| /* Perform simple optimizations to clean up the result of reload. |
| Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, |
| 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 2, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING. If not, write to the Free |
| Software Foundation, 59 Temple Place - Suite 330, Boston, MA |
| 02111-1307, USA. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| |
| #include "machmode.h" |
| #include "hard-reg-set.h" |
| #include "rtl.h" |
| #include "tm_p.h" |
| #include "obstack.h" |
| #include "insn-config.h" |
| #include "flags.h" |
| #include "function.h" |
| #include "expr.h" |
| #include "optabs.h" |
| #include "regs.h" |
| #include "basic-block.h" |
| #include "reload.h" |
| #include "recog.h" |
| #include "output.h" |
| #include "cselib.h" |
| #include "real.h" |
| #include "toplev.h" |
| #include "except.h" |
| #include "tree.h" |
| |
| static int reload_cse_noop_set_p (rtx); |
| static void reload_cse_simplify (rtx, rtx); |
| static void reload_cse_regs_1 (rtx); |
| static int reload_cse_simplify_set (rtx, rtx); |
| static int reload_cse_simplify_operands (rtx, rtx); |
| |
| static void reload_combine (void); |
| static void reload_combine_note_use (rtx *, rtx); |
| static void reload_combine_note_store (rtx, rtx, void *); |
| |
| static void reload_cse_move2add (rtx); |
| static void move2add_note_store (rtx, rtx, void *); |
| |
| /* Call cse / combine like post-reload optimization phases. |
| FIRST is the first instruction. */ |
| void |
| reload_cse_regs (rtx first ATTRIBUTE_UNUSED) |
| { |
| reload_cse_regs_1 (first); |
| reload_combine (); |
| reload_cse_move2add (first); |
| if (flag_expensive_optimizations) |
| reload_cse_regs_1 (first); |
| } |
| |
| /* See whether a single set SET is a noop. */ |
| static int |
| reload_cse_noop_set_p (rtx set) |
| { |
| if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set))) |
| return 0; |
| |
| return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set)); |
| } |
| |
| /* Try to simplify INSN. */ |
| static void |
| reload_cse_simplify (rtx insn, rtx testreg) |
| { |
| rtx body = PATTERN (insn); |
| |
| if (GET_CODE (body) == SET) |
| { |
| int count = 0; |
| |
| /* Simplify even if we may think it is a no-op. |
| We may think a memory load of a value smaller than WORD_SIZE |
| is redundant because we haven't taken into account possible |
| implicit extension. reload_cse_simplify_set() will bring |
| this out, so it's safer to simplify before we delete. */ |
| count += reload_cse_simplify_set (body, insn); |
| |
| if (!count && reload_cse_noop_set_p (body)) |
| { |
| rtx value = SET_DEST (body); |
| if (REG_P (value) |
| && ! REG_FUNCTION_VALUE_P (value)) |
| value = 0; |
| delete_insn_and_edges (insn); |
| return; |
| } |
| |
| if (count > 0) |
| apply_change_group (); |
| else |
| reload_cse_simplify_operands (insn, testreg); |
| } |
| else if (GET_CODE (body) == PARALLEL) |
| { |
| int i; |
| int count = 0; |
| rtx value = NULL_RTX; |
| |
| /* Registers mentioned in the clobber list for an asm cannot be reused |
| within the body of the asm. Invalidate those registers now so that |
| we don't try to substitute values for them. */ |
| if (asm_noperands (body) >= 0) |
| { |
| for (i = XVECLEN (body, 0) - 1; i >= 0; --i) |
| { |
| rtx part = XVECEXP (body, 0, i); |
| if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0))) |
| cselib_invalidate_rtx (XEXP (part, 0)); |
| } |
| } |
| |
| /* If every action in a PARALLEL is a noop, we can delete |
| the entire PARALLEL. */ |
| for (i = XVECLEN (body, 0) - 1; i >= 0; --i) |
| { |
| rtx part = XVECEXP (body, 0, i); |
| if (GET_CODE (part) == SET) |
| { |
| if (! reload_cse_noop_set_p (part)) |
| break; |
| if (REG_P (SET_DEST (part)) |
| && REG_FUNCTION_VALUE_P (SET_DEST (part))) |
| { |
| if (value) |
| break; |
| value = SET_DEST (part); |
| } |
| } |
| else if (GET_CODE (part) != CLOBBER) |
| break; |
| } |
| |
| if (i < 0) |
| { |
| delete_insn_and_edges (insn); |
| /* We're done with this insn. */ |
| return; |
| } |
| |
| /* It's not a no-op, but we can try to simplify it. */ |
| for (i = XVECLEN (body, 0) - 1; i >= 0; --i) |
| if (GET_CODE (XVECEXP (body, 0, i)) == SET) |
| count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn); |
| |
| if (count > 0) |
| apply_change_group (); |
| else |
| reload_cse_simplify_operands (insn, testreg); |
| } |
| } |
| |
| /* Do a very simple CSE pass over the hard registers. |
| |
| This function detects no-op moves where we happened to assign two |
| different pseudo-registers to the same hard register, and then |
| copied one to the other. Reload will generate a useless |
| instruction copying a register to itself. |
| |
| This function also detects cases where we load a value from memory |
| into two different registers, and (if memory is more expensive than |
| registers) changes it to simply copy the first register into the |
| second register. |
| |
| Another optimization is performed that scans the operands of each |
| instruction to see whether the value is already available in a |
| hard register. It then replaces the operand with the hard register |
| if possible, much like an optional reload would. */ |
| |
| static void |
| reload_cse_regs_1 (rtx first) |
| { |
| rtx insn; |
| rtx testreg = gen_rtx_REG (VOIDmode, -1); |
| |
| cselib_init (); |
| init_alias_analysis (); |
| |
| for (insn = first; insn; insn = NEXT_INSN (insn)) |
| { |
| if (INSN_P (insn)) |
| reload_cse_simplify (insn, testreg); |
| |
| cselib_process_insn (insn); |
| } |
| |
| /* Clean up. */ |
| end_alias_analysis (); |
| cselib_finish (); |
| } |
| |
| /* Try to simplify a single SET instruction. SET is the set pattern. |
| INSN is the instruction it came from. |
| This function only handles one case: if we set a register to a value |
| which is not a register, we try to find that value in some other register |
| and change the set into a register copy. */ |
| |
| static int |
