| /* C++ Parser. |
| Copyright (C) 2000, 2001, 2002, 2003, 2004, |
| 2005, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. |
| Written by Mark Mitchell <mark@codesourcery.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it |
| under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "timevar.h" |
| #include "cpplib.h" |
| #include "tree.h" |
| #include "cp-tree.h" |
| #include "intl.h" |
| #include "c-family/c-pragma.h" |
| #include "decl.h" |
| #include "flags.h" |
| #include "diagnostic-core.h" |
| #include "output.h" |
| #include "target.h" |
| #include "cgraph.h" |
| #include "c-family/c-common.h" |
| #include "c-family/c-objc.h" |
| #include "plugin.h" |
| #include "tree-pretty-print.h" |
| #include "parser.h" |
| |
| |
| /* The lexer. */ |
| |
| /* The cp_lexer_* routines mediate between the lexer proper (in libcpp |
| and c-lex.c) and the C++ parser. */ |
| |
| static cp_token eof_token = |
| { |
| CPP_EOF, RID_MAX, 0, PRAGMA_NONE, false, false, false, 0, { NULL } |
| }; |
| |
| /* The various kinds of non integral constant we encounter. */ |
| typedef enum non_integral_constant { |
| NIC_NONE, |
| /* floating-point literal */ |
| NIC_FLOAT, |
| /* %<this%> */ |
| NIC_THIS, |
| /* %<__FUNCTION__%> */ |
| NIC_FUNC_NAME, |
| /* %<__PRETTY_FUNCTION__%> */ |
| NIC_PRETTY_FUNC, |
| /* %<__func__%> */ |
| NIC_C99_FUNC, |
| /* "%<va_arg%> */ |
| NIC_VA_ARG, |
| /* a cast */ |
| NIC_CAST, |
| /* %<typeid%> operator */ |
| NIC_TYPEID, |
| /* non-constant compound literals */ |
| NIC_NCC, |
| /* a function call */ |
| NIC_FUNC_CALL, |
| /* an increment */ |
| NIC_INC, |
| /* an decrement */ |
| NIC_DEC, |
| /* an array reference */ |
| NIC_ARRAY_REF, |
| /* %<->%> */ |
| NIC_ARROW, |
| /* %<.%> */ |
| NIC_POINT, |
| /* the address of a label */ |
| NIC_ADDR_LABEL, |
| /* %<*%> */ |
| NIC_STAR, |
| /* %<&%> */ |
| NIC_ADDR, |
| /* %<++%> */ |
| NIC_PREINCREMENT, |
| /* %<--%> */ |
| NIC_PREDECREMENT, |
| /* %<new%> */ |
| NIC_NEW, |
| /* %<delete%> */ |
| NIC_DEL, |
| /* calls to overloaded operators */ |
| NIC_OVERLOADED, |
| /* an assignment */ |
| NIC_ASSIGNMENT, |
| /* a comma operator */ |
| NIC_COMMA, |
| /* a call to a constructor */ |
| NIC_CONSTRUCTOR |
| } non_integral_constant; |
| |
| /* The various kinds of errors about name-lookup failing. */ |
| typedef enum name_lookup_error { |
| /* NULL */ |
| NLE_NULL, |
| /* is not a type */ |
| NLE_TYPE, |
| /* is not a class or namespace */ |
| NLE_CXX98, |
| /* is not a class, namespace, or enumeration */ |
| NLE_NOT_CXX98 |
| } name_lookup_error; |
| |
| /* The various kinds of required token */ |
| typedef enum required_token { |
| RT_NONE, |
| RT_SEMICOLON, /* ';' */ |
| RT_OPEN_PAREN, /* '(' */ |
| RT_CLOSE_BRACE, /* '}' */ |
| RT_OPEN_BRACE, /* '{' */ |
| RT_CLOSE_SQUARE, /* ']' */ |
| RT_OPEN_SQUARE, /* '[' */ |
| RT_COMMA, /* ',' */ |
| RT_SCOPE, /* '::' */ |
| RT_LESS, /* '<' */ |
| RT_GREATER, /* '>' */ |
| RT_EQ, /* '=' */ |
| RT_ELLIPSIS, /* '...' */ |
| RT_MULT, /* '*' */ |
| RT_COMPL, /* '~' */ |
| RT_COLON, /* ':' */ |
| RT_COLON_SCOPE, /* ':' or '::' */ |
| RT_CLOSE_PAREN, /* ')' */ |
| RT_COMMA_CLOSE_PAREN, /* ',' or ')' */ |
| RT_PRAGMA_EOL, /* end of line */ |
| RT_NAME, /* identifier */ |
| |
| /* The type is CPP_KEYWORD */ |
| RT_NEW, /* new */ |
| RT_DELETE, /* delete */ |
| RT_RETURN, /* return */ |
| RT_WHILE, /* while */ |
| RT_EXTERN, /* extern */ |
| RT_STATIC_ASSERT, /* static_assert */ |
| RT_DECLTYPE, /* decltype */ |
| RT_OPERATOR, /* operator */ |
| RT_CLASS, /* class */ |
| RT_TEMPLATE, /* template */ |
| RT_NAMESPACE, /* namespace */ |
| RT_USING, /* using */ |
| RT_ASM, /* asm */ |
| RT_TRY, /* try */ |
| RT_CATCH, /* catch */ |
| RT_THROW, /* throw */ |
| RT_LABEL, /* __label__ */ |
| RT_AT_TRY, /* @try */ |
| RT_AT_SYNCHRONIZED, /* @synchronized */ |
| RT_AT_THROW, /* @throw */ |
| |
| RT_SELECT, /* selection-statement */ |
| RT_INTERATION, /* iteration-statement */ |
| RT_JUMP, /* jump-statement */ |
| RT_CLASS_KEY, /* class-key */ |
| RT_CLASS_TYPENAME_TEMPLATE /* class, typename, or template */ |
| } required_token; |
| |
| /* Prototypes. */ |
| |
| static cp_lexer *cp_lexer_new_main |
| (void); |
| static cp_lexer *cp_lexer_new_from_tokens |
| (cp_token_cache *tokens); |
| static void cp_lexer_destroy |
| (cp_lexer *); |
| static int cp_lexer_saving_tokens |
| (const cp_lexer *); |
| static cp_token *cp_lexer_token_at |
| (cp_lexer *, cp_token_position); |
| static void cp_lexer_get_preprocessor_token |
| (cp_lexer *, cp_token *); |
| static inline cp_token *cp_lexer_peek_token |
| (cp_lexer *); |
| static cp_token *cp_lexer_peek_nth_token |
| (cp_lexer *, size_t); |
| static inline bool cp_lexer_next_token_is |
| (cp_lexer *, enum cpp_ttype); |
| static bool cp_lexer_next_token_is_not |
| (cp_lexer *, enum cpp_ttype); |
| static bool cp_lexer_next_token_is_keyword |
| (cp_lexer *, enum rid); |
| static cp_token *cp_lexer_consume_token |
| (cp_lexer *); |
| static void cp_lexer_purge_token |
| (cp_lexer *); |
| static void cp_lexer_purge_tokens_after |
| (cp_lexer *, cp_token_position); |
| static void cp_lexer_save_tokens |
| (cp_lexer *); |
| static void cp_lexer_commit_tokens |
| (cp_lexer *); |
| static void cp_lexer_rollback_tokens |
| (cp_lexer *); |
| #ifdef ENABLE_CHECKING |
| static void cp_lexer_print_token |
| (FILE *, cp_token *); |
| static inline bool cp_lexer_debugging_p |
| (cp_lexer *); |
| static void cp_lexer_start_debugging |
| (cp_lexer *) ATTRIBUTE_UNUSED; |
| static void cp_lexer_stop_debugging |
| (cp_lexer *) ATTRIBUTE_UNUSED; |
| #else |
| /* If we define cp_lexer_debug_stream to NULL it will provoke warnings |
| about passing NULL to functions that require non-NULL arguments |
| (fputs, fprintf). It will never be used, so all we need is a value |
| of the right type that's guaranteed not to be NULL. */ |
| #define cp_lexer_debug_stream stdout |
| #define cp_lexer_print_token(str, tok) (void) 0 |
| #define cp_lexer_debugging_p(lexer) 0 |
| #endif /* ENABLE_CHECKING */ |
| |
| static cp_token_cache *cp_token_cache_new |
| (cp_token *, cp_token *); |
| |
| static void cp_parser_initial_pragma |
| (cp_token *); |
| |
| /* Manifest constants. */ |
| #define CP_LEXER_BUFFER_SIZE ((256 * 1024) / sizeof (cp_token)) |
| #define CP_SAVED_TOKEN_STACK 5 |
| |
| /* Variables. */ |
| |
| #ifdef ENABLE_CHECKING |
| /* The stream to which debugging output should be written. */ |
| static FILE *cp_lexer_debug_stream; |
| #endif /* ENABLE_CHECKING */ |
| |
| /* Nonzero if we are parsing an unevaluated operand: an operand to |
| sizeof, typeof, or alignof. */ |
| int cp_unevaluated_operand; |
| |
| #ifdef ENABLE_CHECKING |
| /* Dump up to NUM tokens in BUFFER to FILE. If NUM is 0, dump all the |
| tokens. */ |
| |
| void |
| cp_lexer_dump_tokens (FILE *file, VEC(cp_token,gc) *buffer, unsigned num) |
| { |
| unsigned i; |
| cp_token *token; |
| |
| fprintf (file, "%u tokens\n", VEC_length (cp_token, buffer)); |
| |
| if (num == 0) |
| num = VEC_length (cp_token, buffer); |
| |
| for (i = 0; VEC_iterate (cp_token, buffer, i, token) && i < num; i++) |
| { |
| cp_lexer_print_token (file, token); |
| switch (token->type) |
| { |
| case CPP_SEMICOLON: |
| case CPP_OPEN_BRACE: |
| case CPP_CLOSE_BRACE: |
| case CPP_EOF: |
| fputc ('\n', file); |
| break; |
| |
| default: |
| fputc (' ', file); |
| } |
| } |
| |
| if (i == num && i < VEC_length (cp_token, buffer)) |
| { |
| fprintf (file, " ... "); |
| cp_lexer_print_token (file, VEC_index (cp_token, buffer, |
| VEC_length (cp_token, buffer) - 1)); |
| } |
| |
| fprintf (file, "\n"); |
| } |
| |
| |
| /* Dump all tokens in BUFFER to stderr. */ |
| |
| void |
| cp_lexer_debug_tokens (VEC(cp_token,gc) *buffer) |
| { |
| cp_lexer_dump_tokens (stderr, buffer, 0); |
| } |
| #endif |
| |
| |
| /* Allocate memory for a new lexer object and return it. */ |
| |
| static cp_lexer * |
| cp_lexer_alloc (void) |
| { |
| cp_lexer *lexer; |
| |
| c_common_no_more_pch (); |
| |
| /* Allocate the memory. */ |
| lexer = ggc_alloc_cleared_cp_lexer (); |
| |
| #ifdef ENABLE_CHECKING |
| /* Initially we are not debugging. */ |
| lexer->debugging_p = false; |
| #endif /* ENABLE_CHECKING */ |
| lexer->saved_tokens = VEC_alloc (cp_token_position, heap, |
| CP_SAVED_TOKEN_STACK); |
| |
| /* Create the buffer. */ |
| lexer->buffer = VEC_alloc (cp_token, gc, CP_LEXER_BUFFER_SIZE); |
| |
| return lexer; |
| } |
| |
| |
| /* Create a new main C++ lexer, the lexer that gets tokens from the |
| preprocessor. */ |
| |
| static cp_lexer * |
| cp_lexer_new_main (void) |
| { |
| cp_lexer *lexer; |
| cp_token token; |
| |
| /* It's possible that parsing the first pragma will load a PCH file, |
| which is a GC collection point. So we have to do that before |
| allocating any memory. */ |
| cp_parser_initial_pragma (&token); |
| |
| lexer = cp_lexer_alloc (); |
| |
| /* Put the first token in the buffer. */ |
| VEC_quick_push (cp_token, lexer->buffer, &token); |
| |
| /* Get the remaining tokens from the preprocessor. */ |
| while (token.type != CPP_EOF) |
| { |
| cp_lexer_get_preprocessor_token (lexer, &token); |
| VEC_safe_push (cp_token, gc, lexer->buffer, &token); |
| } |
| |
| lexer->last_token = VEC_address (cp_token, lexer->buffer) |
| + VEC_length (cp_token, lexer->buffer) |
| - 1; |
| lexer->next_token = VEC_length (cp_token, lexer->buffer) |
| ? VEC_address (cp_token, lexer->buffer) |
| : &eof_token; |
| |
| /* Subsequent preprocessor diagnostics should use compiler |
| diagnostic functions to get the compiler source location. */ |
| done_lexing = true; |
| |
| gcc_assert (!lexer->next_token->purged_p); |
| return lexer; |
| } |
| |
| /* Create a new lexer whose token stream is primed with the tokens in |
| CACHE. When these tokens are exhausted, no new tokens will be read. */ |
| |
| static cp_lexer * |
| cp_lexer_new_from_tokens (cp_token_cache *cache) |
| { |
| cp_token *first = cache->first; |
| cp_token *last = cache->last; |
| cp_lexer *lexer = ggc_alloc_cleared_cp_lexer (); |
| |
| /* We do not own the buffer. */ |
| lexer->buffer = NULL; |
| lexer->next_token = first == last ? &eof_token : first; |
| lexer->last_token = last; |
| |
| lexer->saved_tokens = VEC_alloc (cp_token_position, heap, |
| CP_SAVED_TOKEN_STACK); |
| |
| #ifdef ENABLE_CHECKING |
| /* Initially we are not debugging. */ |
| lexer->debugging_p = false; |
| #endif |
| |
| gcc_assert (!lexer->next_token->purged_p); |
| return lexer; |
| } |
| |
| /* Frees all resources associated with LEXER. */ |
| |
| static void |
| cp_lexer_destroy (cp_lexer *lexer) |
| { |
| VEC_free (cp_token, gc, lexer->buffer); |
| VEC_free (cp_token_position, heap, lexer->saved_tokens); |
| ggc_free (lexer); |
| } |
| |
| /* Returns nonzero if debugging information should be output. */ |
| |
| #ifdef ENABLE_CHECKING |
| |
| static inline bool |
| cp_lexer_debugging_p (cp_lexer *lexer) |
| { |
| return lexer->debugging_p; |
| } |
| |
| #endif /* ENABLE_CHECKING */ |
| |
| static inline cp_token_position |
| cp_lexer_token_position (cp_lexer *lexer, bool previous_p) |
| { |
| gcc_assert (!previous_p || lexer->next_token != &eof_token); |
| |
| return lexer->next_token - previous_p; |
| } |
| |
| static inline cp_token * |
| cp_lexer_token_at (cp_lexer *lexer ATTRIBUTE_UNUSED, cp_token_position pos) |
| { |
| return pos; |
| } |
| |
| static inline void |
| cp_lexer_set_token_position (cp_lexer *lexer, cp_token_position pos) |
| { |
| lexer->next_token = cp_lexer_token_at (lexer, pos); |
| } |
| |
| static inline cp_token_position |
| cp_lexer_previous_token_position (cp_lexer *lexer) |
| { |
| if (lexer->next_token == &eof_token) |
| return lexer->last_token - 1; |
| else |
| return cp_lexer_token_position (lexer, true); |
| } |
| |
| static inline cp_token * |
| cp_lexer_previous_token (cp_lexer *lexer) |
| { |
| cp_token_position tp = cp_lexer_previous_token_position (lexer); |
| |
| return cp_lexer_token_at (lexer, tp); |
| } |
| |
| /* nonzero if we are presently saving tokens. */ |
| |
| static inline int |
| cp_lexer_saving_tokens (const cp_lexer* lexer) |
| { |
| return VEC_length (cp_token_position, lexer->saved_tokens) != 0; |
| } |
| |
| /* Store the next token from the preprocessor in *TOKEN. Return true |
| if we reach EOF. If LEXER is NULL, assume we are handling an |
| initial #pragma pch_preprocess, and thus want the lexer to return |
| processed strings. */ |
| |
| static void |
| cp_lexer_get_preprocessor_token (cp_lexer *lexer, cp_token *token) |
| { |
| static int is_extern_c = 0; |
| |
| /* Get a new token from the preprocessor. */ |
| token->type |
| = c_lex_with_flags (&token->u.value, &token->location, &token->flags, |
| lexer == NULL ? 0 : C_LEX_STRING_NO_JOIN); |
| token->keyword = RID_MAX; |
| token->pragma_kind = PRAGMA_NONE; |
| token->purged_p = false; |
| |
| /* On some systems, some header files are surrounded by an |
| implicit extern "C" block. Set a flag in the token if it |
| comes from such a header. */ |
| is_extern_c += pending_lang_change; |
| pending_lang_change = 0; |
| token->implicit_extern_c = is_extern_c > 0; |
| |
| /* Check to see if this token is a keyword. */ |
| if (token->type == CPP_NAME) |
| { |
| if (C_IS_RESERVED_WORD (token->u.value)) |
| { |
| /* Mark this token as a keyword. */ |
| token->type = CPP_KEYWORD; |
| /* Record which keyword. */ |
| token->keyword = C_RID_CODE (token->u.value); |
| } |
| else |
| { |
| if (warn_cxx0x_compat |
| && C_RID_CODE (token->u.value) >= RID_FIRST_CXX0X |
| && C_RID_CODE (token->u.value) <= RID_LAST_CXX0X) |
| { |
| /* Warn about the C++0x keyword (but still treat it as |
| an identifier). */ |
| warning (OPT_Wc__0x_compat, |
| "identifier %qE will become a keyword in C++0x", |
| token->u.value); |
| |
| /* Clear out the C_RID_CODE so we don't warn about this |
| particular identifier-turned-keyword again. */ |
| C_SET_RID_CODE (token->u.value, RID_MAX); |
| } |
| |
| token->ambiguous_p = false; |
| token->keyword = RID_MAX; |
| } |
| } |
| else if (token->type == CPP_AT_NAME) |
| { |
| /* This only happens in Objective-C++; it must be a keyword. */ |
| token->type = CPP_KEYWORD; |
| switch (C_RID_CODE (token->u.value)) |
| { |
| /* Replace 'class' with '@class', 'private' with '@private', |
| etc. This prevents confusion with the C++ keyword |
| 'class', and makes the tokens consistent with other |
| Objective-C 'AT' keywords. For example '@class' is |
| reported as RID_AT_CLASS which is consistent with |
| '@synchronized', which is reported as |
| RID_AT_SYNCHRONIZED. |
| */ |
| case RID_CLASS: token->keyword = RID_AT_CLASS; break; |
| case RID_PRIVATE: token->keyword = RID_AT_PRIVATE; break; |
| case RID_PROTECTED: token->keyword = RID_AT_PROTECTED; break; |
| case RID_PUBLIC: token->keyword = RID_AT_PUBLIC; break; |
| case RID_THROW: token->keyword = RID_AT_THROW; break; |
| case RID_TRY: token->keyword = RID_AT_TRY; break; |
| case RID_CATCH: token->keyword = RID_AT_CATCH; break; |
| default: token->keyword = C_RID_CODE (token->u.value); |
| } |
| } |
| else if (token->type == CPP_PRAGMA) |
| { |
| /* We smuggled the cpp_token->u.pragma value in an INTEGER_CST. */ |
| token->pragma_kind = ((enum pragma_kind) |
| TREE_INT_CST_LOW (token->u.value)); |
| token->u.value = NULL_TREE; |
| } |
| } |
| |
| /* Update the globals input_location and the input file stack from TOKEN. */ |
| static inline void |
| cp_lexer_set_source_position_from_token (cp_token *token) |
| { |
| if (token->type != CPP_EOF) |
| { |
| input_location = token->location; |
| } |
| } |
| |
| /* Return a pointer to the next token in the token stream, but do not |
| consume it. */ |
| |
| static inline cp_token * |
| cp_lexer_peek_token (cp_lexer *lexer) |
| { |
| if (cp_lexer_debugging_p (lexer)) |
| { |
| fputs ("cp_lexer: peeking at token: ", cp_lexer_debug_stream); |
| cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token); |
| putc ('\n', cp_lexer_debug_stream); |
| } |
| return lexer->next_token; |
| } |
| |
| /* Return true if the next token has the indicated TYPE. */ |
| |
| static inline bool |
| cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type) |
| { |
| return cp_lexer_peek_token (lexer)->type == type; |
| } |
| |
| /* Return true if the next token does not have the indicated TYPE. */ |
| |
| static inline bool |
| cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type) |
| { |
| return !cp_lexer_next_token_is (lexer, type); |
| } |
| |
| /* Return true if the next token is the indicated KEYWORD. */ |
| |
| static inline bool |
| cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword) |
| { |
| return cp_lexer_peek_token (lexer)->keyword == keyword; |
| } |
| |
| /* Return true if the next token is not the indicated KEYWORD. */ |
| |
| static inline bool |
| cp_lexer_next_token_is_not_keyword (cp_lexer* lexer, enum rid keyword) |
| { |
| return cp_lexer_peek_token (lexer)->keyword != keyword; |
| } |
| |
| /* Return true if the next token is a keyword for a decl-specifier. */ |
| |
| static bool |
| cp_lexer_next_token_is_decl_specifier_keyword (cp_lexer *lexer) |
| { |
| cp_token *token; |
| |
| token = cp_lexer_peek_token (lexer); |
| switch (token->keyword) |
| { |
| /* auto specifier: storage-class-specifier in C++, |
| simple-type-specifier in C++0x. */ |
| case RID_AUTO: |
| /* Storage classes. */ |
| case RID_REGISTER: |
| case RID_STATIC: |
| case RID_EXTERN: |
| case RID_MUTABLE: |
| case RID_THREAD: |
| /* Elaborated type specifiers. */ |
| case RID_ENUM: |
| case RID_CLASS: |
| case RID_STRUCT: |
| case RID_UNION: |
| case RID_TYPENAME: |
| /* Simple type specifiers. */ |
| case RID_CHAR: |
| case RID_CHAR16: |
| case RID_CHAR32: |
| case RID_WCHAR: |
| case RID_BOOL: |
| case RID_SHORT: |
| case RID_INT: |
| case RID_LONG: |
| case RID_INT128: |
| case RID_SIGNED: |
| case RID_UNSIGNED: |
| case RID_FLOAT: |
| case RID_DOUBLE: |
| case RID_VOID: |
| /* GNU extensions. */ |
| case RID_ATTRIBUTE: |
| case RID_TYPEOF: |
| /* C++0x extensions. */ |
| case RID_DECLTYPE: |
| case RID_UNDERLYING_TYPE: |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| /* Return a pointer to the Nth token in the token stream. If N is 1, |
| then this is precisely equivalent to cp_lexer_peek_token (except |
| that it is not inline). One would like to disallow that case, but |
| there is one case (cp_parser_nth_token_starts_template_id) where |
| the caller passes a variable for N and it might be 1. */ |
| |
| static cp_token * |
| cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n) |
| { |
| cp_token *token; |
| |
| /* N is 1-based, not zero-based. */ |
| gcc_assert (n > 0); |
| |
| if (cp_lexer_debugging_p (lexer)) |
| fprintf (cp_lexer_debug_stream, |
| "cp_lexer: peeking ahead %ld at token: ", (long)n); |
| |
| --n; |
| token = lexer->next_token; |
| gcc_assert (!n || token != &eof_token); |
| while (n != 0) |
| { |
| ++token; |
| if (token == lexer->last_token) |
| { |
| token = &eof_token; |
| break; |
| } |
| |
| if (!token->purged_p) |
| --n; |
| } |
| |
| if (cp_lexer_debugging_p (lexer)) |
| { |
| cp_lexer_print_token (cp_lexer_debug_stream, token); |
| putc ('\n', cp_lexer_debug_stream); |
| } |
| |
| return token; |
| } |
| |
| /* Return the next token, and advance the lexer's next_token pointer |
| to point to the next non-purged token. */ |
| |
| static cp_token * |
| cp_lexer_consume_token (cp_lexer* lexer) |
| { |
| cp_token *token = lexer->next_token; |
| |
| gcc_assert (token != &eof_token); |
| gcc_assert (!lexer->in_pragma || token->type != CPP_PRAGMA_EOL); |
| |
| do |
| { |
| lexer->next_token++; |
| if (lexer->next_token == lexer->last_token) |
| { |
| lexer->next_token = &eof_token; |
| break; |
| } |
| |
| } |
| while (lexer->next_token->purged_p); |
| |
| cp_lexer_set_source_position_from_token (token); |
| |
| /* Provide debugging output. */ |
| if (cp_lexer_debugging_p (lexer)) |
| { |
| fputs ("cp_lexer: consuming token: ", cp_lexer_debug_stream); |
| cp_lexer_print_token (cp_lexer_debug_stream, token); |
| putc ('\n', cp_lexer_debug_stream); |
| } |
| |
| return token; |
| } |
| |
| /* Permanently remove the next token from the token stream, and |
| advance the next_token pointer to refer to the next non-purged |
| token. */ |
| |
| static void |
| cp_lexer_purge_token (cp_lexer *lexer) |
| { |
| cp_token *tok = lexer->next_token; |
| |
| gcc_assert (tok != &eof_token); |
| tok->purged_p = true; |
| tok->location = UNKNOWN_LOCATION; |
| tok->u.value = NULL_TREE; |
| tok->keyword = RID_MAX; |
| |
| do |
| { |
| tok++; |
| if (tok == lexer->last_token) |
| { |
| tok = &eof_token; |
| break; |
| } |
| } |
| while (tok->purged_p); |
| lexer->next_token = tok; |
| } |
| |
| /* Permanently remove all tokens after TOK, up to, but not |
| including, the token that will be returned next by |
| cp_lexer_peek_token. */ |
| |
| static void |
| cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *tok) |
| { |
| cp_token *peek = lexer->next_token; |
| |
| if (peek == &eof_token) |
| peek = lexer->last_token; |
| |
| gcc_assert (tok < peek); |
| |
| for ( tok += 1; tok != peek; tok += 1) |
| { |
| tok->purged_p = true; |
| tok->location = UNKNOWN_LOCATION; |
| tok->u.value = NULL_TREE; |
| tok->keyword = RID_MAX; |
| } |
| } |
| |
| /* Begin saving tokens. All tokens consumed after this point will be |
| preserved. */ |
| |
| static void |
| cp_lexer_save_tokens (cp_lexer* lexer) |
| { |
| /* Provide debugging output. */ |
| if (cp_lexer_debugging_p (lexer)) |
| fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n"); |
| |
| VEC_safe_push (cp_token_position, heap, |
| lexer->saved_tokens, lexer->next_token); |
| } |
| |
| /* Commit to the portion of the token stream most recently saved. */ |
| |
| static void |
| cp_lexer_commit_tokens (cp_lexer* lexer) |
| { |
| /* Provide debugging output. */ |
| if (cp_lexer_debugging_p (lexer)) |
| fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n"); |
| |
| VEC_pop (cp_token_position, lexer->saved_tokens); |
| } |
| |
| /* Return all tokens saved since the last call to cp_lexer_save_tokens |
| to the token stream. Stop saving tokens. */ |
| |
| static void |
| cp_lexer_rollback_tokens (cp_lexer* lexer) |
| { |
| /* Provide debugging output. */ |
| if (cp_lexer_debugging_p (lexer)) |
| fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n"); |
| |
| lexer->next_token = VEC_pop (cp_token_position, lexer->saved_tokens); |
| } |
| |
| /* Print a representation of the TOKEN on the STREAM. */ |
| |
| #ifdef ENABLE_CHECKING |
| |
| static void |
| cp_lexer_print_token (FILE * stream, cp_token *token) |
| { |
| /* We don't use cpp_type2name here because the parser defines |
| a few tokens of its own. */ |
| static const char *const token_names[] = { |
| /* cpplib-defined token types */ |
| #define OP(e, s) #e, |
| #define TK(e, s) #e, |
| TTYPE_TABLE |
| #undef OP |
| #undef TK |
| /* C++ parser token types - see "Manifest constants", above. */ |
| "KEYWORD", |
| "TEMPLATE_ID", |
| "NESTED_NAME_SPECIFIER", |
| }; |
| |
| /* For some tokens, print the associated data. */ |
| switch (token->type) |
| { |
| case CPP_KEYWORD: |
| /* Some keywords have a value that is not an IDENTIFIER_NODE. |
| For example, `struct' is mapped to an INTEGER_CST. */ |
| if (TREE_CODE (token->u.value) != IDENTIFIER_NODE) |
| break; |
| /* else fall through */ |
| case CPP_NAME: |
| fputs (IDENTIFIER_POINTER (token->u.value), stream); |
| break; |
| |
| case CPP_STRING: |
| case CPP_STRING16: |
| case CPP_STRING32: |
| case CPP_WSTRING: |
| case CPP_UTF8STRING: |
| fprintf (stream, " \"%s\"", TREE_STRING_POINTER (token->u.value)); |
| break; |
| |
| case CPP_NUMBER: |
| print_generic_expr (stream, token->u.value, 0); |
| break; |
| |
| default: |
| /* If we have a name for the token, print it out. Otherwise, we |
| simply give the numeric code. */ |
| if (token->type < ARRAY_SIZE(token_names)) |
| fputs (token_names[token->type], stream); |
| else |
| fprintf (stream, "[%d]", token->type); |
| break; |
| } |
| } |
| |
| /* Start emitting debugging information. */ |
| |
| static void |
| cp_lexer_start_debugging (cp_lexer* lexer) |
| { |
| lexer->debugging_p = true; |
| } |
| |
| /* Stop emitting debugging information. */ |
| |
| static void |
| cp_lexer_stop_debugging (cp_lexer* lexer) |
| { |
| lexer->debugging_p = false; |
| } |
| |
| #endif /* ENABLE_CHECKING */ |
| |
| /* Create a new cp_token_cache, representing a range of tokens. */ |
| |
| static cp_token_cache * |
| cp_token_cache_new (cp_token *first, cp_token *last) |
| { |
| cp_token_cache *cache = ggc_alloc_cp_token_cache (); |
| cache->first = first; |
| cache->last = last; |
| return cache; |
| } |
| |
| |
| /* Decl-specifiers. */ |
| |
| /* Set *DECL_SPECS to represent an empty decl-specifier-seq. */ |
| |
| static void |
| clear_decl_specs (cp_decl_specifier_seq *decl_specs) |
| { |
| memset (decl_specs, 0, sizeof (cp_decl_specifier_seq)); |
| } |
| |
| /* Declarators. */ |
| |
| /* Nothing other than the parser should be creating declarators; |
| declarators are a semi-syntactic representation of C++ entities. |
| Other parts of the front end that need to create entities (like |
| VAR_DECLs or FUNCTION_DECLs) should do that directly. */ |
| |
| static cp_declarator *make_call_declarator |
| (cp_declarator *, tree, cp_cv_quals, cp_virt_specifiers, tree, tree); |
| static cp_declarator *make_array_declarator |
| (cp_declarator *, tree); |
| static cp_declarator *make_pointer_declarator |
| (cp_cv_quals, cp_declarator *); |
| static cp_declarator *make_reference_declarator |
| (cp_cv_quals, cp_declarator *, bool); |
| static cp_parameter_declarator *make_parameter_declarator |
| (cp_decl_specifier_seq *, cp_declarator *, tree); |
| static cp_declarator *make_ptrmem_declarator |
| (cp_cv_quals, tree, cp_declarator *); |
| |
| /* An erroneous declarator. */ |
| static cp_declarator *cp_error_declarator; |
| |
| /* The obstack on which declarators and related data structures are |
| allocated. */ |
| static struct obstack declarator_obstack; |
| |
| /* Alloc BYTES from the declarator memory pool. */ |
| |
| static inline void * |
| alloc_declarator (size_t bytes) |
| { |
| return obstack_alloc (&declarator_obstack, bytes); |
| } |
| |
| /* Allocate a declarator of the indicated KIND. Clear fields that are |
| common to all declarators. */ |
| |
| static cp_declarator * |
| make_declarator (cp_declarator_kind kind) |
| { |
| cp_declarator *declarator; |
| |
| declarator = (cp_declarator *) alloc_declarator (sizeof (cp_declarator)); |
| declarator->kind = kind; |
| declarator->attributes = NULL_TREE; |
| declarator->declarator = NULL; |
| declarator->parameter_pack_p = false; |
| declarator->id_loc = UNKNOWN_LOCATION; |
| |
| return declarator; |
| } |
| |
| /* Make a declarator for a generalized identifier. If |
| QUALIFYING_SCOPE is non-NULL, the identifier is |
| QUALIFYING_SCOPE::UNQUALIFIED_NAME; otherwise, it is just |
| UNQUALIFIED_NAME. SFK indicates the kind of special function this |
| is, if any. */ |
| |
| static cp_declarator * |
| make_id_declarator (tree qualifying_scope, tree unqualified_name, |
| special_function_kind sfk) |
| { |
| cp_declarator *declarator; |
| |
| /* It is valid to write: |
| |
| class C { void f(); }; |
| typedef C D; |
| void D::f(); |
| |
| The standard is not clear about whether `typedef const C D' is |
| legal; as of 2002-09-15 the committee is considering that |
| question. EDG 3.0 allows that syntax. Therefore, we do as |
| well. */ |
| if (qualifying_scope && TYPE_P (qualifying_scope)) |
| qualifying_scope = TYPE_MAIN_VARIANT (qualifying_scope); |
| |
| gcc_assert (TREE_CODE (unqualified_name) == IDENTIFIER_NODE |
| || TREE_CODE (unqualified_name) == BIT_NOT_EXPR |
| || TREE_CODE (unqualified_name) == TEMPLATE_ID_EXPR); |
| |
| declarator = make_declarator (cdk_id); |
| declarator->u.id.qualifying_scope = qualifying_scope; |
| declarator->u.id.unqualified_name = unqualified_name; |
| declarator->u.id.sfk = sfk; |
| |
| return declarator; |
| } |
| |
| /* Make a declarator for a pointer to TARGET. CV_QUALIFIERS is a list |
| of modifiers such as const or volatile to apply to the pointer |
| type, represented as identifiers. */ |
| |
| cp_declarator * |
| make_pointer_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target) |
| { |
| cp_declarator *declarator; |
| |
| declarator = make_declarator (cdk_pointer); |
| declarator->declarator = target; |
| declarator->u.pointer.qualifiers = cv_qualifiers; |
| declarator->u.pointer.class_type = NULL_TREE; |
| if (target) |
| { |
| declarator->id_loc = target->id_loc; |
| declarator->parameter_pack_p = target->parameter_pack_p; |
| target->parameter_pack_p = false; |
| } |
| else |
| declarator->parameter_pack_p = false; |
| |
| return declarator; |
| } |
| |
| /* Like make_pointer_declarator -- but for references. */ |
| |
| cp_declarator * |
| make_reference_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target, |
| bool rvalue_ref) |
| { |
| cp_declarator *declarator; |
| |
| declarator = make_declarator (cdk_reference); |
| declarator->declarator = target; |
| declarator->u.reference.qualifiers = cv_qualifiers; |
| declarator->u.reference.rvalue_ref = rvalue_ref; |
| if (target) |
| { |
| declarator->id_loc = target->id_loc; |
| declarator->parameter_pack_p = target->parameter_pack_p; |
| target->parameter_pack_p = false; |
| } |
| else |
| declarator->parameter_pack_p = false; |
| |
| return declarator; |
| } |
| |
| /* Like make_pointer_declarator -- but for a pointer to a non-static |
| member of CLASS_TYPE. */ |
| |
| cp_declarator * |
| make_ptrmem_declarator (cp_cv_quals cv_qualifiers, tree class_type, |
| cp_declarator *pointee) |
| { |
| cp_declarator *declarator; |
| |
| declarator = make_declarator (cdk_ptrmem); |
| declarator->declarator = pointee; |
| declarator->u.pointer.qualifiers = cv_qualifiers; |
| declarator->u.pointer.class_type = class_type; |
| |
| if (pointee) |
| { |
| declarator->parameter_pack_p = pointee->parameter_pack_p; |
| pointee->parameter_pack_p = false; |
| } |
| else |
| declarator->parameter_pack_p = false; |
| |
| return declarator; |
| } |
| |
| /* Make a declarator for the function given by TARGET, with the |
| indicated PARMS. The CV_QUALIFIERS aply to the function, as in |
| "const"-qualified member function. The EXCEPTION_SPECIFICATION |
| indicates what exceptions can be thrown. */ |
| |
| cp_declarator * |
| make_call_declarator (cp_declarator *target, |
| tree parms, |
| cp_cv_quals cv_qualifiers, |
| cp_virt_specifiers virt_specifiers, |
| tree exception_specification, |
| tree late_return_type) |
| { |
| cp_declarator *declarator; |
| |
| declarator = make_declarator (cdk_function); |
| declarator->declarator = target; |
| declarator->u.function.parameters = parms; |
| declarator->u.function.qualifiers = cv_qualifiers; |
| declarator->u.function.virt_specifiers = virt_specifiers; |
| declarator->u.function.exception_specification = exception_specification; |
| declarator->u.function.late_return_type = late_return_type; |
| if (target) |
| { |
| declarator->id_loc = target->id_loc; |
| declarator->parameter_pack_p = target->parameter_pack_p; |
| target->parameter_pack_p = false; |
| } |
| else |
| declarator->parameter_pack_p = false; |
| |
| return declarator; |
| } |
| |
| /* Make a declarator for an array of BOUNDS elements, each of which is |
| defined by ELEMENT. */ |
| |
| cp_declarator * |
| make_array_declarator (cp_declarator *element, tree bounds) |
| { |
| cp_declarator *declarator; |
| |
| declarator = make_declarator (cdk_array); |
| declarator->declarator = element; |
| declarator->u.array.bounds = bounds; |
| if (element) |
| { |
| declarator->id_loc = element->id_loc; |
| declarator->parameter_pack_p = element->parameter_pack_p; |
| element->parameter_pack_p = false; |
| } |
| else |
| declarator->parameter_pack_p = false; |
| |
| return declarator; |
| } |
| |
| /* Determine whether the declarator we've seen so far can be a |
| parameter pack, when followed by an ellipsis. */ |
| static bool |
| declarator_can_be_parameter_pack (cp_declarator *declarator) |
| { |
| /* Search for a declarator name, or any other declarator that goes |
| after the point where the ellipsis could appear in a parameter |
| pack. If we find any of these, then this declarator can not be |
| made into a parameter pack. */ |
| bool found = false; |
| while (declarator && !found) |
| { |
| switch ((int)declarator->kind) |
| { |
| case cdk_id: |
| case cdk_array: |
| found = true; |
| break; |
| |
| case cdk_error: |
| return true; |
| |
| default: |
| declarator = declarator->declarator; |
| break; |
| } |
| } |
| |
| return !found; |
| } |
| |
| cp_parameter_declarator *no_parameters; |
| |
| /* Create a parameter declarator with the indicated DECL_SPECIFIERS, |
| DECLARATOR and DEFAULT_ARGUMENT. */ |
| |
| cp_parameter_declarator * |
| make_parameter_declarator (cp_decl_specifier_seq *decl_specifiers, |
| cp_declarator *declarator, |
| tree default_argument) |
| { |
| cp_parameter_declarator *parameter; |
| |
| parameter = ((cp_parameter_declarator *) |
| alloc_declarator (sizeof (cp_parameter_declarator))); |
| parameter->next = NULL; |
| if (decl_specifiers) |
| parameter->decl_specifiers = *decl_specifiers; |
| else |
| clear_decl_specs (¶meter->decl_specifiers); |
| parameter->declarator = declarator; |
| parameter->default_argument = default_argument; |
| parameter->ellipsis_p = false; |
| |
| return parameter; |
| } |
| |
| /* Returns true iff DECLARATOR is a declaration for a function. */ |
| |
| static bool |
| function_declarator_p (const cp_declarator *declarator) |
| { |
| while (declarator) |
| { |
| if (declarator->kind == cdk_function |
| && declarator->declarator->kind == cdk_id) |
| return true; |
| if (declarator->kind == cdk_id |
| || declarator->kind == cdk_error) |
| return false; |
| declarator = declarator->declarator; |
| } |
| return false; |
| } |
| |
| /* The parser. */ |
| |
| /* Overview |
| -------- |
| |
| A cp_parser parses the token stream as specified by the C++ |
| grammar. Its job is purely parsing, not semantic analysis. For |
| example, the parser breaks the token stream into declarators, |
| expressions, statements, and other similar syntactic constructs. |
| It does not check that the types of the expressions on either side |
| of an assignment-statement are compatible, or that a function is |
| not declared with a parameter of type `void'. |
| |
| The parser invokes routines elsewhere in the compiler to perform |
| semantic analysis and to build up the abstract syntax tree for the |
| code processed. |
| |
| The parser (and the template instantiation code, which is, in a |
| way, a close relative of parsing) are the only parts of the |
| compiler that should be calling push_scope and pop_scope, or |
| related functions. The parser (and template instantiation code) |
| keeps track of what scope is presently active; everything else |
| should simply honor that. (The code that generates static |
| initializers may also need to set the scope, in order to check |
| access control correctly when emitting the initializers.) |
| |
| Methodology |
| ----------- |
| |
| The parser is of the standard recursive-descent variety. Upcoming |
| tokens in the token stream are examined in order to determine which |
| production to use when parsing a non-terminal. Some C++ constructs |
| require arbitrary look ahead to disambiguate. For example, it is |
| impossible, in the general case, to tell whether a statement is an |
| expression or declaration without scanning the entire statement. |
| Therefore, the parser is capable of "parsing tentatively." When the |
| parser is not sure what construct comes next, it enters this mode. |
| Then, while we attempt to parse the construct, the parser queues up |
| error messages, rather than issuing them immediately, and saves the |
| tokens it consumes. If the construct is parsed successfully, the |
| parser "commits", i.e., it issues any queued error messages and |
| the tokens that were being preserved are permanently discarded. |
| If, however, the construct is not parsed successfully, the parser |
| rolls back its state completely so that it can resume parsing using |
| a different alternative. |
| |
| Future Improvements |
| ------------------- |
| |
| The performance of the parser could probably be improved substantially. |
| We could often eliminate the need to parse tentatively by looking ahead |
| a little bit. In some places, this approach might not entirely eliminate |
| the need to parse tentatively, but it might still speed up the average |
| case. */ |
| |
| /* Flags that are passed to some parsing functions. These values can |
| be bitwise-ored together. */ |
| |
| enum |
| { |
| /* No flags. */ |
| CP_PARSER_FLAGS_NONE = 0x0, |
| /* The construct is optional. If it is not present, then no error |
| should be issued. */ |
| CP_PARSER_FLAGS_OPTIONAL = 0x1, |
| /* When parsing a type-specifier, treat user-defined type-names |
| as non-type identifiers. */ |
| CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2, |
| /* When parsing a type-specifier, do not try to parse a class-specifier |
| or enum-specifier. */ |
| CP_PARSER_FLAGS_NO_TYPE_DEFINITIONS = 0x4, |
| /* When parsing a decl-specifier-seq, only allow type-specifier or |
| constexpr. */ |
| CP_PARSER_FLAGS_ONLY_TYPE_OR_CONSTEXPR = 0x8 |
| }; |
| |
| /* This type is used for parameters and variables which hold |
| combinations of the above flags. */ |
| typedef int cp_parser_flags; |
| |
| /* The different kinds of declarators we want to parse. */ |
| |
| typedef enum cp_parser_declarator_kind |
| { |
| /* We want an abstract declarator. */ |
| CP_PARSER_DECLARATOR_ABSTRACT, |
| /* We want a named declarator. */ |
| CP_PARSER_DECLARATOR_NAMED, |
| /* We don't mind, but the name must be an unqualified-id. */ |
| CP_PARSER_DECLARATOR_EITHER |
| } cp_parser_declarator_kind; |
| |
| /* The precedence values used to parse binary expressions. The minimum value |
| of PREC must be 1, because zero is reserved to quickly discriminate |
| binary operators from other tokens. */ |
| |
| enum cp_parser_prec |
| { |
| PREC_NOT_OPERATOR, |
| PREC_LOGICAL_OR_EXPRESSION, |
| PREC_LOGICAL_AND_EXPRESSION, |
| PREC_INCLUSIVE_OR_EXPRESSION, |
| PREC_EXCLUSIVE_OR_EXPRESSION, |
| PREC_AND_EXPRESSION, |
| PREC_EQUALITY_EXPRESSION, |
| PREC_RELATIONAL_EXPRESSION, |
| PREC_SHIFT_EXPRESSION, |
| PREC_ADDITIVE_EXPRESSION, |
| PREC_MULTIPLICATIVE_EXPRESSION, |
| PREC_PM_EXPRESSION, |
| NUM_PREC_VALUES = PREC_PM_EXPRESSION |
| }; |
| |
| /* A mapping from a token type to a corresponding tree node type, with a |
| precedence value. */ |
| |
| typedef struct cp_parser_binary_operations_map_node |
| { |
| /* The token type. */ |
| enum cpp_ttype token_type; |
| /* The corresponding tree code. */ |
| enum tree_code tree_type; |
| /* The precedence of this operator. */ |
| enum cp_parser_prec prec; |
| } cp_parser_binary_operations_map_node; |
| |
| typedef struct cp_parser_expression_stack_entry |
| { |
| /* Left hand side of the binary operation we are currently |
| parsing. */ |
| tree lhs; |
| /* Original tree code for left hand side, if it was a binary |
| expression itself (used for -Wparentheses). */ |
| enum tree_code lhs_type; |
| /* Tree code for the binary operation we are parsing. */ |
| enum tree_code tree_type; |
| /* Precedence of the binary operation we are parsing. */ |
| enum cp_parser_prec prec; |
| } cp_parser_expression_stack_entry; |
| |
| /* The stack for storing partial expressions. We only need NUM_PREC_VALUES |
| entries because precedence levels on the stack are monotonically |
| increasing. */ |
| typedef struct cp_parser_expression_stack_entry |
| cp_parser_expression_stack[NUM_PREC_VALUES]; |
| |
| /* Prototypes. */ |
| |
| /* Constructors and destructors. */ |
| |
| static cp_parser_context *cp_parser_context_new |
| (cp_parser_context *); |
| |
| /* Class variables. */ |
| |
| static GTY((deletable)) cp_parser_context* cp_parser_context_free_list; |
| |
| /* The operator-precedence table used by cp_parser_binary_expression. |
| Transformed into an associative array (binops_by_token) by |
| cp_parser_new. */ |
| |
| static const cp_parser_binary_operations_map_node binops[] = { |
| { CPP_DEREF_STAR, MEMBER_REF, PREC_PM_EXPRESSION }, |
| { CPP_DOT_STAR, DOTSTAR_EXPR, PREC_PM_EXPRESSION }, |
| |
| { CPP_MULT, MULT_EXPR, PREC_MULTIPLICATIVE_EXPRESSION }, |
| { CPP_DIV, TRUNC_DIV_EXPR, PREC_MULTIPLICATIVE_EXPRESSION }, |
| { CPP_MOD, TRUNC_MOD_EXPR, PREC_MULTIPLICATIVE_EXPRESSION }, |
| |
| { CPP_PLUS, PLUS_EXPR, PREC_ADDITIVE_EXPRESSION }, |
| { CPP_MINUS, MINUS_EXPR, PREC_ADDITIVE_EXPRESSION }, |
| |
| { CPP_LSHIFT, LSHIFT_EXPR, PREC_SHIFT_EXPRESSION }, |
| { CPP_RSHIFT, RSHIFT_EXPR, PREC_SHIFT_EXPRESSION }, |
| |
| { CPP_LESS, LT_EXPR, PREC_RELATIONAL_EXPRESSION }, |
| { CPP_GREATER, GT_EXPR, PREC_RELATIONAL_EXPRESSION }, |
| { CPP_LESS_EQ, LE_EXPR, PREC_RELATIONAL_EXPRESSION }, |
| { CPP_GREATER_EQ, GE_EXPR, PREC_RELATIONAL_EXPRESSION }, |
| |
| { CPP_EQ_EQ, EQ_EXPR, PREC_EQUALITY_EXPRESSION }, |
| { CPP_NOT_EQ, NE_EXPR, PREC_EQUALITY_EXPRESSION }, |
| |
| { CPP_AND, BIT_AND_EXPR, PREC_AND_EXPRESSION }, |
| |
| { CPP_XOR, BIT_XOR_EXPR, PREC_EXCLUSIVE_OR_EXPRESSION }, |
| |
| { CPP_OR, BIT_IOR_EXPR, PREC_INCLUSIVE_OR_EXPRESSION }, |
| |
| { CPP_AND_AND, TRUTH_ANDIF_EXPR, PREC_LOGICAL_AND_EXPRESSION }, |
| |
| { CPP_OR_OR, TRUTH_ORIF_EXPR, PREC_LOGICAL_OR_EXPRESSION } |
| }; |
| |
| /* The same as binops, but initialized by cp_parser_new so that |
| binops_by_token[N].token_type == N. Used in cp_parser_binary_expression |
| for speed. */ |
| static cp_parser_binary_operations_map_node binops_by_token[N_CP_TTYPES]; |
| |
| /* Constructors and destructors. */ |
| |
| /* Construct a new context. The context below this one on the stack |
| is given by NEXT. */ |
| |
| static cp_parser_context * |
| cp_parser_context_new (cp_parser_context* next) |
| { |
| cp_parser_context *context; |
| |
| /* Allocate the storage. */ |
| if (cp_parser_context_free_list != NULL) |
| { |
| /* Pull the first entry from the free list. */ |
| context = cp_parser_context_free_list; |
| cp_parser_context_free_list = context->next; |
| memset (context, 0, sizeof (*context)); |
| } |
| else |
| context = ggc_alloc_cleared_cp_parser_context (); |
| |
| /* No errors have occurred yet in this context. */ |
| context->status = CP_PARSER_STATUS_KIND_NO_ERROR; |
| /* If this is not the bottommost context, copy information that we |
| need from the previous context. */ |
| if (next) |
| { |
| /* If, in the NEXT context, we are parsing an `x->' or `x.' |
| expression, then we are parsing one in this context, too. */ |
| context->object_type = next->object_type; |
| /* Thread the stack. */ |
| context->next = next; |
| } |
| |
| return context; |
| } |
| |
| /* Managing the unparsed function queues. */ |
| |
| #define unparsed_funs_with_default_args \ |
| VEC_last (cp_unparsed_functions_entry, parser->unparsed_queues)->funs_with_default_args |
| #define unparsed_funs_with_definitions \ |
| VEC_last (cp_unparsed_functions_entry, parser->unparsed_queues)->funs_with_definitions |
| |
| static void |
| push_unparsed_function_queues (cp_parser *parser) |
| { |
| VEC_safe_push (cp_unparsed_functions_entry, gc, |
| parser->unparsed_queues, NULL); |
| unparsed_funs_with_default_args = NULL; |
| unparsed_funs_with_definitions = make_tree_vector (); |
| } |
| |
| static void |
| pop_unparsed_function_queues (cp_parser *parser) |
| { |
| release_tree_vector (unparsed_funs_with_definitions); |
| VEC_pop (cp_unparsed_functions_entry, parser->unparsed_queues); |
| } |
| |
| /* Prototypes. */ |
| |
| /* Constructors and destructors. */ |
| |
| static cp_parser *cp_parser_new |
| (void); |
| |
| /* Routines to parse various constructs. |
| |
| Those that return `tree' will return the error_mark_node (rather |
| than NULL_TREE) if a parse error occurs, unless otherwise noted. |
| Sometimes, they will return an ordinary node if error-recovery was |
| attempted, even though a parse error occurred. So, to check |
| whether or not a parse error occurred, you should always use |
| cp_parser_error_occurred. If the construct is optional (indicated |
| either by an `_opt' in the name of the function that does the |
| parsing or via a FLAGS parameter), then NULL_TREE is returned if |
| the construct is not present. */ |
| |
| /* Lexical conventions [gram.lex] */ |
| |
| static tree cp_parser_identifier |
| (cp_parser *); |
| static tree cp_parser_string_literal |
| (cp_parser *, bool, bool); |
| |
| /* Basic concepts [gram.basic] */ |
| |
| static bool cp_parser_translation_unit |
| (cp_parser *); |
| |
| /* Expressions [gram.expr] */ |
| |
| static tree cp_parser_primary_expression |
| (cp_parser *, bool, bool, bool, cp_id_kind *); |
| static tree cp_parser_id_expression |
| (cp_parser *, bool, bool, bool *, bool, bool); |
| static tree cp_parser_unqualified_id |
| (cp_parser *, bool, bool, bool, bool); |
| static tree cp_parser_nested_name_specifier_opt |
| (cp_parser *, bool, bool, bool, bool); |
| static tree cp_parser_nested_name_specifier |
| (cp_parser *, bool, bool, bool, bool); |
| static tree cp_parser_qualifying_entity |
| (cp_parser *, bool, bool, bool, bool, bool); |
| static tree cp_parser_postfix_expression |
| (cp_parser *, bool, bool, bool, cp_id_kind *); |
| static tree cp_parser_postfix_open_square_expression |
| (cp_parser *, tree, bool); |
| static tree cp_parser_postfix_dot_deref_expression |
| (cp_parser *, enum cpp_ttype, tree, bool, cp_id_kind *, location_t); |
| static VEC(tree,gc) *cp_parser_parenthesized_expression_list |
| (cp_parser *, int, bool, bool, bool *); |
| /* Values for the second parameter of cp_parser_parenthesized_expression_list. */ |
| enum { non_attr = 0, normal_attr = 1, id_attr = 2 }; |
| static void cp_parser_pseudo_destructor_name |
| (cp_parser *, tree *, tree *); |
| static tree cp_parser_unary_expression |
| (cp_parser *, bool, bool, cp_id_kind *); |
| static enum tree_code cp_parser_unary_operator |
| (cp_token *); |
| static tree cp_parser_new_expression |
| (cp_parser *); |
| static VEC(tree,gc) *cp_parser_new_placement |
| (cp_parser *); |
| static tree cp_parser_new_type_id |
| (cp_parser *, tree *); |
| static cp_declarator *cp_parser_new_declarator_opt |
| (cp_parser *); |
| static cp_declarator *cp_parser_direct_new_declarator |
| (cp_parser *); |
| static VEC(tree,gc) *cp_parser_new_initializer |
| (cp_parser *); |
| static tree cp_parser_delete_expression |
| (cp_parser *); |
| static tree cp_parser_cast_expression |
| (cp_parser *, bool, bool, cp_id_kind *); |
| static tree cp_parser_binary_expression |
| (cp_parser *, bool, bool, enum cp_parser_prec, cp_id_kind *); |
| static tree cp_parser_question_colon_clause |
| (cp_parser *, tree); |
| static tree cp_parser_assignment_expression |
| (cp_parser *, bool, cp_id_kind *); |
| static enum tree_code cp_parser_assignment_operator_opt |
| (cp_parser *); |
| static tree cp_parser_expression |
| (cp_parser *, bool, cp_id_kind *); |
| static tree cp_parser_constant_expression |
| (cp_parser *, bool, bool *); |
| static tree cp_parser_builtin_offsetof |
| (cp_parser *); |
| static tree cp_parser_lambda_expression |
| (cp_parser *); |
| static void cp_parser_lambda_introducer |
| (cp_parser *, tree); |
| static bool cp_parser_lambda_declarator_opt |
| (cp_parser *, tree); |
| static void cp_parser_lambda_body |
| (cp_parser *, tree); |
| |
| /* Statements [gram.stmt.stmt] */ |
| |
| static void cp_parser_statement |
| (cp_parser *, tree, bool, bool *); |
| static void cp_parser_label_for_labeled_statement |
| (cp_parser *); |
| static tree cp_parser_expression_statement |
| (cp_parser *, tree); |
| static tree cp_parser_compound_statement |
| (cp_parser *, tree, bool, bool); |
| static void cp_parser_statement_seq_opt |
| (cp_parser *, tree); |
| static tree cp_parser_selection_statement |
| (cp_parser *, bool *); |
| static tree cp_parser_condition |
| (cp_parser *); |
| static tree cp_parser_iteration_statement |
| (cp_parser *); |
| static bool cp_parser_for_init_statement |
| (cp_parser *, tree *decl); |
| static tree cp_parser_for |
| (cp_parser *); |
| static tree cp_parser_c_for |
| (cp_parser *, tree, tree); |
| static tree cp_parser_range_for |
| (cp_parser *, tree, tree, tree); |
| static tree cp_parser_perform_range_for_lookup |
| (tree, tree *, tree *); |
| static tree cp_parser_range_for_member_function |
| (tree, tree); |
| static tree cp_parser_jump_statement |
| (cp_parser *); |
| static void cp_parser_declaration_statement |
| (cp_parser *); |
| |
| static tree cp_parser_implicitly_scoped_statement |
| (cp_parser *, bool *); |
| static void cp_parser_already_scoped_statement |
| (cp_parser *); |
| |
| /* Declarations [gram.dcl.dcl] */ |
| |
| static void cp_parser_declaration_seq_opt |
| (cp_parser *); |
| static void cp_parser_declaration |
| (cp_parser *); |
| static void cp_parser_block_declaration |
| (cp_parser *, bool); |
| static void cp_parser_simple_declaration |
| (cp_parser *, bool, tree *); |
| static void cp_parser_decl_specifier_seq |
| (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, int *); |
| static tree cp_parser_storage_class_specifier_opt |
| (cp_parser *); |
| static tree cp_parser_function_specifier_opt |
| (cp_parser *, cp_decl_specifier_seq *); |
| static tree cp_parser_type_specifier |
| (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, bool, |
| int *, bool *); |
| static tree cp_parser_simple_type_specifier |
| (cp_parser *, cp_decl_specifier_seq *, cp_parser_flags); |
| static tree cp_parser_type_name |
| (cp_parser *); |
| static tree cp_parser_nonclass_name |
| (cp_parser* parser); |
| static tree cp_parser_elaborated_type_specifier |
| (cp_parser *, bool, bool); |
| static tree cp_parser_enum_specifier |
| (cp_parser *); |
| static void cp_parser_enumerator_list |
| (cp_parser *, tree); |
| static void cp_parser_enumerator_definition |
| (cp_parser *, tree); |
| static tree cp_parser_namespace_name |
| (cp_parser *); |
| static void cp_parser_namespace_definition |
| (cp_parser *); |
| static void cp_parser_namespace_body |
| (cp_parser *); |
| static tree cp_parser_qualified_namespace_specifier |
| (cp_parser *); |
| static void cp_parser_namespace_alias_definition |
| (cp_parser *); |
| static bool cp_parser_using_declaration |
| (cp_parser *, bool); |
| static void cp_parser_using_directive |
| (cp_parser *); |
| static void cp_parser_asm_definition |
| (cp_parser *); |
| static void cp_parser_linkage_specification |
| (cp_parser *); |
| static void cp_parser_static_assert |
| (cp_parser *, bool); |
| static tree cp_parser_decltype |
| (cp_parser *); |
| |
| /* Declarators [gram.dcl.decl] */ |
| |
| static tree cp_parser_init_declarator |
| (cp_parser *, cp_decl_specifier_seq *, VEC (deferred_access_check,gc)*, bool, bool, int, bool *, tree *); |
| static cp_declarator *cp_parser_declarator |
| (cp_parser *, cp_parser_declarator_kind, int *, bool *, bool); |
| static cp_declarator *cp_parser_direct_declarator |
| (cp_parser *, cp_parser_declarator_kind, int *, bool); |
| static enum tree_code cp_parser_ptr_operator |
| (cp_parser *, tree *, cp_cv_quals *); |
| static cp_cv_quals cp_parser_cv_qualifier_seq_opt |
| (cp_parser *); |
| static cp_virt_specifiers cp_parser_virt_specifier_seq_opt |
| (cp_parser *); |
| static tree cp_parser_late_return_type_opt |
| (cp_parser *); |
| static tree cp_parser_declarator_id |
| (cp_parser *, bool); |
| static tree cp_parser_type_id |
| (cp_parser *); |
| static tree cp_parser_template_type_arg |
| (cp_parser *); |
| static tree cp_parser_trailing_type_id (cp_parser *); |
| static tree cp_parser_type_id_1 |
| (cp_parser *, bool, bool); |
| static void cp_parser_type_specifier_seq |
| (cp_parser *, bool, bool, cp_decl_specifier_seq *); |
| static tree cp_parser_parameter_declaration_clause |
| (cp_parser *); |
| static tree cp_parser_parameter_declaration_list |
| (cp_parser *, bool *); |
| static cp_parameter_declarator *cp_parser_parameter_declaration |
| (cp_parser *, bool, bool *); |
| static tree cp_parser_default_argument |
| (cp_parser *, bool); |
| static void cp_parser_function_body |
| (cp_parser *); |
| static tree cp_parser_initializer |
| (cp_parser *, bool *, bool *); |
| static tree cp_parser_initializer_clause |
| (cp_parser *, bool *); |
| static tree cp_parser_braced_list |
| (cp_parser*, bool*); |
| static VEC(constructor_elt,gc) *cp_parser_initializer_list |
| (cp_parser *, bool *); |
| |
| static bool cp_parser_ctor_initializer_opt_and_function_body |
| (cp_parser *); |
| |
| /* Classes [gram.class] */ |
| |
| static tree cp_parser_class_name |
| (cp_parser *, bool, bool, enum tag_types, bool, bool, bool); |
| static tree cp_parser_class_specifier |
| (cp_parser *); |
| static tree cp_parser_class_head |
| (cp_parser *, bool *, tree *, tree *); |
| static enum tag_types cp_parser_class_key |
| (cp_parser *); |
| static void cp_parser_member_specification_opt |
| (cp_parser *); |
| static void cp_parser_member_declaration |
| (cp_parser *); |
| static tree cp_parser_pure_specifier |
| (cp_parser *); |
| static tree cp_parser_constant_initializer |
| (cp_parser *); |
| |
| /* Derived classes [gram.class.derived] */ |
| |
| static tree cp_parser_base_clause |
| (cp_parser *); |
| static tree cp_parser_base_specifier |
| (cp_parser *); |
| |
| /* Special member functions [gram.special] */ |
| |
| static tree cp_parser_conversion_function_id |
| (cp_parser *); |
| static tree cp_parser_conversion_type_id |
| (cp_parser *); |
| static cp_declarator *cp_parser_conversion_declarator_opt |
| (cp_parser *); |
| static bool cp_parser_ctor_initializer_opt |
| (cp_parser *); |
| static void cp_parser_mem_initializer_list |
| (cp_parser *); |
| static tree cp_parser_mem_initializer |
| (cp_parser *); |
| static tree cp_parser_mem_initializer_id |
| (cp_parser *); |
| |
| /* Overloading [gram.over] */ |
| |
| static tree cp_parser_operator_function_id |
| (cp_parser *); |
| static tree cp_parser_operator |
| (cp_parser *); |
| |
| /* Templates [gram.temp] */ |
| |
| static void cp_parser_template_declaration |
| (cp_parser *, bool); |
| static tree cp_parser_template_parameter_list |
| (cp_parser *); |
| static tree cp_parser_template_parameter |
| (cp_parser *, bool *, bool *); |
| static tree cp_parser_type_parameter |
| (cp_parser *, bool *); |
| static tree cp_parser_template_id |
| (cp_parser *, bool, bool, bool); |
| static tree cp_parser_template_name |
| (cp_parser *, bool, bool, bool, bool *); |
| static tree cp_parser_template_argument_list |
| (cp_parser *); |
| static tree cp_parser_template_argument |
| (cp_parser *); |
| static void cp_parser_explicit_instantiation |
| (cp_parser *); |
| static void cp_parser_explicit_specialization |
| (cp_parser *); |
| |
| /* Exception handling [gram.exception] */ |
| |
| static tree cp_parser_try_block |
| (cp_parser *); |
| static bool cp_parser_function_try_block |
| (cp_parser *); |
| static void cp_parser_handler_seq |
| (cp_parser *); |
| static void cp_parser_handler |
| (cp_parser *); |
| static tree cp_parser_exception_declaration |
| (cp_parser *); |
| static tree cp_parser_throw_expression |
| (cp_parser *); |
| static tree cp_parser_exception_specification_opt |
| (cp_parser *); |
| static tree cp_parser_type_id_list |
| (cp_parser *); |
| |
| /* GNU Extensions */ |
| |
| static tree cp_parser_asm_specification_opt |
| (cp_parser *); |
| static tree cp_parser_asm_operand_list |
| (cp_parser *); |
| static tree cp_parser_asm_clobber_list |
| (cp_parser *); |
| static tree cp_parser_asm_label_list |
| (cp_parser *); |
| static tree cp_parser_attributes_opt |
| (cp_parser *); |
| static tree cp_parser_attribute_list |
| (cp_parser *); |
| static bool cp_parser_extension_opt |
| (cp_parser *, int *); |
| static void cp_parser_label_declaration |
| (cp_parser *); |
| |
| enum pragma_context { pragma_external, pragma_stmt, pragma_compound }; |
| static bool cp_parser_pragma |
| (cp_parser *, enum pragma_context); |
| |
| /* Objective-C++ Productions */ |
| |
| static tree cp_parser_objc_message_receiver |
| (cp_parser *); |
| static tree cp_parser_objc_message_args |
| (cp_parser *); |
| static tree cp_parser_objc_message_expression |
| (cp_parser *); |
| static tree cp_parser_objc_encode_expression |
| (cp_parser *); |
| static tree cp_parser_objc_defs_expression |
| (cp_parser *); |
| static tree cp_parser_objc_protocol_expression |
| (cp_parser *); |
| static tree cp_parser_objc_selector_expression |
| (cp_parser *); |
| static tree cp_parser_objc_expression |
| (cp_parser *); |
| static bool cp_parser_objc_selector_p |
| (enum cpp_ttype); |
| static tree cp_parser_objc_selector |
| (cp_parser *); |
| static tree cp_parser_objc_protocol_refs_opt |
| (cp_parser *); |
| static void cp_parser_objc_declaration |
| (cp_parser *, tree); |
| static tree cp_parser_objc_statement |
| (cp_parser *); |
| static bool cp_parser_objc_valid_prefix_attributes |
| (cp_parser *, tree *); |
| static void cp_parser_objc_at_property_declaration |
| (cp_parser *) ; |
| static void cp_parser_objc_at_synthesize_declaration |
| (cp_parser *) ; |
| static void cp_parser_objc_at_dynamic_declaration |
| (cp_parser *) ; |
| static tree cp_parser_objc_struct_declaration |
| (cp_parser *) ; |
| |
| /* Utility Routines */ |
| |
| static tree cp_parser_lookup_name |
| (cp_parser *, tree, enum tag_types, bool, bool, bool, tree *, location_t); |
| static tree cp_parser_lookup_name_simple |
| (cp_parser *, tree, location_t); |
| static tree cp_parser_maybe_treat_template_as_class |
| (tree, bool); |
| static bool cp_parser_check_declarator_template_parameters |
| (cp_parser *, cp_declarator *, location_t); |
| static bool cp_parser_check_template_parameters |
| (cp_parser *, unsigned, location_t, cp_declarator *); |
| static tree cp_parser_simple_cast_expression |
| (cp_parser *); |
| static tree cp_parser_global_scope_opt |
| (cp_parser *, bool); |
| static bool cp_parser_constructor_declarator_p |
| (cp_parser *, bool); |
| static tree cp_parser_function_definition_from_specifiers_and_declarator |
| (cp_parser *, cp_decl_specifier_seq *, tree, const cp_declarator *); |
| static tree cp_parser_function_definition_after_declarator |
| (cp_parser *, bool); |
| static void cp_parser_template_declaration_after_export |
| (cp_parser *, bool); |
| static void cp_parser_perform_template_parameter_access_checks |
| (VEC (deferred_access_check,gc)*); |
| static tree cp_parser_single_declaration |
| (cp_parser *, VEC (deferred_access_check,gc)*, bool, bool, bool *); |
| static tree cp_parser_functional_cast |
| (cp_parser *, tree); |
| static tree cp_parser_save_member_function_body |
| (cp_parser *, cp_decl_specifier_seq *, cp_declarator *, tree); |
| static tree cp_parser_enclosed_template_argument_list |
| (cp_parser *); |
| static void cp_parser_save_default_args |
| (cp_parser *, tree); |
| static void cp_parser_late_parsing_for_member |
| (cp_parser *, tree); |
| static void cp_parser_late_parsing_default_args |
| (cp_parser *, tree); |
| static tree cp_parser_sizeof_operand |
| (cp_parser *, enum rid); |
| static tree cp_parser_trait_expr |
| (cp_parser *, enum rid); |
| static bool cp_parser_declares_only_class_p |
| (cp_parser *); |
| static void cp_parser_set_storage_class |
| (cp_parser *, cp_decl_specifier_seq *, enum rid, location_t); |
| static void cp_parser_set_decl_spec_type |
| (cp_decl_specifier_seq *, tree, location_t, bool); |
| static bool cp_parser_friend_p |
| (const cp_decl_specifier_seq *); |
| static void cp_parser_required_error |
| (cp_parser *, required_token, bool); |
| static cp_token *cp_parser_require |
| (cp_parser *, enum cpp_ttype, required_token); |
| static cp_token *cp_parser_require_keyword |
| (cp_parser *, enum rid, required_token); |
| static bool cp_parser_token_starts_function_definition_p |
| (cp_token *); |
| static bool cp_parser_next_token_starts_class_definition_p |
| (cp_parser *); |
| static bool cp_parser_next_token_ends_template_argument_p |
| (cp_parser *); |
| static bool cp_parser_nth_token_starts_template_argument_list_p |
| (cp_parser *, size_t); |
| static enum tag_types cp_parser_token_is_class_key |
| (cp_token *); |
| static void cp_parser_check_class_key |
| (enum tag_types, tree type); |
| static void cp_parser_check_access_in_redeclaration |
| (tree type, location_t location); |
| static bool cp_parser_optional_template_keyword |
| (cp_parser *); |
| static void cp_parser_pre_parsed_nested_name_specifier |
| (cp_parser *); |
| static bool cp_parser_cache_group |
| (cp_parser *, enum cpp_ttype, unsigned); |
| static void cp_parser_parse_tentatively |
| (cp_parser *); |
| static void cp_parser_commit_to_tentative_parse |
| (cp_parser *); |
| static void cp_parser_abort_tentative_parse |
| (cp_parser *); |
| static bool cp_parser_parse_definitely |
| (cp_parser *); |
| static inline bool cp_parser_parsing_tentatively |
| (cp_parser *); |
| static bool cp_parser_uncommitted_to_tentative_parse_p |
| (cp_parser *); |
| static void cp_parser_error |
| (cp_parser *, const char *); |
| static void cp_parser_name_lookup_error |
| (cp_parser *, tree, tree, name_lookup_error, location_t); |
| static bool cp_parser_simulate_error |
| (cp_parser *); |
| static bool cp_parser_check_type_definition |
| (cp_parser *); |
| static void cp_parser_check_for_definition_in_return_type |
| (cp_declarator *, tree, location_t type_location); |
| static void cp_parser_check_for_invalid_template_id |
| (cp_parser *, tree, location_t location); |
| static bool cp_parser_non_integral_constant_expression |
| (cp_parser *, non_integral_constant); |
| static void cp_parser_diagnose_invalid_type_name |
| (cp_parser *, tree, tree, location_t); |
| static bool cp_parser_parse_and_diagnose_invalid_type_name |
| (cp_parser *); |
| static int cp_parser_skip_to_closing_parenthesis |
| (cp_parser *, bool, bool, bool); |
| static void cp_parser_skip_to_end_of_statement |
| (cp_parser *); |
| static void cp_parser_consume_semicolon_at_end_of_statement |
| (cp_parser *); |
| static void cp_parser_skip_to_end_of_block_or_statement |
| (cp_parser *); |
| static bool cp_parser_skip_to_closing_brace |
| (cp_parser *); |
| static void cp_parser_skip_to_end_of_template_parameter_list |
| (cp_parser *); |
| static void cp_parser_skip_to_pragma_eol |
| (cp_parser*, cp_token *); |
| static bool cp_parser_error_occurred |
| (cp_parser *); |
| static bool cp_parser_allow_gnu_extensions_p |
| (cp_parser *); |
| static bool cp_parser_is_string_literal |
| (cp_token *); |
| static bool cp_parser_is_keyword |
| (cp_token *, enum rid); |
| static tree cp_parser_make_typename_type |
| (cp_parser *, tree, tree, location_t location); |
| static cp_declarator * cp_parser_make_indirect_declarator |
| (enum tree_code, tree, cp_cv_quals, cp_declarator *); |
| |
| /* Returns nonzero if we are parsing tentatively. */ |
| |
| static inline bool |
| cp_parser_parsing_tentatively (cp_parser* parser) |
| { |
| return parser->context->next != NULL; |
| } |
| |
| /* Returns nonzero if TOKEN is a string literal. */ |
| |
| static bool |
| cp_parser_is_string_literal (cp_token* token) |
| { |
| return (token->type == CPP_STRING || |
| token->type == CPP_STRING16 || |
| token->type == CPP_STRING32 || |
| token->type == CPP_WSTRING || |
| token->type == CPP_UTF8STRING); |
| } |
| |
| /* Returns nonzero if TOKEN is the indicated KEYWORD. */ |
| |
| static bool |
| cp_parser_is_keyword (cp_token* token, enum rid keyword) |
| { |
| return token->keyword == keyword; |
| } |
| |
| /* If not parsing tentatively, issue a diagnostic of the form |
| FILE:LINE: MESSAGE before TOKEN |
| where TOKEN is the next token in the input stream. MESSAGE |
| (specified by the caller) is usually of the form "expected |
| OTHER-TOKEN". */ |
| |
| static void |
| cp_parser_error (cp_parser* parser, const char* gmsgid) |
| { |
| if (!cp_parser_simulate_error (parser)) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| /* This diagnostic makes more sense if it is tagged to the line |
| of the token we just peeked at. */ |
| cp_lexer_set_source_position_from_token (token); |
| |
| if (token->type == CPP_PRAGMA) |
| { |
| error_at (token->location, |
| "%<#pragma%> is not allowed here"); |
| cp_parser_skip_to_pragma_eol (parser, token); |
| return; |
| } |
| |
| c_parse_error (gmsgid, |
| /* Because c_parser_error does not understand |
| CPP_KEYWORD, keywords are treated like |
| identifiers. */ |
| (token->type == CPP_KEYWORD ? CPP_NAME : token->type), |
| token->u.value, token->flags); |
| } |
| } |
| |
| /* Issue an error about name-lookup failing. NAME is the |
| IDENTIFIER_NODE DECL is the result of |
| the lookup (as returned from cp_parser_lookup_name). DESIRED is |
| the thing that we hoped to find. */ |
| |
| static void |
| cp_parser_name_lookup_error (cp_parser* parser, |
| tree name, |
| tree decl, |
| name_lookup_error desired, |
| location_t location) |
| { |
| /* If name lookup completely failed, tell the user that NAME was not |
| declared. */ |
| if (decl == error_mark_node) |
| { |
| if (parser->scope && parser->scope != global_namespace) |
| error_at (location, "%<%E::%E%> has not been declared", |
| parser->scope, name); |
| else if (parser->scope == global_namespace) |
| error_at (location, "%<::%E%> has not been declared", name); |
| else if (parser->object_scope |
| && !CLASS_TYPE_P (parser->object_scope)) |
| error_at (location, "request for member %qE in non-class type %qT", |
| name, parser->object_scope); |
| else if (parser->object_scope) |
| error_at (location, "%<%T::%E%> has not been declared", |
| parser->object_scope, name); |
| else |
| error_at (location, "%qE has not been declared", name); |
| } |
| else if (parser->scope && parser->scope != global_namespace) |
| { |
| switch (desired) |
| { |
| case NLE_TYPE: |
| error_at (location, "%<%E::%E%> is not a type", |
| parser->scope, name); |
| break; |
| case NLE_CXX98: |
| error_at (location, "%<%E::%E%> is not a class or namespace", |
| parser->scope, name); |
| break; |
| case NLE_NOT_CXX98: |
| error_at (location, |
| "%<%E::%E%> is not a class, namespace, or enumeration", |
| parser->scope, name); |
| break; |
| default: |
| gcc_unreachable (); |
| |
| } |
| } |
| else if (parser->scope == global_namespace) |
| { |
| switch (desired) |
| { |
| case NLE_TYPE: |
| error_at (location, "%<::%E%> is not a type", name); |
| break; |
| case NLE_CXX98: |
| error_at (location, "%<::%E%> is not a class or namespace", name); |
| break; |
| case NLE_NOT_CXX98: |
| error_at (location, |
| "%<::%E%> is not a class, namespace, or enumeration", |
| name); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| else |
| { |
| switch (desired) |
| { |
| case NLE_TYPE: |
| error_at (location, "%qE is not a type", name); |
| break; |
| case NLE_CXX98: |
| error_at (location, "%qE is not a class or namespace", name); |
| break; |
| case NLE_NOT_CXX98: |
| error_at (location, |
| "%qE is not a class, namespace, or enumeration", name); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| } |
| |
| /* If we are parsing tentatively, remember that an error has occurred |
| during this tentative parse. Returns true if the error was |
| simulated; false if a message should be issued by the caller. */ |
| |
| static bool |
| cp_parser_simulate_error (cp_parser* parser) |
| { |
| if (cp_parser_uncommitted_to_tentative_parse_p (parser)) |
| { |
| parser->context->status = CP_PARSER_STATUS_KIND_ERROR; |
| return true; |
| } |
| return false; |
| } |
| |
| /* Check for repeated decl-specifiers. */ |
| |
| static void |
| cp_parser_check_decl_spec (cp_decl_specifier_seq *decl_specs, |
| location_t location) |
| { |
| int ds; |
| |
| for (ds = ds_first; ds != ds_last; ++ds) |
| { |
| unsigned count = decl_specs->specs[ds]; |
| if (count < 2) |
| continue; |
| /* The "long" specifier is a special case because of "long long". */ |
| if (ds == ds_long) |
| { |
| if (count > 2) |
| error_at (location, "%<long long long%> is too long for GCC"); |
| else |
| pedwarn_cxx98 (location, OPT_Wlong_long, |
| "ISO C++ 1998 does not support %<long long%>"); |
| } |
| else if (count > 1) |
| { |
| static const char *const decl_spec_names[] = { |
| "signed", |
| "unsigned", |
| "short", |
| "long", |
| "const", |
| "volatile", |
| "restrict", |
| "inline", |
| "virtual", |
| "explicit", |
| "friend", |
| "typedef", |
| "constexpr", |
| "__complex", |
| "__thread" |
| }; |
| error_at (location, "duplicate %qs", decl_spec_names[ds]); |
| } |
| } |
| } |
| |
| /* This function is called when a type is defined. If type |
| definitions are forbidden at this point, an error message is |
| issued. */ |
| |
| static bool |
| cp_parser_check_type_definition (cp_parser* parser) |
| { |
| /* If types are forbidden here, issue a message. */ |
| if (parser->type_definition_forbidden_message) |
| { |
| /* Don't use `%s' to print the string, because quotations (`%<', `%>') |
| in the message need to be interpreted. */ |
| error (parser->type_definition_forbidden_message); |
| return false; |
| } |
| return true; |
| } |
| |
| /* This function is called when the DECLARATOR is processed. The TYPE |
| was a type defined in the decl-specifiers. If it is invalid to |
| define a type in the decl-specifiers for DECLARATOR, an error is |
| issued. TYPE_LOCATION is the location of TYPE and is used |
| for error reporting. */ |
| |
| static void |
| cp_parser_check_for_definition_in_return_type (cp_declarator *declarator, |
| tree type, location_t type_location) |
| { |
| /* [dcl.fct] forbids type definitions in return types. |
| Unfortunately, it's not easy to know whether or not we are |
| processing a return type until after the fact. */ |
| while (declarator |
| && (declarator->kind == cdk_pointer |
| || declarator->kind == cdk_reference |
| || declarator->kind == cdk_ptrmem)) |
| declarator = declarator->declarator; |
| if (declarator |
| && declarator->kind == cdk_function) |
| { |
| error_at (type_location, |
| "new types may not be defined in a return type"); |
| inform (type_location, |
| "(perhaps a semicolon is missing after the definition of %qT)", |
| type); |
| } |
| } |
| |
| /* A type-specifier (TYPE) has been parsed which cannot be followed by |
| "<" in any valid C++ program. If the next token is indeed "<", |
| issue a message warning the user about what appears to be an |
| invalid attempt to form a template-id. LOCATION is the location |
| of the type-specifier (TYPE) */ |
| |
| static void |
| cp_parser_check_for_invalid_template_id (cp_parser* parser, |
| tree type, location_t location) |
| { |
| cp_token_position start = 0; |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_LESS)) |
| { |
| if (TYPE_P (type)) |
| error_at (location, "%qT is not a template", type); |
| else if (TREE_CODE (type) == IDENTIFIER_NODE) |
| error_at (location, "%qE is not a template", type); |
| else |
| error_at (location, "invalid template-id"); |
| /* Remember the location of the invalid "<". */ |
| if (cp_parser_uncommitted_to_tentative_parse_p (parser)) |
| start = cp_lexer_token_position (parser->lexer, true); |
| /* Consume the "<". */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the template arguments. */ |
| cp_parser_enclosed_template_argument_list (parser); |
| /* Permanently remove the invalid template arguments so that |
| this error message is not issued again. */ |
| if (start) |
| cp_lexer_purge_tokens_after (parser->lexer, start); |
| } |
| } |
| |
| /* If parsing an integral constant-expression, issue an error message |
| about the fact that THING appeared and return true. Otherwise, |
| return false. In either case, set |
| PARSER->NON_INTEGRAL_CONSTANT_EXPRESSION_P. */ |
| |
| static bool |
| cp_parser_non_integral_constant_expression (cp_parser *parser, |
| non_integral_constant thing) |
| { |
| parser->non_integral_constant_expression_p = true; |
| if (parser->integral_constant_expression_p) |
| { |
| if (!parser->allow_non_integral_constant_expression_p) |
| { |
| const char *msg = NULL; |
| switch (thing) |
| { |
| case NIC_FLOAT: |
| error ("floating-point literal " |
| "cannot appear in a constant-expression"); |
| return true; |
| case NIC_CAST: |
| error ("a cast to a type other than an integral or " |
| "enumeration type cannot appear in a " |
| "constant-expression"); |
| return true; |
| case NIC_TYPEID: |
| error ("%<typeid%> operator " |
| "cannot appear in a constant-expression"); |
| return true; |
| case NIC_NCC: |
| error ("non-constant compound literals " |
| "cannot appear in a constant-expression"); |
| return true; |
| case NIC_FUNC_CALL: |
| error ("a function call " |
| "cannot appear in a constant-expression"); |
| return true; |
| case NIC_INC: |
| error ("an increment " |
| "cannot appear in a constant-expression"); |
| return true; |
| case NIC_DEC: |
| error ("an decrement " |
| "cannot appear in a constant-expression"); |
| return true; |
| case NIC_ARRAY_REF: |
| error ("an array reference " |
| "cannot appear in a constant-expression"); |
| return true; |
| case NIC_ADDR_LABEL: |
| error ("the address of a label " |
| "cannot appear in a constant-expression"); |
| return true; |
| case NIC_OVERLOADED: |
| error ("calls to overloaded operators " |
| "cannot appear in a constant-expression"); |
| return true; |
| case NIC_ASSIGNMENT: |
| error ("an assignment cannot appear in a constant-expression"); |
| return true; |
| case NIC_COMMA: |
| error ("a comma operator " |
| "cannot appear in a constant-expression"); |
| return true; |
| case NIC_CONSTRUCTOR: |
| error ("a call to a constructor " |
| "cannot appear in a constant-expression"); |
| return true; |
| case NIC_THIS: |
| msg = "this"; |
| break; |
| case NIC_FUNC_NAME: |
| msg = "__FUNCTION__"; |
| break; |
| case NIC_PRETTY_FUNC: |
| msg = "__PRETTY_FUNCTION__"; |
| break; |
| case NIC_C99_FUNC: |
| msg = "__func__"; |
| break; |
| case NIC_VA_ARG: |
| msg = "va_arg"; |
| break; |
| case NIC_ARROW: |
| msg = "->"; |
| break; |
| case NIC_POINT: |
| msg = "."; |
| break; |
| case NIC_STAR: |
| msg = "*"; |
| break; |
| case NIC_ADDR: |
| msg = "&"; |
| break; |
| case NIC_PREINCREMENT: |
| msg = "++"; |
| break; |
| case NIC_PREDECREMENT: |
| msg = "--"; |
| break; |
| case NIC_NEW: |
| msg = "new"; |
| break; |
| case NIC_DEL: |
| msg = "delete"; |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| if (msg) |
| error ("%qs cannot appear in a constant-expression", msg); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* Emit a diagnostic for an invalid type name. SCOPE is the |
| qualifying scope (or NULL, if none) for ID. This function commits |
| to the current active tentative parse, if any. (Otherwise, the |
| problematic construct might be encountered again later, resulting |
| in duplicate error messages.) LOCATION is the location of ID. */ |
| |
| static void |
| cp_parser_diagnose_invalid_type_name (cp_parser *parser, |
| tree scope, tree id, |
| location_t location) |
| { |
| tree decl, old_scope; |
| cp_parser_commit_to_tentative_parse (parser); |
| /* Try to lookup the identifier. */ |
| old_scope = parser->scope; |
| parser->scope = scope; |
| decl = cp_parser_lookup_name_simple (parser, id, location); |
| parser->scope = old_scope; |
| /* If the lookup found a template-name, it means that the user forgot |
| to specify an argument list. Emit a useful error message. */ |
| if (TREE_CODE (decl) == TEMPLATE_DECL) |
| error_at (location, |
| "invalid use of template-name %qE without an argument list", |
| decl); |
| else if (TREE_CODE (id) == BIT_NOT_EXPR) |
| error_at (location, "invalid use of destructor %qD as a type", id); |
| else if (TREE_CODE (decl) == TYPE_DECL) |
| /* Something like 'unsigned A a;' */ |
| error_at (location, "invalid combination of multiple type-specifiers"); |
| else if (!parser->scope) |
| { |
| /* Issue an error message. */ |
| error_at (location, "%qE does not name a type", id); |
| /* If we're in a template class, it's possible that the user was |
| referring to a type from a base class. For example: |
| |
| template <typename T> struct A { typedef T X; }; |
| template <typename T> struct B : public A<T> { X x; }; |
| |
| The user should have said "typename A<T>::X". */ |
| if (cxx_dialect < cxx0x && id == ridpointers[(int)RID_CONSTEXPR]) |
| inform (location, "C++0x %<constexpr%> only available with " |
| "-std=c++0x or -std=gnu++0x"); |
| else if (processing_template_decl && current_class_type |
| && TYPE_BINFO (current_class_type)) |
| { |
| tree b; |
| |
| for (b = TREE_CHAIN (TYPE_BINFO (current_class_type)); |
| b; |
| b = TREE_CHAIN (b)) |
| { |
| tree base_type = BINFO_TYPE (b); |
| if (CLASS_TYPE_P (base_type) |
| && dependent_type_p (base_type)) |
| { |
| tree field; |
| /* Go from a particular instantiation of the |
| template (which will have an empty TYPE_FIELDs), |
| to the main version. */ |
| base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type); |
| for (field = TYPE_FIELDS (base_type); |
| field; |
| field = DECL_CHAIN (field)) |
| if (TREE_CODE (field) == TYPE_DECL |
| && DECL_NAME (field) == id) |
| { |
| inform (location, |
| "(perhaps %<typename %T::%E%> was intended)", |
| BINFO_TYPE (b), id); |
| break; |
| } |
| if (field) |
| break; |
| } |
| } |
| } |
| } |
| /* Here we diagnose qualified-ids where the scope is actually correct, |
| but the identifier does not resolve to a valid type name. */ |
| else if (parser->scope != error_mark_node) |
| { |
| if (TREE_CODE (parser->scope) == NAMESPACE_DECL) |
| error_at (location, "%qE in namespace %qE does not name a type", |
| id, parser->scope); |
| else if (CLASS_TYPE_P (parser->scope) |
| && constructor_name_p (id, parser->scope)) |
| { |
| /* A<T>::A<T>() */ |
| error_at (location, "%<%T::%E%> names the constructor, not" |
| " the type", parser->scope, id); |
| if (cp_lexer_next_token_is (parser->lexer, CPP_LESS)) |
| error_at (location, "and %qT has no template constructors", |
| parser->scope); |
| } |
| else if (TYPE_P (parser->scope) |
| && dependent_scope_p (parser->scope)) |
| error_at (location, "need %<typename%> before %<%T::%E%> because " |
| "%qT is a dependent scope", |
| parser->scope, id, parser->scope); |
| else if (TYPE_P (parser->scope)) |
| error_at (location, "%qE in %q#T does not name a type", |
| id, parser->scope); |
| else |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Check for a common situation where a type-name should be present, |
| but is not, and issue a sensible error message. Returns true if an |
| invalid type-name was detected. |
| |
| The situation handled by this function are variable declarations of the |
| form `ID a', where `ID' is an id-expression and `a' is a plain identifier. |
| Usually, `ID' should name a type, but if we got here it means that it |
| does not. We try to emit the best possible error message depending on |
| how exactly the id-expression looks like. */ |
| |
| static bool |
| cp_parser_parse_and_diagnose_invalid_type_name (cp_parser *parser) |
| { |
| tree id; |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| /* Avoid duplicate error about ambiguous lookup. */ |
| if (token->type == CPP_NESTED_NAME_SPECIFIER) |
| { |
| cp_token *next = cp_lexer_peek_nth_token (parser->lexer, 2); |
| if (next->type == CPP_NAME && next->ambiguous_p) |
| goto out; |
| } |
| |
| cp_parser_parse_tentatively (parser); |
| id = cp_parser_id_expression (parser, |
| /*template_keyword_p=*/false, |
| /*check_dependency_p=*/true, |
| /*template_p=*/NULL, |
| /*declarator_p=*/true, |
| /*optional_p=*/false); |
| /* If the next token is a (, this is a function with no explicit return |
| type, i.e. constructor, destructor or conversion op. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN) |
| || TREE_CODE (id) == TYPE_DECL) |
| { |
| cp_parser_abort_tentative_parse (parser); |
| return false; |
| } |
| if (!cp_parser_parse_definitely (parser)) |
| return false; |
| |
| /* Emit a diagnostic for the invalid type. */ |
| cp_parser_diagnose_invalid_type_name (parser, parser->scope, |
| id, token->location); |
| out: |
| /* If we aren't in the middle of a declarator (i.e. in a |
| parameter-declaration-clause), skip to the end of the declaration; |
| there's no point in trying to process it. */ |
| if (!parser->in_declarator_p) |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| return true; |
| } |
| |
| /* Consume tokens up to, and including, the next non-nested closing `)'. |
| Returns 1 iff we found a closing `)'. RECOVERING is true, if we |
| are doing error recovery. Returns -1 if OR_COMMA is true and we |
| found an unnested comma. */ |
| |
| static int |
| cp_parser_skip_to_closing_parenthesis (cp_parser *parser, |
| bool recovering, |
| bool or_comma, |
| bool consume_paren) |
| { |
| unsigned paren_depth = 0; |
| unsigned brace_depth = 0; |
| unsigned square_depth = 0; |
| |
| if (recovering && !or_comma |
| && cp_parser_uncommitted_to_tentative_parse_p (parser)) |
| return 0; |
| |
| while (true) |
| { |
| cp_token * token = cp_lexer_peek_token (parser->lexer); |
| |
| switch (token->type) |
| { |
| case CPP_EOF: |
| case CPP_PRAGMA_EOL: |
| /* If we've run out of tokens, then there is no closing `)'. */ |
| return 0; |
| |
| /* This is good for lambda expression capture-lists. */ |
| case CPP_OPEN_SQUARE: |
| ++square_depth; |
| break; |
| case CPP_CLOSE_SQUARE: |
| if (!square_depth--) |
| return 0; |
| break; |
| |
| case CPP_SEMICOLON: |
| /* This matches the processing in skip_to_end_of_statement. */ |
| if (!brace_depth) |
| return 0; |
| break; |
| |
| case CPP_OPEN_BRACE: |
| ++brace_depth; |
| break; |
| case CPP_CLOSE_BRACE: |
| if (!brace_depth--) |
| return 0; |
| break; |
| |
| case CPP_COMMA: |
| if (recovering && or_comma && !brace_depth && !paren_depth |
| && !square_depth) |
| return -1; |
| break; |
| |
| case CPP_OPEN_PAREN: |
| if (!brace_depth) |
| ++paren_depth; |
| break; |
| |
| case CPP_CLOSE_PAREN: |
| if (!brace_depth && !paren_depth--) |
| { |
| if (consume_paren) |
| cp_lexer_consume_token (parser->lexer); |
| return 1; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Consume the token. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| } |
| |
| /* Consume tokens until we reach the end of the current statement. |
| Normally, that will be just before consuming a `;'. However, if a |
| non-nested `}' comes first, then we stop before consuming that. */ |
| |
| static void |
| cp_parser_skip_to_end_of_statement (cp_parser* parser) |
| { |
| unsigned nesting_depth = 0; |
| |
| while (true) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| switch (token->type) |
| { |
| case CPP_EOF: |
| case CPP_PRAGMA_EOL: |
| /* If we've run out of tokens, stop. */ |
| return; |
| |
| case CPP_SEMICOLON: |
| /* If the next token is a `;', we have reached the end of the |
| statement. */ |
| if (!nesting_depth) |
| return; |
| break; |
| |
| case CPP_CLOSE_BRACE: |
| /* If this is a non-nested '}', stop before consuming it. |
| That way, when confronted with something like: |
| |
| { 3 + } |
| |
| we stop before consuming the closing '}', even though we |
| have not yet reached a `;'. */ |
| if (nesting_depth == 0) |
| return; |
| |
| /* If it is the closing '}' for a block that we have |
| scanned, stop -- but only after consuming the token. |
| That way given: |
| |
| void f g () { ... } |
| typedef int I; |
| |
| we will stop after the body of the erroneously declared |
| function, but before consuming the following `typedef' |
| declaration. */ |
| if (--nesting_depth == 0) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| return; |
