant Node_Id := Next (E1); |
| |
| begin |
| Expand_Fpt_Attribute |
| (N, Rtp, Attribute_Name (N), |
| New_List ( |
| Unchecked_Convert_To (Rtp, Relocate_Node (E1)), |
| Unchecked_Convert_To (Rtp, Relocate_Node (E2)))); |
| end Expand_Fpt_Attribute_RR; |
| |
| ---------------------------------- |
| -- Expand_N_Attribute_Reference -- |
| ---------------------------------- |
| |
| procedure Expand_N_Attribute_Reference (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| Typ : constant Entity_Id := Etype (N); |
| Btyp : constant Entity_Id := Base_Type (Typ); |
| Pref : constant Node_Id := Prefix (N); |
| Exprs : constant List_Id := Expressions (N); |
| Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N)); |
| |
| procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id); |
| -- Rewrites a stream attribute for Read, Write or Output with the |
| -- procedure call. Pname is the entity for the procedure to call. |
| |
| ------------------------------ |
| -- Rewrite_Stream_Proc_Call -- |
| ------------------------------ |
| |
| procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id) is |
| Item : constant Node_Id := Next (First (Exprs)); |
| Formal : constant Entity_Id := Next_Formal (First_Formal (Pname)); |
| Formal_Typ : constant Entity_Id := Etype (Formal); |
| Is_Written : constant Boolean := (Ekind (Formal) /= E_In_Parameter); |
| |
| begin |
| -- The expansion depends on Item, the second actual, which is |
| -- the object being streamed in or out. |
| |
| -- If the item is a component of a packed array type, and |
| -- a conversion is needed on exit, we introduce a temporary to |
| -- hold the value, because otherwise the packed reference will |
| -- not be properly expanded. |
| |
| if Nkind (Item) = N_Indexed_Component |
| and then Is_Packed (Base_Type (Etype (Prefix (Item)))) |
| and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ) |
| and then Is_Written |
| then |
| declare |
| Temp : constant Entity_Id := |
| Make_Defining_Identifier |
| (Loc, New_Internal_Name ('V')); |
| Decl : Node_Id; |
| Assn : Node_Id; |
| |
| begin |
| Decl := |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Temp, |
| Object_Definition => |
| New_Occurrence_Of (Formal_Typ, Loc)); |
| Set_Etype (Temp, Formal_Typ); |
| |
| Assn := |
| Make_Assignment_Statement (Loc, |
| Name => New_Copy_Tree (Item), |
| Expression => |
| Unchecked_Convert_To |
| (Etype (Item), New_Occurrence_Of (Temp, Loc))); |
| |
| Rewrite (Item, New_Occurrence_Of (Temp, Loc)); |
| Insert_Actions (N, |
| New_List ( |
| Decl, |
| Make_Procedure_Call_Statement (Loc, |
| Name => New_Occurrence_Of (Pname, Loc), |
| Parameter_Associations => Exprs), |
| Assn)); |
| |
| Rewrite (N, Make_Null_Statement (Loc)); |
| return; |
| end; |
| end if; |
| |
| -- For the class-wide dispatching cases, and for cases in which |
| -- the base type of the second argument matches the base type of |
| -- the corresponding formal parameter (that is to say the stream |
| -- operation is not inherited), we are all set, and can use the |
| -- argument unchanged. |
| |
| -- For all other cases we do an unchecked conversion of the second |
| -- parameter to the type of the formal of the procedure we are |
| -- calling. This deals with the private type cases, and with going |
| -- to the root type as required in elementary type case. |
| |
| if not Is_Class_Wide_Type (Entity (Pref)) |
| and then not Is_Class_Wide_Type (Etype (Item)) |
| and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ) |
| then |
| Rewrite (Item, |
| Unchecked_Convert_To (Formal_Typ, Relocate_Node (Item))); |
| |
| -- For untagged derived types set Assignment_OK, to prevent |
| -- copies from being created when the unchecked conversion |
| -- is expanded (which would happen in Remove_Side_Effects |
| -- if Expand_N_Unchecked_Conversion were allowed to call |
| -- Force_Evaluation). The copy could violate Ada semantics |
| -- in cases such as an actual that is an out parameter. |
| -- Note that this approach is also used in exp_ch7 for calls |
| -- to controlled type operations to prevent problems with |
| -- actuals wrapped in unchecked conversions. |
| |
| if Is_Untagged_Derivation (Etype (Expression (Item))) then |
| Set_Assignment_OK (Item); |
| end if; |
| end if; |
| |
| -- And now rewrite the call |
| |
| Rewrite (N, |
| Make_Procedure_Call_Statement (Loc, |
| Name => New_Occurrence_Of (Pname, Loc), |
| Parameter_Associations => Exprs)); |
| |
| Analyze (N); |
| end Rewrite_Stream_Proc_Call; |
| |
| -- Start of processing for Expand_N_Attribute_Reference |
| |
| begin |
| -- Do required validity checking |
| |
| if Validity_Checks_On and Validity_Check_Operands then |
| declare |
| Expr : Node_Id; |
| |
| begin |
| Expr := First (Expressions (N)); |
| while Present (Expr) loop |
| Ensure_Valid (Expr); |
| Next (Expr); |
| end loop; |
| end; |
| end if; |
| |
| -- Remaining processing depends on specific attribute |
| |
| case Id is |
| |
| ------------ |
| -- Access -- |
| ------------ |
| |
| when Attribute_Access => |
| |
| if Ekind (Btyp) = E_Access_Protected_Subprogram_Type then |
| |
| -- The value of the attribute_reference is a record containing |
| -- two fields: an access to the protected object, and an access |
| -- to the subprogram itself. The prefix is a selected component. |
| |
| declare |
| Agg : Node_Id; |
| Sub : Entity_Id; |
| E_T : constant Entity_Id := Equivalent_Type (Btyp); |
| Acc : constant Entity_Id := |
| Etype (Next_Component (First_Component (E_T))); |
| Obj_Ref : Node_Id; |
| Curr : Entity_Id; |
| |
| begin |
| -- Within the body of the protected type, the prefix |
| -- designates a local operation, and the object is the first |
| -- parameter of the corresponding protected body of the |
| -- current enclosing operation. |
| |
| if Is_Entity_Name (Pref) then |
| pragma Assert (In_Open_Scopes (Scope (Entity (Pref)))); |
| Sub := |
| New_Occurrence_Of |
| (Protected_Body_Subprogram (Entity (Pref)), Loc); |
| Curr := Current_Scope; |
| |
| while Scope (Curr) /= Scope (Entity (Pref)) loop |
| Curr := Scope (Curr); |
| end loop; |
| |
| Obj_Ref := |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| New_Occurrence_Of |
| (First_Formal |
| (Protected_Body_Subprogram (Curr)), Loc), |
| Attribute_Name => Name_Address); |
| |
| -- Case where the prefix is not an entity name. Find the |
| -- version of the protected operation to be called from |
| -- outside the protected object. |
| |
| else |
| Sub := |
| New_Occurrence_Of |
| (External_Subprogram |
| (Entity (Selector_Name (Pref))), Loc); |
| |
| Obj_Ref := |
| Make_Attribute_Reference (Loc, |
| Prefix => Relocate_Node (Prefix (Pref)), |
| Attribute_Name => Name_Address); |
| end if; |
| |
| Agg := |
| Make_Aggregate (Loc, |
| Expressions => |
| New_List ( |
| Obj_Ref, |
| Unchecked_Convert_To (Acc, |
| Make_Attribute_Reference (Loc, |
| Prefix => Sub, |
| Attribute_Name => Name_Address)))); |
| |
| Rewrite (N, Agg); |
| |
| Analyze_And_Resolve (N, E_T); |
| |
| -- For subsequent analysis, the node must retain its type. |
| -- The backend will replace it with the equivalent type where |
| -- needed. |
| |
| Set_Etype (N, Typ); |
| end; |
| |
| elsif Ekind (Btyp) = E_General_Access_Type then |
| declare |
| Ref_Object : constant Node_Id := Get_Referenced_Object (Pref); |
| Parm_Ent : Entity_Id; |
| Conversion : Node_Id; |
| |
| begin |
| -- If the prefix of an Access attribute is a dereference of an |
| -- access parameter (or a renaming of such a dereference) and |
| -- the context is a general access type (but not an anonymous |
| -- access type), then rewrite the attribute as a conversion of |
| -- the access parameter to the context access type. This will |
| -- result in an accessibility check being performed, if needed. |
| |
| -- (X.all'Access => Acc_Type (X)) |
| |
| if Nkind (Ref_Object) = N_Explicit_Dereference |
| and then Is_Entity_Name (Prefix (Ref_Object)) |
| then |
| Parm_Ent := Entity (Prefix (Ref_Object)); |
| |
| if Ekind (Parm_Ent) in Formal_Kind |
| and then Ekind (Etype (Parm_Ent)) = E_Anonymous_Access_Type |
| and then Present (Extra_Accessibility (Parm_Ent)) |
| then |
| Conversion := |
| Convert_To (Typ, New_Copy_Tree (Prefix (Ref_Object))); |
| |
| Rewrite (N, Conversion); |
| Analyze_And_Resolve (N, Typ); |
| end if; |
| end if; |
| end; |
| |
| -- If the prefix is a type name, this is a reference to the current |
| -- instance of the type, within its initialization procedure. |
| |
| else |
| Expand_Access_To_Type (N); |
| end if; |
| |
| -------------- |
| -- Adjacent -- |
| -------------- |
| |
| -- Transforms 'Adjacent into a call to the floating-point attribute |
| -- function Adjacent in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Adjacent => |
| Expand_Fpt_Attribute_RR (N); |
| |
| ------------- |
| -- Address -- |
| ------------- |
| |
| when Attribute_Address => Address : declare |
| Task_Proc : Entity_Id; |
| |
| begin |
| -- If the prefix is a task or a task type, the useful address |
| -- is that of the procedure for the task body, i.e. the actual |
| -- program unit. We replace the original entity with that of |
| -- the procedure. |
| |
| if Is_Entity_Name (Pref) |
| and then Is_Task_Type (Entity (Pref)) |
| then |
| Task_Proc := Next_Entity (Root_Type (Etype (Pref))); |
| |
| while Present (Task_Proc) loop |
| exit when Ekind (Task_Proc) = E_Procedure |
| and then Etype (First_Formal (Task_Proc)) = |
| Corresponding_Record_Type (Etype (Pref)); |
| Next_Entity (Task_Proc); |
| end loop; |
| |
| if Present (Task_Proc) then |
| Set_Entity (Pref, Task_Proc); |
| Set_Etype (Pref, Etype (Task_Proc)); |
| end if; |
| |
| -- Similarly, the address of a protected operation is the address |
| -- of the corresponding protected body, regardless of the protected |
| -- object from which it is selected. |
| |
| elsif Nkind (Pref) = N_Selected_Component |
| and then Is_Subprogram (Entity (Selector_Name (Pref))) |
| and then Is_Protected_Type (Scope (Entity (Selector_Name (Pref)))) |
| then |
| Rewrite (Pref, |
| New_Occurrence_Of ( |
| External_Subprogram (Entity (Selector_Name (Pref))), Loc)); |
| |
| elsif Nkind (Pref) = N_Explicit_Dereference |
| and then Ekind (Etype (Pref)) = E_Subprogram_Type |
| and then Convention (Etype (Pref)) = Convention_Protected |
| then |
| -- The prefix is be a dereference of an access_to_protected_ |
| -- subprogram. The desired address is the second component of |
| -- the record that represents the access. |
| |
| declare |
| Addr : constant Entity_Id := Etype (N); |
| Ptr : constant Node_Id := Prefix (Pref); |
| T : constant Entity_Id := |
| Equivalent_Type (Base_Type (Etype (Ptr))); |
| |
| begin |
| Rewrite (N, |
| Unchecked_Convert_To (Addr, |
| Make_Selected_Component (Loc, |
| Prefix => Unchecked_Convert_To (T, Ptr), |
| Selector_Name => New_Occurrence_Of ( |
| Next_Entity (First_Entity (T)), Loc)))); |
| |
| Analyze_And_Resolve (N, Addr); |
| end; |
| end if; |
| |
| -- Deal with packed array reference, other cases are handled by gigi |
| |
| if Involves_Packed_Array_Reference (Pref) then |
| Expand_Packed_Address_Reference (N); |
| end if; |
| end Address; |
| |
| --------------- |
| -- Alignment -- |
| --------------- |
| |
| when Attribute_Alignment => Alignment : declare |
| Ptyp : constant Entity_Id := Etype (Pref); |
| New_Node : Node_Id; |
| |
| begin |
| -- For class-wide types, X'Class'Alignment is transformed into a |
| -- direct reference to the Alignment of the class type, so that the |
| -- back end does not have to deal with the X'Class'Alignment |
| -- reference. |
| |
| if Is_Entity_Name (Pref) |
| and then Is_Class_Wide_Type (Entity (Pref)) |
| then |
| Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc)); |
| return; |
| |
| -- For x'Alignment applied to an object of a class wide type, |
| -- transform X'Alignment into a call to the predefined primitive |
| -- operation _Alignment applied to X. |
| |
| elsif Is_Class_Wide_Type (Ptyp) then |
| New_Node := |
| Make_Function_Call (Loc, |
| Name => New_Reference_To |
| (Find_Prim_Op (Ptyp, Name_uAlignment), Loc), |
| Parameter_Associations => New_List (Pref)); |
| |
| if Typ /= Standard_Integer then |
| |
| -- The context is a specific integer type with which the |
| -- original attribute was compatible. The function has a |
| -- specific type as well, so to preserve the compatibility |
| -- we must convert explicitly. |
| |
| New_Node := Convert_To (Typ, New_Node); |
| end if; |
| |
| Rewrite (N, New_Node); |
| Analyze_And_Resolve (N, Typ); |
| return; |
| |
| -- For all other cases, we just have to deal with the case of |
| -- the fact that the result can be universal. |
| |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| end if; |
| end Alignment; |
| |
| --------------- |
| -- AST_Entry -- |
| --------------- |
| |
| when Attribute_AST_Entry => AST_Entry : declare |
| Ttyp : Entity_Id; |
| T_Id : Node_Id; |
| Eent : Entity_Id; |
| |
| Entry_Ref : Node_Id; |
| -- The reference to the entry or entry family |
| |
| Index : Node_Id; |
| -- The index expression for an entry family reference, or |
| -- the Empty if Entry_Ref references a simple entry. |
| |
| begin |
| if Nkind (Pref) = N_Indexed_Component then |
| Entry_Ref := Prefix (Pref); |
| Index := First (Expressions (Pref)); |
| else |
| Entry_Ref := Pref; |
| Index := Empty; |
| end if; |
| |
| -- Get expression for Task_Id and the entry entity |
| |
| if Nkind (Entry_Ref) = N_Selected_Component then |
| T_Id := |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Identity, |
| Prefix => Prefix (Entry_Ref)); |
| |
| Ttyp := Etype (Prefix (Entry_Ref)); |
| Eent := Entity (Selector_Name (Entry_Ref)); |
| |
| else |
| T_Id := |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (RE_Current_Task), Loc)); |
| |
| Eent := Entity (Entry_Ref); |
| |
| -- We have to find the enclosing task to get the task type |
| -- There must be one, since we already validated this earlier |
| |