| reload_cse_simplify_set (rtx set, rtx insn) |
| { |
| int did_change = 0; |
| int dreg; |
| rtx src; |
| enum reg_class dclass; |
| int old_cost; |
| cselib_val *val; |
| struct elt_loc_list *l; |
| #ifdef LOAD_EXTEND_OP |
| enum rtx_code extend_op = NIL; |
| #endif |
| |
| dreg = true_regnum (SET_DEST (set)); |
| if (dreg < 0) |
| return 0; |
| |
| src = SET_SRC (set); |
| if (side_effects_p (src) || true_regnum (src) >= 0) |
| return 0; |
| |
| dclass = REGNO_REG_CLASS (dreg); |
| |
| #ifdef LOAD_EXTEND_OP |
| /* When replacing a memory with a register, we need to honor assumptions |
| that combine made wrt the contents of sign bits. We'll do this by |
| generating an extend instruction instead of a reg->reg copy. Thus |
| the destination must be a register that we can widen. */ |
| if (GET_CODE (src) == MEM |
| && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD |
| && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL |
| && GET_CODE (SET_DEST (set)) != REG) |
| return 0; |
| #endif |
| |
| val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0); |
| if (! val) |
| return 0; |
| |
| /* If memory loads are cheaper than register copies, don't change them. */ |
| if (GET_CODE (src) == MEM) |
| old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1); |
| else if (GET_CODE (src) == REG) |
| old_cost = REGISTER_MOVE_COST (GET_MODE (src), |
| REGNO_REG_CLASS (REGNO (src)), dclass); |
| else |
| old_cost = rtx_cost (src, SET); |
| |
| for (l = val->locs; l; l = l->next) |
| { |
| rtx this_rtx = l->loc; |
| int this_cost; |
| |
| if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0)) |
| { |
| #ifdef LOAD_EXTEND_OP |
| if (extend_op != NIL) |
| { |
| HOST_WIDE_INT this_val; |
| |
| /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other |
| constants, such as SYMBOL_REF, cannot be extended. */ |
| if (GET_CODE (this_rtx) != CONST_INT) |
| continue; |
| |
| this_val = INTVAL (this_rtx); |
| switch (extend_op) |
| { |
| case ZERO_EXTEND: |
| this_val &= GET_MODE_MASK (GET_MODE (src)); |
| break; |
| case SIGN_EXTEND: |
| /* ??? In theory we're already extended. */ |
| if (this_val == trunc_int_for_mode (this_val, GET_MODE (src))) |
| break; |
| default: |
| abort (); |
| } |
| this_rtx = GEN_INT (this_val); |
| } |
| #endif |
| this_cost = rtx_cost (this_rtx, SET); |
| } |
| else if (GET_CODE (this_rtx) == REG) |
| { |
| #ifdef LOAD_EXTEND_OP |
| if (extend_op != NIL) |
| { |
| this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx); |
| this_cost = rtx_cost (this_rtx, SET); |
| } |
| else |
| #endif |
| this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx), |
| REGNO_REG_CLASS (REGNO (this_rtx)), |
| dclass); |
| } |
| else |
| continue; |
| |
| /* If equal costs, prefer registers over anything else. That |
| tends to lead to smaller instructions on some machines. */ |
| if (this_cost < old_cost |
| || (this_cost == old_cost |
| && GET_CODE (this_rtx) == REG |
| && GET_CODE (SET_SRC (set)) != REG)) |
| { |
| #ifdef LOAD_EXTEND_OP |
| if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD |
| && extend_op != NIL |
| #ifdef CANNOT_CHANGE_MODE_CLASS |
| && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)), |
| word_mode, |
| REGNO_REG_CLASS (REGNO (SET_DEST (set)))) |
| #endif |
| ) |
| { |
| rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set))); |
| ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set)); |
| validate_change (insn, &SET_DEST (set), wide_dest, 1); |
| } |
| #endif |
| |
| validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1); |
| old_cost = this_cost, did_change = 1; |
| } |
| } |
| |
| return did_change; |
| } |
| |
| /* Try to replace operands in INSN with equivalent values that are already |
| in registers. This can be viewed as optional reloading. |
| |
| For each non-register operand in the insn, see if any hard regs are |
| known to be equivalent to that operand. Record the alternatives which |
| can accept these hard registers. Among all alternatives, select the |
| ones which are better or equal to the one currently matching, where |
| "better" is in terms of '?' and '!' constraints. Among the remaining |
| alternatives, select the one which replaces most operands with |
| hard registers. */ |
| |
| static int |
| reload_cse_simplify_operands (rtx insn, rtx testreg) |
| { |
| int i, j; |
| |
| /* For each operand, all registers that are equivalent to it. */ |
| HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS]; |
| |
| const char *constraints[MAX_RECOG_OPERANDS]; |
| |
| /* Vector recording how bad an alternative is. */ |
| int *alternative_reject; |
| /* Vector recording how many registers can be introduced by choosing |
| this alternative. */ |
| int *alternative_nregs; |
| /* Array of vectors recording, for each operand and each alternative, |
| which hard register to substitute, or -1 if the operand should be |
| left as it is. */ |
| int *op_alt_regno[MAX_RECOG_OPERANDS]; |
| /* Array of alternatives, sorted in order of decreasing desirability. */ |
| int *alternative_order; |
| |
| extract_insn (insn); |
| |
| if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0) |
| return 0; |
| |
| /* Figure out which alternative currently matches. */ |
| if (! constrain_operands (1)) |
| fatal_insn_not_found (insn); |
| |
| alternative_reject = alloca (recog_data.n_alternatives * sizeof (int)); |
| alternative_nregs = alloca (recog_data.n_alternatives * sizeof (int)); |
| alternative_order = alloca (recog_data.n_alternatives * sizeof (int)); |
| memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int)); |
| memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int)); |
| |
| /* For each operand, find out which regs are equivalent. */ |
| for (i = 0; i < recog_data.n_operands; i++) |
| { |
| cselib_val *v; |
| struct elt_loc_list *l; |
| rtx op; |
| enum machine_mode mode; |
| |
| CLEAR_HARD_REG_SET (equiv_regs[i]); |
| |
| /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem |
| right, so avoid the problem here. Likewise if we have a constant |
| and the insn pattern doesn't tell us the mode we need. */ |
| if (GET_CODE (recog_data.operand[i]) == CODE_LABEL |
| || (CONSTANT_P (recog_data.operand[i]) |
| && recog_data.operand_mode[i] == VOIDmode)) |
| continue; |
| |
| op = recog_data.operand[i]; |
| mode = GET_MODE (op); |
| #ifdef LOAD_EXTEND_OP |
| if (GET_CODE (op) == MEM |
| && GET_MODE_BITSIZE (mode) < BITS_PER_WORD |
| && LOAD_EXTEND_OP (mode) != NIL) |
| { |
| rtx set = single_set (insn); |
| |
| /* We might have multiple sets, some of which do implict |
| extension. Punt on this for now. */ |
| if (! set) |
| continue; |
| /* If the destination is a also MEM or a STRICT_LOW_PART, no |
| extension applies. |
| Also, if there is an explicit extension, we don't have to |
| worry about an implicit one. */ |
| else if (GET_CODE (SET_DEST (set)) == MEM |
| || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART |
| || GET_CODE (SET_SRC (set)) == ZERO_EXTEND |
| || GET_CODE (SET_SRC (set)) == SIGN_EXTEND) |
| ; /* Continue ordinary processing. */ |
| #ifdef CANNOT_CHANGE_MODE_CLASS |
| /* If the register cannot change mode to word_mode, it follows that |
| it cannot have been used in word_mode. */ |
| else if (GET_CODE (SET_DEST (set)) == REG |
| && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)), |
| word_mode, |
| REGNO_REG_CLASS (REGNO (SET_DEST (set))))) |
| ; /* Continue ordinary processing. */ |
| #endif |
| /* If this is a straight load, make the extension explicit. */ |
| else if (GET_CODE (SET_DEST (set)) == REG |
| && recog_data.n_operands == 2 |
| && SET_SRC (set) == op |
| && SET_DEST (set) == recog_data.operand[1-i]) |
| { |
| validate_change (insn, recog_data.operand_loc[i], |
| gen_rtx_fmt_e (LOAD_EXTEND_OP (mode), |
| word_mode, op), |
| 1); |
| validate_change (insn, recog_data.operand_loc[1-i], |
| gen_rtx_REG (word_mode, REGNO (SET_DEST (set))), |
| 1); |
| if (! apply_change_group ()) |
| return 0; |
| return reload_cse_simplify_operands (insn, testreg); |
| } |
| else |
| /* ??? There might be arithmetic operations with memory that are |
| safe to optimize, but is it worth the trouble? */ |
| continue; |
| } |
| #endif /* LOAD_EXTEND_OP */ |
| v = cselib_lookup (op, recog_data.operand_mode[i], 0); |
| if (! v) |
| continue; |
| |
| for (l = v->locs; l; l = l->next) |
| if (GET_CODE (l->loc) == REG) |
| SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc)); |
| } |
| |
| for (i = 0; i < recog_data.n_operands; i++) |
| { |
| enum machine_mode mode; |
| int regno; |
| const char *p; |
| |
| op_alt_regno[i] = alloca (recog_data.n_alternatives * sizeof (int)); |
| for (j = 0; j < recog_data.n_alternatives; j++) |
| op_alt_regno[i][j] = -1; |
| |
| p = constraints[i] = recog_data.constraints[i]; |
| mode = recog_data.operand_mode[i]; |
| |
| /* Add the reject values for each alternative given by the constraints |
| for this operand. */ |
| j = 0; |
| while (*p != '\0') |
| { |
| char c = *p++; |
| if (c == ',') |
| j++; |
| else if (c == '?') |
| alternative_reject[j] += 3; |
| else if (c == '!') |
| alternative_reject[j] += 300; |
| } |
| |
| /* We won't change operands which are already registers. We |
| also don't want to modify output operands. */ |
| regno = true_regnum (recog_data.operand[i]); |
| if (regno >= 0 |
| || constraints[i][0] == '=' |
| || constraints[i][0] == '+') |
| continue; |
| |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| { |
| int class = (int) NO_REGS; |
| |
| if (! TEST_HARD_REG_BIT (equiv_regs[i], regno)) |
| continue; |
| |
| REGNO (testreg) = regno; |
| PUT_MODE (testreg, mode); |
| |
| /* We found a register equal to this operand. Now look for all |
| alternatives that can accept this register and have not been |
| assigned a register they can use yet. */ |
| j = 0; |
| p = constraints[i]; |
| for (;;) |
| { |
| char c = *p; |
| |
| switch (c) |
| { |
| case '=': case '+': case '?': |
| case '#': case '&': case '!': |
| case '*': case '%': |
| case '0': case '1': case '2': case '3': case '4': |
| case '5': case '6': case '7': case '8': case '9': |
| case 'm': case '<': case '>': case 'V': case 'o': |
| case 'E': case 'F': case 'G': case 'H': |
| case 's': case 'i': case 'n': |
| case 'I': case 'J': case 'K': case 'L': |
| case 'M': case 'N': case 'O': case 'P': |
| case 'p': case 'X': |
| /* These don't say anything we care about. */ |
| break; |
| |
| case 'g': case 'r': |
| class = reg_class_subunion[(int) class][(int) GENERAL_REGS]; |
| break; |
| |
| default: |
| class |
| = (reg_class_subunion |
| [(int) class] |
| [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]); |
| break; |
| |
| case ',': case '\0': |
| /* See if REGNO fits this alternative, and set it up as the |
| replacement register if we don't have one for this |
| alternative yet and the operand being replaced is not |
| a cheap CONST_INT. */ |
| if (op_alt_regno[i][j] == -1 |
| && reg_fits_class_p (testreg, class, 0, mode) |
| && (GET_CODE (recog_data.operand[i]) != CONST_INT |
| || (rtx_cost (recog_data.operand[i], SET) |
| > rtx_cost (testreg, SET)))) |
| { |
| alternative_nregs[j]++; |
| op_alt_regno[i][j] = regno; |
| } |
| j++; |
| break; |
| } |
| p += CONSTRAINT_LEN (c, p); |
| |
| if (c == '\0') |
| break; |
| } |
| } |
| } |
| |
| /* Record all alternatives which are better or equal to the currently |
| matching one in the alternative_order array. */ |
| for (i = j = 0; i < recog_data.n_alternatives; i++) |
| if (alternative_reject[i] <= alternative_reject[which_alternative]) |
| alternative_order[j++] = i; |
| recog_data.n_alternatives = j; |
| |
| /* Sort it. Given a small number of alternatives, a dumb algorithm |
| won't hurt too much. */ |
| for (i = 0; i < recog_data.n_alternatives - 1; i++) |
| { |
| int best = i; |
| int best_reject = alternative_reject[alternative_order[i]]; |
| int best_nregs = alternative_nregs[alternative_order[i]]; |
| int tmp; |
| |