| } |
| |
| case CPP_OPEN_BRACE: |
| ++nesting_depth; |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Consume the token. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| } |
| |
| /* This function is called at the end of a statement or declaration. |
| If the next token is a semicolon, it is consumed; otherwise, error |
| recovery is attempted. */ |
| |
| static void |
| cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser) |
| { |
| /* Look for the trailing `;'. */ |
| if (!cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON)) |
| { |
| /* If there is additional (erroneous) input, skip to the end of |
| the statement. */ |
| cp_parser_skip_to_end_of_statement (parser); |
| /* If the next token is now a `;', consume it. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)) |
| cp_lexer_consume_token (parser->lexer); |
| } |
| } |
| |
| /* Skip tokens until we have consumed an entire block, or until we |
| have consumed a non-nested `;'. */ |
| |
| static void |
| cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser) |
| { |
| int nesting_depth = 0; |
| |
| while (nesting_depth >= 0) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| switch (token->type) |
| { |
| case CPP_EOF: |
| case CPP_PRAGMA_EOL: |
| /* If we've run out of tokens, stop. */ |
| return; |
| |
| case CPP_SEMICOLON: |
| /* Stop if this is an unnested ';'. */ |
| if (!nesting_depth) |
| nesting_depth = -1; |
| break; |
| |
| case CPP_CLOSE_BRACE: |
| /* Stop if this is an unnested '}', or closes the outermost |
| nesting level. */ |
| nesting_depth--; |
| if (nesting_depth < 0) |
| return; |
| if (!nesting_depth) |
| nesting_depth = -1; |
| break; |
| |
| case CPP_OPEN_BRACE: |
| /* Nest. */ |
| nesting_depth++; |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Consume the token. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| } |
| |
| /* Skip tokens until a non-nested closing curly brace is the next |
| token, or there are no more tokens. Return true in the first case, |
| false otherwise. */ |
| |
| static bool |
| cp_parser_skip_to_closing_brace (cp_parser *parser) |
| { |
| unsigned nesting_depth = 0; |
| |
| while (true) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| switch (token->type) |
| { |
| case CPP_EOF: |
| case CPP_PRAGMA_EOL: |
| /* If we've run out of tokens, stop. */ |
| return false; |
| |
| case CPP_CLOSE_BRACE: |
| /* If the next token is a non-nested `}', then we have reached |
| the end of the current block. */ |
| if (nesting_depth-- == 0) |
| return true; |
| break; |
| |
| case CPP_OPEN_BRACE: |
| /* If it the next token is a `{', then we are entering a new |
| block. Consume the entire block. */ |
| ++nesting_depth; |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Consume the token. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| } |
| |
| /* Consume tokens until we reach the end of the pragma. The PRAGMA_TOK |
| parameter is the PRAGMA token, allowing us to purge the entire pragma |
| sequence. */ |
| |
| static void |
| cp_parser_skip_to_pragma_eol (cp_parser* parser, cp_token *pragma_tok) |
| { |
| cp_token *token; |
| |
| parser->lexer->in_pragma = false; |
| |
| do |
| token = cp_lexer_consume_token (parser->lexer); |
| while (token->type != CPP_PRAGMA_EOL && token->type != CPP_EOF); |
| |
| /* Ensure that the pragma is not parsed again. */ |
| cp_lexer_purge_tokens_after (parser->lexer, pragma_tok); |
| } |
| |
| /* Require pragma end of line, resyncing with it as necessary. The |
| arguments are as for cp_parser_skip_to_pragma_eol. */ |
| |
| static void |
| cp_parser_require_pragma_eol (cp_parser *parser, cp_token *pragma_tok) |
| { |
| parser->lexer->in_pragma = false; |
| if (!cp_parser_require (parser, CPP_PRAGMA_EOL, RT_PRAGMA_EOL)) |
| cp_parser_skip_to_pragma_eol (parser, pragma_tok); |
| } |
| |
| /* This is a simple wrapper around make_typename_type. When the id is |
| an unresolved identifier node, we can provide a superior diagnostic |
| using cp_parser_diagnose_invalid_type_name. */ |
| |
| static tree |
| cp_parser_make_typename_type (cp_parser *parser, tree scope, |
| tree id, location_t id_location) |
| { |
| tree result; |
| if (TREE_CODE (id) == IDENTIFIER_NODE) |
| { |
| result = make_typename_type (scope, id, typename_type, |
| /*complain=*/tf_none); |
| if (result == error_mark_node) |
| cp_parser_diagnose_invalid_type_name (parser, scope, id, id_location); |
| return result; |
| } |
| return make_typename_type (scope, id, typename_type, tf_error); |
| } |
| |
| /* This is a wrapper around the |
| make_{pointer,ptrmem,reference}_declarator functions that decides |
| which one to call based on the CODE and CLASS_TYPE arguments. The |
| CODE argument should be one of the values returned by |
| cp_parser_ptr_operator. */ |
| static cp_declarator * |
| cp_parser_make_indirect_declarator (enum tree_code code, tree class_type, |
| cp_cv_quals cv_qualifiers, |
| cp_declarator *target) |
| { |
| if (code == ERROR_MARK) |
| return cp_error_declarator; |
| |
| if (code == INDIRECT_REF) |
| if (class_type == NULL_TREE) |
| return make_pointer_declarator (cv_qualifiers, target); |
| else |
| return make_ptrmem_declarator (cv_qualifiers, class_type, target); |
| else if (code == ADDR_EXPR && class_type == NULL_TREE) |
| return make_reference_declarator (cv_qualifiers, target, false); |
| else if (code == NON_LVALUE_EXPR && class_type == NULL_TREE) |
| return make_reference_declarator (cv_qualifiers, target, true); |
| gcc_unreachable (); |
| } |
| |
| /* Create a new C++ parser. */ |
| |
| static cp_parser * |
| cp_parser_new (void) |
| { |
| cp_parser *parser; |
| cp_lexer *lexer; |
| unsigned i; |
| |
| /* cp_lexer_new_main is called before doing GC allocation because |
| cp_lexer_new_main might load a PCH file. */ |
| lexer = cp_lexer_new_main (); |
| |
| /* Initialize the binops_by_token so that we can get the tree |
| directly from the token. */ |
| for (i = 0; i < sizeof (binops) / sizeof (binops[0]); i++) |
| binops_by_token[binops[i].token_type] = binops[i]; |
| |
| parser = ggc_alloc_cleared_cp_parser (); |
| parser->lexer = lexer; |
| parser->context = cp_parser_context_new (NULL); |
| |
| /* For now, we always accept GNU extensions. */ |
| parser->allow_gnu_extensions_p = 1; |
| |
| /* The `>' token is a greater-than operator, not the end of a |
| template-id. */ |
| parser->greater_than_is_operator_p = true; |
| |
| parser->default_arg_ok_p = true; |
| |
| /* We are not parsing a constant-expression. */ |
| parser->integral_constant_expression_p = false; |
| parser->allow_non_integral_constant_expression_p = false; |
| parser->non_integral_constant_expression_p = false; |
| |
| /* Local variable names are not forbidden. */ |
| parser->local_variables_forbidden_p = false; |
| |
| /* We are not processing an `extern "C"' declaration. */ |
| parser->in_unbraced_linkage_specification_p = false; |
| |
| /* We are not processing a declarator. */ |
| parser->in_declarator_p = false; |
| |
| /* We are not processing a template-argument-list. */ |
| parser->in_template_argument_list_p = false; |
| |
| /* We are not in an iteration statement. */ |
| parser->in_statement = 0; |
| |
| /* We are not in a switch statement. */ |
| parser->in_switch_statement_p = false; |
| |
| /* We are not parsing a type-id inside an expression. */ |
| parser->in_type_id_in_expr_p = false; |
| |
| /* Declarations aren't implicitly extern "C". */ |
| parser->implicit_extern_c = false; |
| |
| /* String literals should be translated to the execution character set. */ |
| parser->translate_strings_p = true; |
| |
| /* We are not parsing a function body. */ |
| parser->in_function_body = false; |
| |
| /* We can correct until told otherwise. */ |
| parser->colon_corrects_to_scope_p = true; |
| |
| /* The unparsed function queue is empty. */ |
| push_unparsed_function_queues (parser); |
| |
| /* There are no classes being defined. */ |
| parser->num_classes_being_defined = 0; |
| |
| /* No template parameters apply. */ |
| parser->num_template_parameter_lists = 0; |
| |
| return parser; |
| } |
| |
| /* Create a cp_lexer structure which will emit the tokens in CACHE |
| and push it onto the parser's lexer stack. This is used for delayed |
| parsing of in-class method bodies and default arguments, and should |
| not be confused with tentative parsing. */ |
| static void |
| cp_parser_push_lexer_for_tokens (cp_parser *parser, cp_token_cache *cache) |
| { |
| cp_lexer *lexer = cp_lexer_new_from_tokens (cache); |
| lexer->next = parser->lexer; |
| parser->lexer = lexer; |
| |
| /* Move the current source position to that of the first token in the |
| new lexer. */ |
| cp_lexer_set_source_position_from_token (lexer->next_token); |
| } |
| |
| /* Pop the top lexer off the parser stack. This is never used for the |
| "main" lexer, only for those pushed by cp_parser_push_lexer_for_tokens. */ |
| static void |
| cp_parser_pop_lexer (cp_parser *parser) |
| { |
| cp_lexer *lexer = parser->lexer; |
| parser->lexer = lexer->next; |
| cp_lexer_destroy (lexer); |
| |
| /* Put the current source position back where it was before this |
| lexer was pushed. */ |
| cp_lexer_set_source_position_from_token (parser->lexer->next_token); |
| } |
| |
| /* Lexical conventions [gram.lex] */ |
| |
| /* Parse an identifier. Returns an IDENTIFIER_NODE representing the |
| identifier. */ |
| |
| static tree |
| cp_parser_identifier (cp_parser* parser) |
| { |
| cp_token *token; |
| |
| /* Look for the identifier. */ |
| token = cp_parser_require (parser, CPP_NAME, RT_NAME); |
| /* Return the value. */ |
| return token ? token->u.value : error_mark_node; |
| } |
| |
| /* Parse a sequence of adjacent string constants. Returns a |
| TREE_STRING representing the combined, nul-terminated string |
| constant. If TRANSLATE is true, translate the string to the |
| execution character set. If WIDE_OK is true, a wide string is |
| invalid here. |
| |
| C++98 [lex.string] says that if a narrow string literal token is |
| adjacent to a wide string literal token, the behavior is undefined. |
| However, C99 6.4.5p4 says that this results in a wide string literal. |
| We follow C99 here, for consistency with the C front end. |
| |
| This code is largely lifted from lex_string() in c-lex.c. |
| |
| FUTURE: ObjC++ will need to handle @-strings here. */ |
| static tree |
| cp_parser_string_literal (cp_parser *parser, bool translate, bool wide_ok) |
| { |
| tree value; |
| size_t count; |
| struct obstack str_ob; |
| cpp_string str, istr, *strs; |
| cp_token *tok; |
| enum cpp_ttype type; |
| |
| tok = cp_lexer_peek_token (parser->lexer); |
| if (!cp_parser_is_string_literal (tok)) |
| { |
| cp_parser_error (parser, "expected string-literal"); |
| return error_mark_node; |
| } |
| |
| type = tok->type; |
| |
| /* Try to avoid the overhead of creating and destroying an obstack |
| for the common case of just one string. */ |
| if (!cp_parser_is_string_literal |
| (cp_lexer_peek_nth_token (parser->lexer, 2))) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| |
| str.text = (const unsigned char *)TREE_STRING_POINTER (tok->u.value); |
| str.len = TREE_STRING_LENGTH (tok->u.value); |
| count = 1; |
| |
| strs = &str; |
| } |
| else |
| { |
| gcc_obstack_init (&str_ob); |
| count = 0; |
| |
| do |
| { |
| cp_lexer_consume_token (parser->lexer); |
| count++; |
| str.text = (const unsigned char *)TREE_STRING_POINTER (tok->u.value); |
| str.len = TREE_STRING_LENGTH (tok->u.value); |
| |
| if (type != tok->type) |
| { |
| if (type == CPP_STRING) |
| type = tok->type; |
| else if (tok->type != CPP_STRING) |
| error_at (tok->location, |
| "unsupported non-standard concatenation " |
| "of string literals"); |
| } |
| |
| obstack_grow (&str_ob, &str, sizeof (cpp_string)); |
| |
| tok = cp_lexer_peek_token (parser->lexer); |
| } |
| while (cp_parser_is_string_literal (tok)); |
| |
| strs = (cpp_string *) obstack_finish (&str_ob); |
| } |
| |
| if (type != CPP_STRING && !wide_ok) |
| { |
| cp_parser_error (parser, "a wide string is invalid in this context"); |
| type = CPP_STRING; |
| } |
| |
| if ((translate ? cpp_interpret_string : cpp_interpret_string_notranslate) |
| (parse_in, strs, count, &istr, type)) |
| { |
| value = build_string (istr.len, (const char *)istr.text); |
| free (CONST_CAST (unsigned char *, istr.text)); |
| |
| switch (type) |
| { |
| default: |
| case CPP_STRING: |
| case CPP_UTF8STRING: |
| TREE_TYPE (value) = char_array_type_node; |
| break; |
| case CPP_STRING16: |
| TREE_TYPE (value) = char16_array_type_node; |
| break; |
| case CPP_STRING32: |
| TREE_TYPE (value) = char32_array_type_node; |
| break; |
| case CPP_WSTRING: |
| TREE_TYPE (value) = wchar_array_type_node; |
| break; |
| } |
| |
| value = fix_string_type (value); |
| } |
| else |
| /* cpp_interpret_string has issued an error. */ |
| value = error_mark_node; |
| |
| if (count > 1) |
| obstack_free (&str_ob, 0); |
| |
| return value; |
| } |
| |
| |
| /* Basic concepts [gram.basic] */ |
| |
| /* Parse a translation-unit. |
| |
| translation-unit: |
| declaration-seq [opt] |
| |
| Returns TRUE if all went well. */ |
| |
| static bool |
| cp_parser_translation_unit (cp_parser* parser) |
| { |
| /* The address of the first non-permanent object on the declarator |
| obstack. */ |
| static void *declarator_obstack_base; |
| |
| bool success; |
| |
| /* Create the declarator obstack, if necessary. */ |
| if (!cp_error_declarator) |
| { |
| gcc_obstack_init (&declarator_obstack); |
| /* Create the error declarator. */ |
| cp_error_declarator = make_declarator (cdk_error); |
| /* Create the empty parameter list. */ |
| no_parameters = make_parameter_declarator (NULL, NULL, NULL_TREE); |
| /* Remember where the base of the declarator obstack lies. */ |
| declarator_obstack_base = obstack_next_free (&declarator_obstack); |
| } |
| |
| cp_parser_declaration_seq_opt (parser); |
| |
| /* If there are no tokens left then all went well. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_EOF)) |
| { |
| /* Get rid of the token array; we don't need it any more. */ |
| cp_lexer_destroy (parser->lexer); |
| parser->lexer = NULL; |
| |
| /* This file might have been a context that's implicitly extern |
| "C". If so, pop the lang context. (Only relevant for PCH.) */ |
| if (parser->implicit_extern_c) |
| { |
| pop_lang_context (); |
| parser->implicit_extern_c = false; |
| } |
| |
| /* Finish up. */ |
| finish_translation_unit (); |
| |
| success = true; |
| } |
| else |
| { |
| cp_parser_error (parser, "expected declaration"); |
| success = false; |
| } |
| |
| /* Make sure the declarator obstack was fully cleaned up. */ |
| gcc_assert (obstack_next_free (&declarator_obstack) |
| == declarator_obstack_base); |
| |
| /* All went well. */ |
| return success; |
| } |
| |
| /* Expressions [gram.expr] */ |
| |
| /* Parse a primary-expression. |
| |
| primary-expression: |
| literal |
| this |
| ( expression ) |
| id-expression |
| |
| GNU Extensions: |
| |
| primary-expression: |
| ( compound-statement ) |
| __builtin_va_arg ( assignment-expression , type-id ) |
| __builtin_offsetof ( type-id , offsetof-expression ) |
| |
| C++ Extensions: |
| __has_nothrow_assign ( type-id ) |
| __has_nothrow_constructor ( type-id ) |
| __has_nothrow_copy ( type-id ) |
| __has_trivial_assign ( type-id ) |
| __has_trivial_constructor ( type-id ) |
| __has_trivial_copy ( type-id ) |
| __has_trivial_destructor ( type-id ) |
| __has_virtual_destructor ( type-id ) |
| __is_abstract ( type-id ) |
| __is_base_of ( type-id , type-id ) |
| __is_class ( type-id ) |
| __is_convertible_to ( type-id , type-id ) |
| __is_empty ( type-id ) |
| __is_enum ( type-id ) |
| __is_literal_type ( type-id ) |
| __is_pod ( type-id ) |
| __is_polymorphic ( type-id ) |
| __is_std_layout ( type-id ) |
| __is_trivial ( type-id ) |
| __is_union ( type-id ) |
| |
| Objective-C++ Extension: |
| |
| primary-expression: |
| objc-expression |
| |
| literal: |
| __null |
| |
| ADDRESS_P is true iff this expression was immediately preceded by |
| "&" and therefore might denote a pointer-to-member. CAST_P is true |
| iff this expression is the target of a cast. TEMPLATE_ARG_P is |
| true iff this expression is a template argument. |
| |
| Returns a representation of the expression. Upon return, *IDK |
| indicates what kind of id-expression (if any) was present. */ |
| |
| static tree |
| cp_parser_primary_expression (cp_parser *parser, |
| bool address_p, |
| bool cast_p, |
| bool template_arg_p, |
| cp_id_kind *idk) |
| { |
| cp_token *token = NULL; |
| |
| /* Assume the primary expression is not an id-expression. */ |
| *idk = CP_ID_KIND_NONE; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| switch (token->type) |
| { |
| /* literal: |
| integer-literal |
| character-literal |
| floating-literal |
| string-literal |
| boolean-literal */ |
| case CPP_CHAR: |
| case CPP_CHAR16: |
| case CPP_CHAR32: |
| case CPP_WCHAR: |
| case CPP_NUMBER: |
| token = cp_lexer_consume_token (parser->lexer); |
| if (TREE_CODE (token->u.value) == FIXED_CST) |
| { |
| error_at (token->location, |
| "fixed-point types not supported in C++"); |
| return error_mark_node; |
| } |
| /* Floating-point literals are only allowed in an integral |
| constant expression if they are cast to an integral or |
| enumeration type. */ |
| if (TREE_CODE (token->u.value) == REAL_CST |
| && parser->integral_constant_expression_p |
| && pedantic) |
| { |
| /* CAST_P will be set even in invalid code like "int(2.7 + |
| ...)". Therefore, we have to check that the next token |
| is sure to end the cast. */ |
| if (cast_p) |
| { |
| cp_token *next_token; |
| |
| next_token = cp_lexer_peek_token (parser->lexer); |
| if (/* The comma at the end of an |
| enumerator-definition. */ |
| next_token->type != CPP_COMMA |
| /* The curly brace at the end of an enum-specifier. */ |
| && next_token->type != CPP_CLOSE_BRACE |
| /* The end of a statement. */ |
| && next_token->type != CPP_SEMICOLON |
| /* The end of the cast-expression. */ |
| && next_token->type != CPP_CLOSE_PAREN |
| /* The end of an array bound. */ |
| && next_token->type != CPP_CLOSE_SQUARE |
| /* The closing ">" in a template-argument-list. */ |
| && (next_token->type != CPP_GREATER |
| || parser->greater_than_is_operator_p) |
| /* C++0x only: A ">>" treated like two ">" tokens, |
| in a template-argument-list. */ |
| && (next_token->type != CPP_RSHIFT |
| || (cxx_dialect == cxx98) |
| || parser->greater_than_is_operator_p)) |
| cast_p = false; |
| } |
| |
| /* If we are within a cast, then the constraint that the |
| cast is to an integral or enumeration type will be |
| checked at that point. If we are not within a cast, then |
| this code is invalid. */ |
| if (!cast_p) |
| cp_parser_non_integral_constant_expression (parser, NIC_FLOAT); |
| } |
| return token->u.value; |
| |
| case CPP_STRING: |
| case CPP_STRING16: |
| case CPP_STRING32: |
| case CPP_WSTRING: |
| case CPP_UTF8STRING: |
| /* ??? Should wide strings be allowed when parser->translate_strings_p |
| is false (i.e. in attributes)? If not, we can kill the third |
| argument to cp_parser_string_literal. */ |
| return cp_parser_string_literal (parser, |
| parser->translate_strings_p, |
| true); |
| |
| case CPP_OPEN_PAREN: |
| { |
| tree expr; |
| bool saved_greater_than_is_operator_p; |
| |
| /* Consume the `('. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Within a parenthesized expression, a `>' token is always |
| the greater-than operator. */ |
| saved_greater_than_is_operator_p |
| = parser->greater_than_is_operator_p; |
| parser->greater_than_is_operator_p = true; |
| /* If we see `( { ' then we are looking at the beginning of |
| a GNU statement-expression. */ |
| if (cp_parser_allow_gnu_extensions_p (parser) |
| && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| { |
| /* Statement-expressions are not allowed by the standard. */ |
| pedwarn (token->location, OPT_pedantic, |
| "ISO C++ forbids braced-groups within expressions"); |
| |
| /* And they're not allowed outside of a function-body; you |
| cannot, for example, write: |
| |
| int i = ({ int j = 3; j + 1; }); |
| |
| at class or namespace scope. */ |
| if (!parser->in_function_body |
| || parser->in_template_argument_list_p) |
| { |
| error_at (token->location, |
| "statement-expressions are not allowed outside " |
| "functions nor in template-argument lists"); |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| expr = error_mark_node; |
| } |
| else |
| { |
| /* Start the statement-expression. */ |
| expr = begin_stmt_expr (); |
| /* Parse the compound-statement. */ |
| cp_parser_compound_statement (parser, expr, false, false); |
| /* Finish up. */ |
| expr = finish_stmt_expr (expr, false); |
| } |
| } |
| else |
| { |
| /* Parse the parenthesized expression. */ |
| expr = cp_parser_expression (parser, cast_p, idk); |
| /* Let the front end know that this expression was |
| enclosed in parentheses. This matters in case, for |
| example, the expression is of the form `A::B', since |
| `&A::B' might be a pointer-to-member, but `&(A::B)' is |
| not. */ |
| finish_parenthesized_expr (expr); |
| /* DR 705: Wrapping an unqualified name in parentheses |
| suppresses arg-dependent lookup. We want to pass back |
| CP_ID_KIND_QUALIFIED for suppressing vtable lookup |
| (c++/37862), but none of the others. */ |
| if (*idk != CP_ID_KIND_QUALIFIED) |
| *idk = CP_ID_KIND_NONE; |
| } |
| /* The `>' token might be the end of a template-id or |
| template-parameter-list now. */ |
| parser->greater_than_is_operator_p |
| = saved_greater_than_is_operator_p; |
| /* Consume the `)'. */ |
| if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN)) |
| cp_parser_skip_to_end_of_statement (parser); |
| |
| return expr; |
| } |
| |
| case CPP_OPEN_SQUARE: |
| if (c_dialect_objc ()) |
| /* We have an Objective-C++ message. */ |
| return cp_parser_objc_expression (parser); |
| { |
| tree lam = cp_parser_lambda_expression (parser); |
| /* Don't warn about a failed tentative parse. */ |
| if (cp_parser_error_occurred (parser)) |
| return error_mark_node; |
| maybe_warn_cpp0x (CPP0X_LAMBDA_EXPR); |
| return lam; |
| } |
| |
| case CPP_OBJC_STRING: |
| if (c_dialect_objc ()) |
| /* We have an Objective-C++ string literal. */ |
| return cp_parser_objc_expression (parser); |
| cp_parser_error (parser, "expected primary-expression"); |
| return error_mark_node; |
| |
| case CPP_KEYWORD: |
| switch (token->keyword) |
| { |
| /* These two are the boolean literals. */ |
| case RID_TRUE: |
| cp_lexer_consume_token (parser->lexer); |
| return boolean_true_node; |
| case RID_FALSE: |
| cp_lexer_consume_token (parser->lexer); |
| return boolean_false_node; |
| |
| /* The `__null' literal. */ |
| case RID_NULL: |
| cp_lexer_consume_token (parser->lexer); |
| return null_node; |
| |
| /* The `nullptr' literal. */ |
| case RID_NULLPTR: |
| cp_lexer_consume_token (parser->lexer); |
| return nullptr_node; |
| |
| /* Recognize the `this' keyword. */ |
| case RID_THIS: |
| cp_lexer_consume_token (parser->lexer); |
| if (parser->local_variables_forbidden_p) |
| { |
| error_at (token->location, |
| "%<this%> may not be used in this context"); |
| return error_mark_node; |
| } |
| /* Pointers cannot appear in constant-expressions. */ |
| if (cp_parser_non_integral_constant_expression (parser, NIC_THIS)) |
| return error_mark_node; |
| return finish_this_expr (); |
| |
| /* The `operator' keyword can be the beginning of an |
| id-expression. */ |
| case RID_OPERATOR: |
| goto id_expression; |
| |
| case RID_FUNCTION_NAME: |
| case RID_PRETTY_FUNCTION_NAME: |
| case RID_C99_FUNCTION_NAME: |
| { |
| non_integral_constant name; |
| |
| /* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and |
| __func__ are the names of variables -- but they are |
| treated specially. Therefore, they are handled here, |
| rather than relying on the generic id-expression logic |
| below. Grammatically, these names are id-expressions. |
| |
| Consume the token. */ |
| token = cp_lexer_consume_token (parser->lexer); |
| |
| switch (token->keyword) |
| { |
| case RID_FUNCTION_NAME: |
| name = NIC_FUNC_NAME; |
| break; |
| case RID_PRETTY_FUNCTION_NAME: |
| name = NIC_PRETTY_FUNC; |
| break; |
| case RID_C99_FUNCTION_NAME: |
| name = NIC_C99_FUNC; |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| |
| if (cp_parser_non_integral_constant_expression (parser, name)) |
| return error_mark_node; |
| |
| /* Look up the name. */ |
| return finish_fname (token->u.value); |
| } |
| |
| case RID_VA_ARG: |
| { |
| tree expression; |
| tree type; |
| |
| /* The `__builtin_va_arg' construct is used to handle |
| `va_arg'. Consume the `__builtin_va_arg' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Look for the opening `('. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| /* Now, parse the assignment-expression. */ |
| expression = cp_parser_assignment_expression (parser, |
| /*cast_p=*/false, NULL); |
| /* Look for the `,'. */ |
| cp_parser_require (parser, CPP_COMMA, RT_COMMA); |
| /* Parse the type-id. */ |
| type = cp_parser_type_id (parser); |
| /* Look for the closing `)'. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| /* Using `va_arg' in a constant-expression is not |
| allowed. */ |
| if (cp_parser_non_integral_constant_expression (parser, |
| NIC_VA_ARG)) |
| return error_mark_node; |
| return build_x_va_arg (expression, type); |
| } |
| |
| case RID_OFFSETOF: |
| return cp_parser_builtin_offsetof (parser); |
| |
| case RID_HAS_NOTHROW_ASSIGN: |
| case RID_HAS_NOTHROW_CONSTRUCTOR: |
| case RID_HAS_NOTHROW_COPY: |
| case RID_HAS_TRIVIAL_ASSIGN: |
| case RID_HAS_TRIVIAL_CONSTRUCTOR: |
| case RID_HAS_TRIVIAL_COPY: |
| case RID_HAS_TRIVIAL_DESTRUCTOR: |
| case RID_HAS_VIRTUAL_DESTRUCTOR: |
| case RID_IS_ABSTRACT: |
| case RID_IS_BASE_OF: |
| case RID_IS_CLASS: |
| case RID_IS_CONVERTIBLE_TO: |
| case RID_IS_EMPTY: |
| case RID_IS_ENUM: |
| case RID_IS_LITERAL_TYPE: |
| case RID_IS_POD: |
| case RID_IS_POLYMORPHIC: |
| case RID_IS_STD_LAYOUT: |
| case RID_IS_TRIVIAL: |
| case RID_IS_UNION: |
| return cp_parser_trait_expr (parser, token->keyword); |
| |
| /* Objective-C++ expressions. */ |
| case RID_AT_ENCODE: |
| case RID_AT_PROTOCOL: |
| case RID_AT_SELECTOR: |
| return cp_parser_objc_expression (parser); |
| |
| case RID_TEMPLATE: |
| if (parser->in_function_body |
| && (cp_lexer_peek_nth_token (parser->lexer, 2)->type |
| == CPP_LESS)) |
| { |
| error_at (token->location, |
| "a template declaration cannot appear at block scope"); |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| return error_mark_node; |
| } |
| default: |
| cp_parser_error (parser, "expected primary-expression"); |
| return error_mark_node; |
| } |
| |
| /* An id-expression can start with either an identifier, a |
| `::' as the beginning of a qualified-id, or the "operator" |
| keyword. */ |
| case CPP_NAME: |
| case CPP_SCOPE: |
| case CPP_TEMPLATE_ID: |
| case CPP_NESTED_NAME_SPECIFIER: |
| { |
| tree id_expression; |
| tree decl; |
| const char *error_msg; |
| bool template_p; |
| bool done; |
| cp_token *id_expr_token; |
| |
| id_expression: |
| /* Parse the id-expression. */ |
| id_expression |
| = cp_parser_id_expression (parser, |
| /*template_keyword_p=*/false, |
| /*check_dependency_p=*/true, |
| &template_p, |
| /*declarator_p=*/false, |
| /*optional_p=*/false); |
| if (id_expression == error_mark_node) |
| return error_mark_node; |
| id_expr_token = token; |
| token = cp_lexer_peek_token (parser->lexer); |
| done = (token->type != CPP_OPEN_SQUARE |
| && token->type != CPP_OPEN_PAREN |
| && token->type != CPP_DOT |
| && token->type != CPP_DEREF |
| && token->type != CPP_PLUS_PLUS |
| && token->type != CPP_MINUS_MINUS); |
| /* If we have a template-id, then no further lookup is |
| required. If the template-id was for a template-class, we |
| will sometimes have a TYPE_DECL at this point. */ |
| if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR |
| || TREE_CODE (id_expression) == TYPE_DECL) |
| decl = id_expression; |
| /* Look up the name. */ |
| else |
| { |
| tree ambiguous_decls; |
| |
| /* If we already know that this lookup is ambiguous, then |
| we've already issued an error message; there's no reason |
| to check again. */ |
| if (id_expr_token->type == CPP_NAME |
| && id_expr_token->ambiguous_p) |
| { |
| cp_parser_simulate_error (parser); |
| return error_mark_node; |
| } |
| |
| decl = cp_parser_lookup_name (parser, id_expression, |
| none_type, |
| template_p, |
| /*is_namespace=*/false, |
| /*check_dependency=*/true, |
| &ambiguous_decls, |
| id_expr_token->location); |
| /* If the lookup was ambiguous, an error will already have |
| been issued. */ |
| if (ambiguous_decls) |
| return error_mark_node; |
| |
| /* In Objective-C++, we may have an Objective-C 2.0 |
| dot-syntax for classes here. */ |
| if (c_dialect_objc () |
| && cp_lexer_peek_token (parser->lexer)->type == CPP_DOT |
| && TREE_CODE (decl) == TYPE_DECL |
| && objc_is_class_name (decl)) |
| { |
| tree component; |
| cp_lexer_consume_token (parser->lexer); |
| component = cp_parser_identifier (parser); |
| if (component == error_mark_node) |
| return error_mark_node; |
| |
| return objc_build_class_component_ref (id_expression, component); |
| } |
| |
| /* In Objective-C++, an instance variable (ivar) may be preferred |
| to whatever cp_parser_lookup_name() found. */ |
| decl = objc_lookup_ivar (decl, id_expression); |
| |
| /* If name lookup gives us a SCOPE_REF, then the |
| qualifying scope was dependent. */ |
| if (TREE_CODE (decl) == SCOPE_REF) |
| { |
| /* At this point, we do not know if DECL is a valid |
| integral constant expression. We assume that it is |
| in fact such an expression, so that code like: |
| |
| template <int N> struct A { |
| int a[B<N>::i]; |
| }; |
| |
| is accepted. At template-instantiation time, we |
| will check that B<N>::i is actually a constant. */ |
| return decl; |
| } |
| /* Check to see if DECL is a local variable in a context |
| where that is forbidden. */ |
| if (parser->local_variables_forbidden_p |
| && local_variable_p (decl)) |
| { |
| /* It might be that we only found DECL because we are |
| trying to be generous with pre-ISO scoping rules. |
| For example, consider: |
| |
| int i; |
| void g() { |
| for (int i = 0; i < 10; ++i) {} |
| extern void f(int j = i); |
| } |
| |
| Here, name look up will originally find the out |
| of scope `i'. We need to issue a warning message, |
| but then use the global `i'. */ |
| decl = check_for_out_of_scope_variable (decl); |
| if (local_variable_p (decl)) |
| { |
| error_at (id_expr_token->location, |
| "local variable %qD may not appear in this context", |
| decl); |
| return error_mark_node; |
| } |
| } |
| } |
| |
| decl = (finish_id_expression |
| (id_expression, decl, parser->scope, |
| idk, |
| parser->integral_constant_expression_p, |
| parser->allow_non_integral_constant_expression_p, |
| &parser->non_integral_constant_expression_p, |
| template_p, done, address_p, |
| template_arg_p, |
| &error_msg, |
| id_expr_token->location)); |
| if (error_msg) |
| cp_parser_error (parser, error_msg); |
| return decl; |
| } |
| |
| /* Anything else is an error. */ |
| default: |
| cp_parser_error (parser, "expected primary-expression"); |
| return error_mark_node; |
| } |
| } |
| |
| /* Parse an id-expression. |
| |
| id-expression: |
| unqualified-id |
| qualified-id |
| |
| qualified-id: |
| :: [opt] nested-name-specifier template [opt] unqualified-id |
| :: identifier |
| :: operator-function-id |
| :: template-id |
| |
| Return a representation of the unqualified portion of the |
| identifier. Sets PARSER->SCOPE to the qualifying scope if there is |
| a `::' or nested-name-specifier. |
| |
| Often, if the id-expression was a qualified-id, the caller will |
| want to make a SCOPE_REF to represent the qualified-id. This |
| function does not do this in order to avoid wastefully creating |
| SCOPE_REFs when they are not required. |
| |
| If TEMPLATE_KEYWORD_P is true, then we have just seen the |
| `template' keyword. |
| |
| If CHECK_DEPENDENCY_P is false, then names are looked up inside |
| uninstantiated templates. |
| |
| If *TEMPLATE_P is non-NULL, it is set to true iff the |
| `template' keyword is used to explicitly indicate that the entity |
| named is a template. |
| |
| If DECLARATOR_P is true, the id-expression is appearing as part of |
| a declarator, rather than as part of an expression. */ |
| |
| static tree |
| cp_parser_id_expression (cp_parser *parser, |
| bool template_keyword_p, |
| bool check_dependency_p, |
| bool *template_p, |
| bool declarator_p, |
| bool optional_p) |
| { |
| bool global_scope_p; |
| bool nested_name_specifier_p; |
| |
| /* Assume the `template' keyword was not used. */ |
| if (template_p) |
| *template_p = template_keyword_p; |
| |
| /* Look for the optional `::' operator. */ |
| global_scope_p |
| = (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false) |
| != NULL_TREE); |
| /* Look for the optional nested-name-specifier. */ |
| nested_name_specifier_p |
| = (cp_parser_nested_name_specifier_opt (parser, |
| /*typename_keyword_p=*/false, |
| check_dependency_p, |
| /*type_p=*/false, |
| declarator_p) |
| != NULL_TREE); |
| /* If there is a nested-name-specifier, then we are looking at |
| the first qualified-id production. */ |
| if (nested_name_specifier_p) |
| { |
| tree saved_scope; |
| tree saved_object_scope; |
| tree saved_qualifying_scope; |
| tree unqualified_id; |
| bool is_template; |
| |
| /* See if the next token is the `template' keyword. */ |
| if (!template_p) |
| template_p = &is_template; |
| *template_p = cp_parser_optional_template_keyword (parser); |
| /* Name lookup we do during the processing of the |
| unqualified-id might obliterate SCOPE. */ |
| saved_scope = parser->scope; |
| saved_object_scope = parser->object_scope; |
| saved_qualifying_scope = parser->qualifying_scope; |
| /* Process the final unqualified-id. */ |
| unqualified_id = cp_parser_unqualified_id (parser, *template_p, |
| check_dependency_p, |
| declarator_p, |
| /*optional_p=*/false); |
| /* Restore the SAVED_SCOPE for our caller. */ |
| parser->scope = saved_scope; |
| parser->object_scope = saved_object_scope; |
| parser->qualifying_scope = saved_qualifying_scope; |
| |
| return unqualified_id; |
| } |
| /* Otherwise, if we are in global scope, then we are looking at one |
| of the other qualified-id productions. */ |
| else if (global_scope_p) |
| { |
| cp_token *token; |
| tree id; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| /* If it's an identifier, and the next token is not a "<", then |
| we can avoid the template-id case. This is an optimization |
| for this common case. */ |
| if (token->type == CPP_NAME |
| && !cp_parser_nth_token_starts_template_argument_list_p |
| (parser, 2)) |
| return cp_parser_identifier (parser); |
| |
| cp_parser_parse_tentatively (parser); |
| /* Try a template-id. */ |
| id = cp_parser_template_id (parser, |
| /*template_keyword_p=*/false, |
| /*check_dependency_p=*/true, |
| declarator_p); |
| /* If that worked, we're done. */ |
| if (cp_parser_parse_definitely (parser)) |
| return id; |
| |
| /* Peek at the next token. (Changes in the token buffer may |
| have invalidated the pointer obtained above.) */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| switch (token->type) |
| { |
| case CPP_NAME: |
| return cp_parser_identifier (parser); |
| |
| case CPP_KEYWORD: |
| if (token->keyword == RID_OPERATOR) |
| return cp_parser_operator_function_id (parser); |
| /* Fall through. */ |
| |
| default: |
| cp_parser_error (parser, "expected id-expression"); |
| return error_mark_node; |
| } |
| } |
| else |
| return cp_parser_unqualified_id (parser, template_keyword_p, |
| /*check_dependency_p=*/true, |
| declarator_p, |
| optional_p); |
| } |
| |
| /* Parse an unqualified-id. |
| |
| unqualified-id: |
| identifier |
| operator-function-id |
| conversion-function-id |
| ~ class-name |
| template-id |
| |
| If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template' |
| keyword, in a construct like `A::template ...'. |
| |
| Returns a representation of unqualified-id. For the `identifier' |
| production, an IDENTIFIER_NODE is returned. For the `~ class-name' |
| production a BIT_NOT_EXPR is returned; the operand of the |
| BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name. For the |
| other productions, see the documentation accompanying the |
| corresponding parsing functions. If CHECK_DEPENDENCY_P is false, |
| names are looked up in uninstantiated templates. If DECLARATOR_P |
| is true, the unqualified-id is appearing as part of a declarator, |
| rather than as part of an expression. */ |
| |
| static tree |
| cp_parser_unqualified_id (cp_parser* parser, |
| bool template_keyword_p, |
| bool check_dependency_p, |
| bool declarator_p, |
| bool optional_p) |
| { |
| cp_token *token; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| switch (token->type) |
| { |
| case CPP_NAME: |
| { |
| tree id; |
| |
| /* We don't know yet whether or not this will be a |
| template-id. */ |
| cp_parser_parse_tentatively (parser); |
| /* Try a template-id. */ |
| id = cp_parser_template_id (parser, template_keyword_p, |
| check_dependency_p, |
| declarator_p); |
| /* If it worked, we're done. */ |
| if (cp_parser_parse_definitely (parser)) |
| return id; |
| /* Otherwise, it's an ordinary identifier. */ |
| return cp_parser_identifier (parser); |
| } |
| |
| case CPP_TEMPLATE_ID: |
| return cp_parser_template_id (parser, template_keyword_p, |
| check_dependency_p, |
| declarator_p); |
| |
| case CPP_COMPL: |
| { |
| tree type_decl; |
| tree qualifying_scope; |
| tree object_scope; |
| tree scope; |
| bool done; |
| |
| /* Consume the `~' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the class-name. The standard, as written, seems to |
| say that: |
| |
| template <typename T> struct S { ~S (); }; |
| template <typename T> S<T>::~S() {} |
| |
| is invalid, since `~' must be followed by a class-name, but |
| `S<T>' is dependent, and so not known to be a class. |
| That's not right; we need to look in uninstantiated |
| templates. A further complication arises from: |
| |
| template <typename T> void f(T t) { |
| t.T::~T(); |
| } |
| |
| Here, it is not possible to look up `T' in the scope of `T' |
| itself. We must look in both the current scope, and the |
| scope of the containing complete expression. |
| |
| Yet another issue is: |
| |
| struct S { |
| int S; |
| ~S(); |
| }; |
| |
| S::~S() {} |
| |
| The standard does not seem to say that the `S' in `~S' |
| should refer to the type `S' and not the data member |
| `S::S'. */ |
| |
| /* DR 244 says that we look up the name after the "~" in the |
| same scope as we looked up the qualifying name. That idea |
| isn't fully worked out; it's more complicated than that. */ |
| scope = parser->scope; |
| object_scope = parser->object_scope; |
| qualifying_scope = parser->qualifying_scope; |
| |
| /* Check for invalid scopes. */ |
| if (scope == error_mark_node) |
| { |
| if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)) |
| cp_lexer_consume_token (parser->lexer); |
| return error_mark_node; |
| } |
| if (scope && TREE_CODE (scope) == NAMESPACE_DECL) |
| { |
| if (!cp_parser_uncommitted_to_tentative_parse_p (parser)) |
| error_at (token->location, |
| "scope %qT before %<~%> is not a class-name", |
| scope); |
| cp_parser_simulate_error (parser); |
| if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)) |
| cp_lexer_consume_token (parser->lexer); |
| return error_mark_node; |
| } |
| gcc_assert (!scope || TYPE_P (scope)); |
| |
| /* If the name is of the form "X::~X" it's OK even if X is a |
| typedef. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| if (scope |
| && token->type == CPP_NAME |
| && (cp_lexer_peek_nth_token (parser->lexer, 2)->type |
| != CPP_LESS) |
| && (token->u.value == TYPE_IDENTIFIER (scope) |
| || (CLASS_TYPE_P (scope) |
| && constructor_name_p (token->u.value, scope)))) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| return build_nt (BIT_NOT_EXPR, scope); |
| } |
| |
| /* If there was an explicit qualification (S::~T), first look |
| in the scope given by the qualification (i.e., S). |
| |
| Note: in the calls to cp_parser_class_name below we pass |
| typename_type so that lookup finds the injected-class-name |
| rather than the constructor. */ |
| done = false; |
| type_decl = NULL_TREE; |
| if (scope) |
| { |
| cp_parser_parse_tentatively (parser); |
| type_decl = cp_parser_class_name (parser, |
| /*typename_keyword_p=*/false, |
| /*template_keyword_p=*/false, |
| typename_type, |
| /*check_dependency=*/false, |
| /*class_head_p=*/false, |
| declarator_p); |
| if (cp_parser_parse_definitely (parser)) |
| done = true; |
| } |
| /* In "N::S::~S", look in "N" as well. */ |
| if (!done && scope && qualifying_scope) |
| { |
| cp_parser_parse_tentatively (parser); |
| parser->scope = qualifying_scope; |
| parser->object_scope = NULL_TREE; |
| parser->qualifying_scope = NULL_TREE; |
| type_decl |
| = cp_parser_class_name (parser, |
| /*typename_keyword_p=*/false, |
| /*template_keyword_p=*/false, |
| typename_type, |
| /*check_dependency=*/false, |
| /*class_head_p=*/false, |
| declarator_p); |
| if (cp_parser_parse_definitely (parser)) |
| done = true; |
| } |
| /* In "p->S::~T", look in the scope given by "*p" as well. */ |
| else if (!done && object_scope) |
| { |
| cp_parser_parse_tentatively (parser); |
| parser->scope = object_scope; |
| parser->object_scope = NULL_TREE; |
| parser->qualifying_scope = NULL_TREE; |
| type_decl |
| = cp_parser_class_name (parser, |
| /*typename_keyword_p=*/false, |
| /*template_keyword_p=*/false, |
| typename_type, |
| /*check_dependency=*/false, |
| /*class_head_p=*/false, |
| declarator_p); |
| if (cp_parser_parse_definitely (parser)) |
| done = true; |
| } |
| /* Look in the surrounding context. */ |
| if (!done) |
| { |
| parser->scope = NULL_TREE; |
| parser->object_scope = NULL_TREE; |
| parser->qualifying_scope = NULL_TREE; |
| if (processing_template_decl) |
| cp_parser_parse_tentatively (parser); |
| type_decl |
| = cp_parser_class_name (parser, |
| /*typename_keyword_p=*/false, |
| /*template_keyword_p=*/false, |
| typename_type, |
| /*check_dependency=*/false, |
| /*class_head_p=*/false, |
| declarator_p); |
| if (processing_template_decl |
| && ! cp_parser_parse_definitely (parser)) |
| { |
| /* We couldn't find a type with this name, so just accept |
| it and check for a match at instantiation time. */ |
| type_decl = cp_parser_identifier (parser); |
| if (type_decl != error_mark_node) |
| type_decl = build_nt (BIT_NOT_EXPR, type_decl); |
| return type_decl; |
| } |
| } |
| /* If an error occurred, assume that the name of the |
| destructor is the same as the name of the qualifying |
| class. That allows us to keep parsing after running |
| into ill-formed destructor names. */ |
| if (type_decl == error_mark_node && scope) |
| return build_nt (BIT_NOT_EXPR, scope); |
| else if (type_decl == error_mark_node) |
| return error_mark_node; |
| |
| /* Check that destructor name and scope match. */ |
| if (declarator_p && scope && !check_dtor_name (scope, type_decl)) |
| { |
| if (!cp_parser_uncommitted_to_tentative_parse_p (parser)) |
| error_at (token->location, |
| "declaration of %<~%T%> as member of %qT", |
| type_decl, scope); |
| cp_parser_simulate_error (parser); |
| return error_mark_node; |
| } |
| |
| /* [class.dtor] |
| |
| A typedef-name that names a class shall not be used as the |
| identifier in the declarator for a destructor declaration. */ |
| if (declarator_p |
| && !DECL_IMPLICIT_TYPEDEF_P (type_decl) |
| && !DECL_SELF_REFERENCE_P (type_decl) |
| && !cp_parser_uncommitted_to_tentative_parse_p (parser)) |
| error_at (token->location, |
| "typedef-name %qD used as destructor declarator", |
| type_decl); |
| |
| return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl)); |
| } |
| |
| case CPP_KEYWORD: |
| if (token->keyword == RID_OPERATOR) |
| { |
| tree id; |
| |
| /* This could be a template-id, so we try that first. */ |
| cp_parser_parse_tentatively (parser); |
| /* Try a template-id. */ |
| id = cp_parser_template_id (parser, template_keyword_p, |
| /*check_dependency_p=*/true, |
| declarator_p); |
| /* If that worked, we're done. */ |
| if (cp_parser_parse_definitely (parser)) |
| return id; |
| /* We still don't know whether we're looking at an |
| operator-function-id or a conversion-function-id. */ |
| cp_parser_parse_tentatively (parser); |
| /* Try an operator-function-id. */ |
| id = cp_parser_operator_function_id (parser); |
| /* If that didn't work, try a conversion-function-id. */ |
| if (!cp_parser_parse_definitely (parser)) |
| id = cp_parser_conversion_function_id (parser); |
| |
| return id; |
| } |
| /* Fall through. */ |
| |
| default: |
| if (optional_p) |
| return NULL_TREE; |
| cp_parser_error (parser, "expected unqualified-id"); |
| return error_mark_node; |
| } |
| } |
| |
| /* Parse an (optional) nested-name-specifier. |
| |
| nested-name-specifier: [C++98] |
| class-or-namespace-name :: nested-name-specifier [opt] |
| class-or-namespace-name :: template nested-name-specifier [opt] |
| |
| nested-name-specifier: [C++0x] |
| type-name :: |
| namespace-name :: |
| nested-name-specifier identifier :: |
| nested-name-specifier template [opt] simple-template-id :: |
| |
| PARSER->SCOPE should be set appropriately before this function is |
| called. TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in |
| effect. TYPE_P is TRUE if we non-type bindings should be ignored |
| in name lookups. |
| |
| Sets PARSER->SCOPE to the class (TYPE) or namespace |
| (NAMESPACE_DECL) specified by the nested-name-specifier, or leaves |
| it unchanged if there is no nested-name-specifier. Returns the new |
| scope iff there is a nested-name-specifier, or NULL_TREE otherwise. |
| |
| If IS_DECLARATION is TRUE, the nested-name-specifier is known to be |
| part of a declaration and/or decl-specifier. */ |
| |
| static tree |
| cp_parser_nested_name_specifier_opt (cp_parser *parser, |
| bool typename_keyword_p, |
| bool check_dependency_p, |
| bool type_p, |
| bool is_declaration) |
| { |
| bool success = false; |
| cp_token_position start = 0; |
| cp_token *token; |
| |
| /* Remember where the nested-name-specifier starts. */ |
| if (cp_parser_uncommitted_to_tentative_parse_p (parser)) |
| { |
| start = cp_lexer_token_position (parser->lexer, false); |
| push_deferring_access_checks (dk_deferred); |
| } |
| |
| while (true) |
| { |
| tree new_scope; |
| tree old_scope; |
| tree saved_qualifying_scope; |
| bool template_keyword_p; |
| |
| /* Spot cases that cannot be the beginning of a |
| nested-name-specifier. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| /* If the next token is CPP_NESTED_NAME_SPECIFIER, just process |
| the already parsed nested-name-specifier. */ |
| if (token->type == CPP_NESTED_NAME_SPECIFIER) |
| { |
| /* Grab the nested-name-specifier and continue the loop. */ |
| cp_parser_pre_parsed_nested_name_specifier (parser); |
| /* If we originally encountered this nested-name-specifier |
| with IS_DECLARATION set to false, we will not have |
| resolved TYPENAME_TYPEs, so we must do so here. */ |
| if (is_declaration |
| && TREE_CODE (parser->scope) == TYPENAME_TYPE) |
| { |
| new_scope = resolve_typename_type (parser->scope, |
| /*only_current_p=*/false); |
| if (TREE_CODE (new_scope) != TYPENAME_TYPE) |
| parser->scope = new_scope; |
| } |
| success = true; |
| continue; |
| } |
| |
| /* Spot cases that cannot be the beginning of a |
| nested-name-specifier. On the second and subsequent times |
| through the loop, we look for the `template' keyword. */ |
| if (success && token->keyword == RID_TEMPLATE) |
| ; |
| /* A template-id can start a nested-name-specifier. */ |
| else if (token->type == CPP_TEMPLATE_ID) |
| ; |
| else |
| { |
| /* If the next token is not an identifier, then it is |
| definitely not a type-name or namespace-name. */ |
| if (token->type != CPP_NAME) |
| break; |
| /* If the following token is neither a `<' (to begin a |
| template-id), nor a `::', then we are not looking at a |
| nested-name-specifier. */ |
| token = cp_lexer_peek_nth_token (parser->lexer, 2); |
| |
| if (token->type == CPP_COLON |
| && parser->colon_corrects_to_scope_p |
| && cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_NAME) |
| { |
| error_at (token->location, |
| "found %<:%> in nested-name-specifier, expected %<::%>"); |
| token->type = CPP_SCOPE; |
| } |
| |
| if (token->type != CPP_SCOPE |
| && !cp_parser_nth_token_starts_template_argument_list_p |
| (parser, 2)) |
| break; |
| } |
| |
| /* The nested-name-specifier is optional, so we parse |
| tentatively. */ |
| cp_parser_parse_tentatively (parser); |
| |
| /* Look for the optional `template' keyword, if this isn't the |
| first time through the loop. */ |
| if (success) |
| template_keyword_p = cp_parser_optional_template_keyword (parser); |
| else |
| template_keyword_p = false; |
| |
| /* Save the old scope since the name lookup we are about to do |
| might destroy it. */ |
| old_scope = parser->scope; |
| saved_qualifying_scope = parser->qualifying_scope; |
| /* In a declarator-id like "X<T>::I::Y<T>" we must be able to |
| look up names in "X<T>::I" in order to determine that "Y" is |
| a template. So, if we have a typename at this point, we make |
| an effort to look through it. */ |
| if (is_declaration |
| && !typename_keyword_p |
| && parser->scope |
| && TREE_CODE (parser->scope) == TYPENAME_TYPE) |
| parser->scope = resolve_typename_type (parser->scope, |
| /*only_current_p=*/false); |
| /* Parse the qualifying entity. */ |
| new_scope |
| = cp_parser_qualifying_entity (parser, |
| typename_keyword_p, |
| template_keyword_p, |
| check_dependency_p, |
| type_p, |
| is_declaration); |
| /* Look for the `::' token. */ |
| cp_parser_require (parser, CPP_SCOPE, RT_SCOPE); |
| |
| /* If we found what we wanted, we keep going; otherwise, we're |
| done. */ |
| if (!cp_parser_parse_definitely (parser)) |
| { |
| bool error_p = false; |
| |
| /* Restore the OLD_SCOPE since it was valid before the |
| failed attempt at finding the last |
| class-or-namespace-name. */ |
| parser->scope = old_scope; |
| parser->qualifying_scope = saved_qualifying_scope; |
| if (cp_parser_uncommitted_to_tentative_parse_p (parser)) |
| break; |
| /* If the next token is an identifier, and the one after |
| that is a `::', then any valid interpretation would have |
| found a class-or-namespace-name. */ |
| while (cp_lexer_next_token_is (parser->lexer, CPP_NAME) |
| && (cp_lexer_peek_nth_token (parser->lexer, 2)->type |
| == CPP_SCOPE) |
| && (cp_lexer_peek_nth_token (parser->lexer, 3)->type |
| != CPP_COMPL)) |
| { |
| token = cp_lexer_consume_token (parser->lexer); |
| if (!error_p) |
| { |
| if (!token->ambiguous_p) |
| { |
| tree decl; |
| tree ambiguous_decls; |
| |
| decl = cp_parser_lookup_name (parser, token->u.value, |
| none_type, |
| /*is_template=*/false, |
| /*is_namespace=*/false, |
| /*check_dependency=*/true, |
| &ambiguous_decls, |
| token->location); |
| if (TREE_CODE (decl) == TEMPLATE_DECL) |
| error_at (token->location, |
| "%qD used without template parameters", |
| decl); |
| else if (ambiguous_decls) |
| { |
| error_at (token->location, |
| "reference to %qD is ambiguous", |
| token->u.value); |
| print_candidates (ambiguous_decls); |
| decl = error_mark_node; |
| } |
| else |
| { |
| if (cxx_dialect != cxx98) |
| cp_parser_name_lookup_error |
| (parser, token->u.value, decl, NLE_NOT_CXX98, |
| token->location); |
| else |
| cp_parser_name_lookup_error |
| (parser, token->u.value, decl, NLE_CXX98, |
| token->location); |
| } |
| } |
| parser->scope = error_mark_node; |
| error_p = true; |
| /* Treat this as a successful nested-name-specifier |
| due to: |
| |
| [basic.lookup.qual] |
| |
| If the name found is not a class-name (clause |
| _class_) or namespace-name (_namespace.def_), the |
| program is ill-formed. */ |
| success = true; |
| } |
| cp_lexer_consume_token (parser->lexer); |
| } |
| break; |
| } |
| /* We've found one valid nested-name-specifier. */ |
| success = true; |
| /* Name lookup always gives us a DECL. */ |
| if (TREE_CODE (new_scope) == TYPE_DECL) |
| new_scope = TREE_TYPE (new_scope); |
| /* Uses of "template" must be followed by actual templates. */ |
| if (template_keyword_p |
| && !(CLASS_TYPE_P (new_scope) |
| && ((CLASSTYPE_USE_TEMPLATE (new_scope) |
| && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (new_scope))) |
| || CLASSTYPE_IS_TEMPLATE (new_scope))) |
| && !(TREE_CODE (new_scope) == TYPENAME_TYPE |
| && (TREE_CODE (TYPENAME_TYPE_FULLNAME (new_scope)) |
| == TEMPLATE_ID_EXPR))) |
| permerror (input_location, TYPE_P (new_scope) |
| ? "%qT is not a template" |
| : "%qD is not a template", |
| new_scope); |
| /* If it is a class scope, try to complete it; we are about to |
| be looking up names inside the class. */ |
| if (TYPE_P (new_scope) |
| /* Since checking types for dependency can be expensive, |
| avoid doing it if the type is already complete. */ |
| && !COMPLETE_TYPE_P (new_scope) |
| /* Do not try to complete dependent types. */ |
| && !dependent_type_p (new_scope)) |
| { |
| new_scope = complete_type (new_scope); |
| /* If it is a typedef to current class, use the current |
| class instead, as the typedef won't have any names inside |
| it yet. */ |
| if (!COMPLETE_TYPE_P (new_scope) |
| && currently_open_class (new_scope)) |
| new_scope = TYPE_MAIN_VARIANT (new_scope); |
| } |
| /* Make sure we look in the right scope the next time through |
| the loop. */ |
| parser->scope = new_scope; |
| } |
| |
| /* If parsing tentatively, replace the sequence of tokens that makes |
| up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER |
| token. That way, should we re-parse the token stream, we will |
| not have to repeat the effort required to do the parse, nor will |
| we issue duplicate error messages. */ |
| if (success && start) |
| { |
| cp_token *token; |
| |
| token = cp_lexer_token_at (parser->lexer, start); |
| /* Reset the contents of the START token. */ |
| token->type = CPP_NESTED_NAME_SPECIFIER; |
| /* Retrieve any deferred checks. Do not pop this access checks yet |
| so the memory will not be reclaimed during token replacing below. */ |
| token->u.tree_check_value = ggc_alloc_cleared_tree_check (); |
| token->u.tree_check_value->value = parser->scope; |
| token->u.tree_check_value->checks = get_deferred_access_checks (); |
| token->u.tree_check_value->qualifying_scope = |
| parser->qualifying_scope; |
| token->keyword = RID_MAX; |
| |
| /* Purge all subsequent tokens. */ |
| cp_lexer_purge_tokens_after (parser->lexer, start); |
| } |
| |
| if (start) |
| pop_to_parent_deferring_access_checks (); |
| |
| return success ? parser->scope : NULL_TREE; |
| } |
| |
| /* Parse a nested-name-specifier. See |
| cp_parser_nested_name_specifier_opt for details. This function |
| behaves identically, except that it will an issue an error if no |
| nested-name-specifier is present. */ |
| |
| static tree |
| cp_parser_nested_name_specifier (cp_parser *parser, |
| bool typename_keyword_p, |
| bool check_dependency_p, |
| bool type_p, |
| bool is_declaration) |
| { |
| tree scope; |
| |
| /* Look for the nested-name-specifier. */ |
| scope = cp_parser_nested_name_specifier_opt (parser, |
| typename_keyword_p, |
| check_dependency_p, |
| type_p, |
| is_declaration); |
| /* If it was not present, issue an error message. */ |
| if (!scope) |
| { |
| cp_parser_error (parser, "expected nested-name-specifier"); |
| parser->scope = NULL_TREE; |
| } |
| |
| return scope; |
| } |
| |
| /* Parse the qualifying entity in a nested-name-specifier. For C++98, |
| this is either a class-name or a namespace-name (which corresponds |
| to the class-or-namespace-name production in the grammar). For |
| C++0x, it can also be a type-name that refers to an enumeration |
| type. |
| |
| TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect. |
| TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect. |
| CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up. |
| TYPE_P is TRUE iff the next name should be taken as a class-name, |
| even the same name is declared to be another entity in the same |
| scope. |
| |
| Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL) |
| specified by the class-or-namespace-name. If neither is found the |
| ERROR_MARK_NODE is returned. */ |
| |
| static tree |
| cp_parser_qualifying_entity (cp_parser *parser, |
| bool typename_keyword_p, |
| bool template_keyword_p, |
| bool check_dependency_p, |
| bool type_p, |
| bool is_declaration) |
| { |
| tree saved_scope; |
| tree saved_qualifying_scope; |
| tree saved_object_scope; |
| tree scope; |
| bool only_class_p; |
| bool successful_parse_p; |
| |
| /* Before we try to parse the class-name, we must save away the |
| current PARSER->SCOPE since cp_parser_class_name will destroy |
| it. */ |
| saved_scope = parser->scope; |
| saved_qualifying_scope = parser->qualifying_scope; |
| saved_object_scope = parser->object_scope; |
| /* Try for a class-name first. If the SAVED_SCOPE is a type, then |
| there is no need to look for a namespace-name. */ |
| only_class_p = template_keyword_p |
| || (saved_scope && TYPE_P (saved_scope) && cxx_dialect == cxx98); |
| if (!only_class_p) |
| cp_parser_parse_tentatively (parser); |
| scope = cp_parser_class_name (parser, |
| typename_keyword_p, |
| template_keyword_p, |
| type_p ? class_type : none_type, |
| check_dependency_p, |
| /*class_head_p=*/false, |
| is_declaration); |
| successful_parse_p = only_class_p || cp_parser_parse_definitely (parser); |
| /* If that didn't work and we're in C++0x mode, try for a type-name. */ |
| if (!only_class_p |
| && cxx_dialect != cxx98 |
| && !successful_parse_p) |
| { |
| /* Restore the saved scope. */ |
| parser->scope = saved_scope; |
| parser->qualifying_scope = saved_qualifying_scope; |
| parser->object_scope = saved_object_scope; |
| |
| /* Parse tentatively. */ |
| cp_parser_parse_tentatively (parser); |
| |
| /* Parse a typedef-name or enum-name. */ |
| scope = cp_parser_nonclass_name (parser); |
| |
| /* "If the name found does not designate a namespace or a class, |
| enumeration, or dependent type, the program is ill-formed." |
| |
| We cover classes and dependent types above and namespaces below, |
| so this code is only looking for enums. */ |
| if (!scope || TREE_CODE (scope) != TYPE_DECL |
| || TREE_CODE (TREE_TYPE (scope)) != ENUMERAL_TYPE) |
| cp_parser_simulate_error (parser); |
| |
| successful_parse_p = cp_parser_parse_definitely (parser); |
| } |
| /* If that didn't work, try for a namespace-name. */ |
| if (!only_class_p && !successful_parse_p) |
| { |
| /* Restore the saved scope. */ |
| parser->scope = saved_scope; |
| parser->qualifying_scope = saved_qualifying_scope; |
| parser->object_scope = saved_object_scope; |
| /* If we are not looking at an identifier followed by the scope |
| resolution operator, then this is not part of a |
| nested-name-specifier. (Note that this function is only used |
| to parse the components of a nested-name-specifier.) */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME) |
| || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE) |
| return error_mark_node; |
| scope = cp_parser_namespace_name (parser); |
| } |
| |
| return scope; |
| } |
| |
| /* Parse a postfix-expression. |
| |
| postfix-expression: |
| primary-expression |
| postfix-expression [ expression ] |
| postfix-expression ( expression-list [opt] ) |
| simple-type-specifier ( expression-list [opt] ) |
| typename :: [opt] nested-name-specifier identifier |
| ( expression-list [opt] ) |
| typename :: [opt] nested-name-specifier template [opt] template-id |
| ( expression-list [opt] ) |
| postfix-expression . template [opt] id-expression |
| postfix-expression -> template [opt] id-expression |
| postfix-expression . pseudo-destructor-name |
| postfix-expression -> pseudo-destructor-name |
| postfix-expression ++ |
| postfix-expression -- |
| dynamic_cast < type-id > ( expression ) |
| static_cast < type-id > ( expression ) |
| reinterpret_cast < type-id > ( expression ) |
| const_cast < type-id > ( expression ) |
| typeid ( expression ) |
| typeid ( type-id ) |
| |
| GNU Extension: |
| |
| postfix-expression: |
| ( type-id ) { initializer-list , [opt] } |
| |
| This extension is a GNU version of the C99 compound-literal |
| construct. (The C99 grammar uses `type-name' instead of `type-id', |
| but they are essentially the same concept.) |
| |
| If ADDRESS_P is true, the postfix expression is the operand of the |
| `&' operator. CAST_P is true if this expression is the target of a |
| cast. |
| |
| If MEMBER_ACCESS_ONLY_P, we only allow postfix expressions that are |
| class member access expressions [expr.ref]. |
| |
| Returns a representation of the expression. */ |
| |
| static tree |
| cp_parser_postfix_expression (cp_parser *parser, bool address_p, bool cast_p, |
| bool member_access_only_p, |
| cp_id_kind * pidk_return) |
| { |
| cp_token *token; |
| enum rid keyword; |
| cp_id_kind idk = CP_ID_KIND_NONE; |
| tree postfix_expression = NULL_TREE; |
| bool is_member_access = false; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* Some of the productions are determined by keywords. */ |
| keyword = token->keyword; |
| switch (keyword) |
| { |
| case RID_DYNCAST: |
| case RID_STATCAST: |
| case RID_REINTCAST: |
| case RID_CONSTCAST: |
| { |
| tree type; |
| tree expression; |
| const char *saved_message; |
| |
| /* All of these can be handled in the same way from the point |
| of view of parsing. Begin by consuming the token |
| identifying the cast. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* New types cannot be defined in the cast. */ |
| saved_message = parser->type_definition_forbidden_message; |
| parser->type_definition_forbidden_message |
| = G_("types may not be defined in casts"); |
| |
| /* Look for the opening `<'. */ |
| cp_parser_require (parser, CPP_LESS, RT_LESS); |
| /* Parse the type to which we are casting. */ |
| type = cp_parser_type_id (parser); |
| /* Look for the closing `>'. */ |
| cp_parser_require (parser, CPP_GREATER, RT_GREATER); |
| /* Restore the old message. */ |
| parser->type_definition_forbidden_message = saved_message; |
| |
| /* And the expression which is being cast. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| expression = cp_parser_expression (parser, /*cast_p=*/true, & idk); |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| |
| /* Only type conversions to integral or enumeration types |
| can be used in constant-expressions. */ |
| if (!cast_valid_in_integral_constant_expression_p (type) |
| && cp_parser_non_integral_constant_expression (parser, NIC_CAST)) |
| return error_mark_node; |
| |
| switch (keyword) |
| { |
| case RID_DYNCAST: |
| postfix_expression |
| = build_dynamic_cast (type, expression, tf_warning_or_error); |
| break; |
| case RID_STATCAST: |
| postfix_expression |
| = build_static_cast (type, expression, tf_warning_or_error); |
| break; |
| case RID_REINTCAST: |
| postfix_expression |
| = build_reinterpret_cast (type, expression, |
| tf_warning_or_error); |
| break; |
| case RID_CONSTCAST: |
| postfix_expression |
| = build_const_cast (type, expression, tf_warning_or_error); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| break; |
| |
| case RID_TYPEID: |
| { |
| tree type; |
| const char *saved_message; |
| bool saved_in_type_id_in_expr_p; |
| |
| /* Consume the `typeid' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Look for the `(' token. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| /* Types cannot be defined in a `typeid' expression. */ |
| saved_message = parser->type_definition_forbidden_message; |
| parser->type_definition_forbidden_message |
| = G_("types may not be defined in a %<typeid%> expression"); |
| /* We can't be sure yet whether we're looking at a type-id or an |
| expression. */ |
| cp_parser_parse_tentatively (parser); |
| /* Try a type-id first. */ |
| saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p; |
| parser->in_type_id_in_expr_p = true; |
| type = cp_parser_type_id (parser); |
| parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p; |
| /* Look for the `)' token. Otherwise, we can't be sure that |
| we're not looking at an expression: consider `typeid (int |
| (3))', for example. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| /* If all went well, simply lookup the type-id. */ |
| if (cp_parser_parse_definitely (parser)) |
| postfix_expression = get_typeid (type); |
| /* Otherwise, fall back to the expression variant. */ |
| else |
| { |
| tree expression; |
| |
| /* Look for an expression. */ |
| expression = cp_parser_expression (parser, /*cast_p=*/false, & idk); |
| /* Compute its typeid. */ |
| postfix_expression = build_typeid (expression); |
| /* Look for the `)' token. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| } |
| /* Restore the saved message. */ |
| parser->type_definition_forbidden_message = saved_message; |
| /* `typeid' may not appear in an integral constant expression. */ |
| if (cp_parser_non_integral_constant_expression(parser, NIC_TYPEID)) |
| return error_mark_node; |
| } |
| break; |
| |
| case RID_TYPENAME: |
| { |
| tree type; |
| /* The syntax permitted here is the same permitted for an |
| elaborated-type-specifier. */ |
| type = cp_parser_elaborated_type_specifier (parser, |
| /*is_friend=*/false, |
| /*is_declaration=*/false); |
| postfix_expression = cp_parser_functional_cast (parser, type); |
| } |
| break; |
| |
| default: |
| { |
| tree type; |
| |
| /* If the next thing is a simple-type-specifier, we may be |
| looking at a functional cast. We could also be looking at |
| an id-expression. So, we try the functional cast, and if |
| that doesn't work we fall back to the primary-expression. */ |
| cp_parser_parse_tentatively (parser); |
| /* Look for the simple-type-specifier. */ |
| type = cp_parser_simple_type_specifier (parser, |
| /*decl_specs=*/NULL, |
| CP_PARSER_FLAGS_NONE); |
| /* Parse the cast itself. */ |
| if (!cp_parser_error_occurred (parser)) |
| postfix_expression |
| = cp_parser_functional_cast (parser, type); |
| /* If that worked, we're done. */ |
| if (cp_parser_parse_definitely (parser)) |
| break; |
| |
| /* If the functional-cast didn't work out, try a |
| compound-literal. */ |
| if (cp_parser_allow_gnu_extensions_p (parser) |
| && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)) |
| { |
| VEC(constructor_elt,gc) *initializer_list = NULL; |
| bool saved_in_type_id_in_expr_p; |
| |
| cp_parser_parse_tentatively (parser); |
| /* Consume the `('. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the type. */ |
| saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p; |
| parser->in_type_id_in_expr_p = true; |
| type = cp_parser_type_id (parser); |
| parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p; |
| /* Look for the `)'. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| /* Look for the `{'. */ |
| cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE); |
| /* If things aren't going well, there's no need to |
| keep going. */ |
| if (!cp_parser_error_occurred (parser)) |
| { |
| bool non_constant_p; |
| /* Parse the initializer-list. */ |
| initializer_list |
| = cp_parser_initializer_list (parser, &non_constant_p); |
| /* Allow a trailing `,'. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA)) |
| cp_lexer_consume_token (parser->lexer); |
| /* Look for the final `}'. */ |
| cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE); |
| } |
| /* If that worked, we're definitely looking at a |
| compound-literal expression. */ |
| if (cp_parser_parse_definitely (parser)) |
| { |
| /* Warn the user that a compound literal is not |
| allowed in standard C++. */ |
| pedwarn (input_location, OPT_pedantic, "ISO C++ forbids compound-literals"); |
| /* For simplicity, we disallow compound literals in |
| constant-expressions. We could |
| allow compound literals of integer type, whose |
| initializer was a constant, in constant |
| expressions. Permitting that usage, as a further |
| extension, would not change the meaning of any |
| currently accepted programs. (Of course, as |
| compound literals are not part of ISO C++, the |
| standard has nothing to say.) */ |
| if (cp_parser_non_integral_constant_expression (parser, |
| NIC_NCC)) |
| { |
| postfix_expression = error_mark_node; |
| break; |
| } |
| /* Form the representation of the compound-literal. */ |
| postfix_expression |
| = (finish_compound_literal |
| (type, build_constructor (init_list_type_node, |
| initializer_list), |
| tf_warning_or_error)); |
| break; |
| } |
| } |
| |
| /* It must be a primary-expression. */ |
| postfix_expression |
| = cp_parser_primary_expression (parser, address_p, cast_p, |
| /*template_arg_p=*/false, |
| &idk); |
| } |
| break; |
| } |
| |
| /* Keep looping until the postfix-expression is complete. */ |
| while (true) |
| { |
| if (idk == CP_ID_KIND_UNQUALIFIED |
| && TREE_CODE (postfix_expression) == IDENTIFIER_NODE |
| && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN)) |
| /* It is not a Koenig lookup function call. */ |
| postfix_expression |
| = unqualified_name_lookup_error (postfix_expression); |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| switch (token->type) |
| { |
| case CPP_OPEN_SQUARE: |
| postfix_expression |
| = cp_parser_postfix_open_square_expression (parser, |
| postfix_expression, |
| false); |
| idk = CP_ID_KIND_NONE; |
| is_member_access = false; |
| break; |
| |
| case CPP_OPEN_PAREN: |
| /* postfix-expression ( expression-list [opt] ) */ |
| { |
| bool koenig_p; |
| bool is_builtin_constant_p; |
| bool saved_integral_constant_expression_p = false; |
| bool saved_non_integral_constant_expression_p = false; |
| VEC(tree,gc) *args; |
| |
| is_member_access = false; |
| |
| is_builtin_constant_p |
| = DECL_IS_BUILTIN_CONSTANT_P (postfix_expression); |
| if (is_builtin_constant_p) |
| { |
| /* The whole point of __builtin_constant_p is to allow |
| non-constant expressions to appear as arguments. */ |
| saved_integral_constant_expression_p |
| = parser->integral_constant_expression_p; |
| saved_non_integral_constant_expression_p |
| = parser->non_integral_constant_expression_p; |
| parser->integral_constant_expression_p = false; |
| } |
| args = (cp_parser_parenthesized_expression_list |
| (parser, non_attr, |
| /*cast_p=*/false, /*allow_expansion_p=*/true, |
| /*non_constant_p=*/NULL)); |
| if (is_builtin_constant_p) |
| { |
| parser->integral_constant_expression_p |
| = saved_integral_constant_expression_p; |
| parser->non_integral_constant_expression_p |
| = saved_non_integral_constant_expression_p; |
| } |
| |
| if (args == NULL) |
| { |
| postfix_expression = error_mark_node; |
| break; |
| } |
| |
| /* Function calls are not permitted in |
| constant-expressions. */ |
| if (! builtin_valid_in_constant_expr_p (postfix_expression) |
| && cp_parser_non_integral_constant_expression (parser, |
| NIC_FUNC_CALL)) |
| { |
| postfix_expression = error_mark_node; |
| release_tree_vector (args); |
| break; |
| } |
| |
| koenig_p = false; |
| if (idk == CP_ID_KIND_UNQUALIFIED |
| || idk == CP_ID_KIND_TEMPLATE_ID) |
| { |
| if (TREE_CODE (postfix_expression) == IDENTIFIER_NODE) |
| { |
| if (!VEC_empty (tree, args)) |
| { |
| koenig_p = true; |
| if (!any_type_dependent_arguments_p (args)) |
| postfix_expression |
| = perform_koenig_lookup (postfix_expression, args, |
| /*include_std=*/false, |
| tf_warning_or_error); |
| } |
| else |
| postfix_expression |
| = unqualified_fn_lookup_error (postfix_expression); |
| } |
| /* We do not perform argument-dependent lookup if |
| normal lookup finds a non-function, in accordance |
| with the expected resolution of DR 218. */ |
| else if (!VEC_empty (tree, args) |
| && is_overloaded_fn (postfix_expression)) |
| { |
| tree fn = get_first_fn (postfix_expression); |
| fn = STRIP_TEMPLATE (fn); |
| |
| /* Do not do argument dependent lookup if regular |
| lookup finds a member function or a block-scope |
| function declaration. [basic.lookup.argdep]/3 */ |
| if (!DECL_FUNCTION_MEMBER_P (fn) |
| && !DECL_LOCAL_FUNCTION_P (fn)) |
| { |
| koenig_p = true; |
| if (!any_type_dependent_arguments_p (args)) |
| postfix_expression |
| = perform_koenig_lookup (postfix_expression, args, |
| /*include_std=*/false, |
| tf_warning_or_error); |
| } |
| } |
| } |
| |
| if (TREE_CODE (postfix_expression) == COMPONENT_REF) |
| { |
| tree instance = TREE_OPERAND (postfix_expression, 0); |
| tree fn = TREE_OPERAND (postfix_expression, 1); |
| |
| if (processing_template_decl |
| && (type_dependent_expression_p (instance) |
| || (!BASELINK_P (fn) |
| && TREE_CODE (fn) != FIELD_DECL) |
| || type_dependent_expression_p (fn) |
| || any_type_dependent_arguments_p (args))) |
| { |
| postfix_expression |
| = build_nt_call_vec (postfix_expression, args); |
| release_tree_vector (args); |
| break; |
| } |
| |
| if (BASELINK_P (fn)) |
| { |
| postfix_expression |
| = (build_new_method_call |
| (instance, fn, &args, NULL_TREE, |
| (idk == CP_ID_KIND_QUALIFIED |
| ? LOOKUP_NORMAL|LOOKUP_NONVIRTUAL |
| : LOOKUP_NORMAL), |
| /*fn_p=*/NULL, |
| tf_warning_or_error)); |
| } |
| else |
| postfix_expression |
| = finish_call_expr (postfix_expression, &args, |
| /*disallow_virtual=*/false, |
| /*koenig_p=*/false, |
| tf_warning_or_error); |
| } |
| else if (TREE_CODE (postfix_expression) == OFFSET_REF |
| || TREE_CODE (postfix_expression) == MEMBER_REF |
| || TREE_CODE (postfix_expression) == DOTSTAR_EXPR) |
| postfix_expression = (build_offset_ref_call_from_tree |
| (postfix_expression, &args)); |
| else if (idk == CP_ID_KIND_QUALIFIED) |
| /* A call to a static class member, or a namespace-scope |
| function. */ |
| postfix_expression |
| = finish_call_expr (postfix_expression, &args, |
| /*disallow_virtual=*/true, |
| koenig_p, |
| tf_warning_or_error); |
| else |
| /* All other function calls. */ |
| postfix_expression |
| = finish_call_expr (postfix_expression, &args, |
| /*disallow_virtual=*/false, |
| koenig_p, |
| tf_warning_or_error); |
| |
| /* The POSTFIX_EXPRESSION is certainly no longer an id. */ |
| idk = CP_ID_KIND_NONE; |
| |
| release_tree_vector (args); |
| } |
| break; |
| |
| case CPP_DOT: |
| case CPP_DEREF: |
| /* postfix-expression . template [opt] id-expression |
| postfix-expression . pseudo-destructor-name |
| postfix-expression -> template [opt] id-expression |
| postfix-expression -> pseudo-destructor-name */ |
| |
| /* Consume the `.' or `->' operator. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| postfix_expression |
| = cp_parser_postfix_dot_deref_expression (parser, token->type, |
| postfix_expression, |
| false, &idk, |
| token->location); |
| |
| is_member_access = true; |
| break; |
| |
| case CPP_PLUS_PLUS: |
| /* postfix-expression ++ */ |
| /* Consume the `++' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Generate a representation for the complete expression. */ |
| postfix_expression |
| = finish_increment_expr (postfix_expression, |
| POSTINCREMENT_EXPR); |
| /* Increments may not appear in constant-expressions. */ |
| if (cp_parser_non_integral_constant_expression (parser, NIC_INC)) |
| postfix_expression = error_mark_node; |
| idk = CP_ID_KIND_NONE; |
| is_member_access = false; |
| break; |
| |
| case CPP_MINUS_MINUS: |
| /* postfix-expression -- */ |
| /* Consume the `--' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Generate a representation for the complete expression. */ |
| postfix_expression |
| = finish_increment_expr (postfix_expression, |
| POSTDECREMENT_EXPR); |
| /* Decrements may not appear in constant-expressions. */ |
| if (cp_parser_non_integral_constant_expression (parser, NIC_DEC)) |
| postfix_expression = error_mark_node; |
| idk = CP_ID_KIND_NONE; |
| is_member_access = false; |
| break; |
| |
| default: |
| if (pidk_return != NULL) |
| * pidk_return = idk; |
| if (member_access_only_p) |
| return is_member_access? postfix_expression : error_mark_node; |
| else |
| return postfix_expression; |
| } |
| } |
| |
| /* We should never get here. */ |
| gcc_unreachable (); |
| return error_mark_node; |
| } |
| |
| /* A subroutine of cp_parser_postfix_expression that also gets hijacked |
| by cp_parser_builtin_offsetof. We're looking for |
| |
| postfix-expression [ expression ] |
| |
| FOR_OFFSETOF is set if we're being called in that context, which |
| changes how we deal with integer constant expressions. */ |
| |
| static tree |
| cp_parser_postfix_open_square_expression (cp_parser *parser, |
| tree postfix_expression, |
| bool for_offsetof) |
| { |
| tree index; |
| |
| /* Consume the `[' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* Parse the index expression. */ |
| /* ??? For offsetof, there is a question of what to allow here. If |
| offsetof is not being used in an integral constant expression context, |
| then we *could* get the right answer by computing the value at runtime. |
| If we are in an integral constant expression context, then we might |
| could accept any constant expression; hard to say without analysis. |
| Rather than open the barn door too wide right away, allow only integer |
| constant expressions here. */ |
| if (for_offsetof) |
| index = cp_parser_constant_expression (parser, false, NULL); |
| else |
| index = cp_parser_expression (parser, /*cast_p=*/false, NULL); |
| |
| /* Look for the closing `]'. */ |
| cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE); |
| |
| /* Build the ARRAY_REF. */ |
| postfix_expression = grok_array_decl (postfix_expression, index); |
| |
| /* When not doing offsetof, array references are not permitted in |
| constant-expressions. */ |
| if (!for_offsetof |
| && (cp_parser_non_integral_constant_expression (parser, NIC_ARRAY_REF))) |
| postfix_expression = error_mark_node; |
| |
| return postfix_expression; |
| } |
| |
| /* A subroutine of cp_parser_postfix_expression that also gets hijacked |
| by cp_parser_builtin_offsetof. We're looking for |
| |
| postfix-expression . template [opt] id-expression |
| postfix-expression . pseudo-destructor-name |
| postfix-expression -> template [opt] id-expression |
| postfix-expression -> pseudo-destructor-name |
| |
| FOR_OFFSETOF is set if we're being called in that context. That sorta |
| limits what of the above we'll actually accept, but nevermind. |
| TOKEN_TYPE is the "." or "->" token, which will already have been |
| removed from the stream. */ |
| |
| static tree |
| cp_parser_postfix_dot_deref_expression (cp_parser *parser, |
| enum cpp_ttype token_type, |
| tree postfix_expression, |
| bool for_offsetof, cp_id_kind *idk, |
| location_t location) |
| { |
| tree name; |
| bool dependent_p; |
| bool pseudo_destructor_p; |
| tree scope = NULL_TREE; |
| |
| /* If this is a `->' operator, dereference the pointer. */ |
| if (token_type == CPP_DEREF) |
| postfix_expression = build_x_arrow (postfix_expression); |
| /* Check to see whether or not the expression is type-dependent. */ |
| dependent_p = type_dependent_expression_p (postfix_expression); |
| /* The identifier following the `->' or `.' is not qualified. */ |
| parser->scope = NULL_TREE; |
| parser->qualifying_scope = NULL_TREE; |
| parser->object_scope = NULL_TREE; |
| *idk = CP_ID_KIND_NONE; |
| |
| /* Enter the scope corresponding to the type of the object |
| given by the POSTFIX_EXPRESSION. */ |
| if (!dependent_p && TREE_TYPE (postfix_expression) != NULL_TREE) |
| { |
| scope = TREE_TYPE (postfix_expression); |
| /* According to the standard, no expression should ever have |
| reference type. Unfortunately, we do not currently match |
| the standard in this respect in that our internal representation |
| of an expression may have reference type even when the standard |
| says it does not. Therefore, we have to manually obtain the |
| underlying type here. */ |
| scope = non_reference (scope); |
| /* The type of the POSTFIX_EXPRESSION must be complete. */ |
| if (scope == unknown_type_node) |
| { |
| error_at (location, "%qE does not have class type", |
| postfix_expression); |
| scope = NULL_TREE; |
| } |
| else |
| scope = complete_type_or_else (scope, NULL_TREE); |
| /* Let the name lookup machinery know that we are processing a |
| class member access expression. */ |
| parser->context->object_type = scope; |
| /* If something went wrong, we want to be able to discern that case, |
| as opposed to the case where there was no SCOPE due to the type |
| of expression being dependent. */ |
| if (!scope) |
| scope = error_mark_node; |
| /* If the SCOPE was erroneous, make the various semantic analysis |
| functions exit quickly -- and without issuing additional error |
| messages. */ |
| if (scope == error_mark_node) |
| postfix_expression = error_mark_node; |
| } |
| |
| /* Assume this expression is not a pseudo-destructor access. */ |
| pseudo_destructor_p = false; |
| |
| /* If the SCOPE is a scalar type, then, if this is a valid program, |
| we must be looking at a pseudo-destructor-name. If POSTFIX_EXPRESSION |
| is type dependent, it can be pseudo-destructor-name or something else. |
| Try to parse it as pseudo-destructor-name first. */ |
| if ((scope && SCALAR_TYPE_P (scope)) || dependent_p) |
| { |
| tree s; |
| tree type; |
| |
| cp_parser_parse_tentatively (parser); |
| /* Parse the pseudo-destructor-name. */ |
| s = NULL_TREE; |
| cp_parser_pseudo_destructor_name (parser, &s, &type); |
| if (dependent_p |
| && (cp_parser_error_occurred (parser) |
| || TREE_CODE (type) != TYPE_DECL |
| || !SCALAR_TYPE_P (TREE_TYPE (type)))) |
| cp_parser_abort_tentative_parse (parser); |
| else if (cp_parser_parse_definitely (parser)) |
| { |
| pseudo_destructor_p = true; |
| postfix_expression |
| = finish_pseudo_destructor_expr (postfix_expression, |
| s, TREE_TYPE (type)); |
| } |
| } |
| |
| if (!pseudo_destructor_p) |
| { |
| /* If the SCOPE is not a scalar type, we are looking at an |
| ordinary class member access expression, rather than a |
| pseudo-destructor-name. */ |
| bool template_p; |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| /* Parse the id-expression. */ |
| name = (cp_parser_id_expression |
| (parser, |
| cp_parser_optional_template_keyword (parser), |
| /*check_dependency_p=*/true, |
| &template_p, |
| /*declarator_p=*/false, |
| /*optional_p=*/false)); |
| /* In general, build a SCOPE_REF if the member name is qualified. |
| However, if the name was not dependent and has already been |
| resolved; there is no need to build the SCOPE_REF. For example; |
| |
| struct X { void f(); }; |
| template <typename T> void f(T* t) { t->X::f(); } |
| |
| Even though "t" is dependent, "X::f" is not and has been resolved |
| to a BASELINK; there is no need to include scope information. */ |
| |
| /* But we do need to remember that there was an explicit scope for |
| virtual function calls. */ |
| if (parser->scope) |
| *idk = CP_ID_KIND_QUALIFIED; |
| |
| /* If the name is a template-id that names a type, we will get a |
| TYPE_DECL here. That is invalid code. */ |
| if (TREE_CODE (name) == TYPE_DECL) |
| { |
| error_at (token->location, "invalid use of %qD", name); |
| postfix_expression = error_mark_node; |
| } |
| else |
| { |
| if (name != error_mark_node && !BASELINK_P (name) && parser->scope) |
| { |
| name = build_qualified_name (/*type=*/NULL_TREE, |
| parser->scope, |
| name, |
| template_p); |
| parser->scope = NULL_TREE; |
| parser->qualifying_scope = NULL_TREE; |
| parser->object_scope = NULL_TREE; |