| Ttyp := Current_Scope; |
| while not Is_Task_Type (Ttyp) loop |
| Ttyp := Scope (Ttyp); |
| end loop; |
| end if; |
| |
| -- Now rewrite the attribute with a call to Create_AST_Handler |
| |
| Rewrite (N, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (RE_Create_AST_Handler), Loc), |
| Parameter_Associations => New_List ( |
| T_Id, |
| Entry_Index_Expression (Loc, Eent, Index, Ttyp)))); |
| |
| Analyze_And_Resolve (N, RTE (RE_AST_Handler)); |
| end AST_Entry; |
| |
| ------------------ |
| -- Bit_Position -- |
| ------------------ |
| |
| -- We compute this if a component clause was present, otherwise |
| -- we leave the computation up to Gigi, since we don't know what |
| -- layout will be chosen. |
| |
| -- Note that the attribute can apply to a naked record component |
| -- in generated code (i.e. the prefix is an identifier that |
| -- references the component or discriminant entity). |
| |
| when Attribute_Bit_Position => Bit_Position : |
| declare |
| CE : Entity_Id; |
| |
| begin |
| if Nkind (Pref) = N_Identifier then |
| CE := Entity (Pref); |
| else |
| CE := Entity (Selector_Name (Pref)); |
| end if; |
| |
| if Known_Static_Component_Bit_Offset (CE) then |
| Rewrite (N, |
| Make_Integer_Literal (Loc, |
| Intval => Component_Bit_Offset (CE))); |
| Analyze_And_Resolve (N, Typ); |
| |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| end if; |
| end Bit_Position; |
| |
| ------------------ |
| -- Body_Version -- |
| ------------------ |
| |
| -- A reference to P'Body_Version or P'Version is expanded to |
| |
| -- Vnn : Unsigned; |
| -- pragma Import (C, Vnn, "uuuuT"; |
| -- ... |
| -- Get_Version_String (Vnn) |
| |
| -- where uuuu is the unit name (dots replaced by double underscore) |
| -- and T is B for the cases of Body_Version, or Version applied to a |
| -- subprogram acting as its own spec, and S for Version applied to a |
| -- subprogram spec or package. This sequence of code references the |
| -- the unsigned constant created in the main program by the binder. |
| |
| -- A special exception occurs for Standard, where the string |
| -- returned is a copy of the library string in gnatvsn.ads. |
| |
| when Attribute_Body_Version | Attribute_Version => Version : declare |
| E : constant Entity_Id := |
| Make_Defining_Identifier (Loc, New_Internal_Name ('V')); |
| Pent : Entity_Id := Entity (Pref); |
| S : String_Id; |
| |
| begin |
| -- If not library unit, get to containing library unit |
| |
| while Pent /= Standard_Standard |
| and then Scope (Pent) /= Standard_Standard |
| loop |
| Pent := Scope (Pent); |
| end loop; |
| |
| -- Special case Standard |
| |
| if Pent = Standard_Standard |
| or else Pent = Standard_ASCII |
| then |
| Name_Buffer (1 .. Verbose_Library_Version'Length) := |
| Verbose_Library_Version; |
| Name_Len := Verbose_Library_Version'Length; |
| Rewrite (N, |
| Make_String_Literal (Loc, |
| Strval => String_From_Name_Buffer)); |
| |
| -- All other cases |
| |
| else |
| -- Build required string constant |
| |
| Get_Name_String (Get_Unit_Name (Pent)); |
| |
| Start_String; |
| for J in 1 .. Name_Len - 2 loop |
| if Name_Buffer (J) = '.' then |
| Store_String_Chars ("__"); |
| else |
| Store_String_Char (Get_Char_Code (Name_Buffer (J))); |
| end if; |
| end loop; |
| |
| -- Case of subprogram acting as its own spec, always use body |
| |
| if Nkind (Declaration_Node (Pent)) in N_Subprogram_Specification |
| and then Nkind (Parent (Declaration_Node (Pent))) = |
| N_Subprogram_Body |
| and then Acts_As_Spec (Parent (Declaration_Node (Pent))) |
| then |
| Store_String_Chars ("B"); |
| |
| -- Case of no body present, always use spec |
| |
| elsif not Unit_Requires_Body (Pent) then |
| Store_String_Chars ("S"); |
| |
| -- Otherwise use B for Body_Version, S for spec |
| |
| elsif Id = Attribute_Body_Version then |
| Store_String_Chars ("B"); |
| else |
| Store_String_Chars ("S"); |
| end if; |
| |
| S := End_String; |
| Lib.Version_Referenced (S); |
| |
| -- Insert the object declaration |
| |
| Insert_Actions (N, New_List ( |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => E, |
| Object_Definition => |
| New_Occurrence_Of (RTE (RE_Unsigned), Loc)))); |
| |
| -- Set entity as imported with correct external name |
| |
| Set_Is_Imported (E); |
| Set_Interface_Name (E, Make_String_Literal (Loc, S)); |
| |
| -- And now rewrite original reference |
| |
| Rewrite (N, |
| Make_Function_Call (Loc, |
| Name => New_Reference_To (RTE (RE_Get_Version_String), Loc), |
| Parameter_Associations => New_List ( |
| New_Occurrence_Of (E, Loc)))); |
| end if; |
| |
| Analyze_And_Resolve (N, RTE (RE_Version_String)); |
| end Version; |
| |
| ------------- |
| -- Ceiling -- |
| ------------- |
| |
| -- Transforms 'Ceiling into a call to the floating-point attribute |
| -- function Ceiling in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Ceiling => |
| Expand_Fpt_Attribute_R (N); |
| |
| -------------- |
| -- Callable -- |
| -------------- |
| |
| -- Transforms 'Callable attribute into a call to the Callable function. |
| |
| when Attribute_Callable => Callable : |
| begin |
| Rewrite (N, |
| Build_Call_With_Task (Pref, RTE (RE_Callable))); |
| Analyze_And_Resolve (N, Standard_Boolean); |
| end Callable; |
| |
| ------------ |
| -- Caller -- |
| ------------ |
| |
| -- Transforms 'Caller attribute into a call to either the |
| -- Task_Entry_Caller or the Protected_Entry_Caller function. |
| |
| when Attribute_Caller => Caller : declare |
| Id_Kind : constant Entity_Id := RTE (RO_AT_Task_ID); |
| Ent : constant Entity_Id := Entity (Pref); |
| Conctype : constant Entity_Id := Scope (Ent); |
| Nest_Depth : Integer := 0; |
| Name : Node_Id; |
| S : Entity_Id; |
| |
| begin |
| -- Protected case |
| |
| if Is_Protected_Type (Conctype) then |
| if Abort_Allowed |
| or else Restrictions (No_Entry_Queue) = False |
| or else Number_Entries (Conctype) > 1 |
| then |
| Name := |
| New_Reference_To |
| (RTE (RE_Protected_Entry_Caller), Loc); |
| else |
| Name := |
| New_Reference_To |
| (RTE (RE_Protected_Single_Entry_Caller), Loc); |
| end if; |
| |
| Rewrite (N, |
| Unchecked_Convert_To (Id_Kind, |
| Make_Function_Call (Loc, |
| Name => Name, |
| Parameter_Associations => New_List |
| (New_Reference_To ( |
| Object_Ref |
| (Corresponding_Body (Parent (Conctype))), Loc))))); |
| |
| -- Task case |
| |
| else |
| -- Determine the nesting depth of the E'Caller attribute, that |
| -- is, how many accept statements are nested within the accept |
| -- statement for E at the point of E'Caller. The runtime uses |
| -- this depth to find the specified entry call. |
| |
| for J in reverse 0 .. Scope_Stack.Last loop |
| S := Scope_Stack.Table (J).Entity; |
| |
| -- We should not reach the scope of the entry, as it should |
| -- already have been checked in Sem_Attr that this attribute |
| -- reference is within a matching accept statement. |
| |
| pragma Assert (S /= Conctype); |
| |
| if S = Ent then |
| exit; |
| |
| elsif Is_Entry (S) then |
| Nest_Depth := Nest_Depth + 1; |
| end if; |
| end loop; |
| |
| Rewrite (N, |
| Unchecked_Convert_To (Id_Kind, |
| Make_Function_Call (Loc, |
| Name => New_Reference_To ( |
| RTE (RE_Task_Entry_Caller), Loc), |
| Parameter_Associations => New_List ( |
| Make_Integer_Literal (Loc, |
| Intval => Int (Nest_Depth)))))); |
| end if; |
| |
| Analyze_And_Resolve (N, Id_Kind); |
| end Caller; |
| |
| ------------- |
| -- Compose -- |
| ------------- |
| |
| -- Transforms 'Compose into a call to the floating-point attribute |
| -- function Compose in Fat_xxx (where xxx is the root type) |
| |
| -- Note: we strictly should have special code here to deal with the |
| -- case of absurdly negative arguments (less than Integer'First) |
| -- which will return a (signed) zero value, but it hardly seems |
| -- worth the effort. Absurdly large positive arguments will raise |
| -- constraint error which is fine. |
| |
| when Attribute_Compose => |
| Expand_Fpt_Attribute_RI (N); |
| |
| ----------------- |
| -- Constrained -- |
| ----------------- |
| |
| when Attribute_Constrained => Constrained : declare |
| Formal_Ent : constant Entity_Id := Param_Entity (Pref); |
| |
| begin |
| -- Reference to a parameter where the value is passed as an extra |
| -- actual, corresponding to the extra formal referenced by the |
| -- Extra_Constrained field of the corresponding formal. If this |
| -- is an entry in-parameter, it is replaced by a constant renaming |
| -- for which Extra_Constrained is never created. |
| |
| if Present (Formal_Ent) |
| and then Ekind (Formal_Ent) /= E_Constant |
| and then Present (Extra_Constrained (Formal_Ent)) |
| then |
| Rewrite (N, |
| New_Occurrence_Of |
| (Extra_Constrained (Formal_Ent), Sloc (N))); |
| |
| -- For variables with a Extra_Constrained field, we use the |
| -- corresponding entity. |
| |
| elsif Nkind (Pref) = N_Identifier |
| and then Ekind (Entity (Pref)) = E_Variable |
| and then Present (Extra_Constrained (Entity (Pref))) |
| then |
| Rewrite (N, |
| New_Occurrence_Of |
| (Extra_Constrained (Entity (Pref)), Sloc (N))); |
| |
| -- For all other entity names, we can tell at compile time |
| |
| elsif Is_Entity_Name (Pref) then |
| declare |
| Ent : constant Entity_Id := Entity (Pref); |
| Res : Boolean; |
| |
| begin |
| -- (RM J.4) obsolescent cases |
| |
| if Is_Type (Ent) then |
| |
| -- Private type |
| |
| if Is_Private_Type (Ent) then |
| Res := not Has_Discriminants (Ent) |
| or else Is_Constrained (Ent); |
| |
| -- It not a private type, must be a generic actual type |
| -- that corresponded to a private type. We know that this |
| -- correspondence holds, since otherwise the reference |
| -- within the generic template would have been illegal. |
| |
| else |
| if Is_Composite_Type (Underlying_Type (Ent)) then |
| Res := Is_Constrained (Ent); |
| else |
| Res := True; |
| end if; |
| end if; |
| |
| -- If the prefix is not a variable or is aliased, then |
| -- definitely true; if it's a formal parameter without |
| -- an associated extra formal, then treat it as constrained. |
| |
| elsif not Is_Variable (Pref) |
| or else Present (Formal_Ent) |
| or else Is_Aliased_View (Pref) |
| then |
| Res := True; |
| |
| -- Variable case, just look at type to see if it is |
| -- constrained. Note that the one case where this is |
| -- not accurate (the procedure formal case), has been |
| -- handled above. |
| |
| else |
| Res := Is_Constrained (Etype (Ent)); |
| end if; |
| |
| if Res then |
| Rewrite (N, |
| New_Reference_To (Standard_True, Loc)); |
| else |
| Rewrite (N, |
| New_Reference_To (Standard_False, Loc)); |
| end if; |
| end; |
| |
| -- Prefix is not an entity name. These are also cases where |
| -- we can always tell at compile time by looking at the form |
| -- and type of the prefix. |
| |
| else |
| if not Is_Variable (Pref) |
| or else Nkind (Pref) = N_Explicit_Dereference |
| or else Is_Constrained (Etype (Pref)) |
| then |
| Rewrite (N, |
| New_Reference_To (Standard_True, Loc)); |
| else |
| Rewrite (N, |
| New_Reference_To (Standard_False, Loc)); |
| end if; |
| end if; |
| |
| Analyze_And_Resolve (N, Standard_Boolean); |
| end Constrained; |
| |
| --------------- |
| -- Copy_Sign -- |
| --------------- |
| |
| -- Transforms 'Copy_Sign into a call to the floating-point attribute |
| -- function Copy_Sign in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Copy_Sign => |
| Expand_Fpt_Attribute_RR (N); |
| |
| ----------- |
| -- Count -- |
| ----------- |
| |
| -- Transforms 'Count attribute into a call to the Count function |
| |
| when Attribute_Count => Count : |
| declare |
| Entnam : Node_Id; |
| Index : Node_Id; |
| Name : Node_Id; |
| Call : Node_Id; |
| Conctyp : Entity_Id; |
| |
| begin |
| -- If the prefix is a member of an entry family, retrieve both |
| -- entry name and index. For a simple entry there is no index. |
| |
| if Nkind (Pref) = N_Indexed_Component then |
| Entnam := Prefix (Pref); |
| Index := First (Expressions (Pref)); |
| else |
| Entnam := Pref; |
| Index := Empty; |
| end if; |
| |
| -- Find the concurrent type in which this attribute is referenced |
| -- (there had better be one). |
| |
| Conctyp := Current_Scope; |
| while not Is_Concurrent_Type (Conctyp) loop |
| Conctyp := Scope (Conctyp); |
| end loop; |
| |
| -- Protected case |
| |
| if Is_Protected_Type (Conctyp) then |
| |
| if Abort_Allowed |
| or else Restrictions (No_Entry_Queue) = False |
| or else Number_Entries (Conctyp) > 1 |
| then |
| Name := New_Reference_To (RTE (RE_Protected_Count), Loc); |
| |
| Call := |
| Make_Function_Call (Loc, |
| Name => Name, |
| Parameter_Associations => New_List ( |
| New_Reference_To ( |
| Object_Ref ( |
| Corresponding_Body (Parent (Conctyp))), Loc), |
| Entry_Index_Expression ( |
| Loc, Entity (Entnam), Index, Scope (Entity (Entnam))))); |
| else |
| Name := New_Reference_To (RTE (RE_Protected_Count_Entry), Loc); |
| |
| Call := Make_Function_Call (Loc, |
| Name => Name, |
| Parameter_Associations => New_List ( |
| New_Reference_To ( |
| Object_Ref ( |
| Corresponding_Body (Parent (Conctyp))), Loc))); |
| end if; |
| |
| -- Task case |
| |
| else |
| Call := |
| Make_Function_Call (Loc, |
| Name => New_Reference_To (RTE (RE_Task_Count), Loc), |
| Parameter_Associations => New_List ( |
| Entry_Index_Expression |
| (Loc, Entity (Entnam), Index, Scope (Entity (Entnam))))); |
| end if; |
| |
| -- The call returns type Natural but the context is universal integer |
| -- so any integer type is allowed. The attribute was already resolved |
| -- so its Etype is the required result type. If the base type of the |
| -- context type is other than Standard.Integer we put in a conversion |
| -- to the required type. This can be a normal typed conversion since |
| -- both input and output types of the conversion are integer types |
| |
| if Base_Type (Typ) /= Base_Type (Standard_Integer) then |
| Rewrite (N, Convert_To (Typ, Call)); |
| else |
| Rewrite (N, Call); |