| for (j = i + 1; j < recog_data.n_alternatives; j++) |
| { |
| int this_reject = alternative_reject[alternative_order[j]]; |
| int this_nregs = alternative_nregs[alternative_order[j]]; |
| |
| if (this_reject < best_reject |
| || (this_reject == best_reject && this_nregs < best_nregs)) |
| { |
| best = j; |
| best_reject = this_reject; |
| best_nregs = this_nregs; |
| } |
| } |
| |
| tmp = alternative_order[best]; |
| alternative_order[best] = alternative_order[i]; |
| alternative_order[i] = tmp; |
| } |
| |
| /* Substitute the operands as determined by op_alt_regno for the best |
| alternative. */ |
| j = alternative_order[0]; |
| |
| for (i = 0; i < recog_data.n_operands; i++) |
| { |
| enum machine_mode mode = recog_data.operand_mode[i]; |
| if (op_alt_regno[i][j] == -1) |
| continue; |
| |
| validate_change (insn, recog_data.operand_loc[i], |
| gen_rtx_REG (mode, op_alt_regno[i][j]), 1); |
| } |
| |
| for (i = recog_data.n_dups - 1; i >= 0; i--) |
| { |
| int op = recog_data.dup_num[i]; |
| enum machine_mode mode = recog_data.operand_mode[op]; |
| |
| if (op_alt_regno[op][j] == -1) |
| continue; |
| |
| validate_change (insn, recog_data.dup_loc[i], |
| gen_rtx_REG (mode, op_alt_regno[op][j]), 1); |
| } |
| |
| return apply_change_group (); |
| } |
| |
| /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg |
| addressing now. |
| This code might also be useful when reload gave up on reg+reg addressing |
| because of clashes between the return register and INDEX_REG_CLASS. */ |
| |
| /* The maximum number of uses of a register we can keep track of to |
| replace them with reg+reg addressing. */ |
| #define RELOAD_COMBINE_MAX_USES 6 |
| |
| /* INSN is the insn where a register has ben used, and USEP points to the |
| location of the register within the rtl. */ |
| struct reg_use { rtx insn, *usep; }; |
| |
| /* If the register is used in some unknown fashion, USE_INDEX is negative. |
| If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID |
| indicates where it becomes live again. |
| Otherwise, USE_INDEX is the index of the last encountered use of the |
| register (which is first among these we have seen since we scan backwards), |
| OFFSET contains the constant offset that is added to the register in |
| all encountered uses, and USE_RUID indicates the first encountered, i.e. |
| last, of these uses. |
| STORE_RUID is always meaningful if we only want to use a value in a |
| register in a different place: it denotes the next insn in the insn |
| stream (i.e. the last encountered) that sets or clobbers the register. */ |
| static struct |
| { |
| struct reg_use reg_use[RELOAD_COMBINE_MAX_USES]; |
| int use_index; |
| rtx offset; |
| int store_ruid; |
| int use_ruid; |
| } reg_state[FIRST_PSEUDO_REGISTER]; |
| |
| /* Reverse linear uid. This is increased in reload_combine while scanning |
| the instructions from last to first. It is used to set last_label_ruid |
| and the store_ruid / use_ruid fields in reg_state. */ |
| static int reload_combine_ruid; |
| |
| #define LABEL_LIVE(LABEL) \ |
| (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno]) |
| |
| static void |
| reload_combine (void) |
| { |
| rtx insn, set; |
| int first_index_reg = -1; |
| int last_index_reg = 0; |
| int i; |
| basic_block bb; |
| unsigned int r; |
| int last_label_ruid; |
| int min_labelno, n_labels; |
| HARD_REG_SET ever_live_at_start, *label_live; |
| |
| /* If reg+reg can be used in offsetable memory addresses, the main chunk of |
| reload has already used it where appropriate, so there is no use in |
| trying to generate it now. */ |
| if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS) |
| return; |
| |
| /* To avoid wasting too much time later searching for an index register, |
| determine the minimum and maximum index register numbers. */ |
| for (r = 0; r < FIRST_PSEUDO_REGISTER; r++) |
| if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r)) |
| { |
| if (first_index_reg == -1) |
| first_index_reg = r; |
| |
| last_index_reg = r; |
| } |
| |
| /* If no index register is available, we can quit now. */ |
| if (first_index_reg == -1) |
| return; |
| |
| /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime |
| information is a bit fuzzy immediately after reload, but it's |
| still good enough to determine which registers are live at a jump |
| destination. */ |
| min_labelno = get_first_label_num (); |
| n_labels = max_label_num () - min_labelno; |
| label_live = xmalloc (n_labels * sizeof (HARD_REG_SET)); |
| CLEAR_HARD_REG_SET (ever_live_at_start); |
| |
| FOR_EACH_BB_REVERSE (bb) |
| { |
| insn = BB_HEAD (bb); |
| if (GET_CODE (insn) == CODE_LABEL) |
| { |
| HARD_REG_SET live; |
| |
| REG_SET_TO_HARD_REG_SET (live, |
| bb->global_live_at_start); |
| compute_use_by_pseudos (&live, |
| bb->global_live_at_start); |
| COPY_HARD_REG_SET (LABEL_LIVE (insn), live); |
| IOR_HARD_REG_SET (ever_live_at_start, live); |
| } |
| } |
| |
| /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */ |
| last_label_ruid = reload_combine_ruid = 0; |
| for (r = 0; r < FIRST_PSEUDO_REGISTER; r++) |
| { |
| reg_state[r].store_ruid = reload_combine_ruid; |
| if (fixed_regs[r]) |
| reg_state[r].use_index = -1; |
| else |
| reg_state[r].use_index = RELOAD_COMBINE_MAX_USES; |
| } |
| |
| for (insn = get_last_insn (); insn; insn = PREV_INSN (insn)) |
| { |
| rtx note; |
| |
| /* We cannot do our optimization across labels. Invalidating all the use |
| information we have would be costly, so we just note where the label |
| is and then later disable any optimization that would cross it. */ |
| if (GET_CODE (insn) == CODE_LABEL) |
| last_label_ruid = reload_combine_ruid; |
| else if (GET_CODE (insn) == BARRIER) |
| for (r = 0; r < FIRST_PSEUDO_REGISTER; r++) |
| if (! fixed_regs[r]) |
| reg_state[r].use_index = RELOAD_COMBINE_MAX_USES; |
| |
| if (! INSN_P (insn)) |
| continue; |
| |
| reload_combine_ruid++; |
| |
| /* Look for (set (REGX) (CONST_INT)) |
| (set (REGX) (PLUS (REGX) (REGY))) |
| ... |