| } |
| if (scope && name && BASELINK_P (name)) |
| adjust_result_of_qualified_name_lookup |
| (name, BINFO_TYPE (BASELINK_ACCESS_BINFO (name)), scope); |
| postfix_expression |
| = finish_class_member_access_expr (postfix_expression, name, |
| template_p, |
| tf_warning_or_error); |
| } |
| } |
| |
| /* We no longer need to look up names in the scope of the object on |
| the left-hand side of the `.' or `->' operator. */ |
| parser->context->object_type = NULL_TREE; |
| |
| /* Outside of offsetof, these operators may not appear in |
| constant-expressions. */ |
| if (!for_offsetof |
| && (cp_parser_non_integral_constant_expression |
| (parser, token_type == CPP_DEREF ? NIC_ARROW : NIC_POINT))) |
| postfix_expression = error_mark_node; |
| |
| return postfix_expression; |
| } |
| |
| /* Parse a parenthesized expression-list. |
| |
| expression-list: |
| assignment-expression |
| expression-list, assignment-expression |
| |
| attribute-list: |
| expression-list |
| identifier |
| identifier, expression-list |
| |
| CAST_P is true if this expression is the target of a cast. |
| |
| ALLOW_EXPANSION_P is true if this expression allows expansion of an |
| argument pack. |
| |
| Returns a vector of trees. Each element is a representation of an |
| assignment-expression. NULL is returned if the ( and or ) are |
| missing. An empty, but allocated, vector is returned on no |
| expressions. The parentheses are eaten. IS_ATTRIBUTE_LIST is id_attr |
| if we are parsing an attribute list for an attribute that wants a |
| plain identifier argument, normal_attr for an attribute that wants |
| an expression, or non_attr if we aren't parsing an attribute list. If |
| NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P indicates whether or |
| not all of the expressions in the list were constant. */ |
| |
| static VEC(tree,gc) * |
| cp_parser_parenthesized_expression_list (cp_parser* parser, |
| int is_attribute_list, |
| bool cast_p, |
| bool allow_expansion_p, |
| bool *non_constant_p) |
| { |
| VEC(tree,gc) *expression_list; |
| bool fold_expr_p = is_attribute_list != non_attr; |
| tree identifier = NULL_TREE; |
| bool saved_greater_than_is_operator_p; |
| |
| /* Assume all the expressions will be constant. */ |
| if (non_constant_p) |
| *non_constant_p = false; |
| |
| if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN)) |
| return NULL; |
| |
| expression_list = make_tree_vector (); |
| |
| /* Within a parenthesized expression, a `>' token is always |
| the greater-than operator. */ |
| saved_greater_than_is_operator_p |
| = parser->greater_than_is_operator_p; |
| parser->greater_than_is_operator_p = true; |
| |
| /* Consume expressions until there are no more. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)) |
| while (true) |
| { |
| tree expr; |
| |
| /* At the beginning of attribute lists, check to see if the |
| next token is an identifier. */ |
| if (is_attribute_list == id_attr |
| && cp_lexer_peek_token (parser->lexer)->type == CPP_NAME) |
| { |
| cp_token *token; |
| |
| /* Consume the identifier. */ |
| token = cp_lexer_consume_token (parser->lexer); |
| /* Save the identifier. */ |
| identifier = token->u.value; |
| } |
| else |
| { |
| bool expr_non_constant_p; |
| |
| /* Parse the next assignment-expression. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| { |
| /* A braced-init-list. */ |
| maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS); |
| expr = cp_parser_braced_list (parser, &expr_non_constant_p); |
| if (non_constant_p && expr_non_constant_p) |
| *non_constant_p = true; |
| } |
| else if (non_constant_p) |
| { |
| expr = (cp_parser_constant_expression |
| (parser, /*allow_non_constant_p=*/true, |
| &expr_non_constant_p)); |
| if (expr_non_constant_p) |
| *non_constant_p = true; |
| } |
| else |
| expr = cp_parser_assignment_expression (parser, cast_p, NULL); |
| |
| if (fold_expr_p) |
| expr = fold_non_dependent_expr (expr); |
| |
| /* If we have an ellipsis, then this is an expression |
| expansion. */ |
| if (allow_expansion_p |
| && cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)) |
| { |
| /* Consume the `...'. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* Build the argument pack. */ |
| expr = make_pack_expansion (expr); |
| } |
| |
| /* Add it to the list. We add error_mark_node |
| expressions to the list, so that we can still tell if |
| the correct form for a parenthesized expression-list |
| is found. That gives better errors. */ |
| VEC_safe_push (tree, gc, expression_list, expr); |
| |
| if (expr == error_mark_node) |
| goto skip_comma; |
| } |
| |
| /* After the first item, attribute lists look the same as |
| expression lists. */ |
| is_attribute_list = non_attr; |
| |
| get_comma:; |
| /* If the next token isn't a `,', then we are done. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA)) |
| break; |
| |
| /* Otherwise, consume the `,' and keep going. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| |
| if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN)) |
| { |
| int ending; |
| |
| skip_comma:; |
| /* We try and resync to an unnested comma, as that will give the |
| user better diagnostics. */ |
| ending = cp_parser_skip_to_closing_parenthesis (parser, |
| /*recovering=*/true, |
| /*or_comma=*/true, |
| /*consume_paren=*/true); |
| if (ending < 0) |
| goto get_comma; |
| if (!ending) |
| { |
| parser->greater_than_is_operator_p |
| = saved_greater_than_is_operator_p; |
| return NULL; |
| } |
| } |
| |
| parser->greater_than_is_operator_p |
| = saved_greater_than_is_operator_p; |
| |
| if (identifier) |
| VEC_safe_insert (tree, gc, expression_list, 0, identifier); |
| |
| return expression_list; |
| } |
| |
| /* Parse a pseudo-destructor-name. |
| |
| pseudo-destructor-name: |
| :: [opt] nested-name-specifier [opt] type-name :: ~ type-name |
| :: [opt] nested-name-specifier template template-id :: ~ type-name |
| :: [opt] nested-name-specifier [opt] ~ type-name |
| |
| If either of the first two productions is used, sets *SCOPE to the |
| TYPE specified before the final `::'. Otherwise, *SCOPE is set to |
| NULL_TREE. *TYPE is set to the TYPE_DECL for the final type-name, |
| or ERROR_MARK_NODE if the parse fails. */ |
| |
| static void |
| cp_parser_pseudo_destructor_name (cp_parser* parser, |
| tree* scope, |
| tree* type) |
| { |
| bool nested_name_specifier_p; |
| |
| /* Assume that things will not work out. */ |
| *type = error_mark_node; |
| |
| /* Look for the optional `::' operator. */ |
| cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true); |
| /* Look for the optional nested-name-specifier. */ |
| nested_name_specifier_p |
| = (cp_parser_nested_name_specifier_opt (parser, |
| /*typename_keyword_p=*/false, |
| /*check_dependency_p=*/true, |
| /*type_p=*/false, |
| /*is_declaration=*/false) |
| != NULL_TREE); |
| /* Now, if we saw a nested-name-specifier, we might be doing the |
| second production. */ |
| if (nested_name_specifier_p |
| && cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE)) |
| { |
| /* Consume the `template' keyword. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the template-id. */ |
| cp_parser_template_id (parser, |
| /*template_keyword_p=*/true, |
| /*check_dependency_p=*/false, |
| /*is_declaration=*/true); |
| /* Look for the `::' token. */ |
| cp_parser_require (parser, CPP_SCOPE, RT_SCOPE); |
| } |
| /* If the next token is not a `~', then there might be some |
| additional qualification. */ |
| else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL)) |
| { |
| /* At this point, we're looking for "type-name :: ~". The type-name |
| must not be a class-name, since this is a pseudo-destructor. So, |
| it must be either an enum-name, or a typedef-name -- both of which |
| are just identifiers. So, we peek ahead to check that the "::" |
| and "~" tokens are present; if they are not, then we can avoid |
| calling type_name. */ |
| if (cp_lexer_peek_token (parser->lexer)->type != CPP_NAME |
| || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE |
| || cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_COMPL) |
| { |
| cp_parser_error (parser, "non-scalar type"); |
| return; |
| } |
| |
| /* Look for the type-name. */ |
| *scope = TREE_TYPE (cp_parser_nonclass_name (parser)); |
| if (*scope == error_mark_node) |
| return; |
| |
| /* Look for the `::' token. */ |
| cp_parser_require (parser, CPP_SCOPE, RT_SCOPE); |
| } |
| else |
| *scope = NULL_TREE; |
| |
| /* Look for the `~'. */ |
| cp_parser_require (parser, CPP_COMPL, RT_COMPL); |
| |
| /* Once we see the ~, this has to be a pseudo-destructor. */ |
| if (!processing_template_decl && !cp_parser_error_occurred (parser)) |
| cp_parser_commit_to_tentative_parse (parser); |
| |
| /* Look for the type-name again. We are not responsible for |
| checking that it matches the first type-name. */ |
| *type = cp_parser_nonclass_name (parser); |
| } |
| |
| /* Parse a unary-expression. |
| |
| unary-expression: |
| postfix-expression |
| ++ cast-expression |
| -- cast-expression |
| unary-operator cast-expression |
| sizeof unary-expression |
| sizeof ( type-id ) |
| alignof ( type-id ) [C++0x] |
| new-expression |
| delete-expression |
| |
| GNU Extensions: |
| |
| unary-expression: |
| __extension__ cast-expression |
| __alignof__ unary-expression |
| __alignof__ ( type-id ) |
| alignof unary-expression [C++0x] |
| __real__ cast-expression |
| __imag__ cast-expression |
| && identifier |
| |
| ADDRESS_P is true iff the unary-expression is appearing as the |
| operand of the `&' operator. CAST_P is true if this expression is |
| the target of a cast. |
| |
| Returns a representation of the expression. */ |
| |
| static tree |
| cp_parser_unary_expression (cp_parser *parser, bool address_p, bool cast_p, |
| cp_id_kind * pidk) |
| { |
| cp_token *token; |
| enum tree_code unary_operator; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* Some keywords give away the kind of expression. */ |
| if (token->type == CPP_KEYWORD) |
| { |
| enum rid keyword = token->keyword; |
| |
| switch (keyword) |
| { |
| case RID_ALIGNOF: |
| case RID_SIZEOF: |
| { |
| tree operand; |
| enum tree_code op; |
| |
| op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR; |
| /* Consume the token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the operand. */ |
| operand = cp_parser_sizeof_operand (parser, keyword); |
| |
| if (TYPE_P (operand)) |
| return cxx_sizeof_or_alignof_type (operand, op, true); |
| else |
| { |
| /* ISO C++ defines alignof only with types, not with |
| expressions. So pedwarn if alignof is used with a non- |
| type expression. However, __alignof__ is ok. */ |
| if (!strcmp (IDENTIFIER_POINTER (token->u.value), "alignof")) |
| pedwarn (token->location, OPT_pedantic, |
| "ISO C++ does not allow %<alignof%> " |
| "with a non-type"); |
| |
| return cxx_sizeof_or_alignof_expr (operand, op, true); |
| } |
| } |
| |
| case RID_NEW: |
| return cp_parser_new_expression (parser); |
| |
| case RID_DELETE: |
| return cp_parser_delete_expression (parser); |
| |
| case RID_EXTENSION: |
| { |
| /* The saved value of the PEDANTIC flag. */ |
| int saved_pedantic; |
| tree expr; |
| |
| /* Save away the PEDANTIC flag. */ |
| cp_parser_extension_opt (parser, &saved_pedantic); |
| /* Parse the cast-expression. */ |
| expr = cp_parser_simple_cast_expression (parser); |
| /* Restore the PEDANTIC flag. */ |
| pedantic = saved_pedantic; |
| |
| return expr; |
| } |
| |
| case RID_REALPART: |
| case RID_IMAGPART: |
| { |
| tree expression; |
| |
| /* Consume the `__real__' or `__imag__' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the cast-expression. */ |
| expression = cp_parser_simple_cast_expression (parser); |
| /* Create the complete representation. */ |
| return build_x_unary_op ((keyword == RID_REALPART |
| ? REALPART_EXPR : IMAGPART_EXPR), |
| expression, |
| tf_warning_or_error); |
| } |
| break; |
| |
| case RID_NOEXCEPT: |
| { |
| tree expr; |
| const char *saved_message; |
| bool saved_integral_constant_expression_p; |
| bool saved_non_integral_constant_expression_p; |
| bool saved_greater_than_is_operator_p; |
| |
| cp_lexer_consume_token (parser->lexer); |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| |
| saved_message = parser->type_definition_forbidden_message; |
| parser->type_definition_forbidden_message |
| = G_("types may not be defined in %<noexcept%> expressions"); |
| |
| saved_integral_constant_expression_p |
| = parser->integral_constant_expression_p; |
| saved_non_integral_constant_expression_p |
| = parser->non_integral_constant_expression_p; |
| parser->integral_constant_expression_p = false; |
| |
| saved_greater_than_is_operator_p |
| = parser->greater_than_is_operator_p; |
| parser->greater_than_is_operator_p = true; |
| |
| ++cp_unevaluated_operand; |
| ++c_inhibit_evaluation_warnings; |
| expr = cp_parser_expression (parser, false, NULL); |
| --c_inhibit_evaluation_warnings; |
| --cp_unevaluated_operand; |
| |
| parser->greater_than_is_operator_p |
| = saved_greater_than_is_operator_p; |
| |
| parser->integral_constant_expression_p |
| = saved_integral_constant_expression_p; |
| parser->non_integral_constant_expression_p |
| = saved_non_integral_constant_expression_p; |
| |
| parser->type_definition_forbidden_message = saved_message; |
| |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| return finish_noexcept_expr (expr, tf_warning_or_error); |
| } |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Look for the `:: new' and `:: delete', which also signal the |
| beginning of a new-expression, or delete-expression, |
| respectively. If the next token is `::', then it might be one of |
| these. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)) |
| { |
| enum rid keyword; |
| |
| /* See if the token after the `::' is one of the keywords in |
| which we're interested. */ |
| keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword; |
| /* If it's `new', we have a new-expression. */ |
| if (keyword == RID_NEW) |
| return cp_parser_new_expression (parser); |
| /* Similarly, for `delete'. */ |
| else if (keyword == RID_DELETE) |
| return cp_parser_delete_expression (parser); |
| } |
| |
| /* Look for a unary operator. */ |
| unary_operator = cp_parser_unary_operator (token); |
| /* The `++' and `--' operators can be handled similarly, even though |
| they are not technically unary-operators in the grammar. */ |
| if (unary_operator == ERROR_MARK) |
| { |
| if (token->type == CPP_PLUS_PLUS) |
| unary_operator = PREINCREMENT_EXPR; |
| else if (token->type == CPP_MINUS_MINUS) |
| unary_operator = PREDECREMENT_EXPR; |
| /* Handle the GNU address-of-label extension. */ |
| else if (cp_parser_allow_gnu_extensions_p (parser) |
| && token->type == CPP_AND_AND) |
| { |
| tree identifier; |
| tree expression; |
| location_t loc = cp_lexer_peek_token (parser->lexer)->location; |
| |
| /* Consume the '&&' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Look for the identifier. */ |
| identifier = cp_parser_identifier (parser); |
| /* Create an expression representing the address. */ |
| expression = finish_label_address_expr (identifier, loc); |
| if (cp_parser_non_integral_constant_expression (parser, |
| NIC_ADDR_LABEL)) |
| expression = error_mark_node; |
| return expression; |
| } |
| } |
| if (unary_operator != ERROR_MARK) |
| { |
| tree cast_expression; |
| tree expression = error_mark_node; |
| non_integral_constant non_constant_p = NIC_NONE; |
| |
| /* Consume the operator token. */ |
| token = cp_lexer_consume_token (parser->lexer); |
| /* Parse the cast-expression. */ |
| cast_expression |
| = cp_parser_cast_expression (parser, |
| unary_operator == ADDR_EXPR, |
| /*cast_p=*/false, pidk); |
| /* Now, build an appropriate representation. */ |
| switch (unary_operator) |
| { |
| case INDIRECT_REF: |
| non_constant_p = NIC_STAR; |
| expression = build_x_indirect_ref (cast_expression, RO_UNARY_STAR, |
| tf_warning_or_error); |
| break; |
| |
| case ADDR_EXPR: |
| non_constant_p = NIC_ADDR; |
| /* Fall through. */ |
| case BIT_NOT_EXPR: |
| expression = build_x_unary_op (unary_operator, cast_expression, |
| tf_warning_or_error); |
| break; |
| |
| case PREINCREMENT_EXPR: |
| case PREDECREMENT_EXPR: |
| non_constant_p = unary_operator == PREINCREMENT_EXPR |
| ? NIC_PREINCREMENT : NIC_PREDECREMENT; |
| /* Fall through. */ |
| case UNARY_PLUS_EXPR: |
| case NEGATE_EXPR: |
| case TRUTH_NOT_EXPR: |
| expression = finish_unary_op_expr (unary_operator, cast_expression); |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| if (non_constant_p != NIC_NONE |
| && cp_parser_non_integral_constant_expression (parser, |
| non_constant_p)) |
| expression = error_mark_node; |
| |
| return expression; |
| } |
| |
| return cp_parser_postfix_expression (parser, address_p, cast_p, |
| /*member_access_only_p=*/false, |
| pidk); |
| } |
| |
| /* Returns ERROR_MARK if TOKEN is not a unary-operator. If TOKEN is a |
| unary-operator, the corresponding tree code is returned. */ |
| |
| static enum tree_code |
| cp_parser_unary_operator (cp_token* token) |
| { |
| switch (token->type) |
| { |
| case CPP_MULT: |
| return INDIRECT_REF; |
| |
| case CPP_AND: |
| return ADDR_EXPR; |
| |
| case CPP_PLUS: |
| return UNARY_PLUS_EXPR; |
| |
| case CPP_MINUS: |
| return NEGATE_EXPR; |
| |
| case CPP_NOT: |
| return TRUTH_NOT_EXPR; |
| |
| case CPP_COMPL: |
| return BIT_NOT_EXPR; |
| |
| default: |
| return ERROR_MARK; |
| } |
| } |
| |
| /* Parse a new-expression. |
| |
| new-expression: |
| :: [opt] new new-placement [opt] new-type-id new-initializer [opt] |
| :: [opt] new new-placement [opt] ( type-id ) new-initializer [opt] |
| |
| Returns a representation of the expression. */ |
| |
| static tree |
| cp_parser_new_expression (cp_parser* parser) |
| { |
| bool global_scope_p; |
| VEC(tree,gc) *placement; |
| tree type; |
| VEC(tree,gc) *initializer; |
| tree nelts; |
| tree ret; |
| |
| /* Look for the optional `::' operator. */ |
| global_scope_p |
| = (cp_parser_global_scope_opt (parser, |
| /*current_scope_valid_p=*/false) |
| != NULL_TREE); |
| /* Look for the `new' operator. */ |
| cp_parser_require_keyword (parser, RID_NEW, RT_NEW); |
| /* There's no easy way to tell a new-placement from the |
| `( type-id )' construct. */ |
| cp_parser_parse_tentatively (parser); |
| /* Look for a new-placement. */ |
| placement = cp_parser_new_placement (parser); |
| /* If that didn't work out, there's no new-placement. */ |
| if (!cp_parser_parse_definitely (parser)) |
| { |
| if (placement != NULL) |
| release_tree_vector (placement); |
| placement = NULL; |
| } |
| |
| /* If the next token is a `(', then we have a parenthesized |
| type-id. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)) |
| { |
| cp_token *token; |
| /* Consume the `('. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the type-id. */ |
| type = cp_parser_type_id (parser); |
| /* Look for the closing `)'. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| token = cp_lexer_peek_token (parser->lexer); |
| /* There should not be a direct-new-declarator in this production, |
| but GCC used to allowed this, so we check and emit a sensible error |
| message for this case. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE)) |
| { |
| error_at (token->location, |
| "array bound forbidden after parenthesized type-id"); |
| inform (token->location, |
| "try removing the parentheses around the type-id"); |
| cp_parser_direct_new_declarator (parser); |
| } |
| nelts = NULL_TREE; |
| } |
| /* Otherwise, there must be a new-type-id. */ |
| else |
| type = cp_parser_new_type_id (parser, &nelts); |
| |
| /* If the next token is a `(' or '{', then we have a new-initializer. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN) |
| || cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| initializer = cp_parser_new_initializer (parser); |
| else |
| initializer = NULL; |
| |
| /* A new-expression may not appear in an integral constant |
| expression. */ |
| if (cp_parser_non_integral_constant_expression (parser, NIC_NEW)) |
| ret = error_mark_node; |
| else |
| { |
| /* Create a representation of the new-expression. */ |
| ret = build_new (&placement, type, nelts, &initializer, global_scope_p, |
| tf_warning_or_error); |
| } |
| |
| if (placement != NULL) |
| release_tree_vector (placement); |
| if (initializer != NULL) |
| release_tree_vector (initializer); |
| |
| return ret; |
| } |
| |
| /* Parse a new-placement. |
| |
| new-placement: |
| ( expression-list ) |
| |
| Returns the same representation as for an expression-list. */ |
| |
| static VEC(tree,gc) * |
| cp_parser_new_placement (cp_parser* parser) |
| { |
| VEC(tree,gc) *expression_list; |
| |
| /* Parse the expression-list. */ |
| expression_list = (cp_parser_parenthesized_expression_list |
| (parser, non_attr, /*cast_p=*/false, |
| /*allow_expansion_p=*/true, |
| /*non_constant_p=*/NULL)); |
| |
| return expression_list; |
| } |
| |
| /* Parse a new-type-id. |
| |
| new-type-id: |
| type-specifier-seq new-declarator [opt] |
| |
| Returns the TYPE allocated. If the new-type-id indicates an array |
| type, *NELTS is set to the number of elements in the last array |
| bound; the TYPE will not include the last array bound. */ |
| |
| static tree |
| cp_parser_new_type_id (cp_parser* parser, tree *nelts) |
| { |
| cp_decl_specifier_seq type_specifier_seq; |
| cp_declarator *new_declarator; |
| cp_declarator *declarator; |
| cp_declarator *outer_declarator; |
| const char *saved_message; |
| tree type; |
| |
| /* The type-specifier sequence must not contain type definitions. |
| (It cannot contain declarations of new types either, but if they |
| are not definitions we will catch that because they are not |
| complete.) */ |
| saved_message = parser->type_definition_forbidden_message; |
| parser->type_definition_forbidden_message |
| = G_("types may not be defined in a new-type-id"); |
| /* Parse the type-specifier-seq. */ |
| cp_parser_type_specifier_seq (parser, /*is_declaration=*/false, |
| /*is_trailing_return=*/false, |
| &type_specifier_seq); |
| /* Restore the old message. */ |
| parser->type_definition_forbidden_message = saved_message; |
| /* Parse the new-declarator. */ |
| new_declarator = cp_parser_new_declarator_opt (parser); |
| |
| /* Determine the number of elements in the last array dimension, if |
| any. */ |
| *nelts = NULL_TREE; |
| /* Skip down to the last array dimension. */ |
| declarator = new_declarator; |
| outer_declarator = NULL; |
| while (declarator && (declarator->kind == cdk_pointer |
| || declarator->kind == cdk_ptrmem)) |
| { |
| outer_declarator = declarator; |
| declarator = declarator->declarator; |
| } |
| while (declarator |
| && declarator->kind == cdk_array |
| && declarator->declarator |
| && declarator->declarator->kind == cdk_array) |
| { |
| outer_declarator = declarator; |
| declarator = declarator->declarator; |
| } |
| |
| if (declarator && declarator->kind == cdk_array) |
| { |
| *nelts = declarator->u.array.bounds; |
| if (*nelts == error_mark_node) |
| *nelts = integer_one_node; |
| |
| if (outer_declarator) |
| outer_declarator->declarator = declarator->declarator; |
| else |
| new_declarator = NULL; |
| } |
| |
| type = groktypename (&type_specifier_seq, new_declarator, false); |
| return type; |
| } |
| |
| /* Parse an (optional) new-declarator. |
| |
| new-declarator: |
| ptr-operator new-declarator [opt] |
| direct-new-declarator |
| |
| Returns the declarator. */ |
| |
| static cp_declarator * |
| cp_parser_new_declarator_opt (cp_parser* parser) |
| { |
| enum tree_code code; |
| tree type; |
| cp_cv_quals cv_quals; |
| |
| /* We don't know if there's a ptr-operator next, or not. */ |
| cp_parser_parse_tentatively (parser); |
| /* Look for a ptr-operator. */ |
| code = cp_parser_ptr_operator (parser, &type, &cv_quals); |
| /* If that worked, look for more new-declarators. */ |
| if (cp_parser_parse_definitely (parser)) |
| { |
| cp_declarator *declarator; |
| |
| /* Parse another optional declarator. */ |
| declarator = cp_parser_new_declarator_opt (parser); |
| |
| return cp_parser_make_indirect_declarator |
| (code, type, cv_quals, declarator); |
| } |
| |
| /* If the next token is a `[', there is a direct-new-declarator. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE)) |
| return cp_parser_direct_new_declarator (parser); |
| |
| return NULL; |
| } |
| |
| /* Parse a direct-new-declarator. |
| |
| direct-new-declarator: |
| [ expression ] |
| direct-new-declarator [constant-expression] |
| |
| */ |
| |
| static cp_declarator * |
| cp_parser_direct_new_declarator (cp_parser* parser) |
| { |
| cp_declarator *declarator = NULL; |
| |
| while (true) |
| { |
| tree expression; |
| |
| /* Look for the opening `['. */ |
| cp_parser_require (parser, CPP_OPEN_SQUARE, RT_OPEN_SQUARE); |
| /* The first expression is not required to be constant. */ |
| if (!declarator) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| expression = cp_parser_expression (parser, /*cast_p=*/false, NULL); |
| /* The standard requires that the expression have integral |
| type. DR 74 adds enumeration types. We believe that the |
| real intent is that these expressions be handled like the |
| expression in a `switch' condition, which also allows |
| classes with a single conversion to integral or |
| enumeration type. */ |
| if (!processing_template_decl) |
| { |
| expression |
| = build_expr_type_conversion (WANT_INT | WANT_ENUM, |
| expression, |
| /*complain=*/true); |
| if (!expression) |
| { |
| error_at (token->location, |
| "expression in new-declarator must have integral " |
| "or enumeration type"); |
| expression = error_mark_node; |
| } |
| } |
| } |
| /* But all the other expressions must be. */ |
| else |
| expression |
| = cp_parser_constant_expression (parser, |
| /*allow_non_constant=*/false, |
| NULL); |
| /* Look for the closing `]'. */ |
| cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE); |
| |
| /* Add this bound to the declarator. */ |
| declarator = make_array_declarator (declarator, expression); |
| |
| /* If the next token is not a `[', then there are no more |
| bounds. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE)) |
| break; |
| } |
| |
| return declarator; |
| } |
| |
| /* Parse a new-initializer. |
| |
| new-initializer: |
| ( expression-list [opt] ) |
| braced-init-list |
| |
| Returns a representation of the expression-list. */ |
| |
| static VEC(tree,gc) * |
| cp_parser_new_initializer (cp_parser* parser) |
| { |
| VEC(tree,gc) *expression_list; |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| { |
| tree t; |
| bool expr_non_constant_p; |
| maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS); |
| t = cp_parser_braced_list (parser, &expr_non_constant_p); |
| CONSTRUCTOR_IS_DIRECT_INIT (t) = 1; |
| expression_list = make_tree_vector_single (t); |
| } |
| else |
| expression_list = (cp_parser_parenthesized_expression_list |
| (parser, non_attr, /*cast_p=*/false, |
| /*allow_expansion_p=*/true, |
| /*non_constant_p=*/NULL)); |
| |
| return expression_list; |
| } |
| |
| /* Parse a delete-expression. |
| |
| delete-expression: |
| :: [opt] delete cast-expression |
| :: [opt] delete [ ] cast-expression |
| |
| Returns a representation of the expression. */ |
| |
| static tree |
| cp_parser_delete_expression (cp_parser* parser) |
| { |
| bool global_scope_p; |
| bool array_p; |
| tree expression; |
| |
| /* Look for the optional `::' operator. */ |
| global_scope_p |
| = (cp_parser_global_scope_opt (parser, |
| /*current_scope_valid_p=*/false) |
| != NULL_TREE); |
| /* Look for the `delete' keyword. */ |
| cp_parser_require_keyword (parser, RID_DELETE, RT_DELETE); |
| /* See if the array syntax is in use. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE)) |
| { |
| /* Consume the `[' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Look for the `]' token. */ |
| cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE); |
| /* Remember that this is the `[]' construct. */ |
| array_p = true; |
| } |
| else |
| array_p = false; |
| |
| /* Parse the cast-expression. */ |
| expression = cp_parser_simple_cast_expression (parser); |
| |
| /* A delete-expression may not appear in an integral constant |
| expression. */ |
| if (cp_parser_non_integral_constant_expression (parser, NIC_DEL)) |
| return error_mark_node; |
| |
| return delete_sanity (expression, NULL_TREE, array_p, global_scope_p, |
| tf_warning_or_error); |
| } |
| |
| /* Returns true if TOKEN may start a cast-expression and false |
| otherwise. */ |
| |
| static bool |
| cp_parser_token_starts_cast_expression (cp_token *token) |
| { |
| switch (token->type) |
| { |
| case CPP_COMMA: |
| case CPP_SEMICOLON: |
| case CPP_QUERY: |
| case CPP_COLON: |
| case CPP_CLOSE_SQUARE: |
| case CPP_CLOSE_PAREN: |
| case CPP_CLOSE_BRACE: |
| case CPP_DOT: |
| case CPP_DOT_STAR: |
| case CPP_DEREF: |
| case CPP_DEREF_STAR: |
| case CPP_DIV: |
| case CPP_MOD: |
| case CPP_LSHIFT: |
| case CPP_RSHIFT: |
| case CPP_LESS: |
| case CPP_GREATER: |
| case CPP_LESS_EQ: |
| case CPP_GREATER_EQ: |
| case CPP_EQ_EQ: |
| case CPP_NOT_EQ: |
| case CPP_EQ: |
| case CPP_MULT_EQ: |
| case CPP_DIV_EQ: |
| case CPP_MOD_EQ: |
| case CPP_PLUS_EQ: |
| case CPP_MINUS_EQ: |
| case CPP_RSHIFT_EQ: |
| case CPP_LSHIFT_EQ: |
| case CPP_AND_EQ: |
| case CPP_XOR_EQ: |
| case CPP_OR_EQ: |
| case CPP_XOR: |
| case CPP_OR: |
| case CPP_OR_OR: |
| case CPP_EOF: |
| return false; |
| |
| /* '[' may start a primary-expression in obj-c++. */ |
| case CPP_OPEN_SQUARE: |
| return c_dialect_objc (); |
| |
| default: |
| return true; |
| } |
| } |
| |
| /* Parse a cast-expression. |
| |
| cast-expression: |
| unary-expression |
| ( type-id ) cast-expression |
| |
| ADDRESS_P is true iff the unary-expression is appearing as the |
| operand of the `&' operator. CAST_P is true if this expression is |
| the target of a cast. |
| |
| Returns a representation of the expression. */ |
| |
| static tree |
| cp_parser_cast_expression (cp_parser *parser, bool address_p, bool cast_p, |
| cp_id_kind * pidk) |
| { |
| /* If it's a `(', then we might be looking at a cast. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)) |
| { |
| tree type = NULL_TREE; |
| tree expr = NULL_TREE; |
| bool compound_literal_p; |
| const char *saved_message; |
| |
| /* There's no way to know yet whether or not this is a cast. |
| For example, `(int (3))' is a unary-expression, while `(int) |
| 3' is a cast. So, we resort to parsing tentatively. */ |
| cp_parser_parse_tentatively (parser); |
| /* Types may not be defined in a cast. */ |
| saved_message = parser->type_definition_forbidden_message; |
| parser->type_definition_forbidden_message |
| = G_("types may not be defined in casts"); |
| /* Consume the `('. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* A very tricky bit is that `(struct S) { 3 }' is a |
| compound-literal (which we permit in C++ as an extension). |
| But, that construct is not a cast-expression -- it is a |
| postfix-expression. (The reason is that `(struct S) { 3 }.i' |
| is legal; if the compound-literal were a cast-expression, |
| you'd need an extra set of parentheses.) But, if we parse |
| the type-id, and it happens to be a class-specifier, then we |
| will commit to the parse at that point, because we cannot |
| undo the action that is done when creating a new class. So, |
| then we cannot back up and do a postfix-expression. |
| |
| Therefore, we scan ahead to the closing `)', and check to see |
| if the token after the `)' is a `{'. If so, we are not |
| looking at a cast-expression. |
| |
| Save tokens so that we can put them back. */ |
| cp_lexer_save_tokens (parser->lexer); |
| /* Skip tokens until the next token is a closing parenthesis. |
| If we find the closing `)', and the next token is a `{', then |
| we are looking at a compound-literal. */ |
| compound_literal_p |
| = (cp_parser_skip_to_closing_parenthesis (parser, false, false, |
| /*consume_paren=*/true) |
| && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)); |
| /* Roll back the tokens we skipped. */ |
| cp_lexer_rollback_tokens (parser->lexer); |
| /* If we were looking at a compound-literal, simulate an error |
| so that the call to cp_parser_parse_definitely below will |
| fail. */ |
| if (compound_literal_p) |
| cp_parser_simulate_error (parser); |
| else |
| { |
| bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p; |
| parser->in_type_id_in_expr_p = true; |
| /* Look for the type-id. */ |
| type = cp_parser_type_id (parser); |
| /* Look for the closing `)'. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p; |
| } |
| |
| /* Restore the saved message. */ |
| parser->type_definition_forbidden_message = saved_message; |
| |
| /* At this point this can only be either a cast or a |
| parenthesized ctor such as `(T ())' that looks like a cast to |
| function returning T. */ |
| if (!cp_parser_error_occurred (parser) |
| && cp_parser_token_starts_cast_expression (cp_lexer_peek_token |
| (parser->lexer))) |
| { |
| cp_parser_parse_definitely (parser); |
| expr = cp_parser_cast_expression (parser, |
| /*address_p=*/false, |
| /*cast_p=*/true, pidk); |
| |
| /* Warn about old-style casts, if so requested. */ |
| if (warn_old_style_cast |
| && !in_system_header |
| && !VOID_TYPE_P (type) |
| && current_lang_name != lang_name_c) |
| warning (OPT_Wold_style_cast, "use of old-style cast"); |
| |
| /* Only type conversions to integral or enumeration types |
| can be used in constant-expressions. */ |
| if (!cast_valid_in_integral_constant_expression_p (type) |
| && cp_parser_non_integral_constant_expression (parser, |
| NIC_CAST)) |
| return error_mark_node; |
| |
| /* Perform the cast. */ |
| expr = build_c_cast (input_location, type, expr); |
| return expr; |
| } |
| else |
| cp_parser_abort_tentative_parse (parser); |
| } |
| |
| /* If we get here, then it's not a cast, so it must be a |
| unary-expression. */ |
| return cp_parser_unary_expression (parser, address_p, cast_p, pidk); |
| } |
| |
| /* Parse a binary expression of the general form: |
| |
| pm-expression: |
| cast-expression |
| pm-expression .* cast-expression |
| pm-expression ->* cast-expression |
| |
| multiplicative-expression: |
| pm-expression |
| multiplicative-expression * pm-expression |
| multiplicative-expression / pm-expression |
| multiplicative-expression % pm-expression |
| |
| additive-expression: |
| multiplicative-expression |
| additive-expression + multiplicative-expression |
| additive-expression - multiplicative-expression |
| |
| shift-expression: |
| additive-expression |
| shift-expression << additive-expression |
| shift-expression >> additive-expression |
| |
| relational-expression: |
| shift-expression |
| relational-expression < shift-expression |
| relational-expression > shift-expression |
| relational-expression <= shift-expression |
| relational-expression >= shift-expression |
| |
| GNU Extension: |
| |
| relational-expression: |
| relational-expression <? shift-expression |
| relational-expression >? shift-expression |
| |
| equality-expression: |
| relational-expression |
| equality-expression == relational-expression |
| equality-expression != relational-expression |
| |
| and-expression: |
| equality-expression |
| and-expression & equality-expression |
| |
| exclusive-or-expression: |
| and-expression |
| exclusive-or-expression ^ and-expression |
| |
| inclusive-or-expression: |
| exclusive-or-expression |
| inclusive-or-expression | exclusive-or-expression |
| |
| logical-and-expression: |
| inclusive-or-expression |
| logical-and-expression && inclusive-or-expression |
| |
| logical-or-expression: |
| logical-and-expression |
| logical-or-expression || logical-and-expression |
| |
| All these are implemented with a single function like: |
| |
| binary-expression: |
| simple-cast-expression |
| binary-expression <token> binary-expression |
| |
| CAST_P is true if this expression is the target of a cast. |
| |
| The binops_by_token map is used to get the tree codes for each <token> type. |
| binary-expressions are associated according to a precedence table. */ |
| |
| #define TOKEN_PRECEDENCE(token) \ |
| (((token->type == CPP_GREATER \ |
| || ((cxx_dialect != cxx98) && token->type == CPP_RSHIFT)) \ |
| && !parser->greater_than_is_operator_p) \ |
| ? PREC_NOT_OPERATOR \ |
| : binops_by_token[token->type].prec) |
| |
| static tree |
| cp_parser_binary_expression (cp_parser* parser, bool cast_p, |
| bool no_toplevel_fold_p, |
| enum cp_parser_prec prec, |
| cp_id_kind * pidk) |
| { |
| cp_parser_expression_stack stack; |
| cp_parser_expression_stack_entry *sp = &stack[0]; |
| tree lhs, rhs; |
| cp_token *token; |
| enum tree_code tree_type, lhs_type, rhs_type; |
| enum cp_parser_prec new_prec, lookahead_prec; |
| tree overload; |
| |
| /* Parse the first expression. */ |
| lhs = cp_parser_cast_expression (parser, /*address_p=*/false, cast_p, pidk); |
| lhs_type = ERROR_MARK; |
| |
| for (;;) |
| { |
| /* Get an operator token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| if (warn_cxx0x_compat |
| && token->type == CPP_RSHIFT |
| && !parser->greater_than_is_operator_p) |
| { |
| if (warning_at (token->location, OPT_Wc__0x_compat, |
| "%<>>%> operator will be treated as" |
| " two right angle brackets in C++0x")) |
| inform (token->location, |
| "suggest parentheses around %<>>%> expression"); |
| } |
| |
| new_prec = TOKEN_PRECEDENCE (token); |
| |
| /* Popping an entry off the stack means we completed a subexpression: |
| - either we found a token which is not an operator (`>' where it is not |
| an operator, or prec == PREC_NOT_OPERATOR), in which case popping |
| will happen repeatedly; |
| - or, we found an operator which has lower priority. This is the case |
| where the recursive descent *ascends*, as in `3 * 4 + 5' after |
| parsing `3 * 4'. */ |
| if (new_prec <= prec) |
| { |
| if (sp == stack) |
| break; |
| else |
| goto pop; |
| } |
| |
| get_rhs: |
| tree_type = binops_by_token[token->type].tree_type; |
| |
| /* We used the operator token. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* For "false && x" or "true || x", x will never be executed; |
| disable warnings while evaluating it. */ |
| if (tree_type == TRUTH_ANDIF_EXPR) |
| c_inhibit_evaluation_warnings += lhs == truthvalue_false_node; |
| else if (tree_type == TRUTH_ORIF_EXPR) |
| c_inhibit_evaluation_warnings += lhs == truthvalue_true_node; |
| |
| /* Extract another operand. It may be the RHS of this expression |
| or the LHS of a new, higher priority expression. */ |
| rhs = cp_parser_simple_cast_expression (parser); |
| rhs_type = ERROR_MARK; |
| |
| /* Get another operator token. Look up its precedence to avoid |
| building a useless (immediately popped) stack entry for common |
| cases such as 3 + 4 + 5 or 3 * 4 + 5. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| lookahead_prec = TOKEN_PRECEDENCE (token); |
| if (lookahead_prec > new_prec) |
| { |
| /* ... and prepare to parse the RHS of the new, higher priority |
| expression. Since precedence levels on the stack are |
| monotonically increasing, we do not have to care about |
| stack overflows. */ |
| sp->prec = prec; |
| sp->tree_type = tree_type; |
| sp->lhs = lhs; |
| sp->lhs_type = lhs_type; |
| sp++; |
| lhs = rhs; |
| lhs_type = rhs_type; |
| prec = new_prec; |
| new_prec = lookahead_prec; |
| goto get_rhs; |
| |
| pop: |
| lookahead_prec = new_prec; |
| /* If the stack is not empty, we have parsed into LHS the right side |
| (`4' in the example above) of an expression we had suspended. |
| We can use the information on the stack to recover the LHS (`3') |
| from the stack together with the tree code (`MULT_EXPR'), and |
| the precedence of the higher level subexpression |
| (`PREC_ADDITIVE_EXPRESSION'). TOKEN is the CPP_PLUS token, |
| which will be used to actually build the additive expression. */ |
| --sp; |
| prec = sp->prec; |
| tree_type = sp->tree_type; |
| rhs = lhs; |
| rhs_type = lhs_type; |
| lhs = sp->lhs; |
| lhs_type = sp->lhs_type; |
| } |
| |
| /* Undo the disabling of warnings done above. */ |
| if (tree_type == TRUTH_ANDIF_EXPR) |
| c_inhibit_evaluation_warnings -= lhs == truthvalue_false_node; |
| else if (tree_type == TRUTH_ORIF_EXPR) |
| c_inhibit_evaluation_warnings -= lhs == truthvalue_true_node; |
| |
| overload = NULL; |
| /* ??? Currently we pass lhs_type == ERROR_MARK and rhs_type == |
| ERROR_MARK for everything that is not a binary expression. |
| This makes warn_about_parentheses miss some warnings that |
| involve unary operators. For unary expressions we should |
| pass the correct tree_code unless the unary expression was |
| surrounded by parentheses. |
| */ |
| if (no_toplevel_fold_p |
| && lookahead_prec <= prec |
| && sp == stack |
| && TREE_CODE_CLASS (tree_type) == tcc_comparison) |
| lhs = build2 (tree_type, boolean_type_node, lhs, rhs); |
| else |
| lhs = build_x_binary_op (tree_type, lhs, lhs_type, rhs, rhs_type, |
| &overload, tf_warning_or_error); |
| lhs_type = tree_type; |
| |
| /* If the binary operator required the use of an overloaded operator, |
| then this expression cannot be an integral constant-expression. |
| An overloaded operator can be used even if both operands are |
| otherwise permissible in an integral constant-expression if at |
| least one of the operands is of enumeration type. */ |
| |
| if (overload |
| && cp_parser_non_integral_constant_expression (parser, |
| NIC_OVERLOADED)) |
| return error_mark_node; |
| } |
| |
| return lhs; |
| } |
| |
| |
| /* Parse the `? expression : assignment-expression' part of a |
| conditional-expression. The LOGICAL_OR_EXPR is the |
| logical-or-expression that started the conditional-expression. |
| Returns a representation of the entire conditional-expression. |
| |
| This routine is used by cp_parser_assignment_expression. |
| |
| ? expression : assignment-expression |
| |
| GNU Extensions: |
| |
| ? : assignment-expression */ |
| |
| static tree |
| cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr) |
| { |
| tree expr; |
| tree assignment_expr; |
| struct cp_token *token; |
| |
| /* Consume the `?' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| token = cp_lexer_peek_token (parser->lexer); |
| if (cp_parser_allow_gnu_extensions_p (parser) |
| && token->type == CPP_COLON) |
| { |
| pedwarn (token->location, OPT_pedantic, |
| "ISO C++ does not allow ?: with omitted middle operand"); |
| /* Implicit true clause. */ |
| expr = NULL_TREE; |
| c_inhibit_evaluation_warnings += logical_or_expr == truthvalue_true_node; |
| warn_for_omitted_condop (token->location, logical_or_expr); |
| } |
| else |
| { |
| bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p; |
| parser->colon_corrects_to_scope_p = false; |
| /* Parse the expression. */ |
| c_inhibit_evaluation_warnings += logical_or_expr == truthvalue_false_node; |
| expr = cp_parser_expression (parser, /*cast_p=*/false, NULL); |
| c_inhibit_evaluation_warnings += |
| ((logical_or_expr == truthvalue_true_node) |
| - (logical_or_expr == truthvalue_false_node)); |
| parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p; |
| } |
| |
| /* The next token should be a `:'. */ |
| cp_parser_require (parser, CPP_COLON, RT_COLON); |
| /* Parse the assignment-expression. */ |
| assignment_expr = cp_parser_assignment_expression (parser, /*cast_p=*/false, NULL); |
| c_inhibit_evaluation_warnings -= logical_or_expr == truthvalue_true_node; |
| |
| /* Build the conditional-expression. */ |
| return build_x_conditional_expr (logical_or_expr, |
| expr, |
| assignment_expr, |
| tf_warning_or_error); |
| } |
| |
| /* Parse an assignment-expression. |
| |
| assignment-expression: |
| conditional-expression |
| logical-or-expression assignment-operator assignment_expression |
| throw-expression |
| |
| CAST_P is true if this expression is the target of a cast. |
| |
| Returns a representation for the expression. */ |
| |
| static tree |
| cp_parser_assignment_expression (cp_parser* parser, bool cast_p, |
| cp_id_kind * pidk) |
| { |
| tree expr; |
| |
| /* If the next token is the `throw' keyword, then we're looking at |
| a throw-expression. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW)) |
| expr = cp_parser_throw_expression (parser); |
| /* Otherwise, it must be that we are looking at a |
| logical-or-expression. */ |
| else |
| { |
| /* Parse the binary expressions (logical-or-expression). */ |
| expr = cp_parser_binary_expression (parser, cast_p, false, |
| PREC_NOT_OPERATOR, pidk); |
| /* If the next token is a `?' then we're actually looking at a |
| conditional-expression. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY)) |
| return cp_parser_question_colon_clause (parser, expr); |
| else |
| { |
| enum tree_code assignment_operator; |
| |
| /* If it's an assignment-operator, we're using the second |
| production. */ |
| assignment_operator |
| = cp_parser_assignment_operator_opt (parser); |
| if (assignment_operator != ERROR_MARK) |
| { |
| bool non_constant_p; |
| |
| /* Parse the right-hand side of the assignment. */ |
| tree rhs = cp_parser_initializer_clause (parser, &non_constant_p); |
| |
| if (BRACE_ENCLOSED_INITIALIZER_P (rhs)) |
| maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS); |
| |
| /* An assignment may not appear in a |
| constant-expression. */ |
| if (cp_parser_non_integral_constant_expression (parser, |
| NIC_ASSIGNMENT)) |
| return error_mark_node; |
| /* Build the assignment expression. */ |
| expr = build_x_modify_expr (expr, |
| assignment_operator, |
| rhs, |
| tf_warning_or_error); |
| } |
| } |
| } |
| |
| return expr; |
| } |
| |
| /* Parse an (optional) assignment-operator. |
| |
| assignment-operator: one of |
| = *= /= %= += -= >>= <<= &= ^= |= |
| |
| GNU Extension: |
| |
| assignment-operator: one of |
| <?= >?= |
| |
| If the next token is an assignment operator, the corresponding tree |
| code is returned, and the token is consumed. For example, for |
| `+=', PLUS_EXPR is returned. For `=' itself, the code returned is |
| NOP_EXPR. For `/', TRUNC_DIV_EXPR is returned; for `%', |
| TRUNC_MOD_EXPR is returned. If TOKEN is not an assignment |
| operator, ERROR_MARK is returned. */ |
| |
| static enum tree_code |
| cp_parser_assignment_operator_opt (cp_parser* parser) |
| { |
| enum tree_code op; |
| cp_token *token; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| switch (token->type) |
| { |
| case CPP_EQ: |
| op = NOP_EXPR; |
| break; |
| |
| case CPP_MULT_EQ: |
| op = MULT_EXPR; |
| break; |
| |
| case CPP_DIV_EQ: |
| op = TRUNC_DIV_EXPR; |
| break; |
| |
| case CPP_MOD_EQ: |
| op = TRUNC_MOD_EXPR; |
| break; |
| |
| case CPP_PLUS_EQ: |
| op = PLUS_EXPR; |
| break; |
| |
| case CPP_MINUS_EQ: |
| op = MINUS_EXPR; |
| break; |
| |
| case CPP_RSHIFT_EQ: |
| op = RSHIFT_EXPR; |
| break; |
| |
| case CPP_LSHIFT_EQ: |
| op = LSHIFT_EXPR; |
| break; |
| |
| case CPP_AND_EQ: |
| op = BIT_AND_EXPR; |
| break; |
| |
| case CPP_XOR_EQ: |
| op = BIT_XOR_EXPR; |
| break; |
| |
| case CPP_OR_EQ: |
| op = BIT_IOR_EXPR; |
| break; |
| |
| default: |
| /* Nothing else is an assignment operator. */ |
| op = ERROR_MARK; |
| } |
| |
| /* If it was an assignment operator, consume it. */ |
| if (op != ERROR_MARK) |
| cp_lexer_consume_token (parser->lexer); |
| |
| return op; |
| } |
| |
| /* Parse an expression. |
| |
| expression: |
| assignment-expression |
| expression , assignment-expression |
| |
| CAST_P is true if this expression is the target of a cast. |
| |
| Returns a representation of the expression. */ |
| |
| static tree |
| cp_parser_expression (cp_parser* parser, bool cast_p, cp_id_kind * pidk) |
| { |
| tree expression = NULL_TREE; |
| |
| while (true) |
| { |
| tree assignment_expression; |
| |
| /* Parse the next assignment-expression. */ |
| assignment_expression |
| = cp_parser_assignment_expression (parser, cast_p, pidk); |
| /* If this is the first assignment-expression, we can just |
| save it away. */ |
| if (!expression) |
| expression = assignment_expression; |
| else |
| expression = build_x_compound_expr (expression, |
| assignment_expression, |
| tf_warning_or_error); |
| /* If the next token is not a comma, then we are done with the |
| expression. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA)) |
| break; |
| /* Consume the `,'. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* A comma operator cannot appear in a constant-expression. */ |
| if (cp_parser_non_integral_constant_expression (parser, NIC_COMMA)) |
| expression = error_mark_node; |
| } |
| |
| return expression; |
| } |
| |
| /* Parse a constant-expression. |
| |
| constant-expression: |
| conditional-expression |
| |
| If ALLOW_NON_CONSTANT_P a non-constant expression is silently |
| accepted. If ALLOW_NON_CONSTANT_P is true and the expression is not |
| constant, *NON_CONSTANT_P is set to TRUE. If ALLOW_NON_CONSTANT_P |
| is false, NON_CONSTANT_P should be NULL. */ |
| |
| static tree |
| cp_parser_constant_expression (cp_parser* parser, |
| bool allow_non_constant_p, |
| bool *non_constant_p) |
| { |
| bool saved_integral_constant_expression_p; |
| bool saved_allow_non_integral_constant_expression_p; |
| bool saved_non_integral_constant_expression_p; |
| tree expression; |
| |
| /* It might seem that we could simply parse the |
| conditional-expression, and then check to see if it were |
| TREE_CONSTANT. However, an expression that is TREE_CONSTANT is |
| one that the compiler can figure out is constant, possibly after |
| doing some simplifications or optimizations. The standard has a |
| precise definition of constant-expression, and we must honor |
| that, even though it is somewhat more restrictive. |
| |
| For example: |
| |
| int i[(2, 3)]; |
| |
| is not a legal declaration, because `(2, 3)' is not a |
| constant-expression. The `,' operator is forbidden in a |
| constant-expression. However, GCC's constant-folding machinery |
| will fold this operation to an INTEGER_CST for `3'. */ |
| |
| /* Save the old settings. */ |
| saved_integral_constant_expression_p = parser->integral_constant_expression_p; |
| saved_allow_non_integral_constant_expression_p |
| = parser->allow_non_integral_constant_expression_p; |
| saved_non_integral_constant_expression_p = parser->non_integral_constant_expression_p; |
| /* We are now parsing a constant-expression. */ |
| parser->integral_constant_expression_p = true; |
| parser->allow_non_integral_constant_expression_p |
| = (allow_non_constant_p || cxx_dialect >= cxx0x); |
| parser->non_integral_constant_expression_p = false; |
| /* Although the grammar says "conditional-expression", we parse an |
| "assignment-expression", which also permits "throw-expression" |
| and the use of assignment operators. In the case that |
| ALLOW_NON_CONSTANT_P is false, we get better errors than we would |
| otherwise. In the case that ALLOW_NON_CONSTANT_P is true, it is |
| actually essential that we look for an assignment-expression. |
| For example, cp_parser_initializer_clauses uses this function to |
| determine whether a particular assignment-expression is in fact |
| constant. */ |
| expression = cp_parser_assignment_expression (parser, /*cast_p=*/false, NULL); |
| /* Restore the old settings. */ |
| parser->integral_constant_expression_p |
| = saved_integral_constant_expression_p; |
| parser->allow_non_integral_constant_expression_p |
| = saved_allow_non_integral_constant_expression_p; |
| if (cxx_dialect >= cxx0x) |
| { |
| /* Require an rvalue constant expression here; that's what our |
| callers expect. Reference constant expressions are handled |
| separately in e.g. cp_parser_template_argument. */ |
| bool is_const = potential_rvalue_constant_expression (expression); |
| parser->non_integral_constant_expression_p = !is_const; |
| if (!is_const && !allow_non_constant_p) |
| require_potential_rvalue_constant_expression (expression); |
| } |
| if (allow_non_constant_p) |
| *non_constant_p = parser->non_integral_constant_expression_p; |
| parser->non_integral_constant_expression_p |
| = saved_non_integral_constant_expression_p; |
| |
| return expression; |
| } |
| |
| /* Parse __builtin_offsetof. |
| |
| offsetof-expression: |
| "__builtin_offsetof" "(" type-id "," offsetof-member-designator ")" |
| |
| offsetof-member-designator: |
| id-expression |
| | offsetof-member-designator "." id-expression |
| | offsetof-member-designator "[" expression "]" |
| | offsetof-member-designator "->" id-expression */ |
| |
| static tree |
| cp_parser_builtin_offsetof (cp_parser *parser) |
| { |
| int save_ice_p, save_non_ice_p; |
| tree type, expr; |
| cp_id_kind dummy; |
| cp_token *token; |
| |
| /* We're about to accept non-integral-constant things, but will |
| definitely yield an integral constant expression. Save and |
| restore these values around our local parsing. */ |
| save_ice_p = parser->integral_constant_expression_p; |
| save_non_ice_p = parser->non_integral_constant_expression_p; |
| |
| /* Consume the "__builtin_offsetof" token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Consume the opening `('. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| /* Parse the type-id. */ |
| type = cp_parser_type_id (parser); |
| /* Look for the `,'. */ |
| cp_parser_require (parser, CPP_COMMA, RT_COMMA); |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| /* Build the (type *)null that begins the traditional offsetof macro. */ |
| expr = build_static_cast (build_pointer_type (type), null_pointer_node, |
| tf_warning_or_error); |
| |
| /* Parse the offsetof-member-designator. We begin as if we saw "expr->". */ |
| expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DEREF, expr, |
| true, &dummy, token->location); |
| while (true) |
| { |
| token = cp_lexer_peek_token (parser->lexer); |
| switch (token->type) |
| { |
| case CPP_OPEN_SQUARE: |
| /* offsetof-member-designator "[" expression "]" */ |
| expr = cp_parser_postfix_open_square_expression (parser, expr, true); |
| break; |
| |
| case CPP_DEREF: |
| /* offsetof-member-designator "->" identifier */ |
| expr = grok_array_decl (expr, integer_zero_node); |
| /* FALLTHRU */ |
| |
| case CPP_DOT: |
| /* offsetof-member-designator "." identifier */ |
| cp_lexer_consume_token (parser->lexer); |
| expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DOT, |
| expr, true, &dummy, |
| token->location); |
| break; |
| |
| case CPP_CLOSE_PAREN: |
| /* Consume the ")" token. */ |
| cp_lexer_consume_token (parser->lexer); |
| goto success; |
| |
| default: |
| /* Error. We know the following require will fail, but |
| that gives the proper error message. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| cp_parser_skip_to_closing_parenthesis (parser, true, false, true); |
| expr = error_mark_node; |
| goto failure; |
| } |
| } |
| |
| success: |
| /* If we're processing a template, we can't finish the semantics yet. |
| Otherwise we can fold the entire expression now. */ |
| if (processing_template_decl) |
| expr = build1 (OFFSETOF_EXPR, size_type_node, expr); |
| else |
| expr = finish_offsetof (expr); |
| |
| failure: |
| parser->integral_constant_expression_p = save_ice_p; |
| parser->non_integral_constant_expression_p = save_non_ice_p; |
| |
| return expr; |
| } |
| |
| /* Parse a trait expression. |
| |
| Returns a representation of the expression, the underlying type |
| of the type at issue when KEYWORD is RID_UNDERLYING_TYPE. */ |
| |
| static tree |
| cp_parser_trait_expr (cp_parser* parser, enum rid keyword) |
| { |
| cp_trait_kind kind; |
| tree type1, type2 = NULL_TREE; |
| bool binary = false; |
| cp_decl_specifier_seq decl_specs; |
| |
| switch (keyword) |
| { |
| case RID_HAS_NOTHROW_ASSIGN: |
| kind = CPTK_HAS_NOTHROW_ASSIGN; |
| break; |
| case RID_HAS_NOTHROW_CONSTRUCTOR: |
| kind = CPTK_HAS_NOTHROW_CONSTRUCTOR; |
| break; |
| case RID_HAS_NOTHROW_COPY: |
| kind = CPTK_HAS_NOTHROW_COPY; |
| break; |
| case RID_HAS_TRIVIAL_ASSIGN: |
| kind = CPTK_HAS_TRIVIAL_ASSIGN; |
| break; |
| case RID_HAS_TRIVIAL_CONSTRUCTOR: |
| kind = CPTK_HAS_TRIVIAL_CONSTRUCTOR; |
| break; |
| case RID_HAS_TRIVIAL_COPY: |
| kind = CPTK_HAS_TRIVIAL_COPY; |
| break; |
| case RID_HAS_TRIVIAL_DESTRUCTOR: |
| kind = CPTK_HAS_TRIVIAL_DESTRUCTOR; |
| break; |
| case RID_HAS_VIRTUAL_DESTRUCTOR: |
| kind = CPTK_HAS_VIRTUAL_DESTRUCTOR; |
| break; |
| case RID_IS_ABSTRACT: |
| kind = CPTK_IS_ABSTRACT; |
| break; |
| case RID_IS_BASE_OF: |
| kind = CPTK_IS_BASE_OF; |
| binary = true; |
| break; |
| case RID_IS_CLASS: |
| kind = CPTK_IS_CLASS; |
| break; |
| case RID_IS_CONVERTIBLE_TO: |
| kind = CPTK_IS_CONVERTIBLE_TO; |
| binary = true; |
| break; |
| case RID_IS_EMPTY: |
| kind = CPTK_IS_EMPTY; |
| break; |
| case RID_IS_ENUM: |
| kind = CPTK_IS_ENUM; |
| break; |
| case RID_IS_LITERAL_TYPE: |
| kind = CPTK_IS_LITERAL_TYPE; |
| break; |
| case RID_IS_POD: |
| kind = CPTK_IS_POD; |
| break; |
| case RID_IS_POLYMORPHIC: |
| kind = CPTK_IS_POLYMORPHIC; |
| break; |
| case RID_IS_STD_LAYOUT: |
| kind = CPTK_IS_STD_LAYOUT; |
| break; |
| case RID_IS_TRIVIAL: |
| kind = CPTK_IS_TRIVIAL; |
| break; |
| case RID_IS_UNION: |
| kind = CPTK_IS_UNION; |
| break; |
| case RID_UNDERLYING_TYPE: |
| kind = CPTK_UNDERLYING_TYPE; |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| |
| /* Consume the token. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| |
| type1 = cp_parser_type_id (parser); |
| |
| if (type1 == error_mark_node) |
| return error_mark_node; |
| |
| /* Build a trivial decl-specifier-seq. */ |
| clear_decl_specs (&decl_specs); |
| decl_specs.type = type1; |
| |
| /* Call grokdeclarator to figure out what type this is. */ |
| type1 = grokdeclarator (NULL, &decl_specs, TYPENAME, |
| /*initialized=*/0, /*attrlist=*/NULL); |
| |
| if (binary) |
| { |
| cp_parser_require (parser, CPP_COMMA, RT_COMMA); |
| |
| type2 = cp_parser_type_id (parser); |
| |
| if (type2 == error_mark_node) |
| return error_mark_node; |
| |
| /* Build a trivial decl-specifier-seq. */ |
| clear_decl_specs (&decl_specs); |
| decl_specs.type = type2; |
| |
| /* Call grokdeclarator to figure out what type this is. */ |
| type2 = grokdeclarator (NULL, &decl_specs, TYPENAME, |
| /*initialized=*/0, /*attrlist=*/NULL); |
| } |
| |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| |
| /* Complete the trait expression, which may mean either processing |
| the trait expr now or saving it for template instantiation. */ |
| return kind != CPTK_UNDERLYING_TYPE |
| ? finish_trait_expr (kind, type1, type2) |
| : finish_underlying_type (type1); |
| } |
| |
| /* Lambdas that appear in variable initializer or default argument scope |
| get that in their mangling, so we need to record it. We might as well |
| use the count for function and namespace scopes as well. */ |
| static GTY(()) tree lambda_scope; |
| static GTY(()) int lambda_count; |
| typedef struct GTY(()) tree_int |
| { |
| tree t; |
| int i; |
| } tree_int; |
| DEF_VEC_O(tree_int); |
| DEF_VEC_ALLOC_O(tree_int,gc); |
| static GTY(()) VEC(tree_int,gc) *lambda_scope_stack; |
| |
| static void |
| start_lambda_scope (tree decl) |
| { |
| tree_int ti; |
| gcc_assert (decl); |
| /* Once we're inside a function, we ignore other scopes and just push |
| the function again so that popping works properly. */ |
| if (current_function_decl && TREE_CODE (decl) != FUNCTION_DECL) |
| decl = current_function_decl; |
| ti.t = lambda_scope; |
| ti.i = lambda_count; |
| VEC_safe_push (tree_int, gc, lambda_scope_stack, &ti); |
| if (lambda_scope != decl) |
| { |
| /* Don't reset the count if we're still in the same function. */ |
| lambda_scope = decl; |
| lambda_count = 0; |
| } |
| } |
| |
| static void |
| record_lambda_scope (tree lambda) |
| { |
| LAMBDA_EXPR_EXTRA_SCOPE (lambda) = lambda_scope; |
| LAMBDA_EXPR_DISCRIMINATOR (lambda) = lambda_count++; |
| } |
| |
| static void |
| finish_lambda_scope (void) |
| { |
| tree_int *p = VEC_last (tree_int, lambda_scope_stack); |
| if (lambda_scope != p->t) |
| { |
| lambda_scope = p->t; |
| lambda_count = p->i; |
| } |
| VEC_pop (tree_int, lambda_scope_stack); |
| } |
| |
| /* Parse a lambda expression. |
| |
| lambda-expression: |
| lambda-introducer lambda-declarator [opt] compound-statement |
| |
| Returns a representation of the expression. */ |
| |
| static tree |
| cp_parser_lambda_expression (cp_parser* parser) |
| { |
| tree lambda_expr = build_lambda_expr (); |
| tree type; |
| bool ok; |
| |
| LAMBDA_EXPR_LOCATION (lambda_expr) |
| = cp_lexer_peek_token (parser->lexer)->location; |
| |
| if (cp_unevaluated_operand) |
| error_at (LAMBDA_EXPR_LOCATION (lambda_expr), |
| "lambda-expression in unevaluated context"); |
| |
| /* We may be in the middle of deferred access check. Disable |
| it now. */ |
| push_deferring_access_checks (dk_no_deferred); |
| |
| cp_parser_lambda_introducer (parser, lambda_expr); |
| |
| type = begin_lambda_type (lambda_expr); |
| |
| record_lambda_scope (lambda_expr); |
| |
| /* Do this again now that LAMBDA_EXPR_EXTRA_SCOPE is set. */ |
| determine_visibility (TYPE_NAME (type)); |
| |
| /* Now that we've started the type, add the capture fields for any |
| explicit captures. */ |
| register_capture_members (LAMBDA_EXPR_CAPTURE_LIST (lambda_expr)); |
| |
| { |
| /* Inside the class, surrounding template-parameter-lists do not apply. */ |
| unsigned int saved_num_template_parameter_lists |
| = parser->num_template_parameter_lists; |
| |
| parser->num_template_parameter_lists = 0; |
| |
| /* By virtue of defining a local class, a lambda expression has access to |
| the private variables of enclosing classes. */ |
| |
| ok = cp_parser_lambda_declarator_opt (parser, lambda_expr); |
| |
| if (ok) |
| cp_parser_lambda_body (parser, lambda_expr); |
| else if (cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE)) |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| |
| /* The capture list was built up in reverse order; fix that now. */ |
| { |
| tree newlist = NULL_TREE; |
| tree elt, next; |
| |
| for (elt = LAMBDA_EXPR_CAPTURE_LIST (lambda_expr); |
| elt; elt = next) |
| { |
| next = TREE_CHAIN (elt); |
| TREE_CHAIN (elt) = newlist; |
| newlist = elt; |
| } |
| LAMBDA_EXPR_CAPTURE_LIST (lambda_expr) = newlist; |
| } |
| |
| if (ok) |
| maybe_add_lambda_conv_op (type); |
| |
| type = finish_struct (type, /*attributes=*/NULL_TREE); |
| |
| parser->num_template_parameter_lists = saved_num_template_parameter_lists; |
| } |
| |
| pop_deferring_access_checks (); |
| |
| /* This field is only used during parsing of the lambda. */ |
| LAMBDA_EXPR_THIS_CAPTURE (lambda_expr) = NULL_TREE; |
| |
| /* This lambda shouldn't have any proxies left at this point. */ |
| gcc_assert (LAMBDA_EXPR_PENDING_PROXIES (lambda_expr) == NULL); |
| /* And now that we're done, push proxies for an enclosing lambda. */ |
| insert_pending_capture_proxies (); |
| |
| if (ok) |
| return build_lambda_object (lambda_expr); |
| else |
| return error_mark_node; |
| } |
| |
| /* Parse the beginning of a lambda expression. |
| |
| lambda-introducer: |
| [ lambda-capture [opt] ] |
| |
| LAMBDA_EXPR is the current representation of the lambda expression. */ |
| |
| static void |
| cp_parser_lambda_introducer (cp_parser* parser, tree lambda_expr) |
| { |
| /* Need commas after the first capture. */ |
| bool first = true; |
| |
| /* Eat the leading `['. */ |
| cp_parser_require (parser, CPP_OPEN_SQUARE, RT_OPEN_SQUARE); |
| |
| /* Record default capture mode. "[&" "[=" "[&," "[=," */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_AND) |
| && cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_NAME) |
| LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) = CPLD_REFERENCE; |
| else if (cp_lexer_next_token_is (parser->lexer, CPP_EQ)) |
| LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) = CPLD_COPY; |
| |
| if (LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) != CPLD_NONE) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| first = false; |
| } |
| |
| while (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_SQUARE)) |
| { |
| cp_token* capture_token; |
| tree capture_id; |
| tree capture_init_expr; |
| cp_id_kind idk = CP_ID_KIND_NONE; |
| bool explicit_init_p = false; |
| |
| enum capture_kind_type |
| { |
| BY_COPY, |
| BY_REFERENCE |
| }; |
| enum capture_kind_type capture_kind = BY_COPY; |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_EOF)) |
| { |
| error ("expected end of capture-list"); |
| return; |
| } |
| |
| if (first) |
| first = false; |
| else |
| cp_parser_require (parser, CPP_COMMA, RT_COMMA); |
| |
| /* Possibly capture `this'. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THIS)) |
| { |
| location_t loc = cp_lexer_peek_token (parser->lexer)->location; |
| if (LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) == CPLD_COPY) |
| pedwarn (loc, 0, "explicit by-copy capture of %<this%> redundant " |
| "with by-copy capture default"); |
| cp_lexer_consume_token (parser->lexer); |
| add_capture (lambda_expr, |
| /*id=*/this_identifier, |
| /*initializer=*/finish_this_expr(), |
| /*by_reference_p=*/false, |
| explicit_init_p); |
| continue; |
| } |
| |
| /* Remember whether we want to capture as a reference or not. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_AND)) |
| { |
| capture_kind = BY_REFERENCE; |
| cp_lexer_consume_token (parser->lexer); |
| } |
| |
| /* Get the identifier. */ |
| capture_token = cp_lexer_peek_token (parser->lexer); |
| capture_id = cp_parser_identifier (parser); |
| |
| if (capture_id == error_mark_node) |
| /* Would be nice to have a cp_parser_skip_to_closing_x for general |
| delimiters, but I modified this to stop on unnested ']' as well. It |
| was already changed to stop on unnested '}', so the |
| "closing_parenthesis" name is no more misleading with my change. */ |
| { |
| cp_parser_skip_to_closing_parenthesis (parser, |
| /*recovering=*/true, |
| /*or_comma=*/true, |
| /*consume_paren=*/true); |
| break; |
| } |
| |
| /* Find the initializer for this capture. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_EQ)) |
| { |
| /* An explicit expression exists. */ |
| cp_lexer_consume_token (parser->lexer); |
| pedwarn (input_location, OPT_pedantic, |
| "ISO C++ does not allow initializers " |
| "in lambda expression capture lists"); |
| capture_init_expr = cp_parser_assignment_expression (parser, |
| /*cast_p=*/true, |
| &idk); |
| explicit_init_p = true; |
| } |
| else |
| { |
| const char* error_msg; |
| |
| /* Turn the identifier into an id-expression. */ |
| capture_init_expr |
| = cp_parser_lookup_name |
| (parser, |
| capture_id, |
| none_type, |
| /*is_template=*/false, |
| /*is_namespace=*/false, |
| /*check_dependency=*/true, |
| /*ambiguous_decls=*/NULL, |
| capture_token->location); |
| |
| capture_init_expr |
| = finish_id_expression |
| (capture_id, |
| capture_init_expr, |
| parser->scope, |
| &idk, |
| /*integral_constant_expression_p=*/false, |
| /*allow_non_integral_constant_expression_p=*/false, |
| /*non_integral_constant_expression_p=*/NULL, |
| /*template_p=*/false, |
| /*done=*/true, |
| /*address_p=*/false, |
| /*template_arg_p=*/false, |
| &error_msg, |
| capture_token->location); |
| } |
| |
| if (TREE_CODE (capture_init_expr) == IDENTIFIER_NODE) |
| capture_init_expr |
| = unqualified_name_lookup_error (capture_init_expr); |
| |
| if (LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) != CPLD_NONE |
| && !explicit_init_p) |
| { |
| if (LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) == CPLD_COPY |
| && capture_kind == BY_COPY) |
| pedwarn (capture_token->location, 0, "explicit by-copy capture " |
| "of %qD redundant with by-copy capture default", |
| capture_id); |
| if (LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) == CPLD_REFERENCE |
| && capture_kind == BY_REFERENCE) |
| pedwarn (capture_token->location, 0, "explicit by-reference " |
| "capture of %qD redundant with by-reference capture " |
| "default", capture_id); |
| } |
| |
| add_capture (lambda_expr, |
| capture_id, |
| capture_init_expr, |
| /*by_reference_p=*/capture_kind == BY_REFERENCE, |
| explicit_init_p); |
| } |
| |
| cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE); |
| } |
| |
| /* Parse the (optional) middle of a lambda expression. |
| |
| lambda-declarator: |
| ( parameter-declaration-clause [opt] ) |
| attribute-specifier [opt] |
| mutable [opt] |
| exception-specification [opt] |
| lambda-return-type-clause [opt] |
| |
| LAMBDA_EXPR is the current representation of the lambda expression. */ |
| |
| static bool |
| cp_parser_lambda_declarator_opt (cp_parser* parser, tree lambda_expr) |
| { |
| /* 5.1.1.4 of the standard says: |
| If a lambda-expression does not include a lambda-declarator, it is as if |
| the lambda-declarator were (). |
| This means an empty parameter list, no attributes, and no exception |
| specification. */ |
| tree param_list = void_list_node; |
| tree attributes = NULL_TREE; |
| tree exception_spec = NULL_TREE; |
| tree t; |
| |
| /* The lambda-declarator is optional, but must begin with an opening |
| parenthesis if present. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| |
| begin_scope (sk_function_parms, /*entity=*/NULL_TREE); |
| |
| /* Parse parameters. */ |
| param_list = cp_parser_parameter_declaration_clause (parser); |
| |
| /* Default arguments shall not be specified in the |
| parameter-declaration-clause of a lambda-declarator. */ |
| for (t = param_list; t; t = TREE_CHAIN (t)) |
| if (TREE_PURPOSE (t)) |
| pedwarn (DECL_SOURCE_LOCATION (TREE_VALUE (t)), OPT_pedantic, |
| "default argument specified for lambda parameter"); |
| |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| |
| attributes = cp_parser_attributes_opt (parser); |
| |
| /* Parse optional `mutable' keyword. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_MUTABLE)) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| LAMBDA_EXPR_MUTABLE_P (lambda_expr) = 1; |
| } |
| |
| /* Parse optional exception specification. */ |
| exception_spec = cp_parser_exception_specification_opt (parser); |
| |
| /* Parse optional trailing return type. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_DEREF)) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| LAMBDA_EXPR_RETURN_TYPE (lambda_expr) = cp_parser_type_id (parser); |
| } |
| |
| /* The function parameters must be in scope all the way until after the |
| trailing-return-type in case of decltype. */ |
| for (t = current_binding_level->names; t; t = DECL_CHAIN (t)) |
| pop_binding (DECL_NAME (t), t); |
| |
| leave_scope (); |
| } |
| |
| /* Create the function call operator. |
| |
| Messing with declarators like this is no uglier than building up the |
| FUNCTION_DECL by hand, and this is less likely to get out of sync with |
| other code. */ |
| { |
| cp_decl_specifier_seq return_type_specs; |
| cp_declarator* declarator; |
| tree fco; |
| int quals; |
| void *p; |
| |
| clear_decl_specs (&return_type_specs); |
| if (LAMBDA_EXPR_RETURN_TYPE (lambda_expr)) |
| return_type_specs.type = LAMBDA_EXPR_RETURN_TYPE (lambda_expr); |
| else |
| /* Maybe we will deduce the return type later, but we can use void |
| as a placeholder return type anyways. */ |
| return_type_specs.type = void_type_node; |
| |
| p = obstack_alloc (&declarator_obstack, 0); |
| |
| declarator = make_id_declarator (NULL_TREE, ansi_opname (CALL_EXPR), |
| sfk_none); |
| |
| quals = (LAMBDA_EXPR_MUTABLE_P (lambda_expr) |
| ? TYPE_UNQUALIFIED : TYPE_QUAL_CONST); |
| declarator = make_call_declarator (declarator, param_list, quals, |
| VIRT_SPEC_UNSPECIFIED, |
| exception_spec, |
| /*late_return_type=*/NULL_TREE); |
| declarator->id_loc = LAMBDA_EXPR_LOCATION (lambda_expr); |
| |
| fco = grokmethod (&return_type_specs, |
| declarator, |
| attributes); |
| if (fco != error_mark_node) |
| { |
| DECL_INITIALIZED_IN_CLASS_P (fco) = 1; |
| DECL_ARTIFICIAL (fco) = 1; |
| /* Give the object parameter a different name. */ |
| DECL_NAME (DECL_ARGUMENTS (fco)) = get_identifier ("__closure"); |
| } |
| |
| finish_member_declaration (fco); |
| |
| obstack_free (&declarator_obstack, p); |
| |
| return (fco != error_mark_node); |
| } |
| } |
| |
| /* Parse the body of a lambda expression, which is simply |
| |
| compound-statement |
| |
| but which requires special handling. |
| LAMBDA_EXPR is the current representation of the lambda expression. */ |
| |
| static void |
| cp_parser_lambda_body (cp_parser* parser, tree lambda_expr) |
| { |
| bool nested = (current_function_decl != NULL_TREE); |
| if (nested) |
| push_function_context (); |
| |
| /* Finish the function call operator |
| - class_specifier |
| + late_parsing_for_member |
| + function_definition_after_declarator |
| + ctor_initializer_opt_and_function_body */ |
| { |
| tree fco = lambda_function (lambda_expr); |
| tree body; |
| bool done = false; |
| tree compound_stmt; |
| tree cap; |
| |
| /* Let the front end know that we are going to be defining this |
| function. */ |
| start_preparsed_function (fco, |
| NULL_TREE, |
| SF_PRE_PARSED | SF_INCLASS_INLINE); |
| |
| start_lambda_scope (fco); |
| body = begin_function_body (); |
| |
| if (!cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE)) |
| goto out; |
| |
| /* Push the proxies for any explicit captures. */ |
| for (cap = LAMBDA_EXPR_CAPTURE_LIST (lambda_expr); cap; |
| cap = TREE_CHAIN (cap)) |
| build_capture_proxy (TREE_PURPOSE (cap)); |
| |
| compound_stmt = begin_compound_stmt (0); |
| |
| /* 5.1.1.4 of the standard says: |
| If a lambda-expression does not include a trailing-return-type, it |
| is as if the trailing-return-type denotes the following type: |
| * if the compound-statement is of the form |
| { return attribute-specifier [opt] expression ; } |
| the type of the returned expression after lvalue-to-rvalue |
| conversion (_conv.lval_ 4.1), array-to-pointer conversion |
| (_conv.array_ 4.2), and function-to-pointer conversion |
| (_conv.func_ 4.3); |
| * otherwise, void. */ |
| |
| /* In a lambda that has neither a lambda-return-type-clause |
| nor a deducible form, errors should be reported for return statements |
| in the body. Since we used void as the placeholder return type, parsing |
| the body as usual will give such desired behavior. */ |
| if (!LAMBDA_EXPR_RETURN_TYPE (lambda_expr) |
| && cp_lexer_peek_nth_token (parser->lexer, 1)->keyword == RID_RETURN |
| && cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SEMICOLON) |
| { |
| tree expr = NULL_TREE; |
| cp_id_kind idk = CP_ID_KIND_NONE; |
| |
| /* Parse tentatively in case there's more after the initial return |
| statement. */ |
| cp_parser_parse_tentatively (parser); |
| |
| cp_parser_require_keyword (parser, RID_RETURN, RT_RETURN); |
| |
| expr = cp_parser_expression (parser, /*cast_p=*/false, &idk); |
| |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE); |
| |
| if (cp_parser_parse_definitely (parser)) |
| { |
| apply_lambda_return_type (lambda_expr, lambda_return_type (expr)); |
| |
| /* Will get error here if type not deduced yet. */ |
| finish_return_stmt (expr); |
| |
| done = true; |
| } |
| } |
| |
| if (!done) |
| { |
| if (!LAMBDA_EXPR_RETURN_TYPE (lambda_expr)) |
| LAMBDA_EXPR_DEDUCE_RETURN_TYPE_P (lambda_expr) = true; |
| while (cp_lexer_next_token_is_keyword (parser->lexer, RID_LABEL)) |
| cp_parser_label_declaration (parser); |
| cp_parser_statement_seq_opt (parser, NULL_TREE); |
| cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE); |
| LAMBDA_EXPR_DEDUCE_RETURN_TYPE_P (lambda_expr) = false; |
| } |
| |
| finish_compound_stmt (compound_stmt); |
| |
| out: |
| finish_function_body (body); |
| finish_lambda_scope (); |
| |
| /* Finish the function and generate code for it if necessary. */ |
| expand_or_defer_fn (finish_function (/*inline*/2)); |
| } |
| |
| if (nested) |
| pop_function_context(); |
| } |
| |
| /* Statements [gram.stmt.stmt] */ |
| |
| /* Parse a statement. |
| |
| statement: |
| labeled-statement |
| expression-statement |
| compound-statement |
| selection-statement |
| iteration-statement |
| jump-statement |
| declaration-statement |
| try-block |
| |
| IN_COMPOUND is true when the statement is nested inside a |
| cp_parser_compound_statement; this matters for certain pragmas. |
| |
| If IF_P is not NULL, *IF_P is set to indicate whether the statement |
| is a (possibly labeled) if statement which is not enclosed in braces |
| and has an else clause. This is used to implement -Wparentheses. */ |
| |
| static void |
| cp_parser_statement (cp_parser* parser, tree in_statement_expr, |
| bool in_compound, bool *if_p) |
| { |
| tree statement; |
| cp_token *token; |
| location_t statement_location; |
| |
| restart: |
| if (if_p != NULL) |
| *if_p = false; |
| /* There is no statement yet. */ |
| statement = NULL_TREE; |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* Remember the location of the first token in the statement. */ |
| statement_location = token->location; |
| /* If this is a keyword, then that will often determine what kind of |
| statement we have. */ |
| if (token->type == CPP_KEYWORD) |
| { |
| enum rid keyword = token->keyword; |
| |
| switch (keyword) |
| { |
| case RID_CASE: |
| case RID_DEFAULT: |
| /* Looks like a labeled-statement with a case label. |
| Parse the label, and then use tail recursion to parse |
| the statement. */ |
| cp_parser_label_for_labeled_statement (parser); |
| goto restart; |
| |
| case RID_IF: |
| case RID_SWITCH: |
| statement = cp_parser_selection_statement (parser, if_p); |
| break; |
| |
| case RID_WHILE: |
| case RID_DO: |
| case RID_FOR: |
| statement = cp_parser_iteration_statement (parser); |
| break; |
| |
| case RID_BREAK: |
| case RID_CONTINUE: |
| case RID_RETURN: |
| case RID_GOTO: |
| statement = cp_parser_jump_statement (parser); |
| break; |
| |
| /* Objective-C++ exception-handling constructs. */ |
| case RID_AT_TRY: |
| case RID_AT_CATCH: |
| case RID_AT_FINALLY: |
| case RID_AT_SYNCHRONIZED: |
| case RID_AT_THROW: |
| statement = cp_parser_objc_statement (parser); |
| break; |
| |
| case RID_TRY: |
| statement = cp_parser_try_block (parser); |
| break; |
| |
| case RID_NAMESPACE: |
| /* This must be a namespace alias definition. */ |
| cp_parser_declaration_statement (parser); |
| return; |
| |
| default: |
| /* It might be a keyword like `int' that can start a |
| declaration-statement. */ |
| break; |
| } |
| } |
| else if (token->type == CPP_NAME) |
| { |
| /* If the next token is a `:', then we are looking at a |
| labeled-statement. */ |
| token = cp_lexer_peek_nth_token (parser->lexer, 2); |
| if (token->type == CPP_COLON) |
| { |
| /* Looks like a labeled-statement with an ordinary label. |
| Parse the label, and then use tail recursion to parse |
| the statement. */ |
| cp_parser_label_for_labeled_statement (parser); |
| goto restart; |
| } |
| } |
| /* Anything that starts with a `{' must be a compound-statement. */ |
| else if (token->type == CPP_OPEN_BRACE) |
| statement = cp_parser_compound_statement (parser, NULL, false, false); |
| /* CPP_PRAGMA is a #pragma inside a function body, which constitutes |
| a statement all its own. */ |
| else if (token->type == CPP_PRAGMA) |
| { |
| /* Only certain OpenMP pragmas are attached to statements, and thus |
| are considered statements themselves. All others are not. In |
| the context of a compound, accept the pragma as a "statement" and |
| return so that we can check for a close brace. Otherwise we |
| require a real statement and must go back and read one. */ |
| if (in_compound) |
| cp_parser_pragma (parser, pragma_compound); |
| else if (!cp_parser_pragma (parser, pragma_stmt)) |
| goto restart; |
| return; |
| } |
| else if (token->type == CPP_EOF) |
| { |
| cp_parser_error (parser, "expected statement"); |
| return; |
| } |
| |
| /* Everything else must be a declaration-statement or an |
| expression-statement. Try for the declaration-statement |
| first, unless we are looking at a `;', in which case we know that |
| we have an expression-statement. */ |
| if (!statement) |
| { |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)) |
| { |
| cp_parser_parse_tentatively (parser); |
| /* Try to parse the declaration-statement. */ |
| cp_parser_declaration_statement (parser); |
| /* If that worked, we're done. */ |
| if (cp_parser_parse_definitely (parser)) |
| return; |
| } |
| /* Look for an expression-statement instead. */ |
| statement = cp_parser_expression_statement (parser, in_statement_expr); |
| } |
| |
| /* Set the line number for the statement. */ |
| if (statement && STATEMENT_CODE_P (TREE_CODE (statement))) |
| SET_EXPR_LOCATION (statement, statement_location); |
| } |
| |
| /* Parse the label for a labeled-statement, i.e. |
| |
| identifier : |
| case constant-expression : |
| default : |
| |
| GNU Extension: |
| case constant-expression ... constant-expression : statement |
| |
| When a label is parsed without errors, the label is added to the |
| parse tree by the finish_* functions, so this function doesn't |
| have to return the label. */ |
| |
| static void |
| cp_parser_label_for_labeled_statement (cp_parser* parser) |
| { |
| cp_token *token; |
| tree label = NULL_TREE; |
| bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p; |
| |
| /* The next token should be an identifier. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| if (token->type != CPP_NAME |
| && token->type != CPP_KEYWORD) |
| { |
| cp_parser_error (parser, "expected labeled-statement"); |
| return; |
| } |
| |
| parser->colon_corrects_to_scope_p = false; |
| switch (token->keyword) |
| { |
| case RID_CASE: |
| { |
| tree expr, expr_hi; |
| cp_token *ellipsis; |
| |
| /* Consume the `case' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the constant-expression. */ |
| expr = cp_parser_constant_expression (parser, |
| /*allow_non_constant_p=*/false, |
| NULL); |
| |
| ellipsis = cp_lexer_peek_token (parser->lexer); |
| if (ellipsis->type == CPP_ELLIPSIS) |
| { |
| /* Consume the `...' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| expr_hi = |
| cp_parser_constant_expression (parser, |
| /*allow_non_constant_p=*/false, |
| NULL); |
| /* We don't need to emit warnings here, as the common code |
| will do this for us. */ |
| } |
| else |
| expr_hi = NULL_TREE; |
| |
| if (parser->in_switch_statement_p) |
| finish_case_label (token->location, expr, expr_hi); |
| else |
| error_at (token->location, |
| "case label %qE not within a switch statement", |
| expr); |
| } |
| break; |
| |
| case RID_DEFAULT: |
| /* Consume the `default' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| if (parser->in_switch_statement_p) |
| finish_case_label (token->location, NULL_TREE, NULL_TREE); |
| else |
| error_at (token->location, "case label not within a switch statement"); |
| break; |
| |
| default: |
| /* Anything else must be an ordinary label. */ |
| label = finish_label_stmt (cp_parser_identifier (parser)); |
| break; |
| } |
| |
| /* Require the `:' token. */ |
| cp_parser_require (parser, CPP_COLON, RT_COLON); |
| |
| /* An ordinary label may optionally be followed by attributes. |
| However, this is only permitted if the attributes are then |
| followed by a semicolon. This is because, for backward |
| compatibility, when parsing |
| lab: __attribute__ ((unused)) int i; |
| we want the attribute to attach to "i", not "lab". */ |
| if (label != NULL_TREE |
| && cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE)) |
| { |
| tree attrs; |
| |
| cp_parser_parse_tentatively (parser); |
| attrs = cp_parser_attributes_opt (parser); |
| if (attrs == NULL_TREE |
| || cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)) |
| cp_parser_abort_tentative_parse (parser); |
| else if (!cp_parser_parse_definitely (parser)) |
| ; |
| else |