| end if; |
| |
| Analyze_And_Resolve (N, Typ); |
| end Count; |
| |
| --------------- |
| -- Elab_Body -- |
| --------------- |
| |
| -- This processing is shared by Elab_Spec |
| |
| -- What we do is to insert the following declarations |
| |
| -- procedure tnn; |
| -- pragma Import (C, enn, "name___elabb/s"); |
| |
| -- and then the Elab_Body/Spec attribute is replaced by a reference |
| -- to this defining identifier. |
| |
| when Attribute_Elab_Body | |
| Attribute_Elab_Spec => |
| |
| Elab_Body : declare |
| Ent : constant Entity_Id := |
| Make_Defining_Identifier (Loc, |
| New_Internal_Name ('E')); |
| Str : String_Id; |
| Lang : Node_Id; |
| |
| procedure Make_Elab_String (Nod : Node_Id); |
| -- Given Nod, an identifier, or a selected component, put the |
| -- image into the current string literal, with double underline |
| -- between components. |
| |
| procedure Make_Elab_String (Nod : Node_Id) is |
| begin |
| if Nkind (Nod) = N_Selected_Component then |
| Make_Elab_String (Prefix (Nod)); |
| if Java_VM then |
| Store_String_Char ('$'); |
| else |
| Store_String_Char ('_'); |
| Store_String_Char ('_'); |
| end if; |
| |
| Get_Name_String (Chars (Selector_Name (Nod))); |
| |
| else |
| pragma Assert (Nkind (Nod) = N_Identifier); |
| Get_Name_String (Chars (Nod)); |
| end if; |
| |
| Store_String_Chars (Name_Buffer (1 .. Name_Len)); |
| end Make_Elab_String; |
| |
| -- Start of processing for Elab_Body/Elab_Spec |
| |
| begin |
| -- First we need to prepare the string literal for the name of |
| -- the elaboration routine to be referenced. |
| |
| Start_String; |
| Make_Elab_String (Pref); |
| |
| if Java_VM then |
| Store_String_Chars ("._elab"); |
| Lang := Make_Identifier (Loc, Name_Ada); |
| else |
| Store_String_Chars ("___elab"); |
| Lang := Make_Identifier (Loc, Name_C); |
| end if; |
| |
| if Id = Attribute_Elab_Body then |
| Store_String_Char ('b'); |
| else |
| Store_String_Char ('s'); |
| end if; |
| |
| Str := End_String; |
| |
| Insert_Actions (N, New_List ( |
| Make_Subprogram_Declaration (Loc, |
| Specification => |
| Make_Procedure_Specification (Loc, |
| Defining_Unit_Name => Ent)), |
| |
| Make_Pragma (Loc, |
| Chars => Name_Import, |
| Pragma_Argument_Associations => New_List ( |
| Make_Pragma_Argument_Association (Loc, |
| Expression => Lang), |
| |
| Make_Pragma_Argument_Association (Loc, |
| Expression => |
| Make_Identifier (Loc, Chars (Ent))), |
| |
| Make_Pragma_Argument_Association (Loc, |
| Expression => |
| Make_String_Literal (Loc, Str)))))); |
| |
| Set_Entity (N, Ent); |
| Rewrite (N, New_Occurrence_Of (Ent, Loc)); |
| end Elab_Body; |
| |
| ---------------- |
| -- Elaborated -- |
| ---------------- |
| |
| -- Elaborated is always True for preelaborated units, predefined |
| -- units, pure units and units which have Elaborate_Body pragmas. |
| -- These units have no elaboration entity. |
| |
| -- Note: The Elaborated attribute is never passed through to Gigi |
| |
| when Attribute_Elaborated => Elaborated : declare |
| Ent : constant Entity_Id := Entity (Pref); |
| |
| begin |
| if Present (Elaboration_Entity (Ent)) then |
| Rewrite (N, |
| New_Occurrence_Of (Elaboration_Entity (Ent), Loc)); |
| else |
| Rewrite (N, New_Occurrence_Of (Standard_True, Loc)); |
| end if; |
| end Elaborated; |
| |
| -------------- |
| -- Enum_Rep -- |
| -------------- |
| |
| when Attribute_Enum_Rep => Enum_Rep : |
| begin |
| -- X'Enum_Rep (Y) expands to |
| |
| -- target-type (Y) |
| |
| -- This is simply a direct conversion from the enumeration type |
| -- to the target integer type, which is treated by Gigi as a normal |
| -- integer conversion, treating the enumeration type as an integer, |
| -- which is exactly what we want! We set Conversion_OK to make sure |
| -- that the analyzer does not complain about what otherwise might |
| -- be an illegal conversion. |
| |
| if Is_Non_Empty_List (Exprs) then |
| Rewrite (N, |
| OK_Convert_To (Typ, Relocate_Node (First (Exprs)))); |
| |
| -- X'Enum_Rep where X is an enumeration literal is replaced by |
| -- the literal value. |
| |
| elsif Ekind (Entity (Pref)) = E_Enumeration_Literal then |
| Rewrite (N, |
| Make_Integer_Literal (Loc, Enumeration_Rep (Entity (Pref)))); |
| |
| -- If this is a renaming of a literal, recover the representation |
| -- of the original. |
| |
| elsif Ekind (Entity (Pref)) = E_Constant |
| and then Present (Renamed_Object (Entity (Pref))) |
| and then |
| Ekind (Entity (Renamed_Object (Entity (Pref)))) |
| = E_Enumeration_Literal |
| then |
| Rewrite (N, |
| Make_Integer_Literal (Loc, |
| Enumeration_Rep (Entity (Renamed_Object (Entity (Pref)))))); |
| |
| -- X'Enum_Rep where X is an object does a direct unchecked conversion |
| -- of the object value, as described for the type case above. |
| |
| else |
| Rewrite (N, |
| OK_Convert_To (Typ, Relocate_Node (Pref))); |
| end if; |
| |
| Set_Etype (N, Typ); |
| Analyze_And_Resolve (N, Typ); |
| |
| end Enum_Rep; |
| |
| -------------- |
| -- Exponent -- |
| -------------- |
| |
| -- Transforms 'Exponent into a call to the floating-point attribute |
| -- function Exponent in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Exponent => |
| Expand_Fpt_Attribute_R (N); |
| |
| ------------------ |
| -- External_Tag -- |
| ------------------ |
| |
| -- transforme X'External_Tag into Ada.Tags.External_Tag (X'tag) |
| |
| when Attribute_External_Tag => External_Tag : |
| begin |
| Rewrite (N, |
| Make_Function_Call (Loc, |
| Name => New_Reference_To (RTE (RE_External_Tag), Loc), |
| Parameter_Associations => New_List ( |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Tag, |
| Prefix => Prefix (N))))); |
| |
| Analyze_And_Resolve (N, Standard_String); |
| end External_Tag; |
| |
| ----------- |
| -- First -- |
| ----------- |
| |
| when Attribute_First => declare |
| Ptyp : constant Entity_Id := Etype (Pref); |
| |
| begin |
| -- If the prefix type is a constrained packed array type which |
| -- already has a Packed_Array_Type representation defined, then |
| -- replace this attribute with a direct reference to 'First of the |
| -- appropriate index subtype (since otherwise Gigi will try to give |
| -- us the value of 'First for this implementation type). |
| |
| if Is_Constrained_Packed_Array (Ptyp) then |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_First, |
| Prefix => New_Reference_To (Get_Index_Subtype (N), Loc))); |
| Analyze_And_Resolve (N, Typ); |
| |
| elsif Is_Access_Type (Ptyp) then |
| Apply_Access_Check (N); |
| end if; |
| end; |
| |
| --------------- |
| -- First_Bit -- |
| --------------- |
| |
| -- We compute this if a component clause was present, otherwise |
| -- we leave the computation up to Gigi, since we don't know what |
| -- layout will be chosen. |
| |
| when Attribute_First_Bit => First_Bit : |
| declare |
| CE : constant Entity_Id := Entity (Selector_Name (Pref)); |
| |
| begin |
| if Known_Static_Component_Bit_Offset (CE) then |
| Rewrite (N, |
| Make_Integer_Literal (Loc, |
| Component_Bit_Offset (CE) mod System_Storage_Unit)); |
| |
| Analyze_And_Resolve (N, Typ); |
| |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| end if; |
| end First_Bit; |
| |
| ----------------- |
| -- Fixed_Value -- |
| ----------------- |
| |
| -- We transform: |
| |
| -- fixtype'Fixed_Value (integer-value) |
| |
| -- into |
| |
| -- fixtype(integer-value) |
| |
| -- we do all the required analysis of the conversion here, because |
| -- we do not want this to go through the fixed-point conversion |
| -- circuits. Note that gigi always treats fixed-point as equivalent |
| -- to the corresponding integer type anyway. |
| |
| when Attribute_Fixed_Value => Fixed_Value : |
| begin |
| Rewrite (N, |
| Make_Type_Conversion (Loc, |
| Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc), |
| Expression => Relocate_Node (First (Exprs)))); |
| Set_Etype (N, Entity (Pref)); |
| Set_Analyzed (N); |
| |
| -- Note: it might appear that a properly analyzed unchecked conversion |
| -- would be just fine here, but that's not the case, since the full |
| -- range checks performed by the following call are critical! |
| |
| Apply_Type_Conversion_Checks (N); |
| end Fixed_Value; |
| |
| ----------- |
| -- Floor -- |
| ----------- |
| |
| -- Transforms 'Floor into a call to the floating-point attribute |
| -- function Floor in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Floor => |
| Expand_Fpt_Attribute_R (N); |
| |
| ---------- |
| -- Fore -- |
| ---------- |
| |
| -- For the fixed-point type Typ: |
| |
| -- Typ'Fore |
| |
| -- expands into |
| |
| -- Result_Type (System.Fore (Long_Long_Float (Type'First)), |
| -- Long_Long_Float (Type'Last)) |
| |
| -- Note that we know that the type is a non-static subtype, or Fore |
| -- would have itself been computed dynamically in Eval_Attribute. |
| |
| when Attribute_Fore => Fore : |
| declare |
| Ptyp : constant Entity_Id := Etype (Pref); |
| |
| begin |
| Rewrite (N, |
| Convert_To (Typ, |
| Make_Function_Call (Loc, |
| Name => New_Reference_To (RTE (RE_Fore), Loc), |
| |
| Parameter_Associations => New_List ( |
| Convert_To (Standard_Long_Long_Float, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Reference_To (Ptyp, Loc), |
| Attribute_Name => Name_First)), |
| |
| Convert_To (Standard_Long_Long_Float, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Reference_To (Ptyp, Loc), |
| Attribute_Name => Name_Last)))))); |
| |
| Analyze_And_Resolve (N, Typ); |
| end Fore; |
| |
| -------------- |
| -- Fraction -- |
| -------------- |
| |
| -- Transforms 'Fraction into a call to the floating-point attribute |
| -- function Fraction in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Fraction => |
| Expand_Fpt_Attribute_R (N); |
| |
| -------------- |
| -- Identity -- |
| -------------- |
| |
| -- For an exception returns a reference to the exception data: |
| -- Exception_Id!(Prefix'Reference) |
| |
| -- For a task it returns a reference to the _task_id component of |
| -- corresponding record: |
| |
| -- taskV!(Prefix)._Task_Id, converted to the type Task_ID defined |
| |
| -- in Ada.Task_Identification. |
| |
| when Attribute_Identity => Identity : declare |
| Id_Kind : Entity_Id; |
| |
| begin |
| if Etype (Pref) = Standard_Exception_Type then |
| Id_Kind := RTE (RE_Exception_Id); |
| |
| if Present (Renamed_Object (Entity (Pref))) then |
| Set_Entity (Pref, Renamed_Object (Entity (Pref))); |
| end if; |
| |
| Rewrite (N, |
| Unchecked_Convert_To (Id_Kind, Make_Reference (Loc, Pref))); |
| else |
| Id_Kind := RTE (RO_AT_Task_ID); |
| |
| Rewrite (N, |
| Unchecked_Convert_To (Id_Kind, Concurrent_Ref (Pref))); |
| end if; |
| |
| Analyze_And_Resolve (N, Id_Kind); |
| end Identity; |
| |
| ----------- |
| -- Image -- |
| ----------- |
| |
| -- Image attribute is handled in separate unit Exp_Imgv |
| |
| when Attribute_Image => |
| Exp_Imgv.Expand_Image_Attribute (N); |
| |
| --------- |
| -- Img -- |
| --------- |
| |
| -- X'Img is expanded to typ'Image (X), where typ is the type of X |
| |
| when Attribute_Img => Img : |
| begin |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Reference_To (Etype (Pref), Loc), |
| Attribute_Name => Name_Image, |
| Expressions => New_List (Relocate_Node (Pref)))); |
| |
| Analyze_And_Resolve (N, Standard_String); |
| end Img; |
| |
| ----------- |
| -- Input -- |
| ----------- |
| |
| when Attribute_Input => Input : declare |
| P_Type : constant Entity_Id := Entity (Pref); |
| B_Type : constant Entity_Id := Base_Type (P_Type); |
| U_Type : constant Entity_Id := Underlying_Type (P_Type); |
| Strm : constant Node_Id := First (Exprs); |
| Fname : Entity_Id; |
| Decl : Node_Id; |
| Call : Node_Id; |
| Prag : Node_Id; |
| Arg2 : Node_Id; |
| Rfunc : Node_Id; |
| |
| Cntrl : Node_Id := Empty; |
| -- Value for controlling argument in call. Always Empty except in |
| -- the dispatching (class-wide type) case, where it is a reference |
| -- to the dummy object initialized to the right internal tag. |
| |
| begin |
| -- If no underlying type, we have an error that will be diagnosed |
| -- elsewhere, so here we just completely ignore the expansion. |
| |
| if No (U_Type) then |
| return; |
| end if; |
| |
| -- If there is a TSS for Input, just call it |
| |
| Fname := Find_Stream_Subprogram (P_Type, TSS_Stream_Input); |
| |
| if Present (Fname) then |
| null; |
| |
| else |
| -- If there is a Stream_Convert pragma, use it, we rewrite |
| |
| -- sourcetyp'Input (stream) |
| |
| -- as |
| |
| -- sourcetyp (streamread (strmtyp'Input (stream))); |
| |
| -- where stmrearead is the given Read function that converts |
| -- an argument of type strmtyp to type sourcetyp or a type |
| -- from which it is derived. The extra conversion is required |
| -- for the derived case. |
| |
| Prag := |
| Get_Rep_Pragma |
| (Implementation_Base_Type (P_Type), Name_Stream_Convert); |
| |
| if Present (Prag) then |
| Arg2 := Next (First (Pragma_Argument_Associations (Prag))); |
| Rfunc := Entity (Expression (Arg2)); |
| |
| Rewrite (N, |
| Convert_To (B_Type, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (Rfunc, Loc), |
| Parameter_Associations => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| New_Occurrence_Of |
| (Etype (First_Formal (Rfunc)), Loc), |
| Attribute_Name => Name_Input, |
| Expressions => Exprs))))); |
| |
| Analyze_And_Resolve (N, B_Type); |
| return; |
| |
| -- Elementary types |
| |
| elsif Is_Elementary_Type (U_Type) then |
| |
| -- A special case arises if we have a defined _Read routine, |
| -- since in this case we are required to call this routine. |
| |
| if Present (TSS (Base_Type (U_Type), TSS_Stream_Read)) then |
| Build_Record_Or_Elementary_Input_Function |
| (Loc, U_Type, Decl, Fname); |
| Insert_Action (N, Decl); |
| |
| -- For normal cases, we call the I_xxx routine directly |
| |
| else |
| Rewrite (N, Build_Elementary_Input_Call (N)); |
| Analyze_And_Resolve (N, P_Type); |
| return; |
| end if; |
| |
| -- Array type case |
| |