| ... (MEM (REGX)) ... |
| and convert it to |
| (set (REGZ) (CONST_INT)) |
| ... |
| ... (MEM (PLUS (REGZ) (REGY)))... . |
| |
| First, check that we have (set (REGX) (PLUS (REGX) (REGY))) |
| and that we know all uses of REGX before it dies. |
| Also, explicitly check that REGX != REGY; our life information |
| does not yet show whether REGY changes in this insn. */ |
| set = single_set (insn); |
| if (set != NULL_RTX |
| && GET_CODE (SET_DEST (set)) == REG |
| && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)), |
| GET_MODE (SET_DEST (set))) |
| == 1) |
| && GET_CODE (SET_SRC (set)) == PLUS |
| && GET_CODE (XEXP (SET_SRC (set), 1)) == REG |
| && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set)) |
| && !rtx_equal_p (XEXP (SET_SRC (set), 1), SET_DEST (set)) |
| && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid) |
| { |
| rtx reg = SET_DEST (set); |
| rtx plus = SET_SRC (set); |
| rtx base = XEXP (plus, 1); |
| rtx prev = prev_nonnote_insn (insn); |
| rtx prev_set = prev ? single_set (prev) : NULL_RTX; |
| unsigned int regno = REGNO (reg); |
| rtx const_reg = NULL_RTX; |
| rtx reg_sum = NULL_RTX; |
| |
| /* Now, we need an index register. |
| We'll set index_reg to this index register, const_reg to the |
| register that is to be loaded with the constant |
| (denoted as REGZ in the substitution illustration above), |
| and reg_sum to the register-register that we want to use to |
| substitute uses of REG (typically in MEMs) with. |
| First check REG and BASE for being index registers; |
| we can use them even if they are not dead. */ |
| if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno) |
| || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], |
| REGNO (base))) |
| { |
| const_reg = reg; |
| reg_sum = plus; |
| } |
| else |
| { |
| /* Otherwise, look for a free index register. Since we have |
| checked above that neither REG nor BASE are index registers, |
| if we find anything at all, it will be different from these |
| two registers. */ |
| for (i = first_index_reg; i <= last_index_reg; i++) |
| { |
| if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], |
| i) |
| && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES |
| && reg_state[i].store_ruid <= reg_state[regno].use_ruid |
| && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1) |
| { |
| rtx index_reg = gen_rtx_REG (GET_MODE (reg), i); |
| |
| const_reg = index_reg; |
| reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base); |
| break; |
| } |
| } |
| } |
| |
| /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that |
| (REGY), i.e. BASE, is not clobbered before the last use we'll |
| create. */ |
| if (prev_set != 0 |
| && GET_CODE (SET_SRC (prev_set)) == CONST_INT |
| && rtx_equal_p (SET_DEST (prev_set), reg) |
| && reg_state[regno].use_index >= 0 |
| && (reg_state[REGNO (base)].store_ruid |
| <= reg_state[regno].use_ruid) |
| && reg_sum != 0) |
| { |
| int i; |
| |
| /* Change destination register and, if necessary, the |
| constant value in PREV, the constant loading instruction. */ |
| validate_change (prev, &SET_DEST (prev_set), const_reg, 1); |
| if (reg_state[regno].offset != const0_rtx) |
| validate_change (prev, |
| &SET_SRC (prev_set), |
| GEN_INT (INTVAL (SET_SRC (prev_set)) |
| + INTVAL (reg_state[regno].offset)), |
| 1); |
| |
| /* Now for every use of REG that we have recorded, replace REG |
| with REG_SUM. */ |
| for (i = reg_state[regno].use_index; |
| i < RELOAD_COMBINE_MAX_USES; i++) |
| validate_change (reg_state[regno].reg_use[i].insn, |
| reg_state[regno].reg_use[i].usep, |
| /* Each change must have its own |
| replacement. */ |
| copy_rtx (reg_sum), 1); |
| |
| if (apply_change_group ()) |
| { |
| rtx *np; |
| |
| /* Delete the reg-reg addition. */ |
| delete_insn (insn); |
| |
| if (reg_state[regno].offset != const0_rtx) |
| /* Previous REG_EQUIV / REG_EQUAL notes for PREV |
| are now invalid. */ |
| for (np = ®_NOTES (prev); *np;) |
| { |
| if (REG_NOTE_KIND (*np) == REG_EQUAL |
| || REG_NOTE_KIND (*np) == REG_EQUIV) |
| *np = XEXP (*np, 1); |
| else |
| np = &XEXP (*np, 1); |
| } |
| |
| reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES; |
| reg_state[REGNO (const_reg)].store_ruid |
| = reload_combine_ruid; |
| continue; |
| } |
| } |
| } |
| |
| note_stores (PATTERN (insn), reload_combine_note_store, NULL); |
| |
| if (GET_CODE (insn) == CALL_INSN) |
| { |
| rtx link; |
| |
| for (r = 0; r < FIRST_PSEUDO_REGISTER; r++) |
| if (call_used_regs[r]) |
| { |
| reg_state[r].use_index = RELOAD_COMBINE_MAX_USES; |
| reg_state[r].store_ruid = reload_combine_ruid; |
| } |
| |
| for (link = CALL_INSN_FUNCTION_USAGE (insn); link; |
| link = XEXP (link, 1)) |
| { |
| rtx usage_rtx = XEXP (XEXP (link, 0), 0); |
| if (GET_CODE (usage_rtx) == REG) |
| { |
| unsigned int i; |
| unsigned int start_reg = REGNO (usage_rtx); |
| unsigned int num_regs = |
| HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx)); |
| unsigned int end_reg = start_reg + num_regs - 1; |
| for (i = start_reg; i <= end_reg; i++) |
| if (GET_CODE (XEXP (link, 0)) == CLOBBER) |
| { |
| reg_state[i].use_index = RELOAD_COMBINE_MAX_USES; |
| reg_state[i].store_ruid = reload_combine_ruid; |
| } |
| else |
| reg_state[i].use_index = -1; |
| } |
| } |
| |
| } |
| else if (GET_CODE (insn) == JUMP_INSN |
| && GET_CODE (PATTERN (insn)) != RETURN) |
| { |
| /* Non-spill registers might be used at the call destination in |
| some unknown fashion, so we have to mark the unknown use. */ |
| HARD_REG_SET *live; |
| |
| if ((condjump_p (insn) || condjump_in_parallel_p (insn)) |
| && JUMP_LABEL (insn)) |
| live = &LABEL_LIVE (JUMP_LABEL (insn)); |
| else |
| live = &ever_live_at_start; |
| |
| for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i) |
| if (TEST_HARD_REG_BIT (*live, i)) |
| reg_state[i].use_index = -1; |
| } |
| |
| reload_combine_note_use (&PATTERN (insn), insn); |
| for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) |
| { |