| cplus_decl_attributes (&label, attrs, 0); |
| } |
| |
| parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p; |
| } |
| |
| /* Parse an expression-statement. |
| |
| expression-statement: |
| expression [opt] ; |
| |
| Returns the new EXPR_STMT -- or NULL_TREE if the expression |
| statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P |
| indicates whether this expression-statement is part of an |
| expression statement. */ |
| |
| static tree |
| cp_parser_expression_statement (cp_parser* parser, tree in_statement_expr) |
| { |
| tree statement = NULL_TREE; |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| /* If the next token is a ';', then there is no expression |
| statement. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)) |
| statement = cp_parser_expression (parser, /*cast_p=*/false, NULL); |
| |
| /* Give a helpful message for "A<T>::type t;" and the like. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON) |
| && !cp_parser_uncommitted_to_tentative_parse_p (parser)) |
| { |
| if (TREE_CODE (statement) == SCOPE_REF) |
| error_at (token->location, "need %<typename%> before %qE because " |
| "%qT is a dependent scope", |
| statement, TREE_OPERAND (statement, 0)); |
| else if (is_overloaded_fn (statement) |
| && DECL_CONSTRUCTOR_P (get_first_fn (statement))) |
| { |
| /* A::A a; */ |
| tree fn = get_first_fn (statement); |
| error_at (token->location, |
| "%<%T::%D%> names the constructor, not the type", |
| DECL_CONTEXT (fn), DECL_NAME (fn)); |
| } |
| } |
| |
| /* Consume the final `;'. */ |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| |
| if (in_statement_expr |
| && cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE)) |
| /* This is the final expression statement of a statement |
| expression. */ |
| statement = finish_stmt_expr_expr (statement, in_statement_expr); |
| else if (statement) |
| statement = finish_expr_stmt (statement); |
| else |
| finish_stmt (); |
| |
| return statement; |
| } |
| |
| /* Parse a compound-statement. |
| |
| compound-statement: |
| { statement-seq [opt] } |
| |
| GNU extension: |
| |
| compound-statement: |
| { label-declaration-seq [opt] statement-seq [opt] } |
| |
| label-declaration-seq: |
| label-declaration |
| label-declaration-seq label-declaration |
| |
| Returns a tree representing the statement. */ |
| |
| static tree |
| cp_parser_compound_statement (cp_parser *parser, tree in_statement_expr, |
| bool in_try, bool function_body) |
| { |
| tree compound_stmt; |
| |
| /* Consume the `{'. */ |
| if (!cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE)) |
| return error_mark_node; |
| if (DECL_DECLARED_CONSTEXPR_P (current_function_decl) |
| && !function_body) |
| pedwarn (input_location, OPT_pedantic, |
| "compound-statement in constexpr function"); |
| /* Begin the compound-statement. */ |
| compound_stmt = begin_compound_stmt (in_try ? BCS_TRY_BLOCK : 0); |
| /* If the next keyword is `__label__' we have a label declaration. */ |
| while (cp_lexer_next_token_is_keyword (parser->lexer, RID_LABEL)) |
| cp_parser_label_declaration (parser); |
| /* Parse an (optional) statement-seq. */ |
| cp_parser_statement_seq_opt (parser, in_statement_expr); |
| /* Finish the compound-statement. */ |
| finish_compound_stmt (compound_stmt); |
| /* Consume the `}'. */ |
| cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE); |
| |
| return compound_stmt; |
| } |
| |
| /* Parse an (optional) statement-seq. |
| |
| statement-seq: |
| statement |
| statement-seq [opt] statement */ |
| |
| static void |
| cp_parser_statement_seq_opt (cp_parser* parser, tree in_statement_expr) |
| { |
| /* Scan statements until there aren't any more. */ |
| while (true) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| /* If we are looking at a `}', then we have run out of |
| statements; the same is true if we have reached the end |
| of file, or have stumbled upon a stray '@end'. */ |
| if (token->type == CPP_CLOSE_BRACE |
| || token->type == CPP_EOF |
| || token->type == CPP_PRAGMA_EOL |
| || (token->type == CPP_KEYWORD && token->keyword == RID_AT_END)) |
| break; |
| |
| /* If we are in a compound statement and find 'else' then |
| something went wrong. */ |
| else if (token->type == CPP_KEYWORD && token->keyword == RID_ELSE) |
| { |
| if (parser->in_statement & IN_IF_STMT) |
| break; |
| else |
| { |
| token = cp_lexer_consume_token (parser->lexer); |
| error_at (token->location, "%<else%> without a previous %<if%>"); |
| } |
| } |
| |
| /* Parse the statement. */ |
| cp_parser_statement (parser, in_statement_expr, true, NULL); |
| } |
| } |
| |
| /* Parse a selection-statement. |
| |
| selection-statement: |
| if ( condition ) statement |
| if ( condition ) statement else statement |
| switch ( condition ) statement |
| |
| Returns the new IF_STMT or SWITCH_STMT. |
| |
| If IF_P is not NULL, *IF_P is set to indicate whether the statement |
| is a (possibly labeled) if statement which is not enclosed in |
| braces and has an else clause. This is used to implement |
| -Wparentheses. */ |
| |
| static tree |
| cp_parser_selection_statement (cp_parser* parser, bool *if_p) |
| { |
| cp_token *token; |
| enum rid keyword; |
| |
| if (if_p != NULL) |
| *if_p = false; |
| |
| /* Peek at the next token. */ |
| token = cp_parser_require (parser, CPP_KEYWORD, RT_SELECT); |
| |
| /* See what kind of keyword it is. */ |
| keyword = token->keyword; |
| switch (keyword) |
| { |
| case RID_IF: |
| case RID_SWITCH: |
| { |
| tree statement; |
| tree condition; |
| |
| /* Look for the `('. */ |
| if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN)) |
| { |
| cp_parser_skip_to_end_of_statement (parser); |
| return error_mark_node; |
| } |
| |
| /* Begin the selection-statement. */ |
| if (keyword == RID_IF) |
| statement = begin_if_stmt (); |
| else |
| statement = begin_switch_stmt (); |
| |
| /* Parse the condition. */ |
| condition = cp_parser_condition (parser); |
| /* Look for the `)'. */ |
| if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN)) |
| cp_parser_skip_to_closing_parenthesis (parser, true, false, |
| /*consume_paren=*/true); |
| |
| if (keyword == RID_IF) |
| { |
| bool nested_if; |
| unsigned char in_statement; |
| |
| /* Add the condition. */ |
| finish_if_stmt_cond (condition, statement); |
| |
| /* Parse the then-clause. */ |
| in_statement = parser->in_statement; |
| parser->in_statement |= IN_IF_STMT; |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)) |
| { |
| location_t loc = cp_lexer_peek_token (parser->lexer)->location; |
| add_stmt (build_empty_stmt (loc)); |
| cp_lexer_consume_token (parser->lexer); |
| if (!cp_lexer_next_token_is_keyword (parser->lexer, RID_ELSE)) |
| warning_at (loc, OPT_Wempty_body, "suggest braces around " |
| "empty body in an %<if%> statement"); |
| nested_if = false; |
| } |
| else |
| cp_parser_implicitly_scoped_statement (parser, &nested_if); |
| parser->in_statement = in_statement; |
| |
| finish_then_clause (statement); |
| |
| /* If the next token is `else', parse the else-clause. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, |
| RID_ELSE)) |
| { |
| /* Consume the `else' keyword. */ |
| cp_lexer_consume_token (parser->lexer); |
| begin_else_clause (statement); |
| /* Parse the else-clause. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)) |
| { |
| location_t loc; |
| loc = cp_lexer_peek_token (parser->lexer)->location; |
| warning_at (loc, |
| OPT_Wempty_body, "suggest braces around " |
| "empty body in an %<else%> statement"); |
| add_stmt (build_empty_stmt (loc)); |
| cp_lexer_consume_token (parser->lexer); |
| } |
| else |
| cp_parser_implicitly_scoped_statement (parser, NULL); |
| |
| finish_else_clause (statement); |
| |
| /* If we are currently parsing a then-clause, then |
| IF_P will not be NULL. We set it to true to |
| indicate that this if statement has an else clause. |
| This may trigger the Wparentheses warning below |
| when we get back up to the parent if statement. */ |
| if (if_p != NULL) |
| *if_p = true; |
| } |
| else |
| { |
| /* This if statement does not have an else clause. If |
| NESTED_IF is true, then the then-clause is an if |
| statement which does have an else clause. We warn |
| about the potential ambiguity. */ |
| if (nested_if) |
| warning_at (EXPR_LOCATION (statement), OPT_Wparentheses, |
| "suggest explicit braces to avoid ambiguous" |
| " %<else%>"); |
| } |
| |
| /* Now we're all done with the if-statement. */ |
| finish_if_stmt (statement); |
| } |
| else |
| { |
| bool in_switch_statement_p; |
| unsigned char in_statement; |
| |
| /* Add the condition. */ |
| finish_switch_cond (condition, statement); |
| |
| /* Parse the body of the switch-statement. */ |
| in_switch_statement_p = parser->in_switch_statement_p; |
| in_statement = parser->in_statement; |
| parser->in_switch_statement_p = true; |
| parser->in_statement |= IN_SWITCH_STMT; |
| cp_parser_implicitly_scoped_statement (parser, NULL); |
| parser->in_switch_statement_p = in_switch_statement_p; |
| parser->in_statement = in_statement; |
| |
| /* Now we're all done with the switch-statement. */ |
| finish_switch_stmt (statement); |
| } |
| |
| return statement; |
| } |
| break; |
| |
| default: |
| cp_parser_error (parser, "expected selection-statement"); |
| return error_mark_node; |
| } |
| } |
| |
| /* Parse a condition. |
| |
| condition: |
| expression |
| type-specifier-seq declarator = initializer-clause |
| type-specifier-seq declarator braced-init-list |
| |
| GNU Extension: |
| |
| condition: |
| type-specifier-seq declarator asm-specification [opt] |
| attributes [opt] = assignment-expression |
| |
| Returns the expression that should be tested. */ |
| |
| static tree |
| cp_parser_condition (cp_parser* parser) |
| { |
| cp_decl_specifier_seq type_specifiers; |
| const char *saved_message; |
| int declares_class_or_enum; |
| |
| /* Try the declaration first. */ |
| cp_parser_parse_tentatively (parser); |
| /* New types are not allowed in the type-specifier-seq for a |
| condition. */ |
| saved_message = parser->type_definition_forbidden_message; |
| parser->type_definition_forbidden_message |
| = G_("types may not be defined in conditions"); |
| /* Parse the type-specifier-seq. */ |
| cp_parser_decl_specifier_seq (parser, |
| CP_PARSER_FLAGS_ONLY_TYPE_OR_CONSTEXPR, |
| &type_specifiers, |
| &declares_class_or_enum); |
| /* Restore the saved message. */ |
| parser->type_definition_forbidden_message = saved_message; |
| /* If all is well, we might be looking at a declaration. */ |
| if (!cp_parser_error_occurred (parser)) |
| { |
| tree decl; |
| tree asm_specification; |
| tree attributes; |
| cp_declarator *declarator; |
| tree initializer = NULL_TREE; |
| |
| /* Parse the declarator. */ |
| declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED, |
| /*ctor_dtor_or_conv_p=*/NULL, |
| /*parenthesized_p=*/NULL, |
| /*member_p=*/false); |
| /* Parse the attributes. */ |
| attributes = cp_parser_attributes_opt (parser); |
| /* Parse the asm-specification. */ |
| asm_specification = cp_parser_asm_specification_opt (parser); |
| /* If the next token is not an `=' or '{', then we might still be |
| looking at an expression. For example: |
| |
| if (A(a).x) |
| |
| looks like a decl-specifier-seq and a declarator -- but then |
| there is no `=', so this is an expression. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ) |
| && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)) |
| cp_parser_simulate_error (parser); |
| |
| /* If we did see an `=' or '{', then we are looking at a declaration |
| for sure. */ |
| if (cp_parser_parse_definitely (parser)) |
| { |
| tree pushed_scope; |
| bool non_constant_p; |
| bool flags = LOOKUP_ONLYCONVERTING; |
| |
| /* Create the declaration. */ |
| decl = start_decl (declarator, &type_specifiers, |
| /*initialized_p=*/true, |
| attributes, /*prefix_attributes=*/NULL_TREE, |
| &pushed_scope); |
| |
| /* Parse the initializer. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| { |
| initializer = cp_parser_braced_list (parser, &non_constant_p); |
| CONSTRUCTOR_IS_DIRECT_INIT (initializer) = 1; |
| flags = 0; |
| } |
| else |
| { |
| /* Consume the `='. */ |
| cp_parser_require (parser, CPP_EQ, RT_EQ); |
| initializer = cp_parser_initializer_clause (parser, &non_constant_p); |
| } |
| if (BRACE_ENCLOSED_INITIALIZER_P (initializer)) |
| maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS); |
| |
| /* Process the initializer. */ |
| cp_finish_decl (decl, |
| initializer, !non_constant_p, |
| asm_specification, |
| flags); |
| |
| if (pushed_scope) |
| pop_scope (pushed_scope); |
| |
| return convert_from_reference (decl); |
| } |
| } |
| /* If we didn't even get past the declarator successfully, we are |
| definitely not looking at a declaration. */ |
| else |
| cp_parser_abort_tentative_parse (parser); |
| |
| /* Otherwise, we are looking at an expression. */ |
| return cp_parser_expression (parser, /*cast_p=*/false, NULL); |
| } |
| |
| /* Parses a for-statement or range-for-statement until the closing ')', |
| not included. */ |
| |
| static tree |
| cp_parser_for (cp_parser *parser) |
| { |
| tree init, scope, decl; |
| bool is_range_for; |
| |
| /* Begin the for-statement. */ |
| scope = begin_for_scope (&init); |
| |
| /* Parse the initialization. */ |
| is_range_for = cp_parser_for_init_statement (parser, &decl); |
| |
| if (is_range_for) |
| return cp_parser_range_for (parser, scope, init, decl); |
| else |
| return cp_parser_c_for (parser, scope, init); |
| } |
| |
| static tree |
| cp_parser_c_for (cp_parser *parser, tree scope, tree init) |
| { |
| /* Normal for loop */ |
| tree condition = NULL_TREE; |
| tree expression = NULL_TREE; |
| tree stmt; |
| |
| stmt = begin_for_stmt (scope, init); |
| /* The for-init-statement has already been parsed in |
| cp_parser_for_init_statement, so no work is needed here. */ |
| finish_for_init_stmt (stmt); |
| |
| /* If there's a condition, process it. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)) |
| condition = cp_parser_condition (parser); |
| finish_for_cond (condition, stmt); |
| /* Look for the `;'. */ |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| |
| /* If there's an expression, process it. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)) |
| expression = cp_parser_expression (parser, /*cast_p=*/false, NULL); |
| finish_for_expr (expression, stmt); |
| |
| return stmt; |
| } |
| |
| /* Tries to parse a range-based for-statement: |
| |
| range-based-for: |
| decl-specifier-seq declarator : expression |
| |
| The decl-specifier-seq declarator and the `:' are already parsed by |
| cp_parser_for_init_statement. If processing_template_decl it returns a |
| newly created RANGE_FOR_STMT; if not, it is converted to a |
| regular FOR_STMT. */ |
| |
| static tree |
| cp_parser_range_for (cp_parser *parser, tree scope, tree init, tree range_decl) |
| { |
| tree stmt, range_expr; |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| { |
| bool expr_non_constant_p; |
| range_expr = cp_parser_braced_list (parser, &expr_non_constant_p); |
| } |
| else |
| range_expr = cp_parser_expression (parser, /*cast_p=*/false, NULL); |
| |
| /* If in template, STMT is converted to a normal for-statement |
| at instantiation. If not, it is done just ahead. */ |
| if (processing_template_decl) |
| { |
| stmt = begin_range_for_stmt (scope, init); |
| finish_range_for_decl (stmt, range_decl, range_expr); |
| } |
| else |
| { |
| stmt = begin_for_stmt (scope, init); |
| stmt = cp_convert_range_for (stmt, range_decl, range_expr); |
| } |
| return stmt; |
| } |
| |
| /* Converts a range-based for-statement into a normal |
| for-statement, as per the definition. |
| |
| for (RANGE_DECL : RANGE_EXPR) |
| BLOCK |
| |
| should be equivalent to: |
| |
| { |
| auto &&__range = RANGE_EXPR; |
| for (auto __begin = BEGIN_EXPR, end = END_EXPR; |
| __begin != __end; |
| ++__begin) |
| { |
| RANGE_DECL = *__begin; |
| BLOCK |
| } |
| } |
| |
| If RANGE_EXPR is an array: |
| BEGIN_EXPR = __range |
| END_EXPR = __range + ARRAY_SIZE(__range) |
| Else if RANGE_EXPR has a member 'begin' or 'end': |
| BEGIN_EXPR = __range.begin() |
| END_EXPR = __range.end() |
| Else: |
| BEGIN_EXPR = begin(__range) |
| END_EXPR = end(__range); |
| |
| If __range has a member 'begin' but not 'end', or vice versa, we must |
| still use the second alternative (it will surely fail, however). |
| When calling begin()/end() in the third alternative we must use |
| argument dependent lookup, but always considering 'std' as an associated |
| namespace. */ |
| |
| tree |
| cp_convert_range_for (tree statement, tree range_decl, tree range_expr) |
| { |
| tree range_type, range_temp; |
| tree begin, end; |
| tree iter_type, begin_expr, end_expr; |
| tree condition, expression; |
| |
| if (range_decl == error_mark_node || range_expr == error_mark_node) |
| /* If an error happened previously do nothing or else a lot of |
| unhelpful errors would be issued. */ |
| begin_expr = end_expr = iter_type = error_mark_node; |
| else |
| { |
| /* Find out the type deduced by the declaration |
| `auto &&__range = range_expr'. */ |
| range_type = cp_build_reference_type (make_auto (), true); |
| range_type = do_auto_deduction (range_type, range_expr, |
| type_uses_auto (range_type)); |
| |
| /* Create the __range variable. */ |
| range_temp = build_decl (input_location, VAR_DECL, |
| get_identifier ("__for_range"), range_type); |
| TREE_USED (range_temp) = 1; |
| DECL_ARTIFICIAL (range_temp) = 1; |
| pushdecl (range_temp); |
| cp_finish_decl (range_temp, range_expr, |
| /*is_constant_init*/false, NULL_TREE, |
| LOOKUP_ONLYCONVERTING); |
| |
| range_temp = convert_from_reference (range_temp); |
| iter_type = cp_parser_perform_range_for_lookup (range_temp, |
| &begin_expr, &end_expr); |
| } |
| |
| /* The new for initialization statement. */ |
| begin = build_decl (input_location, VAR_DECL, |
| get_identifier ("__for_begin"), iter_type); |
| TREE_USED (begin) = 1; |
| DECL_ARTIFICIAL (begin) = 1; |
| pushdecl (begin); |
| cp_finish_decl (begin, begin_expr, |
| /*is_constant_init*/false, NULL_TREE, |
| LOOKUP_ONLYCONVERTING); |
| |
| end = build_decl (input_location, VAR_DECL, |
| get_identifier ("__for_end"), iter_type); |
| TREE_USED (end) = 1; |
| DECL_ARTIFICIAL (end) = 1; |
| pushdecl (end); |
| cp_finish_decl (end, end_expr, |
| /*is_constant_init*/false, NULL_TREE, |
| LOOKUP_ONLYCONVERTING); |
| |
| finish_for_init_stmt (statement); |
| |
| /* The new for condition. */ |
| condition = build_x_binary_op (NE_EXPR, |
| begin, ERROR_MARK, |
| end, ERROR_MARK, |
| NULL, tf_warning_or_error); |
| finish_for_cond (condition, statement); |
| |
| /* The new increment expression. */ |
| expression = finish_unary_op_expr (PREINCREMENT_EXPR, begin); |
| finish_for_expr (expression, statement); |
| |
| /* The declaration is initialized with *__begin inside the loop body. */ |
| cp_finish_decl (range_decl, |
| build_x_indirect_ref (begin, RO_NULL, tf_warning_or_error), |
| /*is_constant_init*/false, NULL_TREE, |
| LOOKUP_ONLYCONVERTING); |
| |
| return statement; |
| } |
| |
| /* Solves BEGIN_EXPR and END_EXPR as described in cp_convert_range_for. |
| We need to solve both at the same time because the method used |
| depends on the existence of members begin or end. |
| Returns the type deduced for the iterator expression. */ |
| |
| static tree |
| cp_parser_perform_range_for_lookup (tree range, tree *begin, tree *end) |
| { |
| if (!COMPLETE_TYPE_P (complete_type (TREE_TYPE (range)))) |
| { |
| error ("range-based %<for%> expression of type %qT " |
| "has incomplete type", TREE_TYPE (range)); |
| *begin = *end = error_mark_node; |
| return error_mark_node; |
| } |
| if (TREE_CODE (TREE_TYPE (range)) == ARRAY_TYPE) |
| { |
| /* If RANGE is an array, we will use pointer arithmetic. */ |
| *begin = range; |
| *end = build_binary_op (input_location, PLUS_EXPR, |
| range, |
| array_type_nelts_top (TREE_TYPE (range)), |
| 0); |
| return build_pointer_type (TREE_TYPE (TREE_TYPE (range))); |
| } |
| else |
| { |
| /* If it is not an array, we must do a bit of magic. */ |
| tree id_begin, id_end; |
| tree member_begin, member_end; |
| |
| *begin = *end = error_mark_node; |
| |
| id_begin = get_identifier ("begin"); |
| id_end = get_identifier ("end"); |
| member_begin = lookup_member (TREE_TYPE (range), id_begin, |
| /*protect=*/2, /*want_type=*/false); |
| member_end = lookup_member (TREE_TYPE (range), id_end, |
| /*protect=*/2, /*want_type=*/false); |
| |
| if (member_begin != NULL_TREE || member_end != NULL_TREE) |
| { |
| /* Use the member functions. */ |
| if (member_begin != NULL_TREE) |
| *begin = cp_parser_range_for_member_function (range, id_begin); |
| else |
| error ("range-based %<for%> expression of type %qT has an " |
| "%<end%> member but not a %<begin%>", TREE_TYPE (range)); |
| |
| if (member_end != NULL_TREE) |
| *end = cp_parser_range_for_member_function (range, id_end); |
| else |
| error ("range-based %<for%> expression of type %qT has a " |
| "%<begin%> member but not an %<end%>", TREE_TYPE (range)); |
| } |
| else |
| { |
| /* Use global functions with ADL. */ |
| VEC(tree,gc) *vec; |
| vec = make_tree_vector (); |
| |
| VEC_safe_push (tree, gc, vec, range); |
| |
| member_begin = perform_koenig_lookup (id_begin, vec, |
| /*include_std=*/true, |
| tf_warning_or_error); |
| *begin = finish_call_expr (member_begin, &vec, false, true, |
| tf_warning_or_error); |
| member_end = perform_koenig_lookup (id_end, vec, |
| /*include_std=*/true, |
| tf_warning_or_error); |
| *end = finish_call_expr (member_end, &vec, false, true, |
| tf_warning_or_error); |
| |
| release_tree_vector (vec); |
| } |
| |
| /* Last common checks. */ |
| if (*begin == error_mark_node || *end == error_mark_node) |
| { |
| /* If one of the expressions is an error do no more checks. */ |
| *begin = *end = error_mark_node; |
| return error_mark_node; |
| } |
| else |
| { |
| tree iter_type = cv_unqualified (TREE_TYPE (*begin)); |
| /* The unqualified type of the __begin and __end temporaries should |
| be the same, as required by the multiple auto declaration. */ |
| if (!same_type_p (iter_type, cv_unqualified (TREE_TYPE (*end)))) |
| error ("inconsistent begin/end types in range-based %<for%> " |
| "statement: %qT and %qT", |
| TREE_TYPE (*begin), TREE_TYPE (*end)); |
| return iter_type; |
| } |
| } |
| } |
| |
| /* Helper function for cp_parser_perform_range_for_lookup. |
| Builds a tree for RANGE.IDENTIFIER(). */ |
| |
| static tree |
| cp_parser_range_for_member_function (tree range, tree identifier) |
| { |
| tree member, res; |
| VEC(tree,gc) *vec; |
| |
| member = finish_class_member_access_expr (range, identifier, |
| false, tf_warning_or_error); |
| if (member == error_mark_node) |
| return error_mark_node; |
| |
| vec = make_tree_vector (); |
| res = finish_call_expr (member, &vec, |
| /*disallow_virtual=*/false, |
| /*koenig_p=*/false, |
| tf_warning_or_error); |
| release_tree_vector (vec); |
| return res; |
| } |
| |
| /* Parse an iteration-statement. |
| |
| iteration-statement: |
| while ( condition ) statement |
| do statement while ( expression ) ; |
| for ( for-init-statement condition [opt] ; expression [opt] ) |
| statement |
| |
| Returns the new WHILE_STMT, DO_STMT, FOR_STMT or RANGE_FOR_STMT. */ |
| |
| static tree |
| cp_parser_iteration_statement (cp_parser* parser) |
| { |
| cp_token *token; |
| enum rid keyword; |
| tree statement; |
| unsigned char in_statement; |
| |
| /* Peek at the next token. */ |
| token = cp_parser_require (parser, CPP_KEYWORD, RT_INTERATION); |
| if (!token) |
| return error_mark_node; |
| |
| /* Remember whether or not we are already within an iteration |
| statement. */ |
| in_statement = parser->in_statement; |
| |
| /* See what kind of keyword it is. */ |
| keyword = token->keyword; |
| switch (keyword) |
| { |
| case RID_WHILE: |
| { |
| tree condition; |
| |
| /* Begin the while-statement. */ |
| statement = begin_while_stmt (); |
| /* Look for the `('. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| /* Parse the condition. */ |
| condition = cp_parser_condition (parser); |
| finish_while_stmt_cond (condition, statement); |
| /* Look for the `)'. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| /* Parse the dependent statement. */ |
| parser->in_statement = IN_ITERATION_STMT; |
| cp_parser_already_scoped_statement (parser); |
| parser->in_statement = in_statement; |
| /* We're done with the while-statement. */ |
| finish_while_stmt (statement); |
| } |
| break; |
| |
| case RID_DO: |
| { |
| tree expression; |
| |
| /* Begin the do-statement. */ |
| statement = begin_do_stmt (); |
| /* Parse the body of the do-statement. */ |
| parser->in_statement = IN_ITERATION_STMT; |
| cp_parser_implicitly_scoped_statement (parser, NULL); |
| parser->in_statement = in_statement; |
| finish_do_body (statement); |
| /* Look for the `while' keyword. */ |
| cp_parser_require_keyword (parser, RID_WHILE, RT_WHILE); |
| /* Look for the `('. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| /* Parse the expression. */ |
| expression = cp_parser_expression (parser, /*cast_p=*/false, NULL); |
| /* We're done with the do-statement. */ |
| finish_do_stmt (expression, statement); |
| /* Look for the `)'. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| /* Look for the `;'. */ |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| } |
| break; |
| |
| case RID_FOR: |
| { |
| /* Look for the `('. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| |
| statement = cp_parser_for (parser); |
| |
| /* Look for the `)'. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| |
| /* Parse the body of the for-statement. */ |
| parser->in_statement = IN_ITERATION_STMT; |
| cp_parser_already_scoped_statement (parser); |
| parser->in_statement = in_statement; |
| |
| /* We're done with the for-statement. */ |
| finish_for_stmt (statement); |
| } |
| break; |
| |
| default: |
| cp_parser_error (parser, "expected iteration-statement"); |
| statement = error_mark_node; |
| break; |
| } |
| |
| return statement; |
| } |
| |
| /* Parse a for-init-statement or the declarator of a range-based-for. |
| Returns true if a range-based-for declaration is seen. |
| |
| for-init-statement: |
| expression-statement |
| simple-declaration */ |
| |
| static bool |
| cp_parser_for_init_statement (cp_parser* parser, tree *decl) |
| { |
| /* If the next token is a `;', then we have an empty |
| expression-statement. Grammatically, this is also a |
| simple-declaration, but an invalid one, because it does not |
| declare anything. Therefore, if we did not handle this case |
| specially, we would issue an error message about an invalid |
| declaration. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)) |
| { |
| bool is_range_for = false; |
| bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p; |
| |
| parser->colon_corrects_to_scope_p = false; |
| |
| /* We're going to speculatively look for a declaration, falling back |
| to an expression, if necessary. */ |
| cp_parser_parse_tentatively (parser); |
| /* Parse the declaration. */ |
| cp_parser_simple_declaration (parser, |
| /*function_definition_allowed_p=*/false, |
| decl); |
| parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p; |
| if (cp_lexer_next_token_is (parser->lexer, CPP_COLON)) |
| { |
| /* It is a range-for, consume the ':' */ |
| cp_lexer_consume_token (parser->lexer); |
| is_range_for = true; |
| if (cxx_dialect < cxx0x) |
| { |
| error_at (cp_lexer_peek_token (parser->lexer)->location, |
| "range-based %<for%> loops are not allowed " |
| "in C++98 mode"); |
| *decl = error_mark_node; |
| } |
| } |
| else |
| /* The ';' is not consumed yet because we told |
| cp_parser_simple_declaration not to. */ |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| |
| if (cp_parser_parse_definitely (parser)) |
| return is_range_for; |
| /* If the tentative parse failed, then we shall need to look for an |
| expression-statement. */ |
| } |
| /* If we are here, it is an expression-statement. */ |
| cp_parser_expression_statement (parser, NULL_TREE); |
| return false; |
| } |
| |
| /* Parse a jump-statement. |
| |
| jump-statement: |
| break ; |
| continue ; |
| return expression [opt] ; |
| return braced-init-list ; |
| goto identifier ; |
| |
| GNU extension: |
| |
| jump-statement: |
| goto * expression ; |
| |
| Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_EXPR, or GOTO_EXPR. */ |
| |
| static tree |
| cp_parser_jump_statement (cp_parser* parser) |
| { |
| tree statement = error_mark_node; |
| cp_token *token; |
| enum rid keyword; |
| unsigned char in_statement; |
| |
| /* Peek at the next token. */ |
| token = cp_parser_require (parser, CPP_KEYWORD, RT_JUMP); |
| if (!token) |
| return error_mark_node; |
| |
| /* See what kind of keyword it is. */ |
| keyword = token->keyword; |
| switch (keyword) |
| { |
| case RID_BREAK: |
| in_statement = parser->in_statement & ~IN_IF_STMT; |
| switch (in_statement) |
| { |
| case 0: |
| error_at (token->location, "break statement not within loop or switch"); |
| break; |
| default: |
| gcc_assert ((in_statement & IN_SWITCH_STMT) |
| || in_statement == IN_ITERATION_STMT); |
| statement = finish_break_stmt (); |
| break; |
| case IN_OMP_BLOCK: |
| error_at (token->location, "invalid exit from OpenMP structured block"); |
| break; |
| case IN_OMP_FOR: |
| error_at (token->location, "break statement used with OpenMP for loop"); |
| break; |
| } |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| break; |
| |
| case RID_CONTINUE: |
| switch (parser->in_statement & ~(IN_SWITCH_STMT | IN_IF_STMT)) |
| { |
| case 0: |
| error_at (token->location, "continue statement not within a loop"); |
| break; |
| case IN_ITERATION_STMT: |
| case IN_OMP_FOR: |
| statement = finish_continue_stmt (); |
| break; |
| case IN_OMP_BLOCK: |
| error_at (token->location, "invalid exit from OpenMP structured block"); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| break; |
| |
| case RID_RETURN: |
| { |
| tree expr; |
| bool expr_non_constant_p; |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| { |
| maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS); |
| expr = cp_parser_braced_list (parser, &expr_non_constant_p); |
| } |
| else if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)) |
| expr = cp_parser_expression (parser, /*cast_p=*/false, NULL); |
| else |
| /* If the next token is a `;', then there is no |
| expression. */ |
| expr = NULL_TREE; |
| /* Build the return-statement. */ |
| statement = finish_return_stmt (expr); |
| /* Look for the final `;'. */ |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| } |
| break; |
| |
| case RID_GOTO: |
| /* Create the goto-statement. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_MULT)) |
| { |
| /* Issue a warning about this use of a GNU extension. */ |
| pedwarn (token->location, OPT_pedantic, "ISO C++ forbids computed gotos"); |
| /* Consume the '*' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the dependent expression. */ |
| finish_goto_stmt (cp_parser_expression (parser, /*cast_p=*/false, NULL)); |
| } |
| else |
| finish_goto_stmt (cp_parser_identifier (parser)); |
| /* Look for the final `;'. */ |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| break; |
| |
| default: |
| cp_parser_error (parser, "expected jump-statement"); |
| break; |
| } |
| |
| return statement; |
| } |
| |
| /* Parse a declaration-statement. |
| |
| declaration-statement: |
| block-declaration */ |
| |
| static void |
| cp_parser_declaration_statement (cp_parser* parser) |
| { |
| void *p; |
| |
| /* Get the high-water mark for the DECLARATOR_OBSTACK. */ |
| p = obstack_alloc (&declarator_obstack, 0); |
| |
| /* Parse the block-declaration. */ |
| cp_parser_block_declaration (parser, /*statement_p=*/true); |
| |
| /* Free any declarators allocated. */ |
| obstack_free (&declarator_obstack, p); |
| |
| /* Finish off the statement. */ |
| finish_stmt (); |
| } |
| |
| /* Some dependent statements (like `if (cond) statement'), are |
| implicitly in their own scope. In other words, if the statement is |
| a single statement (as opposed to a compound-statement), it is |
| none-the-less treated as if it were enclosed in braces. Any |
| declarations appearing in the dependent statement are out of scope |
| after control passes that point. This function parses a statement, |
| but ensures that is in its own scope, even if it is not a |
| compound-statement. |
| |
| If IF_P is not NULL, *IF_P is set to indicate whether the statement |
| is a (possibly labeled) if statement which is not enclosed in |
| braces and has an else clause. This is used to implement |
| -Wparentheses. |
| |
| Returns the new statement. */ |
| |
| static tree |
| cp_parser_implicitly_scoped_statement (cp_parser* parser, bool *if_p) |
| { |
| tree statement; |
| |
| if (if_p != NULL) |
| *if_p = false; |
| |
| /* Mark if () ; with a special NOP_EXPR. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)) |
| { |
| location_t loc = cp_lexer_peek_token (parser->lexer)->location; |
| cp_lexer_consume_token (parser->lexer); |
| statement = add_stmt (build_empty_stmt (loc)); |
| } |
| /* if a compound is opened, we simply parse the statement directly. */ |
| else if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| statement = cp_parser_compound_statement (parser, NULL, false, false); |
| /* If the token is not a `{', then we must take special action. */ |
| else |
| { |
| /* Create a compound-statement. */ |
| statement = begin_compound_stmt (0); |
| /* Parse the dependent-statement. */ |
| cp_parser_statement (parser, NULL_TREE, false, if_p); |
| /* Finish the dummy compound-statement. */ |
| finish_compound_stmt (statement); |
| } |
| |
| /* Return the statement. */ |
| return statement; |
| } |
| |
| /* For some dependent statements (like `while (cond) statement'), we |
| have already created a scope. Therefore, even if the dependent |
| statement is a compound-statement, we do not want to create another |
| scope. */ |
| |
| static void |
| cp_parser_already_scoped_statement (cp_parser* parser) |
| { |
| /* If the token is a `{', then we must take special action. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)) |
| cp_parser_statement (parser, NULL_TREE, false, NULL); |
| else |
| { |
| /* Avoid calling cp_parser_compound_statement, so that we |
| don't create a new scope. Do everything else by hand. */ |
| cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE); |
| /* If the next keyword is `__label__' we have a label declaration. */ |
| while (cp_lexer_next_token_is_keyword (parser->lexer, RID_LABEL)) |
| cp_parser_label_declaration (parser); |
| /* Parse an (optional) statement-seq. */ |
| cp_parser_statement_seq_opt (parser, NULL_TREE); |
| cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE); |
| } |
| } |
| |
| /* Declarations [gram.dcl.dcl] */ |
| |
| /* Parse an optional declaration-sequence. |
| |
| declaration-seq: |
| declaration |
| declaration-seq declaration */ |
| |
| static void |
| cp_parser_declaration_seq_opt (cp_parser* parser) |
| { |
| while (true) |
| { |
| cp_token *token; |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| if (token->type == CPP_CLOSE_BRACE |
| || token->type == CPP_EOF |
| || token->type == CPP_PRAGMA_EOL) |
| break; |
| |
| if (token->type == CPP_SEMICOLON) |
| { |
| /* A declaration consisting of a single semicolon is |
| invalid. Allow it unless we're being pedantic. */ |
| cp_lexer_consume_token (parser->lexer); |
| if (!in_system_header) |
| pedwarn (input_location, OPT_pedantic, "extra %<;%>"); |
| continue; |
| } |
| |
| /* If we're entering or exiting a region that's implicitly |
| extern "C", modify the lang context appropriately. */ |
| if (!parser->implicit_extern_c && token->implicit_extern_c) |
| { |
| push_lang_context (lang_name_c); |
| parser->implicit_extern_c = true; |
| } |
| else if (parser->implicit_extern_c && !token->implicit_extern_c) |
| { |
| pop_lang_context (); |
| parser->implicit_extern_c = false; |
| } |
| |
| if (token->type == CPP_PRAGMA) |
| { |
| /* A top-level declaration can consist solely of a #pragma. |
| A nested declaration cannot, so this is done here and not |
| in cp_parser_declaration. (A #pragma at block scope is |
| handled in cp_parser_statement.) */ |
| cp_parser_pragma (parser, pragma_external); |
| continue; |
| } |
| |
| /* Parse the declaration itself. */ |
| cp_parser_declaration (parser); |
| } |
| } |
| |
| /* Parse a declaration. |
| |
| declaration: |
| block-declaration |
| function-definition |
| template-declaration |
| explicit-instantiation |
| explicit-specialization |
| linkage-specification |
| namespace-definition |
| |
| GNU extension: |
| |
| declaration: |
| __extension__ declaration */ |
| |
| static void |
| cp_parser_declaration (cp_parser* parser) |
| { |
| cp_token token1; |
| cp_token token2; |
| int saved_pedantic; |
| void *p; |
| tree attributes = NULL_TREE; |
| |
| /* Check for the `__extension__' keyword. */ |
| if (cp_parser_extension_opt (parser, &saved_pedantic)) |
| { |
| /* Parse the qualified declaration. */ |
| cp_parser_declaration (parser); |
| /* Restore the PEDANTIC flag. */ |
| pedantic = saved_pedantic; |
| |
| return; |
| } |
| |
| /* Try to figure out what kind of declaration is present. */ |
| token1 = *cp_lexer_peek_token (parser->lexer); |
| |
| if (token1.type != CPP_EOF) |
| token2 = *cp_lexer_peek_nth_token (parser->lexer, 2); |
| else |
| { |
| token2.type = CPP_EOF; |
| token2.keyword = RID_MAX; |
| } |
| |
| /* Get the high-water mark for the DECLARATOR_OBSTACK. */ |
| p = obstack_alloc (&declarator_obstack, 0); |
| |
| /* If the next token is `extern' and the following token is a string |
| literal, then we have a linkage specification. */ |
| if (token1.keyword == RID_EXTERN |
| && cp_parser_is_string_literal (&token2)) |
| cp_parser_linkage_specification (parser); |
| /* If the next token is `template', then we have either a template |
| declaration, an explicit instantiation, or an explicit |
| specialization. */ |
| else if (token1.keyword == RID_TEMPLATE) |
| { |
| /* `template <>' indicates a template specialization. */ |
| if (token2.type == CPP_LESS |
| && cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER) |
| cp_parser_explicit_specialization (parser); |
| /* `template <' indicates a template declaration. */ |
| else if (token2.type == CPP_LESS) |
| cp_parser_template_declaration (parser, /*member_p=*/false); |
| /* Anything else must be an explicit instantiation. */ |
| else |
| cp_parser_explicit_instantiation (parser); |
| } |
| /* If the next token is `export', then we have a template |
| declaration. */ |
| else if (token1.keyword == RID_EXPORT) |
| cp_parser_template_declaration (parser, /*member_p=*/false); |
| /* If the next token is `extern', 'static' or 'inline' and the one |
| after that is `template', we have a GNU extended explicit |
| instantiation directive. */ |
| else if (cp_parser_allow_gnu_extensions_p (parser) |
| && (token1.keyword == RID_EXTERN |
| || token1.keyword == RID_STATIC |
| || token1.keyword == RID_INLINE) |
| && token2.keyword == RID_TEMPLATE) |
| cp_parser_explicit_instantiation (parser); |
| /* If the next token is `namespace', check for a named or unnamed |
| namespace definition. */ |
| else if (token1.keyword == RID_NAMESPACE |
| && (/* A named namespace definition. */ |
| (token2.type == CPP_NAME |
| && (cp_lexer_peek_nth_token (parser->lexer, 3)->type |
| != CPP_EQ)) |
| /* An unnamed namespace definition. */ |
| || token2.type == CPP_OPEN_BRACE |
| || token2.keyword == RID_ATTRIBUTE)) |
| cp_parser_namespace_definition (parser); |
| /* An inline (associated) namespace definition. */ |
| else if (token1.keyword == RID_INLINE |
| && token2.keyword == RID_NAMESPACE) |
| cp_parser_namespace_definition (parser); |
| /* Objective-C++ declaration/definition. */ |
| else if (c_dialect_objc () && OBJC_IS_AT_KEYWORD (token1.keyword)) |
| cp_parser_objc_declaration (parser, NULL_TREE); |
| else if (c_dialect_objc () |
| && token1.keyword == RID_ATTRIBUTE |
| && cp_parser_objc_valid_prefix_attributes (parser, &attributes)) |
| cp_parser_objc_declaration (parser, attributes); |
| /* We must have either a block declaration or a function |
| definition. */ |
| else |
| /* Try to parse a block-declaration, or a function-definition. */ |
| cp_parser_block_declaration (parser, /*statement_p=*/false); |
| |
| /* Free any declarators allocated. */ |
| obstack_free (&declarator_obstack, p); |
| } |
| |
| /* Parse a block-declaration. |
| |
| block-declaration: |
| simple-declaration |
| asm-definition |
| namespace-alias-definition |
| using-declaration |
| using-directive |
| |
| GNU Extension: |
| |
| block-declaration: |
| __extension__ block-declaration |
| |
| C++0x Extension: |
| |
| block-declaration: |
| static_assert-declaration |
| |
| If STATEMENT_P is TRUE, then this block-declaration is occurring as |
| part of a declaration-statement. */ |
| |
| static void |
| cp_parser_block_declaration (cp_parser *parser, |
| bool statement_p) |
| { |
| cp_token *token1; |
| int saved_pedantic; |
| |
| /* Check for the `__extension__' keyword. */ |
| if (cp_parser_extension_opt (parser, &saved_pedantic)) |
| { |
| /* Parse the qualified declaration. */ |
| cp_parser_block_declaration (parser, statement_p); |
| /* Restore the PEDANTIC flag. */ |
| pedantic = saved_pedantic; |
| |
| return; |
| } |
| |
| /* Peek at the next token to figure out which kind of declaration is |
| present. */ |
| token1 = cp_lexer_peek_token (parser->lexer); |
| |
| /* If the next keyword is `asm', we have an asm-definition. */ |
| if (token1->keyword == RID_ASM) |
| { |
| if (statement_p) |
| cp_parser_commit_to_tentative_parse (parser); |
| cp_parser_asm_definition (parser); |
| } |
| /* If the next keyword is `namespace', we have a |
| namespace-alias-definition. */ |
| else if (token1->keyword == RID_NAMESPACE) |
| cp_parser_namespace_alias_definition (parser); |
| /* If the next keyword is `using', we have either a |
| using-declaration or a using-directive. */ |
| else if (token1->keyword == RID_USING) |
| { |
| cp_token *token2; |
| |
| if (statement_p) |
| cp_parser_commit_to_tentative_parse (parser); |
| /* If the token after `using' is `namespace', then we have a |
| using-directive. */ |
| token2 = cp_lexer_peek_nth_token (parser->lexer, 2); |
| if (token2->keyword == RID_NAMESPACE) |
| cp_parser_using_directive (parser); |
| /* Otherwise, it's a using-declaration. */ |
| else |
| cp_parser_using_declaration (parser, |
| /*access_declaration_p=*/false); |
| } |
| /* If the next keyword is `__label__' we have a misplaced label |
| declaration. */ |
| else if (token1->keyword == RID_LABEL) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| error_at (token1->location, "%<__label__%> not at the beginning of a block"); |
| cp_parser_skip_to_end_of_statement (parser); |
| /* If the next token is now a `;', consume it. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)) |
| cp_lexer_consume_token (parser->lexer); |
| } |
| /* If the next token is `static_assert' we have a static assertion. */ |
| else if (token1->keyword == RID_STATIC_ASSERT) |
| cp_parser_static_assert (parser, /*member_p=*/false); |
| /* Anything else must be a simple-declaration. */ |
| else |
| cp_parser_simple_declaration (parser, !statement_p, |
| /*maybe_range_for_decl*/NULL); |
| } |
| |
| /* Parse a simple-declaration. |
| |
| simple-declaration: |
| decl-specifier-seq [opt] init-declarator-list [opt] ; |
| |
| init-declarator-list: |
| init-declarator |
| init-declarator-list , init-declarator |
| |
| If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a |
| function-definition as a simple-declaration. |
| |
| If MAYBE_RANGE_FOR_DECL is not NULL, the pointed tree will be set to the |
| parsed declaration if it is an uninitialized single declarator not followed |
| by a `;', or to error_mark_node otherwise. Either way, the trailing `;', |
| if present, will not be consumed. */ |
| |
| static void |
| cp_parser_simple_declaration (cp_parser* parser, |
| bool function_definition_allowed_p, |
| tree *maybe_range_for_decl) |
| { |
| cp_decl_specifier_seq decl_specifiers; |
| int declares_class_or_enum; |
| bool saw_declarator; |
| |
| if (maybe_range_for_decl) |
| *maybe_range_for_decl = NULL_TREE; |
| |
| /* Defer access checks until we know what is being declared; the |
| checks for names appearing in the decl-specifier-seq should be |
| done as if we were in the scope of the thing being declared. */ |
| push_deferring_access_checks (dk_deferred); |
| |
| /* Parse the decl-specifier-seq. We have to keep track of whether |
| or not the decl-specifier-seq declares a named class or |
| enumeration type, since that is the only case in which the |
| init-declarator-list is allowed to be empty. |
| |
| [dcl.dcl] |
| |
| In a simple-declaration, the optional init-declarator-list can be |
| omitted only when declaring a class or enumeration, that is when |
| the decl-specifier-seq contains either a class-specifier, an |
| elaborated-type-specifier, or an enum-specifier. */ |
| cp_parser_decl_specifier_seq (parser, |
| CP_PARSER_FLAGS_OPTIONAL, |
| &decl_specifiers, |
| &declares_class_or_enum); |
| /* We no longer need to defer access checks. */ |
| stop_deferring_access_checks (); |
| |
| /* In a block scope, a valid declaration must always have a |
| decl-specifier-seq. By not trying to parse declarators, we can |
| resolve the declaration/expression ambiguity more quickly. */ |
| if (!function_definition_allowed_p |
| && !decl_specifiers.any_specifiers_p) |
| { |
| cp_parser_error (parser, "expected declaration"); |
| goto done; |
| } |
| |
| /* If the next two tokens are both identifiers, the code is |
| erroneous. The usual cause of this situation is code like: |
| |
| T t; |
| |
| where "T" should name a type -- but does not. */ |
| if (!decl_specifiers.any_type_specifiers_p |
| && cp_parser_parse_and_diagnose_invalid_type_name (parser)) |
| { |
| /* If parsing tentatively, we should commit; we really are |
| looking at a declaration. */ |
| cp_parser_commit_to_tentative_parse (parser); |
| /* Give up. */ |
| goto done; |
| } |
| |
| /* If we have seen at least one decl-specifier, and the next token |
| is not a parenthesis, then we must be looking at a declaration. |
| (After "int (" we might be looking at a functional cast.) */ |
| if (decl_specifiers.any_specifiers_p |
| && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN) |
| && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE) |
| && !cp_parser_error_occurred (parser)) |
| cp_parser_commit_to_tentative_parse (parser); |
| |
| /* Keep going until we hit the `;' at the end of the simple |
| declaration. */ |
| saw_declarator = false; |
| while (cp_lexer_next_token_is_not (parser->lexer, |
| CPP_SEMICOLON)) |
| { |
| cp_token *token; |
| bool function_definition_p; |
| tree decl; |
| |
| if (saw_declarator) |
| { |
| /* If we are processing next declarator, coma is expected */ |
| token = cp_lexer_peek_token (parser->lexer); |
| gcc_assert (token->type == CPP_COMMA); |
| cp_lexer_consume_token (parser->lexer); |
| if (maybe_range_for_decl) |
| *maybe_range_for_decl = error_mark_node; |
| } |
| else |
| saw_declarator = true; |
| |
| /* Parse the init-declarator. */ |
| decl = cp_parser_init_declarator (parser, &decl_specifiers, |
| /*checks=*/NULL, |
| function_definition_allowed_p, |
| /*member_p=*/false, |
| declares_class_or_enum, |
| &function_definition_p, |
| maybe_range_for_decl); |
| /* If an error occurred while parsing tentatively, exit quickly. |
| (That usually happens when in the body of a function; each |
| statement is treated as a declaration-statement until proven |
| otherwise.) */ |
| if (cp_parser_error_occurred (parser)) |
| goto done; |
| /* Handle function definitions specially. */ |
| if (function_definition_p) |
| { |
| /* If the next token is a `,', then we are probably |
| processing something like: |
| |
| void f() {}, *p; |
| |
| which is erroneous. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA)) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| error_at (token->location, |
| "mixing" |
| " declarations and function-definitions is forbidden"); |
| } |
| /* Otherwise, we're done with the list of declarators. */ |
| else |
| { |
| pop_deferring_access_checks (); |
| return; |
| } |
| } |
| if (maybe_range_for_decl && *maybe_range_for_decl == NULL_TREE) |
| *maybe_range_for_decl = decl; |
| /* The next token should be either a `,' or a `;'. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If it's a `,', there are more declarators to come. */ |
| if (token->type == CPP_COMMA) |
| /* will be consumed next time around */; |
| /* If it's a `;', we are done. */ |
| else if (token->type == CPP_SEMICOLON || maybe_range_for_decl) |
| break; |
| /* Anything else is an error. */ |
| else |
| { |
| /* If we have already issued an error message we don't need |
| to issue another one. */ |
| if (decl != error_mark_node |
| || cp_parser_uncommitted_to_tentative_parse_p (parser)) |
| cp_parser_error (parser, "expected %<,%> or %<;%>"); |
| /* Skip tokens until we reach the end of the statement. */ |
| cp_parser_skip_to_end_of_statement (parser); |
| /* If the next token is now a `;', consume it. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)) |
| cp_lexer_consume_token (parser->lexer); |
| goto done; |
| } |
| /* After the first time around, a function-definition is not |
| allowed -- even if it was OK at first. For example: |
| |
| int i, f() {} |
| |
| is not valid. */ |
| function_definition_allowed_p = false; |
| } |
| |
| /* Issue an error message if no declarators are present, and the |
| decl-specifier-seq does not itself declare a class or |
| enumeration. */ |
| if (!saw_declarator) |
| { |
| if (cp_parser_declares_only_class_p (parser)) |
| shadow_tag (&decl_specifiers); |
| /* Perform any deferred access checks. */ |
| perform_deferred_access_checks (); |
| } |
| |
| /* Consume the `;'. */ |
| if (!maybe_range_for_decl) |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| |
| done: |
| pop_deferring_access_checks (); |
| } |
| |
| /* Parse a decl-specifier-seq. |
| |
| decl-specifier-seq: |
| decl-specifier-seq [opt] decl-specifier |
| |
| decl-specifier: |
| storage-class-specifier |
| type-specifier |
| function-specifier |
| friend |
| typedef |
| |
| GNU Extension: |
| |
| decl-specifier: |
| attributes |
| |
| Set *DECL_SPECS to a representation of the decl-specifier-seq. |
| |
| The parser flags FLAGS is used to control type-specifier parsing. |
| |
| *DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following |
| flags: |
| |
| 1: one of the decl-specifiers is an elaborated-type-specifier |
| (i.e., a type declaration) |
| 2: one of the decl-specifiers is an enum-specifier or a |
| class-specifier (i.e., a type definition) |
| |
| */ |
| |
| static void |
| cp_parser_decl_specifier_seq (cp_parser* parser, |
| cp_parser_flags flags, |
| cp_decl_specifier_seq *decl_specs, |
| int* declares_class_or_enum) |
| { |
| bool constructor_possible_p = !parser->in_declarator_p; |
| cp_token *start_token = NULL; |
| |
| /* Clear DECL_SPECS. */ |
| clear_decl_specs (decl_specs); |
| |
| /* Assume no class or enumeration type is declared. */ |
| *declares_class_or_enum = 0; |
| |
| /* Keep reading specifiers until there are no more to read. */ |
| while (true) |
| { |
| bool constructor_p; |
| bool found_decl_spec; |
| cp_token *token; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| /* Save the first token of the decl spec list for error |
| reporting. */ |
| if (!start_token) |
| start_token = token; |
| /* Handle attributes. */ |
| if (token->keyword == RID_ATTRIBUTE) |
| { |
| /* Parse the attributes. */ |
| decl_specs->attributes |
| = chainon (decl_specs->attributes, |
| cp_parser_attributes_opt (parser)); |
| continue; |
| } |
| /* Assume we will find a decl-specifier keyword. */ |
| found_decl_spec = true; |
| /* If the next token is an appropriate keyword, we can simply |
| add it to the list. */ |
| switch (token->keyword) |
| { |
| /* decl-specifier: |
| friend |
| constexpr */ |
| case RID_FRIEND: |
| if (!at_class_scope_p ()) |
| { |
| error_at (token->location, "%<friend%> used outside of class"); |
| cp_lexer_purge_token (parser->lexer); |
| } |
| else |
| { |
| ++decl_specs->specs[(int) ds_friend]; |
| /* Consume the token. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| break; |
| |
| case RID_CONSTEXPR: |
| ++decl_specs->specs[(int) ds_constexpr]; |
| cp_lexer_consume_token (parser->lexer); |
| break; |
| |
| /* function-specifier: |
| inline |
| virtual |
| explicit */ |
| case RID_INLINE: |
| case RID_VIRTUAL: |
| case RID_EXPLICIT: |
| cp_parser_function_specifier_opt (parser, decl_specs); |
| break; |
| |
| /* decl-specifier: |
| typedef */ |
| case RID_TYPEDEF: |
| ++decl_specs->specs[(int) ds_typedef]; |
| /* Consume the token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* A constructor declarator cannot appear in a typedef. */ |
| constructor_possible_p = false; |
| /* The "typedef" keyword can only occur in a declaration; we |
| may as well commit at this point. */ |
| cp_parser_commit_to_tentative_parse (parser); |
| |
| if (decl_specs->storage_class != sc_none) |
| decl_specs->conflicting_specifiers_p = true; |
| break; |
| |
| /* storage-class-specifier: |
| auto |
| register |
| static |
| extern |
| mutable |
| |
| GNU Extension: |
| thread */ |
| case RID_AUTO: |
| if (cxx_dialect == cxx98) |
| { |
| /* Consume the token. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* Complain about `auto' as a storage specifier, if |
| we're complaining about C++0x compatibility. */ |
| warning_at (token->location, OPT_Wc__0x_compat, "%<auto%>" |
| " will change meaning in C++0x; please remove it"); |
| |
| /* Set the storage class anyway. */ |
| cp_parser_set_storage_class (parser, decl_specs, RID_AUTO, |
| token->location); |
| } |
| else |
| /* C++0x auto type-specifier. */ |
| found_decl_spec = false; |
| break; |
| |
| case RID_REGISTER: |
| case RID_STATIC: |
| case RID_EXTERN: |
| case RID_MUTABLE: |
| /* Consume the token. */ |
| cp_lexer_consume_token (parser->lexer); |
| cp_parser_set_storage_class (parser, decl_specs, token->keyword, |
| token->location); |
| break; |
| case RID_THREAD: |
| /* Consume the token. */ |
| cp_lexer_consume_token (parser->lexer); |
| ++decl_specs->specs[(int) ds_thread]; |
| break; |
| |
| default: |
| /* We did not yet find a decl-specifier yet. */ |
| found_decl_spec = false; |
| break; |
| } |
| |
| if (found_decl_spec |
| && (flags & CP_PARSER_FLAGS_ONLY_TYPE_OR_CONSTEXPR) |
| && token->keyword != RID_CONSTEXPR) |
| error ("decl-specifier invalid in condition"); |
| |
| /* Constructors are a special case. The `S' in `S()' is not a |
| decl-specifier; it is the beginning of the declarator. */ |
| constructor_p |
| = (!found_decl_spec |
| && constructor_possible_p |
| && (cp_parser_constructor_declarator_p |
| (parser, decl_specs->specs[(int) ds_friend] != 0))); |
| |
| /* If we don't have a DECL_SPEC yet, then we must be looking at |
| a type-specifier. */ |
| if (!found_decl_spec && !constructor_p) |
| { |
| int decl_spec_declares_class_or_enum; |
| bool is_cv_qualifier; |
| tree type_spec; |
| |
| type_spec |
| = cp_parser_type_specifier (parser, flags, |
| decl_specs, |
| /*is_declaration=*/true, |
| &decl_spec_declares_class_or_enum, |
| &is_cv_qualifier); |
| *declares_class_or_enum |= decl_spec_declares_class_or_enum; |
| |
| /* If this type-specifier referenced a user-defined type |
| (a typedef, class-name, etc.), then we can't allow any |
| more such type-specifiers henceforth. |
| |
| [dcl.spec] |
| |
| The longest sequence of decl-specifiers that could |
| possibly be a type name is taken as the |
| decl-specifier-seq of a declaration. The sequence shall |
| be self-consistent as described below. |
| |
| [dcl.type] |
| |
| As a general rule, at most one type-specifier is allowed |
| in the complete decl-specifier-seq of a declaration. The |
| only exceptions are the following: |
| |
| -- const or volatile can be combined with any other |
| type-specifier. |
| |
| -- signed or unsigned can be combined with char, long, |
| short, or int. |
| |
| -- .. |
| |
| Example: |
| |
| typedef char* Pc; |
| void g (const int Pc); |
| |
| Here, Pc is *not* part of the decl-specifier seq; it's |
| the declarator. Therefore, once we see a type-specifier |
| (other than a cv-qualifier), we forbid any additional |
| user-defined types. We *do* still allow things like `int |
| int' to be considered a decl-specifier-seq, and issue the |
| error message later. */ |
| if (type_spec && !is_cv_qualifier) |
| flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES; |
| /* A constructor declarator cannot follow a type-specifier. */ |
| if (type_spec) |
| { |
| constructor_possible_p = false; |
| found_decl_spec = true; |
| if (!is_cv_qualifier) |
| decl_specs->any_type_specifiers_p = true; |
| } |
| } |
| |
| /* If we still do not have a DECL_SPEC, then there are no more |
| decl-specifiers. */ |
| if (!found_decl_spec) |
| break; |
| |
| decl_specs->any_specifiers_p = true; |
| /* After we see one decl-specifier, further decl-specifiers are |
| always optional. */ |
| flags |= CP_PARSER_FLAGS_OPTIONAL; |
| } |
| |
| cp_parser_check_decl_spec (decl_specs, start_token->location); |
| |
| /* Don't allow a friend specifier with a class definition. */ |
| if (decl_specs->specs[(int) ds_friend] != 0 |
| && (*declares_class_or_enum & 2)) |
| error_at (start_token->location, |
| "class definition may not be declared a friend"); |
| } |
| |
| /* Parse an (optional) storage-class-specifier. |
| |
| storage-class-specifier: |
| auto |
| register |
| static |
| extern |
| mutable |
| |
| GNU Extension: |
| |
| storage-class-specifier: |
| thread |
| |
| Returns an IDENTIFIER_NODE corresponding to the keyword used. */ |
| |
| static tree |
| cp_parser_storage_class_specifier_opt (cp_parser* parser) |
| { |
| switch (cp_lexer_peek_token (parser->lexer)->keyword) |
| { |
| case RID_AUTO: |
| if (cxx_dialect != cxx98) |
| return NULL_TREE; |
| /* Fall through for C++98. */ |
| |
| case RID_REGISTER: |
| case RID_STATIC: |
| case RID_EXTERN: |
| case RID_MUTABLE: |
| case RID_THREAD: |
| /* Consume the token. */ |
| return cp_lexer_consume_token (parser->lexer)->u.value; |
| |
| default: |
| return NULL_TREE; |
| } |
| } |
| |
| /* Parse an (optional) function-specifier. |
| |
| function-specifier: |
| inline |
| virtual |
| explicit |
| |
| Returns an IDENTIFIER_NODE corresponding to the keyword used. |
| Updates DECL_SPECS, if it is non-NULL. */ |
| |
| static tree |
| cp_parser_function_specifier_opt (cp_parser* parser, |
| cp_decl_specifier_seq *decl_specs) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| switch (token->keyword) |
| { |
| case RID_INLINE: |
| if (decl_specs) |
| ++decl_specs->specs[(int) ds_inline]; |
| break; |
| |
| case RID_VIRTUAL: |
| /* 14.5.2.3 [temp.mem] |
| |
| A member function template shall not be virtual. */ |
| if (PROCESSING_REAL_TEMPLATE_DECL_P ()) |
| error_at (token->location, "templates may not be %<virtual%>"); |
| else if (decl_specs) |
| ++decl_specs->specs[(int) ds_virtual]; |
| break; |
| |
| case RID_EXPLICIT: |
| if (decl_specs) |
| ++decl_specs->specs[(int) ds_explicit]; |
| break; |
| |
| default: |
| return NULL_TREE; |
| } |
| |
| /* Consume the token. */ |
| return cp_lexer_consume_token (parser->lexer)->u.value; |
| } |
| |
| /* Parse a linkage-specification. |
| |
| linkage-specification: |
| extern string-literal { declaration-seq [opt] } |
| extern string-literal declaration */ |
| |
| static void |
| cp_parser_linkage_specification (cp_parser* parser) |
| { |
| tree linkage; |
| |
| /* Look for the `extern' keyword. */ |
| cp_parser_require_keyword (parser, RID_EXTERN, RT_EXTERN); |
| |
| /* Look for the string-literal. */ |
| linkage = cp_parser_string_literal (parser, false, false); |
| |
| /* Transform the literal into an identifier. If the literal is a |
| wide-character string, or contains embedded NULs, then we can't |
| handle it as the user wants. */ |
| if (strlen (TREE_STRING_POINTER (linkage)) |
| != (size_t) (TREE_STRING_LENGTH (linkage) - 1)) |
| { |
| cp_parser_error (parser, "invalid linkage-specification"); |
| /* Assume C++ linkage. */ |
| linkage = lang_name_cplusplus; |
| } |
| else |
| linkage = get_identifier (TREE_STRING_POINTER (linkage)); |
| |
| /* We're now using the new linkage. */ |
| push_lang_context (linkage); |
| |
| /* If the next token is a `{', then we're using the first |
| production. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| { |
| /* Consume the `{' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the declarations. */ |
| cp_parser_declaration_seq_opt (parser); |
| /* Look for the closing `}'. */ |
| cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE); |
| } |
| /* Otherwise, there's just one declaration. */ |
| else |
| { |
| bool saved_in_unbraced_linkage_specification_p; |
| |
| saved_in_unbraced_linkage_specification_p |
| = parser->in_unbraced_linkage_specification_p; |
| parser->in_unbraced_linkage_specification_p = true; |
| cp_parser_declaration (parser); |
| parser->in_unbraced_linkage_specification_p |
| = saved_in_unbraced_linkage_specification_p; |
| } |
| |
| /* We're done with the linkage-specification. */ |
| pop_lang_context (); |
| } |
| |
| /* Parse a static_assert-declaration. |
| |
| static_assert-declaration: |
| static_assert ( constant-expression , string-literal ) ; |
| |
| If MEMBER_P, this static_assert is a class member. */ |
| |
| static void |
| cp_parser_static_assert(cp_parser *parser, bool member_p) |
| { |
| tree condition; |
| tree message; |
| cp_token *token; |
| location_t saved_loc; |
| bool dummy; |
| |
| /* Peek at the `static_assert' token so we can keep track of exactly |
| where the static assertion started. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| saved_loc = token->location; |
| |
| /* Look for the `static_assert' keyword. */ |
| if (!cp_parser_require_keyword (parser, RID_STATIC_ASSERT, |
| RT_STATIC_ASSERT)) |
| return; |
| |
| /* We know we are in a static assertion; commit to any tentative |
| parse. */ |
| if (cp_parser_parsing_tentatively (parser)) |
| cp_parser_commit_to_tentative_parse (parser); |
| |
| /* Parse the `(' starting the static assertion condition. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| |
| /* Parse the constant-expression. Allow a non-constant expression |
| here in order to give better diagnostics in finish_static_assert. */ |
| condition = |
| cp_parser_constant_expression (parser, |
| /*allow_non_constant_p=*/true, |
| /*non_constant_p=*/&dummy); |
| |
| /* Parse the separating `,'. */ |
| cp_parser_require (parser, CPP_COMMA, RT_COMMA); |
| |
| /* Parse the string-literal message. */ |
| message = cp_parser_string_literal (parser, |
| /*translate=*/false, |
| /*wide_ok=*/true); |
| |
| /* A `)' completes the static assertion. */ |
| if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN)) |
| cp_parser_skip_to_closing_parenthesis (parser, |
| /*recovering=*/true, |
| /*or_comma=*/false, |
| /*consume_paren=*/true); |
| |
| /* A semicolon terminates the declaration. */ |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| |
| /* Complete the static assertion, which may mean either processing |
| the static assert now or saving it for template instantiation. */ |
| finish_static_assert (condition, message, saved_loc, member_p); |
| } |
| |
| /* Parse a `decltype' type. Returns the type. |
| |
| simple-type-specifier: |
| decltype ( expression ) */ |
| |
| static tree |
| cp_parser_decltype (cp_parser *parser) |
| { |
| tree expr; |
| bool id_expression_or_member_access_p = false; |
| const char *saved_message; |
| bool saved_integral_constant_expression_p; |
| bool saved_non_integral_constant_expression_p; |
| cp_token *id_expr_start_token; |
| |
| /* Look for the `decltype' token. */ |
| if (!cp_parser_require_keyword (parser, RID_DECLTYPE, RT_DECLTYPE)) |
| return error_mark_node; |
| |
| /* Types cannot be defined in a `decltype' expression. Save away the |
| old message. */ |
| saved_message = parser->type_definition_forbidden_message; |
| |
| /* And create the new one. */ |
| parser->type_definition_forbidden_message |
| = G_("types may not be defined in %<decltype%> expressions"); |
| |
| /* The restrictions on constant-expressions do not apply inside |
| decltype expressions. */ |
| saved_integral_constant_expression_p |
| = parser->integral_constant_expression_p; |
| saved_non_integral_constant_expression_p |
| = parser->non_integral_constant_expression_p; |
| parser->integral_constant_expression_p = false; |
| |
| /* Do not actually evaluate the expression. */ |
| ++cp_unevaluated_operand; |
| |
| /* Do not warn about problems with the expression. */ |
| ++c_inhibit_evaluation_warnings; |
| |
| /* Parse the opening `('. */ |
| if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN)) |
| return error_mark_node; |
| |
| /* First, try parsing an id-expression. */ |
| id_expr_start_token = cp_lexer_peek_token (parser->lexer); |
| cp_parser_parse_tentatively (parser); |
| expr = cp_parser_id_expression (parser, |
| /*template_keyword_p=*/false, |
| /*check_dependency_p=*/true, |
| /*template_p=*/NULL, |
| /*declarator_p=*/false, |
| /*optional_p=*/false); |
| |
| if (!cp_parser_error_occurred (parser) && expr != error_mark_node) |
| { |
| bool non_integral_constant_expression_p = false; |
| tree id_expression = expr; |
| cp_id_kind idk; |
| const char *error_msg; |
| |
| if (TREE_CODE (expr) == IDENTIFIER_NODE) |
| /* Lookup the name we got back from the id-expression. */ |
| expr = cp_parser_lookup_name (parser, expr, |
| none_type, |
| /*is_template=*/false, |
| /*is_namespace=*/false, |
| /*check_dependency=*/true, |
| /*ambiguous_decls=*/NULL, |
| id_expr_start_token->location); |
| |
| if (expr |
| && expr != error_mark_node |
| && TREE_CODE (expr) != TEMPLATE_ID_EXPR |
| && TREE_CODE (expr) != TYPE_DECL |
| && (TREE_CODE (expr) != BIT_NOT_EXPR |
| || !TYPE_P (TREE_OPERAND (expr, 0))) |
| && cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN) |
| { |
| /* Complete lookup of the id-expression. */ |
| expr = (finish_id_expression |
| (id_expression, expr, parser->scope, &idk, |
| /*integral_constant_expression_p=*/false, |
| /*allow_non_integral_constant_expression_p=*/true, |
| &non_integral_constant_expression_p, |
| /*template_p=*/false, |
| /*done=*/true, |
| /*address_p=*/false, |
| /*template_arg_p=*/false, |
| &error_msg, |
| id_expr_start_token->location)); |
| |
| if (expr == error_mark_node) |
| /* We found an id-expression, but it was something that we |
| should not have found. This is an error, not something |
| we can recover from, so note that we found an |
| id-expression and we'll recover as gracefully as |
| possible. */ |
| id_expression_or_member_access_p = true; |
| } |
| |
| if (expr |
| && expr != error_mark_node |
| && cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN) |
| /* We have an id-expression. */ |
| id_expression_or_member_access_p = true; |
| } |
| |
| if (!id_expression_or_member_access_p) |
| { |
| /* Abort the id-expression parse. */ |
| cp_parser_abort_tentative_parse (parser); |
| |
| /* Parsing tentatively, again. */ |
| cp_parser_parse_tentatively (parser); |
| |
| /* Parse a class member access. */ |
| expr = cp_parser_postfix_expression (parser, /*address_p=*/false, |
| /*cast_p=*/false, |
| /*member_access_only_p=*/true, NULL); |
| |
| if (expr |
| && expr != error_mark_node |
| && cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN) |
| /* We have an id-expression. */ |
| id_expression_or_member_access_p = true; |
| } |
| |
| if (id_expression_or_member_access_p) |
| /* We have parsed the complete id-expression or member access. */ |
| cp_parser_parse_definitely (parser); |
| else |
| { |
| bool saved_greater_than_is_operator_p; |
| |
| /* Abort our attempt to parse an id-expression or member access |
| expression. */ |
| cp_parser_abort_tentative_parse (parser); |
| |
| /* Within a parenthesized expression, a `>' token is always |
| the greater-than operator. */ |
| saved_greater_than_is_operator_p |
| = parser->greater_than_is_operator_p; |
| parser->greater_than_is_operator_p = true; |
| |
| /* Parse a full expression. */ |
| expr = cp_parser_expression (parser, /*cast_p=*/false, NULL); |
| |
| /* The `>' token might be the end of a template-id or |
| template-parameter-list now. */ |
| parser->greater_than_is_operator_p |
| = saved_greater_than_is_operator_p; |
| } |
| |
| /* Go back to evaluating expressions. */ |
| --cp_unevaluated_operand; |
| --c_inhibit_evaluation_warnings; |
| |
| /* Restore the old message and the integral constant expression |
| flags. */ |
| parser->type_definition_forbidden_message = saved_message; |
| parser->integral_constant_expression_p |
| = saved_integral_constant_expression_p; |
| parser->non_integral_constant_expression_p |
| = saved_non_integral_constant_expression_p; |
| |
| if (expr == error_mark_node) |
| { |
| /* Skip everything up to the closing `)'. */ |
| cp_parser_skip_to_closing_parenthesis (parser, true, false, |
| /*consume_paren=*/true); |
| return error_mark_node; |
| } |
| |
| /* Parse to the closing `)'. */ |
| if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN)) |
| { |
| cp_parser_skip_to_closing_parenthesis (parser, true, false, |
| /*consume_paren=*/true); |
| return error_mark_node; |
| } |
| |
| return finish_decltype_type (expr, id_expression_or_member_access_p, |
| tf_warning_or_error); |
| } |
| |
| /* Special member functions [gram.special] */ |
| |
| /* Parse a conversion-function-id. |
| |
| conversion-function-id: |
| operator conversion-type-id |
| |
| Returns an IDENTIFIER_NODE representing the operator. */ |
| |
| static tree |
| cp_parser_conversion_function_id (cp_parser* parser) |
| { |
| tree type; |
| tree saved_scope; |
| tree saved_qualifying_scope; |
| tree saved_object_scope; |
| tree pushed_scope = NULL_TREE; |
| |
| /* Look for the `operator' token. */ |
| if (!cp_parser_require_keyword (parser, RID_OPERATOR, RT_OPERATOR)) |
| return error_mark_node; |
| /* When we parse the conversion-type-id, the current scope will be |
| reset. However, we need that information in able to look up the |
| conversion function later, so we save it here. */ |
| saved_scope = parser->scope; |
| saved_qualifying_scope = parser->qualifying_scope; |
| saved_object_scope = parser->object_scope; |
| /* We must enter the scope of the class so that the names of |
| entities declared within the class are available in the |
| conversion-type-id. For example, consider: |
| |
| struct S { |
| typedef int I; |
| operator I(); |
| }; |
| |
| S::operator I() { ... } |
| |
| In order to see that `I' is a type-name in the definition, we |
| must be in the scope of `S'. */ |
| if (saved_scope) |
| pushed_scope = push_scope (saved_scope); |
| /* Parse the conversion-type-id. */ |
| type = cp_parser_conversion_type_id (parser); |
| /* Leave the scope of the class, if any. */ |
| if (pushed_scope) |
| pop_scope (pushed_scope); |
| /* Restore the saved scope. */ |
| parser->scope = saved_scope; |
| parser->qualifying_scope = saved_qualifying_scope; |
| parser->object_scope = saved_object_scope; |
| /* If the TYPE is invalid, indicate failure. */ |
| if (type == error_mark_node) |
| return error_mark_node; |
| return mangle_conv_op_name_for_type (type); |
| } |
| |
| /* Parse a conversion-type-id: |
| |
| conversion-type-id: |
| type-specifier-seq conversion-declarator [opt] |
| |
| Returns the TYPE specified. */ |
| |
| static tree |
| cp_parser_conversion_type_id (cp_parser* parser) |
| { |
| tree attributes; |
| cp_decl_specifier_seq type_specifiers; |
| cp_declarator *declarator; |
| tree type_specified; |
| |
| /* Parse the attributes. */ |
| attributes = cp_parser_attributes_opt (parser); |
| /* Parse the type-specifiers. */ |
| cp_parser_type_specifier_seq (parser, /*is_declaration=*/false, |
| /*is_trailing_return=*/false, |
| &type_specifiers); |
| /* If that didn't work, stop. */ |
| if (type_specifiers.type == error_mark_node) |
| return error_mark_node; |
| /* Parse the conversion-declarator. */ |
| declarator = cp_parser_conversion_declarator_opt (parser); |
| |
| type_specified = grokdeclarator (declarator, &type_specifiers, TYPENAME, |
| /*initialized=*/0, &attributes); |
| if (attributes) |
| cplus_decl_attributes (&type_specified, attributes, /*flags=*/0); |
| |
| /* Don't give this error when parsing tentatively. This happens to |
| work because we always parse this definitively once. */ |
| if (! cp_parser_uncommitted_to_tentative_parse_p (parser) |
| && type_uses_auto (type_specified)) |
| { |
| error ("invalid use of %<auto%> in conversion operator"); |
| return error_mark_node; |
| } |
| |
| return type_specified; |
| } |
| |
| /* Parse an (optional) conversion-declarator. |
| |
| conversion-declarator: |
| ptr-operator conversion-declarator [opt] |
| |
| */ |
| |
| static cp_declarator * |
| cp_parser_conversion_declarator_opt (cp_parser* parser) |
| { |
| enum tree_code code; |
| tree class_type; |
| cp_cv_quals cv_quals; |
| |
| /* We don't know if there's a ptr-operator next, or not. */ |
| cp_parser_parse_tentatively (parser); |
| /* Try the ptr-operator. */ |
| code = cp_parser_ptr_operator (parser, &class_type, &cv_quals); |
| /* If it worked, look for more conversion-declarators. */ |
| if (cp_parser_parse_definitely (parser)) |
| { |
| cp_declarator *declarator; |
| |
| /* Parse another optional declarator. */ |
| declarator = cp_parser_conversion_declarator_opt (parser); |
| |
| return cp_parser_make_indirect_declarator |
| (code, class_type, cv_quals, declarator); |
| } |
| |
| return NULL; |
| } |
| |
| /* Parse an (optional) ctor-initializer. |
| |
| ctor-initializer: |
| : mem-initializer-list |
| |
| Returns TRUE iff the ctor-initializer was actually present. */ |
| |
| static bool |
| cp_parser_ctor_initializer_opt (cp_parser* parser) |
| { |
| /* If the next token is not a `:', then there is no |
| ctor-initializer. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON)) |
| { |
| /* Do default initialization of any bases and members. */ |
| if (DECL_CONSTRUCTOR_P (current_function_decl)) |
| finish_mem_initializers (NULL_TREE); |
| |
| return false; |
| } |
| |
| /* Consume the `:' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* And the mem-initializer-list. */ |
| cp_parser_mem_initializer_list (parser); |
| |
| return true; |
| } |
| |
| /* Parse a mem-initializer-list. |
| |
| mem-initializer-list: |
| mem-initializer ... [opt] |
| mem-initializer ... [opt] , mem-initializer-list */ |
| |
| static void |
| cp_parser_mem_initializer_list (cp_parser* parser) |
| { |
| tree mem_initializer_list = NULL_TREE; |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| /* Let the semantic analysis code know that we are starting the |
| mem-initializer-list. */ |
| if (!DECL_CONSTRUCTOR_P (current_function_decl)) |
| error_at (token->location, |
| "only constructors take member initializers"); |
| |
| /* Loop through the list. */ |
| while (true) |
| { |
| tree mem_initializer; |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| /* Parse the mem-initializer. */ |
| mem_initializer = cp_parser_mem_initializer (parser); |
| /* If the next token is a `...', we're expanding member initializers. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)) |
| { |
| /* Consume the `...'. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* The TREE_PURPOSE must be a _TYPE, because base-specifiers |
| can be expanded but members cannot. */ |
| if (mem_initializer != error_mark_node |
| && !TYPE_P (TREE_PURPOSE (mem_initializer))) |
| { |
| error_at (token->location, |
| "cannot expand initializer for member %<%D%>", |
| TREE_PURPOSE (mem_initializer)); |
| mem_initializer = error_mark_node; |
| } |
| |
| /* Construct the pack expansion type. */ |
| if (mem_initializer != error_mark_node) |
| mem_initializer = make_pack_expansion (mem_initializer); |
| } |
| /* Add it to the list, unless it was erroneous. */ |
| if (mem_initializer != error_mark_node) |
| { |
| TREE_CHAIN (mem_initializer) = mem_initializer_list; |
| mem_initializer_list = mem_initializer; |
| } |
| /* If the next token is not a `,', we're done. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA)) |
| break; |
| /* Consume the `,' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| |
| /* Perform semantic analysis. */ |
| if (DECL_CONSTRUCTOR_P (current_function_decl)) |
| finish_mem_initializers (mem_initializer_list); |
| } |
| |
| /* Parse a mem-initializer. |
| |
| mem-initializer: |
| mem-initializer-id ( expression-list [opt] ) |
| mem-initializer-id braced-init-list |
| |
| GNU extension: |
| |
| mem-initializer: |
| ( expression-list [opt] ) |
| |
| Returns a TREE_LIST. The TREE_PURPOSE is the TYPE (for a base |
| class) or FIELD_DECL (for a non-static data member) to initialize; |
| the TREE_VALUE is the expression-list. An empty initialization |
| list is represented by void_list_node. */ |
| |
| static tree |
| cp_parser_mem_initializer (cp_parser* parser) |
| { |
| tree mem_initializer_id; |
| tree expression_list; |
| tree member; |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| /* Find out what is being initialized. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)) |
| { |
| permerror (token->location, |
| "anachronistic old-style base class initializer"); |
| mem_initializer_id = NULL_TREE; |
| } |
| else |
| { |
| mem_initializer_id = cp_parser_mem_initializer_id (parser); |
| if (mem_initializer_id == error_mark_node) |
| return mem_initializer_id; |
| } |
| member = expand_member_init (mem_initializer_id); |
| if (member && !DECL_P (member)) |
| in_base_initializer = 1; |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| { |
| bool expr_non_constant_p; |
| maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS); |
| expression_list = cp_parser_braced_list (parser, &expr_non_constant_p); |
| CONSTRUCTOR_IS_DIRECT_INIT (expression_list) = 1; |
| expression_list = build_tree_list (NULL_TREE, expression_list); |
| } |
| else |
| { |
| VEC(tree,gc)* vec; |
| vec = cp_parser_parenthesized_expression_list (parser, non_attr, |
| /*cast_p=*/false, |
| /*allow_expansion_p=*/true, |
| /*non_constant_p=*/NULL); |
| if (vec == NULL) |
| return error_mark_node; |
| expression_list = build_tree_list_vec (vec); |
| release_tree_vector (vec); |
| } |
| |
| if (expression_list == error_mark_node) |
| return error_mark_node; |
| if (!expression_list) |
| expression_list = void_type_node; |
| |
| in_base_initializer = 0; |
| |
| return member ? build_tree_list (member, expression_list) : error_mark_node; |
| } |
| |
| /* Parse a mem-initializer-id. |
| |
| mem-initializer-id: |
| :: [opt] nested-name-specifier [opt] class-name |
| identifier |
| |
| Returns a TYPE indicating the class to be initializer for the first |
| production. Returns an IDENTIFIER_NODE indicating the data member |
| to be initialized for the second production. */ |
| |
| static tree |
| cp_parser_mem_initializer_id (cp_parser* parser) |
| { |
| bool global_scope_p; |
| bool nested_name_specifier_p; |
| bool template_p = false; |
| tree id; |
| |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| /* `typename' is not allowed in this context ([temp.res]). */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME)) |
| { |
| error_at (token->location, |
| "keyword %<typename%> not allowed in this context (a qualified " |
| "member initializer is implicitly a type)"); |
| cp_lexer_consume_token (parser->lexer); |
| } |
| /* Look for the optional `::' operator. */ |
| global_scope_p |
| = (cp_parser_global_scope_opt (parser, |
| /*current_scope_valid_p=*/false) |
| != NULL_TREE); |
| /* Look for the optional nested-name-specifier. The simplest way to |
| implement: |
| |
| [temp.res] |
| |
| The keyword `typename' is not permitted in a base-specifier or |
| mem-initializer; in these contexts a qualified name that |
| depends on a template-parameter is implicitly assumed to be a |
| type name. |
| |
| is to assume that we have seen the `typename' keyword at this |
| point. */ |
| nested_name_specifier_p |
| = (cp_parser_nested_name_specifier_opt (parser, |
| /*typename_keyword_p=*/true, |
| /*check_dependency_p=*/true, |
| /*type_p=*/true, |
| /*is_declaration=*/true) |
| != NULL_TREE); |
| if (nested_name_specifier_p) |
| template_p = cp_parser_optional_template_keyword (parser); |
| /* If there is a `::' operator or a nested-name-specifier, then we |
| are definitely looking for a class-name. */ |
| if (global_scope_p || nested_name_specifier_p) |
| return cp_parser_class_name (parser, |
| /*typename_keyword_p=*/true, |
| /*template_keyword_p=*/template_p, |
| typename_type, |
| /*check_dependency_p=*/true, |
| /*class_head_p=*/false, |
| /*is_declaration=*/true); |
| /* Otherwise, we could also be looking for an ordinary identifier. */ |
| cp_parser_parse_tentatively (parser); |
| /* Try a class-name. */ |
| id = cp_parser_class_name (parser, |
| /*typename_keyword_p=*/true, |
| /*template_keyword_p=*/false, |
| none_type, |
| /*check_dependency_p=*/true, |
| /*class_head_p=*/false, |
| /*is_declaration=*/true); |
| /* If we found one, we're done. */ |
| if (cp_parser_parse_definitely (parser)) |
| return id; |
| /* Otherwise, look for an ordinary identifier. */ |
| return cp_parser_identifier (parser); |
| } |
| |
| /* Overloading [gram.over] */ |
| |
| /* Parse an operator-function-id. |
| |
| operator-function-id: |
| operator operator |
| |
| Returns an IDENTIFIER_NODE for the operator which is a |
| human-readable spelling of the identifier, e.g., `operator +'. */ |
| |
| static tree |
| cp_parser_operator_function_id (cp_parser* parser) |
| { |
| /* Look for the `operator' keyword. */ |
| if (!cp_parser_require_keyword (parser, RID_OPERATOR, RT_OPERATOR)) |
| return error_mark_node; |
| /* And then the name of the operator itself. */ |
| return cp_parser_operator (parser); |
| } |
| |
| /* Parse an operator. |
| |
| operator: |
| new delete new[] delete[] + - * / % ^ & | ~ ! = < > |
| += -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= && |
| || ++ -- , ->* -> () [] |
| |
| GNU Extensions: |
| |
| operator: |
| <? >? <?= >?= |
| |
| Returns an IDENTIFIER_NODE for the operator which is a |
| human-readable spelling of the identifier, e.g., `operator +'. */ |
| |
| static tree |
| cp_parser_operator (cp_parser* parser) |
| { |
| tree id = NULL_TREE; |
| cp_token *token; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* Figure out which operator we have. */ |
| switch (token->type) |
| { |
| case CPP_KEYWORD: |
| { |
| enum tree_code op; |
| |
| /* The keyword should be either `new' or `delete'. */ |
| if (token->keyword == RID_NEW) |
| op = NEW_EXPR; |
| else if (token->keyword == RID_DELETE) |
| op = DELETE_EXPR; |
| else |
| break; |
| |
| /* Consume the `new' or `delete' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If it's a `[' token then this is the array variant of the |
| operator. */ |
| if (token->type == CPP_OPEN_SQUARE) |
| { |
| /* Consume the `[' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Look for the `]' token. */ |
| cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE); |
| id = ansi_opname (op == NEW_EXPR |
| ? VEC_NEW_EXPR : VEC_DELETE_EXPR); |
| } |
| /* Otherwise, we have the non-array variant. */ |
| else |