| elsif Is_Array_Type (U_Type) then |
| Build_Array_Input_Function (Loc, U_Type, Decl, Fname); |
| Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False); |
| |
| -- Dispatching case with class-wide type |
| |
| elsif Is_Class_Wide_Type (P_Type) then |
| |
| declare |
| Rtyp : constant Entity_Id := Root_Type (P_Type); |
| Dnn : Entity_Id; |
| Decl : Node_Id; |
| |
| begin |
| -- Read the internal tag (RM 13.13.2(34)) and use it to |
| -- initialize a dummy tag object: |
| |
| -- Dnn : Ada.Tags.Tag |
| -- := Internal_Tag (String'Input (Strm)); |
| |
| -- This dummy object is used only to provide a controlling |
| -- argument for the eventual _Input call. |
| |
| Dnn := |
| Make_Defining_Identifier (Loc, |
| Chars => New_Internal_Name ('D')); |
| |
| Decl := |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Dnn, |
| Object_Definition => |
| New_Occurrence_Of (RTE (RE_Tag), Loc), |
| Expression => |
| Make_Function_Call (Loc, |
| Name => |
| New_Occurrence_Of (RTE (RE_Internal_Tag), Loc), |
| Parameter_Associations => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| New_Occurrence_Of (Standard_String, Loc), |
| Attribute_Name => Name_Input, |
| Expressions => New_List ( |
| Relocate_Node |
| (Duplicate_Subexpr (Strm))))))); |
| |
| Insert_Action (N, Decl); |
| |
| -- Now we need to get the entity for the call, and construct |
| -- a function call node, where we preset a reference to Dnn |
| -- as the controlling argument (doing an unchecked |
| -- conversion to the classwide tagged type to make it |
| -- look like a real tagged object). |
| |
| Fname := Find_Prim_Op (Rtyp, TSS_Stream_Input); |
| Cntrl := Unchecked_Convert_To (P_Type, |
| New_Occurrence_Of (Dnn, Loc)); |
| Set_Etype (Cntrl, P_Type); |
| Set_Parent (Cntrl, N); |
| end; |
| |
| -- For tagged types, use the primitive Input function |
| |
| elsif Is_Tagged_Type (U_Type) then |
| Fname := Find_Prim_Op (U_Type, TSS_Stream_Input); |
| |
| -- All other record type cases, including protected records. |
| -- The latter only arise for expander generated code for |
| -- handling shared passive partition access. |
| |
| else |
| pragma Assert |
| (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type)); |
| |
| Build_Record_Or_Elementary_Input_Function |
| (Loc, Base_Type (U_Type), Decl, Fname); |
| Insert_Action (N, Decl); |
| end if; |
| end if; |
| |
| -- If we fall through, Fname is the function to be called. The |
| -- result is obtained by calling the appropriate function, then |
| -- converting the result. The conversion does a subtype check. |
| |
| Call := |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (Fname, Loc), |
| Parameter_Associations => New_List ( |
| Relocate_Node (Strm))); |
| |
| Set_Controlling_Argument (Call, Cntrl); |
| Rewrite (N, Unchecked_Convert_To (P_Type, Call)); |
| Analyze_And_Resolve (N, P_Type); |
| end Input; |
| |
| ------------------- |
| -- Integer_Value -- |
| ------------------- |
| |
| -- We transform |
| |
| -- inttype'Fixed_Value (fixed-value) |
| |
| -- into |
| |
| -- inttype(integer-value)) |
| |
| -- we do all the required analysis of the conversion here, because |
| -- we do not want this to go through the fixed-point conversion |
| -- circuits. Note that gigi always treats fixed-point as equivalent |
| -- to the corresponding integer type anyway. |
| |
| when Attribute_Integer_Value => Integer_Value : |
| begin |
| Rewrite (N, |
| Make_Type_Conversion (Loc, |
| Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc), |
| Expression => Relocate_Node (First (Exprs)))); |
| Set_Etype (N, Entity (Pref)); |
| Set_Analyzed (N); |
| |
| -- Note: it might appear that a properly analyzed unchecked conversion |
| -- would be just fine here, but that's not the case, since the full |
| -- range checks performed by the following call are critical! |
| |
| Apply_Type_Conversion_Checks (N); |
| end Integer_Value; |
| |
| ---------- |
| -- Last -- |
| ---------- |
| |
| when Attribute_Last => declare |
| Ptyp : constant Entity_Id := Etype (Pref); |
| |
| begin |
| -- If the prefix type is a constrained packed array type which |
| -- already has a Packed_Array_Type representation defined, then |
| -- replace this attribute with a direct reference to 'Last of the |
| -- appropriate index subtype (since otherwise Gigi will try to give |
| -- us the value of 'Last for this implementation type). |
| |
| if Is_Constrained_Packed_Array (Ptyp) then |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Last, |
| Prefix => New_Reference_To (Get_Index_Subtype (N), Loc))); |
| Analyze_And_Resolve (N, Typ); |
| |
| elsif Is_Access_Type (Ptyp) then |
| Apply_Access_Check (N); |
| end if; |
| end; |
| |
| -------------- |
| -- Last_Bit -- |
| -------------- |
| |
| -- We compute this if a component clause was present, otherwise |
| -- we leave the computation up to Gigi, since we don't know what |
| -- layout will be chosen. |
| |
| when Attribute_Last_Bit => Last_Bit : |
| declare |
| CE : constant Entity_Id := Entity (Selector_Name (Pref)); |
| |
| begin |
| if Known_Static_Component_Bit_Offset (CE) |
| and then Known_Static_Esize (CE) |
| then |
| Rewrite (N, |
| Make_Integer_Literal (Loc, |
| Intval => (Component_Bit_Offset (CE) mod System_Storage_Unit) |
| + Esize (CE) - 1)); |
| |
| Analyze_And_Resolve (N, Typ); |
| |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| end if; |
| end Last_Bit; |
| |
| ------------------ |
| -- Leading_Part -- |
| ------------------ |
| |
| -- Transforms 'Leading_Part into a call to the floating-point attribute |
| -- function Leading_Part in Fat_xxx (where xxx is the root type) |
| |
| -- Note: strictly, we should have special case code to deal with |
| -- absurdly large positive arguments (greater than Integer'Last), |
| -- which result in returning the first argument unchanged, but it |
| -- hardly seems worth the effort. We raise constraint error for |
| -- absurdly negative arguments which is fine. |
| |
| when Attribute_Leading_Part => |
| Expand_Fpt_Attribute_RI (N); |
| |
| ------------ |
| -- Length -- |
| ------------ |
| |
| when Attribute_Length => declare |
| Ptyp : constant Entity_Id := Etype (Pref); |
| Ityp : Entity_Id; |
| Xnum : Uint; |
| |
| begin |
| -- Processing for packed array types |
| |
| if Is_Array_Type (Ptyp) and then Is_Packed (Ptyp) then |
| Ityp := Get_Index_Subtype (N); |
| |
| -- If the index type, Ityp, is an enumeration type with |
| -- holes, then we calculate X'Length explicitly using |
| |
| -- Typ'Max |
| -- (0, Ityp'Pos (X'Last (N)) - |
| -- Ityp'Pos (X'First (N)) + 1); |
| |
| -- Since the bounds in the template are the representation |
| -- values and gigi would get the wrong value. |
| |
| if Is_Enumeration_Type (Ityp) |
| and then Present (Enum_Pos_To_Rep (Base_Type (Ityp))) |
| then |
| if No (Exprs) then |
| Xnum := Uint_1; |
| else |
| Xnum := Expr_Value (First (Expressions (N))); |
| end if; |
| |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Typ, Loc), |
| Attribute_Name => Name_Max, |
| Expressions => New_List |
| (Make_Integer_Literal (Loc, 0), |
| |
| Make_Op_Add (Loc, |
| Left_Opnd => |
| Make_Op_Subtract (Loc, |
| Left_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ityp, Loc), |
| Attribute_Name => Name_Pos, |
| |
| Expressions => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => Duplicate_Subexpr (Pref), |
| Attribute_Name => Name_Last, |
| Expressions => New_List ( |
| Make_Integer_Literal (Loc, Xnum))))), |
| |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ityp, Loc), |
| Attribute_Name => Name_Pos, |
| |
| Expressions => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| Duplicate_Subexpr_No_Checks (Pref), |
| Attribute_Name => Name_First, |
| Expressions => New_List ( |
| Make_Integer_Literal (Loc, Xnum)))))), |
| |
| Right_Opnd => Make_Integer_Literal (Loc, 1))))); |
| |
| Analyze_And_Resolve (N, Typ, Suppress => All_Checks); |
| return; |
| |
| -- If the prefix type is a constrained packed array type which |
| -- already has a Packed_Array_Type representation defined, then |
| -- replace this attribute with a direct reference to 'Range_Length |
| -- of the appropriate index subtype (since otherwise Gigi will try |
| -- to give us the value of 'Length for this implementation type). |
| |
| elsif Is_Constrained (Ptyp) then |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Range_Length, |
| Prefix => New_Reference_To (Ityp, Loc))); |
| Analyze_And_Resolve (N, Typ); |
| end if; |
| |
| -- If we have a packed array that is not bit packed, which was |
| |
| -- Access type case |
| |
| elsif Is_Access_Type (Ptyp) then |
| Apply_Access_Check (N); |
| |
| -- If the designated type is a packed array type, then we |
| -- convert the reference to: |
| |
| -- typ'Max (0, 1 + |
| -- xtyp'Pos (Pref'Last (Expr)) - |
| -- xtyp'Pos (Pref'First (Expr))); |
| |
| -- This is a bit complex, but it is the easiest thing to do |
| -- that works in all cases including enum types with holes |
| -- xtyp here is the appropriate index type. |
| |
| declare |
| Dtyp : constant Entity_Id := Designated_Type (Ptyp); |
| Xtyp : Entity_Id; |
| |
| begin |
| if Is_Array_Type (Dtyp) and then Is_Packed (Dtyp) then |
| Xtyp := Get_Index_Subtype (N); |
| |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Typ, Loc), |
| Attribute_Name => Name_Max, |
| Expressions => New_List ( |
| Make_Integer_Literal (Loc, 0), |
| |
| Make_Op_Add (Loc, |
| Make_Integer_Literal (Loc, 1), |
| Make_Op_Subtract (Loc, |
| Left_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Xtyp, Loc), |
| Attribute_Name => Name_Pos, |
| Expressions => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => Duplicate_Subexpr (Pref), |
| Attribute_Name => Name_Last, |
| Expressions => |
| New_Copy_List (Exprs)))), |
| |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Xtyp, Loc), |
| Attribute_Name => Name_Pos, |
| Expressions => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| Duplicate_Subexpr_No_Checks (Pref), |
| Attribute_Name => Name_First, |
| Expressions => |
| New_Copy_List (Exprs))))))))); |
| |
| Analyze_And_Resolve (N, Typ); |
| end if; |
| end; |
| |
| -- Otherwise leave it to gigi |
| |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| end if; |
| end; |
| |
| ------------- |
| -- Machine -- |
| ------------- |
| |
| -- Transforms 'Machine into a call to the floating-point attribute |
| -- function Machine in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Machine => |
| Expand_Fpt_Attribute_R (N); |
| |
| ------------------ |
| -- Machine_Size -- |
| ------------------ |
| |
| -- Machine_Size is equivalent to Object_Size, so transform it into |
| -- Object_Size and that way Gigi never sees Machine_Size. |
| |
| when Attribute_Machine_Size => |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => Prefix (N), |
| Attribute_Name => Name_Object_Size)); |
| |
| Analyze_And_Resolve (N, Typ); |
| |
| -------------- |
| -- Mantissa -- |
| -------------- |
| |
| -- The only case that can get this far is the dynamic case of the |
| -- old Ada 83 Mantissa attribute for the fixed-point case. For this |
| -- case, we expand: |
| |
| -- typ'Mantissa |
| |
| -- into |
| |
| -- ityp (System.Mantissa.Mantissa_Value |
| -- (Integer'Integer_Value (typ'First), |
| -- Integer'Integer_Value (typ'Last))); |
| |
| when Attribute_Mantissa => Mantissa : declare |
| Ptyp : constant Entity_Id := Etype (Pref); |
| |
| begin |
| Rewrite (N, |
| Convert_To (Typ, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (RE_Mantissa_Value), Loc), |
| |
| Parameter_Associations => New_List ( |
| |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Standard_Integer, Loc), |
| Attribute_Name => Name_Integer_Value, |
| Expressions => New_List ( |
| |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_First))), |
| |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Standard_Integer, Loc), |
| Attribute_Name => Name_Integer_Value, |
| Expressions => New_List ( |
| |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Last))))))); |
| |
| Analyze_And_Resolve (N, Typ); |
| end Mantissa; |
| |
| ----------- |
| -- Model -- |
| ----------- |
| |
| -- Transforms 'Model into a call to the floating-point attribute |
| -- function Model in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Model => |
| Expand_Fpt_Attribute_R (N); |
| |
| ----------------- |
| -- Object_Size -- |
| ----------------- |
| |
| -- The processing for Object_Size shares the processing for Size |
| |
| ------------ |
| -- Output -- |
| ------------ |
| |
| when Attribute_Output => Output : declare |
| P_Type : constant Entity_Id := Entity (Pref); |
| U_Type : constant Entity_Id := Underlying_Type (P_Type); |
| Pname : Entity_Id; |
| Decl : Node_Id; |
| Prag : Node_Id; |
| Arg3 : Node_Id; |
| Wfunc : Node_Id; |
| |
| begin |
| -- If no underlying type, we have an error that will be diagnosed |
| -- elsewhere, so here we just completely ignore the expansion. |
| |
| if No (U_Type) then |
| return; |
| end if; |
| |
| -- If TSS for Output is present, just call it |
| |
| Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Output); |
| |
| if Present (Pname) then |
| null; |
| |
| else |
| -- If there is a Stream_Convert pragma, use it, we rewrite |
| |
| -- sourcetyp'Output (stream, Item) |
| |
| -- as |
| |
| -- strmtyp'Output (Stream, strmwrite (acttyp (Item))); |
| |
| -- where strmwrite is the given Write function that converts |
| -- an argument of type sourcetyp or a type acctyp, from which |
| -- it is derived to type strmtyp. The conversion to acttyp is |
| -- required for the derived case. |
| |
| Prag := |
| Get_Rep_Pragma |
| (Implementation_Base_Type (P_Type), Name_Stream_Convert); |
| |
| if Present (Prag) then |
| Arg3 := |
| Next (Next (First (Pragma_Argument_Associations (Prag)))); |
| Wfunc := Entity (Expression (Arg3)); |
| |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Etype (Wfunc), Loc), |
| Attribute_Name => Name_Output, |
| Expressions => New_List ( |