| if (REG_NOTE_KIND (note) == REG_INC |
| && GET_CODE (XEXP (note, 0)) == REG) |
| { |
| int regno = REGNO (XEXP (note, 0)); |
| |
| reg_state[regno].store_ruid = reload_combine_ruid; |
| reg_state[regno].use_index = -1; |
| } |
| } |
| } |
| |
| free (label_live); |
| } |
| |
| /* Check if DST is a register or a subreg of a register; if it is, |
| update reg_state[regno].store_ruid and reg_state[regno].use_index |
| accordingly. Called via note_stores from reload_combine. */ |
| |
| static void |
| reload_combine_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED) |
| { |
| int regno = 0; |
| int i; |
| enum machine_mode mode = GET_MODE (dst); |
| |
| if (GET_CODE (dst) == SUBREG) |
| { |
| regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)), |
| GET_MODE (SUBREG_REG (dst)), |
| SUBREG_BYTE (dst), |
| GET_MODE (dst)); |
| dst = SUBREG_REG (dst); |
| } |
| if (GET_CODE (dst) != REG) |
| return; |
| regno += REGNO (dst); |
| |
| /* note_stores might have stripped a STRICT_LOW_PART, so we have to be |
| careful with registers / register parts that are not full words. |
| |
| Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */ |
| if (GET_CODE (set) != SET |
| || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT |
| || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT |
| || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART) |
| { |
| for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--) |
| { |
| reg_state[i].use_index = -1; |
| reg_state[i].store_ruid = reload_combine_ruid; |
| } |
| } |
| else |
| { |
| for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--) |
| { |
| reg_state[i].store_ruid = reload_combine_ruid; |
| reg_state[i].use_index = RELOAD_COMBINE_MAX_USES; |
| } |
| } |
| } |
| |
| /* XP points to a piece of rtl that has to be checked for any uses of |
| registers. |
| *XP is the pattern of INSN, or a part of it. |
| Called from reload_combine, and recursively by itself. */ |
| static void |
| reload_combine_note_use (rtx *xp, rtx insn) |
| { |
| rtx x = *xp; |
| enum rtx_code code = x->code; |
| const char *fmt; |
| int i, j; |
| rtx offset = const0_rtx; /* For the REG case below. */ |
| |
| switch (code) |
| { |
| case SET: |
| if (GET_CODE (SET_DEST (x)) == REG) |
| { |
| reload_combine_note_use (&SET_SRC (x), insn); |
| return; |
| } |
| break; |
| |
| case USE: |
| /* If this is the USE of a return value, we can't change it. */ |
| if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0))) |
| { |
| /* Mark the return register as used in an unknown fashion. */ |
| rtx reg = XEXP (x, 0); |
| int regno = REGNO (reg); |
| int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg)); |
| |
| while (--nregs >= 0) |
| reg_state[regno + nregs].use_index = -1; |
| return; |
| } |
| break; |
| |
| case CLOBBER: |
| if (GET_CODE (SET_DEST (x)) == REG) |
| { |
| /* No spurious CLOBBERs of pseudo registers may remain. */ |
| if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER) |
| abort (); |
| return; |
| } |
| break; |
| |
| case PLUS: |
| /* We are interested in (plus (reg) (const_int)) . */ |
| if (GET_CODE (XEXP (x, 0)) != REG |
| || GET_CODE (XEXP (x, 1)) != CONST_INT) |
| break; |
| offset = XEXP (x, 1); |
| x = XEXP (x, 0); |
| /* Fall through. */ |
| case REG: |
| { |
| int regno = REGNO (x); |
| int use_index; |
| int nregs; |
| |
| /* No spurious USEs of pseudo registers may remain. */ |
| if (regno >= FIRST_PSEUDO_REGISTER) |
| abort (); |
| |
| nregs = HARD_REGNO_NREGS (regno, GET_MODE (x)); |
| |
| /* We can't substitute into multi-hard-reg uses. */ |
| if (nregs > 1) |
| { |
| while (--nregs >= 0) |
| reg_state[regno + nregs].use_index = -1; |
| return; |
| } |
| |
| /* If this register is already used in some unknown fashion, we |
| can't do anything. |
| If we decrement the index from zero to -1, we can't store more |
| uses, so this register becomes used in an unknown fashion. */ |
| use_index = --reg_state[regno].use_index; |
| if (use_index < 0) |
| return; |
| |
| if (use_index != RELOAD_COMBINE_MAX_USES - 1) |
| { |
| /* We have found another use for a register that is already |
| used later. Check if the offsets match; if not, mark the |
| register as used in an unknown fashion. */ |
| if (! rtx_equal_p (offset, reg_state[regno].offset)) |
| { |
| reg_state[regno].use_index = -1; |
| return; |
| } |
| } |
| else |
| { |
| /* This is the first use of this register we have seen since we |
| marked it as dead. */ |
| reg_state[regno].offset = offset; |
| reg_state[regno].use_ruid = reload_combine_ruid; |
| } |
| reg_state[regno].reg_use[use_index].insn = insn; |
| reg_state[regno].reg_use[use_index].usep = xp; |
| return; |
| } |
| |
| default: |
| break; |
| } |
| |
| /* Recursively process the components of X. */ |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e') |
| reload_combine_note_use (&XEXP (x, i), insn); |
| else if (fmt[i] == 'E') |
| { |
| for (j = XVECLEN (x, i) - 1; j >= 0; j--) |
| reload_combine_note_use (&XVECEXP (x, i, j), insn); |
| } |
| } |
| } |
| |
| /* See if we can reduce the cost of a constant by replacing a move |
| with an add. We track situations in which a register is set to a |
| constant or to a register plus a constant. */ |
| /* We cannot do our optimization across labels. Invalidating all the |
| information about register contents we have would be costly, so we |
| use move2add_last_label_luid to note where the label is and then |
| later disable any optimization that would cross it. |
| reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if |
| reg_set_luid[n] is greater than move2add_last_label_luid. */ |
| static int reg_set_luid[FIRST_PSEUDO_REGISTER]; |
| |
| /* If reg_base_reg[n] is negative, register n has been set to |
| reg_offset[n] in mode reg_mode[n] . |
| If reg_base_reg[n] is non-negative, register n has been set to the |
| sum of reg_offset[n] and the value of register reg_base_reg[n] |
| before reg_set_luid[n], calculated in mode reg_mode[n] . */ |