| id = ansi_opname (op); |
| |
| return id; |
| } |
| |
| case CPP_PLUS: |
| id = ansi_opname (PLUS_EXPR); |
| break; |
| |
| case CPP_MINUS: |
| id = ansi_opname (MINUS_EXPR); |
| break; |
| |
| case CPP_MULT: |
| id = ansi_opname (MULT_EXPR); |
| break; |
| |
| case CPP_DIV: |
| id = ansi_opname (TRUNC_DIV_EXPR); |
| break; |
| |
| case CPP_MOD: |
| id = ansi_opname (TRUNC_MOD_EXPR); |
| break; |
| |
| case CPP_XOR: |
| id = ansi_opname (BIT_XOR_EXPR); |
| break; |
| |
| case CPP_AND: |
| id = ansi_opname (BIT_AND_EXPR); |
| break; |
| |
| case CPP_OR: |
| id = ansi_opname (BIT_IOR_EXPR); |
| break; |
| |
| case CPP_COMPL: |
| id = ansi_opname (BIT_NOT_EXPR); |
| break; |
| |
| case CPP_NOT: |
| id = ansi_opname (TRUTH_NOT_EXPR); |
| break; |
| |
| case CPP_EQ: |
| id = ansi_assopname (NOP_EXPR); |
| break; |
| |
| case CPP_LESS: |
| id = ansi_opname (LT_EXPR); |
| break; |
| |
| case CPP_GREATER: |
| id = ansi_opname (GT_EXPR); |
| break; |
| |
| case CPP_PLUS_EQ: |
| id = ansi_assopname (PLUS_EXPR); |
| break; |
| |
| case CPP_MINUS_EQ: |
| id = ansi_assopname (MINUS_EXPR); |
| break; |
| |
| case CPP_MULT_EQ: |
| id = ansi_assopname (MULT_EXPR); |
| break; |
| |
| case CPP_DIV_EQ: |
| id = ansi_assopname (TRUNC_DIV_EXPR); |
| break; |
| |
| case CPP_MOD_EQ: |
| id = ansi_assopname (TRUNC_MOD_EXPR); |
| break; |
| |
| case CPP_XOR_EQ: |
| id = ansi_assopname (BIT_XOR_EXPR); |
| break; |
| |
| case CPP_AND_EQ: |
| id = ansi_assopname (BIT_AND_EXPR); |
| break; |
| |
| case CPP_OR_EQ: |
| id = ansi_assopname (BIT_IOR_EXPR); |
| break; |
| |
| case CPP_LSHIFT: |
| id = ansi_opname (LSHIFT_EXPR); |
| break; |
| |
| case CPP_RSHIFT: |
| id = ansi_opname (RSHIFT_EXPR); |
| break; |
| |
| case CPP_LSHIFT_EQ: |
| id = ansi_assopname (LSHIFT_EXPR); |
| break; |
| |
| case CPP_RSHIFT_EQ: |
| id = ansi_assopname (RSHIFT_EXPR); |
| break; |
| |
| case CPP_EQ_EQ: |
| id = ansi_opname (EQ_EXPR); |
| break; |
| |
| case CPP_NOT_EQ: |
| id = ansi_opname (NE_EXPR); |
| break; |
| |
| case CPP_LESS_EQ: |
| id = ansi_opname (LE_EXPR); |
| break; |
| |
| case CPP_GREATER_EQ: |
| id = ansi_opname (GE_EXPR); |
| break; |
| |
| case CPP_AND_AND: |
| id = ansi_opname (TRUTH_ANDIF_EXPR); |
| break; |
| |
| case CPP_OR_OR: |
| id = ansi_opname (TRUTH_ORIF_EXPR); |
| break; |
| |
| case CPP_PLUS_PLUS: |
| id = ansi_opname (POSTINCREMENT_EXPR); |
| break; |
| |
| case CPP_MINUS_MINUS: |
| id = ansi_opname (PREDECREMENT_EXPR); |
| break; |
| |
| case CPP_COMMA: |
| id = ansi_opname (COMPOUND_EXPR); |
| break; |
| |
| case CPP_DEREF_STAR: |
| id = ansi_opname (MEMBER_REF); |
| break; |
| |
| case CPP_DEREF: |
| id = ansi_opname (COMPONENT_REF); |
| break; |
| |
| case CPP_OPEN_PAREN: |
| /* Consume the `('. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Look for the matching `)'. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| return ansi_opname (CALL_EXPR); |
| |
| case CPP_OPEN_SQUARE: |
| /* Consume the `['. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Look for the matching `]'. */ |
| cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE); |
| return ansi_opname (ARRAY_REF); |
| |
| default: |
| /* Anything else is an error. */ |
| break; |
| } |
| |
| /* If we have selected an identifier, we need to consume the |
| operator token. */ |
| if (id) |
| cp_lexer_consume_token (parser->lexer); |
| /* Otherwise, no valid operator name was present. */ |
| else |
| { |
| cp_parser_error (parser, "expected operator"); |
| id = error_mark_node; |
| } |
| |
| return id; |
| } |
| |
| /* Parse a template-declaration. |
| |
| template-declaration: |
| export [opt] template < template-parameter-list > declaration |
| |
| If MEMBER_P is TRUE, this template-declaration occurs within a |
| class-specifier. |
| |
| The grammar rule given by the standard isn't correct. What |
| is really meant is: |
| |
| template-declaration: |
| export [opt] template-parameter-list-seq |
| decl-specifier-seq [opt] init-declarator [opt] ; |
| export [opt] template-parameter-list-seq |
| function-definition |
| |
| template-parameter-list-seq: |
| template-parameter-list-seq [opt] |
| template < template-parameter-list > */ |
| |
| static void |
| cp_parser_template_declaration (cp_parser* parser, bool member_p) |
| { |
| /* Check for `export'. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT)) |
| { |
| /* Consume the `export' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Warn that we do not support `export'. */ |
| warning (0, "keyword %<export%> not implemented, and will be ignored"); |
| } |
| |
| cp_parser_template_declaration_after_export (parser, member_p); |
| } |
| |
| /* Parse a template-parameter-list. |
| |
| template-parameter-list: |
| template-parameter |
| template-parameter-list , template-parameter |
| |
| Returns a TREE_LIST. Each node represents a template parameter. |
| The nodes are connected via their TREE_CHAINs. */ |
| |
| static tree |
| cp_parser_template_parameter_list (cp_parser* parser) |
| { |
| tree parameter_list = NULL_TREE; |
| |
| begin_template_parm_list (); |
| |
| /* The loop below parses the template parms. We first need to know |
| the total number of template parms to be able to compute proper |
| canonical types of each dependent type. So after the loop, when |
| we know the total number of template parms, |
| end_template_parm_list computes the proper canonical types and |
| fixes up the dependent types accordingly. */ |
| while (true) |
| { |
| tree parameter; |
| bool is_non_type; |
| bool is_parameter_pack; |
| location_t parm_loc; |
| |
| /* Parse the template-parameter. */ |
| parm_loc = cp_lexer_peek_token (parser->lexer)->location; |
| parameter = cp_parser_template_parameter (parser, |
| &is_non_type, |
| &is_parameter_pack); |
| /* Add it to the list. */ |
| if (parameter != error_mark_node) |
| parameter_list = process_template_parm (parameter_list, |
| parm_loc, |
| parameter, |
| is_non_type, |
| is_parameter_pack, |
| 0); |
| else |
| { |
| tree err_parm = build_tree_list (parameter, parameter); |
| parameter_list = chainon (parameter_list, err_parm); |
| } |
| |
| /* If the next token is not a `,', we're done. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA)) |
| break; |
| /* Otherwise, consume the `,' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| |
| return end_template_parm_list (parameter_list); |
| } |
| |
| /* Parse a template-parameter. |
| |
| template-parameter: |
| type-parameter |
| parameter-declaration |
| |
| If all goes well, returns a TREE_LIST. The TREE_VALUE represents |
| the parameter. The TREE_PURPOSE is the default value, if any. |
| Returns ERROR_MARK_NODE on failure. *IS_NON_TYPE is set to true |
| iff this parameter is a non-type parameter. *IS_PARAMETER_PACK is |
| set to true iff this parameter is a parameter pack. */ |
| |
| static tree |
| cp_parser_template_parameter (cp_parser* parser, bool *is_non_type, |
| bool *is_parameter_pack) |
| { |
| cp_token *token; |
| cp_parameter_declarator *parameter_declarator; |
| cp_declarator *id_declarator; |
| tree parm; |
| |
| /* Assume it is a type parameter or a template parameter. */ |
| *is_non_type = false; |
| /* Assume it not a parameter pack. */ |
| *is_parameter_pack = false; |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If it is `class' or `template', we have a type-parameter. */ |
| if (token->keyword == RID_TEMPLATE) |
| return cp_parser_type_parameter (parser, is_parameter_pack); |
| /* If it is `class' or `typename' we do not know yet whether it is a |
| type parameter or a non-type parameter. Consider: |
| |
| template <typename T, typename T::X X> ... |
| |
| or: |
| |
| template <class C, class D*> ... |
| |
| Here, the first parameter is a type parameter, and the second is |
| a non-type parameter. We can tell by looking at the token after |
| the identifier -- if it is a `,', `=', or `>' then we have a type |
| parameter. */ |
| if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS) |
| { |
| /* Peek at the token after `class' or `typename'. */ |
| token = cp_lexer_peek_nth_token (parser->lexer, 2); |
| /* If it's an ellipsis, we have a template type parameter |
| pack. */ |
| if (token->type == CPP_ELLIPSIS) |
| return cp_parser_type_parameter (parser, is_parameter_pack); |
| /* If it's an identifier, skip it. */ |
| if (token->type == CPP_NAME) |
| token = cp_lexer_peek_nth_token (parser->lexer, 3); |
| /* Now, see if the token looks like the end of a template |
| parameter. */ |
| if (token->type == CPP_COMMA |
| || token->type == CPP_EQ |
| || token->type == CPP_GREATER) |
| return cp_parser_type_parameter (parser, is_parameter_pack); |
| } |
| |
| /* Otherwise, it is a non-type parameter. |
| |
| [temp.param] |
| |
| When parsing a default template-argument for a non-type |
| template-parameter, the first non-nested `>' is taken as the end |
| of the template parameter-list rather than a greater-than |
| operator. */ |
| *is_non_type = true; |
| parameter_declarator |
| = cp_parser_parameter_declaration (parser, /*template_parm_p=*/true, |
| /*parenthesized_p=*/NULL); |
| |
| /* If the parameter declaration is marked as a parameter pack, set |
| *IS_PARAMETER_PACK to notify the caller. Also, unmark the |
| declarator's PACK_EXPANSION_P, otherwise we'll get errors from |
| grokdeclarator. */ |
| if (parameter_declarator |
| && parameter_declarator->declarator |
| && parameter_declarator->declarator->parameter_pack_p) |
| { |
| *is_parameter_pack = true; |
| parameter_declarator->declarator->parameter_pack_p = false; |
| } |
| |
| /* If the next token is an ellipsis, and we don't already have it |
| marked as a parameter pack, then we have a parameter pack (that |
| has no declarator). */ |
| if (!*is_parameter_pack |
| && cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS) |
| && declarator_can_be_parameter_pack (parameter_declarator->declarator)) |
| { |
| /* Consume the `...'. */ |
| cp_lexer_consume_token (parser->lexer); |
| maybe_warn_variadic_templates (); |
| |
| *is_parameter_pack = true; |
| } |
| /* We might end up with a pack expansion as the type of the non-type |
| template parameter, in which case this is a non-type template |
| parameter pack. */ |
| else if (parameter_declarator |
| && parameter_declarator->decl_specifiers.type |
| && PACK_EXPANSION_P (parameter_declarator->decl_specifiers.type)) |
| { |
| *is_parameter_pack = true; |
| parameter_declarator->decl_specifiers.type = |
| PACK_EXPANSION_PATTERN (parameter_declarator->decl_specifiers.type); |
| } |
| |
| if (*is_parameter_pack && cp_lexer_next_token_is (parser->lexer, CPP_EQ)) |
| { |
| /* Parameter packs cannot have default arguments. However, a |
| user may try to do so, so we'll parse them and give an |
| appropriate diagnostic here. */ |
| |
| /* Consume the `='. */ |
| cp_token *start_token = cp_lexer_peek_token (parser->lexer); |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* Find the name of the parameter pack. */ |
| id_declarator = parameter_declarator->declarator; |
| while (id_declarator && id_declarator->kind != cdk_id) |
| id_declarator = id_declarator->declarator; |
| |
| if (id_declarator && id_declarator->kind == cdk_id) |
| error_at (start_token->location, |
| "template parameter pack %qD cannot have a default argument", |
| id_declarator->u.id.unqualified_name); |
| else |
| error_at (start_token->location, |
| "template parameter pack cannot have a default argument"); |
| |
| /* Parse the default argument, but throw away the result. */ |
| cp_parser_default_argument (parser, /*template_parm_p=*/true); |
| } |
| |
| parm = grokdeclarator (parameter_declarator->declarator, |
| ¶meter_declarator->decl_specifiers, |
| TPARM, /*initialized=*/0, |
| /*attrlist=*/NULL); |
| if (parm == error_mark_node) |
| return error_mark_node; |
| |
| return build_tree_list (parameter_declarator->default_argument, parm); |
| } |
| |
| /* Parse a type-parameter. |
| |
| type-parameter: |
| class identifier [opt] |
| class identifier [opt] = type-id |
| typename identifier [opt] |
| typename identifier [opt] = type-id |
| template < template-parameter-list > class identifier [opt] |
| template < template-parameter-list > class identifier [opt] |
| = id-expression |
| |
| GNU Extension (variadic templates): |
| |
| type-parameter: |
| class ... identifier [opt] |
| typename ... identifier [opt] |
| |
| Returns a TREE_LIST. The TREE_VALUE is itself a TREE_LIST. The |
| TREE_PURPOSE is the default-argument, if any. The TREE_VALUE is |
| the declaration of the parameter. |
| |
| Sets *IS_PARAMETER_PACK if this is a template parameter pack. */ |
| |
| static tree |
| cp_parser_type_parameter (cp_parser* parser, bool *is_parameter_pack) |
| { |
| cp_token *token; |
| tree parameter; |
| |
| /* Look for a keyword to tell us what kind of parameter this is. */ |
| token = cp_parser_require (parser, CPP_KEYWORD, RT_CLASS_TYPENAME_TEMPLATE); |
| if (!token) |
| return error_mark_node; |
| |
| switch (token->keyword) |
| { |
| case RID_CLASS: |
| case RID_TYPENAME: |
| { |
| tree identifier; |
| tree default_argument; |
| |
| /* If the next token is an ellipsis, we have a template |
| argument pack. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)) |
| { |
| /* Consume the `...' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| maybe_warn_variadic_templates (); |
| |
| *is_parameter_pack = true; |
| } |
| |
| /* If the next token is an identifier, then it names the |
| parameter. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)) |
| identifier = cp_parser_identifier (parser); |
| else |
| identifier = NULL_TREE; |
| |
| /* Create the parameter. */ |
| parameter = finish_template_type_parm (class_type_node, identifier); |
| |
| /* If the next token is an `=', we have a default argument. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_EQ)) |
| { |
| /* Consume the `=' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the default-argument. */ |
| push_deferring_access_checks (dk_no_deferred); |
| default_argument = cp_parser_type_id (parser); |
| |
| /* Template parameter packs cannot have default |
| arguments. */ |
| if (*is_parameter_pack) |
| { |
| if (identifier) |
| error_at (token->location, |
| "template parameter pack %qD cannot have a " |
| "default argument", identifier); |
| else |
| error_at (token->location, |
| "template parameter packs cannot have " |
| "default arguments"); |
| default_argument = NULL_TREE; |
| } |
| pop_deferring_access_checks (); |
| } |
| else |
| default_argument = NULL_TREE; |
| |
| /* Create the combined representation of the parameter and the |
| default argument. */ |
| parameter = build_tree_list (default_argument, parameter); |
| } |
| break; |
| |
| case RID_TEMPLATE: |
| { |
| tree identifier; |
| tree default_argument; |
| |
| /* Look for the `<'. */ |
| cp_parser_require (parser, CPP_LESS, RT_LESS); |
| /* Parse the template-parameter-list. */ |
| cp_parser_template_parameter_list (parser); |
| /* Look for the `>'. */ |
| cp_parser_require (parser, CPP_GREATER, RT_GREATER); |
| /* Look for the `class' keyword. */ |
| cp_parser_require_keyword (parser, RID_CLASS, RT_CLASS); |
| /* If the next token is an ellipsis, we have a template |
| argument pack. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)) |
| { |
| /* Consume the `...' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| maybe_warn_variadic_templates (); |
| |
| *is_parameter_pack = true; |
| } |
| /* If the next token is an `=', then there is a |
| default-argument. If the next token is a `>', we are at |
| the end of the parameter-list. If the next token is a `,', |
| then we are at the end of this parameter. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ) |
| && cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER) |
| && cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA)) |
| { |
| identifier = cp_parser_identifier (parser); |
| /* Treat invalid names as if the parameter were nameless. */ |
| if (identifier == error_mark_node) |
| identifier = NULL_TREE; |
| } |
| else |
| identifier = NULL_TREE; |
| |
| /* Create the template parameter. */ |
| parameter = finish_template_template_parm (class_type_node, |
| identifier); |
| |
| /* If the next token is an `=', then there is a |
| default-argument. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_EQ)) |
| { |
| bool is_template; |
| |
| /* Consume the `='. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the id-expression. */ |
| push_deferring_access_checks (dk_no_deferred); |
| /* save token before parsing the id-expression, for error |
| reporting */ |
| token = cp_lexer_peek_token (parser->lexer); |
| default_argument |
| = cp_parser_id_expression (parser, |
| /*template_keyword_p=*/false, |
| /*check_dependency_p=*/true, |
| /*template_p=*/&is_template, |
| /*declarator_p=*/false, |
| /*optional_p=*/false); |
| if (TREE_CODE (default_argument) == TYPE_DECL) |
| /* If the id-expression was a template-id that refers to |
| a template-class, we already have the declaration here, |
| so no further lookup is needed. */ |
| ; |
| else |
| /* Look up the name. */ |
| default_argument |
| = cp_parser_lookup_name (parser, default_argument, |
| none_type, |
| /*is_template=*/is_template, |
| /*is_namespace=*/false, |
| /*check_dependency=*/true, |
| /*ambiguous_decls=*/NULL, |
| token->location); |
| /* See if the default argument is valid. */ |
| default_argument |
| = check_template_template_default_arg (default_argument); |
| |
| /* Template parameter packs cannot have default |
| arguments. */ |
| if (*is_parameter_pack) |
| { |
| if (identifier) |
| error_at (token->location, |
| "template parameter pack %qD cannot " |
| "have a default argument", |
| identifier); |
| else |
| error_at (token->location, "template parameter packs cannot " |
| "have default arguments"); |
| default_argument = NULL_TREE; |
| } |
| pop_deferring_access_checks (); |
| } |
| else |
| default_argument = NULL_TREE; |
| |
| /* Create the combined representation of the parameter and the |
| default argument. */ |
| parameter = build_tree_list (default_argument, parameter); |
| } |
| break; |
| |
| default: |
| gcc_unreachable (); |
| break; |
| } |
| |
| return parameter; |
| } |
| |
| /* Parse a template-id. |
| |
| template-id: |
| template-name < template-argument-list [opt] > |
| |
| If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the |
| `template' keyword. In this case, a TEMPLATE_ID_EXPR will be |
| returned. Otherwise, if the template-name names a function, or set |
| of functions, returns a TEMPLATE_ID_EXPR. If the template-name |
| names a class, returns a TYPE_DECL for the specialization. |
| |
| If CHECK_DEPENDENCY_P is FALSE, names are looked up in |
| uninstantiated templates. */ |
| |
| static tree |
| cp_parser_template_id (cp_parser *parser, |
| bool template_keyword_p, |
| bool check_dependency_p, |
| bool is_declaration) |
| { |
| int i; |
| tree templ; |
| tree arguments; |
| tree template_id; |
| cp_token_position start_of_id = 0; |
| deferred_access_check *chk; |
| VEC (deferred_access_check,gc) *access_check; |
| cp_token *next_token = NULL, *next_token_2 = NULL; |
| bool is_identifier; |
| |
| /* If the next token corresponds to a template-id, there is no need |
| to reparse it. */ |
| next_token = cp_lexer_peek_token (parser->lexer); |
| if (next_token->type == CPP_TEMPLATE_ID) |
| { |
| struct tree_check *check_value; |
| |
| /* Get the stored value. */ |
| check_value = cp_lexer_consume_token (parser->lexer)->u.tree_check_value; |
| /* Perform any access checks that were deferred. */ |
| access_check = check_value->checks; |
| if (access_check) |
| { |
| FOR_EACH_VEC_ELT (deferred_access_check, access_check, i, chk) |
| perform_or_defer_access_check (chk->binfo, |
| chk->decl, |
| chk->diag_decl); |
| } |
| /* Return the stored value. */ |
| return check_value->value; |
| } |
| |
| /* Avoid performing name lookup if there is no possibility of |
| finding a template-id. */ |
| if ((next_token->type != CPP_NAME && next_token->keyword != RID_OPERATOR) |
| || (next_token->type == CPP_NAME |
| && !cp_parser_nth_token_starts_template_argument_list_p |
| (parser, 2))) |
| { |
| cp_parser_error (parser, "expected template-id"); |
| return error_mark_node; |
| } |
| |
| /* Remember where the template-id starts. */ |
| if (cp_parser_uncommitted_to_tentative_parse_p (parser)) |
| start_of_id = cp_lexer_token_position (parser->lexer, false); |
| |
| push_deferring_access_checks (dk_deferred); |
| |
| /* Parse the template-name. */ |
| is_identifier = false; |
| templ = cp_parser_template_name (parser, template_keyword_p, |
| check_dependency_p, |
| is_declaration, |
| &is_identifier); |
| if (templ == error_mark_node || is_identifier) |
| { |
| pop_deferring_access_checks (); |
| return templ; |
| } |
| |
| /* If we find the sequence `[:' after a template-name, it's probably |
| a digraph-typo for `< ::'. Substitute the tokens and check if we can |
| parse correctly the argument list. */ |
| next_token = cp_lexer_peek_token (parser->lexer); |
| next_token_2 = cp_lexer_peek_nth_token (parser->lexer, 2); |
| if (next_token->type == CPP_OPEN_SQUARE |
| && next_token->flags & DIGRAPH |
| && next_token_2->type == CPP_COLON |
| && !(next_token_2->flags & PREV_WHITE)) |
| { |
| cp_parser_parse_tentatively (parser); |
| /* Change `:' into `::'. */ |
| next_token_2->type = CPP_SCOPE; |
| /* Consume the first token (CPP_OPEN_SQUARE - which we pretend it is |
| CPP_LESS. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* Parse the arguments. */ |
| arguments = cp_parser_enclosed_template_argument_list (parser); |
| if (!cp_parser_parse_definitely (parser)) |
| { |
| /* If we couldn't parse an argument list, then we revert our changes |
| and return simply an error. Maybe this is not a template-id |
| after all. */ |
| next_token_2->type = CPP_COLON; |
| cp_parser_error (parser, "expected %<<%>"); |
| pop_deferring_access_checks (); |
| return error_mark_node; |
| } |
| /* Otherwise, emit an error about the invalid digraph, but continue |
| parsing because we got our argument list. */ |
| if (permerror (next_token->location, |
| "%<<::%> cannot begin a template-argument list")) |
| { |
| static bool hint = false; |
| inform (next_token->location, |
| "%<<:%> is an alternate spelling for %<[%>." |
| " Insert whitespace between %<<%> and %<::%>"); |
| if (!hint && !flag_permissive) |
| { |
| inform (next_token->location, "(if you use %<-fpermissive%>" |
| " G++ will accept your code)"); |
| hint = true; |
| } |
| } |
| } |
| else |
| { |
| /* Look for the `<' that starts the template-argument-list. */ |
| if (!cp_parser_require (parser, CPP_LESS, RT_LESS)) |
| { |
| pop_deferring_access_checks (); |
| return error_mark_node; |
| } |
| /* Parse the arguments. */ |
| arguments = cp_parser_enclosed_template_argument_list (parser); |
| } |
| |
| /* Build a representation of the specialization. */ |
| if (TREE_CODE (templ) == IDENTIFIER_NODE) |
| template_id = build_min_nt (TEMPLATE_ID_EXPR, templ, arguments); |
| else if (DECL_CLASS_TEMPLATE_P (templ) |
| || DECL_TEMPLATE_TEMPLATE_PARM_P (templ)) |
| { |
| bool entering_scope; |
| /* In "template <typename T> ... A<T>::", A<T> is the abstract A |
| template (rather than some instantiation thereof) only if |
| is not nested within some other construct. For example, in |
| "template <typename T> void f(T) { A<T>::", A<T> is just an |
| instantiation of A. */ |
| entering_scope = (template_parm_scope_p () |
| && cp_lexer_next_token_is (parser->lexer, |
| CPP_SCOPE)); |
| template_id |
| = finish_template_type (templ, arguments, entering_scope); |
| } |
| else |
| { |
| /* If it's not a class-template or a template-template, it should be |
| a function-template. */ |
| gcc_assert ((DECL_FUNCTION_TEMPLATE_P (templ) |
| || TREE_CODE (templ) == OVERLOAD |
| || BASELINK_P (templ))); |
| |
| template_id = lookup_template_function (templ, arguments); |
| } |
| |
| /* If parsing tentatively, replace the sequence of tokens that makes |
| up the template-id with a CPP_TEMPLATE_ID token. That way, |
| should we re-parse the token stream, we will not have to repeat |
| the effort required to do the parse, nor will we issue duplicate |
| error messages about problems during instantiation of the |
| template. */ |
| if (start_of_id) |
| { |
| cp_token *token = cp_lexer_token_at (parser->lexer, start_of_id); |
| |
| /* Reset the contents of the START_OF_ID token. */ |
| token->type = CPP_TEMPLATE_ID; |
| /* Retrieve any deferred checks. Do not pop this access checks yet |
| so the memory will not be reclaimed during token replacing below. */ |
| token->u.tree_check_value = ggc_alloc_cleared_tree_check (); |
| token->u.tree_check_value->value = template_id; |
| token->u.tree_check_value->checks = get_deferred_access_checks (); |
| token->keyword = RID_MAX; |
| |
| /* Purge all subsequent tokens. */ |
| cp_lexer_purge_tokens_after (parser->lexer, start_of_id); |
| |
| /* ??? Can we actually assume that, if template_id == |
| error_mark_node, we will have issued a diagnostic to the |
| user, as opposed to simply marking the tentative parse as |
| failed? */ |
| if (cp_parser_error_occurred (parser) && template_id != error_mark_node) |
| error_at (token->location, "parse error in template argument list"); |
| } |
| |
| pop_deferring_access_checks (); |
| return template_id; |
| } |
| |
| /* Parse a template-name. |
| |
| template-name: |
| identifier |
| |
| The standard should actually say: |
| |
| template-name: |
| identifier |
| operator-function-id |
| |
| A defect report has been filed about this issue. |
| |
| A conversion-function-id cannot be a template name because they cannot |
| be part of a template-id. In fact, looking at this code: |
| |
| a.operator K<int>() |
| |
| the conversion-function-id is "operator K<int>", and K<int> is a type-id. |
| It is impossible to call a templated conversion-function-id with an |
| explicit argument list, since the only allowed template parameter is |
| the type to which it is converting. |
| |
| If TEMPLATE_KEYWORD_P is true, then we have just seen the |
| `template' keyword, in a construction like: |
| |
| T::template f<3>() |
| |
| In that case `f' is taken to be a template-name, even though there |
| is no way of knowing for sure. |
| |
| Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the |
| name refers to a set of overloaded functions, at least one of which |
| is a template, or an IDENTIFIER_NODE with the name of the template, |
| if TEMPLATE_KEYWORD_P is true. If CHECK_DEPENDENCY_P is FALSE, |
| names are looked up inside uninstantiated templates. */ |
| |
| static tree |
| cp_parser_template_name (cp_parser* parser, |
| bool template_keyword_p, |
| bool check_dependency_p, |
| bool is_declaration, |
| bool *is_identifier) |
| { |
| tree identifier; |
| tree decl; |
| tree fns; |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| /* If the next token is `operator', then we have either an |
| operator-function-id or a conversion-function-id. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR)) |
| { |
| /* We don't know whether we're looking at an |
| operator-function-id or a conversion-function-id. */ |
| cp_parser_parse_tentatively (parser); |
| /* Try an operator-function-id. */ |
| identifier = cp_parser_operator_function_id (parser); |
| /* If that didn't work, try a conversion-function-id. */ |
| if (!cp_parser_parse_definitely (parser)) |
| { |
| cp_parser_error (parser, "expected template-name"); |
| return error_mark_node; |
| } |
| } |
| /* Look for the identifier. */ |
| else |
| identifier = cp_parser_identifier (parser); |
| |
| /* If we didn't find an identifier, we don't have a template-id. */ |
| if (identifier == error_mark_node) |
| return error_mark_node; |
| |
| /* If the name immediately followed the `template' keyword, then it |
| is a template-name. However, if the next token is not `<', then |
| we do not treat it as a template-name, since it is not being used |
| as part of a template-id. This enables us to handle constructs |
| like: |
| |
| template <typename T> struct S { S(); }; |
| template <typename T> S<T>::S(); |
| |
| correctly. We would treat `S' as a template -- if it were `S<T>' |
| -- but we do not if there is no `<'. */ |
| |
| if (processing_template_decl |
| && cp_parser_nth_token_starts_template_argument_list_p (parser, 1)) |
| { |
| /* In a declaration, in a dependent context, we pretend that the |
| "template" keyword was present in order to improve error |
| recovery. For example, given: |
| |
| template <typename T> void f(T::X<int>); |
| |
| we want to treat "X<int>" as a template-id. */ |
| if (is_declaration |
| && !template_keyword_p |
| && parser->scope && TYPE_P (parser->scope) |
| && check_dependency_p |
| && dependent_scope_p (parser->scope) |
| /* Do not do this for dtors (or ctors), since they never |
| need the template keyword before their name. */ |
| && !constructor_name_p (identifier, parser->scope)) |
| { |
| cp_token_position start = 0; |
| |
| /* Explain what went wrong. */ |
| error_at (token->location, "non-template %qD used as template", |
| identifier); |
| inform (token->location, "use %<%T::template %D%> to indicate that it is a template", |
| parser->scope, identifier); |
| /* If parsing tentatively, find the location of the "<" token. */ |
| if (cp_parser_simulate_error (parser)) |
| start = cp_lexer_token_position (parser->lexer, true); |
| /* Parse the template arguments so that we can issue error |
| messages about them. */ |
| cp_lexer_consume_token (parser->lexer); |
| cp_parser_enclosed_template_argument_list (parser); |
| /* Skip tokens until we find a good place from which to |
| continue parsing. */ |
| cp_parser_skip_to_closing_parenthesis (parser, |
| /*recovering=*/true, |
| /*or_comma=*/true, |
| /*consume_paren=*/false); |
| /* If parsing tentatively, permanently remove the |
| template argument list. That will prevent duplicate |
| error messages from being issued about the missing |
| "template" keyword. */ |
| if (start) |
| cp_lexer_purge_tokens_after (parser->lexer, start); |
| if (is_identifier) |
| *is_identifier = true; |
| return identifier; |
| } |
| |
| /* If the "template" keyword is present, then there is generally |
| no point in doing name-lookup, so we just return IDENTIFIER. |
| But, if the qualifying scope is non-dependent then we can |
| (and must) do name-lookup normally. */ |
| if (template_keyword_p |
| && (!parser->scope |
| || (TYPE_P (parser->scope) |
| && dependent_type_p (parser->scope)))) |
| return identifier; |
| } |
| |
| /* Look up the name. */ |
| decl = cp_parser_lookup_name (parser, identifier, |
| none_type, |
| /*is_template=*/true, |
| /*is_namespace=*/false, |
| check_dependency_p, |
| /*ambiguous_decls=*/NULL, |
| token->location); |
| |
| /* If DECL is a template, then the name was a template-name. */ |
| if (TREE_CODE (decl) == TEMPLATE_DECL) |
| ; |
| else |
| { |
| tree fn = NULL_TREE; |
| |
| /* The standard does not explicitly indicate whether a name that |
| names a set of overloaded declarations, some of which are |
| templates, is a template-name. However, such a name should |
| be a template-name; otherwise, there is no way to form a |
| template-id for the overloaded templates. */ |
| fns = BASELINK_P (decl) ? BASELINK_FUNCTIONS (decl) : decl; |
| if (TREE_CODE (fns) == OVERLOAD) |
| for (fn = fns; fn; fn = OVL_NEXT (fn)) |
| if (TREE_CODE (OVL_CURRENT (fn)) == TEMPLATE_DECL) |
| break; |
| |
| if (!fn) |
| { |
| /* The name does not name a template. */ |
| cp_parser_error (parser, "expected template-name"); |
| return error_mark_node; |
| } |
| } |
| |
| /* If DECL is dependent, and refers to a function, then just return |
| its name; we will look it up again during template instantiation. */ |
| if (DECL_FUNCTION_TEMPLATE_P (decl) || !DECL_P (decl)) |
| { |
| tree scope = CP_DECL_CONTEXT (get_first_fn (decl)); |
| if (TYPE_P (scope) && dependent_type_p (scope)) |
| return identifier; |
| } |
| |
| return decl; |
| } |
| |
| /* Parse a template-argument-list. |
| |
| template-argument-list: |
| template-argument ... [opt] |
| template-argument-list , template-argument ... [opt] |
| |
| Returns a TREE_VEC containing the arguments. */ |
| |
| static tree |
| cp_parser_template_argument_list (cp_parser* parser) |
| { |
| tree fixed_args[10]; |
| unsigned n_args = 0; |
| unsigned alloced = 10; |
| tree *arg_ary = fixed_args; |
| tree vec; |
| bool saved_in_template_argument_list_p; |
| bool saved_ice_p; |
| bool saved_non_ice_p; |
| |
| saved_in_template_argument_list_p = parser->in_template_argument_list_p; |
| parser->in_template_argument_list_p = true; |
| /* Even if the template-id appears in an integral |
| constant-expression, the contents of the argument list do |
| not. */ |
| saved_ice_p = parser->integral_constant_expression_p; |
| parser->integral_constant_expression_p = false; |
| saved_non_ice_p = parser->non_integral_constant_expression_p; |
| parser->non_integral_constant_expression_p = false; |
| /* Parse the arguments. */ |
| do |
| { |
| tree argument; |
| |
| if (n_args) |
| /* Consume the comma. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* Parse the template-argument. */ |
| argument = cp_parser_template_argument (parser); |
| |
| /* If the next token is an ellipsis, we're expanding a template |
| argument pack. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)) |
| { |
| if (argument == error_mark_node) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| error_at (token->location, |
| "expected parameter pack before %<...%>"); |
| } |
| /* Consume the `...' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* Make the argument into a TYPE_PACK_EXPANSION or |
| EXPR_PACK_EXPANSION. */ |
| argument = make_pack_expansion (argument); |
| } |
| |
| if (n_args == alloced) |
| { |
| alloced *= 2; |
| |
| if (arg_ary == fixed_args) |
| { |
| arg_ary = XNEWVEC (tree, alloced); |
| memcpy (arg_ary, fixed_args, sizeof (tree) * n_args); |
| } |
| else |
| arg_ary = XRESIZEVEC (tree, arg_ary, alloced); |
| } |
| arg_ary[n_args++] = argument; |
| } |
| while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA)); |
| |
| vec = make_tree_vec (n_args); |
| |
| while (n_args--) |
| TREE_VEC_ELT (vec, n_args) = arg_ary[n_args]; |
| |
| if (arg_ary != fixed_args) |
| free (arg_ary); |
| parser->non_integral_constant_expression_p = saved_non_ice_p; |
| parser->integral_constant_expression_p = saved_ice_p; |
| parser->in_template_argument_list_p = saved_in_template_argument_list_p; |
| #ifdef ENABLE_CHECKING |
| SET_NON_DEFAULT_TEMPLATE_ARGS_COUNT (vec, TREE_VEC_LENGTH (vec)); |
| #endif |
| return vec; |
| } |
| |
| /* Parse a template-argument. |
| |
| template-argument: |
| assignment-expression |
| type-id |
| id-expression |
| |
| The representation is that of an assignment-expression, type-id, or |
| id-expression -- except that the qualified id-expression is |
| evaluated, so that the value returned is either a DECL or an |
| OVERLOAD. |
| |
| Although the standard says "assignment-expression", it forbids |
| throw-expressions or assignments in the template argument. |
| Therefore, we use "conditional-expression" instead. */ |
| |
| static tree |
| cp_parser_template_argument (cp_parser* parser) |
| { |
| tree argument; |
| bool template_p; |
| bool address_p; |
| bool maybe_type_id = false; |
| cp_token *token = NULL, *argument_start_token = NULL; |
| cp_id_kind idk; |
| |
| /* There's really no way to know what we're looking at, so we just |
| try each alternative in order. |
| |
| [temp.arg] |
| |
| In a template-argument, an ambiguity between a type-id and an |
| expression is resolved to a type-id, regardless of the form of |
| the corresponding template-parameter. |
| |
| Therefore, we try a type-id first. */ |
| cp_parser_parse_tentatively (parser); |
| argument = cp_parser_template_type_arg (parser); |
| /* If there was no error parsing the type-id but the next token is a |
| '>>', our behavior depends on which dialect of C++ we're |
| parsing. In C++98, we probably found a typo for '> >'. But there |
| are type-id which are also valid expressions. For instance: |
| |
| struct X { int operator >> (int); }; |
| template <int V> struct Foo {}; |
| Foo<X () >> 5> r; |
| |
| Here 'X()' is a valid type-id of a function type, but the user just |
| wanted to write the expression "X() >> 5". Thus, we remember that we |
| found a valid type-id, but we still try to parse the argument as an |
| expression to see what happens. |
| |
| In C++0x, the '>>' will be considered two separate '>' |
| tokens. */ |
| if (!cp_parser_error_occurred (parser) |
| && cxx_dialect == cxx98 |
| && cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT)) |
| { |
| maybe_type_id = true; |
| cp_parser_abort_tentative_parse (parser); |
| } |
| else |
| { |
| /* If the next token isn't a `,' or a `>', then this argument wasn't |
| really finished. This means that the argument is not a valid |
| type-id. */ |
| if (!cp_parser_next_token_ends_template_argument_p (parser)) |
| cp_parser_error (parser, "expected template-argument"); |
| /* If that worked, we're done. */ |
| if (cp_parser_parse_definitely (parser)) |
| return argument; |
| } |
| /* We're still not sure what the argument will be. */ |
| cp_parser_parse_tentatively (parser); |
| /* Try a template. */ |
| argument_start_token = cp_lexer_peek_token (parser->lexer); |
| argument = cp_parser_id_expression (parser, |
| /*template_keyword_p=*/false, |
| /*check_dependency_p=*/true, |
| &template_p, |
| /*declarator_p=*/false, |
| /*optional_p=*/false); |
| /* If the next token isn't a `,' or a `>', then this argument wasn't |
| really finished. */ |
| if (!cp_parser_next_token_ends_template_argument_p (parser)) |
| cp_parser_error (parser, "expected template-argument"); |
| if (!cp_parser_error_occurred (parser)) |
| { |
| /* Figure out what is being referred to. If the id-expression |
| was for a class template specialization, then we will have a |
| TYPE_DECL at this point. There is no need to do name lookup |
| at this point in that case. */ |
| if (TREE_CODE (argument) != TYPE_DECL) |
| argument = cp_parser_lookup_name (parser, argument, |
| none_type, |
| /*is_template=*/template_p, |
| /*is_namespace=*/false, |
| /*check_dependency=*/true, |
| /*ambiguous_decls=*/NULL, |
| argument_start_token->location); |
| if (TREE_CODE (argument) != TEMPLATE_DECL |
| && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE) |
| cp_parser_error (parser, "expected template-name"); |
| } |
| if (cp_parser_parse_definitely (parser)) |
| return argument; |
| /* It must be a non-type argument. There permitted cases are given |
| in [temp.arg.nontype]: |
| |
| -- an integral constant-expression of integral or enumeration |
| type; or |
| |
| -- the name of a non-type template-parameter; or |
| |
| -- the name of an object or function with external linkage... |
| |
| -- the address of an object or function with external linkage... |
| |
| -- a pointer to member... */ |
| /* Look for a non-type template parameter. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)) |
| { |
| cp_parser_parse_tentatively (parser); |
| argument = cp_parser_primary_expression (parser, |
| /*address_p=*/false, |
| /*cast_p=*/false, |
| /*template_arg_p=*/true, |
| &idk); |
| if (TREE_CODE (argument) != TEMPLATE_PARM_INDEX |
| || !cp_parser_next_token_ends_template_argument_p (parser)) |
| cp_parser_simulate_error (parser); |
| if (cp_parser_parse_definitely (parser)) |
| return argument; |
| } |
| |
| /* If the next token is "&", the argument must be the address of an |
| object or function with external linkage. */ |
| address_p = cp_lexer_next_token_is (parser->lexer, CPP_AND); |
| if (address_p) |
| cp_lexer_consume_token (parser->lexer); |
| /* See if we might have an id-expression. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| if (token->type == CPP_NAME |
| || token->keyword == RID_OPERATOR |
| || token->type == CPP_SCOPE |
| || token->type == CPP_TEMPLATE_ID |
| || token->type == CPP_NESTED_NAME_SPECIFIER) |
| { |
| cp_parser_parse_tentatively (parser); |
| argument = cp_parser_primary_expression (parser, |
| address_p, |
| /*cast_p=*/false, |
| /*template_arg_p=*/true, |
| &idk); |
| if (cp_parser_error_occurred (parser) |
| || !cp_parser_next_token_ends_template_argument_p (parser)) |
| cp_parser_abort_tentative_parse (parser); |
| else |
| { |
| tree probe; |
| |
| if (TREE_CODE (argument) == INDIRECT_REF) |
| { |
| gcc_assert (REFERENCE_REF_P (argument)); |
| argument = TREE_OPERAND (argument, 0); |
| } |
| |
| /* If we're in a template, we represent a qualified-id referring |
| to a static data member as a SCOPE_REF even if the scope isn't |
| dependent so that we can check access control later. */ |
| probe = argument; |
| if (TREE_CODE (probe) == SCOPE_REF) |
| probe = TREE_OPERAND (probe, 1); |
| if (TREE_CODE (probe) == VAR_DECL) |
| { |
| /* A variable without external linkage might still be a |
| valid constant-expression, so no error is issued here |
| if the external-linkage check fails. */ |
| if (!address_p && !DECL_EXTERNAL_LINKAGE_P (probe)) |
| cp_parser_simulate_error (parser); |
| } |
| else if (is_overloaded_fn (argument)) |
| /* All overloaded functions are allowed; if the external |
| linkage test does not pass, an error will be issued |
| later. */ |
| ; |
| else if (address_p |
| && (TREE_CODE (argument) == OFFSET_REF |
| || TREE_CODE (argument) == SCOPE_REF)) |
| /* A pointer-to-member. */ |
| ; |
| else if (TREE_CODE (argument) == TEMPLATE_PARM_INDEX) |
| ; |
| else |
| cp_parser_simulate_error (parser); |
| |
| if (cp_parser_parse_definitely (parser)) |
| { |
| if (address_p) |
| argument = build_x_unary_op (ADDR_EXPR, argument, |
| tf_warning_or_error); |
| return argument; |
| } |
| } |
| } |
| /* If the argument started with "&", there are no other valid |
| alternatives at this point. */ |
| if (address_p) |
| { |
| cp_parser_error (parser, "invalid non-type template argument"); |
| return error_mark_node; |
| } |
| |
| /* If the argument wasn't successfully parsed as a type-id followed |
| by '>>', the argument can only be a constant expression now. |
| Otherwise, we try parsing the constant-expression tentatively, |
| because the argument could really be a type-id. */ |
| if (maybe_type_id) |
| cp_parser_parse_tentatively (parser); |
| argument = cp_parser_constant_expression (parser, |
| /*allow_non_constant_p=*/false, |
| /*non_constant_p=*/NULL); |
| argument = fold_non_dependent_expr (argument); |
| if (!maybe_type_id) |
| return argument; |
| if (!cp_parser_next_token_ends_template_argument_p (parser)) |
| cp_parser_error (parser, "expected template-argument"); |
| if (cp_parser_parse_definitely (parser)) |
| return argument; |
| /* We did our best to parse the argument as a non type-id, but that |
| was the only alternative that matched (albeit with a '>' after |
| it). We can assume it's just a typo from the user, and a |
| diagnostic will then be issued. */ |
| return cp_parser_template_type_arg (parser); |
| } |
| |
| /* Parse an explicit-instantiation. |
| |
| explicit-instantiation: |
| template declaration |
| |
| Although the standard says `declaration', what it really means is: |
| |
| explicit-instantiation: |
| template decl-specifier-seq [opt] declarator [opt] ; |
| |
| Things like `template int S<int>::i = 5, int S<double>::j;' are not |
| supposed to be allowed. A defect report has been filed about this |
| issue. |
| |
| GNU Extension: |
| |
| explicit-instantiation: |
| storage-class-specifier template |
| decl-specifier-seq [opt] declarator [opt] ; |
| function-specifier template |
| decl-specifier-seq [opt] declarator [opt] ; */ |
| |
| static void |
| cp_parser_explicit_instantiation (cp_parser* parser) |
| { |
| int declares_class_or_enum; |
| cp_decl_specifier_seq decl_specifiers; |
| tree extension_specifier = NULL_TREE; |
| |
| timevar_push (TV_TEMPLATE_INST); |
| |
| /* Look for an (optional) storage-class-specifier or |
| function-specifier. */ |
| if (cp_parser_allow_gnu_extensions_p (parser)) |
| { |
| extension_specifier |
| = cp_parser_storage_class_specifier_opt (parser); |
| if (!extension_specifier) |
| extension_specifier |
| = cp_parser_function_specifier_opt (parser, |
| /*decl_specs=*/NULL); |
| } |
| |
| /* Look for the `template' keyword. */ |
| cp_parser_require_keyword (parser, RID_TEMPLATE, RT_TEMPLATE); |
| /* Let the front end know that we are processing an explicit |
| instantiation. */ |
| begin_explicit_instantiation (); |
| /* [temp.explicit] says that we are supposed to ignore access |
| control while processing explicit instantiation directives. */ |
| push_deferring_access_checks (dk_no_check); |
| /* Parse a decl-specifier-seq. */ |
| cp_parser_decl_specifier_seq (parser, |
| CP_PARSER_FLAGS_OPTIONAL, |
| &decl_specifiers, |
| &declares_class_or_enum); |
| /* If there was exactly one decl-specifier, and it declared a class, |
| and there's no declarator, then we have an explicit type |
| instantiation. */ |
| if (declares_class_or_enum && cp_parser_declares_only_class_p (parser)) |
| { |
| tree type; |
| |
| type = check_tag_decl (&decl_specifiers); |
| /* Turn access control back on for names used during |
| template instantiation. */ |
| pop_deferring_access_checks (); |
| if (type) |
| do_type_instantiation (type, extension_specifier, |
| /*complain=*/tf_error); |
| } |
| else |
| { |
| cp_declarator *declarator; |
| tree decl; |
| |
| /* Parse the declarator. */ |
| declarator |
| = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED, |
| /*ctor_dtor_or_conv_p=*/NULL, |
| /*parenthesized_p=*/NULL, |
| /*member_p=*/false); |
| if (declares_class_or_enum & 2) |
| cp_parser_check_for_definition_in_return_type (declarator, |
| decl_specifiers.type, |
| decl_specifiers.type_location); |
| if (declarator != cp_error_declarator) |
| { |
| if (decl_specifiers.specs[(int)ds_inline]) |
| permerror (input_location, "explicit instantiation shall not use" |
| " %<inline%> specifier"); |
| if (decl_specifiers.specs[(int)ds_constexpr]) |
| permerror (input_location, "explicit instantiation shall not use" |
| " %<constexpr%> specifier"); |
| |
| decl = grokdeclarator (declarator, &decl_specifiers, |
| NORMAL, 0, &decl_specifiers.attributes); |
| /* Turn access control back on for names used during |
| template instantiation. */ |
| pop_deferring_access_checks (); |
| /* Do the explicit instantiation. */ |
| do_decl_instantiation (decl, extension_specifier); |
| } |
| else |
| { |
| pop_deferring_access_checks (); |
| /* Skip the body of the explicit instantiation. */ |
| cp_parser_skip_to_end_of_statement (parser); |
| } |
| } |
| /* We're done with the instantiation. */ |
| end_explicit_instantiation (); |
| |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| |
| timevar_pop (TV_TEMPLATE_INST); |
| } |
| |
| /* Parse an explicit-specialization. |
| |
| explicit-specialization: |
| template < > declaration |
| |
| Although the standard says `declaration', what it really means is: |
| |
| explicit-specialization: |
| template <> decl-specifier [opt] init-declarator [opt] ; |
| template <> function-definition |
| template <> explicit-specialization |
| template <> template-declaration */ |
| |
| static void |
| cp_parser_explicit_specialization (cp_parser* parser) |
| { |
| bool need_lang_pop; |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| /* Look for the `template' keyword. */ |
| cp_parser_require_keyword (parser, RID_TEMPLATE, RT_TEMPLATE); |
| /* Look for the `<'. */ |
| cp_parser_require (parser, CPP_LESS, RT_LESS); |
| /* Look for the `>'. */ |
| cp_parser_require (parser, CPP_GREATER, RT_GREATER); |
| /* We have processed another parameter list. */ |
| ++parser->num_template_parameter_lists; |
| /* [temp] |
| |
| A template ... explicit specialization ... shall not have C |
| linkage. */ |
| if (current_lang_name == lang_name_c) |
| { |
| error_at (token->location, "template specialization with C linkage"); |
| /* Give it C++ linkage to avoid confusing other parts of the |
| front end. */ |
| push_lang_context (lang_name_cplusplus); |
| need_lang_pop = true; |
| } |
| else |
| need_lang_pop = false; |
| /* Let the front end know that we are beginning a specialization. */ |
| if (!begin_specialization ()) |
| { |
| end_specialization (); |
| return; |
| } |
| |
| /* If the next keyword is `template', we need to figure out whether |
| or not we're looking a template-declaration. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE)) |
| { |
| if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS |
| && cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_GREATER) |
| cp_parser_template_declaration_after_export (parser, |
| /*member_p=*/false); |
| else |
| cp_parser_explicit_specialization (parser); |
| } |
| else |
| /* Parse the dependent declaration. */ |
| cp_parser_single_declaration (parser, |
| /*checks=*/NULL, |
| /*member_p=*/false, |
| /*explicit_specialization_p=*/true, |
| /*friend_p=*/NULL); |
| /* We're done with the specialization. */ |
| end_specialization (); |
| /* For the erroneous case of a template with C linkage, we pushed an |
| implicit C++ linkage scope; exit that scope now. */ |
| if (need_lang_pop) |
| pop_lang_context (); |
| /* We're done with this parameter list. */ |
| --parser->num_template_parameter_lists; |
| } |
| |
| /* Parse a type-specifier. |
| |
| type-specifier: |
| simple-type-specifier |
| class-specifier |
| enum-specifier |
| elaborated-type-specifier |
| cv-qualifier |
| |
| GNU Extension: |
| |
| type-specifier: |
| __complex__ |
| |
| Returns a representation of the type-specifier. For a |
| class-specifier, enum-specifier, or elaborated-type-specifier, a |
| TREE_TYPE is returned; otherwise, a TYPE_DECL is returned. |
| |
| The parser flags FLAGS is used to control type-specifier parsing. |
| |
| If IS_DECLARATION is TRUE, then this type-specifier is appearing |
| in a decl-specifier-seq. |
| |
| If DECLARES_CLASS_OR_ENUM is non-NULL, and the type-specifier is a |
| class-specifier, enum-specifier, or elaborated-type-specifier, then |
| *DECLARES_CLASS_OR_ENUM is set to a nonzero value. The value is 1 |
| if a type is declared; 2 if it is defined. Otherwise, it is set to |
| zero. |
| |
| If IS_CV_QUALIFIER is non-NULL, and the type-specifier is a |
| cv-qualifier, then IS_CV_QUALIFIER is set to TRUE. Otherwise, it |
| is set to FALSE. */ |
| |
| static tree |
| cp_parser_type_specifier (cp_parser* parser, |
| cp_parser_flags flags, |
| cp_decl_specifier_seq *decl_specs, |
| bool is_declaration, |
| int* declares_class_or_enum, |
| bool* is_cv_qualifier) |
| { |
| tree type_spec = NULL_TREE; |
| cp_token *token; |
| enum rid keyword; |
| cp_decl_spec ds = ds_last; |
| |
| /* Assume this type-specifier does not declare a new type. */ |
| if (declares_class_or_enum) |
| *declares_class_or_enum = 0; |
| /* And that it does not specify a cv-qualifier. */ |
| if (is_cv_qualifier) |
| *is_cv_qualifier = false; |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| /* If we're looking at a keyword, we can use that to guide the |
| production we choose. */ |
| keyword = token->keyword; |
| switch (keyword) |
| { |
| case RID_ENUM: |
| if ((flags & CP_PARSER_FLAGS_NO_TYPE_DEFINITIONS)) |
| goto elaborated_type_specifier; |
| |
| /* Look for the enum-specifier. */ |
| type_spec = cp_parser_enum_specifier (parser); |
| /* If that worked, we're done. */ |
| if (type_spec) |
| { |
| if (declares_class_or_enum) |
| *declares_class_or_enum = 2; |
| if (decl_specs) |
| cp_parser_set_decl_spec_type (decl_specs, |
| type_spec, |
| token->location, |
| /*user_defined_p=*/true); |
| return type_spec; |
| } |
| else |
| goto elaborated_type_specifier; |
| |
| /* Any of these indicate either a class-specifier, or an |
| elaborated-type-specifier. */ |
| case RID_CLASS: |
| case RID_STRUCT: |
| case RID_UNION: |
| if ((flags & CP_PARSER_FLAGS_NO_TYPE_DEFINITIONS)) |
| goto elaborated_type_specifier; |
| |
| /* Parse tentatively so that we can back up if we don't find a |
| class-specifier. */ |
| cp_parser_parse_tentatively (parser); |
| /* Look for the class-specifier. */ |
| type_spec = cp_parser_class_specifier (parser); |
| invoke_plugin_callbacks (PLUGIN_FINISH_TYPE, type_spec); |
| /* If that worked, we're done. */ |
| if (cp_parser_parse_definitely (parser)) |
| { |
| if (declares_class_or_enum) |
| *declares_class_or_enum = 2; |
| if (decl_specs) |
| cp_parser_set_decl_spec_type (decl_specs, |
| type_spec, |
| token->location, |
| /*user_defined_p=*/true); |
| return type_spec; |
| } |
| |
| /* Fall through. */ |
| elaborated_type_specifier: |
| /* We're declaring (not defining) a class or enum. */ |
| if (declares_class_or_enum) |
| *declares_class_or_enum = 1; |
| |
| /* Fall through. */ |
| case RID_TYPENAME: |
| /* Look for an elaborated-type-specifier. */ |
| type_spec |
| = (cp_parser_elaborated_type_specifier |
| (parser, |
| decl_specs && decl_specs->specs[(int) ds_friend], |
| is_declaration)); |
| if (decl_specs) |
| cp_parser_set_decl_spec_type (decl_specs, |
| type_spec, |
| token->location, |
| /*user_defined_p=*/true); |
| return type_spec; |
| |
| case RID_CONST: |
| ds = ds_const; |
| if (is_cv_qualifier) |
| *is_cv_qualifier = true; |
| break; |
| |
| case RID_VOLATILE: |
| ds = ds_volatile; |
| if (is_cv_qualifier) |
| *is_cv_qualifier = true; |
| break; |
| |
| case RID_RESTRICT: |
| ds = ds_restrict; |
| if (is_cv_qualifier) |
| *is_cv_qualifier = true; |
| break; |
| |
| case RID_COMPLEX: |
| /* The `__complex__' keyword is a GNU extension. */ |
| ds = ds_complex; |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Handle simple keywords. */ |
| if (ds != ds_last) |
| { |
| if (decl_specs) |
| { |
| ++decl_specs->specs[(int)ds]; |
| decl_specs->any_specifiers_p = true; |
| } |
| return cp_lexer_consume_token (parser->lexer)->u.value; |
| } |
| |
| /* If we do not already have a type-specifier, assume we are looking |
| at a simple-type-specifier. */ |
| type_spec = cp_parser_simple_type_specifier (parser, |
| decl_specs, |
| flags); |
| |
| /* If we didn't find a type-specifier, and a type-specifier was not |
| optional in this context, issue an error message. */ |
| if (!type_spec && !(flags & CP_PARSER_FLAGS_OPTIONAL)) |
| { |
| cp_parser_error (parser, "expected type specifier"); |
| return error_mark_node; |
| } |
| |
| return type_spec; |
| } |
| |
| /* Parse a simple-type-specifier. |
| |
| simple-type-specifier: |
| :: [opt] nested-name-specifier [opt] type-name |
| :: [opt] nested-name-specifier template template-id |
| char |
| wchar_t |
| bool |
| short |
| int |
| long |
| signed |
| unsigned |
| float |
| double |
| void |
| |
| C++0x Extension: |
| |
| simple-type-specifier: |
| auto |
| decltype ( expression ) |
| char16_t |
| char32_t |
| __underlying_type ( type-id ) |
| |
| GNU Extension: |
| |
| simple-type-specifier: |
| __int128 |
| __typeof__ unary-expression |
| __typeof__ ( type-id ) |
| |
| Returns the indicated TYPE_DECL. If DECL_SPECS is not NULL, it is |
| appropriately updated. */ |
| |
| static tree |
| cp_parser_simple_type_specifier (cp_parser* parser, |
| cp_decl_specifier_seq *decl_specs, |
| cp_parser_flags flags) |
| { |
| tree type = NULL_TREE; |
| cp_token *token; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| /* If we're looking at a keyword, things are easy. */ |
| switch (token->keyword) |
| { |
| case RID_CHAR: |
| if (decl_specs) |
| decl_specs->explicit_char_p = true; |
| type = char_type_node; |
| break; |
| case RID_CHAR16: |
| type = char16_type_node; |
| break; |
| case RID_CHAR32: |
| type = char32_type_node; |
| break; |
| case RID_WCHAR: |
| type = wchar_type_node; |
| break; |
| case RID_BOOL: |
| type = boolean_type_node; |
| break; |
| case RID_SHORT: |
| if (decl_specs) |
| ++decl_specs->specs[(int) ds_short]; |
| type = short_integer_type_node; |
| break; |
| case RID_INT: |
| if (decl_specs) |
| decl_specs->explicit_int_p = true; |
| type = integer_type_node; |
| break; |
| case RID_INT128: |
| if (!int128_integer_type_node) |
| break; |
| if (decl_specs) |
| decl_specs->explicit_int128_p = true; |
| type = int128_integer_type_node; |
| break; |
| case RID_LONG: |
| if (decl_specs) |
| ++decl_specs->specs[(int) ds_long]; |
| type = long_integer_type_node; |
| break; |
| case RID_SIGNED: |
| if (decl_specs) |
| ++decl_specs->specs[(int) ds_signed]; |
| type = integer_type_node; |
| break; |
| case RID_UNSIGNED: |
| if (decl_specs) |
| ++decl_specs->specs[(int) ds_unsigned]; |
| type = unsigned_type_node; |
| break; |
| case RID_FLOAT: |
| type = float_type_node; |
| break; |
| case RID_DOUBLE: |
| type = double_type_node; |
| break; |
| case RID_VOID: |
| type = void_type_node; |
| break; |
| |
| case RID_AUTO: |
| maybe_warn_cpp0x (CPP0X_AUTO); |
| type = make_auto (); |
| break; |
| |
| case RID_DECLTYPE: |
| /* Parse the `decltype' type. */ |
| type = cp_parser_decltype (parser); |
| |
| if (decl_specs) |
| cp_parser_set_decl_spec_type (decl_specs, type, |
| token->location, |
| /*user_defined_p=*/true); |
| |
| return type; |
| |
| case RID_TYPEOF: |
| /* Consume the `typeof' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the operand to `typeof'. */ |
| type = cp_parser_sizeof_operand (parser, RID_TYPEOF); |
| /* If it is not already a TYPE, take its type. */ |
| if (!TYPE_P (type)) |
| type = finish_typeof (type); |
| |
| if (decl_specs) |
| cp_parser_set_decl_spec_type (decl_specs, type, |
| token->location, |
| /*user_defined_p=*/true); |
| |
| return type; |
| |
| case RID_UNDERLYING_TYPE: |
| type = cp_parser_trait_expr (parser, RID_UNDERLYING_TYPE); |
| |
| if (decl_specs) |
| cp_parser_set_decl_spec_type (decl_specs, type, |
| token->location, |
| /*user_defined_p=*/true); |
| |
| return type; |
| |
| default: |
| break; |
| } |
| |
| /* If the type-specifier was for a built-in type, we're done. */ |
| if (type) |
| { |
| /* Record the type. */ |
| if (decl_specs |
| && (token->keyword != RID_SIGNED |
| && token->keyword != RID_UNSIGNED |
| && token->keyword != RID_SHORT |
| && token->keyword != RID_LONG)) |
| cp_parser_set_decl_spec_type (decl_specs, |
| type, |
| token->location, |
| /*user_defined=*/false); |
| if (decl_specs) |
| decl_specs->any_specifiers_p = true; |
| |
| /* Consume the token. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* There is no valid C++ program where a non-template type is |
| followed by a "<". That usually indicates that the user thought |
| that the type was a template. */ |
| cp_parser_check_for_invalid_template_id (parser, type, token->location); |
| |
| return TYPE_NAME (type); |
| } |
| |
| /* The type-specifier must be a user-defined type. */ |
| if (!(flags & CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES)) |
| { |
| bool qualified_p; |
| bool global_p; |
| |
| /* Don't gobble tokens or issue error messages if this is an |
| optional type-specifier. */ |
| if (flags & CP_PARSER_FLAGS_OPTIONAL) |
| cp_parser_parse_tentatively (parser); |
| |
| /* Look for the optional `::' operator. */ |
| global_p |
| = (cp_parser_global_scope_opt (parser, |
| /*current_scope_valid_p=*/false) |
| != NULL_TREE); |
| /* Look for the nested-name specifier. */ |
| qualified_p |
| = (cp_parser_nested_name_specifier_opt (parser, |
| /*typename_keyword_p=*/false, |
| /*check_dependency_p=*/true, |
| /*type_p=*/false, |
| /*is_declaration=*/false) |
| != NULL_TREE); |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If we have seen a nested-name-specifier, and the next token |
| is `template', then we are using the template-id production. */ |
| if (parser->scope |
| && cp_parser_optional_template_keyword (parser)) |
| { |
| /* Look for the template-id. */ |
| type = cp_parser_template_id (parser, |
| /*template_keyword_p=*/true, |
| /*check_dependency_p=*/true, |
| /*is_declaration=*/false); |
| /* If the template-id did not name a type, we are out of |
| luck. */ |
| if (TREE_CODE (type) != TYPE_DECL) |
| { |
| cp_parser_error (parser, "expected template-id for type"); |
| type = NULL_TREE; |
| } |
| } |
| /* Otherwise, look for a type-name. */ |
| else |
| type = cp_parser_type_name (parser); |
| /* Keep track of all name-lookups performed in class scopes. */ |
| if (type |
| && !global_p |
| && !qualified_p |
| && TREE_CODE (type) == TYPE_DECL |
| && TREE_CODE (DECL_NAME (type)) == IDENTIFIER_NODE) |
| maybe_note_name_used_in_class (DECL_NAME (type), type); |
| /* If it didn't work out, we don't have a TYPE. */ |
| if ((flags & CP_PARSER_FLAGS_OPTIONAL) |
| && !cp_parser_parse_definitely (parser)) |
| type = NULL_TREE; |
| if (type && decl_specs) |
| cp_parser_set_decl_spec_type (decl_specs, type, |
| token->location, |
| /*user_defined=*/true); |
| } |
| |
| /* If we didn't get a type-name, issue an error message. */ |
| if (!type && !(flags & CP_PARSER_FLAGS_OPTIONAL)) |
| { |
| cp_parser_error (parser, "expected type-name"); |
| return error_mark_node; |
| } |
| |
| if (type && type != error_mark_node) |
| { |
| /* See if TYPE is an Objective-C type, and if so, parse and |
| accept any protocol references following it. Do this before |
| the cp_parser_check_for_invalid_template_id() call, because |
| Objective-C types can be followed by '<...>' which would |
| enclose protocol names rather than template arguments, and so |
| everything is fine. */ |
| if (c_dialect_objc () && !parser->scope |
| && (objc_is_id (type) || objc_is_class_name (type))) |
| { |
| tree protos = cp_parser_objc_protocol_refs_opt (parser); |
| tree qual_type = objc_get_protocol_qualified_type (type, protos); |
| |
| /* Clobber the "unqualified" type previously entered into |
| DECL_SPECS with the new, improved protocol-qualified version. */ |
| if (decl_specs) |
| decl_specs->type = qual_type; |
| |
| return qual_type; |
| } |
| |
| /* There is no valid C++ program where a non-template type is |
| followed by a "<". That usually indicates that the user |
| thought that the type was a template. */ |
| cp_parser_check_for_invalid_template_id (parser, TREE_TYPE (type), |
| token->location); |
| } |
| |
| return type; |
| } |
| |
| /* Parse a type-name. |
| |
| type-name: |
| class-name |
| enum-name |
| typedef-name |
| |
| enum-name: |
| identifier |
| |
| typedef-name: |
| identifier |
| |
| Returns a TYPE_DECL for the type. */ |
| |
| static tree |
| cp_parser_type_name (cp_parser* parser) |
| { |
| tree type_decl; |
| |
| /* We can't know yet whether it is a class-name or not. */ |
| cp_parser_parse_tentatively (parser); |
| /* Try a class-name. */ |
| type_decl = cp_parser_class_name (parser, |
| /*typename_keyword_p=*/false, |
| /*template_keyword_p=*/false, |
| none_type, |
| /*check_dependency_p=*/true, |
| /*class_head_p=*/false, |
| /*is_declaration=*/false); |
| /* If it's not a class-name, keep looking. */ |
| if (!cp_parser_parse_definitely (parser)) |
| { |
| /* It must be a typedef-name or an enum-name. */ |
| return cp_parser_nonclass_name (parser); |
| } |
| |
| return type_decl; |
| } |
| |
| /* Parse a non-class type-name, that is, either an enum-name or a typedef-name. |
| |
| enum-name: |
| identifier |
| |
| typedef-name: |
| identifier |
| |
| Returns a TYPE_DECL for the type. */ |
| |
| static tree |
| cp_parser_nonclass_name (cp_parser* parser) |
| { |
| tree type_decl; |
| tree identifier; |
| |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| identifier = cp_parser_identifier (parser); |
| if (identifier == error_mark_node) |
| return error_mark_node; |
| |
| /* Look up the type-name. */ |
| type_decl = cp_parser_lookup_name_simple (parser, identifier, token->location); |
| |
| if (TREE_CODE (type_decl) != TYPE_DECL |
| && (objc_is_id (identifier) || objc_is_class_name (identifier))) |
| { |
| /* See if this is an Objective-C type. */ |
| tree protos = cp_parser_objc_protocol_refs_opt (parser); |
| tree type = objc_get_protocol_qualified_type (identifier, protos); |
| if (type) |
| type_decl = TYPE_NAME (type); |
| } |
| |
| /* Issue an error if we did not find a type-name. */ |
| if (TREE_CODE (type_decl) != TYPE_DECL |
| /* In Objective-C, we have the complication that class names are |
| normally type names and start declarations (eg, the |
| "NSObject" in "NSObject *object;"), but can be used in an |
| Objective-C 2.0 dot-syntax (as in "NSObject.version") which |
| is an expression. So, a classname followed by a dot is not a |
| valid type-name. */ |
| || (objc_is_class_name (TREE_TYPE (type_decl)) |
| && cp_lexer_peek_token (parser->lexer)->type == CPP_DOT)) |
| { |
| if (!cp_parser_simulate_error (parser)) |
| cp_parser_name_lookup_error (parser, identifier, type_decl, |
| NLE_TYPE, token->location); |
| return error_mark_node; |
| } |
| /* Remember that the name was used in the definition of the |
| current class so that we can check later to see if the |
| meaning would have been different after the class was |
| entirely defined. */ |
| else if (type_decl != error_mark_node |
| && !parser->scope) |
| maybe_note_name_used_in_class (identifier, type_decl); |
| |
| return type_decl; |
| } |
| |
| /* Parse an elaborated-type-specifier. Note that the grammar given |
| here incorporates the resolution to DR68. |
| |
| elaborated-type-specifier: |
| class-key :: [opt] nested-name-specifier [opt] identifier |
| class-key :: [opt] nested-name-specifier [opt] template [opt] template-id |
| enum-key :: [opt] nested-name-specifier [opt] identifier |
| typename :: [opt] nested-name-specifier identifier |
| typename :: [opt] nested-name-specifier template [opt] |
| template-id |
| |
| GNU extension: |
| |
| elaborated-type-specifier: |
| class-key attributes :: [opt] nested-name-specifier [opt] identifier |
| class-key attributes :: [opt] nested-name-specifier [opt] |
| template [opt] template-id |
| enum attributes :: [opt] nested-name-specifier [opt] identifier |
| |
| If IS_FRIEND is TRUE, then this elaborated-type-specifier is being |
| declared `friend'. If IS_DECLARATION is TRUE, then this |
| elaborated-type-specifier appears in a decl-specifiers-seq, i.e., |
| something is being declared. |
| |
| Returns the TYPE specified. */ |
| |
| static tree |
| cp_parser_elaborated_type_specifier (cp_parser* parser, |
| bool is_friend, |
| bool is_declaration) |
| { |
| enum tag_types tag_type; |
| tree identifier; |
| tree type = NULL_TREE; |
| tree attributes = NULL_TREE; |
| tree globalscope; |
| cp_token *token = NULL; |
| |
| /* See if we're looking at the `enum' keyword. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ENUM)) |
| { |
| /* Consume the `enum' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Remember that it's an enumeration type. */ |
| tag_type = enum_type; |
| /* Issue a warning if the `struct' or `class' key (for C++0x scoped |
| enums) is used here. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_CLASS) |
| || cp_lexer_next_token_is_keyword (parser->lexer, RID_STRUCT)) |
| { |
| pedwarn (input_location, 0, "elaborated-type-specifier " |
| "for a scoped enum must not use the %<%D%> keyword", |
| cp_lexer_peek_token (parser->lexer)->u.value); |
| /* Consume the `struct' or `class' and parse it anyway. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| /* Parse the attributes. */ |
| attributes = cp_parser_attributes_opt (parser); |
| } |
| /* Or, it might be `typename'. */ |
| else if (cp_lexer_next_token_is_keyword (parser->lexer, |
| RID_TYPENAME)) |
| { |
| /* Consume the `typename' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Remember that it's a `typename' type. */ |
| tag_type = typename_type; |
| } |
| /* Otherwise it must be a class-key. */ |
| else |
| { |
| tag_type = cp_parser_class_key (parser); |
| if (tag_type == none_type) |
| return error_mark_node; |
| /* Parse the attributes. */ |
| attributes = cp_parser_attributes_opt (parser); |
| } |
| |
| /* Look for the `::' operator. */ |
| globalscope = cp_parser_global_scope_opt (parser, |
| /*current_scope_valid_p=*/false); |
| /* Look for the nested-name-specifier. */ |
| if (tag_type == typename_type && !globalscope) |
| { |
| if (!cp_parser_nested_name_specifier (parser, |
| /*typename_keyword_p=*/true, |
| /*check_dependency_p=*/true, |
| /*type_p=*/true, |
| is_declaration)) |
| return error_mark_node; |
| } |
| else |
| /* Even though `typename' is not present, the proposed resolution |
| to Core Issue 180 says that in `class A<T>::B', `B' should be |
| considered a type-name, even if `A<T>' is dependent. */ |
| cp_parser_nested_name_specifier_opt (parser, |
| /*typename_keyword_p=*/true, |
| /*check_dependency_p=*/true, |
| /*type_p=*/true, |
| is_declaration); |
| /* For everything but enumeration types, consider a template-id. |
| For an enumeration type, consider only a plain identifier. */ |
| if (tag_type != enum_type) |
| { |
| bool template_p = false; |
| tree decl; |
| |
| /* Allow the `template' keyword. */ |
| template_p = cp_parser_optional_template_keyword (parser); |
| /* If we didn't see `template', we don't know if there's a |
| template-id or not. */ |
| if (!template_p) |
| cp_parser_parse_tentatively (parser); |
| /* Parse the template-id. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| decl = cp_parser_template_id (parser, template_p, |
| /*check_dependency_p=*/true, |
| is_declaration); |
| /* If we didn't find a template-id, look for an ordinary |
| identifier. */ |
| if (!template_p && !cp_parser_parse_definitely (parser)) |
| ; |
| /* If DECL is a TEMPLATE_ID_EXPR, and the `typename' keyword is |
| in effect, then we must assume that, upon instantiation, the |
| template will correspond to a class. */ |
| else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR |
| && tag_type == typename_type) |
| type = make_typename_type (parser->scope, decl, |
| typename_type, |
| /*complain=*/tf_error); |
| /* If the `typename' keyword is in effect and DECL is not a type |
| decl. Then type is non existant. */ |
| else if (tag_type == typename_type && TREE_CODE (decl) != TYPE_DECL) |
| type = NULL_TREE; |
| else |
| type = TREE_TYPE (decl); |
| } |
| |
| if (!type) |
| { |
| token = cp_lexer_peek_token (parser->lexer); |
| identifier = cp_parser_identifier (parser); |
| |
| if (identifier == error_mark_node) |
| { |
| parser->scope = NULL_TREE; |
| return error_mark_node; |
| } |
| |
| /* For a `typename', we needn't call xref_tag. */ |
| if (tag_type == typename_type |
| && TREE_CODE (parser->scope) != NAMESPACE_DECL) |
| return cp_parser_make_typename_type (parser, parser->scope, |
| identifier, |
| token->location); |
| /* Look up a qualified name in the usual way. */ |
| if (parser->scope) |
| { |
| tree decl; |
| tree ambiguous_decls; |
| |
| decl = cp_parser_lookup_name (parser, identifier, |
| tag_type, |
| /*is_template=*/false, |
| /*is_namespace=*/false, |
| /*check_dependency=*/true, |
| &ambiguous_decls, |
| token->location); |
| |
| /* If the lookup was ambiguous, an error will already have been |
| issued. */ |
| if (ambiguous_decls) |
| return error_mark_node; |
| |
| /* If we are parsing friend declaration, DECL may be a |
| TEMPLATE_DECL tree node here. However, we need to check |
| whether this TEMPLATE_DECL results in valid code. Consider |
| the following example: |
| |
| namespace N { |
| template <class T> class C {}; |
| } |
| class X { |
| template <class T> friend class N::C; // #1, valid code |
| }; |
| template <class T> class Y { |
| friend class N::C; // #2, invalid code |
| }; |
| |
| For both case #1 and #2, we arrive at a TEMPLATE_DECL after |
| name lookup of `N::C'. We see that friend declaration must |
| be template for the code to be valid. Note that |
| processing_template_decl does not work here since it is |
| always 1 for the above two cases. */ |
| |
| decl = (cp_parser_maybe_treat_template_as_class |
| (decl, /*tag_name_p=*/is_friend |
| && parser->num_template_parameter_lists)); |
| |
| if (TREE_CODE (decl) != TYPE_DECL) |
| { |
| cp_parser_diagnose_invalid_type_name (parser, |
| parser->scope, |
| identifier, |
| token->location); |
| return error_mark_node; |
| } |
| |
| if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE) |
| { |
| bool allow_template = (parser->num_template_parameter_lists |
| || DECL_SELF_REFERENCE_P (decl)); |
| type = check_elaborated_type_specifier (tag_type, decl, |
| allow_template); |
| |
| if (type == error_mark_node) |
| return error_mark_node; |
| } |
| |
| /* Forward declarations of nested types, such as |
| |
| class C1::C2; |
| class C1::C2::C3; |
| |
| are invalid unless all components preceding the final '::' |
| are complete. If all enclosing types are complete, these |
| declarations become merely pointless. |
| |
| Invalid forward declarations of nested types are errors |
| caught elsewhere in parsing. Those that are pointless arrive |
| here. */ |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON) |
| && !is_friend && !processing_explicit_instantiation) |
| warning (0, "declaration %qD does not declare anything", decl); |
| |
| type = TREE_TYPE (decl); |
| } |
| else |
| { |
| /* An elaborated-type-specifier sometimes introduces a new type and |
| sometimes names an existing type. Normally, the rule is that it |
| introduces a new type only if there is not an existing type of |
| the same name already in scope. For example, given: |
| |
| struct S {}; |
| void f() { struct S s; } |
| |
| the `struct S' in the body of `f' is the same `struct S' as in |
| the global scope; the existing definition is used. However, if |
| there were no global declaration, this would introduce a new |
| local class named `S'. |
| |
| An exception to this rule applies to the following code: |
| |
| namespace N { struct S; } |
| |
| Here, the elaborated-type-specifier names a new type |
| unconditionally; even if there is already an `S' in the |
| containing scope this declaration names a new type. |
| This exception only applies if the elaborated-type-specifier |
| forms the complete declaration: |
| |
| [class.name] |
| |
| A declaration consisting solely of `class-key identifier ;' is |
| either a redeclaration of the name in the current scope or a |
| forward declaration of the identifier as a class name. It |
| introduces the name into the current scope. |
| |
| We are in this situation precisely when the next token is a `;'. |
| |
| An exception to the exception is that a `friend' declaration does |
| *not* name a new type; i.e., given: |
| |
| struct S { friend struct T; }; |
| |
| `T' is not a new type in the scope of `S'. |
| |
| Also, `new struct S' or `sizeof (struct S)' never results in the |
| definition of a new type; a new type can only be declared in a |
| declaration context. */ |
| |
| tag_scope ts; |
| bool template_p; |
| |
| if (is_friend) |
| /* Friends have special name lookup rules. */ |
| ts = ts_within_enclosing_non_class; |
| else if (is_declaration |
| && cp_lexer_next_token_is (parser->lexer, |
| CPP_SEMICOLON)) |
| /* This is a `class-key identifier ;' */ |
| ts = ts_current; |
| else |
| ts = ts_global; |
| |
| template_p = |
| (parser->num_template_parameter_lists |
| && (cp_parser_next_token_starts_class_definition_p (parser) |
| || cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))); |
| /* An unqualified name was used to reference this type, so |
| there were no qualifying templates. */ |
| if (!cp_parser_check_template_parameters (parser, |
| /*num_templates=*/0, |
| token->location, |
| /*declarator=*/NULL)) |
| return error_mark_node; |
| type = xref_tag (tag_type, identifier, ts, template_p); |
| } |
| } |
| |
| if (type == error_mark_node) |
| return error_mark_node; |
| |
| /* Allow attributes on forward declarations of classes. */ |
| if (attributes) |
| { |
| if (TREE_CODE (type) == TYPENAME_TYPE) |
| warning (OPT_Wattributes, |
| "attributes ignored on uninstantiated type"); |
| else if (tag_type != enum_type && CLASSTYPE_TEMPLATE_INSTANTIATION (type) |
| && ! processing_explicit_instantiation) |
| warning (OPT_Wattributes, |
| "attributes ignored on template instantiation"); |
| else if (is_declaration && cp_parser_declares_only_class_p (parser)) |
| cplus_decl_attributes (&type, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE); |
| else |
| warning (OPT_Wattributes, |
| "attributes ignored on elaborated-type-specifier that is not a forward declaration"); |
| } |
| |
| if (tag_type != enum_type) |
| cp_parser_check_class_key (tag_type, type); |
| |
| /* A "<" cannot follow an elaborated type specifier. If that |
| happens, the user was probably trying to form a template-id. */ |
| cp_parser_check_for_invalid_template_id (parser, type, token->location); |
| |
| return type; |
| } |
| |
| /* Parse an enum-specifier. |
| |
| enum-specifier: |
| enum-head { enumerator-list [opt] } |
| |
| enum-head: |
| enum-key identifier [opt] enum-base [opt] |
| enum-key nested-name-specifier identifier enum-base [opt] |
| |
| enum-key: |
| enum |
| enum class [C++0x] |
| enum struct [C++0x] |
| |
| enum-base: [C++0x] |
| : type-specifier-seq |
| |
| opaque-enum-specifier: |
| enum-key identifier enum-base [opt] ; |
| |
| GNU Extensions: |
| enum-key attributes[opt] identifier [opt] enum-base [opt] |
| { enumerator-list [opt] }attributes[opt] |
| |
| Returns an ENUM_TYPE representing the enumeration, or NULL_TREE |
| if the token stream isn't an enum-specifier after all. */ |
| |
| static tree |
| cp_parser_enum_specifier (cp_parser* parser) |
| { |
| tree identifier; |
| tree type = NULL_TREE; |
| tree prev_scope; |
| tree nested_name_specifier = NULL_TREE; |
| tree attributes; |
| bool scoped_enum_p = false; |
| bool has_underlying_type = false; |
| bool nested_being_defined = false; |
| bool new_value_list = false; |
| bool is_new_type = false; |
| bool is_anonymous = false; |
| tree underlying_type = NULL_TREE; |
| cp_token *type_start_token = NULL; |
| bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p; |
| |
| parser->colon_corrects_to_scope_p = false; |
| |
| /* Parse tentatively so that we can back up if we don't find a |
| enum-specifier. */ |
| cp_parser_parse_tentatively (parser); |
| |
| /* Caller guarantees that the current token is 'enum', an identifier |
| possibly follows, and the token after that is an opening brace. |
| If we don't have an identifier, fabricate an anonymous name for |
| the enumeration being defined. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* Parse the "class" or "struct", which indicates a scoped |
| enumeration type in C++0x. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_CLASS) |
| || cp_lexer_next_token_is_keyword (parser->lexer, RID_STRUCT)) |
| { |
| if (cxx_dialect < cxx0x) |
| maybe_warn_cpp0x (CPP0X_SCOPED_ENUMS); |
| |
| /* Consume the `struct' or `class' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| scoped_enum_p = true; |
| } |
| |
| attributes = cp_parser_attributes_opt (parser); |
| |
| /* Clear the qualification. */ |
| parser->scope = NULL_TREE; |
| parser->qualifying_scope = NULL_TREE; |
| parser->object_scope = NULL_TREE; |
| |
| /* Figure out in what scope the declaration is being placed. */ |
| prev_scope = current_scope (); |
| |
| type_start_token = cp_lexer_peek_token (parser->lexer); |
| |
| push_deferring_access_checks (dk_no_check); |
| nested_name_specifier |
| = cp_parser_nested_name_specifier_opt (parser, |
| /*typename_keyword_p=*/true, |
| /*check_dependency_p=*/false, |
| /*type_p=*/false, |
| /*is_declaration=*/false); |
| |
| if (nested_name_specifier) |
| { |
| tree name; |
| |
| identifier = cp_parser_identifier (parser); |
| name = cp_parser_lookup_name (parser, identifier, |
| enum_type, |
| /*is_template=*/false, |
| /*is_namespace=*/false, |
| /*check_dependency=*/true, |
| /*ambiguous_decls=*/NULL, |
| input_location); |
| if (name) |
| { |
| type = TREE_TYPE (name); |
| if (TREE_CODE (type) == TYPENAME_TYPE) |
| { |
| /* Are template enums allowed in ISO? */ |
| if (template_parm_scope_p ()) |
| pedwarn (type_start_token->location, OPT_pedantic, |
| "%qD is an enumeration template", name); |
| /* ignore a typename reference, for it will be solved by name |
| in start_enum. */ |
| type = NULL_TREE; |
| } |
| } |
| else |
| error_at (type_start_token->location, |
| "%qD is not an enumerator-name", identifier); |
| } |
| else |
| { |
| if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)) |
| identifier = cp_parser_identifier (parser); |
| else |
| { |
| identifier = make_anon_name (); |
| is_anonymous = true; |
| } |
| } |
| pop_deferring_access_checks (); |
| |
| /* Check for the `:' that denotes a specified underlying type in C++0x. |
| Note that a ':' could also indicate a bitfield width, however. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_COLON)) |
| { |
| cp_decl_specifier_seq type_specifiers; |
| |
| /* Consume the `:'. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* Parse the type-specifier-seq. */ |
| cp_parser_type_specifier_seq (parser, /*is_declaration=*/false, |
| /*is_trailing_return=*/false, |
| &type_specifiers); |
| |
| /* At this point this is surely not elaborated type specifier. */ |
| if (!cp_parser_parse_definitely (parser)) |
| return NULL_TREE; |
| |
| if (cxx_dialect < cxx0x) |
| maybe_warn_cpp0x (CPP0X_SCOPED_ENUMS); |
| |
| has_underlying_type = true; |
| |
| /* If that didn't work, stop. */ |
| if (type_specifiers.type != error_mark_node) |
| { |
| underlying_type = grokdeclarator (NULL, &type_specifiers, TYPENAME, |
| /*initialized=*/0, NULL); |
| if (underlying_type == error_mark_node) |
| underlying_type = NULL_TREE; |
| } |
| } |
| |
| /* Look for the `{' but don't consume it yet. */ |
| if (!cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| { |
| if (cxx_dialect < cxx0x || (!scoped_enum_p && !underlying_type)) |
| { |
| cp_parser_error (parser, "expected %<{%>"); |
| if (has_underlying_type) |
| { |
| type = NULL_TREE; |
| goto out; |
| } |
| } |
| /* An opaque-enum-specifier must have a ';' here. */ |
| if ((scoped_enum_p || underlying_type) |
| && cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)) |
| { |
| cp_parser_error (parser, "expected %<;%> or %<{%>"); |
| if (has_underlying_type) |
| { |
| type = NULL_TREE; |
| goto out; |
| } |
| } |
| } |
| |
| if (!has_underlying_type && !cp_parser_parse_definitely (parser)) |
| return NULL_TREE; |
| |
| if (nested_name_specifier) |
| { |
| if (CLASS_TYPE_P (nested_name_specifier)) |
| { |
| nested_being_defined = TYPE_BEING_DEFINED (nested_name_specifier); |
| TYPE_BEING_DEFINED (nested_name_specifier) = 1; |
| push_scope (nested_name_specifier); |
| } |
| else if (TREE_CODE (nested_name_specifier) == NAMESPACE_DECL) |
| { |
| push_nested_namespace (nested_name_specifier); |
| } |
| } |
| |
| /* Issue an error message if type-definitions are forbidden here. */ |
| if (!cp_parser_check_type_definition (parser)) |
| type = error_mark_node; |
| else |
| /* Create the new type. We do this before consuming the opening |
| brace so the enum will be recorded as being on the line of its |
| tag (or the 'enum' keyword, if there is no tag). */ |
| type = start_enum (identifier, type, underlying_type, |
| scoped_enum_p, &is_new_type); |
| |
| /* If the next token is not '{' it is an opaque-enum-specifier or an |
| elaborated-type-specifier. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| { |
| timevar_push (TV_PARSE_ENUM); |
| if (nested_name_specifier) |
| { |
| /* The following catches invalid code such as: |
| enum class S<int>::E { A, B, C }; */ |
| if (!processing_specialization |
| && CLASS_TYPE_P (nested_name_specifier) |
| && CLASSTYPE_USE_TEMPLATE (nested_name_specifier)) |
| error_at (type_start_token->location, "cannot add an enumerator " |