| Relocate_Node (First (Exprs)), |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (Wfunc, Loc), |
| Parameter_Associations => New_List ( |
| Convert_To (Etype (First_Formal (Wfunc)), |
| Relocate_Node (Next (First (Exprs))))))))); |
| |
| Analyze (N); |
| return; |
| |
| -- For elementary types, we call the W_xxx routine directly. |
| -- Note that the effect of Write and Output is identical for |
| -- the case of an elementary type, since there are no |
| -- discriminants or bounds. |
| |
| elsif Is_Elementary_Type (U_Type) then |
| |
| -- A special case arises if we have a defined _Write routine, |
| -- since in this case we are required to call this routine. |
| |
| if Present (TSS (Base_Type (U_Type), TSS_Stream_Write)) then |
| Build_Record_Or_Elementary_Output_Procedure |
| (Loc, U_Type, Decl, Pname); |
| Insert_Action (N, Decl); |
| |
| -- For normal cases, we call the W_xxx routine directly |
| |
| else |
| Rewrite (N, Build_Elementary_Write_Call (N)); |
| Analyze (N); |
| return; |
| end if; |
| |
| -- Array type case |
| |
| elsif Is_Array_Type (U_Type) then |
| Build_Array_Output_Procedure (Loc, U_Type, Decl, Pname); |
| Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False); |
| |
| -- Class-wide case, first output external tag, then dispatch |
| -- to the appropriate primitive Output function (RM 13.13.2(31)). |
| |
| elsif Is_Class_Wide_Type (P_Type) then |
| Tag_Write : declare |
| Strm : constant Node_Id := First (Exprs); |
| Item : constant Node_Id := Next (Strm); |
| |
| begin |
| -- The code is: |
| -- String'Output (Strm, External_Tag (Item'Tag)) |
| |
| Insert_Action (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Standard_String, Loc), |
| Attribute_Name => Name_Output, |
| Expressions => New_List ( |
| Relocate_Node (Duplicate_Subexpr (Strm)), |
| Make_Function_Call (Loc, |
| Name => |
| New_Occurrence_Of (RTE (RE_External_Tag), Loc), |
| Parameter_Associations => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| Relocate_Node |
| (Duplicate_Subexpr (Item, Name_Req => True)), |
| Attribute_Name => Name_Tag)))))); |
| end Tag_Write; |
| |
| Pname := Find_Prim_Op (U_Type, TSS_Stream_Output); |
| |
| -- Tagged type case, use the primitive Output function |
| |
| elsif Is_Tagged_Type (U_Type) then |
| Pname := Find_Prim_Op (U_Type, TSS_Stream_Output); |
| |
| -- All other record type cases, including protected records. |
| -- The latter only arise for expander generated code for |
| -- handling shared passive partition access. |
| |
| else |
| pragma Assert |
| (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type)); |
| |
| Build_Record_Or_Elementary_Output_Procedure |
| (Loc, Base_Type (U_Type), Decl, Pname); |
| Insert_Action (N, Decl); |
| end if; |
| end if; |
| |
| -- If we fall through, Pname is the name of the procedure to call |
| |
| Rewrite_Stream_Proc_Call (Pname); |
| end Output; |
| |
| --------- |
| -- Pos -- |
| --------- |
| |
| -- For enumeration types with a standard representation, Pos is |
| -- handled by Gigi. |
| |
| -- For enumeration types, with a non-standard representation we |
| -- generate a call to the _Rep_To_Pos function created when the |
| -- type was frozen. The call has the form |
| |
| -- _rep_to_pos (expr, flag) |
| |
| -- The parameter flag is True if range checks are enabled, causing |
| -- Program_Error to be raised if the expression has an invalid |
| -- representation, and False if range checks are suppressed. |
| |
| -- For integer types, Pos is equivalent to a simple integer |
| -- conversion and we rewrite it as such |
| |
| when Attribute_Pos => Pos : |
| declare |
| Etyp : Entity_Id := Base_Type (Entity (Pref)); |
| |
| begin |
| -- Deal with zero/non-zero boolean values |
| |
| if Is_Boolean_Type (Etyp) then |
| Adjust_Condition (First (Exprs)); |
| Etyp := Standard_Boolean; |
| Set_Prefix (N, New_Occurrence_Of (Standard_Boolean, Loc)); |
| end if; |
| |
| -- Case of enumeration type |
| |
| if Is_Enumeration_Type (Etyp) then |
| |
| -- Non-standard enumeration type (generate call) |
| |
| if Present (Enum_Pos_To_Rep (Etyp)) then |
| Append_To (Exprs, Rep_To_Pos_Flag (Etyp, Loc)); |
| Rewrite (N, |
| Convert_To (Typ, |
| Make_Function_Call (Loc, |
| Name => |
| New_Reference_To (TSS (Etyp, TSS_Rep_To_Pos), Loc), |
| Parameter_Associations => Exprs))); |
| |
| Analyze_And_Resolve (N, Typ); |
| |
| -- Standard enumeration type (do universal integer check) |
| |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| end if; |
| |
| -- Deal with integer types (replace by conversion) |
| |
| elsif Is_Integer_Type (Etyp) then |
| Rewrite (N, Convert_To (Typ, First (Exprs))); |
| Analyze_And_Resolve (N, Typ); |
| end if; |
| |
| end Pos; |
| |
| -------------- |
| -- Position -- |
| -------------- |
| |
| -- We compute this if a component clause was present, otherwise |
| -- we leave the computation up to Gigi, since we don't know what |
| -- layout will be chosen. |
| |
| when Attribute_Position => Position : |
| declare |
| CE : constant Entity_Id := Entity (Selector_Name (Pref)); |
| |
| begin |
| if Present (Component_Clause (CE)) then |
| Rewrite (N, |
| Make_Integer_Literal (Loc, |
| Intval => Component_Bit_Offset (CE) / System_Storage_Unit)); |
| Analyze_And_Resolve (N, Typ); |
| |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| end if; |
| end Position; |
| |
| ---------- |
| -- Pred -- |
| ---------- |
| |
| -- 1. Deal with enumeration types with holes |
| -- 2. For floating-point, generate call to attribute function |
| -- 3. For other cases, deal with constraint checking |
| |
| when Attribute_Pred => Pred : |
| declare |
| Ptyp : constant Entity_Id := Base_Type (Etype (Pref)); |
| |
| begin |
| -- For enumeration types with non-standard representations, we |
| -- expand typ'Pred (x) into |
| |
| -- Pos_To_Rep (Rep_To_Pos (x) - 1) |
| |
| -- If the representation is contiguous, we compute instead |
| -- Lit1 + Rep_to_Pos (x -1), to catch invalid representations. |
| |
| if Is_Enumeration_Type (Ptyp) |
| and then Present (Enum_Pos_To_Rep (Ptyp)) |
| then |
| if Has_Contiguous_Rep (Ptyp) then |
| Rewrite (N, |
| Unchecked_Convert_To (Ptyp, |
| Make_Op_Add (Loc, |
| Left_Opnd => |
| Make_Integer_Literal (Loc, |
| Enumeration_Rep (First_Literal (Ptyp))), |
| Right_Opnd => |
| Make_Function_Call (Loc, |
| Name => |
| New_Reference_To |
| (TSS (Ptyp, TSS_Rep_To_Pos), Loc), |
| |
| Parameter_Associations => |
| New_List ( |
| Unchecked_Convert_To (Ptyp, |
| Make_Op_Subtract (Loc, |
| Left_Opnd => |
| Unchecked_Convert_To (Standard_Integer, |
| Relocate_Node (First (Exprs))), |
| Right_Opnd => |
| Make_Integer_Literal (Loc, 1))), |
| Rep_To_Pos_Flag (Ptyp, Loc)))))); |
| |
| else |
| -- Add Boolean parameter True, to request program errror if |
| -- we have a bad representation on our hands. If checks are |
| -- suppressed, then add False instead |
| |
| Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc)); |
| Rewrite (N, |
| Make_Indexed_Component (Loc, |
| Prefix => New_Reference_To (Enum_Pos_To_Rep (Ptyp), Loc), |
| Expressions => New_List ( |
| Make_Op_Subtract (Loc, |
| Left_Opnd => |
| Make_Function_Call (Loc, |
| Name => |
| New_Reference_To (TSS (Ptyp, TSS_Rep_To_Pos), Loc), |
| Parameter_Associations => Exprs), |
| Right_Opnd => Make_Integer_Literal (Loc, 1))))); |
| end if; |
| |
| Analyze_And_Resolve (N, Typ); |
| |
| -- For floating-point, we transform 'Pred into a call to the Pred |
| -- floating-point attribute function in Fat_xxx (xxx is root type) |
| |
| elsif Is_Floating_Point_Type (Ptyp) then |
| Expand_Fpt_Attribute_R (N); |
| Analyze_And_Resolve (N, Typ); |
| |
| -- For modular types, nothing to do (no overflow, since wraps) |
| |
| elsif Is_Modular_Integer_Type (Ptyp) then |
| null; |
| |
| -- For other types, if range checking is enabled, we must generate |
| -- a check if overflow checking is enabled. |
| |
| elsif not Overflow_Checks_Suppressed (Ptyp) then |
| Expand_Pred_Succ (N); |
| end if; |
| |
| end Pred; |
| |
| ------------------ |
| -- Range_Length -- |
| ------------------ |
| |
| when Attribute_Range_Length => Range_Length : declare |
| P_Type : constant Entity_Id := Etype (Pref); |
| |
| begin |
| -- The only special processing required is for the case where |
| -- Range_Length is applied to an enumeration type with holes. |
| -- In this case we transform |
| |
| -- X'Range_Length |
| |
| -- to |
| |
| -- X'Pos (X'Last) - X'Pos (X'First) + 1 |
| |
| -- So that the result reflects the proper Pos values instead |
| -- of the underlying representations. |
| |
| if Is_Enumeration_Type (P_Type) |
| and then Has_Non_Standard_Rep (P_Type) |
| then |
| Rewrite (N, |
| Make_Op_Add (Loc, |
| Left_Opnd => |
| Make_Op_Subtract (Loc, |
| Left_Opnd => |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Pos, |
| Prefix => New_Occurrence_Of (P_Type, Loc), |
| Expressions => New_List ( |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Last, |
| Prefix => New_Occurrence_Of (P_Type, Loc)))), |
| |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Pos, |
| Prefix => New_Occurrence_Of (P_Type, Loc), |
| Expressions => New_List ( |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_First, |
| Prefix => New_Occurrence_Of (P_Type, Loc))))), |
| |
| Right_Opnd => |
| Make_Integer_Literal (Loc, 1))); |
| |
| Analyze_And_Resolve (N, Typ); |
| |
| -- For all other cases, attribute is handled by Gigi, but we need |
| -- to deal with the case of the range check on a universal integer. |
| |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| end if; |
| |
| end Range_Length; |
| |
| ---------- |
| -- Read -- |
| ---------- |
| |
| when Attribute_Read => Read : declare |
| P_Type : constant Entity_Id := Entity (Pref); |
| B_Type : constant Entity_Id := Base_Type (P_Type); |
| U_Type : constant Entity_Id := Underlying_Type (P_Type); |
| Pname : Entity_Id; |
| Decl : Node_Id; |
| Prag : Node_Id; |
| Arg2 : Node_Id; |
| Rfunc : Node_Id; |
| Lhs : Node_Id; |
| Rhs : Node_Id; |
| |
| begin |
| -- If no underlying type, we have an error that will be diagnosed |
| -- elsewhere, so here we just completely ignore the expansion. |
| |
| if No (U_Type) then |
| return; |
| end if; |
| |
| -- The simple case, if there is a TSS for Read, just call it |
| |
| Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Read); |
| |
| if Present (Pname) then |
| null; |
| |
| else |
| -- If there is a Stream_Convert pragma, use it, we rewrite |
| |
| -- sourcetyp'Read (stream, Item) |
| |
| -- as |
| |
| -- Item := sourcetyp (strmread (strmtyp'Input (Stream))); |
| |
| -- where strmread is the given Read function that converts |
| -- an argument of type strmtyp to type sourcetyp or a type |
| -- from which it is derived. The conversion to sourcetyp |
| -- is required in the latter case. |
| |
| -- A special case arises if Item is a type conversion in which |
| -- case, we have to expand to: |
| |
| -- Itemx := typex (strmread (strmtyp'Input (Stream))); |
| |
| -- where Itemx is the expression of the type conversion (i.e. |
| -- the actual object), and typex is the type of Itemx. |
| |
| Prag := |
| Get_Rep_Pragma |
| (Implementation_Base_Type (P_Type), Name_Stream_Convert); |
| |
| if Present (Prag) then |
| Arg2 := Next (First (Pragma_Argument_Associations (Prag))); |
| Rfunc := Entity (Expression (Arg2)); |
| Lhs := Relocate_Node (Next (First (Exprs))); |
| Rhs := |
| Convert_To (B_Type, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (Rfunc, Loc), |
| Parameter_Associations => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| New_Occurrence_Of |
| (Etype (First_Formal (Rfunc)), Loc), |
| Attribute_Name => Name_Input, |
| Expressions => New_List ( |
| Relocate_Node (First (Exprs))))))); |
| |
| if Nkind (Lhs) = N_Type_Conversion then |
| Lhs := Expression (Lhs); |
| Rhs := Convert_To (Etype (Lhs), Rhs); |
| end if; |
| |
| Rewrite (N, |
| Make_Assignment_Statement (Loc, |
| Name => Lhs, |
| Expression => Rhs)); |
| Set_Assignment_OK (Lhs); |
| Analyze (N); |
| return; |
| |
| -- For elementary types, we call the I_xxx routine using the first |
| -- parameter and then assign the result into the second parameter. |
| -- We set Assignment_OK to deal with the conversion case. |
| |
| elsif Is_Elementary_Type (U_Type) then |
| declare |
| Lhs : Node_Id; |
| Rhs : Node_Id; |
| |
| begin |
| Lhs := Relocate_Node (Next (First (Exprs))); |
| Rhs := Build_Elementary_Input_Call (N); |
| |
| if Nkind (Lhs) = N_Type_Conversion then |
| Lhs := Expression (Lhs); |
| Rhs := Convert_To (Etype (Lhs), Rhs); |
| end if; |
| |
| Set_Assignment_OK (Lhs); |
| |
| Rewrite (N, |
| Make_Assignment_Statement (Loc, |
| Name => Lhs, |
| Expression => Rhs)); |
| |
| Analyze (N); |
| return; |
| end; |
| |
| -- Array type case |
| |
| elsif Is_Array_Type (U_Type) then |
| Build_Array_Read_Procedure (N, U_Type, Decl, Pname); |
| Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False); |
| |
| -- Tagged type case, use the primitive Read function. Note that |
| -- this will dispatch in the class-wide case which is what we want |
| |
| elsif Is_Tagged_Type (U_Type) then |
| Pname := Find_Prim_Op (U_Type, TSS_Stream_Read); |
| |
| -- All other record type cases, including protected records. |
| -- The latter only arise for expander generated code for |
| -- handling shared passive partition access. |
| |
| else |
| pragma Assert |
| (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type)); |
| |
| if Has_Discriminants (U_Type) |
| and then Present |
| (Discriminant_Default_Value (First_Discriminant (U_Type))) |
| then |
| Build_Mutable_Record_Read_Procedure |
| (Loc, Base_Type (U_Type), Decl, Pname); |
| |
| else |
| Build_Record_Read_Procedure |
| (Loc, Base_Type (U_Type), Decl, Pname); |
| end if; |
| |
| -- Suppress checks, uninitialized or otherwise invalid |
| -- data does not cause constraint errors to be raised for |
| -- a complete record read. |
| |
| Insert_Action (N, Decl, All_Checks); |