| static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER]; |
| static int reg_base_reg[FIRST_PSEUDO_REGISTER]; |
| static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER]; |
| |
| /* move2add_luid is linearly increased while scanning the instructions |
| from first to last. It is used to set reg_set_luid in |
| reload_cse_move2add and move2add_note_store. */ |
| static int move2add_luid; |
| |
| /* move2add_last_label_luid is set whenever a label is found. Labels |
| invalidate all previously collected reg_offset data. */ |
| static int move2add_last_label_luid; |
| |
| /* ??? We don't know how zero / sign extension is handled, hence we |
| can't go from a narrower to a wider mode. */ |
| #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \ |
| (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \ |
| || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \ |
| && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \ |
| GET_MODE_BITSIZE (INMODE)))) |
| |
| static void |
| reload_cse_move2add (rtx first) |
| { |
| int i; |
| rtx insn; |
| |
| for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--) |
| reg_set_luid[i] = 0; |
| |
| move2add_last_label_luid = 0; |
| move2add_luid = 2; |
| for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++) |
| { |
| rtx pat, note; |
| |
| if (GET_CODE (insn) == CODE_LABEL) |
| { |
| move2add_last_label_luid = move2add_luid; |
| /* We're going to increment move2add_luid twice after a |
| label, so that we can use move2add_last_label_luid + 1 as |
| the luid for constants. */ |
| move2add_luid++; |
| continue; |
| } |
| if (! INSN_P (insn)) |
| continue; |
| pat = PATTERN (insn); |
| /* For simplicity, we only perform this optimization on |
| straightforward SETs. */ |
| if (GET_CODE (pat) == SET |
| && GET_CODE (SET_DEST (pat)) == REG) |
| { |
| rtx reg = SET_DEST (pat); |
| int regno = REGNO (reg); |
| rtx src = SET_SRC (pat); |
| |
| /* Check if we have valid information on the contents of this |
| register in the mode of REG. */ |
| if (reg_set_luid[regno] > move2add_last_label_luid |
| && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])) |
| { |
| /* Try to transform (set (REGX) (CONST_INT A)) |
| ... |
| (set (REGX) (CONST_INT B)) |
| to |
| (set (REGX) (CONST_INT A)) |
| ... |
| (set (REGX) (plus (REGX) (CONST_INT B-A))) |
| or |
| (set (REGX) (CONST_INT A)) |
| ... |
| (set (STRICT_LOW_PART (REGX)) (CONST_INT B)) |
| */ |
| |
| if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0) |
| { |
| rtx new_src = |
| GEN_INT (trunc_int_for_mode (INTVAL (src) |
| - reg_offset[regno], |
| GET_MODE (reg))); |
| /* (set (reg) (plus (reg) (const_int 0))) is not canonical; |
| use (set (reg) (reg)) instead. |
| We don't delete this insn, nor do we convert it into a |
| note, to avoid losing register notes or the return |
| value flag. jump2 already knows how to get rid of |
| no-op moves. */ |
| if (new_src == const0_rtx) |
| { |
| /* If the constants are different, this is a |
| truncation, that, if turned into (set (reg) |
| (reg)), would be discarded. Maybe we should |
| try a truncMN pattern? */ |
| if (INTVAL (src) == reg_offset [regno]) |
| validate_change (insn, &SET_SRC (pat), reg, 0); |
| } |
| else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET) |
| && have_add2_insn (reg, new_src)) |
| { |
| rtx newpat = gen_rtx_SET (VOIDmode, |
| reg, |
| gen_rtx_PLUS (GET_MODE (reg), |
| reg, |
| new_src)); |
| validate_change (insn, &PATTERN (insn), newpat, 0); |
| } |
| else |
| { |
| enum machine_mode narrow_mode; |
| for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); |
| narrow_mode != GET_MODE (reg); |
| narrow_mode = GET_MODE_WIDER_MODE (narrow_mode)) |
| { |
| if (have_insn_for (STRICT_LOW_PART, narrow_mode) |
| && ((reg_offset[regno] |
| & ~GET_MODE_MASK (narrow_mode)) |
| == (INTVAL (src) |
| & ~GET_MODE_MASK (narrow_mode)))) |
| { |
| rtx narrow_reg = gen_rtx_REG (narrow_mode, |
| REGNO (reg)); |
| rtx narrow_src = |
| GEN_INT (trunc_int_for_mode (INTVAL (src), |
| narrow_mode)); |
| rtx new_set = |
| gen_rtx_SET (VOIDmode, |
| gen_rtx_STRICT_LOW_PART (VOIDmode, |
| narrow_reg), |
| narrow_src); |
| if (validate_change (insn, &PATTERN (insn), |
| new_set, 0)) |
| break; |
| } |
| } |
| } |
| reg_set_luid[regno] = move2add_luid; |
| reg_mode[regno] = GET_MODE (reg); |
| reg_offset[regno] = INTVAL (src); |
| continue; |
| } |
| |
| /* Try to transform (set (REGX) (REGY)) |
| (set (REGX) (PLUS (REGX) (CONST_INT A))) |
| ... |
| (set (REGX) (REGY)) |
| (set (REGX) (PLUS (REGX) (CONST_INT B))) |
| to |
| (set (REGX) (REGY)) |
| (set (REGX) (PLUS (REGX) (CONST_INT A))) |
| ... |
| (set (REGX) (plus (REGX) (CONST_INT B-A))) */ |
| else if (GET_CODE (src) == REG |
| && reg_set_luid[regno] == reg_set_luid[REGNO (src)] |
| && reg_base_reg[regno] == reg_base_reg[REGNO (src)] |
| && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), |
| reg_mode[REGNO (src)])) |
| { |
| rtx next = next_nonnote_insn (insn); |
| rtx set = NULL_RTX; |
| if (next) |
| set = single_set (next); |
| if (set |
| && SET_DEST (set) == reg |
| && GET_CODE (SET_SRC (set)) == PLUS |
| && XEXP (SET_SRC (set), 0) == reg |
| && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT) |
| { |
| rtx src3 = XEXP (SET_SRC (set), 1); |
| HOST_WIDE_INT added_offset = INTVAL (src3); |
| HOST_WIDE_INT base_offset = reg_offset[REGNO (src)]; |
| HOST_WIDE_INT regno_offset = reg_offset[regno]; |
| rtx new_src = |
| GEN_INT (trunc_int_for_mode (added_offset |
| + base_offset |
| - regno_offset, |
| GET_MODE (reg))); |
| int success = 0; |
| |
| if (new_src == const0_rtx) |
| /* See above why we create (set (reg) (reg)) here. */ |
| success |
| = validate_change (next, &SET_SRC (set), reg, 0); |
| else if ((rtx_cost (new_src, PLUS) |
| < COSTS_N_INSNS (1) + rtx_cost (src3, SET)) |
| && have_add2_insn (reg, new_src)) |
| { |
| rtx newpat = gen_rtx_SET (VOIDmode, |
| reg, |
| gen_rtx_PLUS (GET_MODE (reg), |
| reg, |
| new_src)); |
| success |