| "list to a template instantiation"); |
| |
| /* If that scope does not contain the scope in which the |
| class was originally declared, the program is invalid. */ |
| if (prev_scope && !is_ancestor (prev_scope, nested_name_specifier)) |
| { |
| if (at_namespace_scope_p ()) |
| error_at (type_start_token->location, |
| "declaration of %qD in namespace %qD which does not " |
| "enclose %qD", |
| type, prev_scope, nested_name_specifier); |
| else |
| error_at (type_start_token->location, |
| "declaration of %qD in %qD which does not enclose %qD", |
| type, prev_scope, nested_name_specifier); |
| type = error_mark_node; |
| } |
| } |
| |
| if (scoped_enum_p) |
| begin_scope (sk_scoped_enum, type); |
| |
| /* Consume the opening brace. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| if (type == error_mark_node) |
| ; /* Nothing to add */ |
| else if (OPAQUE_ENUM_P (type) |
| || (cxx_dialect > cxx98 && processing_specialization)) |
| { |
| new_value_list = true; |
| SET_OPAQUE_ENUM_P (type, false); |
| DECL_SOURCE_LOCATION (TYPE_NAME (type)) = type_start_token->location; |
| } |
| else |
| { |
| error_at (type_start_token->location, "multiple definition of %q#T", type); |
| error_at (DECL_SOURCE_LOCATION (TYPE_MAIN_DECL (type)), |
| "previous definition here"); |
| type = error_mark_node; |
| } |
| |
| if (type == error_mark_node) |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| /* If the next token is not '}', then there are some enumerators. */ |
| else if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE)) |
| cp_parser_enumerator_list (parser, type); |
| |
| /* Consume the final '}'. */ |
| cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE); |
| |
| if (scoped_enum_p) |
| finish_scope (); |
| timevar_pop (TV_PARSE_ENUM); |
| } |
| else |
| { |
| /* If a ';' follows, then it is an opaque-enum-specifier |
| and additional restrictions apply. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)) |
| { |
| if (is_anonymous) |
| error_at (type_start_token->location, |
| "opaque-enum-specifier without name"); |
| else if (nested_name_specifier) |
| error_at (type_start_token->location, |
| "opaque-enum-specifier must use a simple identifier"); |
| } |
| } |
| |
| /* Look for trailing attributes to apply to this enumeration, and |
| apply them if appropriate. */ |
| if (cp_parser_allow_gnu_extensions_p (parser)) |
| { |
| tree trailing_attr = cp_parser_attributes_opt (parser); |
| trailing_attr = chainon (trailing_attr, attributes); |
| cplus_decl_attributes (&type, |
| trailing_attr, |
| (int) ATTR_FLAG_TYPE_IN_PLACE); |
| } |
| |
| /* Finish up the enumeration. */ |
| if (type != error_mark_node) |
| { |
| if (new_value_list) |
| finish_enum_value_list (type); |
| if (is_new_type) |
| finish_enum (type); |
| } |
| |
| if (nested_name_specifier) |
| { |
| if (CLASS_TYPE_P (nested_name_specifier)) |
| { |
| TYPE_BEING_DEFINED (nested_name_specifier) = nested_being_defined; |
| pop_scope (nested_name_specifier); |
| } |
| else if (TREE_CODE (nested_name_specifier) == NAMESPACE_DECL) |
| { |
| pop_nested_namespace (nested_name_specifier); |
| } |
| } |
| out: |
| parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p; |
| return type; |
| } |
| |
| /* Parse an enumerator-list. The enumerators all have the indicated |
| TYPE. |
| |
| enumerator-list: |
| enumerator-definition |
| enumerator-list , enumerator-definition */ |
| |
| static void |
| cp_parser_enumerator_list (cp_parser* parser, tree type) |
| { |
| while (true) |
| { |
| /* Parse an enumerator-definition. */ |
| cp_parser_enumerator_definition (parser, type); |
| |
| /* If the next token is not a ',', we've reached the end of |
| the list. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA)) |
| break; |
| /* Otherwise, consume the `,' and keep going. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* If the next token is a `}', there is a trailing comma. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE)) |
| { |
| if (!in_system_header) |
| pedwarn (input_location, OPT_pedantic, "comma at end of enumerator list"); |
| break; |
| } |
| } |
| } |
| |
| /* Parse an enumerator-definition. The enumerator has the indicated |
| TYPE. |
| |
| enumerator-definition: |
| enumerator |
| enumerator = constant-expression |
| |
| enumerator: |
| identifier */ |
| |
| static void |
| cp_parser_enumerator_definition (cp_parser* parser, tree type) |
| { |
| tree identifier; |
| tree value; |
| location_t loc; |
| |
| /* Save the input location because we are interested in the location |
| of the identifier and not the location of the explicit value. */ |
| loc = cp_lexer_peek_token (parser->lexer)->location; |
| |
| /* Look for the identifier. */ |
| identifier = cp_parser_identifier (parser); |
| if (identifier == error_mark_node) |
| return; |
| |
| /* If the next token is an '=', then there is an explicit value. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_EQ)) |
| { |
| /* Consume the `=' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the value. */ |
| value = cp_parser_constant_expression (parser, |
| /*allow_non_constant_p=*/false, |
| NULL); |
| } |
| else |
| value = NULL_TREE; |
| |
| /* If we are processing a template, make sure the initializer of the |
| enumerator doesn't contain any bare template parameter pack. */ |
| if (check_for_bare_parameter_packs (value)) |
| value = error_mark_node; |
| |
| /* integral_constant_value will pull out this expression, so make sure |
| it's folded as appropriate. */ |
| value = fold_non_dependent_expr (value); |
| |
| /* Create the enumerator. */ |
| build_enumerator (identifier, value, type, loc); |
| } |
| |
| /* Parse a namespace-name. |
| |
| namespace-name: |
| original-namespace-name |
| namespace-alias |
| |
| Returns the NAMESPACE_DECL for the namespace. */ |
| |
| static tree |
| cp_parser_namespace_name (cp_parser* parser) |
| { |
| tree identifier; |
| tree namespace_decl; |
| |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| /* Get the name of the namespace. */ |
| identifier = cp_parser_identifier (parser); |
| if (identifier == error_mark_node) |
| return error_mark_node; |
| |
| /* Look up the identifier in the currently active scope. Look only |
| for namespaces, due to: |
| |
| [basic.lookup.udir] |
| |
| When looking up a namespace-name in a using-directive or alias |
| definition, only namespace names are considered. |
| |
| And: |
| |
| [basic.lookup.qual] |
| |
| During the lookup of a name preceding the :: scope resolution |
| operator, object, function, and enumerator names are ignored. |
| |
| (Note that cp_parser_qualifying_entity only calls this |
| function if the token after the name is the scope resolution |
| operator.) */ |
| namespace_decl = cp_parser_lookup_name (parser, identifier, |
| none_type, |
| /*is_template=*/false, |
| /*is_namespace=*/true, |
| /*check_dependency=*/true, |
| /*ambiguous_decls=*/NULL, |
| token->location); |
| /* If it's not a namespace, issue an error. */ |
| if (namespace_decl == error_mark_node |
| || TREE_CODE (namespace_decl) != NAMESPACE_DECL) |
| { |
| if (!cp_parser_uncommitted_to_tentative_parse_p (parser)) |
| error_at (token->location, "%qD is not a namespace-name", identifier); |
| cp_parser_error (parser, "expected namespace-name"); |
| namespace_decl = error_mark_node; |
| } |
| |
| return namespace_decl; |
| } |
| |
| /* Parse a namespace-definition. |
| |
| namespace-definition: |
| named-namespace-definition |
| unnamed-namespace-definition |
| |
| named-namespace-definition: |
| original-namespace-definition |
| extension-namespace-definition |
| |
| original-namespace-definition: |
| namespace identifier { namespace-body } |
| |
| extension-namespace-definition: |
| namespace original-namespace-name { namespace-body } |
| |
| unnamed-namespace-definition: |
| namespace { namespace-body } */ |
| |
| static void |
| cp_parser_namespace_definition (cp_parser* parser) |
| { |
| tree identifier, attribs; |
| bool has_visibility; |
| bool is_inline; |
| |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_INLINE)) |
| { |
| maybe_warn_cpp0x (CPP0X_INLINE_NAMESPACES); |
| is_inline = true; |
| cp_lexer_consume_token (parser->lexer); |
| } |
| else |
| is_inline = false; |
| |
| /* Look for the `namespace' keyword. */ |
| cp_parser_require_keyword (parser, RID_NAMESPACE, RT_NAMESPACE); |
| |
| /* Get the name of the namespace. We do not attempt to distinguish |
| between an original-namespace-definition and an |
| extension-namespace-definition at this point. The semantic |
| analysis routines are responsible for that. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)) |
| identifier = cp_parser_identifier (parser); |
| else |
| identifier = NULL_TREE; |
| |
| /* Parse any specified attributes. */ |
| attribs = cp_parser_attributes_opt (parser); |
| |
| /* Look for the `{' to start the namespace. */ |
| cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE); |
| /* Start the namespace. */ |
| push_namespace (identifier); |
| |
| /* "inline namespace" is equivalent to a stub namespace definition |
| followed by a strong using directive. */ |
| if (is_inline) |
| { |
| tree name_space = current_namespace; |
| /* Set up namespace association. */ |
| DECL_NAMESPACE_ASSOCIATIONS (name_space) |
| = tree_cons (CP_DECL_CONTEXT (name_space), NULL_TREE, |
| DECL_NAMESPACE_ASSOCIATIONS (name_space)); |
| /* Import the contents of the inline namespace. */ |
| pop_namespace (); |
| do_using_directive (name_space); |
| push_namespace (identifier); |
| } |
| |
| has_visibility = handle_namespace_attrs (current_namespace, attribs); |
| |
| /* Parse the body of the namespace. */ |
| cp_parser_namespace_body (parser); |
| |
| if (has_visibility) |
| pop_visibility (1); |
| |
| /* Finish the namespace. */ |
| pop_namespace (); |
| /* Look for the final `}'. */ |
| cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE); |
| } |
| |
| /* Parse a namespace-body. |
| |
| namespace-body: |
| declaration-seq [opt] */ |
| |
| static void |
| cp_parser_namespace_body (cp_parser* parser) |
| { |
| cp_parser_declaration_seq_opt (parser); |
| } |
| |
| /* Parse a namespace-alias-definition. |
| |
| namespace-alias-definition: |
| namespace identifier = qualified-namespace-specifier ; */ |
| |
| static void |
| cp_parser_namespace_alias_definition (cp_parser* parser) |
| { |
| tree identifier; |
| tree namespace_specifier; |
| |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| /* Look for the `namespace' keyword. */ |
| cp_parser_require_keyword (parser, RID_NAMESPACE, RT_NAMESPACE); |
| /* Look for the identifier. */ |
| identifier = cp_parser_identifier (parser); |
| if (identifier == error_mark_node) |
| return; |
| /* Look for the `=' token. */ |
| if (!cp_parser_uncommitted_to_tentative_parse_p (parser) |
| && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| { |
| error_at (token->location, "%<namespace%> definition is not allowed here"); |
| /* Skip the definition. */ |
| cp_lexer_consume_token (parser->lexer); |
| if (cp_parser_skip_to_closing_brace (parser)) |
| cp_lexer_consume_token (parser->lexer); |
| return; |
| } |
| cp_parser_require (parser, CPP_EQ, RT_EQ); |
| /* Look for the qualified-namespace-specifier. */ |
| namespace_specifier |
| = cp_parser_qualified_namespace_specifier (parser); |
| /* Look for the `;' token. */ |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| |
| /* Register the alias in the symbol table. */ |
| do_namespace_alias (identifier, namespace_specifier); |
| } |
| |
| /* Parse a qualified-namespace-specifier. |
| |
| qualified-namespace-specifier: |
| :: [opt] nested-name-specifier [opt] namespace-name |
| |
| Returns a NAMESPACE_DECL corresponding to the specified |
| namespace. */ |
| |
| static tree |
| cp_parser_qualified_namespace_specifier (cp_parser* parser) |
| { |
| /* Look for the optional `::'. */ |
| cp_parser_global_scope_opt (parser, |
| /*current_scope_valid_p=*/false); |
| |
| /* Look for the optional nested-name-specifier. */ |
| cp_parser_nested_name_specifier_opt (parser, |
| /*typename_keyword_p=*/false, |
| /*check_dependency_p=*/true, |
| /*type_p=*/false, |
| /*is_declaration=*/true); |
| |
| return cp_parser_namespace_name (parser); |
| } |
| |
| /* Parse a using-declaration, or, if ACCESS_DECLARATION_P is true, an |
| access declaration. |
| |
| using-declaration: |
| using typename [opt] :: [opt] nested-name-specifier unqualified-id ; |
| using :: unqualified-id ; |
| |
| access-declaration: |
| qualified-id ; |
| |
| */ |
| |
| static bool |
| cp_parser_using_declaration (cp_parser* parser, |
| bool access_declaration_p) |
| { |
| cp_token *token; |
| bool typename_p = false; |
| bool global_scope_p; |
| tree decl; |
| tree identifier; |
| tree qscope; |
| |
| if (access_declaration_p) |
| cp_parser_parse_tentatively (parser); |
| else |
| { |
| /* Look for the `using' keyword. */ |
| cp_parser_require_keyword (parser, RID_USING, RT_USING); |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* See if it's `typename'. */ |
| if (token->keyword == RID_TYPENAME) |
| { |
| /* Remember that we've seen it. */ |
| typename_p = true; |
| /* Consume the `typename' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| } |
| |
| /* Look for the optional global scope qualification. */ |
| global_scope_p |
| = (cp_parser_global_scope_opt (parser, |
| /*current_scope_valid_p=*/false) |
| != NULL_TREE); |
| |
| /* If we saw `typename', or didn't see `::', then there must be a |
| nested-name-specifier present. */ |
| if (typename_p || !global_scope_p) |
| qscope = cp_parser_nested_name_specifier (parser, typename_p, |
| /*check_dependency_p=*/true, |
| /*type_p=*/false, |
| /*is_declaration=*/true); |
| /* Otherwise, we could be in either of the two productions. In that |
| case, treat the nested-name-specifier as optional. */ |
| else |
| qscope = cp_parser_nested_name_specifier_opt (parser, |
| /*typename_keyword_p=*/false, |
| /*check_dependency_p=*/true, |
| /*type_p=*/false, |
| /*is_declaration=*/true); |
| if (!qscope) |
| qscope = global_namespace; |
| |
| if (access_declaration_p && cp_parser_error_occurred (parser)) |
| /* Something has already gone wrong; there's no need to parse |
| further. Since an error has occurred, the return value of |
| cp_parser_parse_definitely will be false, as required. */ |
| return cp_parser_parse_definitely (parser); |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| /* Parse the unqualified-id. */ |
| identifier = cp_parser_unqualified_id (parser, |
| /*template_keyword_p=*/false, |
| /*check_dependency_p=*/true, |
| /*declarator_p=*/true, |
| /*optional_p=*/false); |
| |
| if (access_declaration_p) |
| { |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)) |
| cp_parser_simulate_error (parser); |
| if (!cp_parser_parse_definitely (parser)) |
| return false; |
| } |
| |
| /* The function we call to handle a using-declaration is different |
| depending on what scope we are in. */ |
| if (qscope == error_mark_node || identifier == error_mark_node) |
| ; |
| else if (TREE_CODE (identifier) != IDENTIFIER_NODE |
| && TREE_CODE (identifier) != BIT_NOT_EXPR) |
| /* [namespace.udecl] |
| |
| A using declaration shall not name a template-id. */ |
| error_at (token->location, |
| "a template-id may not appear in a using-declaration"); |
| else |
| { |
| if (at_class_scope_p ()) |
| { |
| /* Create the USING_DECL. */ |
| decl = do_class_using_decl (parser->scope, identifier); |
| |
| if (check_for_bare_parameter_packs (decl)) |
| return false; |
| else |
| /* Add it to the list of members in this class. */ |
| finish_member_declaration (decl); |
| } |
| else |
| { |
| decl = cp_parser_lookup_name_simple (parser, |
| identifier, |
| token->location); |
| if (decl == error_mark_node) |
| cp_parser_name_lookup_error (parser, identifier, |
| decl, NLE_NULL, |
| token->location); |
| else if (check_for_bare_parameter_packs (decl)) |
| return false; |
| else if (!at_namespace_scope_p ()) |
| do_local_using_decl (decl, qscope, identifier); |
| else |
| do_toplevel_using_decl (decl, qscope, identifier); |
| } |
| } |
| |
| /* Look for the final `;'. */ |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| |
| return true; |
| } |
| |
| /* Parse a using-directive. |
| |
| using-directive: |
| using namespace :: [opt] nested-name-specifier [opt] |
| namespace-name ; */ |
| |
| static void |
| cp_parser_using_directive (cp_parser* parser) |
| { |
| tree namespace_decl; |
| tree attribs; |
| |
| /* Look for the `using' keyword. */ |
| cp_parser_require_keyword (parser, RID_USING, RT_USING); |
| /* And the `namespace' keyword. */ |
| cp_parser_require_keyword (parser, RID_NAMESPACE, RT_NAMESPACE); |
| /* Look for the optional `::' operator. */ |
| cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false); |
| /* And the optional nested-name-specifier. */ |
| cp_parser_nested_name_specifier_opt (parser, |
| /*typename_keyword_p=*/false, |
| /*check_dependency_p=*/true, |
| /*type_p=*/false, |
| /*is_declaration=*/true); |
| /* Get the namespace being used. */ |
| namespace_decl = cp_parser_namespace_name (parser); |
| /* And any specified attributes. */ |
| attribs = cp_parser_attributes_opt (parser); |
| /* Update the symbol table. */ |
| parse_using_directive (namespace_decl, attribs); |
| /* Look for the final `;'. */ |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| } |
| |
| /* Parse an asm-definition. |
| |
| asm-definition: |
| asm ( string-literal ) ; |
| |
| GNU Extension: |
| |
| asm-definition: |
| asm volatile [opt] ( string-literal ) ; |
| asm volatile [opt] ( string-literal : asm-operand-list [opt] ) ; |
| asm volatile [opt] ( string-literal : asm-operand-list [opt] |
| : asm-operand-list [opt] ) ; |
| asm volatile [opt] ( string-literal : asm-operand-list [opt] |
| : asm-operand-list [opt] |
| : asm-clobber-list [opt] ) ; |
| asm volatile [opt] goto ( string-literal : : asm-operand-list [opt] |
| : asm-clobber-list [opt] |
| : asm-goto-list ) ; */ |
| |
| static void |
| cp_parser_asm_definition (cp_parser* parser) |
| { |
| tree string; |
| tree outputs = NULL_TREE; |
| tree inputs = NULL_TREE; |
| tree clobbers = NULL_TREE; |
| tree labels = NULL_TREE; |
| tree asm_stmt; |
| bool volatile_p = false; |
| bool extended_p = false; |
| bool invalid_inputs_p = false; |
| bool invalid_outputs_p = false; |
| bool goto_p = false; |
| required_token missing = RT_NONE; |
| |
| /* Look for the `asm' keyword. */ |
| cp_parser_require_keyword (parser, RID_ASM, RT_ASM); |
| /* See if the next token is `volatile'. */ |
| if (cp_parser_allow_gnu_extensions_p (parser) |
| && cp_lexer_next_token_is_keyword (parser->lexer, RID_VOLATILE)) |
| { |
| /* Remember that we saw the `volatile' keyword. */ |
| volatile_p = true; |
| /* Consume the token. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| if (cp_parser_allow_gnu_extensions_p (parser) |
| && parser->in_function_body |
| && cp_lexer_next_token_is_keyword (parser->lexer, RID_GOTO)) |
| { |
| /* Remember that we saw the `goto' keyword. */ |
| goto_p = true; |
| /* Consume the token. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| /* Look for the opening `('. */ |
| if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN)) |
| return; |
| /* Look for the string. */ |
| string = cp_parser_string_literal (parser, false, false); |
| if (string == error_mark_node) |
| { |
| cp_parser_skip_to_closing_parenthesis (parser, true, false, |
| /*consume_paren=*/true); |
| return; |
| } |
| |
| /* If we're allowing GNU extensions, check for the extended assembly |
| syntax. Unfortunately, the `:' tokens need not be separated by |
| a space in C, and so, for compatibility, we tolerate that here |
| too. Doing that means that we have to treat the `::' operator as |
| two `:' tokens. */ |
| if (cp_parser_allow_gnu_extensions_p (parser) |
| && parser->in_function_body |
| && (cp_lexer_next_token_is (parser->lexer, CPP_COLON) |
| || cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))) |
| { |
| bool inputs_p = false; |
| bool clobbers_p = false; |
| bool labels_p = false; |
| |
| /* The extended syntax was used. */ |
| extended_p = true; |
| |
| /* Look for outputs. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_COLON)) |
| { |
| /* Consume the `:'. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the output-operands. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, |
| CPP_COLON) |
| && cp_lexer_next_token_is_not (parser->lexer, |
| CPP_SCOPE) |
| && cp_lexer_next_token_is_not (parser->lexer, |
| CPP_CLOSE_PAREN) |
| && !goto_p) |
| outputs = cp_parser_asm_operand_list (parser); |
| |
| if (outputs == error_mark_node) |
| invalid_outputs_p = true; |
| } |
| /* If the next token is `::', there are no outputs, and the |
| next token is the beginning of the inputs. */ |
| else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)) |
| /* The inputs are coming next. */ |
| inputs_p = true; |
| |
| /* Look for inputs. */ |
| if (inputs_p |
| || cp_lexer_next_token_is (parser->lexer, CPP_COLON)) |
| { |
| /* Consume the `:' or `::'. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the output-operands. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, |
| CPP_COLON) |
| && cp_lexer_next_token_is_not (parser->lexer, |
| CPP_SCOPE) |
| && cp_lexer_next_token_is_not (parser->lexer, |
| CPP_CLOSE_PAREN)) |
| inputs = cp_parser_asm_operand_list (parser); |
| |
| if (inputs == error_mark_node) |
| invalid_inputs_p = true; |
| } |
| else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)) |
| /* The clobbers are coming next. */ |
| clobbers_p = true; |
| |
| /* Look for clobbers. */ |
| if (clobbers_p |
| || cp_lexer_next_token_is (parser->lexer, CPP_COLON)) |
| { |
| clobbers_p = true; |
| /* Consume the `:' or `::'. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the clobbers. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, |
| CPP_COLON) |
| && cp_lexer_next_token_is_not (parser->lexer, |
| CPP_CLOSE_PAREN)) |
| clobbers = cp_parser_asm_clobber_list (parser); |
| } |
| else if (goto_p |
| && cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)) |
| /* The labels are coming next. */ |
| labels_p = true; |
| |
| /* Look for labels. */ |
| if (labels_p |
| || (goto_p && cp_lexer_next_token_is (parser->lexer, CPP_COLON))) |
| { |
| labels_p = true; |
| /* Consume the `:' or `::'. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the labels. */ |
| labels = cp_parser_asm_label_list (parser); |
| } |
| |
| if (goto_p && !labels_p) |
| missing = clobbers_p ? RT_COLON : RT_COLON_SCOPE; |
| } |
| else if (goto_p) |
| missing = RT_COLON_SCOPE; |
| |
| /* Look for the closing `)'. */ |
| if (!cp_parser_require (parser, missing ? CPP_COLON : CPP_CLOSE_PAREN, |
| missing ? missing : RT_CLOSE_PAREN)) |
| cp_parser_skip_to_closing_parenthesis (parser, true, false, |
| /*consume_paren=*/true); |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| |
| if (!invalid_inputs_p && !invalid_outputs_p) |
| { |
| /* Create the ASM_EXPR. */ |
| if (parser->in_function_body) |
| { |
| asm_stmt = finish_asm_stmt (volatile_p, string, outputs, |
| inputs, clobbers, labels); |
| /* If the extended syntax was not used, mark the ASM_EXPR. */ |
| if (!extended_p) |
| { |
| tree temp = asm_stmt; |
| if (TREE_CODE (temp) == CLEANUP_POINT_EXPR) |
| temp = TREE_OPERAND (temp, 0); |
| |
| ASM_INPUT_P (temp) = 1; |
| } |
| } |
| else |
| cgraph_add_asm_node (string); |
| } |
| } |
| |
| /* Declarators [gram.dcl.decl] */ |
| |
| /* Parse an init-declarator. |
| |
| init-declarator: |
| declarator initializer [opt] |
| |
| GNU Extension: |
| |
| init-declarator: |
| declarator asm-specification [opt] attributes [opt] initializer [opt] |
| |
| function-definition: |
| decl-specifier-seq [opt] declarator ctor-initializer [opt] |
| function-body |
| decl-specifier-seq [opt] declarator function-try-block |
| |
| GNU Extension: |
| |
| function-definition: |
| __extension__ function-definition |
| |
| The DECL_SPECIFIERS apply to this declarator. Returns a |
| representation of the entity declared. If MEMBER_P is TRUE, then |
| this declarator appears in a class scope. The new DECL created by |
| this declarator is returned. |
| |
| The CHECKS are access checks that should be performed once we know |
| what entity is being declared (and, therefore, what classes have |
| befriended it). |
| |
| If FUNCTION_DEFINITION_ALLOWED_P then we handle the declarator and |
| for a function-definition here as well. If the declarator is a |
| declarator for a function-definition, *FUNCTION_DEFINITION_P will |
| be TRUE upon return. By that point, the function-definition will |
| have been completely parsed. |
| |
| FUNCTION_DEFINITION_P may be NULL if FUNCTION_DEFINITION_ALLOWED_P |
| is FALSE. |
| |
| If MAYBE_RANGE_FOR_DECL is not NULL, the pointed tree will be set to the |
| parsed declaration if it is an uninitialized single declarator not followed |
| by a `;', or to error_mark_node otherwise. Either way, the trailing `;', |
| if present, will not be consumed. If returned, this declarator will be |
| created with SD_INITIALIZED but will not call cp_finish_decl. */ |
| |
| static tree |
| cp_parser_init_declarator (cp_parser* parser, |
| cp_decl_specifier_seq *decl_specifiers, |
| VEC (deferred_access_check,gc)* checks, |
| bool function_definition_allowed_p, |
| bool member_p, |
| int declares_class_or_enum, |
| bool* function_definition_p, |
| tree* maybe_range_for_decl) |
| { |
| cp_token *token = NULL, *asm_spec_start_token = NULL, |
| *attributes_start_token = NULL; |
| cp_declarator *declarator; |
| tree prefix_attributes; |
| tree attributes; |
| tree asm_specification; |
| tree initializer; |
| tree decl = NULL_TREE; |
| tree scope; |
| int is_initialized; |
| /* Only valid if IS_INITIALIZED is true. In that case, CPP_EQ if |
| initialized with "= ..", CPP_OPEN_PAREN if initialized with |
| "(...)". */ |
| enum cpp_ttype initialization_kind; |
| bool is_direct_init = false; |
| bool is_non_constant_init; |
| int ctor_dtor_or_conv_p; |
| bool friend_p; |
| tree pushed_scope = NULL_TREE; |
| bool range_for_decl_p = false; |
| |
| /* Gather the attributes that were provided with the |
| decl-specifiers. */ |
| prefix_attributes = decl_specifiers->attributes; |
| |
| /* Assume that this is not the declarator for a function |
| definition. */ |
| if (function_definition_p) |
| *function_definition_p = false; |
| |
| /* Defer access checks while parsing the declarator; we cannot know |
| what names are accessible until we know what is being |
| declared. */ |
| resume_deferring_access_checks (); |
| |
| /* Parse the declarator. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| declarator |
| = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED, |
| &ctor_dtor_or_conv_p, |
| /*parenthesized_p=*/NULL, |
| /*member_p=*/false); |
| /* Gather up the deferred checks. */ |
| stop_deferring_access_checks (); |
| |
| /* If the DECLARATOR was erroneous, there's no need to go |
| further. */ |
| if (declarator == cp_error_declarator) |
| return error_mark_node; |
| |
| /* Check that the number of template-parameter-lists is OK. */ |
| if (!cp_parser_check_declarator_template_parameters (parser, declarator, |
| token->location)) |
| return error_mark_node; |
| |
| if (declares_class_or_enum & 2) |
| cp_parser_check_for_definition_in_return_type (declarator, |
| decl_specifiers->type, |
| decl_specifiers->type_location); |
| |
| /* Figure out what scope the entity declared by the DECLARATOR is |
| located in. `grokdeclarator' sometimes changes the scope, so |
| we compute it now. */ |
| scope = get_scope_of_declarator (declarator); |
| |
| /* Perform any lookups in the declared type which were thought to be |
| dependent, but are not in the scope of the declarator. */ |
| decl_specifiers->type |
| = maybe_update_decl_type (decl_specifiers->type, scope); |
| |
| /* If we're allowing GNU extensions, look for an asm-specification |
| and attributes. */ |
| if (cp_parser_allow_gnu_extensions_p (parser)) |
| { |
| /* Look for an asm-specification. */ |
| asm_spec_start_token = cp_lexer_peek_token (parser->lexer); |
| asm_specification = cp_parser_asm_specification_opt (parser); |
| /* And attributes. */ |
| attributes_start_token = cp_lexer_peek_token (parser->lexer); |
| attributes = cp_parser_attributes_opt (parser); |
| } |
| else |
| { |
| asm_specification = NULL_TREE; |
| attributes = NULL_TREE; |
| } |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* Check to see if the token indicates the start of a |
| function-definition. */ |
| if (function_declarator_p (declarator) |
| && cp_parser_token_starts_function_definition_p (token)) |
| { |
| if (!function_definition_allowed_p) |
| { |
| /* If a function-definition should not appear here, issue an |
| error message. */ |
| cp_parser_error (parser, |
| "a function-definition is not allowed here"); |
| return error_mark_node; |
| } |
| else |
| { |
| location_t func_brace_location |
| = cp_lexer_peek_token (parser->lexer)->location; |
| |
| /* Neither attributes nor an asm-specification are allowed |
| on a function-definition. */ |
| if (asm_specification) |
| error_at (asm_spec_start_token->location, |
| "an asm-specification is not allowed " |
| "on a function-definition"); |
| if (attributes) |
| error_at (attributes_start_token->location, |
| "attributes are not allowed on a function-definition"); |
| /* This is a function-definition. */ |
| *function_definition_p = true; |
| |
| /* Parse the function definition. */ |
| if (member_p) |
| decl = cp_parser_save_member_function_body (parser, |
| decl_specifiers, |
| declarator, |
| prefix_attributes); |
| else |
| decl |
| = (cp_parser_function_definition_from_specifiers_and_declarator |
| (parser, decl_specifiers, prefix_attributes, declarator)); |
| |
| if (decl != error_mark_node && DECL_STRUCT_FUNCTION (decl)) |
| { |
| /* This is where the prologue starts... */ |
| DECL_STRUCT_FUNCTION (decl)->function_start_locus |
| = func_brace_location; |
| } |
| |
| return decl; |
| } |
| } |
| |
| /* [dcl.dcl] |
| |
| Only in function declarations for constructors, destructors, and |
| type conversions can the decl-specifier-seq be omitted. |
| |
| We explicitly postpone this check past the point where we handle |
| function-definitions because we tolerate function-definitions |
| that are missing their return types in some modes. */ |
| if (!decl_specifiers->any_specifiers_p && ctor_dtor_or_conv_p <= 0) |
| { |
| cp_parser_error (parser, |
| "expected constructor, destructor, or type conversion"); |
| return error_mark_node; |
| } |
| |
| /* An `=' or an `(', or an '{' in C++0x, indicates an initializer. */ |
| if (token->type == CPP_EQ |
| || token->type == CPP_OPEN_PAREN |
| || token->type == CPP_OPEN_BRACE) |
| { |
| is_initialized = SD_INITIALIZED; |
| initialization_kind = token->type; |
| if (maybe_range_for_decl) |
| *maybe_range_for_decl = error_mark_node; |
| |
| if (token->type == CPP_EQ |
| && function_declarator_p (declarator)) |
| { |
| cp_token *t2 = cp_lexer_peek_nth_token (parser->lexer, 2); |
| if (t2->keyword == RID_DEFAULT) |
| is_initialized = SD_DEFAULTED; |
| else if (t2->keyword == RID_DELETE) |
| is_initialized = SD_DELETED; |
| } |
| } |
| else |
| { |
| /* If the init-declarator isn't initialized and isn't followed by a |
| `,' or `;', it's not a valid init-declarator. */ |
| if (token->type != CPP_COMMA |
| && token->type != CPP_SEMICOLON) |
| { |
| if (maybe_range_for_decl && *maybe_range_for_decl != error_mark_node) |
| range_for_decl_p = true; |
| else |
| { |
| cp_parser_error (parser, "expected initializer"); |
| return error_mark_node; |
| } |
| } |
| is_initialized = SD_UNINITIALIZED; |
| initialization_kind = CPP_EOF; |
| } |
| |
| /* Because start_decl has side-effects, we should only call it if we |
| know we're going ahead. By this point, we know that we cannot |
| possibly be looking at any other construct. */ |
| cp_parser_commit_to_tentative_parse (parser); |
| |
| /* If the decl specifiers were bad, issue an error now that we're |
| sure this was intended to be a declarator. Then continue |
| declaring the variable(s), as int, to try to cut down on further |
| errors. */ |
| if (decl_specifiers->any_specifiers_p |
| && decl_specifiers->type == error_mark_node) |
| { |
| cp_parser_error (parser, "invalid type in declaration"); |
| decl_specifiers->type = integer_type_node; |
| } |
| |
| /* Check to see whether or not this declaration is a friend. */ |
| friend_p = cp_parser_friend_p (decl_specifiers); |
| |
| /* Enter the newly declared entry in the symbol table. If we're |
| processing a declaration in a class-specifier, we wait until |
| after processing the initializer. */ |
| if (!member_p) |
| { |
| if (parser->in_unbraced_linkage_specification_p) |
| decl_specifiers->storage_class = sc_extern; |
| decl = start_decl (declarator, decl_specifiers, |
| range_for_decl_p? SD_INITIALIZED : is_initialized, |
| attributes, prefix_attributes, |
| &pushed_scope); |
| /* Adjust location of decl if declarator->id_loc is more appropriate: |
| set, and decl wasn't merged with another decl, in which case its |
| location would be different from input_location, and more accurate. */ |
| if (DECL_P (decl) |
| && declarator->id_loc != UNKNOWN_LOCATION |
| && DECL_SOURCE_LOCATION (decl) == input_location) |
| DECL_SOURCE_LOCATION (decl) = declarator->id_loc; |
| } |
| else if (scope) |
| /* Enter the SCOPE. That way unqualified names appearing in the |
| initializer will be looked up in SCOPE. */ |
| pushed_scope = push_scope (scope); |
| |
| /* Perform deferred access control checks, now that we know in which |
| SCOPE the declared entity resides. */ |
| if (!member_p && decl) |
| { |
| tree saved_current_function_decl = NULL_TREE; |
| |
| /* If the entity being declared is a function, pretend that we |
| are in its scope. If it is a `friend', it may have access to |
| things that would not otherwise be accessible. */ |
| if (TREE_CODE (decl) == FUNCTION_DECL) |
| { |
| saved_current_function_decl = current_function_decl; |
| current_function_decl = decl; |
| } |
| |
| /* Perform access checks for template parameters. */ |
| cp_parser_perform_template_parameter_access_checks (checks); |
| |
| /* Perform the access control checks for the declarator and the |
| decl-specifiers. */ |
| perform_deferred_access_checks (); |
| |
| /* Restore the saved value. */ |
| if (TREE_CODE (decl) == FUNCTION_DECL) |
| current_function_decl = saved_current_function_decl; |
| } |
| |
| /* Parse the initializer. */ |
| initializer = NULL_TREE; |
| is_direct_init = false; |
| is_non_constant_init = true; |
| if (is_initialized) |
| { |
| if (function_declarator_p (declarator)) |
| { |
| cp_token *initializer_start_token = cp_lexer_peek_token (parser->lexer); |
| if (initialization_kind == CPP_EQ) |
| initializer = cp_parser_pure_specifier (parser); |
| else |
| { |
| /* If the declaration was erroneous, we don't really |
| know what the user intended, so just silently |
| consume the initializer. */ |
| if (decl != error_mark_node) |
| error_at (initializer_start_token->location, |
| "initializer provided for function"); |
| cp_parser_skip_to_closing_parenthesis (parser, |
| /*recovering=*/true, |
| /*or_comma=*/false, |
| /*consume_paren=*/true); |
| } |
| } |
| else |
| { |
| /* We want to record the extra mangling scope for in-class |
| initializers of class members and initializers of static data |
| member templates. The former is a C++0x feature which isn't |
| implemented yet, and I expect it will involve deferring |
| parsing of the initializer until end of class as with default |
| arguments. So right here we only handle the latter. */ |
| if (!member_p && processing_template_decl) |
| start_lambda_scope (decl); |
| initializer = cp_parser_initializer (parser, |
| &is_direct_init, |
| &is_non_constant_init); |
| if (!member_p && processing_template_decl) |
| finish_lambda_scope (); |
| } |
| } |
| |
| /* The old parser allows attributes to appear after a parenthesized |
| initializer. Mark Mitchell proposed removing this functionality |
| on the GCC mailing lists on 2002-08-13. This parser accepts the |
| attributes -- but ignores them. */ |
| if (cp_parser_allow_gnu_extensions_p (parser) |
| && initialization_kind == CPP_OPEN_PAREN) |
| if (cp_parser_attributes_opt (parser)) |
| warning (OPT_Wattributes, |
| "attributes after parenthesized initializer ignored"); |
| |
| /* For an in-class declaration, use `grokfield' to create the |
| declaration. */ |
| if (member_p) |
| { |
| if (pushed_scope) |
| { |
| pop_scope (pushed_scope); |
| pushed_scope = NULL_TREE; |
| } |
| decl = grokfield (declarator, decl_specifiers, |
| initializer, !is_non_constant_init, |
| /*asmspec=*/NULL_TREE, |
| prefix_attributes); |
| if (decl && TREE_CODE (decl) == FUNCTION_DECL) |
| cp_parser_save_default_args (parser, decl); |
| } |
| |
| /* Finish processing the declaration. But, skip member |
| declarations. */ |
| if (!member_p && decl && decl != error_mark_node && !range_for_decl_p) |
| { |
| cp_finish_decl (decl, |
| initializer, !is_non_constant_init, |
| asm_specification, |
| /* If the initializer is in parentheses, then this is |
| a direct-initialization, which means that an |
| `explicit' constructor is OK. Otherwise, an |
| `explicit' constructor cannot be used. */ |
| ((is_direct_init || !is_initialized) |
| ? LOOKUP_NORMAL : LOOKUP_IMPLICIT)); |
| } |
| else if ((cxx_dialect != cxx98) && friend_p |
| && decl && TREE_CODE (decl) == FUNCTION_DECL) |
| /* Core issue #226 (C++0x only): A default template-argument |
| shall not be specified in a friend class template |
| declaration. */ |
| check_default_tmpl_args (decl, current_template_parms, /*is_primary=*/1, |
| /*is_partial=*/0, /*is_friend_decl=*/1); |
| |
| if (!friend_p && pushed_scope) |
| pop_scope (pushed_scope); |
| |
| return decl; |
| } |
| |
| /* Parse a declarator. |
| |
| declarator: |
| direct-declarator |
| ptr-operator declarator |
| |
| abstract-declarator: |
| ptr-operator abstract-declarator [opt] |
| direct-abstract-declarator |
| |
| GNU Extensions: |
| |
| declarator: |
| attributes [opt] direct-declarator |
| attributes [opt] ptr-operator declarator |
| |
| abstract-declarator: |
| attributes [opt] ptr-operator abstract-declarator [opt] |
| attributes [opt] direct-abstract-declarator |
| |
| If CTOR_DTOR_OR_CONV_P is not NULL, *CTOR_DTOR_OR_CONV_P is used to |
| detect constructor, destructor or conversion operators. It is set |
| to -1 if the declarator is a name, and +1 if it is a |
| function. Otherwise it is set to zero. Usually you just want to |
| test for >0, but internally the negative value is used. |
| |
| (The reason for CTOR_DTOR_OR_CONV_P is that a declaration must have |
| a decl-specifier-seq unless it declares a constructor, destructor, |
| or conversion. It might seem that we could check this condition in |
| semantic analysis, rather than parsing, but that makes it difficult |
| to handle something like `f()'. We want to notice that there are |
| no decl-specifiers, and therefore realize that this is an |
| expression, not a declaration.) |
| |
| If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff |
| the declarator is a direct-declarator of the form "(...)". |
| |
| MEMBER_P is true iff this declarator is a member-declarator. */ |
| |
| static cp_declarator * |
| cp_parser_declarator (cp_parser* parser, |
| cp_parser_declarator_kind dcl_kind, |
| int* ctor_dtor_or_conv_p, |
| bool* parenthesized_p, |
| bool member_p) |
| { |
| cp_declarator *declarator; |
| enum tree_code code; |
| cp_cv_quals cv_quals; |
| tree class_type; |
| tree attributes = NULL_TREE; |
| |
| /* Assume this is not a constructor, destructor, or type-conversion |
| operator. */ |
| if (ctor_dtor_or_conv_p) |
| *ctor_dtor_or_conv_p = 0; |
| |
| if (cp_parser_allow_gnu_extensions_p (parser)) |
| attributes = cp_parser_attributes_opt (parser); |
| |
| /* Check for the ptr-operator production. */ |
| cp_parser_parse_tentatively (parser); |
| /* Parse the ptr-operator. */ |
| code = cp_parser_ptr_operator (parser, |
| &class_type, |
| &cv_quals); |
| /* If that worked, then we have a ptr-operator. */ |
| if (cp_parser_parse_definitely (parser)) |
| { |
| /* If a ptr-operator was found, then this declarator was not |
| parenthesized. */ |
| if (parenthesized_p) |
| *parenthesized_p = true; |
| /* The dependent declarator is optional if we are parsing an |
| abstract-declarator. */ |
| if (dcl_kind != CP_PARSER_DECLARATOR_NAMED) |
| cp_parser_parse_tentatively (parser); |
| |
| /* Parse the dependent declarator. */ |
| declarator = cp_parser_declarator (parser, dcl_kind, |
| /*ctor_dtor_or_conv_p=*/NULL, |
| /*parenthesized_p=*/NULL, |
| /*member_p=*/false); |
| |
| /* If we are parsing an abstract-declarator, we must handle the |
| case where the dependent declarator is absent. */ |
| if (dcl_kind != CP_PARSER_DECLARATOR_NAMED |
| && !cp_parser_parse_definitely (parser)) |
| declarator = NULL; |
| |
| declarator = cp_parser_make_indirect_declarator |
| (code, class_type, cv_quals, declarator); |
| } |
| /* Everything else is a direct-declarator. */ |
| else |
| { |
| if (parenthesized_p) |
| *parenthesized_p = cp_lexer_next_token_is (parser->lexer, |
| CPP_OPEN_PAREN); |
| declarator = cp_parser_direct_declarator (parser, dcl_kind, |
| ctor_dtor_or_conv_p, |
| member_p); |
| } |
| |
| if (attributes && declarator && declarator != cp_error_declarator) |
| declarator->attributes = attributes; |
| |
| return declarator; |
| } |
| |
| /* Parse a direct-declarator or direct-abstract-declarator. |
| |
| direct-declarator: |
| declarator-id |
| direct-declarator ( parameter-declaration-clause ) |
| cv-qualifier-seq [opt] |
| exception-specification [opt] |
| direct-declarator [ constant-expression [opt] ] |
| ( declarator ) |
| |
| direct-abstract-declarator: |
| direct-abstract-declarator [opt] |
| ( parameter-declaration-clause ) |
| cv-qualifier-seq [opt] |
| exception-specification [opt] |
| direct-abstract-declarator [opt] [ constant-expression [opt] ] |
| ( abstract-declarator ) |
| |
| Returns a representation of the declarator. DCL_KIND is |
| CP_PARSER_DECLARATOR_ABSTRACT, if we are parsing a |
| direct-abstract-declarator. It is CP_PARSER_DECLARATOR_NAMED, if |
| we are parsing a direct-declarator. It is |
| CP_PARSER_DECLARATOR_EITHER, if we can accept either - in the case |
| of ambiguity we prefer an abstract declarator, as per |
| [dcl.ambig.res]. CTOR_DTOR_OR_CONV_P and MEMBER_P are as for |
| cp_parser_declarator. */ |
| |
| static cp_declarator * |
| cp_parser_direct_declarator (cp_parser* parser, |
| cp_parser_declarator_kind dcl_kind, |
| int* ctor_dtor_or_conv_p, |
| bool member_p) |
| { |
| cp_token *token; |
| cp_declarator *declarator = NULL; |
| tree scope = NULL_TREE; |
| bool saved_default_arg_ok_p = parser->default_arg_ok_p; |
| bool saved_in_declarator_p = parser->in_declarator_p; |
| bool first = true; |
| tree pushed_scope = NULL_TREE; |
| |
| while (true) |
| { |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| if (token->type == CPP_OPEN_PAREN) |
| { |
| /* This is either a parameter-declaration-clause, or a |
| parenthesized declarator. When we know we are parsing a |
| named declarator, it must be a parenthesized declarator |
| if FIRST is true. For instance, `(int)' is a |
| parameter-declaration-clause, with an omitted |
| direct-abstract-declarator. But `((*))', is a |
| parenthesized abstract declarator. Finally, when T is a |
| template parameter `(T)' is a |
| parameter-declaration-clause, and not a parenthesized |
| named declarator. |
| |
| We first try and parse a parameter-declaration-clause, |
| and then try a nested declarator (if FIRST is true). |
| |
| It is not an error for it not to be a |
| parameter-declaration-clause, even when FIRST is |
| false. Consider, |
| |
| int i (int); |
| int i (3); |
| |
| The first is the declaration of a function while the |
| second is the definition of a variable, including its |
| initializer. |
| |
| Having seen only the parenthesis, we cannot know which of |
| these two alternatives should be selected. Even more |
| complex are examples like: |
| |
| int i (int (a)); |
| int i (int (3)); |
| |
| The former is a function-declaration; the latter is a |
| variable initialization. |
| |
| Thus again, we try a parameter-declaration-clause, and if |
| that fails, we back out and return. */ |
| |
| if (!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED) |
| { |
| tree params; |
| unsigned saved_num_template_parameter_lists; |
| bool is_declarator = false; |
| tree t; |
| |
| /* In a member-declarator, the only valid interpretation |
| of a parenthesis is the start of a |
| parameter-declaration-clause. (It is invalid to |
| initialize a static data member with a parenthesized |
| initializer; only the "=" form of initialization is |
| permitted.) */ |
| if (!member_p) |
| cp_parser_parse_tentatively (parser); |
| |
| /* Consume the `('. */ |
| cp_lexer_consume_token (parser->lexer); |
| if (first) |
| { |
| /* If this is going to be an abstract declarator, we're |
| in a declarator and we can't have default args. */ |
| parser->default_arg_ok_p = false; |
| parser->in_declarator_p = true; |
| } |
| |
| /* Inside the function parameter list, surrounding |
| template-parameter-lists do not apply. */ |
| saved_num_template_parameter_lists |
| = parser->num_template_parameter_lists; |
| parser->num_template_parameter_lists = 0; |
| |
| begin_scope (sk_function_parms, NULL_TREE); |
| |
| /* Parse the parameter-declaration-clause. */ |
| params = cp_parser_parameter_declaration_clause (parser); |
| |
| parser->num_template_parameter_lists |
| = saved_num_template_parameter_lists; |
| |
| /* Consume the `)'. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| |
| /* If all went well, parse the cv-qualifier-seq and the |
| exception-specification. */ |
| if (member_p || cp_parser_parse_definitely (parser)) |
| { |
| cp_cv_quals cv_quals; |
| cp_virt_specifiers virt_specifiers; |
| tree exception_specification; |
| tree late_return; |
| |
| is_declarator = true; |
| |
| if (ctor_dtor_or_conv_p) |
| *ctor_dtor_or_conv_p = *ctor_dtor_or_conv_p < 0; |
| first = false; |
| |
| /* Parse the cv-qualifier-seq. */ |
| cv_quals = cp_parser_cv_qualifier_seq_opt (parser); |
| /* And the exception-specification. */ |
| exception_specification |
| = cp_parser_exception_specification_opt (parser); |
| /* Parse the virt-specifier-seq. */ |
| virt_specifiers = cp_parser_virt_specifier_seq_opt (parser); |
| |
| late_return |
| = cp_parser_late_return_type_opt (parser); |
| |
| /* Create the function-declarator. */ |
| declarator = make_call_declarator (declarator, |
| params, |
| cv_quals, |
| virt_specifiers, |
| exception_specification, |
| late_return); |
| /* Any subsequent parameter lists are to do with |
| return type, so are not those of the declared |
| function. */ |
| parser->default_arg_ok_p = false; |
| } |
| |
| /* Remove the function parms from scope. */ |
| for (t = current_binding_level->names; t; t = DECL_CHAIN (t)) |
| pop_binding (DECL_NAME (t), t); |
| leave_scope(); |
| |
| if (is_declarator) |
| /* Repeat the main loop. */ |
| continue; |
| } |
| |
| /* If this is the first, we can try a parenthesized |
| declarator. */ |
| if (first) |
| { |
| bool saved_in_type_id_in_expr_p; |
| |
| parser->default_arg_ok_p = saved_default_arg_ok_p; |
| parser->in_declarator_p = saved_in_declarator_p; |
| |
| /* Consume the `('. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the nested declarator. */ |
| saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p; |
| parser->in_type_id_in_expr_p = true; |
| declarator |
| = cp_parser_declarator (parser, dcl_kind, ctor_dtor_or_conv_p, |
| /*parenthesized_p=*/NULL, |
| member_p); |
| parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p; |
| first = false; |
| /* Expect a `)'. */ |
| if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN)) |
| declarator = cp_error_declarator; |
| if (declarator == cp_error_declarator) |
| break; |
| |
| goto handle_declarator; |
| } |
| /* Otherwise, we must be done. */ |
| else |
| break; |
| } |
| else if ((!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED) |
| && token->type == CPP_OPEN_SQUARE) |
| { |
| /* Parse an array-declarator. */ |
| tree bounds; |
| |
| if (ctor_dtor_or_conv_p) |
| *ctor_dtor_or_conv_p = 0; |
| |
| first = false; |
| parser->default_arg_ok_p = false; |
| parser->in_declarator_p = true; |
| /* Consume the `['. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If the next token is `]', then there is no |
| constant-expression. */ |
| if (token->type != CPP_CLOSE_SQUARE) |
| { |
| bool non_constant_p; |
| |
| bounds |
| = cp_parser_constant_expression (parser, |
| /*allow_non_constant=*/true, |
| &non_constant_p); |
| if (!non_constant_p) |
| /* OK */; |
| /* Normally, the array bound must be an integral constant |
| expression. However, as an extension, we allow VLAs |
| in function scopes as long as they aren't part of a |
| parameter declaration. */ |
| else if (!parser->in_function_body |
| || current_binding_level->kind == sk_function_parms) |
| { |
| cp_parser_error (parser, |
| "array bound is not an integer constant"); |
| bounds = error_mark_node; |
| } |
| else if (processing_template_decl && !error_operand_p (bounds)) |
| { |
| /* Remember this wasn't a constant-expression. */ |
| bounds = build_nop (TREE_TYPE (bounds), bounds); |
| TREE_SIDE_EFFECTS (bounds) = 1; |
| } |
| } |
| else |
| bounds = NULL_TREE; |
| /* Look for the closing `]'. */ |
| if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE)) |
| { |
| declarator = cp_error_declarator; |
| break; |
| } |
| |
| declarator = make_array_declarator (declarator, bounds); |
| } |
| else if (first && dcl_kind != CP_PARSER_DECLARATOR_ABSTRACT) |
| { |
| { |
| tree qualifying_scope; |
| tree unqualified_name; |
| special_function_kind sfk; |
| bool abstract_ok; |
| bool pack_expansion_p = false; |
| cp_token *declarator_id_start_token; |
| |
| /* Parse a declarator-id */ |
| abstract_ok = (dcl_kind == CP_PARSER_DECLARATOR_EITHER); |
| if (abstract_ok) |
| { |
| cp_parser_parse_tentatively (parser); |
| |
| /* If we see an ellipsis, we should be looking at a |
| parameter pack. */ |
| if (token->type == CPP_ELLIPSIS) |
| { |
| /* Consume the `...' */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| pack_expansion_p = true; |
| } |
| } |
| |
| declarator_id_start_token = cp_lexer_peek_token (parser->lexer); |
| unqualified_name |
| = cp_parser_declarator_id (parser, /*optional_p=*/abstract_ok); |
| qualifying_scope = parser->scope; |
| if (abstract_ok) |
| { |
| bool okay = false; |
| |
| if (!unqualified_name && pack_expansion_p) |
| { |
| /* Check whether an error occurred. */ |
| okay = !cp_parser_error_occurred (parser); |
| |
| /* We already consumed the ellipsis to mark a |
| parameter pack, but we have no way to report it, |
| so abort the tentative parse. We will be exiting |
| immediately anyway. */ |
| cp_parser_abort_tentative_parse (parser); |
| } |
| else |
| okay = cp_parser_parse_definitely (parser); |
| |
| if (!okay) |
| unqualified_name = error_mark_node; |
| else if (unqualified_name |
| && (qualifying_scope |
| || (TREE_CODE (unqualified_name) |
| != IDENTIFIER_NODE))) |
| { |
| cp_parser_error (parser, "expected unqualified-id"); |
| unqualified_name = error_mark_node; |
| } |
| } |
| |
| if (!unqualified_name) |
| return NULL; |
| if (unqualified_name == error_mark_node) |
| { |
| declarator = cp_error_declarator; |
| pack_expansion_p = false; |
| declarator->parameter_pack_p = false; |
| break; |
| } |
| |
| if (qualifying_scope && at_namespace_scope_p () |
| && TREE_CODE (qualifying_scope) == TYPENAME_TYPE) |
| { |
| /* In the declaration of a member of a template class |
| outside of the class itself, the SCOPE will sometimes |
| be a TYPENAME_TYPE. For example, given: |
| |
| template <typename T> |
| int S<T>::R::i = 3; |
| |
| the SCOPE will be a TYPENAME_TYPE for `S<T>::R'. In |
| this context, we must resolve S<T>::R to an ordinary |
| type, rather than a typename type. |
| |
| The reason we normally avoid resolving TYPENAME_TYPEs |
| is that a specialization of `S' might render |
| `S<T>::R' not a type. However, if `S' is |
| specialized, then this `i' will not be used, so there |
| is no harm in resolving the types here. */ |
| tree type; |
| |
| /* Resolve the TYPENAME_TYPE. */ |
| type = resolve_typename_type (qualifying_scope, |
| /*only_current_p=*/false); |
| /* If that failed, the declarator is invalid. */ |
| if (TREE_CODE (type) == TYPENAME_TYPE) |
| { |
| if (typedef_variant_p (type)) |
| error_at (declarator_id_start_token->location, |
| "cannot define member of dependent typedef " |
| "%qT", type); |
| else |
| error_at (declarator_id_start_token->location, |
| "%<%T::%E%> is not a type", |
| TYPE_CONTEXT (qualifying_scope), |
| TYPE_IDENTIFIER (qualifying_scope)); |
| } |
| qualifying_scope = type; |
| } |
| |
| sfk = sfk_none; |
| |
| if (unqualified_name) |
| { |
| tree class_type; |
| |
| if (qualifying_scope |
| && CLASS_TYPE_P (qualifying_scope)) |
| class_type = qualifying_scope; |
| else |
| class_type = current_class_type; |
| |
| if (TREE_CODE (unqualified_name) == TYPE_DECL) |
| { |
| tree name_type = TREE_TYPE (unqualified_name); |
| if (class_type && same_type_p (name_type, class_type)) |
| { |
| if (qualifying_scope |
| && CLASSTYPE_USE_TEMPLATE (name_type)) |
| { |
| error_at (declarator_id_start_token->location, |
| "invalid use of constructor as a template"); |
| inform (declarator_id_start_token->location, |
| "use %<%T::%D%> instead of %<%T::%D%> to " |
| "name the constructor in a qualified name", |
| class_type, |
| DECL_NAME (TYPE_TI_TEMPLATE (class_type)), |
| class_type, name_type); |
| declarator = cp_error_declarator; |
| break; |
| } |
| else |
| unqualified_name = constructor_name (class_type); |
| } |
| else |
| { |
| /* We do not attempt to print the declarator |
| here because we do not have enough |
| information about its original syntactic |
| form. */ |
| cp_parser_error (parser, "invalid declarator"); |
| declarator = cp_error_declarator; |
| break; |
| } |
| } |
| |
| if (class_type) |
| { |
| if (TREE_CODE (unqualified_name) == BIT_NOT_EXPR) |
| sfk = sfk_destructor; |
| else if (IDENTIFIER_TYPENAME_P (unqualified_name)) |
| sfk = sfk_conversion; |
| else if (/* There's no way to declare a constructor |
| for an anonymous type, even if the type |
| got a name for linkage purposes. */ |
| !TYPE_WAS_ANONYMOUS (class_type) |
| && constructor_name_p (unqualified_name, |
| class_type)) |
| { |
| unqualified_name = constructor_name (class_type); |
| sfk = sfk_constructor; |
| } |
| else if (is_overloaded_fn (unqualified_name) |
| && DECL_CONSTRUCTOR_P (get_first_fn |
| (unqualified_name))) |
| sfk = sfk_constructor; |
| |
| if (ctor_dtor_or_conv_p && sfk != sfk_none) |
| *ctor_dtor_or_conv_p = -1; |
| } |
| } |
| declarator = make_id_declarator (qualifying_scope, |
| unqualified_name, |
| sfk); |
| declarator->id_loc = token->location; |
| declarator->parameter_pack_p = pack_expansion_p; |
| |
| if (pack_expansion_p) |
| maybe_warn_variadic_templates (); |
| } |
| |
| handle_declarator:; |
| scope = get_scope_of_declarator (declarator); |
| if (scope) |
| /* Any names that appear after the declarator-id for a |
| member are looked up in the containing scope. */ |
| pushed_scope = push_scope (scope); |
| parser->in_declarator_p = true; |
| if ((ctor_dtor_or_conv_p && *ctor_dtor_or_conv_p) |
| || (declarator && declarator->kind == cdk_id)) |
| /* Default args are only allowed on function |
| declarations. */ |
| parser->default_arg_ok_p = saved_default_arg_ok_p; |
| else |
| parser->default_arg_ok_p = false; |
| |
| first = false; |
| } |
| /* We're done. */ |
| else |
| break; |
| } |
| |
| /* For an abstract declarator, we might wind up with nothing at this |
| point. That's an error; the declarator is not optional. */ |
| if (!declarator) |
| cp_parser_error (parser, "expected declarator"); |
| |
| /* If we entered a scope, we must exit it now. */ |
| if (pushed_scope) |
| pop_scope (pushed_scope); |
| |
| parser->default_arg_ok_p = saved_default_arg_ok_p; |
| parser->in_declarator_p = saved_in_declarator_p; |
| |
| return declarator; |
| } |
| |
| /* Parse a ptr-operator. |
| |
| ptr-operator: |
| * cv-qualifier-seq [opt] |
| & |
| :: [opt] nested-name-specifier * cv-qualifier-seq [opt] |
| |
| GNU Extension: |
| |
| ptr-operator: |
| & cv-qualifier-seq [opt] |
| |
| Returns INDIRECT_REF if a pointer, or pointer-to-member, was used. |
| Returns ADDR_EXPR if a reference was used, or NON_LVALUE_EXPR for |
| an rvalue reference. In the case of a pointer-to-member, *TYPE is |
| filled in with the TYPE containing the member. *CV_QUALS is |
| filled in with the cv-qualifier-seq, or TYPE_UNQUALIFIED, if there |
| are no cv-qualifiers. Returns ERROR_MARK if an error occurred. |
| Note that the tree codes returned by this function have nothing |
| to do with the types of trees that will be eventually be created |
| to represent the pointer or reference type being parsed. They are |
| just constants with suggestive names. */ |
| static enum tree_code |
| cp_parser_ptr_operator (cp_parser* parser, |
| tree* type, |
| cp_cv_quals *cv_quals) |
| { |
| enum tree_code code = ERROR_MARK; |
| cp_token *token; |
| |
| /* Assume that it's not a pointer-to-member. */ |
| *type = NULL_TREE; |
| /* And that there are no cv-qualifiers. */ |
| *cv_quals = TYPE_UNQUALIFIED; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| /* If it's a `*', `&' or `&&' we have a pointer or reference. */ |
| if (token->type == CPP_MULT) |
| code = INDIRECT_REF; |
| else if (token->type == CPP_AND) |
| code = ADDR_EXPR; |
| else if ((cxx_dialect != cxx98) && |
| token->type == CPP_AND_AND) /* C++0x only */ |
| code = NON_LVALUE_EXPR; |
| |
| if (code != ERROR_MARK) |
| { |
| /* Consume the `*', `&' or `&&'. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* A `*' can be followed by a cv-qualifier-seq, and so can a |
| `&', if we are allowing GNU extensions. (The only qualifier |
| that can legally appear after `&' is `restrict', but that is |
| enforced during semantic analysis. */ |
| if (code == INDIRECT_REF |
| || cp_parser_allow_gnu_extensions_p (parser)) |
| *cv_quals = cp_parser_cv_qualifier_seq_opt (parser); |
| } |
| else |
| { |
| /* Try the pointer-to-member case. */ |
| cp_parser_parse_tentatively (parser); |
| /* Look for the optional `::' operator. */ |
| cp_parser_global_scope_opt (parser, |
| /*current_scope_valid_p=*/false); |
| /* Look for the nested-name specifier. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| cp_parser_nested_name_specifier (parser, |
| /*typename_keyword_p=*/false, |
| /*check_dependency_p=*/true, |
| /*type_p=*/false, |
| /*is_declaration=*/false); |
| /* If we found it, and the next token is a `*', then we are |
| indeed looking at a pointer-to-member operator. */ |
| if (!cp_parser_error_occurred (parser) |
| && cp_parser_require (parser, CPP_MULT, RT_MULT)) |
| { |
| /* Indicate that the `*' operator was used. */ |
| code = INDIRECT_REF; |
| |
| if (TREE_CODE (parser->scope) == NAMESPACE_DECL) |
| error_at (token->location, "%qD is a namespace", parser->scope); |
| else |
| { |
| /* The type of which the member is a member is given by the |
| current SCOPE. */ |
| *type = parser->scope; |
| /* The next name will not be qualified. */ |
| parser->scope = NULL_TREE; |
| parser->qualifying_scope = NULL_TREE; |
| parser->object_scope = NULL_TREE; |
| /* Look for the optional cv-qualifier-seq. */ |
| *cv_quals = cp_parser_cv_qualifier_seq_opt (parser); |
| } |
| } |
| /* If that didn't work we don't have a ptr-operator. */ |
| if (!cp_parser_parse_definitely (parser)) |
| cp_parser_error (parser, "expected ptr-operator"); |
| } |
| |
| return code; |
| } |
| |
| /* Parse an (optional) cv-qualifier-seq. |
| |
| cv-qualifier-seq: |
| cv-qualifier cv-qualifier-seq [opt] |
| |
| cv-qualifier: |
| const |
| volatile |
| |
| GNU Extension: |
| |
| cv-qualifier: |
| __restrict__ |
| |
| Returns a bitmask representing the cv-qualifiers. */ |
| |
| static cp_cv_quals |
| cp_parser_cv_qualifier_seq_opt (cp_parser* parser) |
| { |
| cp_cv_quals cv_quals = TYPE_UNQUALIFIED; |
| |
| while (true) |
| { |
| cp_token *token; |
| cp_cv_quals cv_qualifier; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* See if it's a cv-qualifier. */ |
| switch (token->keyword) |
| { |
| case RID_CONST: |
| cv_qualifier = TYPE_QUAL_CONST; |
| break; |
| |
| case RID_VOLATILE: |
| cv_qualifier = TYPE_QUAL_VOLATILE; |
| break; |
| |
| case RID_RESTRICT: |
| cv_qualifier = TYPE_QUAL_RESTRICT; |
| break; |
| |
| default: |
| cv_qualifier = TYPE_UNQUALIFIED; |
| break; |
| } |
| |
| if (!cv_qualifier) |
| break; |
| |
| if (cv_quals & cv_qualifier) |
| { |
| error_at (token->location, "duplicate cv-qualifier"); |
| cp_lexer_purge_token (parser->lexer); |
| } |
| else |
| { |
| cp_lexer_consume_token (parser->lexer); |
| cv_quals |= cv_qualifier; |
| } |
| } |
| |
| return cv_quals; |
| } |
| |
| /* Parse an (optional) virt-specifier-seq. |
| |
| virt-specifier-seq: |
| virt-specifier virt-specifier-seq [opt] |
| |
| virt-specifier: |
| override |
| final |
| |
| Returns a bitmask representing the virt-specifiers. */ |
| |
| static cp_virt_specifiers |
| cp_parser_virt_specifier_seq_opt (cp_parser* parser) |
| { |
| cp_virt_specifiers virt_specifiers = VIRT_SPEC_UNSPECIFIED; |
| |
| while (true) |
| { |
| cp_token *token; |
| cp_virt_specifiers virt_specifier; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* See if it's a virt-specifier-qualifier. */ |
| if (token->type != CPP_NAME) |
| break; |
| if (!strcmp (IDENTIFIER_POINTER(token->u.value), "override")) |
| virt_specifier = VIRT_SPEC_OVERRIDE; |
| else if (!strcmp (IDENTIFIER_POINTER(token->u.value), "final")) |
| virt_specifier = VIRT_SPEC_FINAL; |
| else |
| break; |
| |
| if (virt_specifiers & virt_specifier) |
| { |
| error_at (token->location, "duplicate virt-specifier"); |
| cp_lexer_purge_token (parser->lexer); |
| } |
| else |
| { |
| cp_lexer_consume_token (parser->lexer); |
| virt_specifiers |= virt_specifier; |
| } |
| } |
| return virt_specifiers; |
| } |
| |
| /* Parse a late-specified return type, if any. This is not a separate |
| non-terminal, but part of a function declarator, which looks like |
| |
| -> trailing-type-specifier-seq abstract-declarator(opt) |
| |
| Returns the type indicated by the type-id. */ |
| |
| static tree |
| cp_parser_late_return_type_opt (cp_parser* parser) |
| { |
| cp_token *token; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* A late-specified return type is indicated by an initial '->'. */ |
| if (token->type != CPP_DEREF) |
| return NULL_TREE; |
| |
| /* Consume the ->. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| return cp_parser_trailing_type_id (parser); |
| } |
| |
| /* Parse a declarator-id. |
| |
| declarator-id: |
| id-expression |
| :: [opt] nested-name-specifier [opt] type-name |
| |
| In the `id-expression' case, the value returned is as for |
| cp_parser_id_expression if the id-expression was an unqualified-id. |
| If the id-expression was a qualified-id, then a SCOPE_REF is |
| returned. The first operand is the scope (either a NAMESPACE_DECL |
| or TREE_TYPE), but the second is still just a representation of an |
| unqualified-id. */ |
| |
| static tree |
| cp_parser_declarator_id (cp_parser* parser, bool optional_p) |
| { |
| tree id; |
| /* The expression must be an id-expression. Assume that qualified |
| names are the names of types so that: |
| |
| template <class T> |
| int S<T>::R::i = 3; |
| |
| will work; we must treat `S<T>::R' as the name of a type. |
| Similarly, assume that qualified names are templates, where |
| required, so that: |
| |
| template <class T> |
| int S<T>::R<T>::i = 3; |
| |
| will work, too. */ |
| id = cp_parser_id_expression (parser, |
| /*template_keyword_p=*/false, |
| /*check_dependency_p=*/false, |
| /*template_p=*/NULL, |
| /*declarator_p=*/true, |
| optional_p); |
| if (id && BASELINK_P (id)) |
| id = BASELINK_FUNCTIONS (id); |
| return id; |
| } |
| |
| /* Parse a type-id. |
| |
| type-id: |
| type-specifier-seq abstract-declarator [opt] |
| |
| Returns the TYPE specified. */ |
| |
| static tree |
| cp_parser_type_id_1 (cp_parser* parser, bool is_template_arg, |
| bool is_trailing_return) |
| { |
| cp_decl_specifier_seq type_specifier_seq; |
| cp_declarator *abstract_declarator; |
| |
| /* Parse the type-specifier-seq. */ |
| cp_parser_type_specifier_seq (parser, /*is_declaration=*/false, |
| is_trailing_return, |
| &type_specifier_seq); |
| if (type_specifier_seq.type == error_mark_node) |
| return error_mark_node; |
| |
| /* There might or might not be an abstract declarator. */ |
| cp_parser_parse_tentatively (parser); |
| /* Look for the declarator. */ |
| abstract_declarator |
| = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_ABSTRACT, NULL, |
| /*parenthesized_p=*/NULL, |
| /*member_p=*/false); |
| /* Check to see if there really was a declarator. */ |
| if (!cp_parser_parse_definitely (parser)) |
| abstract_declarator = NULL; |
| |
| if (type_specifier_seq.type |
| && type_uses_auto (type_specifier_seq.type)) |
| { |
| /* A type-id with type 'auto' is only ok if the abstract declarator |
| is a function declarator with a late-specified return type. */ |
| if (abstract_declarator |
| && abstract_declarator->kind == cdk_function |
| && abstract_declarator->u.function.late_return_type) |
| /* OK */; |
| else |
| { |
| error ("invalid use of %<auto%>"); |
| return error_mark_node; |
| } |
| } |
| |
| return groktypename (&type_specifier_seq, abstract_declarator, |
| is_template_arg); |
| } |
| |
| static tree cp_parser_type_id (cp_parser *parser) |
| { |
| return cp_parser_type_id_1 (parser, false, false); |
| } |
| |
| static tree cp_parser_template_type_arg (cp_parser *parser) |
| { |
| tree r; |
| const char *saved_message = parser->type_definition_forbidden_message; |
| parser->type_definition_forbidden_message |
| = G_("types may not be defined in template arguments"); |
| r = cp_parser_type_id_1 (parser, true, false); |
| parser->type_definition_forbidden_message = saved_message; |
| return r; |
| } |
| |
| static tree cp_parser_trailing_type_id (cp_parser *parser) |
| { |
| return cp_parser_type_id_1 (parser, false, true); |
| } |
| |
| /* Parse a type-specifier-seq. |
| |
| type-specifier-seq: |
| type-specifier type-specifier-seq [opt] |
| |
| GNU extension: |
| |
| type-specifier-seq: |
| attributes type-specifier-seq [opt] |
| |
| If IS_DECLARATION is true, we are at the start of a "condition" or |
| exception-declaration, so we might be followed by a declarator-id. |
| |
| If IS_TRAILING_RETURN is true, we are in a trailing-return-type, |
| i.e. we've just seen "->". |
| |
| Sets *TYPE_SPECIFIER_SEQ to represent the sequence. */ |
| |
| static void |
| cp_parser_type_specifier_seq (cp_parser* parser, |
| bool is_declaration, |
| bool is_trailing_return, |
| cp_decl_specifier_seq *type_specifier_seq) |
| { |
| bool seen_type_specifier = false; |
| cp_parser_flags flags = CP_PARSER_FLAGS_OPTIONAL; |
| cp_token *start_token = NULL; |
| |
| /* Clear the TYPE_SPECIFIER_SEQ. */ |
| clear_decl_specs (type_specifier_seq); |
| |
| /* In the context of a trailing return type, enum E { } is an |
| elaborated-type-specifier followed by a function-body, not an |
| enum-specifier. */ |
| if (is_trailing_return) |
| flags |= CP_PARSER_FLAGS_NO_TYPE_DEFINITIONS; |
| |
| /* Parse the type-specifiers and attributes. */ |
| while (true) |
| { |
| tree type_specifier; |
| bool is_cv_qualifier; |
| |
| /* Check for attributes first. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE)) |
| { |
| type_specifier_seq->attributes = |
| chainon (type_specifier_seq->attributes, |
| cp_parser_attributes_opt (parser)); |
| continue; |
| } |
| |
| /* record the token of the beginning of the type specifier seq, |
| for error reporting purposes*/ |
| if (!start_token) |
| start_token = cp_lexer_peek_token (parser->lexer); |
| |
| /* Look for the type-specifier. */ |
| type_specifier = cp_parser_type_specifier (parser, |
| flags, |
| type_specifier_seq, |
| /*is_declaration=*/false, |
| NULL, |
| &is_cv_qualifier); |
| if (!type_specifier) |
| { |
| /* If the first type-specifier could not be found, this is not a |
| type-specifier-seq at all. */ |
| if (!seen_type_specifier) |
| { |
| cp_parser_error (parser, "expected type-specifier"); |
| type_specifier_seq->type = error_mark_node; |
| return; |
| } |
| /* If subsequent type-specifiers could not be found, the |
| type-specifier-seq is complete. */ |
| break; |
| } |
| |
| seen_type_specifier = true; |
| /* The standard says that a condition can be: |
| |
| type-specifier-seq declarator = assignment-expression |
| |
| However, given: |
| |
| struct S {}; |
| if (int S = ...) |
| |
| we should treat the "S" as a declarator, not as a |
| type-specifier. The standard doesn't say that explicitly for |
| type-specifier-seq, but it does say that for |
| decl-specifier-seq in an ordinary declaration. Perhaps it |
| would be clearer just to allow a decl-specifier-seq here, and |
| then add a semantic restriction that if any decl-specifiers |
| that are not type-specifiers appear, the program is invalid. */ |
| if (is_declaration && !is_cv_qualifier) |
| flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES; |
| } |
| |
| cp_parser_check_decl_spec (type_specifier_seq, start_token->location); |
| } |
| |
| /* Parse a parameter-declaration-clause. |
| |
| parameter-declaration-clause: |
| parameter-declaration-list [opt] ... [opt] |
| parameter-declaration-list , ... |
| |
| Returns a representation for the parameter declarations. A return |
| value of NULL indicates a parameter-declaration-clause consisting |
| only of an ellipsis. */ |
| |
| static tree |
| cp_parser_parameter_declaration_clause (cp_parser* parser) |
| { |
| tree parameters; |
| cp_token *token; |
| bool ellipsis_p; |
| bool is_error; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* Check for trivial parameter-declaration-clauses. */ |
| if (token->type == CPP_ELLIPSIS) |
| { |
| /* Consume the `...' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| return NULL_TREE; |
| } |
| else if (token->type == CPP_CLOSE_PAREN) |
| /* There are no parameters. */ |
| { |
| #ifndef NO_IMPLICIT_EXTERN_C |
| if (in_system_header && current_class_type == NULL |
| && current_lang_name == lang_name_c) |
| return NULL_TREE; |
| else |
| #endif |
| return void_list_node; |
| } |
| /* Check for `(void)', too, which is a special case. */ |
| else if (token->keyword == RID_VOID |
| && (cp_lexer_peek_nth_token (parser->lexer, 2)->type |
| == CPP_CLOSE_PAREN)) |
| { |
| /* Consume the `void' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* There are no parameters. */ |
| return void_list_node; |
| } |
| |
| /* Parse the parameter-declaration-list. */ |
| parameters = cp_parser_parameter_declaration_list (parser, &is_error); |
| /* If a parse error occurred while parsing the |
| parameter-declaration-list, then the entire |
| parameter-declaration-clause is erroneous. */ |
| if (is_error) |
| return NULL; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If it's a `,', the clause should terminate with an ellipsis. */ |
| if (token->type == CPP_COMMA) |
| { |
| /* Consume the `,'. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Expect an ellipsis. */ |
| ellipsis_p |
| = (cp_parser_require (parser, CPP_ELLIPSIS, RT_ELLIPSIS) != NULL); |
| } |
| /* It might also be `...' if the optional trailing `,' was |
| omitted. */ |
| else if (token->type == CPP_ELLIPSIS) |
| { |
| /* Consume the `...' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* And remember that we saw it. */ |
| ellipsis_p = true; |
| } |
| else |
| ellipsis_p = false; |
| |
| /* Finish the parameter list. */ |
| if (!ellipsis_p) |
| parameters = chainon (parameters, void_list_node); |
| |
| return parameters; |
| } |
| |
| /* Parse a parameter-declaration-list. |
| |
| parameter-declaration-list: |
| parameter-declaration |
| parameter-declaration-list , parameter-declaration |
| |
| Returns a representation of the parameter-declaration-list, as for |
| cp_parser_parameter_declaration_clause. However, the |
| `void_list_node' is never appended to the list. Upon return, |
| *IS_ERROR will be true iff an error occurred. */ |
| |
| static tree |
| cp_parser_parameter_declaration_list (cp_parser* parser, bool *is_error) |
| { |
| tree parameters = NULL_TREE; |
| tree *tail = ¶meters; |
| bool saved_in_unbraced_linkage_specification_p; |
| int index = 0; |
| |
| /* Assume all will go well. */ |
| *is_error = false; |
| /* The special considerations that apply to a function within an |
| unbraced linkage specifications do not apply to the parameters |
| to the function. */ |
| saved_in_unbraced_linkage_specification_p |
| = parser->in_unbraced_linkage_specification_p; |
| parser->in_unbraced_linkage_specification_p = false; |
| |
| /* Look for more parameters. */ |
| while (true) |
| { |
| cp_parameter_declarator *parameter; |
| tree decl = error_mark_node; |
| bool parenthesized_p; |
| /* Parse the parameter. */ |
| parameter |
| = cp_parser_parameter_declaration (parser, |
| /*template_parm_p=*/false, |
| &parenthesized_p); |
| |
| /* We don't know yet if the enclosing context is deprecated, so wait |
| and warn in grokparms if appropriate. */ |
| deprecated_state = DEPRECATED_SUPPRESS; |
| |
| if (parameter) |
| decl = grokdeclarator (parameter->declarator, |
| ¶meter->decl_specifiers, |
| PARM, |
| parameter->default_argument != NULL_TREE, |
| ¶meter->decl_specifiers.attributes); |
| |
| deprecated_state = DEPRECATED_NORMAL; |
| |
| /* If a parse error occurred parsing the parameter declaration, |
| then the entire parameter-declaration-list is erroneous. */ |
| if (decl == error_mark_node) |
| { |
| *is_error = true; |
| parameters = error_mark_node; |
| break; |
| } |
| |
| if (parameter->decl_specifiers.attributes) |
| cplus_decl_attributes (&decl, |
| parameter->decl_specifiers.attributes, |
| 0); |
| if (DECL_NAME (decl)) |
| decl = pushdecl (decl); |
| |
| if (decl != error_mark_node) |
| { |
| retrofit_lang_decl (decl); |
| DECL_PARM_INDEX (decl) = ++index; |
| DECL_PARM_LEVEL (decl) = function_parm_depth (); |
| } |
| |
| /* Add the new parameter to the list. */ |
| *tail = build_tree_list (parameter->default_argument, decl); |
| tail = &TREE_CHAIN (*tail); |
| |
| /* Peek at the next token. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN) |
| || cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS) |
| /* These are for Objective-C++ */ |
| || cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON) |
| || cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| /* The parameter-declaration-list is complete. */ |
| break; |
| else if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA)) |
| { |
| cp_token *token; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_nth_token (parser->lexer, 2); |
| /* If it's an ellipsis, then the list is complete. */ |
| if (token->type == CPP_ELLIPSIS) |
| break; |
| /* Otherwise, there must be more parameters. Consume the |
| `,'. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* When parsing something like: |
| |
| int i(float f, double d) |
| |
| we can tell after seeing the declaration for "f" that we |
| are not looking at an initialization of a variable "i", |
| but rather at the declaration of a function "i". |
| |
| Due to the fact that the parsing of template arguments |
| (as specified to a template-id) requires backtracking we |
| cannot use this technique when inside a template argument |
| list. */ |
| if (!parser->in_template_argument_list_p |
| && !parser->in_type_id_in_expr_p |
| && cp_parser_uncommitted_to_tentative_parse_p (parser) |
| /* However, a parameter-declaration of the form |
| "foat(f)" (which is a valid declaration of a |
| parameter "f") can also be interpreted as an |
| expression (the conversion of "f" to "float"). */ |
| && !parenthesized_p) |
| cp_parser_commit_to_tentative_parse (parser); |
| } |
| else |
| { |
| cp_parser_error (parser, "expected %<,%> or %<...%>"); |
| if (!cp_parser_uncommitted_to_tentative_parse_p (parser)) |
| cp_parser_skip_to_closing_parenthesis (parser, |
| /*recovering=*/true, |
| /*or_comma=*/false, |
| /*consume_paren=*/false); |
| break; |
| } |
| } |
| |
| parser->in_unbraced_linkage_specification_p |
| = saved_in_unbraced_linkage_specification_p; |
| |
| return parameters; |
| } |
| |
| /* Parse a parameter declaration. |
| |
| parameter-declaration: |
| decl-specifier-seq ... [opt] declarator |
| decl-specifier-seq declarator = assignment-expression |
| decl-specifier-seq ... [opt] abstract-declarator [opt] |
| decl-specifier-seq abstract-declarator [opt] = assignment-expression |
| |
| If TEMPLATE_PARM_P is TRUE, then this parameter-declaration |
| declares a template parameter. (In that case, a non-nested `>' |
| token encountered during the parsing of the assignment-expression |
| is not interpreted as a greater-than operator.) |
| |
| Returns a representation of the parameter, or NULL if an error |
| occurs. If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to |
| true iff the declarator is of the form "(p)". */ |
| |
| static cp_parameter_declarator * |
| cp_parser_parameter_declaration (cp_parser *parser, |
| bool template_parm_p, |
| bool *parenthesized_p) |
| { |
| int declares_class_or_enum; |
| cp_decl_specifier_seq decl_specifiers; |
| cp_declarator *declarator; |
| tree default_argument; |
| cp_token *token = NULL, *declarator_token_start = NULL; |
| const char *saved_message; |
| |
| /* In a template parameter, `>' is not an operator. |
| |
| [temp.param] |
| |
| When parsing a default template-argument for a non-type |
| template-parameter, the first non-nested `>' is taken as the end |
| of the template parameter-list rather than a greater-than |
| operator. */ |
| |
| /* Type definitions may not appear in parameter types. */ |
| saved_message = parser->type_definition_forbidden_message; |
| parser->type_definition_forbidden_message |
| = G_("types may not be defined in parameter types"); |
| |
| /* Parse the declaration-specifiers. */ |
| cp_parser_decl_specifier_seq (parser, |
| CP_PARSER_FLAGS_NONE, |
| &decl_specifiers, |
| &declares_class_or_enum); |
| |
| /* Complain about missing 'typename' or other invalid type names. */ |
| if (!decl_specifiers.any_type_specifiers_p) |
| cp_parser_parse_and_diagnose_invalid_type_name (parser); |
| |
| /* If an error occurred, there's no reason to attempt to parse the |
| rest of the declaration. */ |
| if (cp_parser_error_occurred (parser)) |
| { |
| parser->type_definition_forbidden_message = saved_message; |
| return NULL; |
| } |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| /* If the next token is a `)', `,', `=', `>', or `...', then there |
| is no declarator. However, when variadic templates are enabled, |
| there may be a declarator following `...'. */ |
| if (token->type == CPP_CLOSE_PAREN |
| || token->type == CPP_COMMA |
| || token->type == CPP_EQ |
| || token->type == CPP_GREATER) |
| { |
| declarator = NULL; |
| if (parenthesized_p) |
| *parenthesized_p = false; |
| } |
| /* Otherwise, there should be a declarator. */ |
| else |
| { |
| bool saved_default_arg_ok_p = parser->default_arg_ok_p; |
| parser->default_arg_ok_p = false; |
| |
| /* After seeing a decl-specifier-seq, if the next token is not a |
| "(", there is no possibility that the code is a valid |
| expression. Therefore, if parsing tentatively, we commit at |
| this point. */ |
| if (!parser->in_template_argument_list_p |
| /* In an expression context, having seen: |
| |
| (int((char ... |
| |
| we cannot be sure whether we are looking at a |
| function-type (taking a "char" as a parameter) or a cast |
| of some object of type "char" to "int". */ |
| && !parser->in_type_id_in_expr_p |
| && cp_parser_uncommitted_to_tentative_parse_p (parser) |
| && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE) |
| && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN)) |
| cp_parser_commit_to_tentative_parse (parser); |
| /* Parse the declarator. */ |
| declarator_token_start = token; |
| declarator = cp_parser_declarator (parser, |
| CP_PARSER_DECLARATOR_EITHER, |
| /*ctor_dtor_or_conv_p=*/NULL, |
| parenthesized_p, |
| /*member_p=*/false); |
| parser->default_arg_ok_p = saved_default_arg_ok_p; |
| /* After the declarator, allow more attributes. */ |
| decl_specifiers.attributes |
| = chainon (decl_specifiers.attributes, |
| cp_parser_attributes_opt (parser)); |
| } |
| |
| /* If the next token is an ellipsis, and we have not seen a |
| declarator name, and the type of the declarator contains parameter |
| packs but it is not a TYPE_PACK_EXPANSION, then we actually have |
| a parameter pack expansion expression. Otherwise, leave the |
| ellipsis for a C-style variadic function. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)) |
| { |
| tree type = decl_specifiers.type; |
| |
| if (type && DECL_P (type)) |
| type = TREE_TYPE (type); |
| |
| if (type |
| && TREE_CODE (type) != TYPE_PACK_EXPANSION |
| && declarator_can_be_parameter_pack (declarator) |
| && (!declarator || !declarator->parameter_pack_p) |
| && uses_parameter_packs (type)) |
| { |
| /* Consume the `...'. */ |
| cp_lexer_consume_token (parser->lexer); |
| maybe_warn_variadic_templates (); |
| |
| /* Build a pack expansion type */ |
| if (declarator) |
| declarator->parameter_pack_p = true; |
| else |
| decl_specifiers.type = make_pack_expansion (type); |
| } |
| } |
| |
| /* The restriction on defining new types applies only to the type |
| of the parameter, not to the default argument. */ |
| parser->type_definition_forbidden_message = saved_message; |
| |
| /* If the next token is `=', then process a default argument. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_EQ)) |
| { |
| /* Consume the `='. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* If we are defining a class, then the tokens that make up the |
| default argument must be saved and processed later. */ |
| if (!template_parm_p && at_class_scope_p () |
| && TYPE_BEING_DEFINED (current_class_type) |
| && !LAMBDA_TYPE_P (current_class_type)) |
| { |
| unsigned depth = 0; |
| int maybe_template_id = 0; |
| cp_token *first_token; |
| cp_token *token; |
| |
| /* Add tokens until we have processed the entire default |
| argument. We add the range [first_token, token). */ |
| first_token = cp_lexer_peek_token (parser->lexer); |
| while (true) |
| { |
| bool done = false; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* What we do depends on what token we have. */ |
| switch (token->type) |
| { |
| /* In valid code, a default argument must be |
| immediately followed by a `,' `)', or `...'. */ |
| case CPP_COMMA: |
| if (depth == 0 && maybe_template_id) |
| { |
| /* If we've seen a '<', we might be in a |
| template-argument-list. Until Core issue 325 is |
| resolved, we don't know how this situation ought |
| to be handled, so try to DTRT. We check whether |
| what comes after the comma is a valid parameter |
| declaration list. If it is, then the comma ends |
| the default argument; otherwise the default |
| argument continues. */ |
| bool error = false; |
| tree t; |
| |
| /* Set ITALP so cp_parser_parameter_declaration_list |