| end if; |
| end if; |
| |
| Rewrite_Stream_Proc_Call (Pname); |
| end Read; |
| |
| --------------- |
| -- Remainder -- |
| --------------- |
| |
| -- Transforms 'Remainder into a call to the floating-point attribute |
| -- function Remainder in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Remainder => |
| Expand_Fpt_Attribute_RR (N); |
| |
| ----------- |
| -- Round -- |
| ----------- |
| |
| -- The handling of the Round attribute is quite delicate. The |
| -- processing in Sem_Attr introduced a conversion to universal |
| -- real, reflecting the semantics of Round, but we do not want |
| -- anything to do with universal real at runtime, since this |
| -- corresponds to using floating-point arithmetic. |
| |
| -- What we have now is that the Etype of the Round attribute |
| -- correctly indicates the final result type. The operand of |
| -- the Round is the conversion to universal real, described |
| -- above, and the operand of this conversion is the actual |
| -- operand of Round, which may be the special case of a fixed |
| -- point multiplication or division (Etype = universal fixed) |
| |
| -- The exapander will expand first the operand of the conversion, |
| -- then the conversion, and finally the round attribute itself, |
| -- since we always work inside out. But we cannot simply process |
| -- naively in this order. In the semantic world where universal |
| -- fixed and real really exist and have infinite precision, there |
| -- is no problem, but in the implementation world, where universal |
| -- real is a floating-point type, we would get the wrong result. |
| |
| -- So the approach is as follows. First, when expanding a multiply |
| -- or divide whose type is universal fixed, we do nothing at all, |
| -- instead deferring the operation till later. |
| |
| -- The actual processing is done in Expand_N_Type_Conversion which |
| -- handles the special case of Round by looking at its parent to |
| -- see if it is a Round attribute, and if it is, handling the |
| -- conversion (or its fixed multiply/divide child) in an appropriate |
| -- manner. |
| |
| -- This means that by the time we get to expanding the Round attribute |
| -- itself, the Round is nothing more than a type conversion (and will |
| -- often be a null type conversion), so we just replace it with the |
| -- appropriate conversion operation. |
| |
| when Attribute_Round => |
| Rewrite (N, |
| Convert_To (Etype (N), Relocate_Node (First (Exprs)))); |
| Analyze_And_Resolve (N); |
| |
| -------------- |
| -- Rounding -- |
| -------------- |
| |
| -- Transforms 'Rounding into a call to the floating-point attribute |
| -- function Rounding in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Rounding => |
| Expand_Fpt_Attribute_R (N); |
| |
| ------------- |
| -- Scaling -- |
| ------------- |
| |
| -- Transforms 'Scaling into a call to the floating-point attribute |
| -- function Scaling in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Scaling => |
| Expand_Fpt_Attribute_RI (N); |
| |
| ---------- |
| -- Size -- |
| ---------- |
| |
| when Attribute_Size | |
| Attribute_Object_Size | |
| Attribute_Value_Size | |
| Attribute_VADS_Size => Size : |
| |
| declare |
| Ptyp : constant Entity_Id := Etype (Pref); |
| Siz : Uint; |
| New_Node : Node_Id; |
| |
| begin |
| -- Processing for VADS_Size case. Note that this processing removes |
| -- all traces of VADS_Size from the tree, and completes all required |
| -- processing for VADS_Size by translating the attribute reference |
| -- to an appropriate Size or Object_Size reference. |
| |
| if Id = Attribute_VADS_Size |
| or else (Use_VADS_Size and then Id = Attribute_Size) |
| then |
| -- If the size is specified, then we simply use the specified |
| -- size. This applies to both types and objects. The size of an |
| -- object can be specified in the following ways: |
| |
| -- An explicit size object is given for an object |
| -- A component size is specified for an indexed component |
| -- A component clause is specified for a selected component |
| -- The object is a component of a packed composite object |
| |
| -- If the size is specified, then VADS_Size of an object |
| |
| if (Is_Entity_Name (Pref) |
| and then Present (Size_Clause (Entity (Pref)))) |
| or else |
| (Nkind (Pref) = N_Component_Clause |
| and then (Present (Component_Clause |
| (Entity (Selector_Name (Pref)))) |
| or else Is_Packed (Etype (Prefix (Pref))))) |
| or else |
| (Nkind (Pref) = N_Indexed_Component |
| and then (Component_Size (Etype (Prefix (Pref))) /= 0 |
| or else Is_Packed (Etype (Prefix (Pref))))) |
| then |
| Set_Attribute_Name (N, Name_Size); |
| |
| -- Otherwise if we have an object rather than a type, then the |
| -- VADS_Size attribute applies to the type of the object, rather |
| -- than the object itself. This is one of the respects in which |
| -- VADS_Size differs from Size. |
| |
| else |
| if (not Is_Entity_Name (Pref) |
| or else not Is_Type (Entity (Pref))) |
| and then (Is_Scalar_Type (Etype (Pref)) |
| or else Is_Constrained (Etype (Pref))) |
| then |
| Rewrite (Pref, New_Occurrence_Of (Etype (Pref), Loc)); |
| end if; |
| |
| -- For a scalar type for which no size was |
| -- explicitly given, VADS_Size means Object_Size. This is the |
| -- other respect in which VADS_Size differs from Size. |
| |
| if Is_Scalar_Type (Etype (Pref)) |
| and then No (Size_Clause (Etype (Pref))) |
| then |
| Set_Attribute_Name (N, Name_Object_Size); |
| |
| -- In all other cases, Size and VADS_Size are the sane |
| |
| else |
| Set_Attribute_Name (N, Name_Size); |
| end if; |
| end if; |
| end if; |
| |
| -- For class-wide types, X'Class'Size is transformed into a |
| -- direct reference to the Size of the class type, so that gigi |
| -- does not have to deal with the X'Class'Size reference. |
| |
| if Is_Entity_Name (Pref) |
| and then Is_Class_Wide_Type (Entity (Pref)) |
| then |
| Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc)); |
| return; |
| |
| -- For x'Size applied to an object of a class wide type, transform |
| -- X'Size into a call to the primitive operation _Size applied to X. |
| |
| elsif Is_Class_Wide_Type (Ptyp) then |
| New_Node := |
| Make_Function_Call (Loc, |
| Name => New_Reference_To |
| (Find_Prim_Op (Ptyp, Name_uSize), Loc), |
| Parameter_Associations => New_List (Pref)); |
| |
| if Typ /= Standard_Long_Long_Integer then |
| |
| -- The context is a specific integer type with which the |
| -- original attribute was compatible. The function has a |
| -- specific type as well, so to preserve the compatibility |
| -- we must convert explicitly. |
| |
| New_Node := Convert_To (Typ, New_Node); |
| end if; |
| |
| Rewrite (N, New_Node); |
| Analyze_And_Resolve (N, Typ); |
| return; |
| |
| -- For an array component, we can do Size in the front end |
| -- if the component_size of the array is set. |
| |
| elsif Nkind (Pref) = N_Indexed_Component then |
| Siz := Component_Size (Etype (Prefix (Pref))); |
| |
| -- For a record component, we can do Size in the front end |
| -- if there is a component clause, or if the record is packed |
| -- and the component's size is known at compile time. |
| |
| elsif Nkind (Pref) = N_Selected_Component then |
| declare |
| Rec : constant Entity_Id := Etype (Prefix (Pref)); |
| Comp : constant Entity_Id := Entity (Selector_Name (Pref)); |
| |
| begin |
| if Present (Component_Clause (Comp)) then |
| Siz := Esize (Comp); |
| |
| elsif Is_Packed (Rec) then |
| Siz := RM_Size (Ptyp); |
| |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| return; |
| end if; |
| end; |
| |
| -- All other cases are handled by Gigi |
| |
| else |
| Apply_Universal_Integer_Attribute_Checks (N); |
| |
| -- If we have Size applied to a formal parameter, that is a |
| -- packed array subtype, then apply size to the actual subtype. |
| |
| if Is_Entity_Name (Pref) |
| and then Is_Formal (Entity (Pref)) |
| and then Is_Array_Type (Etype (Pref)) |
| and then Is_Packed (Etype (Pref)) |
| then |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| New_Occurrence_Of (Get_Actual_Subtype (Pref), Loc), |
| Attribute_Name => Name_Size)); |
| Analyze_And_Resolve (N, Typ); |
| end if; |
| |
| return; |
| end if; |
| |
| -- Common processing for record and array component case |
| |
| if Siz /= 0 then |
| Rewrite (N, |
| Make_Integer_Literal (Loc, Siz)); |
| |
| Analyze_And_Resolve (N, Typ); |
| |
| -- The result is not a static expression |
| |
| Set_Is_Static_Expression (N, False); |
| end if; |
| end Size; |
| |
| ------------------ |
| -- Storage_Pool -- |
| ------------------ |
| |
| when Attribute_Storage_Pool => |
| Rewrite (N, |
| Make_Type_Conversion (Loc, |
| Subtype_Mark => New_Reference_To (Etype (N), Loc), |
| Expression => New_Reference_To (Entity (N), Loc))); |
| Analyze_And_Resolve (N, Typ); |
| |
| ------------------ |
| -- Storage_Size -- |
| ------------------ |
| |
| when Attribute_Storage_Size => Storage_Size : |
| declare |
| Ptyp : constant Entity_Id := Etype (Pref); |
| |
| begin |
| -- Access type case, always go to the root type |
| |
| -- The case of access types results in a value of zero for the case |
| -- where no storage size attribute clause has been given. If a |
| -- storage size has been given, then the attribute is converted |
| -- to a reference to the variable used to hold this value. |
| |
| if Is_Access_Type (Ptyp) then |
| if Present (Storage_Size_Variable (Root_Type (Ptyp))) then |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Reference_To (Typ, Loc), |
| Attribute_Name => Name_Max, |
| Expressions => New_List ( |
| Make_Integer_Literal (Loc, 0), |
| Convert_To (Typ, |
| New_Reference_To |
| (Storage_Size_Variable (Root_Type (Ptyp)), Loc))))); |
| |
| elsif Present (Associated_Storage_Pool (Root_Type (Ptyp))) then |
| Rewrite (N, |
| OK_Convert_To (Typ, |
| Make_Function_Call (Loc, |
| Name => |
| New_Reference_To |
| (Find_Prim_Op |
| (Etype (Associated_Storage_Pool (Root_Type (Ptyp))), |
| Attribute_Name (N)), |
| Loc), |
| |
| Parameter_Associations => New_List (New_Reference_To ( |
| Associated_Storage_Pool (Root_Type (Ptyp)), Loc))))); |
| else |
| Rewrite (N, Make_Integer_Literal (Loc, 0)); |
| end if; |
| |
| Analyze_And_Resolve (N, Typ); |
| |
| -- The case of a task type (an obsolescent feature) is handled the |
| -- same way, seems as reasonable as anything, and it is what the |
| -- ACVC tests (e.g. CD1009K) seem to expect. |
| |
| -- If there is no Storage_Size variable, then we return the default |
| -- task stack size, otherwise, expand a Storage_Size attribute as |
| -- follows: |
| |
| -- Typ (Adjust_Storage_Size (taskZ)) |
| |
| -- except for the case of a task object which has a Storage_Size |
| -- pragma: |
| |
| -- Typ (Adjust_Storage_Size (taskV!(name)._Size)) |
| |
| else |
| if not Present (Storage_Size_Variable (Ptyp)) then |
| Rewrite (N, |
| Convert_To (Typ, |
| Make_Function_Call (Loc, |
| Name => |
| New_Occurrence_Of (RTE (RE_Default_Stack_Size), Loc)))); |
| |
| else |
| if not (Is_Entity_Name (Pref) and then |
| Is_Task_Type (Entity (Pref))) and then |
| Chars (Last_Entity (Corresponding_Record_Type (Ptyp))) = |
| Name_uSize |
| then |
| Rewrite (N, |
| Convert_To (Typ, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of ( |
| RTE (RE_Adjust_Storage_Size), Loc), |
| Parameter_Associations => |
| New_List ( |
| Make_Selected_Component (Loc, |
| Prefix => |
| Unchecked_Convert_To ( |
| Corresponding_Record_Type (Ptyp), |
| New_Copy_Tree (Pref)), |
| Selector_Name => |
| Make_Identifier (Loc, Name_uSize)))))); |
| |
| -- Task not having Storage_Size pragma |
| |
| else |
| Rewrite (N, |
| Convert_To (Typ, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of ( |
| RTE (RE_Adjust_Storage_Size), Loc), |
| Parameter_Associations => |
| New_List ( |
| New_Reference_To ( |
| Storage_Size_Variable (Ptyp), Loc))))); |
| end if; |
| |
| Analyze_And_Resolve (N, Typ); |
| end if; |
| end if; |
| end Storage_Size; |
| |
| ---------- |
| -- Succ -- |
| ---------- |
| |
| -- 1. Deal with enumeration types with holes |
| -- 2. For floating-point, generate call to attribute function |
| -- 3. For other cases, deal with constraint checking |
| |
| when Attribute_Succ => Succ : |
| declare |
| Ptyp : constant Entity_Id := Base_Type (Etype (Pref)); |
| |
| begin |
| -- For enumeration types with non-standard representations, we |
| -- expand typ'Succ (x) into |
| |
| -- Pos_To_Rep (Rep_To_Pos (x) + 1) |
| |
| -- If the representation is contiguous, we compute instead |
| -- Lit1 + Rep_to_Pos (x+1), to catch invalid representations. |
| |
| if Is_Enumeration_Type (Ptyp) |
| and then Present (Enum_Pos_To_Rep (Ptyp)) |
| then |
| if Has_Contiguous_Rep (Ptyp) then |
| Rewrite (N, |
| Unchecked_Convert_To (Ptyp, |
| Make_Op_Add (Loc, |
| Left_Opnd => |
| Make_Integer_Literal (Loc, |
| Enumeration_Rep (First_Literal (Ptyp))), |
| Right_Opnd => |
| Make_Function_Call (Loc, |
| Name => |
| New_Reference_To |
| (TSS (Ptyp, TSS_Rep_To_Pos), Loc), |
| |
| Parameter_Associations => |
| New_List ( |
| Unchecked_Convert_To (Ptyp, |
| Make_Op_Add (Loc, |
| Left_Opnd => |
| Unchecked_Convert_To (Standard_Integer, |
| Relocate_Node (First (Exprs))), |
| Right_Opnd => |
| Make_Integer_Literal (Loc, 1))), |
| Rep_To_Pos_Flag (Ptyp, Loc)))))); |
| else |
| -- Add Boolean parameter True, to request program errror if |
| -- we have a bad representation on our hands. Add False if |
| -- checks are suppressed. |
| |
| Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc)); |
| Rewrite (N, |
| Make_Indexed_Component (Loc, |
| Prefix => New_Reference_To (Enum_Pos_To_Rep (Ptyp), Loc), |
| Expressions => New_List ( |
| Make_Op_Add (Loc, |
| Left_Opnd => |
| Make_Function_Call (Loc, |
| Name => |
| New_Reference_To |
| (TSS (Ptyp, TSS_Rep_To_Pos), Loc), |
| Parameter_Associations => Exprs), |
| Right_Opnd => Make_Integer_Literal (Loc, 1))))); |
| end if; |
| |
| Analyze_And_Resolve (N, Typ); |
| |