| = validate_change (next, &PATTERN (next), |
| newpat, 0); |
| } |
| if (success) |
| delete_insn (insn); |
| insn = next; |
| reg_mode[regno] = GET_MODE (reg); |
| reg_offset[regno] = |
| trunc_int_for_mode (added_offset + base_offset, |
| GET_MODE (reg)); |
| continue; |
| } |
| } |
| } |
| } |
| |
| for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) |
| { |
| if (REG_NOTE_KIND (note) == REG_INC |
| && GET_CODE (XEXP (note, 0)) == REG) |
| { |
| /* Reset the information about this register. */ |
| int regno = REGNO (XEXP (note, 0)); |
| if (regno < FIRST_PSEUDO_REGISTER) |
| reg_set_luid[regno] = 0; |
| } |
| } |
| note_stores (PATTERN (insn), move2add_note_store, NULL); |
| |
| /* If INSN is a conditional branch, we try to extract an |
| implicit set out of it. */ |
| if (any_condjump_p (insn) && onlyjump_p (insn)) |
| { |
| rtx cnd = fis_get_condition (insn); |
| |
| if (cnd != NULL_RTX |
| && GET_CODE (cnd) == NE |
| && GET_CODE (XEXP (cnd, 0)) == REG |
| /* The following two checks, which are also in |
| move2add_note_store, are intended to reduce the |
| number of calls to gen_rtx_SET to avoid memory |
| allocation if possible. */ |
| && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0))) |
| && HARD_REGNO_NREGS (REGNO (XEXP (cnd, 0)), GET_MODE (XEXP (cnd, 0))) == 1 |
| && GET_CODE (XEXP (cnd, 1)) == CONST_INT) |
| { |
| rtx implicit_set = |
| gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1)); |
| move2add_note_store (SET_DEST (implicit_set), implicit_set, 0); |
| } |
| } |
| |
| /* If this is a CALL_INSN, all call used registers are stored with |
| unknown values. */ |
| if (GET_CODE (insn) == CALL_INSN) |
| { |
| for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--) |
| { |
| if (call_used_regs[i]) |
| /* Reset the information about this register. */ |
| reg_set_luid[i] = 0; |
| } |
| } |
| } |
| } |
| |
| /* SET is a SET or CLOBBER that sets DST. |
| Update reg_set_luid, reg_offset and reg_base_reg accordingly. |
| Called from reload_cse_move2add via note_stores. */ |
| |
| static void |
| move2add_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED) |
| { |
| unsigned int regno = 0; |
| unsigned int i; |
| enum machine_mode mode = GET_MODE (dst); |
| |
| if (GET_CODE (dst) == SUBREG) |
| { |
| regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)), |
| GET_MODE (SUBREG_REG (dst)), |
| SUBREG_BYTE (dst), |
| GET_MODE (dst)); |
| dst = SUBREG_REG (dst); |
| } |
| |
| /* Some targets do argument pushes without adding REG_INC notes. */ |
| |
| if (GET_CODE (dst) == MEM) |
| { |
| dst = XEXP (dst, 0); |
| if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC |
| || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC) |
| reg_set_luid[REGNO (XEXP (dst, 0))] = 0; |
| return; |
| } |
| if (GET_CODE (dst) != REG) |
| return; |
| |
| regno += REGNO (dst); |
| |
| if (SCALAR_INT_MODE_P (mode) |
| && HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET |
| && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT |
| && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT |
| && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART) |
| { |
| rtx src = SET_SRC (set); |
| rtx base_reg; |
| HOST_WIDE_INT offset; |
| int base_regno; |
| /* This may be different from mode, if SET_DEST (set) is a |
| SUBREG. */ |
| enum machine_mode dst_mode = GET_MODE (dst); |
| |
| switch (GET_CODE (src)) |
| { |
| case PLUS: |
| if (GET_CODE (XEXP (src, 0)) == REG) |
| { |
| base_reg = XEXP (src, 0); |
| |
| if (GET_CODE (XEXP (src, 1)) == CONST_INT) |
| offset = INTVAL (XEXP (src, 1)); |
| else if (GET_CODE (XEXP (src, 1)) == REG |
| && (reg_set_luid[REGNO (XEXP (src, 1))] |
| > move2add_last_label_luid) |
| && (MODES_OK_FOR_MOVE2ADD |
| (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))) |
| { |
| if (reg_base_reg[REGNO (XEXP (src, 1))] < 0) |
| offset = reg_offset[REGNO (XEXP (src, 1))]; |
| /* Maybe the first register is known to be a |
| constant. */ |
| else if (reg_set_luid[REGNO (base_reg)] |
| > move2add_last_label_luid |
| && (MODES_OK_FOR_MOVE2ADD |
| (dst_mode, reg_mode[REGNO (XEXP (src, 1))])) |
| && reg_base_reg[REGNO (base_reg)] < 0) |
| { |
| offset = reg_offset[REGNO (base_reg)]; |
| base_reg = XEXP (src, 1); |
| } |
| else |
| goto invalidate; |
| } |
| else |
| goto invalidate; |
| |
| break; |
| } |
| |
| goto invalidate; |
| |
| case REG: |
| base_reg = src; |
| offset = 0; |
| break; |
| |
| case CONST_INT: |
| /* Start tracking the register as a constant. */ |
| reg_base_reg[regno] = -1; |
| reg_offset[regno] = INTVAL (SET_SRC (set)); |
| /* We assign the same luid to all registers set to constants. */ |
| reg_set_luid[regno] = move2add_last_label_luid + 1; |
| reg_mode[regno] = mode; |
| return; |
| |
| default: |
| invalidate: |
| /* Invalidate the contents of the register. */ |
| reg_set_luid[regno] = 0; |
| return; |
| } |
| |
| base_regno = REGNO (base_reg); |
| /* If information about the base register is not valid, set it |
| up as a new base register, pretending its value is known |
| starting from the current insn. */ |
| if (reg_set_luid[base_regno] <= move2add_last_label_luid) |
| { |
| reg_base_reg[base_regno] = base_regno; |
| reg_offset[base_regno] = 0; |
| reg_set_luid[base_regno] = move2add_luid; |
| reg_mode[base_regno] = mode; |
| } |
| else if (! MODES_OK_FOR_MOVE2ADD (dst_mode, |
| reg_mode[base_regno])) |
| goto invalidate; |
| |
| reg_mode[regno] = mode; |
| |
| /* Copy base information from our base register. */ |
| reg_set_luid[regno] = reg_set_luid[base_regno]; |
| reg_base_reg[regno] = reg_base_reg[base_regno]; |
| |
| /* Compute the sum of the offsets or constants. */ |
| reg_offset[regno] = trunc_int_for_mode (offset |
| + reg_offset[base_regno], |
| dst_mode); |
| } |
| else |
| { |
| unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode); |
| |
| for (i = regno; i < endregno; i++) |
| /* Reset the information about this register. */ |
| reg_set_luid[i] = 0; |
| } |
| } |