| doesn't decide to commit to this parse. */ |
| bool saved_italp = parser->in_template_argument_list_p; |
| parser->in_template_argument_list_p = true; |
| |
| cp_parser_parse_tentatively (parser); |
| cp_lexer_consume_token (parser->lexer); |
| begin_scope (sk_function_parms, NULL_TREE); |
| cp_parser_parameter_declaration_list (parser, &error); |
| for (t = current_binding_level->names; t; t = DECL_CHAIN (t)) |
| pop_binding (DECL_NAME (t), t); |
| leave_scope (); |
| if (!cp_parser_error_occurred (parser) && !error) |
| done = true; |
| cp_parser_abort_tentative_parse (parser); |
| |
| parser->in_template_argument_list_p = saved_italp; |
| break; |
| } |
| case CPP_CLOSE_PAREN: |
| case CPP_ELLIPSIS: |
| /* If we run into a non-nested `;', `}', or `]', |
| then the code is invalid -- but the default |
| argument is certainly over. */ |
| case CPP_SEMICOLON: |
| case CPP_CLOSE_BRACE: |
| case CPP_CLOSE_SQUARE: |
| if (depth == 0) |
| done = true; |
| /* Update DEPTH, if necessary. */ |
| else if (token->type == CPP_CLOSE_PAREN |
| || token->type == CPP_CLOSE_BRACE |
| || token->type == CPP_CLOSE_SQUARE) |
| --depth; |
| break; |
| |
| case CPP_OPEN_PAREN: |
| case CPP_OPEN_SQUARE: |
| case CPP_OPEN_BRACE: |
| ++depth; |
| break; |
| |
| case CPP_LESS: |
| if (depth == 0) |
| /* This might be the comparison operator, or it might |
| start a template argument list. */ |
| ++maybe_template_id; |
| break; |
| |
| case CPP_RSHIFT: |
| if (cxx_dialect == cxx98) |
| break; |
| /* Fall through for C++0x, which treats the `>>' |
| operator like two `>' tokens in certain |
| cases. */ |
| |
| case CPP_GREATER: |
| if (depth == 0) |
| { |
| /* This might be an operator, or it might close a |
| template argument list. But if a previous '<' |
| started a template argument list, this will have |
| closed it, so we can't be in one anymore. */ |
| maybe_template_id -= 1 + (token->type == CPP_RSHIFT); |
| if (maybe_template_id < 0) |
| maybe_template_id = 0; |
| } |
| break; |
| |
| /* If we run out of tokens, issue an error message. */ |
| case CPP_EOF: |
| case CPP_PRAGMA_EOL: |
| error_at (token->location, "file ends in default argument"); |
| done = true; |
| break; |
| |
| case CPP_NAME: |
| case CPP_SCOPE: |
| /* In these cases, we should look for template-ids. |
| For example, if the default argument is |
| `X<int, double>()', we need to do name lookup to |
| figure out whether or not `X' is a template; if |
| so, the `,' does not end the default argument. |
| |
| That is not yet done. */ |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* If we've reached the end, stop. */ |
| if (done) |
| break; |
| |
| /* Add the token to the token block. */ |
| token = cp_lexer_consume_token (parser->lexer); |
| } |
| |
| /* Create a DEFAULT_ARG to represent the unparsed default |
| argument. */ |
| default_argument = make_node (DEFAULT_ARG); |
| DEFARG_TOKENS (default_argument) |
| = cp_token_cache_new (first_token, token); |
| DEFARG_INSTANTIATIONS (default_argument) = NULL; |
| } |
| /* Outside of a class definition, we can just parse the |
| assignment-expression. */ |
| else |
| { |
| token = cp_lexer_peek_token (parser->lexer); |
| default_argument |
| = cp_parser_default_argument (parser, template_parm_p); |
| } |
| |
| if (!parser->default_arg_ok_p) |
| { |
| if (flag_permissive) |
| warning (0, "deprecated use of default argument for parameter of non-function"); |
| else |
| { |
| error_at (token->location, |
| "default arguments are only " |
| "permitted for function parameters"); |
| default_argument = NULL_TREE; |
| } |
| } |
| else if ((declarator && declarator->parameter_pack_p) |
| || (decl_specifiers.type |
| && PACK_EXPANSION_P (decl_specifiers.type))) |
| { |
| /* Find the name of the parameter pack. */ |
| cp_declarator *id_declarator = declarator; |
| while (id_declarator && id_declarator->kind != cdk_id) |
| id_declarator = id_declarator->declarator; |
| |
| if (id_declarator && id_declarator->kind == cdk_id) |
| error_at (declarator_token_start->location, |
| template_parm_p |
| ? "template parameter pack %qD" |
| " cannot have a default argument" |
| : "parameter pack %qD cannot have a default argument", |
| id_declarator->u.id.unqualified_name); |
| else |
| error_at (declarator_token_start->location, |
| template_parm_p |
| ? "template parameter pack cannot have a default argument" |
| : "parameter pack cannot have a default argument"); |
| |
| default_argument = NULL_TREE; |
| } |
| } |
| else |
| default_argument = NULL_TREE; |
| |
| return make_parameter_declarator (&decl_specifiers, |
| declarator, |
| default_argument); |
| } |
| |
| /* Parse a default argument and return it. |
| |
| TEMPLATE_PARM_P is true if this is a default argument for a |
| non-type template parameter. */ |
| static tree |
| cp_parser_default_argument (cp_parser *parser, bool template_parm_p) |
| { |
| tree default_argument = NULL_TREE; |
| bool saved_greater_than_is_operator_p; |
| bool saved_local_variables_forbidden_p; |
| |
| /* Make sure that PARSER->GREATER_THAN_IS_OPERATOR_P is |
| set correctly. */ |
| saved_greater_than_is_operator_p = parser->greater_than_is_operator_p; |
| parser->greater_than_is_operator_p = !template_parm_p; |
| /* Local variable names (and the `this' keyword) may not |
| appear in a default argument. */ |
| saved_local_variables_forbidden_p = parser->local_variables_forbidden_p; |
| parser->local_variables_forbidden_p = true; |
| /* Parse the assignment-expression. */ |
| if (template_parm_p) |
| push_deferring_access_checks (dk_no_deferred); |
| default_argument |
| = cp_parser_assignment_expression (parser, /*cast_p=*/false, NULL); |
| if (template_parm_p) |
| pop_deferring_access_checks (); |
| parser->greater_than_is_operator_p = saved_greater_than_is_operator_p; |
| parser->local_variables_forbidden_p = saved_local_variables_forbidden_p; |
| |
| return default_argument; |
| } |
| |
| /* Parse a function-body. |
| |
| function-body: |
| compound_statement */ |
| |
| static void |
| cp_parser_function_body (cp_parser *parser) |
| { |
| cp_parser_compound_statement (parser, NULL, false, true); |
| } |
| |
| /* Parse a ctor-initializer-opt followed by a function-body. Return |
| true if a ctor-initializer was present. */ |
| |
| static bool |
| cp_parser_ctor_initializer_opt_and_function_body (cp_parser *parser) |
| { |
| tree body, list; |
| bool ctor_initializer_p; |
| const bool check_body_p = |
| DECL_CONSTRUCTOR_P (current_function_decl) |
| && DECL_DECLARED_CONSTEXPR_P (current_function_decl); |
| tree last = NULL; |
| |
| /* Begin the function body. */ |
| body = begin_function_body (); |
| /* Parse the optional ctor-initializer. */ |
| ctor_initializer_p = cp_parser_ctor_initializer_opt (parser); |
| |
| /* If we're parsing a constexpr constructor definition, we need |
| to check that the constructor body is indeed empty. However, |
| before we get to cp_parser_function_body lot of junk has been |
| generated, so we can't just check that we have an empty block. |
| Rather we take a snapshot of the outermost block, and check whether |
| cp_parser_function_body changed its state. */ |
| if (check_body_p) |
| { |
| list = body; |
| if (TREE_CODE (list) == BIND_EXPR) |
| list = BIND_EXPR_BODY (list); |
| if (TREE_CODE (list) == STATEMENT_LIST |
| && STATEMENT_LIST_TAIL (list) != NULL) |
| last = STATEMENT_LIST_TAIL (list)->stmt; |
| } |
| /* Parse the function-body. */ |
| cp_parser_function_body (parser); |
| if (check_body_p) |
| check_constexpr_ctor_body (last, list); |
| /* Finish the function body. */ |
| finish_function_body (body); |
| |
| return ctor_initializer_p; |
| } |
| |
| /* Parse an initializer. |
| |
| initializer: |
| = initializer-clause |
| ( expression-list ) |
| |
| Returns an expression representing the initializer. If no |
| initializer is present, NULL_TREE is returned. |
| |
| *IS_DIRECT_INIT is set to FALSE if the `= initializer-clause' |
| production is used, and TRUE otherwise. *IS_DIRECT_INIT is |
| set to TRUE if there is no initializer present. If there is an |
| initializer, and it is not a constant-expression, *NON_CONSTANT_P |
| is set to true; otherwise it is set to false. */ |
| |
| static tree |
| cp_parser_initializer (cp_parser* parser, bool* is_direct_init, |
| bool* non_constant_p) |
| { |
| cp_token *token; |
| tree init; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| /* Let our caller know whether or not this initializer was |
| parenthesized. */ |
| *is_direct_init = (token->type != CPP_EQ); |
| /* Assume that the initializer is constant. */ |
| *non_constant_p = false; |
| |
| if (token->type == CPP_EQ) |
| { |
| /* Consume the `='. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the initializer-clause. */ |
| init = cp_parser_initializer_clause (parser, non_constant_p); |
| } |
| else if (token->type == CPP_OPEN_PAREN) |
| { |
| VEC(tree,gc) *vec; |
| vec = cp_parser_parenthesized_expression_list (parser, non_attr, |
| /*cast_p=*/false, |
| /*allow_expansion_p=*/true, |
| non_constant_p); |
| if (vec == NULL) |
| return error_mark_node; |
| init = build_tree_list_vec (vec); |
| release_tree_vector (vec); |
| } |
| else if (token->type == CPP_OPEN_BRACE) |
| { |
| maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS); |
| init = cp_parser_braced_list (parser, non_constant_p); |
| CONSTRUCTOR_IS_DIRECT_INIT (init) = 1; |
| } |
| else |
| { |
| /* Anything else is an error. */ |
| cp_parser_error (parser, "expected initializer"); |
| init = error_mark_node; |
| } |
| |
| return init; |
| } |
| |
| /* Parse an initializer-clause. |
| |
| initializer-clause: |
| assignment-expression |
| braced-init-list |
| |
| Returns an expression representing the initializer. |
| |
| If the `assignment-expression' production is used the value |
| returned is simply a representation for the expression. |
| |
| Otherwise, calls cp_parser_braced_list. */ |
| |
| static tree |
| cp_parser_initializer_clause (cp_parser* parser, bool* non_constant_p) |
| { |
| tree initializer; |
| |
| /* Assume the expression is constant. */ |
| *non_constant_p = false; |
| |
| /* If it is not a `{', then we are looking at an |
| assignment-expression. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)) |
| { |
| initializer |
| = cp_parser_constant_expression (parser, |
| /*allow_non_constant_p=*/true, |
| non_constant_p); |
| } |
| else |
| initializer = cp_parser_braced_list (parser, non_constant_p); |
| |
| return initializer; |
| } |
| |
| /* Parse a brace-enclosed initializer list. |
| |
| braced-init-list: |
| { initializer-list , [opt] } |
| { } |
| |
| Returns a CONSTRUCTOR. The CONSTRUCTOR_ELTS will be |
| the elements of the initializer-list (or NULL, if the last |
| production is used). The TREE_TYPE for the CONSTRUCTOR will be |
| NULL_TREE. There is no way to detect whether or not the optional |
| trailing `,' was provided. NON_CONSTANT_P is as for |
| cp_parser_initializer. */ |
| |
| static tree |
| cp_parser_braced_list (cp_parser* parser, bool* non_constant_p) |
| { |
| tree initializer; |
| |
| /* Consume the `{' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Create a CONSTRUCTOR to represent the braced-initializer. */ |
| initializer = make_node (CONSTRUCTOR); |
| /* If it's not a `}', then there is a non-trivial initializer. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE)) |
| { |
| /* Parse the initializer list. */ |
| CONSTRUCTOR_ELTS (initializer) |
| = cp_parser_initializer_list (parser, non_constant_p); |
| /* A trailing `,' token is allowed. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA)) |
| cp_lexer_consume_token (parser->lexer); |
| } |
| /* Now, there should be a trailing `}'. */ |
| cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE); |
| TREE_TYPE (initializer) = init_list_type_node; |
| return initializer; |
| } |
| |
| /* Parse an initializer-list. |
| |
| initializer-list: |
| initializer-clause ... [opt] |
| initializer-list , initializer-clause ... [opt] |
| |
| GNU Extension: |
| |
| initializer-list: |
| identifier : initializer-clause |
| initializer-list, identifier : initializer-clause |
| |
| Returns a VEC of constructor_elt. The VALUE of each elt is an expression |
| for the initializer. If the INDEX of the elt is non-NULL, it is the |
| IDENTIFIER_NODE naming the field to initialize. NON_CONSTANT_P is |
| as for cp_parser_initializer. */ |
| |
| static VEC(constructor_elt,gc) * |
| cp_parser_initializer_list (cp_parser* parser, bool* non_constant_p) |
| { |
| VEC(constructor_elt,gc) *v = NULL; |
| |
| /* Assume all of the expressions are constant. */ |
| *non_constant_p = false; |
| |
| /* Parse the rest of the list. */ |
| while (true) |
| { |
| cp_token *token; |
| tree identifier; |
| tree initializer; |
| bool clause_non_constant_p; |
| |
| /* If the next token is an identifier and the following one is a |
| colon, we are looking at the GNU designated-initializer |
| syntax. */ |
| if (cp_parser_allow_gnu_extensions_p (parser) |
| && cp_lexer_next_token_is (parser->lexer, CPP_NAME) |
| && cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON) |
| { |
| /* Warn the user that they are using an extension. */ |
| pedwarn (input_location, OPT_pedantic, |
| "ISO C++ does not allow designated initializers"); |
| /* Consume the identifier. */ |
| identifier = cp_lexer_consume_token (parser->lexer)->u.value; |
| /* Consume the `:'. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| else |
| identifier = NULL_TREE; |
| |
| /* Parse the initializer. */ |
| initializer = cp_parser_initializer_clause (parser, |
| &clause_non_constant_p); |
| /* If any clause is non-constant, so is the entire initializer. */ |
| if (clause_non_constant_p) |
| *non_constant_p = true; |
| |
| /* If we have an ellipsis, this is an initializer pack |
| expansion. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)) |
| { |
| /* Consume the `...'. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* Turn the initializer into an initializer expansion. */ |
| initializer = make_pack_expansion (initializer); |
| } |
| |
| /* Add it to the vector. */ |
| CONSTRUCTOR_APPEND_ELT(v, identifier, initializer); |
| |
| /* If the next token is not a comma, we have reached the end of |
| the list. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA)) |
| break; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_nth_token (parser->lexer, 2); |
| /* If the next token is a `}', then we're still done. An |
| initializer-clause can have a trailing `,' after the |
| initializer-list and before the closing `}'. */ |
| if (token->type == CPP_CLOSE_BRACE) |
| break; |
| |
| /* Consume the `,' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| |
| return v; |
| } |
| |
| /* Classes [gram.class] */ |
| |
| /* Parse a class-name. |
| |
| class-name: |
| identifier |
| template-id |
| |
| TYPENAME_KEYWORD_P is true iff the `typename' keyword has been used |
| to indicate that names looked up in dependent types should be |
| assumed to be types. TEMPLATE_KEYWORD_P is true iff the `template' |
| keyword has been used to indicate that the name that appears next |
| is a template. TAG_TYPE indicates the explicit tag given before |
| the type name, if any. If CHECK_DEPENDENCY_P is FALSE, names are |
| looked up in dependent scopes. If CLASS_HEAD_P is TRUE, this class |
| is the class being defined in a class-head. |
| |
| Returns the TYPE_DECL representing the class. */ |
| |
| static tree |
| cp_parser_class_name (cp_parser *parser, |
| bool typename_keyword_p, |
| bool template_keyword_p, |
| enum tag_types tag_type, |
| bool check_dependency_p, |
| bool class_head_p, |
| bool is_declaration) |
| { |
| tree decl; |
| tree scope; |
| bool typename_p; |
| cp_token *token; |
| tree identifier = NULL_TREE; |
| |
| /* All class-names start with an identifier. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| if (token->type != CPP_NAME && token->type != CPP_TEMPLATE_ID) |
| { |
| cp_parser_error (parser, "expected class-name"); |
| return error_mark_node; |
| } |
| |
| /* PARSER->SCOPE can be cleared when parsing the template-arguments |
| to a template-id, so we save it here. */ |
| scope = parser->scope; |
| if (scope == error_mark_node) |
| return error_mark_node; |
| |
| /* Any name names a type if we're following the `typename' keyword |
| in a qualified name where the enclosing scope is type-dependent. */ |
| typename_p = (typename_keyword_p && scope && TYPE_P (scope) |
| && dependent_type_p (scope)); |
| /* Handle the common case (an identifier, but not a template-id) |
| efficiently. */ |
| if (token->type == CPP_NAME |
| && !cp_parser_nth_token_starts_template_argument_list_p (parser, 2)) |
| { |
| cp_token *identifier_token; |
| bool ambiguous_p; |
| |
| /* Look for the identifier. */ |
| identifier_token = cp_lexer_peek_token (parser->lexer); |
| ambiguous_p = identifier_token->ambiguous_p; |
| identifier = cp_parser_identifier (parser); |
| /* If the next token isn't an identifier, we are certainly not |
| looking at a class-name. */ |
| if (identifier == error_mark_node) |
| decl = error_mark_node; |
| /* If we know this is a type-name, there's no need to look it |
| up. */ |
| else if (typename_p) |
| decl = identifier; |
| else |
| { |
| tree ambiguous_decls; |
| /* If we already know that this lookup is ambiguous, then |
| we've already issued an error message; there's no reason |
| to check again. */ |
| if (ambiguous_p) |
| { |
| cp_parser_simulate_error (parser); |
| return error_mark_node; |
| } |
| /* If the next token is a `::', then the name must be a type |
| name. |
| |
| [basic.lookup.qual] |
| |
| During the lookup for a name preceding the :: scope |
| resolution operator, object, function, and enumerator |
| names are ignored. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)) |
| tag_type = typename_type; |
| /* Look up the name. */ |
| decl = cp_parser_lookup_name (parser, identifier, |
| tag_type, |
| /*is_template=*/false, |
| /*is_namespace=*/false, |
| check_dependency_p, |
| &ambiguous_decls, |
| identifier_token->location); |
| if (ambiguous_decls) |
| { |
| if (cp_parser_parsing_tentatively (parser)) |
| cp_parser_simulate_error (parser); |
| return error_mark_node; |
| } |
| } |
| } |
| else |
| { |
| /* Try a template-id. */ |
| decl = cp_parser_template_id (parser, template_keyword_p, |
| check_dependency_p, |
| is_declaration); |
| if (decl == error_mark_node) |
| return error_mark_node; |
| } |
| |
| decl = cp_parser_maybe_treat_template_as_class (decl, class_head_p); |
| |
| /* If this is a typename, create a TYPENAME_TYPE. */ |
| if (typename_p && decl != error_mark_node) |
| { |
| decl = make_typename_type (scope, decl, typename_type, |
| /*complain=*/tf_error); |
| if (decl != error_mark_node) |
| decl = TYPE_NAME (decl); |
| } |
| |
| /* Check to see that it is really the name of a class. */ |
| if (TREE_CODE (decl) == TEMPLATE_ID_EXPR |
| && TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE |
| && cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)) |
| /* Situations like this: |
| |
| template <typename T> struct A { |
| typename T::template X<int>::I i; |
| }; |
| |
| are problematic. Is `T::template X<int>' a class-name? The |
| standard does not seem to be definitive, but there is no other |
| valid interpretation of the following `::'. Therefore, those |
| names are considered class-names. */ |
| { |
| decl = make_typename_type (scope, decl, tag_type, tf_error); |
| if (decl != error_mark_node) |
| decl = TYPE_NAME (decl); |
| } |
| else if (TREE_CODE (decl) != TYPE_DECL |
| || TREE_TYPE (decl) == error_mark_node |
| || !MAYBE_CLASS_TYPE_P (TREE_TYPE (decl)) |
| /* In Objective-C 2.0, a classname followed by '.' starts a |
| dot-syntax expression, and it's not a type-name. */ |
| || (c_dialect_objc () |
| && cp_lexer_peek_token (parser->lexer)->type == CPP_DOT |
| && objc_is_class_name (decl))) |
| decl = error_mark_node; |
| |
| if (decl == error_mark_node) |
| cp_parser_error (parser, "expected class-name"); |
| else if (identifier && !parser->scope) |
| maybe_note_name_used_in_class (identifier, decl); |
| |
| return decl; |
| } |
| |
| /* Parse a class-specifier. |
| |
| class-specifier: |
| class-head { member-specification [opt] } |
| |
| Returns the TREE_TYPE representing the class. */ |
| |
| static tree |
| cp_parser_class_specifier_1 (cp_parser* parser) |
| { |
| tree type; |
| tree attributes = NULL_TREE; |
| bool nested_name_specifier_p; |
| unsigned saved_num_template_parameter_lists; |
| bool saved_in_function_body; |
| bool saved_in_unbraced_linkage_specification_p; |
| tree old_scope = NULL_TREE; |
| tree scope = NULL_TREE; |
| tree bases; |
| cp_token *closing_brace; |
| |
| push_deferring_access_checks (dk_no_deferred); |
| |
| /* Parse the class-head. */ |
| type = cp_parser_class_head (parser, |
| &nested_name_specifier_p, |
| &attributes, |
| &bases); |
| /* If the class-head was a semantic disaster, skip the entire body |
| of the class. */ |
| if (!type) |
| { |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| pop_deferring_access_checks (); |
| return error_mark_node; |
| } |
| |
| /* Look for the `{'. */ |
| if (!cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE)) |
| { |
| pop_deferring_access_checks (); |
| return error_mark_node; |
| } |
| |
| /* Process the base classes. If they're invalid, skip the |
| entire class body. */ |
| if (!xref_basetypes (type, bases)) |
| { |
| /* Consuming the closing brace yields better error messages |
| later on. */ |
| if (cp_parser_skip_to_closing_brace (parser)) |
| cp_lexer_consume_token (parser->lexer); |
| pop_deferring_access_checks (); |
| return error_mark_node; |
| } |
| |
| /* Issue an error message if type-definitions are forbidden here. */ |
| cp_parser_check_type_definition (parser); |
| /* Remember that we are defining one more class. */ |
| ++parser->num_classes_being_defined; |
| /* Inside the class, surrounding template-parameter-lists do not |
| apply. */ |
| saved_num_template_parameter_lists |
| = parser->num_template_parameter_lists; |
| parser->num_template_parameter_lists = 0; |
| /* We are not in a function body. */ |
| saved_in_function_body = parser->in_function_body; |
| parser->in_function_body = false; |
| /* We are not immediately inside an extern "lang" block. */ |
| saved_in_unbraced_linkage_specification_p |
| = parser->in_unbraced_linkage_specification_p; |
| parser->in_unbraced_linkage_specification_p = false; |
| |
| /* Start the class. */ |
| if (nested_name_specifier_p) |
| { |
| scope = CP_DECL_CONTEXT (TYPE_MAIN_DECL (type)); |
| old_scope = push_inner_scope (scope); |
| } |
| type = begin_class_definition (type, attributes); |
| |
| if (type == error_mark_node) |
| /* If the type is erroneous, skip the entire body of the class. */ |
| cp_parser_skip_to_closing_brace (parser); |
| else |
| /* Parse the member-specification. */ |
| cp_parser_member_specification_opt (parser); |
| |
| /* Look for the trailing `}'. */ |
| closing_brace = cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE); |
| /* Look for trailing attributes to apply to this class. */ |
| if (cp_parser_allow_gnu_extensions_p (parser)) |
| attributes = cp_parser_attributes_opt (parser); |
| if (type != error_mark_node) |
| type = finish_struct (type, attributes); |
| if (nested_name_specifier_p) |
| pop_inner_scope (old_scope, scope); |
| |
| /* We've finished a type definition. Check for the common syntax |
| error of forgetting a semicolon after the definition. We need to |
| be careful, as we can't just check for not-a-semicolon and be done |
| with it; the user might have typed: |
| |
| class X { } c = ...; |
| class X { } *p = ...; |
| |
| and so forth. Instead, enumerate all the possible tokens that |
| might follow this production; if we don't see one of them, then |
| complain and silently insert the semicolon. */ |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| bool want_semicolon = true; |
| |
| switch (token->type) |
| { |
| case CPP_NAME: |
| case CPP_SEMICOLON: |
| case CPP_MULT: |
| case CPP_AND: |
| case CPP_OPEN_PAREN: |
| case CPP_CLOSE_PAREN: |
| case CPP_COMMA: |
| want_semicolon = false; |
| break; |
| |
| /* While it's legal for type qualifiers and storage class |
| specifiers to follow type definitions in the grammar, only |
| compiler testsuites contain code like that. Assume that if |
| we see such code, then what we're really seeing is a case |
| like: |
| |
| class X { } |
| const <type> var = ...; |
| |
| or |
| |
| class Y { } |
| static <type> func (...) ... |
| |
| i.e. the qualifier or specifier applies to the next |
| declaration. To do so, however, we need to look ahead one |
| more token to see if *that* token is a type specifier. |
| |
| This code could be improved to handle: |
| |
| class Z { } |
| static const <type> var = ...; */ |
| case CPP_KEYWORD: |
| if (keyword_is_decl_specifier (token->keyword)) |
| { |
| cp_token *lookahead = cp_lexer_peek_nth_token (parser->lexer, 2); |
| |
| /* Handling user-defined types here would be nice, but very |
| tricky. */ |
| want_semicolon |
| = (lookahead->type == CPP_KEYWORD |
| && keyword_begins_type_specifier (lookahead->keyword)); |
| } |
| break; |
| default: |
| break; |
| } |
| |
| /* If we don't have a type, then something is very wrong and we |
| shouldn't try to do anything clever. Likewise for not seeing the |
| closing brace. */ |
| if (closing_brace && TYPE_P (type) && want_semicolon) |
| { |
| cp_token_position prev |
| = cp_lexer_previous_token_position (parser->lexer); |
| cp_token *prev_token = cp_lexer_token_at (parser->lexer, prev); |
| location_t loc = prev_token->location; |
| |
| if (CLASSTYPE_DECLARED_CLASS (type)) |
| error_at (loc, "expected %<;%> after class definition"); |
| else if (TREE_CODE (type) == RECORD_TYPE) |
| error_at (loc, "expected %<;%> after struct definition"); |
| else if (TREE_CODE (type) == UNION_TYPE) |
| error_at (loc, "expected %<;%> after union definition"); |
| else |
| gcc_unreachable (); |
| |
| /* Unget one token and smash it to look as though we encountered |
| a semicolon in the input stream. */ |
| cp_lexer_set_token_position (parser->lexer, prev); |
| token = cp_lexer_peek_token (parser->lexer); |
| token->type = CPP_SEMICOLON; |
| token->keyword = RID_MAX; |
| } |
| } |
| |
| /* If this class is not itself within the scope of another class, |
| then we need to parse the bodies of all of the queued function |
| definitions. Note that the queued functions defined in a class |
| are not always processed immediately following the |
| class-specifier for that class. Consider: |
| |
| struct A { |
| struct B { void f() { sizeof (A); } }; |
| }; |
| |
| If `f' were processed before the processing of `A' were |
| completed, there would be no way to compute the size of `A'. |
| Note that the nesting we are interested in here is lexical -- |
| not the semantic nesting given by TYPE_CONTEXT. In particular, |
| for: |
| |
| struct A { struct B; }; |
| struct A::B { void f() { } }; |
| |
| there is no need to delay the parsing of `A::B::f'. */ |
| if (--parser->num_classes_being_defined == 0) |
| { |
| tree fn; |
| tree class_type = NULL_TREE; |
| tree pushed_scope = NULL_TREE; |
| unsigned ix; |
| cp_default_arg_entry *e; |
| |
| /* In a first pass, parse default arguments to the functions. |
| Then, in a second pass, parse the bodies of the functions. |
| This two-phased approach handles cases like: |
| |
| struct S { |
| void f() { g(); } |
| void g(int i = 3); |
| }; |
| |
| */ |
| FOR_EACH_VEC_ELT (cp_default_arg_entry, unparsed_funs_with_default_args, |
| ix, e) |
| { |
| fn = e->decl; |
| /* If there are default arguments that have not yet been processed, |
| take care of them now. */ |
| if (class_type != e->class_type) |
| { |
| if (pushed_scope) |
| pop_scope (pushed_scope); |
| class_type = e->class_type; |
| pushed_scope = push_scope (class_type); |
| } |
| /* Make sure that any template parameters are in scope. */ |
| maybe_begin_member_template_processing (fn); |
| /* Parse the default argument expressions. */ |
| cp_parser_late_parsing_default_args (parser, fn); |
| /* Remove any template parameters from the symbol table. */ |
| maybe_end_member_template_processing (); |
| } |
| if (pushed_scope) |
| pop_scope (pushed_scope); |
| VEC_truncate (cp_default_arg_entry, unparsed_funs_with_default_args, 0); |
| /* Now parse the body of the functions. */ |
| FOR_EACH_VEC_ELT (tree, unparsed_funs_with_definitions, ix, fn) |
| cp_parser_late_parsing_for_member (parser, fn); |
| VEC_truncate (tree, unparsed_funs_with_definitions, 0); |
| } |
| |
| /* Put back any saved access checks. */ |
| pop_deferring_access_checks (); |
| |
| /* Restore saved state. */ |
| parser->in_function_body = saved_in_function_body; |
| parser->num_template_parameter_lists |
| = saved_num_template_parameter_lists; |
| parser->in_unbraced_linkage_specification_p |
| = saved_in_unbraced_linkage_specification_p; |
| |
| return type; |
| } |
| |
| static tree |
| cp_parser_class_specifier (cp_parser* parser) |
| { |
| tree ret; |
| timevar_push (TV_PARSE_STRUCT); |
| ret = cp_parser_class_specifier_1 (parser); |
| timevar_pop (TV_PARSE_STRUCT); |
| return ret; |
| } |
| |
| /* Parse a class-head. |
| |
| class-head: |
| class-key identifier [opt] base-clause [opt] |
| class-key nested-name-specifier identifier class-virt-specifier [opt] base-clause [opt] |
| class-key nested-name-specifier [opt] template-id |
| base-clause [opt] |
| |
| class-virt-specifier: |
| final |
| |
| GNU Extensions: |
| class-key attributes identifier [opt] base-clause [opt] |
| class-key attributes nested-name-specifier identifier base-clause [opt] |
| class-key attributes nested-name-specifier [opt] template-id |
| base-clause [opt] |
| |
| Upon return BASES is initialized to the list of base classes (or |
| NULL, if there are none) in the same form returned by |
| cp_parser_base_clause. |
| |
| Returns the TYPE of the indicated class. Sets |
| *NESTED_NAME_SPECIFIER_P to TRUE iff one of the productions |
| involving a nested-name-specifier was used, and FALSE otherwise. |
| |
| Returns error_mark_node if this is not a class-head. |
| |
| Returns NULL_TREE if the class-head is syntactically valid, but |
| semantically invalid in a way that means we should skip the entire |
| body of the class. */ |
| |
| static tree |
| cp_parser_class_head (cp_parser* parser, |
| bool* nested_name_specifier_p, |
| tree *attributes_p, |
| tree *bases) |
| { |
| tree nested_name_specifier; |
| enum tag_types class_key; |
| tree id = NULL_TREE; |
| tree type = NULL_TREE; |
| tree attributes; |
| cp_virt_specifiers virt_specifiers = VIRT_SPEC_UNSPECIFIED; |
| bool template_id_p = false; |
| bool qualified_p = false; |
| bool invalid_nested_name_p = false; |
| bool invalid_explicit_specialization_p = false; |
| bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p; |
| tree pushed_scope = NULL_TREE; |
| unsigned num_templates; |
| cp_token *type_start_token = NULL, *nested_name_specifier_token_start = NULL; |
| /* Assume no nested-name-specifier will be present. */ |
| *nested_name_specifier_p = false; |
| /* Assume no template parameter lists will be used in defining the |
| type. */ |
| num_templates = 0; |
| parser->colon_corrects_to_scope_p = false; |
| |
| *bases = NULL_TREE; |
| |
| /* Look for the class-key. */ |
| class_key = cp_parser_class_key (parser); |
| if (class_key == none_type) |
| return error_mark_node; |
| |
| /* Parse the attributes. */ |
| attributes = cp_parser_attributes_opt (parser); |
| |
| /* If the next token is `::', that is invalid -- but sometimes |
| people do try to write: |
| |
| struct ::S {}; |
| |
| Handle this gracefully by accepting the extra qualifier, and then |
| issuing an error about it later if this really is a |
| class-head. If it turns out just to be an elaborated type |
| specifier, remain silent. */ |
| if (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false)) |
| qualified_p = true; |
| |
| push_deferring_access_checks (dk_no_check); |
| |
| /* Determine the name of the class. Begin by looking for an |
| optional nested-name-specifier. */ |
| nested_name_specifier_token_start = cp_lexer_peek_token (parser->lexer); |
| nested_name_specifier |
| = cp_parser_nested_name_specifier_opt (parser, |
| /*typename_keyword_p=*/false, |
| /*check_dependency_p=*/false, |
| /*type_p=*/false, |
| /*is_declaration=*/false); |
| /* If there was a nested-name-specifier, then there *must* be an |
| identifier. */ |
| if (nested_name_specifier) |
| { |
| type_start_token = cp_lexer_peek_token (parser->lexer); |
| /* Although the grammar says `identifier', it really means |
| `class-name' or `template-name'. You are only allowed to |
| define a class that has already been declared with this |
| syntax. |
| |
| The proposed resolution for Core Issue 180 says that wherever |
| you see `class T::X' you should treat `X' as a type-name. |
| |
| It is OK to define an inaccessible class; for example: |
| |
| class A { class B; }; |
| class A::B {}; |
| |
| We do not know if we will see a class-name, or a |
| template-name. We look for a class-name first, in case the |
| class-name is a template-id; if we looked for the |
| template-name first we would stop after the template-name. */ |
| cp_parser_parse_tentatively (parser); |
| type = cp_parser_class_name (parser, |
| /*typename_keyword_p=*/false, |
| /*template_keyword_p=*/false, |
| class_type, |
| /*check_dependency_p=*/false, |
| /*class_head_p=*/true, |
| /*is_declaration=*/false); |
| /* If that didn't work, ignore the nested-name-specifier. */ |
| if (!cp_parser_parse_definitely (parser)) |
| { |
| invalid_nested_name_p = true; |
| type_start_token = cp_lexer_peek_token (parser->lexer); |
| id = cp_parser_identifier (parser); |
| if (id == error_mark_node) |
| id = NULL_TREE; |
| } |
| /* If we could not find a corresponding TYPE, treat this |
| declaration like an unqualified declaration. */ |
| if (type == error_mark_node) |
| nested_name_specifier = NULL_TREE; |
| /* Otherwise, count the number of templates used in TYPE and its |
| containing scopes. */ |
| else |
| { |
| tree scope; |
| |
| for (scope = TREE_TYPE (type); |
| scope && TREE_CODE (scope) != NAMESPACE_DECL; |
| scope = (TYPE_P (scope) |
| ? TYPE_CONTEXT (scope) |
| : DECL_CONTEXT (scope))) |
| if (TYPE_P (scope) |
| && CLASS_TYPE_P (scope) |
| && CLASSTYPE_TEMPLATE_INFO (scope) |
| && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope)) |
| && !CLASSTYPE_TEMPLATE_SPECIALIZATION (scope)) |
| ++num_templates; |
| } |
| } |
| /* Otherwise, the identifier is optional. */ |
| else |
| { |
| /* We don't know whether what comes next is a template-id, |
| an identifier, or nothing at all. */ |
| cp_parser_parse_tentatively (parser); |
| /* Check for a template-id. */ |
| type_start_token = cp_lexer_peek_token (parser->lexer); |
| id = cp_parser_template_id (parser, |
| /*template_keyword_p=*/false, |
| /*check_dependency_p=*/true, |
| /*is_declaration=*/true); |
| /* If that didn't work, it could still be an identifier. */ |
| if (!cp_parser_parse_definitely (parser)) |
| { |
| if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)) |
| { |
| type_start_token = cp_lexer_peek_token (parser->lexer); |
| id = cp_parser_identifier (parser); |
| } |
| else |
| id = NULL_TREE; |
| } |
| else |
| { |
| template_id_p = true; |
| ++num_templates; |
| } |
| } |
| |
| pop_deferring_access_checks (); |
| |
| if (id) |
| { |
| cp_parser_check_for_invalid_template_id (parser, id, |
| type_start_token->location); |
| virt_specifiers = cp_parser_virt_specifier_seq_opt (parser); |
| } |
| |
| /* If it's not a `:' or a `{' then we can't really be looking at a |
| class-head, since a class-head only appears as part of a |
| class-specifier. We have to detect this situation before calling |
| xref_tag, since that has irreversible side-effects. */ |
| if (!cp_parser_next_token_starts_class_definition_p (parser)) |
| { |
| cp_parser_error (parser, "expected %<{%> or %<:%>"); |
| type = error_mark_node; |
| goto out; |
| } |
| |
| /* At this point, we're going ahead with the class-specifier, even |
| if some other problem occurs. */ |
| cp_parser_commit_to_tentative_parse (parser); |
| if (virt_specifiers & VIRT_SPEC_OVERRIDE) |
| { |
| cp_parser_error (parser, |
| "cannot specify %<override%> for a class"); |
| type = error_mark_node; |
| goto out; |
| } |
| /* Issue the error about the overly-qualified name now. */ |
| if (qualified_p) |
| { |
| cp_parser_error (parser, |
| "global qualification of class name is invalid"); |
| type = error_mark_node; |
| goto out; |
| } |
| else if (invalid_nested_name_p) |
| { |
| cp_parser_error (parser, |
| "qualified name does not name a class"); |
| type = error_mark_node; |
| goto out; |
| } |
| else if (nested_name_specifier) |
| { |
| tree scope; |
| |
| /* Reject typedef-names in class heads. */ |
| if (!DECL_IMPLICIT_TYPEDEF_P (type)) |
| { |
| error_at (type_start_token->location, |
| "invalid class name in declaration of %qD", |
| type); |
| type = NULL_TREE; |
| goto done; |
| } |
| |
| /* Figure out in what scope the declaration is being placed. */ |
| scope = current_scope (); |
| /* If that scope does not contain the scope in which the |
| class was originally declared, the program is invalid. */ |
| if (scope && !is_ancestor (scope, nested_name_specifier)) |
| { |
| if (at_namespace_scope_p ()) |
| error_at (type_start_token->location, |
| "declaration of %qD in namespace %qD which does not " |
| "enclose %qD", |
| type, scope, nested_name_specifier); |
| else |
| error_at (type_start_token->location, |
| "declaration of %qD in %qD which does not enclose %qD", |
| type, scope, nested_name_specifier); |
| type = NULL_TREE; |
| goto done; |
| } |
| /* [dcl.meaning] |
| |
| A declarator-id shall not be qualified except for the |
| definition of a ... nested class outside of its class |
| ... [or] the definition or explicit instantiation of a |
| class member of a namespace outside of its namespace. */ |
| if (scope == nested_name_specifier) |
| { |
| permerror (nested_name_specifier_token_start->location, |
| "extra qualification not allowed"); |
| nested_name_specifier = NULL_TREE; |
| num_templates = 0; |
| } |
| } |
| /* An explicit-specialization must be preceded by "template <>". If |
| it is not, try to recover gracefully. */ |
| if (at_namespace_scope_p () |
| && parser->num_template_parameter_lists == 0 |
| && template_id_p) |
| { |
| error_at (type_start_token->location, |
| "an explicit specialization must be preceded by %<template <>%>"); |
| invalid_explicit_specialization_p = true; |
| /* Take the same action that would have been taken by |
| cp_parser_explicit_specialization. */ |
| ++parser->num_template_parameter_lists; |
| begin_specialization (); |
| } |
| /* There must be no "return" statements between this point and the |
| end of this function; set "type "to the correct return value and |
| use "goto done;" to return. */ |
| /* Make sure that the right number of template parameters were |
| present. */ |
| if (!cp_parser_check_template_parameters (parser, num_templates, |
| type_start_token->location, |
| /*declarator=*/NULL)) |
| { |
| /* If something went wrong, there is no point in even trying to |
| process the class-definition. */ |
| type = NULL_TREE; |
| goto done; |
| } |
| |
| /* Look up the type. */ |
| if (template_id_p) |
| { |
| if (TREE_CODE (id) == TEMPLATE_ID_EXPR |
| && (DECL_FUNCTION_TEMPLATE_P (TREE_OPERAND (id, 0)) |
| || TREE_CODE (TREE_OPERAND (id, 0)) == OVERLOAD)) |
| { |
| error_at (type_start_token->location, |
| "function template %qD redeclared as a class template", id); |
| type = error_mark_node; |
| } |
| else |
| { |
| type = TREE_TYPE (id); |
| type = maybe_process_partial_specialization (type); |
| } |
| if (nested_name_specifier) |
| pushed_scope = push_scope (nested_name_specifier); |
| } |
| else if (nested_name_specifier) |
| { |
| tree class_type; |
| |
| /* Given: |
| |
| template <typename T> struct S { struct T }; |
| template <typename T> struct S<T>::T { }; |
| |
| we will get a TYPENAME_TYPE when processing the definition of |
| `S::T'. We need to resolve it to the actual type before we |
| try to define it. */ |
| if (TREE_CODE (TREE_TYPE (type)) == TYPENAME_TYPE) |
| { |
| class_type = resolve_typename_type (TREE_TYPE (type), |
| /*only_current_p=*/false); |
| if (TREE_CODE (class_type) != TYPENAME_TYPE) |
| type = TYPE_NAME (class_type); |
| else |
| { |
| cp_parser_error (parser, "could not resolve typename type"); |
| type = error_mark_node; |
| } |
| } |
| |
| if (maybe_process_partial_specialization (TREE_TYPE (type)) |
| == error_mark_node) |
| { |
| type = NULL_TREE; |
| goto done; |
| } |
| |
| class_type = current_class_type; |
| /* Enter the scope indicated by the nested-name-specifier. */ |
| pushed_scope = push_scope (nested_name_specifier); |
| /* Get the canonical version of this type. */ |
| type = TYPE_MAIN_DECL (TREE_TYPE (type)); |
| if (PROCESSING_REAL_TEMPLATE_DECL_P () |
| && !CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (type))) |
| { |
| type = push_template_decl (type); |
| if (type == error_mark_node) |
| { |
| type = NULL_TREE; |
| goto done; |
| } |
| } |
| |
| type = TREE_TYPE (type); |
| *nested_name_specifier_p = true; |
| } |
| else /* The name is not a nested name. */ |
| { |
| /* If the class was unnamed, create a dummy name. */ |
| if (!id) |
| id = make_anon_name (); |
| type = xref_tag (class_key, id, /*tag_scope=*/ts_current, |
| parser->num_template_parameter_lists); |
| } |
| |
| /* Indicate whether this class was declared as a `class' or as a |
| `struct'. */ |
| if (TREE_CODE (type) == RECORD_TYPE) |
| CLASSTYPE_DECLARED_CLASS (type) = (class_key == class_type); |
| cp_parser_check_class_key (class_key, type); |
| |
| /* If this type was already complete, and we see another definition, |
| that's an error. */ |
| if (type != error_mark_node && COMPLETE_TYPE_P (type)) |
| { |
| error_at (type_start_token->location, "redefinition of %q#T", |
| type); |
| error_at (type_start_token->location, "previous definition of %q+#T", |
| type); |
| type = NULL_TREE; |
| goto done; |
| } |
| else if (type == error_mark_node) |
| type = NULL_TREE; |
| |
| /* We will have entered the scope containing the class; the names of |
| base classes should be looked up in that context. For example: |
| |
| struct A { struct B {}; struct C; }; |
| struct A::C : B {}; |
| |
| is valid. */ |
| |
| /* Get the list of base-classes, if there is one. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_COLON)) |
| *bases = cp_parser_base_clause (parser); |
| |
| done: |
| /* Leave the scope given by the nested-name-specifier. We will |
| enter the class scope itself while processing the members. */ |
| if (pushed_scope) |
| pop_scope (pushed_scope); |
| |
| if (invalid_explicit_specialization_p) |
| { |
| end_specialization (); |
| --parser->num_template_parameter_lists; |
| } |
| |
| if (type) |
| DECL_SOURCE_LOCATION (TYPE_NAME (type)) = type_start_token->location; |
| *attributes_p = attributes; |
| if (type && (virt_specifiers & VIRT_SPEC_FINAL)) |
| CLASSTYPE_FINAL (type) = 1; |
| out: |
| parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p; |
| return type; |
| } |
| |
| /* Parse a class-key. |
| |
| class-key: |
| class |
| struct |
| union |
| |
| Returns the kind of class-key specified, or none_type to indicate |
| error. */ |
| |
| static enum tag_types |
| cp_parser_class_key (cp_parser* parser) |
| { |
| cp_token *token; |
| enum tag_types tag_type; |
| |
| /* Look for the class-key. */ |
| token = cp_parser_require (parser, CPP_KEYWORD, RT_CLASS_KEY); |
| if (!token) |
| return none_type; |
| |
| /* Check to see if the TOKEN is a class-key. */ |
| tag_type = cp_parser_token_is_class_key (token); |
| if (!tag_type) |
| cp_parser_error (parser, "expected class-key"); |
| return tag_type; |
| } |
| |
| /* Parse an (optional) member-specification. |
| |
| member-specification: |
| member-declaration member-specification [opt] |
| access-specifier : member-specification [opt] */ |
| |
| static void |
| cp_parser_member_specification_opt (cp_parser* parser) |
| { |
| while (true) |
| { |
| cp_token *token; |
| enum rid keyword; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If it's a `}', or EOF then we've seen all the members. */ |
| if (token->type == CPP_CLOSE_BRACE |
| || token->type == CPP_EOF |
| || token->type == CPP_PRAGMA_EOL) |
| break; |
| |
| /* See if this token is a keyword. */ |
| keyword = token->keyword; |
| switch (keyword) |
| { |
| case RID_PUBLIC: |
| case RID_PROTECTED: |
| case RID_PRIVATE: |
| /* Consume the access-specifier. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Remember which access-specifier is active. */ |
| current_access_specifier = token->u.value; |
| /* Look for the `:'. */ |
| cp_parser_require (parser, CPP_COLON, RT_COLON); |
| break; |
| |
| default: |
| /* Accept #pragmas at class scope. */ |
| if (token->type == CPP_PRAGMA) |
| { |
| cp_parser_pragma (parser, pragma_external); |
| break; |
| } |
| |
| /* Otherwise, the next construction must be a |
| member-declaration. */ |
| cp_parser_member_declaration (parser); |
| } |
| } |
| } |
| |
| /* Parse a member-declaration. |
| |
| member-declaration: |
| decl-specifier-seq [opt] member-declarator-list [opt] ; |
| function-definition ; [opt] |
| :: [opt] nested-name-specifier template [opt] unqualified-id ; |
| using-declaration |
| template-declaration |
| |
| member-declarator-list: |
| member-declarator |
| member-declarator-list , member-declarator |
| |
| member-declarator: |
| declarator pure-specifier [opt] |
| declarator constant-initializer [opt] |
| identifier [opt] : constant-expression |
| |
| GNU Extensions: |
| |
| member-declaration: |
| __extension__ member-declaration |
| |
| member-declarator: |
| declarator attributes [opt] pure-specifier [opt] |
| declarator attributes [opt] constant-initializer [opt] |
| identifier [opt] attributes [opt] : constant-expression |
| |
| C++0x Extensions: |
| |
| member-declaration: |
| static_assert-declaration */ |
| |
| static void |
| cp_parser_member_declaration (cp_parser* parser) |
| { |
| cp_decl_specifier_seq decl_specifiers; |
| tree prefix_attributes; |
| tree decl; |
| int declares_class_or_enum; |
| bool friend_p; |
| cp_token *token = NULL; |
| cp_token *decl_spec_token_start = NULL; |
| cp_token *initializer_token_start = NULL; |
| int saved_pedantic; |
| bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p; |
| |
| /* Check for the `__extension__' keyword. */ |
| if (cp_parser_extension_opt (parser, &saved_pedantic)) |
| { |
| /* Recurse. */ |
| cp_parser_member_declaration (parser); |
| /* Restore the old value of the PEDANTIC flag. */ |
| pedantic = saved_pedantic; |
| |
| return; |
| } |
| |
| /* Check for a template-declaration. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE)) |
| { |
| /* An explicit specialization here is an error condition, and we |
| expect the specialization handler to detect and report this. */ |
| if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS |
| && cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER) |
| cp_parser_explicit_specialization (parser); |
| else |
| cp_parser_template_declaration (parser, /*member_p=*/true); |
| |
| return; |
| } |
| |
| /* Check for a using-declaration. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_USING)) |
| { |
| /* Parse the using-declaration. */ |
| cp_parser_using_declaration (parser, |
| /*access_declaration_p=*/false); |
| return; |
| } |
| |
| /* Check for @defs. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_DEFS)) |
| { |
| tree ivar, member; |
| tree ivar_chains = cp_parser_objc_defs_expression (parser); |
| ivar = ivar_chains; |
| while (ivar) |
| { |
| member = ivar; |
| ivar = TREE_CHAIN (member); |
| TREE_CHAIN (member) = NULL_TREE; |
| finish_member_declaration (member); |
| } |
| return; |
| } |
| |
| /* If the next token is `static_assert' we have a static assertion. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_STATIC_ASSERT)) |
| { |
| cp_parser_static_assert (parser, /*member_p=*/true); |
| return; |
| } |
| |
| parser->colon_corrects_to_scope_p = false; |
| |
| if (cp_parser_using_declaration (parser, /*access_declaration=*/true)) |
| goto out; |
| |
| /* Parse the decl-specifier-seq. */ |
| decl_spec_token_start = cp_lexer_peek_token (parser->lexer); |
| cp_parser_decl_specifier_seq (parser, |
| CP_PARSER_FLAGS_OPTIONAL, |
| &decl_specifiers, |
| &declares_class_or_enum); |
| prefix_attributes = decl_specifiers.attributes; |
| decl_specifiers.attributes = NULL_TREE; |
| /* Check for an invalid type-name. */ |
| if (!decl_specifiers.any_type_specifiers_p |
| && cp_parser_parse_and_diagnose_invalid_type_name (parser)) |
| goto out; |
| /* If there is no declarator, then the decl-specifier-seq should |
| specify a type. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)) |
| { |
| /* If there was no decl-specifier-seq, and the next token is a |
| `;', then we have something like: |
| |
| struct S { ; }; |
| |
| [class.mem] |
| |
| Each member-declaration shall declare at least one member |
| name of the class. */ |
| if (!decl_specifiers.any_specifiers_p) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| if (!in_system_header_at (token->location)) |
| pedwarn (token->location, OPT_pedantic, "extra %<;%>"); |
| } |
| else |
| { |
| tree type; |
| |
| /* See if this declaration is a friend. */ |
| friend_p = cp_parser_friend_p (&decl_specifiers); |
| /* If there were decl-specifiers, check to see if there was |
| a class-declaration. */ |
| type = check_tag_decl (&decl_specifiers); |
| /* Nested classes have already been added to the class, but |
| a `friend' needs to be explicitly registered. */ |
| if (friend_p) |
| { |
| /* If the `friend' keyword was present, the friend must |
| be introduced with a class-key. */ |
| if (!declares_class_or_enum && cxx_dialect < cxx0x) |
| pedwarn (decl_spec_token_start->location, OPT_pedantic, |
| "in C++03 a class-key must be used " |
| "when declaring a friend"); |
| /* In this case: |
| |
| template <typename T> struct A { |
| friend struct A<T>::B; |
| }; |
| |
| A<T>::B will be represented by a TYPENAME_TYPE, and |
| therefore not recognized by check_tag_decl. */ |
| if (!type) |
| { |
| type = decl_specifiers.type; |
| if (type && TREE_CODE (type) == TYPE_DECL) |
| type = TREE_TYPE (type); |
| } |
| if (!type || !TYPE_P (type)) |
| error_at (decl_spec_token_start->location, |
| "friend declaration does not name a class or " |
| "function"); |
| else |
| make_friend_class (current_class_type, type, |
| /*complain=*/true); |
| } |
| /* If there is no TYPE, an error message will already have |
| been issued. */ |
| else if (!type || type == error_mark_node) |
| ; |
| /* An anonymous aggregate has to be handled specially; such |
| a declaration really declares a data member (with a |
| particular type), as opposed to a nested class. */ |
| else if (ANON_AGGR_TYPE_P (type)) |
| { |
| /* Remove constructors and such from TYPE, now that we |
| know it is an anonymous aggregate. */ |
| fixup_anonymous_aggr (type); |
| /* And make the corresponding data member. */ |
| decl = build_decl (decl_spec_token_start->location, |
| FIELD_DECL, NULL_TREE, type); |
| /* Add it to the class. */ |
| finish_member_declaration (decl); |
| } |
| else |
| cp_parser_check_access_in_redeclaration |
| (TYPE_NAME (type), |
| decl_spec_token_start->location); |
| } |
| } |
| else |
| { |
| bool assume_semicolon = false; |
| |
| /* See if these declarations will be friends. */ |
| friend_p = cp_parser_friend_p (&decl_specifiers); |
| |
| /* Keep going until we hit the `;' at the end of the |
| declaration. */ |
| while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)) |
| { |
| tree attributes = NULL_TREE; |
| tree first_attribute; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| /* Check for a bitfield declaration. */ |
| if (token->type == CPP_COLON |
| || (token->type == CPP_NAME |
| && cp_lexer_peek_nth_token (parser->lexer, 2)->type |
| == CPP_COLON)) |
| { |
| tree identifier; |
| tree width; |
| |
| /* Get the name of the bitfield. Note that we cannot just |
| check TOKEN here because it may have been invalidated by |
| the call to cp_lexer_peek_nth_token above. */ |
| if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON) |
| identifier = cp_parser_identifier (parser); |
| else |
| identifier = NULL_TREE; |
| |
| /* Consume the `:' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Get the width of the bitfield. */ |
| width |
| = cp_parser_constant_expression (parser, |
| /*allow_non_constant=*/false, |
| NULL); |
| |
| /* Look for attributes that apply to the bitfield. */ |
| attributes = cp_parser_attributes_opt (parser); |
| /* Remember which attributes are prefix attributes and |
| which are not. */ |
| first_attribute = attributes; |
| /* Combine the attributes. */ |
| attributes = chainon (prefix_attributes, attributes); |
| |
| /* Create the bitfield declaration. */ |
| decl = grokbitfield (identifier |
| ? make_id_declarator (NULL_TREE, |
| identifier, |
| sfk_none) |
| : NULL, |
| &decl_specifiers, |
| width, |
| attributes); |
| } |
| else |
| { |
| cp_declarator *declarator; |
| tree initializer; |
| tree asm_specification; |
| int ctor_dtor_or_conv_p; |
| |
| /* Parse the declarator. */ |
| declarator |
| = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED, |
| &ctor_dtor_or_conv_p, |
| /*parenthesized_p=*/NULL, |
| /*member_p=*/true); |
| |
| /* If something went wrong parsing the declarator, make sure |
| that we at least consume some tokens. */ |
| if (declarator == cp_error_declarator) |
| { |
| /* Skip to the end of the statement. */ |
| cp_parser_skip_to_end_of_statement (parser); |
| /* If the next token is not a semicolon, that is |
| probably because we just skipped over the body of |
| a function. So, we consume a semicolon if |
| present, but do not issue an error message if it |
| is not present. */ |
| if (cp_lexer_next_token_is (parser->lexer, |
| CPP_SEMICOLON)) |
| cp_lexer_consume_token (parser->lexer); |
| goto out; |
| } |
| |
| if (declares_class_or_enum & 2) |
| cp_parser_check_for_definition_in_return_type |
| (declarator, decl_specifiers.type, |
| decl_specifiers.type_location); |
| |
| /* Look for an asm-specification. */ |
| asm_specification = cp_parser_asm_specification_opt (parser); |
| /* Look for attributes that apply to the declaration. */ |
| attributes = cp_parser_attributes_opt (parser); |
| /* Remember which attributes are prefix attributes and |
| which are not. */ |
| first_attribute = attributes; |
| /* Combine the attributes. */ |
| attributes = chainon (prefix_attributes, attributes); |
| |
| /* If it's an `=', then we have a constant-initializer or a |
| pure-specifier. It is not correct to parse the |
| initializer before registering the member declaration |
| since the member declaration should be in scope while |
| its initializer is processed. However, the rest of the |
| front end does not yet provide an interface that allows |
| us to handle this correctly. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_EQ)) |
| { |
| /* In [class.mem]: |
| |
| A pure-specifier shall be used only in the declaration of |
| a virtual function. |
| |
| A member-declarator can contain a constant-initializer |
| only if it declares a static member of integral or |
| enumeration type. |
| |
| Therefore, if the DECLARATOR is for a function, we look |
| for a pure-specifier; otherwise, we look for a |
| constant-initializer. When we call `grokfield', it will |
| perform more stringent semantics checks. */ |
| initializer_token_start = cp_lexer_peek_token (parser->lexer); |
| if (function_declarator_p (declarator)) |
| initializer = cp_parser_pure_specifier (parser); |
| else |
| /* Parse the initializer. */ |
| initializer = cp_parser_constant_initializer (parser); |
| } |
| /* Otherwise, there is no initializer. */ |
| else |
| initializer = NULL_TREE; |
| |
| /* See if we are probably looking at a function |
| definition. We are certainly not looking at a |
| member-declarator. Calling `grokfield' has |
| side-effects, so we must not do it unless we are sure |
| that we are looking at a member-declarator. */ |
| if (cp_parser_token_starts_function_definition_p |
| (cp_lexer_peek_token (parser->lexer))) |
| { |
| /* The grammar does not allow a pure-specifier to be |
| used when a member function is defined. (It is |
| possible that this fact is an oversight in the |
| standard, since a pure function may be defined |
| outside of the class-specifier. */ |
| if (initializer) |
| error_at (initializer_token_start->location, |
| "pure-specifier on function-definition"); |
| decl = cp_parser_save_member_function_body (parser, |
| &decl_specifiers, |
| declarator, |
| attributes); |
| /* If the member was not a friend, declare it here. */ |
| if (!friend_p) |
| finish_member_declaration (decl); |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If the next token is a semicolon, consume it. */ |
| if (token->type == CPP_SEMICOLON) |
| cp_lexer_consume_token (parser->lexer); |
| goto out; |
| } |
| else |
| if (declarator->kind == cdk_function) |
| declarator->id_loc = token->location; |
| /* Create the declaration. */ |
| decl = grokfield (declarator, &decl_specifiers, |
| initializer, /*init_const_expr_p=*/true, |
| asm_specification, |
| attributes); |
| } |
| |
| /* Reset PREFIX_ATTRIBUTES. */ |
| while (attributes && TREE_CHAIN (attributes) != first_attribute) |
| attributes = TREE_CHAIN (attributes); |
| if (attributes) |
| TREE_CHAIN (attributes) = NULL_TREE; |
| |
| /* If there is any qualification still in effect, clear it |
| now; we will be starting fresh with the next declarator. */ |
| parser->scope = NULL_TREE; |
| parser->qualifying_scope = NULL_TREE; |
| parser->object_scope = NULL_TREE; |
| /* If it's a `,', then there are more declarators. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA)) |
| cp_lexer_consume_token (parser->lexer); |
| /* If the next token isn't a `;', then we have a parse error. */ |
| else if (cp_lexer_next_token_is_not (parser->lexer, |
| CPP_SEMICOLON)) |
| { |
| /* The next token might be a ways away from where the |
| actual semicolon is missing. Find the previous token |
| and use that for our error position. */ |
| cp_token *token = cp_lexer_previous_token (parser->lexer); |
| error_at (token->location, |
| "expected %<;%> at end of member declaration"); |
| |
| /* Assume that the user meant to provide a semicolon. If |
| we were to cp_parser_skip_to_end_of_statement, we might |
| skip to a semicolon inside a member function definition |
| and issue nonsensical error messages. */ |
| assume_semicolon = true; |
| } |
| |
| if (decl) |
| { |
| /* Add DECL to the list of members. */ |
| if (!friend_p) |
| finish_member_declaration (decl); |
| |
| if (TREE_CODE (decl) == FUNCTION_DECL) |
| cp_parser_save_default_args (parser, decl); |
| } |
| |
| if (assume_semicolon) |
| goto out; |
| } |
| } |
| |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| out: |
| parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p; |
| } |
| |
| /* Parse a pure-specifier. |
| |
| pure-specifier: |
| = 0 |
| |
| Returns INTEGER_ZERO_NODE if a pure specifier is found. |
| Otherwise, ERROR_MARK_NODE is returned. */ |
| |
| static tree |
| cp_parser_pure_specifier (cp_parser* parser) |
| { |
| cp_token *token; |
| |
| /* Look for the `=' token. */ |
| if (!cp_parser_require (parser, CPP_EQ, RT_EQ)) |
| return error_mark_node; |
| /* Look for the `0' token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| if (token->type == CPP_EOF |
| || token->type == CPP_PRAGMA_EOL) |
| return error_mark_node; |
| |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* Accept = default or = delete in c++0x mode. */ |
| if (token->keyword == RID_DEFAULT |
| || token->keyword == RID_DELETE) |
| { |
| maybe_warn_cpp0x (CPP0X_DEFAULTED_DELETED); |
| return token->u.value; |
| } |
| |
| /* c_lex_with_flags marks a single digit '0' with PURE_ZERO. */ |
| if (token->type != CPP_NUMBER || !(token->flags & PURE_ZERO)) |
| { |
| cp_parser_error (parser, |
| "invalid pure specifier (only %<= 0%> is allowed)"); |
| cp_parser_skip_to_end_of_statement (parser); |
| return error_mark_node; |
| } |
| if (PROCESSING_REAL_TEMPLATE_DECL_P ()) |
| { |
| error_at (token->location, "templates may not be %<virtual%>"); |
| return error_mark_node; |
| } |
| |
| return integer_zero_node; |
| } |
| |
| /* Parse a constant-initializer. |
| |
| constant-initializer: |
| = constant-expression |
| |
| Returns a representation of the constant-expression. */ |
| |
| static tree |
| cp_parser_constant_initializer (cp_parser* parser) |
| { |
| /* Look for the `=' token. */ |
| if (!cp_parser_require (parser, CPP_EQ, RT_EQ)) |
| return error_mark_node; |
| |
| /* It is invalid to write: |
| |
| struct S { static const int i = { 7 }; }; |
| |
| */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| { |
| cp_parser_error (parser, |
| "a brace-enclosed initializer is not allowed here"); |
| /* Consume the opening brace. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Skip the initializer. */ |
| cp_parser_skip_to_closing_brace (parser); |
| /* Look for the trailing `}'. */ |
| cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE); |
| |
| return error_mark_node; |
| } |
| |
| return cp_parser_constant_expression (parser, |
| /*allow_non_constant=*/false, |
| NULL); |
| } |
| |
| /* Derived classes [gram.class.derived] */ |
| |
| /* Parse a base-clause. |
| |
| base-clause: |
| : base-specifier-list |
| |
| base-specifier-list: |
| base-specifier ... [opt] |
| base-specifier-list , base-specifier ... [opt] |
| |
| Returns a TREE_LIST representing the base-classes, in the order in |
| which they were declared. The representation of each node is as |
| described by cp_parser_base_specifier. |
| |
| In the case that no bases are specified, this function will return |
| NULL_TREE, not ERROR_MARK_NODE. */ |
| |
| static tree |
| cp_parser_base_clause (cp_parser* parser) |
| { |
| tree bases = NULL_TREE; |
| |
| /* Look for the `:' that begins the list. */ |
| cp_parser_require (parser, CPP_COLON, RT_COLON); |
| |
| /* Scan the base-specifier-list. */ |
| while (true) |
| { |
| cp_token *token; |
| tree base; |
| bool pack_expansion_p = false; |
| |
| /* Look for the base-specifier. */ |
| base = cp_parser_base_specifier (parser); |
| /* Look for the (optional) ellipsis. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)) |
| { |
| /* Consume the `...'. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| pack_expansion_p = true; |
| } |
| |
| /* Add BASE to the front of the list. */ |
| if (base != error_mark_node) |
| { |
| if (pack_expansion_p) |
| /* Make this a pack expansion type. */ |
| TREE_VALUE (base) = make_pack_expansion (TREE_VALUE (base)); |
| |
| |
| if (!check_for_bare_parameter_packs (TREE_VALUE (base))) |
| { |
| TREE_CHAIN (base) = bases; |
| bases = base; |
| } |
| } |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If it's not a comma, then the list is complete. */ |
| if (token->type != CPP_COMMA) |
| break; |
| /* Consume the `,'. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| |
| /* PARSER->SCOPE may still be non-NULL at this point, if the last |
| base class had a qualified name. However, the next name that |
| appears is certainly not qualified. */ |
| parser->scope = NULL_TREE; |
| parser->qualifying_scope = NULL_TREE; |
| parser->object_scope = NULL_TREE; |
| |
| return nreverse (bases); |
| } |
| |
| /* Parse a base-specifier. |
| |
| base-specifier: |
| :: [opt] nested-name-specifier [opt] class-name |
| virtual access-specifier [opt] :: [opt] nested-name-specifier |
| [opt] class-name |
| access-specifier virtual [opt] :: [opt] nested-name-specifier |
| [opt] class-name |
| |
| Returns a TREE_LIST. The TREE_PURPOSE will be one of |
| ACCESS_{DEFAULT,PUBLIC,PROTECTED,PRIVATE}_[VIRTUAL]_NODE to |
| indicate the specifiers provided. The TREE_VALUE will be a TYPE |
| (or the ERROR_MARK_NODE) indicating the type that was specified. */ |
| |
| static tree |
| cp_parser_base_specifier (cp_parser* parser) |
| { |
| cp_token *token; |
| bool done = false; |
| bool virtual_p = false; |
| bool duplicate_virtual_error_issued_p = false; |
| bool duplicate_access_error_issued_p = false; |
| bool class_scope_p, template_p; |
| tree access = access_default_node; |
| tree type; |
| |
| /* Process the optional `virtual' and `access-specifier'. */ |
| while (!done) |
| { |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* Process `virtual'. */ |
| switch (token->keyword) |
| { |
| case RID_VIRTUAL: |
| /* If `virtual' appears more than once, issue an error. */ |
| if (virtual_p && !duplicate_virtual_error_issued_p) |
| { |
| cp_parser_error (parser, |
| "%<virtual%> specified more than once in base-specified"); |
| duplicate_virtual_error_issued_p = true; |
| } |
| |
| virtual_p = true; |
| |
| /* Consume the `virtual' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| break; |
| |
| case RID_PUBLIC: |
| case RID_PROTECTED: |
| case RID_PRIVATE: |
| /* If more than one access specifier appears, issue an |
| error. */ |
| if (access != access_default_node |
| && !duplicate_access_error_issued_p) |
| { |
| cp_parser_error (parser, |
| "more than one access specifier in base-specified"); |
| duplicate_access_error_issued_p = true; |
| } |
| |
| access = ridpointers[(int) token->keyword]; |
| |
| /* Consume the access-specifier. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| break; |
| |
| default: |
| done = true; |
| break; |
| } |
| } |
| /* It is not uncommon to see programs mechanically, erroneously, use |
| the 'typename' keyword to denote (dependent) qualified types |
| as base classes. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME)) |
| { |
| token = cp_lexer_peek_token (parser->lexer); |
| if (!processing_template_decl) |
| error_at (token->location, |
| "keyword %<typename%> not allowed outside of templates"); |
| else |
| error_at (token->location, |
| "keyword %<typename%> not allowed in this context " |
| "(the base class is implicitly a type)"); |
| cp_lexer_consume_token (parser->lexer); |
| } |
| |
| /* Look for the optional `::' operator. */ |
| cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false); |
| /* Look for the nested-name-specifier. The simplest way to |
| implement: |
| |
| [temp.res] |
| |
| The keyword `typename' is not permitted in a base-specifier or |
| mem-initializer; in these contexts a qualified name that |
| depends on a template-parameter is implicitly assumed to be a |
| type name. |
| |
| is to pretend that we have seen the `typename' keyword at this |
| point. */ |
| cp_parser_nested_name_specifier_opt (parser, |
| /*typename_keyword_p=*/true, |
| /*check_dependency_p=*/true, |
| typename_type, |
| /*is_declaration=*/true); |
| /* If the base class is given by a qualified name, assume that names |
| we see are type names or templates, as appropriate. */ |
| class_scope_p = (parser->scope && TYPE_P (parser->scope)); |
| template_p = class_scope_p && cp_parser_optional_template_keyword (parser); |
| |
| /* Finally, look for the class-name. */ |
| type = cp_parser_class_name (parser, |
| class_scope_p, |
| template_p, |
| typename_type, |
| /*check_dependency_p=*/true, |
| /*class_head_p=*/false, |
| /*is_declaration=*/true); |
| |
| if (type == error_mark_node) |
| return error_mark_node; |
| |
| return finish_base_specifier (TREE_TYPE (type), access, virtual_p); |
| } |
| |
| /* Exception handling [gram.exception] */ |
| |
| /* Parse an (optional) exception-specification. |
| |
| exception-specification: |
| throw ( type-id-list [opt] ) |
| |
| Returns a TREE_LIST representing the exception-specification. The |
| TREE_VALUE of each node is a type. */ |
| |
| static tree |
| cp_parser_exception_specification_opt (cp_parser* parser) |
| { |
| cp_token *token; |
| tree type_id_list; |
| const char *saved_message; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| /* Is it a noexcept-specification? */ |
| if (cp_parser_is_keyword (token, RID_NOEXCEPT)) |
| { |
| tree expr; |
| cp_lexer_consume_token (parser->lexer); |
| |
| if (cp_lexer_peek_token (parser->lexer)->type == CPP_OPEN_PAREN) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* Types may not be defined in an exception-specification. */ |
| saved_message = parser->type_definition_forbidden_message; |
| parser->type_definition_forbidden_message |
| = G_("types may not be defined in an exception-specification"); |
| |
| expr = cp_parser_constant_expression (parser, false, NULL); |
| |
| /* Restore the saved message. */ |
| parser->type_definition_forbidden_message = saved_message; |
| |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| } |
| else |
| expr = boolean_true_node; |
| |
| return build_noexcept_spec (expr, tf_warning_or_error); |
| } |
| |
| /* If it's not `throw', then there's no exception-specification. */ |
| if (!cp_parser_is_keyword (token, RID_THROW)) |
| return NULL_TREE; |
| |
| #if 0 |
| /* Enable this once a lot of code has transitioned to noexcept? */ |
| if (cxx_dialect == cxx0x && !in_system_header) |
| warning (OPT_Wdeprecated, "dynamic exception specifications are " |
| "deprecated in C++0x; use %<noexcept%> instead"); |
| #endif |
| |
| /* Consume the `throw'. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* Look for the `('. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If it's not a `)', then there is a type-id-list. */ |
| if (token->type != CPP_CLOSE_PAREN) |
| { |
| /* Types may not be defined in an exception-specification. */ |
| saved_message = parser->type_definition_forbidden_message; |
| parser->type_definition_forbidden_message |
| = G_("types may not be defined in an exception-specification"); |
| /* Parse the type-id-list. */ |
| type_id_list = cp_parser_type_id_list (parser); |
| /* Restore the saved message. */ |
| parser->type_definition_forbidden_message = saved_message; |
| } |
| else |
| type_id_list = empty_except_spec; |
| |
| /* Look for the `)'. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| |
| return type_id_list; |
| } |
| |
| /* Parse an (optional) type-id-list. |
| |
| type-id-list: |
| type-id ... [opt] |
| type-id-list , type-id ... [opt] |
| |
| Returns a TREE_LIST. The TREE_VALUE of each node is a TYPE, |
| in the order that the types were presented. */ |
| |
| static tree |
| cp_parser_type_id_list (cp_parser* parser) |
| { |
| tree types = NULL_TREE; |
| |
| while (true) |
| { |
| cp_token *token; |
| tree type; |
| |
| /* Get the next type-id. */ |
| type = cp_parser_type_id (parser); |
| /* Parse the optional ellipsis. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)) |
| { |
| /* Consume the `...'. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* Turn the type into a pack expansion expression. */ |
| type = make_pack_expansion (type); |
| } |
| /* Add it to the list. */ |
| types = add_exception_specifier (types, type, /*complain=*/1); |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If it is not a `,', we are done. */ |
| if (token->type != CPP_COMMA) |
| break; |
| /* Consume the `,'. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| |
| return nreverse (types); |
| } |
| |
| /* Parse a try-block. |
| |
| try-block: |
| try compound-statement handler-seq */ |
| |
| static tree |
| cp_parser_try_block (cp_parser* parser) |
| { |
| tree try_block; |
| |
| cp_parser_require_keyword (parser, RID_TRY, RT_TRY); |
| try_block = begin_try_block (); |
| cp_parser_compound_statement (parser, NULL, true, false); |
| finish_try_block (try_block); |
| cp_parser_handler_seq (parser); |
| finish_handler_sequence (try_block); |
| |
| return try_block; |
| } |
| |
| /* Parse a function-try-block. |
| |
| function-try-block: |
| try ctor-initializer [opt] function-body handler-seq */ |
| |
| static bool |
| cp_parser_function_try_block (cp_parser* parser) |
| { |
| tree compound_stmt; |
| tree try_block; |
| bool ctor_initializer_p; |
| |
| /* Look for the `try' keyword. */ |
| if (!cp_parser_require_keyword (parser, RID_TRY, RT_TRY)) |
| return false; |
| /* Let the rest of the front end know where we are. */ |
| try_block = begin_function_try_block (&compound_stmt); |
| /* Parse the function-body. */ |
| ctor_initializer_p |
| = cp_parser_ctor_initializer_opt_and_function_body (parser); |
| /* We're done with the `try' part. */ |
| finish_function_try_block (try_block); |
| /* Parse the handlers. */ |
| cp_parser_handler_seq (parser); |
| /* We're done with the handlers. */ |
| finish_function_handler_sequence (try_block, compound_stmt); |
| |
| return ctor_initializer_p; |
| } |
| |
| /* Parse a handler-seq. |
| |
| handler-seq: |
| handler handler-seq [opt] */ |
| |
| static void |
| cp_parser_handler_seq (cp_parser* parser) |
| { |
| while (true) |
| { |
| cp_token *token; |
| |
| /* Parse the handler. */ |
| cp_parser_handler (parser); |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If it's not `catch' then there are no more handlers. */ |
| if (!cp_parser_is_keyword (token, RID_CATCH)) |
| break; |
| } |
| } |
| |
| /* Parse a handler. |
| |
| handler: |
| catch ( exception-declaration ) compound-statement */ |
| |
| static void |
| cp_parser_handler (cp_parser* parser) |
| { |
| tree handler; |
| tree declaration; |
| |
| cp_parser_require_keyword (parser, RID_CATCH, RT_CATCH); |
| handler = begin_handler (); |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| declaration = cp_parser_exception_declaration (parser); |
| finish_handler_parms (declaration, handler); |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| cp_parser_compound_statement (parser, NULL, false, false); |
| finish_handler (handler); |
| } |
| |
| /* Parse an exception-declaration. |
| |
| exception-declaration: |
| type-specifier-seq declarator |
| type-specifier-seq abstract-declarator |
| type-specifier-seq |
| ... |
| |
| Returns a VAR_DECL for the declaration, or NULL_TREE if the |
| ellipsis variant is used. */ |
| |
| static tree |
| cp_parser_exception_declaration (cp_parser* parser) |
| { |
| cp_decl_specifier_seq type_specifiers; |
| cp_declarator *declarator; |
| const char *saved_message; |
| |
| /* If it's an ellipsis, it's easy to handle. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)) |
| { |
| /* Consume the `...' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| return NULL_TREE; |
| } |
| |
| /* Types may not be defined in exception-declarations. */ |
| saved_message = parser->type_definition_forbidden_message; |
| parser->type_definition_forbidden_message |
| = G_("types may not be defined in exception-declarations"); |
| |
| /* Parse the type-specifier-seq. */ |
| cp_parser_type_specifier_seq (parser, /*is_declaration=*/true, |
| /*is_trailing_return=*/false, |
| &type_specifiers); |
| /* If it's a `)', then there is no declarator. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)) |
| declarator = NULL; |
| else |
| declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_EITHER, |
| /*ctor_dtor_or_conv_p=*/NULL, |
| /*parenthesized_p=*/NULL, |
| /*member_p=*/false); |
| |
| /* Restore the saved message. */ |
| parser->type_definition_forbidden_message = saved_message; |
| |
| if (!type_specifiers.any_specifiers_p) |
| return error_mark_node; |
| |
| return grokdeclarator (declarator, &type_specifiers, CATCHPARM, 1, NULL); |
| } |
| |
| /* Parse a throw-expression. |
| |
| throw-expression: |
| throw assignment-expression [opt] |
| |
| Returns a THROW_EXPR representing the throw-expression. */ |
| |
| static tree |
| cp_parser_throw_expression (cp_parser* parser) |
| { |
| tree expression; |
| cp_token* token; |
| |
| cp_parser_require_keyword (parser, RID_THROW, RT_THROW); |
| token = cp_lexer_peek_token (parser->lexer); |
| /* Figure out whether or not there is an assignment-expression |
| following the "throw" keyword. */ |
| if (token->type == CPP_COMMA |
| || token->type == CPP_SEMICOLON |
| || token->type == CPP_CLOSE_PAREN |
| || token->type == CPP_CLOSE_SQUARE |
| || token->type == CPP_CLOSE_BRACE |
| || token->type == CPP_COLON) |
| expression = NULL_TREE; |
| else |
| expression = cp_parser_assignment_expression (parser, |
| /*cast_p=*/false, NULL); |
| |
| return build_throw (expression); |
| } |
| |
| /* GNU Extensions */ |
| |
| /* Parse an (optional) asm-specification. |
| |
| asm-specification: |
| asm ( string-literal ) |
| |
| If the asm-specification is present, returns a STRING_CST |
| corresponding to the string-literal. Otherwise, returns |
| NULL_TREE. */ |
| |
| static tree |
| cp_parser_asm_specification_opt (cp_parser* parser) |
| { |
| cp_token *token; |
| tree asm_specification; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If the next token isn't the `asm' keyword, then there's no |
| asm-specification. */ |
| if (!cp_parser_is_keyword (token, RID_ASM)) |
| return NULL_TREE; |
| |
| /* Consume the `asm' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Look for the `('. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| |
| /* Look for the string-literal. */ |
| asm_specification = cp_parser_string_literal (parser, false, false); |
| |
| /* Look for the `)'. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| |
| return asm_specification; |
| } |
| |
| /* Parse an asm-operand-list. |
| |
| asm-operand-list: |
| asm-operand |
| asm-operand-list , asm-operand |
| |
| asm-operand: |
| string-literal ( expression ) |
| [ string-literal ] string-literal ( expression ) |
| |
| Returns a TREE_LIST representing the operands. The TREE_VALUE of |
| each node is the expression. The TREE_PURPOSE is itself a |
| TREE_LIST whose TREE_PURPOSE is a STRING_CST for the bracketed |
| string-literal (or NULL_TREE if not present) and whose TREE_VALUE |
| is a STRING_CST for the string literal before the parenthesis. Returns |
| ERROR_MARK_NODE if any of the operands are invalid. */ |
| |
| static tree |
| cp_parser_asm_operand_list (cp_parser* parser) |
| { |
| tree asm_operands = NULL_TREE; |
| bool invalid_operands = false; |
| |
| while (true) |
| { |
| tree string_literal; |
| tree expression; |
| tree name; |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE)) |
| { |
| /* Consume the `[' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Read the operand name. */ |
| name = cp_parser_identifier (parser); |
| if (name != error_mark_node) |
| name = build_string (IDENTIFIER_LENGTH (name), |
| IDENTIFIER_POINTER (name)); |
| /* Look for the closing `]'. */ |
| cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE); |
| } |
| else |
| name = NULL_TREE; |
| /* Look for the string-literal. */ |
| string_literal = cp_parser_string_literal (parser, false, false); |
| |
| /* Look for the `('. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| /* Parse the expression. */ |
| expression = cp_parser_expression (parser, /*cast_p=*/false, NULL); |
| /* Look for the `)'. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| |
| if (name == error_mark_node |
| || string_literal == error_mark_node |
| || expression == error_mark_node) |
| invalid_operands = true; |
| |
| /* Add this operand to the list. */ |
| asm_operands = tree_cons (build_tree_list (name, string_literal), |
| expression, |
| asm_operands); |
| /* If the next token is not a `,', there are no more |
| operands. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA)) |
| break; |
| /* Consume the `,'. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| |
| return invalid_operands ? error_mark_node : nreverse (asm_operands); |
| } |
| |
| /* Parse an asm-clobber-list. |
| |
| asm-clobber-list: |
| string-literal |
| asm-clobber-list , string-literal |
| |
| Returns a TREE_LIST, indicating the clobbers in the order that they |
| appeared. The TREE_VALUE of each node is a STRING_CST. */ |
| |
| static tree |
| cp_parser_asm_clobber_list (cp_parser* parser) |
| { |
| tree clobbers = NULL_TREE; |
| |
| while (true) |
| { |
| tree string_literal; |
| |
| /* Look for the string literal. */ |
| string_literal = cp_parser_string_literal (parser, false, false); |
| /* Add it to the list. */ |
| clobbers = tree_cons (NULL_TREE, string_literal, clobbers); |
| /* If the next token is not a `,', then the list is |
| complete. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA)) |
| break; |
| /* Consume the `,' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| |
| return clobbers; |
| } |
| |
| /* Parse an asm-label-list. |
| |
| asm-label-list: |
| identifier |
| asm-label-list , identifier |
| |
| Returns a TREE_LIST, indicating the labels in the order that they |
| appeared. The TREE_VALUE of each node is a label. */ |
| |
| static tree |
| cp_parser_asm_label_list (cp_parser* parser) |
| { |
| tree labels = NULL_TREE; |
| |
| while (true) |
| { |
| tree identifier, label, name; |
| |
| /* Look for the identifier. */ |
| identifier = cp_parser_identifier (parser); |
| if (!error_operand_p (identifier)) |
| { |
| label = lookup_label (identifier); |
| if (TREE_CODE (label) == LABEL_DECL) |
| { |
| TREE_USED (label) = 1; |
| check_goto (label); |
| name = build_string (IDENTIFIER_LENGTH (identifier), |
| IDENTIFIER_POINTER (identifier)); |
| labels = tree_cons (name, label, labels); |
| } |
| } |
| /* If the next token is not a `,', then the list is |
| complete. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA)) |
| break; |
| /* Consume the `,' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| |
| return nreverse (labels); |
| } |
| |
| /* Parse an (optional) series of attributes. |
| |
| attributes: |
| attributes attribute |
| |
| attribute: |
| __attribute__ (( attribute-list [opt] )) |
| |
| The return value is as for cp_parser_attribute_list. */ |
| |
| static tree |
| cp_parser_attributes_opt (cp_parser* parser) |
| { |
| tree attributes = NULL_TREE; |
| |
| while (true) |
| { |
| cp_token *token; |
| tree attribute_list; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If it's not `__attribute__', then we're done. */ |
| if (token->keyword != RID_ATTRIBUTE) |
| break; |
| |
| /* Consume the `__attribute__' keyword. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Look for the two `(' tokens. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| if (token->type != CPP_CLOSE_PAREN) |
| /* Parse the attribute-list. */ |
| attribute_list = cp_parser_attribute_list (parser); |
| else |
| /* If the next token is a `)', then there is no attribute |
| list. */ |
| attribute_list = NULL; |
| |
| /* Look for the two `)' tokens. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| |
| /* Add these new attributes to the list. */ |
| attributes = chainon (attributes, attribute_list); |
| } |
| |
| return attributes; |
| } |
| |
| /* Parse an attribute-list. |
| |
| attribute-list: |
| attribute |
| attribute-list , attribute |
| |
| attribute: |
| identifier |
| identifier ( identifier ) |
| identifier ( identifier , expression-list ) |
| identifier ( expression-list ) |
| |
| Returns a TREE_LIST, or NULL_TREE on error. Each node corresponds |
| to an attribute. The TREE_PURPOSE of each node is the identifier |
| indicating which attribute is in use. The TREE_VALUE represents |
| the arguments, if any. */ |
| |
| static tree |
| cp_parser_attribute_list (cp_parser* parser) |
| { |
| tree attribute_list = NULL_TREE; |
| bool save_translate_strings_p = parser->translate_strings_p; |
| |
| parser->translate_strings_p = false; |
| while (true) |