| -- For floating-point, we transform 'Succ into a call to the Succ |
| -- floating-point attribute function in Fat_xxx (xxx is root type) |
| |
| elsif Is_Floating_Point_Type (Ptyp) then |
| Expand_Fpt_Attribute_R (N); |
| Analyze_And_Resolve (N, Typ); |
| |
| -- For modular types, nothing to do (no overflow, since wraps) |
| |
| elsif Is_Modular_Integer_Type (Ptyp) then |
| null; |
| |
| -- For other types, if range checking is enabled, we must generate |
| -- a check if overflow checking is enabled. |
| |
| elsif not Overflow_Checks_Suppressed (Ptyp) then |
| Expand_Pred_Succ (N); |
| end if; |
| end Succ; |
| |
| --------- |
| -- Tag -- |
| --------- |
| |
| -- Transforms X'Tag into a direct reference to the tag of X |
| |
| when Attribute_Tag => Tag : |
| declare |
| Ttyp : Entity_Id; |
| Prefix_Is_Type : Boolean; |
| |
| begin |
| if Is_Entity_Name (Pref) and then Is_Type (Entity (Pref)) then |
| Ttyp := Entity (Pref); |
| Prefix_Is_Type := True; |
| else |
| Ttyp := Etype (Pref); |
| Prefix_Is_Type := False; |
| end if; |
| |
| if Is_Class_Wide_Type (Ttyp) then |
| Ttyp := Root_Type (Ttyp); |
| end if; |
| |
| Ttyp := Underlying_Type (Ttyp); |
| |
| if Prefix_Is_Type then |
| |
| -- For JGNAT we leave the type attribute unexpanded because |
| -- there's not a dispatching table to reference. |
| |
| if not Java_VM then |
| Rewrite (N, |
| Unchecked_Convert_To (RTE (RE_Tag), |
| New_Reference_To (Access_Disp_Table (Ttyp), Loc))); |
| Analyze_And_Resolve (N, RTE (RE_Tag)); |
| end if; |
| |
| else |
| Rewrite (N, |
| Make_Selected_Component (Loc, |
| Prefix => Relocate_Node (Pref), |
| Selector_Name => |
| New_Reference_To (Tag_Component (Ttyp), Loc))); |
| Analyze_And_Resolve (N, RTE (RE_Tag)); |
| end if; |
| end Tag; |
| |
| ---------------- |
| -- Terminated -- |
| ---------------- |
| |
| -- Transforms 'Terminated attribute into a call to Terminated function. |
| |
| when Attribute_Terminated => Terminated : |
| begin |
| if Restricted_Profile then |
| Rewrite (N, |
| Build_Call_With_Task (Pref, RTE (RE_Restricted_Terminated))); |
| |
| else |
| Rewrite (N, |
| Build_Call_With_Task (Pref, RTE (RE_Terminated))); |
| end if; |
| |
| Analyze_And_Resolve (N, Standard_Boolean); |
| end Terminated; |
| |
| ---------------- |
| -- To_Address -- |
| ---------------- |
| |
| -- Transforms System'To_Address (X) into unchecked conversion |
| -- from (integral) type of X to type address. |
| |
| when Attribute_To_Address => |
| Rewrite (N, |
| Unchecked_Convert_To (RTE (RE_Address), |
| Relocate_Node (First (Exprs)))); |
| Analyze_And_Resolve (N, RTE (RE_Address)); |
| |
| ---------------- |
| -- Truncation -- |
| ---------------- |
| |
| -- Transforms 'Truncation into a call to the floating-point attribute |
| -- function Truncation in Fat_xxx (where xxx is the root type) |
| |
| when Attribute_Truncation => |
| Expand_Fpt_Attribute_R (N); |
| |
| ----------------------- |
| -- Unbiased_Rounding -- |
| ----------------------- |
| |
| -- Transforms 'Unbiased_Rounding into a call to the floating-point |
| -- attribute function Unbiased_Rounding in Fat_xxx (where xxx is the |
| -- root type) |
| |
| when Attribute_Unbiased_Rounding => |
| Expand_Fpt_Attribute_R (N); |
| |
| ---------------------- |
| -- Unchecked_Access -- |
| ---------------------- |
| |
| when Attribute_Unchecked_Access => |
| Expand_Access_To_Type (N); |
| |
| ----------------- |
| -- UET_Address -- |
| ----------------- |
| |
| when Attribute_UET_Address => UET_Address : declare |
| Ent : constant Entity_Id := |
| Make_Defining_Identifier (Loc, New_Internal_Name ('T')); |
| |
| begin |
| Insert_Action (N, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Ent, |
| Aliased_Present => True, |
| Object_Definition => |
| New_Occurrence_Of (RTE (RE_Address), Loc))); |
| |
| -- Construct name __gnat_xxx__SDP, where xxx is the unit name |
| -- in normal external form. |
| |
| Get_External_Unit_Name_String (Get_Unit_Name (Pref)); |
| Name_Buffer (1 + 7 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len); |
| Name_Len := Name_Len + 7; |
| Name_Buffer (1 .. 7) := "__gnat_"; |
| Name_Buffer (Name_Len + 1 .. Name_Len + 5) := "__SDP"; |
| Name_Len := Name_Len + 5; |
| |
| Set_Is_Imported (Ent); |
| Set_Interface_Name (Ent, |
| Make_String_Literal (Loc, |
| Strval => String_From_Name_Buffer)); |
| |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ent, Loc), |
| Attribute_Name => Name_Address)); |
| |
| Analyze_And_Resolve (N, Typ); |
| end UET_Address; |
| |
| ------------------------- |
| -- Unrestricted_Access -- |
| ------------------------- |
| |
| when Attribute_Unrestricted_Access => |
| Expand_Access_To_Type (N); |
| |
| --------------- |
| -- VADS_Size -- |
| --------------- |
| |
| -- The processing for VADS_Size is shared with Size |
| |
| --------- |
| -- Val -- |
| --------- |
| |
| -- For enumeration types with a standard representation, and for all |
| -- other types, Val is handled by Gigi. For enumeration types with |
| -- a non-standard representation we use the _Pos_To_Rep array that |
| -- was created when the type was frozen. |
| |
| when Attribute_Val => Val : |
| declare |
| Etyp : constant Entity_Id := Base_Type (Entity (Pref)); |
| |
| begin |
| if Is_Enumeration_Type (Etyp) |
| and then Present (Enum_Pos_To_Rep (Etyp)) |
| then |
| if Has_Contiguous_Rep (Etyp) then |
| declare |
| Rep_Node : constant Node_Id := |
| Unchecked_Convert_To (Etyp, |
| Make_Op_Add (Loc, |
| Left_Opnd => |
| Make_Integer_Literal (Loc, |
| Enumeration_Rep (First_Literal (Etyp))), |
| Right_Opnd => |
| (Convert_To (Standard_Integer, |
| Relocate_Node (First (Exprs)))))); |
| |
| begin |
| Rewrite (N, |
| Unchecked_Convert_To (Etyp, |
| Make_Op_Add (Loc, |
| Left_Opnd => |
| Make_Integer_Literal (Loc, |
| Enumeration_Rep (First_Literal (Etyp))), |
| Right_Opnd => |
| Make_Function_Call (Loc, |
| Name => |
| New_Reference_To |
| (TSS (Etyp, TSS_Rep_To_Pos), Loc), |
| Parameter_Associations => New_List ( |
| Rep_Node, |
| Rep_To_Pos_Flag (Etyp, Loc)))))); |
| end; |
| |
| else |
| Rewrite (N, |
| Make_Indexed_Component (Loc, |
| Prefix => New_Reference_To (Enum_Pos_To_Rep (Etyp), Loc), |
| Expressions => New_List ( |
| Convert_To (Standard_Integer, |
| Relocate_Node (First (Exprs)))))); |
| end if; |
| |
| Analyze_And_Resolve (N, Typ); |
| end if; |
| end Val; |
| |
| ----------- |
| -- Valid -- |
| ----------- |
| |
| -- The code for valid is dependent on the particular types involved. |
| -- See separate sections below for the generated code in each case. |
| |
| when Attribute_Valid => Valid : |
| declare |
| Ptyp : constant Entity_Id := Etype (Pref); |
| Btyp : Entity_Id := Base_Type (Ptyp); |
| Tst : Node_Id; |
| |
| Save_Validity_Checks_On : constant Boolean := Validity_Checks_On; |
| -- Save the validity checking mode. We always turn off validity |
| -- checking during process of 'Valid since this is one place |
| -- where we do not want the implicit validity checks to intefere |
| -- with the explicit validity check that the programmer is doing. |
| |
| function Make_Range_Test return Node_Id; |
| -- Build the code for a range test of the form |
| -- Btyp!(Pref) >= Btyp!(Ptyp'First) |
| -- and then |
| -- Btyp!(Pref) <= Btyp!(Ptyp'Last) |
| |
| --------------------- |
| -- Make_Range_Test -- |
| --------------------- |
| |
| function Make_Range_Test return Node_Id is |
| begin |
| return |
| Make_And_Then (Loc, |
| Left_Opnd => |
| Make_Op_Ge (Loc, |
| Left_Opnd => |
| Unchecked_Convert_To (Btyp, Duplicate_Subexpr (Pref)), |
| |
| Right_Opnd => |
| Unchecked_Convert_To (Btyp, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_First))), |
| |
| Right_Opnd => |
| Make_Op_Le (Loc, |
| Left_Opnd => |
| Unchecked_Convert_To (Btyp, |
| Duplicate_Subexpr_No_Checks (Pref)), |
| |
| Right_Opnd => |
| Unchecked_Convert_To (Btyp, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Last)))); |
| end Make_Range_Test; |
| |
| -- Start of processing for Attribute_Valid |
| |
| begin |
| -- Turn off validity checks. We do not want any implicit validity |
| -- checks to intefere with the explicit check from the attribute |
| |
| Validity_Checks_On := False; |
| |
| -- Floating-point case. This case is handled by the Valid attribute |
| -- code in the floating-point attribute run-time library. |
| |
| if Is_Floating_Point_Type (Ptyp) then |
| declare |
| Rtp : constant Entity_Id := Root_Type (Etype (Pref)); |
| |
| begin |
| -- If the floating-point object might be unaligned, we need |
| -- to call the special routine Unaligned_Valid, which makes |
| -- the needed copy, being careful not to load the value into |
| -- any floating-point register. The argument in this case is |
| -- obj'Address (see Unchecked_Valid routine in s-fatgen.ads). |
| |
| if Is_Possibly_Unaligned_Object (Pref) then |
| Set_Attribute_Name (N, Name_Unaligned_Valid); |
| Expand_Fpt_Attribute |
| (N, Rtp, Name_Unaligned_Valid, |
| New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => Relocate_Node (Pref), |
| Attribute_Name => Name_Address))); |
| |
| -- In the normal case where we are sure the object is aligned, |
| -- we generate a caqll to Valid, and the argument in this case |
| -- is obj'Unrestricted_Access (after converting obj to the |
| -- right floating-point type). |
| |
| else |
| Expand_Fpt_Attribute |
| (N, Rtp, Name_Valid, |
| New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => Unchecked_Convert_To (Rtp, Pref), |
| Attribute_Name => Name_Unrestricted_Access))); |
| end if; |
| |
| -- One more task, we still need a range check. Required |
| -- only if we have a constraint, since the Valid routine |
| -- catches infinities properly (infinities are never valid). |
| |
| -- The way we do the range check is simply to create the |
| -- expression: Valid (N) and then Base_Type(Pref) in Typ. |
| |
| if not Subtypes_Statically_Match (Ptyp, Btyp) then |
| Rewrite (N, |
| Make_And_Then (Loc, |
| Left_Opnd => Relocate_Node (N), |
| Right_Opnd => |
| Make_In (Loc, |
| Left_Opnd => Convert_To (Btyp, Pref), |
| Right_Opnd => New_Occurrence_Of (Ptyp, Loc)))); |
| end if; |
| end; |
| |
| -- Enumeration type with holes |
| |
| -- For enumeration types with holes, the Pos value constructed by |
| -- the Enum_Rep_To_Pos function built in Exp_Ch3 called with a |
| -- second argument of False returns minus one for an invalid value, |
| -- and the non-negative pos value for a valid value, so the |
| -- expansion of X'Valid is simply: |
| |
| -- type(X)'Pos (X) >= 0 |
| |
| -- We can't quite generate it that way because of the requirement |
| -- for the non-standard second argument of False, so we have to |
| -- explicitly create: |
| |
| -- _rep_to_pos (X, False) >= 0 |
| |
| -- If we have an enumeration subtype, we also check that the |
| -- value is in range: |
| |
| -- _rep_to_pos (X, False) >= 0 |
| -- and then |
| -- (X >= type(X)'First and then type(X)'Last <= X) |
| |
| elsif Is_Enumeration_Type (Ptyp) |
| and then Present (Enum_Pos_To_Rep (Base_Type (Ptyp))) |
| then |
| Tst := |
| Make_Op_Ge (Loc, |
| Left_Opnd => |
| Make_Function_Call (Loc, |
| Name => |
| New_Reference_To |
| (TSS (Base_Type (Ptyp), TSS_Rep_To_Pos), Loc), |
| Parameter_Associations => New_List ( |
| Pref, |
| New_Occurrence_Of (Standard_False, Loc))), |
| Right_Opnd => Make_Integer_Literal (Loc, 0)); |
| |
| if Ptyp /= Btyp |
| and then |
| (Type_Low_Bound (Ptyp) /= Type_Low_Bound (Btyp) |
| or else |
| Type_High_Bound (Ptyp) /= Type_High_Bound (Btyp)) |
| then |
| -- The call to Make_Range_Test will create declarations |
| -- that need a proper insertion point, but Pref is now |
| -- attached to a node with no ancestor. Attach to tree |
| -- even if it is to be rewritten below. |
| |
| Set_Parent (Tst, Parent (N)); |
| |
| Tst := |
| Make_And_Then (Loc, |
| Left_Opnd => Make_Range_Test, |
| Right_Opnd => Tst); |
| end if; |
| |
| Rewrite (N, Tst); |
| |
| -- Fortran convention booleans |
| |
| -- For the very special case of Fortran convention booleans, the |
| -- value is always valid, since it is an integer with the semantics |
| -- that non-zero is true, and any value is permissible. |
| |
| elsif Is_Boolean_Type (Ptyp) |
| and then Convention (Ptyp) = Convention_Fortran |
| then |
| Rewrite (N, New_Occurrence_Of (Standard_True, Loc)); |
| |
| -- For biased representations, we will be doing an unchecked |
| -- conversion without unbiasing the result. That means that |
| -- the range test has to take this into account, and the |
| -- proper form of the test is: |
| |
| -- Btyp!(Pref) < Btyp!(Ptyp'Range_Length) |
| |
| elsif Has_Biased_Representation (Ptyp) then |
| Btyp := RTE (RE_Unsigned_32); |
| Rewrite (N, |
| Make_Op_Lt (Loc, |
| Left_Opnd => |
| Unchecked_Convert_To (Btyp, Duplicate_Subexpr (Pref)), |
| Right_Opnd => |
| Unchecked_Convert_To (Btyp, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Range_Length)))); |
| |
| -- For all other scalar types, what we want logically is a |
| -- range test: |
| |
| -- X in type(X)'First .. type(X)'Last |
| |
| -- But that's precisely what won't work because of possible |
| -- unwanted optimization (and indeed the basic motivation for |
| -- the Valid attribute -is exactly that this test does not work. |
| -- What will work is: |
| |
| -- Btyp!(X) >= Btyp!(type(X)'First) |
| -- and then |
| -- Btyp!(X) <= Btyp!(type(X)'Last) |
| |
| -- where Btyp is an integer type large enough to cover the full |
| -- range of possible stored values (i.e. it is chosen on the basis |
| -- of the size of the type, not the range of the values). We write |
| -- this as two tests, rather than a range check, so that static |
| -- evaluation will easily remove either or both of the checks if |
| -- they can be -statically determined to be true (this happens |
| -- when the type of X is static and the range extends to the full |
| -- range of stored values). |
| |
| -- Unsigned types. Note: it is safe to consider only whether the |
| -- subtype is unsigned, since we will in that case be doing all |
| -- unsigned comparisons based on the subtype range. Since we use |
| -- the actual subtype object size, this is appropriate. |
| |
| -- For example, if we have |
| |
| -- subtype x is integer range 1 .. 200; |
| -- for x'Object_Size use 8; |
| |
| -- Now the base type is signed, but objects of this type are 8 |
| -- bits unsigned, and doing an unsigned test of the range 1 to |
| -- 200 is correct, even though a value greater than 127 looks |
| -- signed to a signed comparison. |
| |
| elsif Is_Unsigned_Type (Ptyp) then |
| if Esize (Ptyp) <= 32 then |
| Btyp := RTE (RE_Unsigned_32); |
| else |
| Btyp := RTE (RE_Unsigned_64); |
| end if; |
| |
| Rewrite (N, Make_Range_Test); |
| |
| -- Signed types |
| |
| else |
| if Esize (Ptyp) <= Esize (Standard_Integer) then |
| Btyp := Standard_Integer; |
| else |
| Btyp := Universal_Integer; |
| end if; |
| |
| Rewrite (N, Make_Range_Test); |
| end if; |
| |
| Analyze_And_Resolve (N, Standard_Boolean); |
| Validity_Checks_On := Save_Validity_Checks_On; |
| end Valid; |
| |
| ----------- |
| -- Value -- |
| ----------- |
| |
| -- Value attribute is handled in separate unti Exp_Imgv |
| |
| when Attribute_Value => |
| Exp_Imgv.Expand_Value_Attribute (N); |
| |
| ----------------- |
| -- Value_Size -- |
| ----------------- |
| |
| -- The processing for Value_Size shares the processing for Size |
| |
| ------------- |
| -- Version -- |
| ------------- |
| |
| -- The processing for Version shares the processing for Body_Version |
| |
| ---------------- |
| -- Wide_Image -- |
| ---------------- |
| |
| -- We expand typ'Wide_Image (X) into |
| |
| -- String_To_Wide_String |
| -- (typ'Image (X), Wide_Character_Encoding_Method) |
| |
| -- This works in all cases because String_To_Wide_String converts any |
| -- wide character escape sequences resulting from the Image call to the |
| -- proper Wide_Character equivalent |
| |
| -- not quite right for typ = Wide_Character ??? |
| |
| when Attribute_Wide_Image => Wide_Image : |
| begin |
| Rewrite (N, |
| Make_Function_Call (Loc, |
| Name => New_Reference_To (RTE (RE_String_To_Wide_String), Loc), |
| Parameter_Associations => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => Pref, |
| Attribute_Name => Name_Image, |
| Expressions => Exprs), |
| |
| Make_Integer_Literal (Loc, |
| Intval => Int (Wide_Character_Encoding_Method))))); |
| |
| Analyze_And_Resolve (N, Standard_Wide_String); |
| end Wide_Image; |
| |
| ---------------- |
| -- Wide_Value -- |
| ---------------- |
| |
| -- We expand typ'Wide_Value (X) into |
| |
| -- typ'Value |
| -- (Wide_String_To_String (X, Wide_Character_Encoding_Method)) |
| |
| -- Wide_String_To_String is a runtime function that converts its wide |
| -- string argument to String, converting any non-translatable characters |
| -- into appropriate escape sequences. This preserves the required |
| -- semantics of Wide_Value in all cases, and results in a very simple |
| -- implementation approach. |
| |
| -- It's not quite right where typ = Wide_Character, because the encoding |
| -- method may not cover the whole character type ??? |
| |
| when Attribute_Wide_Value => Wide_Value : |
| begin |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => Pref, |
| Attribute_Name => Name_Value, |
| |
| Expressions => New_List ( |
| Make_Function_Call (Loc, |
| Name => |
| New_Reference_To (RTE (RE_Wide_String_To_String), Loc), |
| |
| Parameter_Associations => New_List ( |
| Relocate_Node (First (Exprs)), |
| Make_Integer_Literal (Loc, |
| Intval => Int (Wide_Character_Encoding_Method))))))); |
| |
| Analyze_And_Resolve (N, Typ); |
| end Wide_Value; |
| |
| ---------------- |
| -- Wide_Width -- |
| ---------------- |
| |
| -- Wide_Width attribute is handled in separate unit Exp_Imgv |
| |
| when Attribute_Wide_Width => |
| Exp_Imgv.Expand_Width_Attribute (N, Wide => True); |
| |
| ----------- |
| -- Width -- |
| ----------- |
| |
| -- Width attribute is handled in separate unit Exp_Imgv |
| |
| when Attribute_Width => |
| Exp_Imgv.Expand_Width_Attribute (N, Wide => False); |
| |
| ----------- |
| -- Write -- |
| ----------- |
| |
| when Attribute_Write => Write : declare |
| P_Type : constant Entity_Id := Entity (Pref); |
| U_Type : constant Entity_Id := Underlying_Type (P_Type); |
| Pname : Entity_Id; |
| Decl : Node_Id; |
| Prag : Node_Id; |
| Arg3 : Node_Id; |
| Wfunc : Node_Id; |
| |
| begin |
| -- If no underlying type, we have an error that will be diagnosed |
| -- elsewhere, so here we just completely ignore the expansion. |
| |
| if No (U_Type) then |
| return; |
| end if; |
| |
| -- The simple case, if there is a TSS for Write, just call it |
| |
| Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Write); |
| |
| if Present (Pname) then |
| null; |
| |
| else |
| -- If there is a Stream_Convert pragma, use it, we rewrite |
| |
| -- sourcetyp'Output (stream, Item) |
| |
| -- as |
| |
| -- strmtyp'Output (Stream, strmwrite (acttyp (Item))); |
| |
| -- where strmwrite is the given Write function that converts |
| -- an argument of type sourcetyp or a type acctyp, from which |
| -- it is derived to type strmtyp. The conversion to acttyp is |
| -- required for the derived case. |
| |
| Prag := |
| Get_Rep_Pragma |
| (Implementation_Base_Type (P_Type), Name_Stream_Convert); |
| |
| if Present (Prag) then |
| Arg3 := |
| Next (Next (First (Pragma_Argument_Associations (Prag)))); |
| Wfunc := Entity (Expression (Arg3)); |
| |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Etype (Wfunc), Loc), |
| Attribute_Name => Name_Output, |
| Expressions => New_List ( |
| Relocate_Node (First (Exprs)), |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (Wfunc, Loc), |
| Parameter_Associations => New_List ( |
| Convert_To (Etype (First_Formal (Wfunc)), |
| Relocate_Node (Next (First (Exprs))))))))); |
| |
| Analyze (N); |
| return; |
| |
| -- For elementary types, we call the W_xxx routine directly |
| |
| elsif Is_Elementary_Type (U_Type) then |
| Rewrite (N, Build_Elementary_Write_Call (N)); |
| Analyze (N); |
| return; |
| |
| -- Array type case |
| |
| elsif Is_Array_Type (U_Type) then |
| Build_Array_Write_Procedure (N, U_Type, Decl, Pname); |
| Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False); |
| |
| -- Tagged type case, use the primitive Write function. Note that |
| -- this will dispatch in the class-wide case which is what we want |
| |
| elsif Is_Tagged_Type (U_Type) then |
| Pname := Find_Prim_Op (U_Type, TSS_Stream_Write); |
| |
| -- All other record type cases, including protected records. |
| -- The latter only arise for expander generated code for |
| -- handling shared passive partition access. |
| |
| else |
| pragma Assert |
| (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type)); |
| |
| if Has_Discriminants (U_Type) |
| and then Present |
| (Discriminant_Default_Value (First_Discriminant (U_Type))) |
| then |
| Build_Mutable_Record_Write_Procedure |
| (Loc, Base_Type (U_Type), Decl, Pname); |
| |
| else |
| Build_Record_Write_Procedure |
| (Loc, Base_Type (U_Type), Decl, Pname); |
| end if; |
| |
| Insert_Action (N, Decl); |
| end if; |
| end if; |
| |
| -- If we fall through, Pname is the procedure to be called |
| |
| Rewrite_Stream_Proc_Call (Pname); |
| end Write; |
| |
| -- Component_Size is handled by Gigi, unless the component size is |
| -- known at compile time, which is always true in the packed array |
| -- case. It is important that the packed array case is handled in |
| -- the front end (see Eval_Attribute) since Gigi would otherwise |
| -- get confused by the equivalent packed array type. |
| |
| when Attribute_Component_Size => |
| null; |
| |
| -- The following attributes are handled by Gigi (except that static |
| -- cases have already been evaluated by the semantics, but in any |
| -- case Gigi should not count on that). |
| |
| -- In addition Gigi handles the non-floating-point cases of Pred |
| -- and Succ (including the fixed-point cases, which can just be |
| -- treated as integer increment/decrement operations) |
| |
| -- Gigi also handles the non-class-wide cases of Size |
| |
| when Attribute_Bit_Order | |
| Attribute_Code_Address | |
| Attribute_Definite | |
| Attribute_Max | |
| Attribute_Mechanism_Code | |
| Attribute_Min | |
| Attribute_Null_Parameter | |
| Attribute_Passed_By_Reference | |
| Attribute_Pool_Address => |
| null; |
| |
| -- The following attributes are also handled by Gigi, but return a |
| -- universal integer result, so may need a conversion for checking |
| -- that the result is in range. |
| |
| when Attribute_Aft | |
| Attribute_Bit | |
| Attribute_Max_Size_In_Storage_Elements |
| => |
| Apply_Universal_Integer_Attribute_Checks (N); |
| |
| -- The following attributes should not appear at this stage, since they |
| -- have already been handled by the analyzer (and properly rewritten |
| -- with corresponding values or entities to represent the right values) |
| |
| when Attribute_Abort_Signal | |
| Attribute_Address_Size | |
| Attribute_Base | |
| Attribute_Class | |
| Attribute_Default_Bit_Order | |
| Attribute_Delta | |
| Attribute_Denorm | |
| Attribute_Digits | |
| Attribute_Emax | |
| Attribute_Epsilon | |
| Attribute_Has_Discriminants | |
| Attribute_Large | |
| Attribute_Machine_Emax | |
| Attribute_Machine_Emin | |
| Attribute_Machine_Mantissa | |
| Attribute_Machine_Overflows | |
| Attribute_Machine_Radix | |
| Attribute_Machine_Rounds | |
| Attribute_Maximum_Alignment | |
| Attribute_Model_Emin | |
| Attribute_Model_Epsilon | |
| Attribute_Model_Mantissa | |
| Attribute_Model_Small | |
| Attribute_Modulus | |
| Attribute_Partition_ID | |
| Attribute_Range | |
| Attribute_Safe_Emax | |
| Attribute_Safe_First | |
| Attribute_Safe_Large | |
| Attribute_Safe_Last | |
| Attribute_Safe_Small | |
| Attribute_Scale | |
| Attribute_Signed_Zeros | |
| Attribute_Small | |
| Attribute_Storage_Unit | |
| Attribute_Target_Name | |
| Attribute_Type_Class | |
| Attribute_Unconstrained_Array | |
| Attribute_Universal_Literal_String | |
| Attribute_Wchar_T_Size | |
| Attribute_Word_Size => |
| |
| raise Program_Error; |
| |
| -- The Asm_Input and Asm_Output attributes are not expanded at this |
| -- stage, but will be eliminated in the expansion of the Asm call, |
| -- see Exp_Intr for details. So Gigi will never see these either. |
| |
| when Attribute_Asm_Input | |
| Attribute_Asm_Output => |
| |
| null; |
| |
| end case; |
| |
| exception |
| when RE_Not_Available => |
| return; |
| end Expand_N_Attribute_Reference; |
| |
| ---------------------- |
| -- Expand_Pred_Succ -- |
| ---------------------- |
| |
| -- For typ'Pred (exp), we generate the check |
| |
| -- [constraint_error when exp = typ'Base'First] |
| |
| -- Similarly, for typ'Succ (exp), we generate the check |
| |
| -- [constraint_error when exp = typ'Base'Last] |
| |
| -- These checks are not generated for modular types, since the proper |
| -- semantics for Succ and Pred on modular types is to wrap, not raise CE. |
| |
| procedure Expand_Pred_Succ (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| Cnam : Name_Id; |
| |
| begin |
| if Attribute_Name (N) = Name_Pred then |
| Cnam := Name_First; |
| else |
| Cnam := Name_Last; |
| end if; |
| |
| Insert_Action (N, |
| Make_Raise_Constraint_Error (Loc, |
| Condition => |
| Make_Op_Eq (Loc, |
| Left_Opnd => |
| Duplicate_Subexpr_Move_Checks (First (Expressions (N))), |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| New_Reference_To (Base_Type (Etype (Prefix (N))), Loc), |
| Attribute_Name => Cnam)), |
| Reason => CE_Overflow_Check_Failed)); |
| |
| end Expand_Pred_Succ; |
| |
| ------------------------ |
| -- Find_Inherited_TSS -- |
| ------------------------ |
| |
| function Find_Inherited_TSS |
| (Typ : Entity_Id; |
| Nam : TSS_Name_Type) return Entity_Id |
| is |
| Btyp : Entity_Id := Typ; |
| Proc : Entity_Id; |
| |
| begin |
| loop |
| Btyp := Base_Type (Btyp); |
| Proc := TSS (Btyp, Nam); |
| |
| exit when Present (Proc) |
| or else not Is_Derived_Type (Btyp); |
| |
| -- If Typ is a derived type, it may inherit attributes from |
| -- some ancestor. |
| |
| Btyp := Etype (Btyp); |
| end loop; |
| |
| if No (Proc) then |
| |
| -- If nothing else, use the TSS of the root type |
| |
| Proc := TSS (Base_Type (Underlying_Type (Typ)), Nam); |
| end if; |
| |
| return Proc; |
| |
| end Find_Inherited_TSS; |
| |
| ---------------------------- |
| -- Find_Stream_Subprogram -- |
| ---------------------------- |
| |
| function Find_Stream_Subprogram |
| (Typ : Entity_Id; |
| Nam : TSS_Name_Type) return Entity_Id is |
| begin |
| if Is_Tagged_Type (Typ) |
| and then Is_Derived_Type (Typ) |
| then |
| return Find_Prim_Op (Typ, Nam); |
| else |
| return Find_Inherited_TSS (Typ, Nam); |
| end if; |
| end Find_Stream_Subprogram; |
| |
| ----------------------- |
| -- Get_Index_Subtype -- |
| ----------------------- |
| |
| function Get_Index_Subtype (N : Node_Id) return Node_Id is |
| P_Type : Entity_Id := Etype (Prefix (N)); |
| Indx : Node_Id; |
| J : Int; |
| |
| begin |
| if Is_Access_Type (P_Type) then |
| P_Type := Designated_Type (P_Type); |
| end if; |
| |
| if No (Expressions (N)) then |
| J := 1; |
| else |
| J := UI_To_Int (Expr_Value (First (Expressions (N)))); |
| end if; |
| |
| Indx := First_Index (P_Type); |
| while J > 1 loop |
| Next_Index (Indx); |
| J := J - 1; |
| end loop; |
| |
| return Etype (Indx); |
| end Get_Index_Subtype; |
| |
| --------------------------------- |
| -- Is_Constrained_Packed_Array -- |
| --------------------------------- |
| |
| function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean is |
| Arr : Entity_Id := Typ; |
| |
| begin |
| if Is_Access_Type (Arr) then |
| Arr := Designated_Type (Arr); |
| end if; |
| |
| return Is_Array_Type (Arr) |
| and then Is_Constrained (Arr) |
| and then Present (Packed_Array_Type (Arr)); |
| end Is_Constrained_Packed_Array; |
| |
| end Exp_Attr; |