| { |
| cp_token *token; |
| tree identifier; |
| tree attribute; |
| |
| /* Look for the identifier. We also allow keywords here; for |
| example `__attribute__ ((const))' is legal. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| if (token->type == CPP_NAME |
| || token->type == CPP_KEYWORD) |
| { |
| tree arguments = NULL_TREE; |
| |
| /* Consume the token. */ |
| token = cp_lexer_consume_token (parser->lexer); |
| |
| /* Save away the identifier that indicates which attribute |
| this is. */ |
| identifier = (token->type == CPP_KEYWORD) |
| /* For keywords, use the canonical spelling, not the |
| parsed identifier. */ |
| ? ridpointers[(int) token->keyword] |
| : token->u.value; |
| |
| attribute = build_tree_list (identifier, NULL_TREE); |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If it's an `(', then parse the attribute arguments. */ |
| if (token->type == CPP_OPEN_PAREN) |
| { |
| VEC(tree,gc) *vec; |
| int attr_flag = (attribute_takes_identifier_p (identifier) |
| ? id_attr : normal_attr); |
| vec = cp_parser_parenthesized_expression_list |
| (parser, attr_flag, /*cast_p=*/false, |
| /*allow_expansion_p=*/false, |
| /*non_constant_p=*/NULL); |
| if (vec == NULL) |
| arguments = error_mark_node; |
| else |
| { |
| arguments = build_tree_list_vec (vec); |
| release_tree_vector (vec); |
| } |
| /* Save the arguments away. */ |
| TREE_VALUE (attribute) = arguments; |
| } |
| |
| if (arguments != error_mark_node) |
| { |
| /* Add this attribute to the list. */ |
| TREE_CHAIN (attribute) = attribute_list; |
| attribute_list = attribute; |
| } |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| } |
| /* Now, look for more attributes. If the next token isn't a |
| `,', we're done. */ |
| if (token->type != CPP_COMMA) |
| break; |
| |
| /* Consume the comma and keep going. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| parser->translate_strings_p = save_translate_strings_p; |
| |
| /* We built up the list in reverse order. */ |
| return nreverse (attribute_list); |
| } |
| |
| /* Parse an optional `__extension__' keyword. Returns TRUE if it is |
| present, and FALSE otherwise. *SAVED_PEDANTIC is set to the |
| current value of the PEDANTIC flag, regardless of whether or not |
| the `__extension__' keyword is present. The caller is responsible |
| for restoring the value of the PEDANTIC flag. */ |
| |
| static bool |
| cp_parser_extension_opt (cp_parser* parser, int* saved_pedantic) |
| { |
| /* Save the old value of the PEDANTIC flag. */ |
| *saved_pedantic = pedantic; |
| |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXTENSION)) |
| { |
| /* Consume the `__extension__' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* We're not being pedantic while the `__extension__' keyword is |
| in effect. */ |
| pedantic = 0; |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Parse a label declaration. |
| |
| label-declaration: |
| __label__ label-declarator-seq ; |
| |
| label-declarator-seq: |
| identifier , label-declarator-seq |
| identifier */ |
| |
| static void |
| cp_parser_label_declaration (cp_parser* parser) |
| { |
| /* Look for the `__label__' keyword. */ |
| cp_parser_require_keyword (parser, RID_LABEL, RT_LABEL); |
| |
| while (true) |
| { |
| tree identifier; |
| |
| /* Look for an identifier. */ |
| identifier = cp_parser_identifier (parser); |
| /* If we failed, stop. */ |
| if (identifier == error_mark_node) |
| break; |
| /* Declare it as a label. */ |
| finish_label_decl (identifier); |
| /* If the next token is a `;', stop. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)) |
| break; |
| /* Look for the `,' separating the label declarations. */ |
| cp_parser_require (parser, CPP_COMMA, RT_COMMA); |
| } |
| |
| /* Look for the final `;'. */ |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| } |
| |
| /* Support Functions */ |
| |
| /* Looks up NAME in the current scope, as given by PARSER->SCOPE. |
| NAME should have one of the representations used for an |
| id-expression. If NAME is the ERROR_MARK_NODE, the ERROR_MARK_NODE |
| is returned. If PARSER->SCOPE is a dependent type, then a |
| SCOPE_REF is returned. |
| |
| If NAME is a TEMPLATE_ID_EXPR, then it will be immediately |
| returned; the name was already resolved when the TEMPLATE_ID_EXPR |
| was formed. Abstractly, such entities should not be passed to this |
| function, because they do not need to be looked up, but it is |
| simpler to check for this special case here, rather than at the |
| call-sites. |
| |
| In cases not explicitly covered above, this function returns a |
| DECL, OVERLOAD, or baselink representing the result of the lookup. |
| If there was no entity with the indicated NAME, the ERROR_MARK_NODE |
| is returned. |
| |
| If TAG_TYPE is not NONE_TYPE, it indicates an explicit type keyword |
| (e.g., "struct") that was used. In that case bindings that do not |
| refer to types are ignored. |
| |
| If IS_TEMPLATE is TRUE, bindings that do not refer to templates are |
| ignored. |
| |
| If IS_NAMESPACE is TRUE, bindings that do not refer to namespaces |
| are ignored. |
| |
| If CHECK_DEPENDENCY is TRUE, names are not looked up in dependent |
| types. |
| |
| If AMBIGUOUS_DECLS is non-NULL, *AMBIGUOUS_DECLS is set to a |
| TREE_LIST of candidates if name-lookup results in an ambiguity, and |
| NULL_TREE otherwise. */ |
| |
| static tree |
| cp_parser_lookup_name (cp_parser *parser, tree name, |
| enum tag_types tag_type, |
| bool is_template, |
| bool is_namespace, |
| bool check_dependency, |
| tree *ambiguous_decls, |
| location_t name_location) |
| { |
| int flags = 0; |
| tree decl; |
| tree object_type = parser->context->object_type; |
| |
| if (!cp_parser_uncommitted_to_tentative_parse_p (parser)) |
| flags |= LOOKUP_COMPLAIN; |
| |
| /* Assume that the lookup will be unambiguous. */ |
| if (ambiguous_decls) |
| *ambiguous_decls = NULL_TREE; |
| |
| /* Now that we have looked up the name, the OBJECT_TYPE (if any) is |
| no longer valid. Note that if we are parsing tentatively, and |
| the parse fails, OBJECT_TYPE will be automatically restored. */ |
| parser->context->object_type = NULL_TREE; |
| |
| if (name == error_mark_node) |
| return error_mark_node; |
| |
| /* A template-id has already been resolved; there is no lookup to |
| do. */ |
| if (TREE_CODE (name) == TEMPLATE_ID_EXPR) |
| return name; |
| if (BASELINK_P (name)) |
| { |
| gcc_assert (TREE_CODE (BASELINK_FUNCTIONS (name)) |
| == TEMPLATE_ID_EXPR); |
| return name; |
| } |
| |
| /* A BIT_NOT_EXPR is used to represent a destructor. By this point, |
| it should already have been checked to make sure that the name |
| used matches the type being destroyed. */ |
| if (TREE_CODE (name) == BIT_NOT_EXPR) |
| { |
| tree type; |
| |
| /* Figure out to which type this destructor applies. */ |
| if (parser->scope) |
| type = parser->scope; |
| else if (object_type) |
| type = object_type; |
| else |
| type = current_class_type; |
| /* If that's not a class type, there is no destructor. */ |
| if (!type || !CLASS_TYPE_P (type)) |
| return error_mark_node; |
| if (CLASSTYPE_LAZY_DESTRUCTOR (type)) |
| lazily_declare_fn (sfk_destructor, type); |
| if (!CLASSTYPE_DESTRUCTORS (type)) |
| return error_mark_node; |
| /* If it was a class type, return the destructor. */ |
| return CLASSTYPE_DESTRUCTORS (type); |
| } |
| |
| /* By this point, the NAME should be an ordinary identifier. If |
| the id-expression was a qualified name, the qualifying scope is |
| stored in PARSER->SCOPE at this point. */ |
| gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE); |
| |
| /* Perform the lookup. */ |
| if (parser->scope) |
| { |
| bool dependent_p; |
| |
| if (parser->scope == error_mark_node) |
| return error_mark_node; |
| |
| /* If the SCOPE is dependent, the lookup must be deferred until |
| the template is instantiated -- unless we are explicitly |
| looking up names in uninstantiated templates. Even then, we |
| cannot look up the name if the scope is not a class type; it |
| might, for example, be a template type parameter. */ |
| dependent_p = (TYPE_P (parser->scope) |
| && dependent_scope_p (parser->scope)); |
| if ((check_dependency || !CLASS_TYPE_P (parser->scope)) |
| && dependent_p) |
| /* Defer lookup. */ |
| decl = error_mark_node; |
| else |
| { |
| tree pushed_scope = NULL_TREE; |
| |
| /* If PARSER->SCOPE is a dependent type, then it must be a |
| class type, and we must not be checking dependencies; |
| otherwise, we would have processed this lookup above. So |
| that PARSER->SCOPE is not considered a dependent base by |
| lookup_member, we must enter the scope here. */ |
| if (dependent_p) |
| pushed_scope = push_scope (parser->scope); |
| |
| /* If the PARSER->SCOPE is a template specialization, it |
| may be instantiated during name lookup. In that case, |
| errors may be issued. Even if we rollback the current |
| tentative parse, those errors are valid. */ |
| decl = lookup_qualified_name (parser->scope, name, |
| tag_type != none_type, |
| /*complain=*/true); |
| |
| /* 3.4.3.1: In a lookup in which the constructor is an acceptable |
| lookup result and the nested-name-specifier nominates a class C: |
| * if the name specified after the nested-name-specifier, when |
| looked up in C, is the injected-class-name of C (Clause 9), or |
| * if the name specified after the nested-name-specifier is the |
| same as the identifier or the simple-template-id's template- |
| name in the last component of the nested-name-specifier, |
| the name is instead considered to name the constructor of |
| class C. [ Note: for example, the constructor is not an |
| acceptable lookup result in an elaborated-type-specifier so |
| the constructor would not be used in place of the |
| injected-class-name. --end note ] Such a constructor name |
| shall be used only in the declarator-id of a declaration that |
| names a constructor or in a using-declaration. */ |
| if (tag_type == none_type |
| && DECL_SELF_REFERENCE_P (decl) |
| && same_type_p (DECL_CONTEXT (decl), parser->scope)) |
| decl = lookup_qualified_name (parser->scope, ctor_identifier, |
| tag_type != none_type, |
| /*complain=*/true); |
| |
| /* If we have a single function from a using decl, pull it out. */ |
| if (TREE_CODE (decl) == OVERLOAD |
| && !really_overloaded_fn (decl)) |
| decl = OVL_FUNCTION (decl); |
| |
| if (pushed_scope) |
| pop_scope (pushed_scope); |
| } |
| |
| /* If the scope is a dependent type and either we deferred lookup or |
| we did lookup but didn't find the name, rememeber the name. */ |
| if (decl == error_mark_node && TYPE_P (parser->scope) |
| && dependent_type_p (parser->scope)) |
| { |
| if (tag_type) |
| { |
| tree type; |
| |
| /* The resolution to Core Issue 180 says that `struct |
| A::B' should be considered a type-name, even if `A' |
| is dependent. */ |
| type = make_typename_type (parser->scope, name, tag_type, |
| /*complain=*/tf_error); |
| decl = TYPE_NAME (type); |
| } |
| else if (is_template |
| && (cp_parser_next_token_ends_template_argument_p (parser) |
| || cp_lexer_next_token_is (parser->lexer, |
| CPP_CLOSE_PAREN))) |
| decl = make_unbound_class_template (parser->scope, |
| name, NULL_TREE, |
| /*complain=*/tf_error); |
| else |
| decl = build_qualified_name (/*type=*/NULL_TREE, |
| parser->scope, name, |
| is_template); |
| } |
| parser->qualifying_scope = parser->scope; |
| parser->object_scope = NULL_TREE; |
| } |
| else if (object_type) |
| { |
| tree object_decl = NULL_TREE; |
| /* Look up the name in the scope of the OBJECT_TYPE, unless the |
| OBJECT_TYPE is not a class. */ |
| if (CLASS_TYPE_P (object_type)) |
| /* If the OBJECT_TYPE is a template specialization, it may |
| be instantiated during name lookup. In that case, errors |
| may be issued. Even if we rollback the current tentative |
| parse, those errors are valid. */ |
| object_decl = lookup_member (object_type, |
| name, |
| /*protect=*/0, |
| tag_type != none_type); |
| /* Look it up in the enclosing context, too. */ |
| decl = lookup_name_real (name, tag_type != none_type, |
| /*nonclass=*/0, |
| /*block_p=*/true, is_namespace, flags); |
| parser->object_scope = object_type; |
| parser->qualifying_scope = NULL_TREE; |
| if (object_decl) |
| decl = object_decl; |
| } |
| else |
| { |
| decl = lookup_name_real (name, tag_type != none_type, |
| /*nonclass=*/0, |
| /*block_p=*/true, is_namespace, flags); |
| parser->qualifying_scope = NULL_TREE; |
| parser->object_scope = NULL_TREE; |
| } |
| |
| /* If the lookup failed, let our caller know. */ |
| if (!decl || decl == error_mark_node) |
| return error_mark_node; |
| |
| /* Pull out the template from an injected-class-name (or multiple). */ |
| if (is_template) |
| decl = maybe_get_template_decl_from_type_decl (decl); |
| |
| /* If it's a TREE_LIST, the result of the lookup was ambiguous. */ |
| if (TREE_CODE (decl) == TREE_LIST) |
| { |
| if (ambiguous_decls) |
| *ambiguous_decls = decl; |
| /* The error message we have to print is too complicated for |
| cp_parser_error, so we incorporate its actions directly. */ |
| if (!cp_parser_simulate_error (parser)) |
| { |
| error_at (name_location, "reference to %qD is ambiguous", |
| name); |
| print_candidates (decl); |
| } |
| return error_mark_node; |
| } |
| |
| gcc_assert (DECL_P (decl) |
| || TREE_CODE (decl) == OVERLOAD |
| || TREE_CODE (decl) == SCOPE_REF |
| || TREE_CODE (decl) == UNBOUND_CLASS_TEMPLATE |
| || BASELINK_P (decl)); |
| |
| /* If we have resolved the name of a member declaration, check to |
| see if the declaration is accessible. When the name resolves to |
| set of overloaded functions, accessibility is checked when |
| overload resolution is done. |
| |
| During an explicit instantiation, access is not checked at all, |
| as per [temp.explicit]. */ |
| if (DECL_P (decl)) |
| check_accessibility_of_qualified_id (decl, object_type, parser->scope); |
| |
| return decl; |
| } |
| |
| /* Like cp_parser_lookup_name, but for use in the typical case where |
| CHECK_ACCESS is TRUE, IS_TYPE is FALSE, IS_TEMPLATE is FALSE, |
| IS_NAMESPACE is FALSE, and CHECK_DEPENDENCY is TRUE. */ |
| |
| static tree |
| cp_parser_lookup_name_simple (cp_parser* parser, tree name, location_t location) |
| { |
| return cp_parser_lookup_name (parser, name, |
| none_type, |
| /*is_template=*/false, |
| /*is_namespace=*/false, |
| /*check_dependency=*/true, |
| /*ambiguous_decls=*/NULL, |
| location); |
| } |
| |
| /* If DECL is a TEMPLATE_DECL that can be treated like a TYPE_DECL in |
| the current context, return the TYPE_DECL. If TAG_NAME_P is |
| true, the DECL indicates the class being defined in a class-head, |
| or declared in an elaborated-type-specifier. |
| |
| Otherwise, return DECL. */ |
| |
| static tree |
| cp_parser_maybe_treat_template_as_class (tree decl, bool tag_name_p) |
| { |
| /* If the TEMPLATE_DECL is being declared as part of a class-head, |
| the translation from TEMPLATE_DECL to TYPE_DECL occurs: |
| |
| struct A { |
| template <typename T> struct B; |
| }; |
| |
| template <typename T> struct A::B {}; |
| |
| Similarly, in an elaborated-type-specifier: |
| |
| namespace N { struct X{}; } |
| |
| struct A { |
| template <typename T> friend struct N::X; |
| }; |
| |
| However, if the DECL refers to a class type, and we are in |
| the scope of the class, then the name lookup automatically |
| finds the TYPE_DECL created by build_self_reference rather |
| than a TEMPLATE_DECL. For example, in: |
| |
| template <class T> struct S { |
| S s; |
| }; |
| |
| there is no need to handle such case. */ |
| |
| if (DECL_CLASS_TEMPLATE_P (decl) && tag_name_p) |
| return DECL_TEMPLATE_RESULT (decl); |
| |
| return decl; |
| } |
| |
| /* If too many, or too few, template-parameter lists apply to the |
| declarator, issue an error message. Returns TRUE if all went well, |
| and FALSE otherwise. */ |
| |
| static bool |
| cp_parser_check_declarator_template_parameters (cp_parser* parser, |
| cp_declarator *declarator, |
| location_t declarator_location) |
| { |
| unsigned num_templates; |
| |
| /* We haven't seen any classes that involve template parameters yet. */ |
| num_templates = 0; |
| |
| switch (declarator->kind) |
| { |
| case cdk_id: |
| if (declarator->u.id.qualifying_scope) |
| { |
| tree scope; |
| |
| scope = declarator->u.id.qualifying_scope; |
| |
| while (scope && CLASS_TYPE_P (scope)) |
| { |
| /* You're supposed to have one `template <...>' |
| for every template class, but you don't need one |
| for a full specialization. For example: |
| |
| template <class T> struct S{}; |
| template <> struct S<int> { void f(); }; |
| void S<int>::f () {} |
| |
| is correct; there shouldn't be a `template <>' for |
| the definition of `S<int>::f'. */ |
| if (!CLASSTYPE_TEMPLATE_INFO (scope)) |
| /* If SCOPE does not have template information of any |
| kind, then it is not a template, nor is it nested |
| within a template. */ |
| break; |
| if (explicit_class_specialization_p (scope)) |
| break; |
| if (PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope))) |
| ++num_templates; |
| |
| scope = TYPE_CONTEXT (scope); |
| } |
| } |
| else if (TREE_CODE (declarator->u.id.unqualified_name) |
| == TEMPLATE_ID_EXPR) |
| /* If the DECLARATOR has the form `X<y>' then it uses one |
| additional level of template parameters. */ |
| ++num_templates; |
| |
| return cp_parser_check_template_parameters |
| (parser, num_templates, declarator_location, declarator); |
| |
| |
| case cdk_function: |
| case cdk_array: |
| case cdk_pointer: |
| case cdk_reference: |
| case cdk_ptrmem: |
| return (cp_parser_check_declarator_template_parameters |
| (parser, declarator->declarator, declarator_location)); |
| |
| case cdk_error: |
| return true; |
| |
| default: |
| gcc_unreachable (); |
| } |
| return false; |
| } |
| |
| /* NUM_TEMPLATES were used in the current declaration. If that is |
| invalid, return FALSE and issue an error messages. Otherwise, |
| return TRUE. If DECLARATOR is non-NULL, then we are checking a |
| declarator and we can print more accurate diagnostics. */ |
| |
| static bool |
| cp_parser_check_template_parameters (cp_parser* parser, |
| unsigned num_templates, |
| location_t location, |
| cp_declarator *declarator) |
| { |
| /* If there are the same number of template classes and parameter |
| lists, that's OK. */ |
| if (parser->num_template_parameter_lists == num_templates) |
| return true; |
| /* If there are more, but only one more, then we are referring to a |
| member template. That's OK too. */ |
| if (parser->num_template_parameter_lists == num_templates + 1) |
| return true; |
| /* If there are more template classes than parameter lists, we have |
| something like: |
| |
| template <class T> void S<T>::R<T>::f (); */ |
| if (parser->num_template_parameter_lists < num_templates) |
| { |
| if (declarator && !current_function_decl) |
| error_at (location, "specializing member %<%T::%E%> " |
| "requires %<template<>%> syntax", |
| declarator->u.id.qualifying_scope, |
| declarator->u.id.unqualified_name); |
| else if (declarator) |
| error_at (location, "invalid declaration of %<%T::%E%>", |
| declarator->u.id.qualifying_scope, |
| declarator->u.id.unqualified_name); |
| else |
| error_at (location, "too few template-parameter-lists"); |
| return false; |
| } |
| /* Otherwise, there are too many template parameter lists. We have |
| something like: |
| |
| template <class T> template <class U> void S::f(); */ |
| error_at (location, "too many template-parameter-lists"); |
| return false; |
| } |
| |
| /* Parse an optional `::' token indicating that the following name is |
| from the global namespace. If so, PARSER->SCOPE is set to the |
| GLOBAL_NAMESPACE. Otherwise, PARSER->SCOPE is set to NULL_TREE, |
| unless CURRENT_SCOPE_VALID_P is TRUE, in which case it is left alone. |
| Returns the new value of PARSER->SCOPE, if the `::' token is |
| present, and NULL_TREE otherwise. */ |
| |
| static tree |
| cp_parser_global_scope_opt (cp_parser* parser, bool current_scope_valid_p) |
| { |
| cp_token *token; |
| |
| /* Peek at the next token. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| /* If we're looking at a `::' token then we're starting from the |
| global namespace, not our current location. */ |
| if (token->type == CPP_SCOPE) |
| { |
| /* Consume the `::' token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Set the SCOPE so that we know where to start the lookup. */ |
| parser->scope = global_namespace; |
| parser->qualifying_scope = global_namespace; |
| parser->object_scope = NULL_TREE; |
| |
| return parser->scope; |
| } |
| else if (!current_scope_valid_p) |
| { |
| parser->scope = NULL_TREE; |
| parser->qualifying_scope = NULL_TREE; |
| parser->object_scope = NULL_TREE; |
| } |
| |
| return NULL_TREE; |
| } |
| |
| /* Returns TRUE if the upcoming token sequence is the start of a |
| constructor declarator. If FRIEND_P is true, the declarator is |
| preceded by the `friend' specifier. */ |
| |
| static bool |
| cp_parser_constructor_declarator_p (cp_parser *parser, bool friend_p) |
| { |
| bool constructor_p; |
| tree nested_name_specifier; |
| cp_token *next_token; |
| |
| /* The common case is that this is not a constructor declarator, so |
| try to avoid doing lots of work if at all possible. It's not |
| valid declare a constructor at function scope. */ |
| if (parser->in_function_body) |
| return false; |
| /* And only certain tokens can begin a constructor declarator. */ |
| next_token = cp_lexer_peek_token (parser->lexer); |
| if (next_token->type != CPP_NAME |
| && next_token->type != CPP_SCOPE |
| && next_token->type != CPP_NESTED_NAME_SPECIFIER |
| && next_token->type != CPP_TEMPLATE_ID) |
| return false; |
| |
| /* Parse tentatively; we are going to roll back all of the tokens |
| consumed here. */ |
| cp_parser_parse_tentatively (parser); |
| /* Assume that we are looking at a constructor declarator. */ |
| constructor_p = true; |
| |
| /* Look for the optional `::' operator. */ |
| cp_parser_global_scope_opt (parser, |
| /*current_scope_valid_p=*/false); |
| /* Look for the nested-name-specifier. */ |
| nested_name_specifier |
| = (cp_parser_nested_name_specifier_opt (parser, |
| /*typename_keyword_p=*/false, |
| /*check_dependency_p=*/false, |
| /*type_p=*/false, |
| /*is_declaration=*/false)); |
| /* Outside of a class-specifier, there must be a |
| nested-name-specifier. */ |
| if (!nested_name_specifier && |
| (!at_class_scope_p () || !TYPE_BEING_DEFINED (current_class_type) |
| || friend_p)) |
| constructor_p = false; |
| else if (nested_name_specifier == error_mark_node) |
| constructor_p = false; |
| |
| /* If we have a class scope, this is easy; DR 147 says that S::S always |
| names the constructor, and no other qualified name could. */ |
| if (constructor_p && nested_name_specifier |
| && CLASS_TYPE_P (nested_name_specifier)) |
| { |
| tree id = cp_parser_unqualified_id (parser, |
| /*template_keyword_p=*/false, |
| /*check_dependency_p=*/false, |
| /*declarator_p=*/true, |
| /*optional_p=*/false); |
| if (is_overloaded_fn (id)) |
| id = DECL_NAME (get_first_fn (id)); |
| if (!constructor_name_p (id, nested_name_specifier)) |
| constructor_p = false; |
| } |
| /* If we still think that this might be a constructor-declarator, |
| look for a class-name. */ |
| else if (constructor_p) |
| { |
| /* If we have: |
| |
| template <typename T> struct S { |
| S(); |
| }; |
| |
| we must recognize that the nested `S' names a class. */ |
| tree type_decl; |
| type_decl = cp_parser_class_name (parser, |
| /*typename_keyword_p=*/false, |
| /*template_keyword_p=*/false, |
| none_type, |
| /*check_dependency_p=*/false, |
| /*class_head_p=*/false, |
| /*is_declaration=*/false); |
| /* If there was no class-name, then this is not a constructor. */ |
| constructor_p = !cp_parser_error_occurred (parser); |
| |
| /* If we're still considering a constructor, we have to see a `(', |
| to begin the parameter-declaration-clause, followed by either a |
| `)', an `...', or a decl-specifier. We need to check for a |
| type-specifier to avoid being fooled into thinking that: |
| |
| S (f) (int); |
| |
| is a constructor. (It is actually a function named `f' that |
| takes one parameter (of type `int') and returns a value of type |
| `S'. */ |
| if (constructor_p |
| && !cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN)) |
| constructor_p = false; |
| |
| if (constructor_p |
| && cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN) |
| && cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS) |
| /* A parameter declaration begins with a decl-specifier, |
| which is either the "attribute" keyword, a storage class |
| specifier, or (usually) a type-specifier. */ |
| && !cp_lexer_next_token_is_decl_specifier_keyword (parser->lexer)) |
| { |
| tree type; |
| tree pushed_scope = NULL_TREE; |
| unsigned saved_num_template_parameter_lists; |
| |
| /* Names appearing in the type-specifier should be looked up |
| in the scope of the class. */ |
| if (current_class_type) |
| type = NULL_TREE; |
| else |
| { |
| type = TREE_TYPE (type_decl); |
| if (TREE_CODE (type) == TYPENAME_TYPE) |
| { |
| type = resolve_typename_type (type, |
| /*only_current_p=*/false); |
| if (TREE_CODE (type) == TYPENAME_TYPE) |
| { |
| cp_parser_abort_tentative_parse (parser); |
| return false; |
| } |
| } |
| pushed_scope = push_scope (type); |
| } |
| |
| /* Inside the constructor parameter list, surrounding |
| template-parameter-lists do not apply. */ |
| saved_num_template_parameter_lists |
| = parser->num_template_parameter_lists; |
| parser->num_template_parameter_lists = 0; |
| |
| /* Look for the type-specifier. */ |
| cp_parser_type_specifier (parser, |
| CP_PARSER_FLAGS_NONE, |
| /*decl_specs=*/NULL, |
| /*is_declarator=*/true, |
| /*declares_class_or_enum=*/NULL, |
| /*is_cv_qualifier=*/NULL); |
| |
| parser->num_template_parameter_lists |
| = saved_num_template_parameter_lists; |
| |
| /* Leave the scope of the class. */ |
| if (pushed_scope) |
| pop_scope (pushed_scope); |
| |
| constructor_p = !cp_parser_error_occurred (parser); |
| } |
| } |
| |
| /* We did not really want to consume any tokens. */ |
| cp_parser_abort_tentative_parse (parser); |
| |
| return constructor_p; |
| } |
| |
| /* Parse the definition of the function given by the DECL_SPECIFIERS, |
| ATTRIBUTES, and DECLARATOR. The access checks have been deferred; |
| they must be performed once we are in the scope of the function. |
| |
| Returns the function defined. */ |
| |
| static tree |
| cp_parser_function_definition_from_specifiers_and_declarator |
| (cp_parser* parser, |
| cp_decl_specifier_seq *decl_specifiers, |
| tree attributes, |
| const cp_declarator *declarator) |
| { |
| tree fn; |
| bool success_p; |
| |
| /* Begin the function-definition. */ |
| success_p = start_function (decl_specifiers, declarator, attributes); |
| |
| /* The things we're about to see are not directly qualified by any |
| template headers we've seen thus far. */ |
| reset_specialization (); |
| |
| /* If there were names looked up in the decl-specifier-seq that we |
| did not check, check them now. We must wait until we are in the |
| scope of the function to perform the checks, since the function |
| might be a friend. */ |
| perform_deferred_access_checks (); |
| |
| if (!success_p) |
| { |
| /* Skip the entire function. */ |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| fn = error_mark_node; |
| } |
| else if (DECL_INITIAL (current_function_decl) != error_mark_node) |
| { |
| /* Seen already, skip it. An error message has already been output. */ |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| fn = current_function_decl; |
| current_function_decl = NULL_TREE; |
| /* If this is a function from a class, pop the nested class. */ |
| if (current_class_name) |
| pop_nested_class (); |
| } |
| else |
| { |
| timevar_id_t tv; |
| if (DECL_DECLARED_INLINE_P (current_function_decl)) |
| tv = TV_PARSE_INLINE; |
| else |
| tv = TV_PARSE_FUNC; |
| timevar_push (tv); |
| fn = cp_parser_function_definition_after_declarator (parser, |
| /*inline_p=*/false); |
| timevar_pop (tv); |
| } |
| |
| return fn; |
| } |
| |
| /* Parse the part of a function-definition that follows the |
| declarator. INLINE_P is TRUE iff this function is an inline |
| function defined within a class-specifier. |
| |
| Returns the function defined. */ |
| |
| static tree |
| cp_parser_function_definition_after_declarator (cp_parser* parser, |
| bool inline_p) |
| { |
| tree fn; |
| bool ctor_initializer_p = false; |
| bool saved_in_unbraced_linkage_specification_p; |
| bool saved_in_function_body; |
| unsigned saved_num_template_parameter_lists; |
| cp_token *token; |
| |
| saved_in_function_body = parser->in_function_body; |
| parser->in_function_body = true; |
| /* If the next token is `return', then the code may be trying to |
| make use of the "named return value" extension that G++ used to |
| support. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_RETURN)) |
| { |
| /* Consume the `return' keyword. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Look for the identifier that indicates what value is to be |
| returned. */ |
| cp_parser_identifier (parser); |
| /* Issue an error message. */ |
| error_at (token->location, |
| "named return values are no longer supported"); |
| /* Skip tokens until we reach the start of the function body. */ |
| while (true) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| if (token->type == CPP_OPEN_BRACE |
| || token->type == CPP_EOF |
| || token->type == CPP_PRAGMA_EOL) |
| break; |
| cp_lexer_consume_token (parser->lexer); |
| } |
| } |
| /* The `extern' in `extern "C" void f () { ... }' does not apply to |
| anything declared inside `f'. */ |
| saved_in_unbraced_linkage_specification_p |
| = parser->in_unbraced_linkage_specification_p; |
| parser->in_unbraced_linkage_specification_p = false; |
| /* Inside the function, surrounding template-parameter-lists do not |
| apply. */ |
| saved_num_template_parameter_lists |
| = parser->num_template_parameter_lists; |
| parser->num_template_parameter_lists = 0; |
| |
| start_lambda_scope (current_function_decl); |
| |
| /* If the next token is `try', then we are looking at a |
| function-try-block. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY)) |
| ctor_initializer_p = cp_parser_function_try_block (parser); |
| /* A function-try-block includes the function-body, so we only do |
| this next part if we're not processing a function-try-block. */ |
| else |
| ctor_initializer_p |
| = cp_parser_ctor_initializer_opt_and_function_body (parser); |
| |
| finish_lambda_scope (); |
| |
| /* Finish the function. */ |
| fn = finish_function ((ctor_initializer_p ? 1 : 0) | |
| (inline_p ? 2 : 0)); |
| /* Generate code for it, if necessary. */ |
| expand_or_defer_fn (fn); |
| /* Restore the saved values. */ |
| parser->in_unbraced_linkage_specification_p |
| = saved_in_unbraced_linkage_specification_p; |
| parser->num_template_parameter_lists |
| = saved_num_template_parameter_lists; |
| parser->in_function_body = saved_in_function_body; |
| |
| return fn; |
| } |
| |
| /* Parse a template-declaration, assuming that the `export' (and |
| `extern') keywords, if present, has already been scanned. MEMBER_P |
| is as for cp_parser_template_declaration. */ |
| |
| static void |
| cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p) |
| { |
| tree decl = NULL_TREE; |
| VEC (deferred_access_check,gc) *checks; |
| tree parameter_list; |
| bool friend_p = false; |
| bool need_lang_pop; |
| cp_token *token; |
| |
| /* Look for the `template' keyword. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| if (!cp_parser_require_keyword (parser, RID_TEMPLATE, RT_TEMPLATE)) |
| return; |
| |
| /* And the `<'. */ |
| if (!cp_parser_require (parser, CPP_LESS, RT_LESS)) |
| return; |
| if (at_class_scope_p () && current_function_decl) |
| { |
| /* 14.5.2.2 [temp.mem] |
| |
| A local class shall not have member templates. */ |
| error_at (token->location, |
| "invalid declaration of member template in local class"); |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| return; |
| } |
| /* [temp] |
| |
| A template ... shall not have C linkage. */ |
| if (current_lang_name == lang_name_c) |
| { |
| error_at (token->location, "template with C linkage"); |
| /* Give it C++ linkage to avoid confusing other parts of the |
| front end. */ |
| push_lang_context (lang_name_cplusplus); |
| need_lang_pop = true; |
| } |
| else |
| need_lang_pop = false; |
| |
| /* We cannot perform access checks on the template parameter |
| declarations until we know what is being declared, just as we |
| cannot check the decl-specifier list. */ |
| push_deferring_access_checks (dk_deferred); |
| |
| /* If the next token is `>', then we have an invalid |
| specialization. Rather than complain about an invalid template |
| parameter, issue an error message here. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER)) |
| { |
| cp_parser_error (parser, "invalid explicit specialization"); |
| begin_specialization (); |
| parameter_list = NULL_TREE; |
| } |
| else |
| { |
| /* Parse the template parameters. */ |
| parameter_list = cp_parser_template_parameter_list (parser); |
| fixup_template_parms (); |
| } |
| |
| /* Get the deferred access checks from the parameter list. These |
| will be checked once we know what is being declared, as for a |
| member template the checks must be performed in the scope of the |
| class containing the member. */ |
| checks = get_deferred_access_checks (); |
| |
| /* Look for the `>'. */ |
| cp_parser_skip_to_end_of_template_parameter_list (parser); |
| /* We just processed one more parameter list. */ |
| ++parser->num_template_parameter_lists; |
| /* If the next token is `template', there are more template |
| parameters. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, |
| RID_TEMPLATE)) |
| cp_parser_template_declaration_after_export (parser, member_p); |
| else |
| { |
| /* There are no access checks when parsing a template, as we do not |
| know if a specialization will be a friend. */ |
| push_deferring_access_checks (dk_no_check); |
| token = cp_lexer_peek_token (parser->lexer); |
| decl = cp_parser_single_declaration (parser, |
| checks, |
| member_p, |
| /*explicit_specialization_p=*/false, |
| &friend_p); |
| pop_deferring_access_checks (); |
| |
| /* If this is a member template declaration, let the front |
| end know. */ |
| if (member_p && !friend_p && decl) |
| { |
| if (TREE_CODE (decl) == TYPE_DECL) |
| cp_parser_check_access_in_redeclaration (decl, token->location); |
| |
| decl = finish_member_template_decl (decl); |
| } |
| else if (friend_p && decl && TREE_CODE (decl) == TYPE_DECL) |
| make_friend_class (current_class_type, TREE_TYPE (decl), |
| /*complain=*/true); |
| } |
| /* We are done with the current parameter list. */ |
| --parser->num_template_parameter_lists; |
| |
| pop_deferring_access_checks (); |
| |
| /* Finish up. */ |
| finish_template_decl (parameter_list); |
| |
| /* Register member declarations. */ |
| if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl)) |
| finish_member_declaration (decl); |
| /* For the erroneous case of a template with C linkage, we pushed an |
| implicit C++ linkage scope; exit that scope now. */ |
| if (need_lang_pop) |
| pop_lang_context (); |
| /* If DECL is a function template, we must return to parse it later. |
| (Even though there is no definition, there might be default |
| arguments that need handling.) */ |
| if (member_p && decl |
| && (TREE_CODE (decl) == FUNCTION_DECL |
| || DECL_FUNCTION_TEMPLATE_P (decl))) |
| VEC_safe_push (tree, gc, unparsed_funs_with_definitions, decl); |
| } |
| |
| /* Perform the deferred access checks from a template-parameter-list. |
| CHECKS is a TREE_LIST of access checks, as returned by |
| get_deferred_access_checks. */ |
| |
| static void |
| cp_parser_perform_template_parameter_access_checks (VEC (deferred_access_check,gc)* checks) |
| { |
| ++processing_template_parmlist; |
| perform_access_checks (checks); |
| --processing_template_parmlist; |
| } |
| |
| /* Parse a `decl-specifier-seq [opt] init-declarator [opt] ;' or |
| `function-definition' sequence. MEMBER_P is true, this declaration |
| appears in a class scope. |
| |
| Returns the DECL for the declared entity. If FRIEND_P is non-NULL, |
| *FRIEND_P is set to TRUE iff the declaration is a friend. */ |
| |
| static tree |
| cp_parser_single_declaration (cp_parser* parser, |
| VEC (deferred_access_check,gc)* checks, |
| bool member_p, |
| bool explicit_specialization_p, |
| bool* friend_p) |
| { |
| int declares_class_or_enum; |
| tree decl = NULL_TREE; |
| cp_decl_specifier_seq decl_specifiers; |
| bool function_definition_p = false; |
| cp_token *decl_spec_token_start; |
| |
| /* This function is only used when processing a template |
| declaration. */ |
| gcc_assert (innermost_scope_kind () == sk_template_parms |
| || innermost_scope_kind () == sk_template_spec); |
| |
| /* Defer access checks until we know what is being declared. */ |
| push_deferring_access_checks (dk_deferred); |
| |
| /* Try the `decl-specifier-seq [opt] init-declarator [opt]' |
| alternative. */ |
| decl_spec_token_start = cp_lexer_peek_token (parser->lexer); |
| cp_parser_decl_specifier_seq (parser, |
| CP_PARSER_FLAGS_OPTIONAL, |
| &decl_specifiers, |
| &declares_class_or_enum); |
| if (friend_p) |
| *friend_p = cp_parser_friend_p (&decl_specifiers); |
| |
| /* There are no template typedefs. */ |
| if (decl_specifiers.specs[(int) ds_typedef]) |
| { |
| error_at (decl_spec_token_start->location, |
| "template declaration of %<typedef%>"); |
| decl = error_mark_node; |
| } |
| |
| /* Gather up the access checks that occurred the |
| decl-specifier-seq. */ |
| stop_deferring_access_checks (); |
| |
| /* Check for the declaration of a template class. */ |
| if (declares_class_or_enum) |
| { |
| if (cp_parser_declares_only_class_p (parser)) |
| { |
| decl = shadow_tag (&decl_specifiers); |
| |
| /* In this case: |
| |
| struct C { |
| friend template <typename T> struct A<T>::B; |
| }; |
| |
| A<T>::B will be represented by a TYPENAME_TYPE, and |
| therefore not recognized by shadow_tag. */ |
| if (friend_p && *friend_p |
| && !decl |
| && decl_specifiers.type |
| && TYPE_P (decl_specifiers.type)) |
| decl = decl_specifiers.type; |
| |
| if (decl && decl != error_mark_node) |
| decl = TYPE_NAME (decl); |
| else |
| decl = error_mark_node; |
| |
| /* Perform access checks for template parameters. */ |
| cp_parser_perform_template_parameter_access_checks (checks); |
| } |
| } |
| |
| /* Complain about missing 'typename' or other invalid type names. */ |
| if (!decl_specifiers.any_type_specifiers_p |
| && cp_parser_parse_and_diagnose_invalid_type_name (parser)) |
| { |
| /* cp_parser_parse_and_diagnose_invalid_type_name calls |
| cp_parser_skip_to_end_of_block_or_statement, so don't try to parse |
| the rest of this declaration. */ |
| decl = error_mark_node; |
| goto out; |
| } |
| |
| /* If it's not a template class, try for a template function. If |
| the next token is a `;', then this declaration does not declare |
| anything. But, if there were errors in the decl-specifiers, then |
| the error might well have come from an attempted class-specifier. |
| In that case, there's no need to warn about a missing declarator. */ |
| if (!decl |
| && (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON) |
| || decl_specifiers.type != error_mark_node)) |
| { |
| decl = cp_parser_init_declarator (parser, |
| &decl_specifiers, |
| checks, |
| /*function_definition_allowed_p=*/true, |
| member_p, |
| declares_class_or_enum, |
| &function_definition_p, |
| NULL); |
| |
| /* 7.1.1-1 [dcl.stc] |
| |
| A storage-class-specifier shall not be specified in an explicit |
| specialization... */ |
| if (decl |
| && explicit_specialization_p |
| && decl_specifiers.storage_class != sc_none) |
| { |
| error_at (decl_spec_token_start->location, |
| "explicit template specialization cannot have a storage class"); |
| decl = error_mark_node; |
| } |
| } |
| |
| /* Look for a trailing `;' after the declaration. */ |
| if (!function_definition_p |
| && (decl == error_mark_node |
| || !cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON))) |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| |
| out: |
| pop_deferring_access_checks (); |
| |
| /* Clear any current qualification; whatever comes next is the start |
| of something new. */ |
| parser->scope = NULL_TREE; |
| parser->qualifying_scope = NULL_TREE; |
| parser->object_scope = NULL_TREE; |
| |
| return decl; |
| } |
| |
| /* Parse a cast-expression that is not the operand of a unary "&". */ |
| |
| static tree |
| cp_parser_simple_cast_expression (cp_parser *parser) |
| { |
| return cp_parser_cast_expression (parser, /*address_p=*/false, |
| /*cast_p=*/false, NULL); |
| } |
| |
| /* Parse a functional cast to TYPE. Returns an expression |
| representing the cast. */ |
| |
| static tree |
| cp_parser_functional_cast (cp_parser* parser, tree type) |
| { |
| VEC(tree,gc) *vec; |
| tree expression_list; |
| tree cast; |
| bool nonconst_p; |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| { |
| maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS); |
| expression_list = cp_parser_braced_list (parser, &nonconst_p); |
| CONSTRUCTOR_IS_DIRECT_INIT (expression_list) = 1; |
| if (TREE_CODE (type) == TYPE_DECL) |
| type = TREE_TYPE (type); |
| return finish_compound_literal (type, expression_list, |
| tf_warning_or_error); |
| } |
| |
| |
| vec = cp_parser_parenthesized_expression_list (parser, non_attr, |
| /*cast_p=*/true, |
| /*allow_expansion_p=*/true, |
| /*non_constant_p=*/NULL); |
| if (vec == NULL) |
| expression_list = error_mark_node; |
| else |
| { |
| expression_list = build_tree_list_vec (vec); |
| release_tree_vector (vec); |
| } |
| |
| cast = build_functional_cast (type, expression_list, |
| tf_warning_or_error); |
| /* [expr.const]/1: In an integral constant expression "only type |
| conversions to integral or enumeration type can be used". */ |
| if (TREE_CODE (type) == TYPE_DECL) |
| type = TREE_TYPE (type); |
| if (cast != error_mark_node |
| && !cast_valid_in_integral_constant_expression_p (type) |
| && cp_parser_non_integral_constant_expression (parser, |
| NIC_CONSTRUCTOR)) |
| return error_mark_node; |
| return cast; |
| } |
| |
| /* Save the tokens that make up the body of a member function defined |
| in a class-specifier. The DECL_SPECIFIERS and DECLARATOR have |
| already been parsed. The ATTRIBUTES are any GNU "__attribute__" |
| specifiers applied to the declaration. Returns the FUNCTION_DECL |
| for the member function. */ |
| |
| static tree |
| cp_parser_save_member_function_body (cp_parser* parser, |
| cp_decl_specifier_seq *decl_specifiers, |
| cp_declarator *declarator, |
| tree attributes) |
| { |
| cp_token *first; |
| cp_token *last; |
| tree fn; |
| |
| /* Create the FUNCTION_DECL. */ |
| fn = grokmethod (decl_specifiers, declarator, attributes); |
| /* If something went badly wrong, bail out now. */ |
| if (fn == error_mark_node) |
| { |
| /* If there's a function-body, skip it. */ |
| if (cp_parser_token_starts_function_definition_p |
| (cp_lexer_peek_token (parser->lexer))) |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| return error_mark_node; |
| } |
| |
| /* Remember it, if there default args to post process. */ |
| cp_parser_save_default_args (parser, fn); |
| |
| /* Save away the tokens that make up the body of the |
| function. */ |
| first = parser->lexer->next_token; |
| /* We can have braced-init-list mem-initializers before the fn body. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_COLON)) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| while (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE) |
| && cp_lexer_next_token_is_not_keyword (parser->lexer, RID_TRY)) |
| { |
| /* cache_group will stop after an un-nested { } pair, too. */ |
| if (cp_parser_cache_group (parser, CPP_CLOSE_PAREN, /*depth=*/0)) |
| break; |
| |
| /* variadic mem-inits have ... after the ')'. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)) |
| cp_lexer_consume_token (parser->lexer); |
| } |
| } |
| cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0); |
| /* Handle function try blocks. */ |
| while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH)) |
| cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0); |
| last = parser->lexer->next_token; |
| |
| /* Save away the inline definition; we will process it when the |
| class is complete. */ |
| DECL_PENDING_INLINE_INFO (fn) = cp_token_cache_new (first, last); |
| DECL_PENDING_INLINE_P (fn) = 1; |
| |
| /* We need to know that this was defined in the class, so that |
| friend templates are handled correctly. */ |
| DECL_INITIALIZED_IN_CLASS_P (fn) = 1; |
| |
| /* Add FN to the queue of functions to be parsed later. */ |
| VEC_safe_push (tree, gc, unparsed_funs_with_definitions, fn); |
| |
| return fn; |
| } |
| |
| /* Parse a template-argument-list, as well as the trailing ">" (but |
| not the opening ">"). See cp_parser_template_argument_list for the |
| return value. */ |
| |
| static tree |
| cp_parser_enclosed_template_argument_list (cp_parser* parser) |
| { |
| tree arguments; |
| tree saved_scope; |
| tree saved_qualifying_scope; |
| tree saved_object_scope; |
| bool saved_greater_than_is_operator_p; |
| int saved_unevaluated_operand; |
| int saved_inhibit_evaluation_warnings; |
| |
| /* [temp.names] |
| |
| When parsing a template-id, the first non-nested `>' is taken as |
| the end of the template-argument-list rather than a greater-than |
| operator. */ |
| saved_greater_than_is_operator_p |
| = parser->greater_than_is_operator_p; |
| parser->greater_than_is_operator_p = false; |
| /* Parsing the argument list may modify SCOPE, so we save it |
| here. */ |
| saved_scope = parser->scope; |
| saved_qualifying_scope = parser->qualifying_scope; |
| saved_object_scope = parser->object_scope; |
| /* We need to evaluate the template arguments, even though this |
| template-id may be nested within a "sizeof". */ |
| saved_unevaluated_operand = cp_unevaluated_operand; |
| cp_unevaluated_operand = 0; |
| saved_inhibit_evaluation_warnings = c_inhibit_evaluation_warnings; |
| c_inhibit_evaluation_warnings = 0; |
| /* Parse the template-argument-list itself. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER) |
| || cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT)) |
| arguments = NULL_TREE; |
| else |
| arguments = cp_parser_template_argument_list (parser); |
| /* Look for the `>' that ends the template-argument-list. If we find |
| a '>>' instead, it's probably just a typo. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT)) |
| { |
| if (cxx_dialect != cxx98) |
| { |
| /* In C++0x, a `>>' in a template argument list or cast |
| expression is considered to be two separate `>' |
| tokens. So, change the current token to a `>', but don't |
| consume it: it will be consumed later when the outer |
| template argument list (or cast expression) is parsed. |
| Note that this replacement of `>' for `>>' is necessary |
| even if we are parsing tentatively: in the tentative |
| case, after calling |
| cp_parser_enclosed_template_argument_list we will always |
| throw away all of the template arguments and the first |
| closing `>', either because the template argument list |
| was erroneous or because we are replacing those tokens |
| with a CPP_TEMPLATE_ID token. The second `>' (which will |
| not have been thrown away) is needed either to close an |
| outer template argument list or to complete a new-style |
| cast. */ |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| token->type = CPP_GREATER; |
| } |
| else if (!saved_greater_than_is_operator_p) |
| { |
| /* If we're in a nested template argument list, the '>>' has |
| to be a typo for '> >'. We emit the error message, but we |
| continue parsing and we push a '>' as next token, so that |
| the argument list will be parsed correctly. Note that the |
| global source location is still on the token before the |
| '>>', so we need to say explicitly where we want it. */ |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| error_at (token->location, "%<>>%> should be %<> >%> " |
| "within a nested template argument list"); |
| |
| token->type = CPP_GREATER; |
| } |
| else |
| { |
| /* If this is not a nested template argument list, the '>>' |
| is a typo for '>'. Emit an error message and continue. |
| Same deal about the token location, but here we can get it |
| right by consuming the '>>' before issuing the diagnostic. */ |
| cp_token *token = cp_lexer_consume_token (parser->lexer); |
| error_at (token->location, |
| "spurious %<>>%>, use %<>%> to terminate " |
| "a template argument list"); |
| } |
| } |
| else |
| cp_parser_skip_to_end_of_template_parameter_list (parser); |
| /* The `>' token might be a greater-than operator again now. */ |
| parser->greater_than_is_operator_p |
| = saved_greater_than_is_operator_p; |
| /* Restore the SAVED_SCOPE. */ |
| parser->scope = saved_scope; |
| parser->qualifying_scope = saved_qualifying_scope; |
| parser->object_scope = saved_object_scope; |
| cp_unevaluated_operand = saved_unevaluated_operand; |
| c_inhibit_evaluation_warnings = saved_inhibit_evaluation_warnings; |
| |
| return arguments; |
| } |
| |
| /* MEMBER_FUNCTION is a member function, or a friend. If default |
| arguments, or the body of the function have not yet been parsed, |
| parse them now. */ |
| |
| static void |
| cp_parser_late_parsing_for_member (cp_parser* parser, tree member_function) |
| { |
| timevar_push (TV_PARSE_INMETH); |
| /* If this member is a template, get the underlying |
| FUNCTION_DECL. */ |
| if (DECL_FUNCTION_TEMPLATE_P (member_function)) |
| member_function = DECL_TEMPLATE_RESULT (member_function); |
| |
| /* There should not be any class definitions in progress at this |
| point; the bodies of members are only parsed outside of all class |
| definitions. */ |
| gcc_assert (parser->num_classes_being_defined == 0); |
| /* While we're parsing the member functions we might encounter more |
| classes. We want to handle them right away, but we don't want |
| them getting mixed up with functions that are currently in the |
| queue. */ |
| push_unparsed_function_queues (parser); |
| |
| /* Make sure that any template parameters are in scope. */ |
| maybe_begin_member_template_processing (member_function); |
| |
| /* If the body of the function has not yet been parsed, parse it |
| now. */ |
| if (DECL_PENDING_INLINE_P (member_function)) |
| { |
| tree function_scope; |
| cp_token_cache *tokens; |
| |
| /* The function is no longer pending; we are processing it. */ |
| tokens = DECL_PENDING_INLINE_INFO (member_function); |
| DECL_PENDING_INLINE_INFO (member_function) = NULL; |
| DECL_PENDING_INLINE_P (member_function) = 0; |
| |
| /* If this is a local class, enter the scope of the containing |
| function. */ |
| function_scope = current_function_decl; |
| if (function_scope) |
| push_function_context (); |
| |
| /* Push the body of the function onto the lexer stack. */ |
| cp_parser_push_lexer_for_tokens (parser, tokens); |
| |
| /* Let the front end know that we going to be defining this |
| function. */ |
| start_preparsed_function (member_function, NULL_TREE, |
| SF_PRE_PARSED | SF_INCLASS_INLINE); |
| |
| /* Don't do access checking if it is a templated function. */ |
| if (processing_template_decl) |
| push_deferring_access_checks (dk_no_check); |
| |
| /* Now, parse the body of the function. */ |
| cp_parser_function_definition_after_declarator (parser, |
| /*inline_p=*/true); |
| |
| if (processing_template_decl) |
| pop_deferring_access_checks (); |
| |
| /* Leave the scope of the containing function. */ |
| if (function_scope) |
| pop_function_context (); |
| cp_parser_pop_lexer (parser); |
| } |
| |
| /* Remove any template parameters from the symbol table. */ |
| maybe_end_member_template_processing (); |
| |
| /* Restore the queue. */ |
| pop_unparsed_function_queues (parser); |
| timevar_pop (TV_PARSE_INMETH); |
| } |
| |
| /* If DECL contains any default args, remember it on the unparsed |
| functions queue. */ |
| |
| static void |
| cp_parser_save_default_args (cp_parser* parser, tree decl) |
| { |
| tree probe; |
| |
| for (probe = TYPE_ARG_TYPES (TREE_TYPE (decl)); |
| probe; |
| probe = TREE_CHAIN (probe)) |
| if (TREE_PURPOSE (probe)) |
| { |
| cp_default_arg_entry *entry |
| = VEC_safe_push (cp_default_arg_entry, gc, |
| unparsed_funs_with_default_args, NULL); |
| entry->class_type = current_class_type; |
| entry->decl = decl; |
| break; |
| } |
| } |
| |
| /* FN is a FUNCTION_DECL which may contains a parameter with an |
| unparsed DEFAULT_ARG. Parse the default args now. This function |
| assumes that the current scope is the scope in which the default |
| argument should be processed. */ |
| |
| static void |
| cp_parser_late_parsing_default_args (cp_parser *parser, tree fn) |
| { |
| bool saved_local_variables_forbidden_p; |
| tree parm, parmdecl; |
| |
| /* While we're parsing the default args, we might (due to the |
| statement expression extension) encounter more classes. We want |
| to handle them right away, but we don't want them getting mixed |
| up with default args that are currently in the queue. */ |
| push_unparsed_function_queues (parser); |
| |
| /* Local variable names (and the `this' keyword) may not appear |
| in a default argument. */ |
| saved_local_variables_forbidden_p = parser->local_variables_forbidden_p; |
| parser->local_variables_forbidden_p = true; |
| |
| push_defarg_context (fn); |
| |
| for (parm = TYPE_ARG_TYPES (TREE_TYPE (fn)), |
| parmdecl = DECL_ARGUMENTS (fn); |
| parm && parm != void_list_node; |
| parm = TREE_CHAIN (parm), |
| parmdecl = DECL_CHAIN (parmdecl)) |
| { |
| cp_token_cache *tokens; |
| tree default_arg = TREE_PURPOSE (parm); |
| tree parsed_arg; |
| VEC(tree,gc) *insts; |
| tree copy; |
| unsigned ix; |
| |
| if (!default_arg) |
| continue; |
| |
| if (TREE_CODE (default_arg) != DEFAULT_ARG) |
| /* This can happen for a friend declaration for a function |
| already declared with default arguments. */ |
| continue; |
| |
| /* Push the saved tokens for the default argument onto the parser's |
| lexer stack. */ |
| tokens = DEFARG_TOKENS (default_arg); |
| cp_parser_push_lexer_for_tokens (parser, tokens); |
| |
| start_lambda_scope (parmdecl); |
| |
| /* Parse the assignment-expression. */ |
| parsed_arg = cp_parser_assignment_expression (parser, /*cast_p=*/false, NULL); |
| if (parsed_arg == error_mark_node) |
| { |
| cp_parser_pop_lexer (parser); |
| continue; |
| } |
| |
| if (!processing_template_decl) |
| parsed_arg = check_default_argument (TREE_VALUE (parm), parsed_arg); |
| |
| TREE_PURPOSE (parm) = parsed_arg; |
| |
| /* Update any instantiations we've already created. */ |
| for (insts = DEFARG_INSTANTIATIONS (default_arg), ix = 0; |
| VEC_iterate (tree, insts, ix, copy); ix++) |
| TREE_PURPOSE (copy) = parsed_arg; |
| |
| finish_lambda_scope (); |
| |
| /* If the token stream has not been completely used up, then |
| there was extra junk after the end of the default |
| argument. */ |
| if (!cp_lexer_next_token_is (parser->lexer, CPP_EOF)) |
| cp_parser_error (parser, "expected %<,%>"); |
| |
| /* Revert to the main lexer. */ |
| cp_parser_pop_lexer (parser); |
| } |
| |
| pop_defarg_context (); |
| |
| /* Make sure no default arg is missing. */ |
| check_default_args (fn); |
| |
| /* Restore the state of local_variables_forbidden_p. */ |
| parser->local_variables_forbidden_p = saved_local_variables_forbidden_p; |
| |
| /* Restore the queue. */ |
| pop_unparsed_function_queues (parser); |
| } |
| |
| /* Parse the operand of `sizeof' (or a similar operator). Returns |
| either a TYPE or an expression, depending on the form of the |
| input. The KEYWORD indicates which kind of expression we have |
| encountered. */ |
| |
| static tree |
| cp_parser_sizeof_operand (cp_parser* parser, enum rid keyword) |
| { |
| tree expr = NULL_TREE; |
| const char *saved_message; |
| char *tmp; |
| bool saved_integral_constant_expression_p; |
| bool saved_non_integral_constant_expression_p; |
| bool pack_expansion_p = false; |
| |
| /* Types cannot be defined in a `sizeof' expression. Save away the |
| old message. */ |
| saved_message = parser->type_definition_forbidden_message; |
| /* And create the new one. */ |
| tmp = concat ("types may not be defined in %<", |
| IDENTIFIER_POINTER (ridpointers[keyword]), |
| "%> expressions", NULL); |
| parser->type_definition_forbidden_message = tmp; |
| |
| /* The restrictions on constant-expressions do not apply inside |
| sizeof expressions. */ |
| saved_integral_constant_expression_p |
| = parser->integral_constant_expression_p; |
| saved_non_integral_constant_expression_p |
| = parser->non_integral_constant_expression_p; |
| parser->integral_constant_expression_p = false; |
| |
| /* If it's a `...', then we are computing the length of a parameter |
| pack. */ |
| if (keyword == RID_SIZEOF |
| && cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)) |
| { |
| /* Consume the `...'. */ |
| cp_lexer_consume_token (parser->lexer); |
| maybe_warn_variadic_templates (); |
| |
| /* Note that this is an expansion. */ |
| pack_expansion_p = true; |
| } |
| |
| /* Do not actually evaluate the expression. */ |
| ++cp_unevaluated_operand; |
| ++c_inhibit_evaluation_warnings; |
| /* If it's a `(', then we might be looking at the type-id |
| construction. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)) |
| { |
| tree type; |
| bool saved_in_type_id_in_expr_p; |
| |
| /* We can't be sure yet whether we're looking at a type-id or an |
| expression. */ |
| cp_parser_parse_tentatively (parser); |
| /* Consume the `('. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* Parse the type-id. */ |
| saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p; |
| parser->in_type_id_in_expr_p = true; |
| type = cp_parser_type_id (parser); |
| parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p; |
| /* Now, look for the trailing `)'. */ |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| /* If all went well, then we're done. */ |
| if (cp_parser_parse_definitely (parser)) |
| { |
| cp_decl_specifier_seq decl_specs; |
| |
| /* Build a trivial decl-specifier-seq. */ |
| clear_decl_specs (&decl_specs); |
| decl_specs.type = type; |
| |
| /* Call grokdeclarator to figure out what type this is. */ |
| expr = grokdeclarator (NULL, |
| &decl_specs, |
| TYPENAME, |
| /*initialized=*/0, |
| /*attrlist=*/NULL); |
| } |
| } |
| |
| /* If the type-id production did not work out, then we must be |
| looking at the unary-expression production. */ |
| if (!expr) |
| expr = cp_parser_unary_expression (parser, /*address_p=*/false, |
| /*cast_p=*/false, NULL); |
| |
| if (pack_expansion_p) |
| /* Build a pack expansion. */ |
| expr = make_pack_expansion (expr); |
| |
| /* Go back to evaluating expressions. */ |
| --cp_unevaluated_operand; |
| --c_inhibit_evaluation_warnings; |
| |
| /* Free the message we created. */ |
| free (tmp); |
| /* And restore the old one. */ |
| parser->type_definition_forbidden_message = saved_message; |
| parser->integral_constant_expression_p |
| = saved_integral_constant_expression_p; |
| parser->non_integral_constant_expression_p |
| = saved_non_integral_constant_expression_p; |
| |
| return expr; |
| } |
| |
| /* If the current declaration has no declarator, return true. */ |
| |
| static bool |
| cp_parser_declares_only_class_p (cp_parser *parser) |
| { |
| /* If the next token is a `;' or a `,' then there is no |
| declarator. */ |
| return (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON) |
| || cp_lexer_next_token_is (parser->lexer, CPP_COMMA)); |
| } |
| |
| /* Update the DECL_SPECS to reflect the storage class indicated by |
| KEYWORD. */ |
| |
| static void |
| cp_parser_set_storage_class (cp_parser *parser, |
| cp_decl_specifier_seq *decl_specs, |
| enum rid keyword, |
| location_t location) |
| { |
| cp_storage_class storage_class; |
| |
| if (parser->in_unbraced_linkage_specification_p) |
| { |
| error_at (location, "invalid use of %qD in linkage specification", |
| ridpointers[keyword]); |
| return; |
| } |
| else if (decl_specs->storage_class != sc_none) |
| { |
| decl_specs->conflicting_specifiers_p = true; |
| return; |
| } |
| |
| if ((keyword == RID_EXTERN || keyword == RID_STATIC) |
| && decl_specs->specs[(int) ds_thread]) |
| { |
| error_at (location, "%<__thread%> before %qD", ridpointers[keyword]); |
| decl_specs->specs[(int) ds_thread] = 0; |
| } |
| |
| switch (keyword) |
| { |
| case RID_AUTO: |
| storage_class = sc_auto; |
| break; |
| case RID_REGISTER: |
| storage_class = sc_register; |
| break; |
| case RID_STATIC: |
| storage_class = sc_static; |
| break; |
| case RID_EXTERN: |
| storage_class = sc_extern; |
| break; |
| case RID_MUTABLE: |
| storage_class = sc_mutable; |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| decl_specs->storage_class = storage_class; |
| |
| /* A storage class specifier cannot be applied alongside a typedef |
| specifier. If there is a typedef specifier present then set |
| conflicting_specifiers_p which will trigger an error later |
| on in grokdeclarator. */ |
| if (decl_specs->specs[(int)ds_typedef]) |
| decl_specs->conflicting_specifiers_p = true; |
| } |
| |
| /* Update the DECL_SPECS to reflect the TYPE_SPEC. If USER_DEFINED_P |
| is true, the type is a user-defined type; otherwise it is a |
| built-in type specified by a keyword. */ |
| |
| static void |
| cp_parser_set_decl_spec_type (cp_decl_specifier_seq *decl_specs, |
| tree type_spec, |
| location_t location, |
| bool user_defined_p) |
| { |
| decl_specs->any_specifiers_p = true; |
| |
| /* If the user tries to redeclare bool, char16_t, char32_t, or wchar_t |
| (with, for example, in "typedef int wchar_t;") we remember that |
| this is what happened. In system headers, we ignore these |
| declarations so that G++ can work with system headers that are not |
| C++-safe. */ |
| if (decl_specs->specs[(int) ds_typedef] |
| && !user_defined_p |
| && (type_spec == boolean_type_node |
| || type_spec == char16_type_node |
| || type_spec == char32_type_node |
| || type_spec == wchar_type_node) |
| && (decl_specs->type |
| || decl_specs->specs[(int) ds_long] |
| || decl_specs->specs[(int) ds_short] |
| || decl_specs->specs[(int) ds_unsigned] |
| || decl_specs->specs[(int) ds_signed])) |
| { |
| decl_specs->redefined_builtin_type = type_spec; |
| if (!decl_specs->type) |
| { |
| decl_specs->type = type_spec; |
| decl_specs->user_defined_type_p = false; |
| decl_specs->type_location = location; |
| } |
| } |
| else if (decl_specs->type) |
| decl_specs->multiple_types_p = true; |
| else |
| { |
| decl_specs->type = type_spec; |
| decl_specs->user_defined_type_p = user_defined_p; |
| decl_specs->redefined_builtin_type = NULL_TREE; |
| decl_specs->type_location = location; |
| } |
| } |
| |
| /* DECL_SPECIFIERS is the representation of a decl-specifier-seq. |
| Returns TRUE iff `friend' appears among the DECL_SPECIFIERS. */ |
| |
| static bool |
| cp_parser_friend_p (const cp_decl_specifier_seq *decl_specifiers) |
| { |
| return decl_specifiers->specs[(int) ds_friend] != 0; |
| } |
| |
| /* Issue an error message indicating that TOKEN_DESC was expected. |
| If KEYWORD is true, it indicated this function is called by |
| cp_parser_require_keword and the required token can only be |
| a indicated keyword. */ |
| |
| static void |
| cp_parser_required_error (cp_parser *parser, |
| required_token token_desc, |
| bool keyword) |
| { |
| switch (token_desc) |
| { |
| case RT_NEW: |
| cp_parser_error (parser, "expected %<new%>"); |
| return; |
| case RT_DELETE: |
| cp_parser_error (parser, "expected %<delete%>"); |
| return; |
| case RT_RETURN: |
| cp_parser_error (parser, "expected %<return%>"); |
| return; |
| case RT_WHILE: |
| cp_parser_error (parser, "expected %<while%>"); |
| return; |
| case RT_EXTERN: |
| cp_parser_error (parser, "expected %<extern%>"); |
| return; |
| case RT_STATIC_ASSERT: |
| cp_parser_error (parser, "expected %<static_assert%>"); |
| return; |
| case RT_DECLTYPE: |
| cp_parser_error (parser, "expected %<decltype%>"); |
| return; |
| case RT_OPERATOR: |
| cp_parser_error (parser, "expected %<operator%>"); |
| return; |
| case RT_CLASS: |
| cp_parser_error (parser, "expected %<class%>"); |
| return; |
| case RT_TEMPLATE: |
| cp_parser_error (parser, "expected %<template%>"); |
| return; |
| case RT_NAMESPACE: |
| cp_parser_error (parser, "expected %<namespace%>"); |
| return; |
| case RT_USING: |
| cp_parser_error (parser, "expected %<using%>"); |
| return; |
| case RT_ASM: |
| cp_parser_error (parser, "expected %<asm%>"); |
| return; |
| case RT_TRY: |
| cp_parser_error (parser, "expected %<try%>"); |
| return; |
| case RT_CATCH: |
| cp_parser_error (parser, "expected %<catch%>"); |
| return; |
| case RT_THROW: |
| cp_parser_error (parser, "expected %<throw%>"); |
| return; |
| case RT_LABEL: |
| cp_parser_error (parser, "expected %<__label__%>"); |
| return; |
| case RT_AT_TRY: |
| cp_parser_error (parser, "expected %<@try%>"); |
| return; |
| case RT_AT_SYNCHRONIZED: |
| cp_parser_error (parser, "expected %<@synchronized%>"); |
| return; |
| case RT_AT_THROW: |
| cp_parser_error (parser, "expected %<@throw%>"); |
| return; |
| default: |
| break; |
| } |
| if (!keyword) |
| { |
| switch (token_desc) |
| { |
| case RT_SEMICOLON: |
| cp_parser_error (parser, "expected %<;%>"); |
| return; |
| case RT_OPEN_PAREN: |
| cp_parser_error (parser, "expected %<(%>"); |
| return; |
| case RT_CLOSE_BRACE: |
| cp_parser_error (parser, "expected %<}%>"); |
| return; |
| case RT_OPEN_BRACE: |
| cp_parser_error (parser, "expected %<{%>"); |
| return; |
| case RT_CLOSE_SQUARE: |
| cp_parser_error (parser, "expected %<]%>"); |
| return; |
| case RT_OPEN_SQUARE: |
| cp_parser_error (parser, "expected %<[%>"); |
| return; |
| case RT_COMMA: |
| cp_parser_error (parser, "expected %<,%>"); |
| return; |
| case RT_SCOPE: |
| cp_parser_error (parser, "expected %<::%>"); |
| return; |
| case RT_LESS: |
| cp_parser_error (parser, "expected %<<%>"); |
| return; |
| case RT_GREATER: |
| cp_parser_error (parser, "expected %<>%>"); |
| return; |
| case RT_EQ: |
| cp_parser_error (parser, "expected %<=%>"); |
| return; |
| case RT_ELLIPSIS: |
| cp_parser_error (parser, "expected %<...%>"); |
| return; |
| case RT_MULT: |
| cp_parser_error (parser, "expected %<*%>"); |
| return; |
| case RT_COMPL: |
| cp_parser_error (parser, "expected %<~%>"); |
| return; |
| case RT_COLON: |
| cp_parser_error (parser, "expected %<:%>"); |
| return; |
| case RT_COLON_SCOPE: |
| cp_parser_error (parser, "expected %<:%> or %<::%>"); |
| return; |
| case RT_CLOSE_PAREN: |
| cp_parser_error (parser, "expected %<)%>"); |
| return; |
| case RT_COMMA_CLOSE_PAREN: |
| cp_parser_error (parser, "expected %<,%> or %<)%>"); |
| return; |
| case RT_PRAGMA_EOL: |
| cp_parser_error (parser, "expected end of line"); |
| return; |
| case RT_NAME: |
| cp_parser_error (parser, "expected identifier"); |
| return; |
| case RT_SELECT: |
| cp_parser_error (parser, "expected selection-statement"); |
| return; |
| case RT_INTERATION: |
| cp_parser_error (parser, "expected iteration-statement"); |
| return; |
| case RT_JUMP: |
| cp_parser_error (parser, "expected jump-statement"); |
| return; |
| case RT_CLASS_KEY: |
| cp_parser_error (parser, "expected class-key"); |
| return; |
| case RT_CLASS_TYPENAME_TEMPLATE: |
| cp_parser_error (parser, |
| "expected %<class%>, %<typename%>, or %<template%>"); |
| return; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| else |
| gcc_unreachable (); |
| } |
| |
| |
| |
| /* If the next token is of the indicated TYPE, consume it. Otherwise, |
| issue an error message indicating that TOKEN_DESC was expected. |
| |
| Returns the token consumed, if the token had the appropriate type. |
| Otherwise, returns NULL. */ |
| |
| static cp_token * |
| cp_parser_require (cp_parser* parser, |
| enum cpp_ttype type, |
| required_token token_desc) |
| { |
| if (cp_lexer_next_token_is (parser->lexer, type)) |
| return cp_lexer_consume_token (parser->lexer); |
| else |
| { |
| /* Output the MESSAGE -- unless we're parsing tentatively. */ |
| if (!cp_parser_simulate_error (parser)) |
| cp_parser_required_error (parser, token_desc, /*keyword=*/false); |
| return NULL; |
| } |
| } |
| |
| /* An error message is produced if the next token is not '>'. |
| All further tokens are skipped until the desired token is |
| found or '{', '}', ';' or an unbalanced ')' or ']'. */ |
| |
| static void |
| cp_parser_skip_to_end_of_template_parameter_list (cp_parser* parser) |
| { |
| /* Current level of '< ... >'. */ |
| unsigned level = 0; |
| /* Ignore '<' and '>' nested inside '( ... )' or '[ ... ]'. */ |
| unsigned nesting_depth = 0; |
| |
| /* Are we ready, yet? If not, issue error message. */ |
| if (cp_parser_require (parser, CPP_GREATER, RT_GREATER)) |
| return; |
| |
| /* Skip tokens until the desired token is found. */ |
| while (true) |
| { |
| /* Peek at the next token. */ |
| switch (cp_lexer_peek_token (parser->lexer)->type) |
| { |
| case CPP_LESS: |
| if (!nesting_depth) |
| ++level; |
| break; |
| |
| case CPP_RSHIFT: |
| if (cxx_dialect == cxx98) |
| /* C++0x views the `>>' operator as two `>' tokens, but |
| C++98 does not. */ |
| break; |
| else if (!nesting_depth && level-- == 0) |
| { |
| /* We've hit a `>>' where the first `>' closes the |
| template argument list, and the second `>' is |
| spurious. Just consume the `>>' and stop; we've |
| already produced at least one error. */ |
| cp_lexer_consume_token (parser->lexer); |
| return; |
| } |
| /* Fall through for C++0x, so we handle the second `>' in |
| the `>>'. */ |
| |
| case CPP_GREATER: |
| if (!nesting_depth && level-- == 0) |
| { |
| /* We've reached the token we want, consume it and stop. */ |
| cp_lexer_consume_token (parser->lexer); |
| return; |
| } |
| break; |
| |
| case CPP_OPEN_PAREN: |
| case CPP_OPEN_SQUARE: |
| ++nesting_depth; |
| break; |
| |
| case CPP_CLOSE_PAREN: |
| case CPP_CLOSE_SQUARE: |
| if (nesting_depth-- == 0) |
| return; |
| break; |
| |
| case CPP_EOF: |
| case CPP_PRAGMA_EOL: |
| case CPP_SEMICOLON: |
| case CPP_OPEN_BRACE: |
| case CPP_CLOSE_BRACE: |
| /* The '>' was probably forgotten, don't look further. */ |
| return; |
| |
| default: |
| break; |
| } |
| |
| /* Consume this token. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| } |
| |
| /* If the next token is the indicated keyword, consume it. Otherwise, |
| issue an error message indicating that TOKEN_DESC was expected. |
| |
| Returns the token consumed, if the token had the appropriate type. |
| Otherwise, returns NULL. */ |
| |
| static cp_token * |
| cp_parser_require_keyword (cp_parser* parser, |
| enum rid keyword, |
| required_token token_desc) |
| { |
| cp_token *token = cp_parser_require (parser, CPP_KEYWORD, token_desc); |
| |
| if (token && token->keyword != keyword) |
| { |
| cp_parser_required_error (parser, token_desc, /*keyword=*/true); |
| return NULL; |
| } |
| |
| return token; |
| } |
| |
| /* Returns TRUE iff TOKEN is a token that can begin the body of a |
| function-definition. */ |
| |
| static bool |
| cp_parser_token_starts_function_definition_p (cp_token* token) |
| { |
| return (/* An ordinary function-body begins with an `{'. */ |
| token->type == CPP_OPEN_BRACE |
| /* A ctor-initializer begins with a `:'. */ |
| || token->type == CPP_COLON |
| /* A function-try-block begins with `try'. */ |
| || token->keyword == RID_TRY |
| /* The named return value extension begins with `return'. */ |
| || token->keyword == RID_RETURN); |
| } |
| |
| /* Returns TRUE iff the next token is the ":" or "{" beginning a class |
| definition. */ |
| |
| static bool |
| cp_parser_next_token_starts_class_definition_p (cp_parser *parser) |
| { |
| cp_token *token; |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| return (token->type == CPP_OPEN_BRACE || token->type == CPP_COLON); |
| } |
| |
| /* Returns TRUE iff the next token is the "," or ">" (or `>>', in |
| C++0x) ending a template-argument. */ |
| |
| static bool |
| cp_parser_next_token_ends_template_argument_p (cp_parser *parser) |
| { |
| cp_token *token; |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| return (token->type == CPP_COMMA |
| || token->type == CPP_GREATER |
| || token->type == CPP_ELLIPSIS |
| || ((cxx_dialect != cxx98) && token->type == CPP_RSHIFT)); |
| } |
| |
| /* Returns TRUE iff the n-th token is a "<", or the n-th is a "[" and the |
| (n+1)-th is a ":" (which is a possible digraph typo for "< ::"). */ |
| |
| static bool |
| cp_parser_nth_token_starts_template_argument_list_p (cp_parser * parser, |
| size_t n) |
| { |
| cp_token *token; |
| |
| token = cp_lexer_peek_nth_token (parser->lexer, n); |
| if (token->type == CPP_LESS) |
| return true; |
| /* Check for the sequence `<::' in the original code. It would be lexed as |
| `[:', where `[' is a digraph, and there is no whitespace before |
| `:'. */ |
| if (token->type == CPP_OPEN_SQUARE && token->flags & DIGRAPH) |
| { |
| cp_token *token2; |
| token2 = cp_lexer_peek_nth_token (parser->lexer, n+1); |
| if (token2->type == CPP_COLON && !(token2->flags & PREV_WHITE)) |
| return true; |
| } |
| return false; |
| } |
| |
| /* Returns the kind of tag indicated by TOKEN, if it is a class-key, |
| or none_type otherwise. */ |
| |
| static enum tag_types |
| cp_parser_token_is_class_key (cp_token* token) |
| { |
| switch (token->keyword) |
| { |
| case RID_CLASS: |
| return class_type; |
| case RID_STRUCT: |
| return record_type; |
| case RID_UNION: |
| return union_type; |
| |
| default: |
| return none_type; |
| } |
| } |
| |
| /* Issue an error message if the CLASS_KEY does not match the TYPE. */ |
| |
| static void |
| cp_parser_check_class_key (enum tag_types class_key, tree type) |
| { |
| if ((TREE_CODE (type) == UNION_TYPE) != (class_key == union_type)) |
| permerror (input_location, "%qs tag used in naming %q#T", |
| class_key == union_type ? "union" |
| : class_key == record_type ? "struct" : "class", |
| type); |
| } |
| |
| /* Issue an error message if DECL is redeclared with different |
| access than its original declaration [class.access.spec/3]. |
| This applies to nested classes and nested class templates. |
| [class.mem/1]. */ |
| |
| static void |
| cp_parser_check_access_in_redeclaration (tree decl, location_t location) |
| { |
| if (!decl || !CLASS_TYPE_P (TREE_TYPE (decl))) |
| return; |
| |
| if ((TREE_PRIVATE (decl) |
| != (current_access_specifier == access_private_node)) |
| || (TREE_PROTECTED (decl) |
| != (current_access_specifier == access_protected_node))) |
| error_at (location, "%qD redeclared with different access", decl); |
| } |
| |
| /* Look for the `template' keyword, as a syntactic disambiguator. |
| Return TRUE iff it is present, in which case it will be |
| consumed. */ |
| |
| static bool |
| cp_parser_optional_template_keyword (cp_parser *parser) |
| { |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE)) |
| { |
| /* The `template' keyword can only be used within templates; |
| outside templates the parser can always figure out what is a |
| template and what is not. */ |
| if (!processing_template_decl) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| error_at (token->location, |
| "%<template%> (as a disambiguator) is only allowed " |
| "within templates"); |
| /* If this part of the token stream is rescanned, the same |
| error message would be generated. So, we purge the token |
| from the stream. */ |
| cp_lexer_purge_token (parser->lexer); |
| return false; |
| } |
| else |
| { |
| /* Consume the `template' keyword. */ |
| cp_lexer_consume_token (parser->lexer); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /* The next token is a CPP_NESTED_NAME_SPECIFIER. Consume the token, |
| set PARSER->SCOPE, and perform other related actions. */ |
| |
| static void |
| cp_parser_pre_parsed_nested_name_specifier (cp_parser *parser) |
| { |
| int i; |
| struct tree_check *check_value; |
| deferred_access_check *chk; |
| VEC (deferred_access_check,gc) *checks; |
| |
| /* Get the stored value. */ |
| check_value = cp_lexer_consume_token (parser->lexer)->u.tree_check_value; |
| /* Perform any access checks that were deferred. */ |
| checks = check_value->checks; |
| if (checks) |
| { |
| FOR_EACH_VEC_ELT (deferred_access_check, checks, i, chk) |
| perform_or_defer_access_check (chk->binfo, |
| chk->decl, |
| chk->diag_decl); |
| } |
| /* Set the scope from the stored value. */ |
| parser->scope = check_value->value; |
| parser->qualifying_scope = check_value->qualifying_scope; |
| parser->object_scope = NULL_TREE; |
| } |
| |
| /* Consume tokens up through a non-nested END token. Returns TRUE if we |
| encounter the end of a block before what we were looking for. */ |
| |
| static bool |
| cp_parser_cache_group (cp_parser *parser, |
| enum cpp_ttype end, |
| unsigned depth) |
| { |
| while (true) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| /* Abort a parenthesized expression if we encounter a semicolon. */ |
| if ((end == CPP_CLOSE_PAREN || depth == 0) |
| && token->type == CPP_SEMICOLON) |
| return true; |
| /* If we've reached the end of the file, stop. */ |
| if (token->type == CPP_EOF |
| || (end != CPP_PRAGMA_EOL |
| && token->type == CPP_PRAGMA_EOL)) |
| return true; |
| if (token->type == CPP_CLOSE_BRACE && depth == 0) |
| /* We've hit the end of an enclosing block, so there's been some |
| kind of syntax error. */ |
| return true; |
| |
| /* Consume the token. */ |
| cp_lexer_consume_token (parser->lexer); |
| /* See if it starts a new group. */ |
| if (token->type == CPP_OPEN_BRACE) |
| { |
| cp_parser_cache_group (parser, CPP_CLOSE_BRACE, depth + 1); |
| /* In theory this should probably check end == '}', but |
| cp_parser_save_member_function_body needs it to exit |
| after either '}' or ')' when called with ')'. */ |
| if (depth == 0) |
| return false; |
| } |
| else if (token->type == CPP_OPEN_PAREN) |
| { |
| cp_parser_cache_group (parser, CPP_CLOSE_PAREN, depth + 1); |
| if (depth == 0 && end == CPP_CLOSE_PAREN) |
| return false; |
| } |
| else if (token->type == CPP_PRAGMA) |
| cp_parser_cache_group (parser, CPP_PRAGMA_EOL, depth + 1); |
| else if (token->type == end) |
| return false; |
| } |
| } |
| |
| /* Begin parsing tentatively. We always save tokens while parsing |
| tentatively so that if the tentative parsing fails we can restore the |
| tokens. */ |
| |
| static void |
| cp_parser_parse_tentatively (cp_parser* parser) |
| { |
| /* Enter a new parsing context. */ |
| parser->context = cp_parser_context_new (parser->context); |
| /* Begin saving tokens. */ |
| cp_lexer_save_tokens (parser->lexer); |
| /* In order to avoid repetitive access control error messages, |
| access checks are queued up until we are no longer parsing |
| tentatively. */ |
| push_deferring_access_checks (dk_deferred); |
| } |
| |
| /* Commit to the currently active tentative parse. */ |
| |
| static void |
| cp_parser_commit_to_tentative_parse (cp_parser* parser) |
| { |
| cp_parser_context *context; |
| cp_lexer *lexer; |
| |
| /* Mark all of the levels as committed. */ |
| lexer = parser->lexer; |
| for (context = parser->context; context->next; context = context->next) |
| { |
| if (context->status == CP_PARSER_STATUS_KIND_COMMITTED) |
| break; |
| context->status = CP_PARSER_STATUS_KIND_COMMITTED; |
| while (!cp_lexer_saving_tokens (lexer)) |
| lexer = lexer->next; |
| cp_lexer_commit_tokens (lexer); |
| } |
| } |
| |
| /* Abort the currently active tentative parse. All consumed tokens |
| will be rolled back, and no diagnostics will be issued. */ |
| |
| static void |
| cp_parser_abort_tentative_parse (cp_parser* parser) |
| { |
| gcc_assert (parser->context->status != CP_PARSER_STATUS_KIND_COMMITTED |
| || errorcount > 0); |
| cp_parser_simulate_error (parser); |
| /* Now, pretend that we want to see if the construct was |
| successfully parsed. */ |
| cp_parser_parse_definitely (parser); |
| } |
| |
| /* Stop parsing tentatively. If a parse error has occurred, restore the |
| token stream. Otherwise, commit to the tokens we have consumed. |
| Returns true if no error occurred; false otherwise. */ |
| |
| static bool |
| cp_parser_parse_definitely (cp_parser* parser) |
| { |
| bool error_occurred; |
| cp_parser_context *context; |
| |
| /* Remember whether or not an error occurred, since we are about to |
| destroy that information. */ |
| error_occurred = cp_parser_error_occurred (parser); |
| /* Remove the topmost context from the stack. */ |
| context = parser->context; |
| parser->context = context->next; |
| /* If no parse errors occurred, commit to the tentative parse. */ |
| if (!error_occurred) |
| { |
| /* Commit to the tokens read tentatively, unless that was |
| already done. */ |
| if (context->status != CP_PARSER_STATUS_KIND_COMMITTED) |
| cp_lexer_commit_tokens (parser->lexer); |
| |
| pop_to_parent_deferring_access_checks (); |
| } |
| /* Otherwise, if errors occurred, roll back our state so that things |
| are just as they were before we began the tentative parse. */ |
| else |
| { |
| cp_lexer_rollback_tokens (parser->lexer); |
| pop_deferring_access_checks (); |
| } |
| /* Add the context to the front of the free list. */ |
| context->next = cp_parser_context_free_list; |
| cp_parser_context_free_list = context; |
| |
| return !error_occurred; |
| } |
| |
| /* Returns true if we are parsing tentatively and are not committed to |
| this tentative parse. */ |
| |
| static bool |
| cp_parser_uncommitted_to_tentative_parse_p (cp_parser* parser) |
| { |
| return (cp_parser_parsing_tentatively (parser) |
| && parser->context->status != CP_PARSER_STATUS_KIND_COMMITTED); |
| } |
| |
| /* Returns nonzero iff an error has occurred during the most recent |
| tentative parse. */ |
| |
| static bool |
| cp_parser_error_occurred (cp_parser* parser) |
| { |
| return (cp_parser_parsing_tentatively (parser) |
| && parser->context->status == CP_PARSER_STATUS_KIND_ERROR); |
| } |
| |
| /* Returns nonzero if GNU extensions are allowed. */ |
| |
| static bool |
| cp_parser_allow_gnu_extensions_p (cp_parser* parser) |
| { |
| return parser->allow_gnu_extensions_p; |
| } |
| |
| /* Objective-C++ Productions */ |
| |
| |
| /* Parse an Objective-C expression, which feeds into a primary-expression |
| above. |
| |
| objc-expression: |
| objc-message-expression |
| objc-string-literal |
| objc-encode-expression |
| objc-protocol-expression |
| objc-selector-expression |
| |
| Returns a tree representation of the expression. */ |
| |
| static tree |
| cp_parser_objc_expression (cp_parser* parser) |
| { |
| /* Try to figure out what kind of declaration is present. */ |
| cp_token *kwd = cp_lexer_peek_token (parser->lexer); |
| |
| switch (kwd->type) |
| { |
| case CPP_OPEN_SQUARE: |
| return cp_parser_objc_message_expression (parser); |
| |
| case CPP_OBJC_STRING: |
| kwd = cp_lexer_consume_token (parser->lexer); |
| return objc_build_string_object (kwd->u.value); |
| |
| case CPP_KEYWORD: |
| switch (kwd->keyword) |
| { |
| case RID_AT_ENCODE: |
| return cp_parser_objc_encode_expression (parser); |
| |
| case RID_AT_PROTOCOL: |
| return cp_parser_objc_protocol_expression (parser); |
| |
| case RID_AT_SELECTOR: |
| return cp_parser_objc_selector_expression (parser); |
| |
| default: |
| break; |
| } |
| default: |
| error_at (kwd->location, |
| "misplaced %<@%D%> Objective-C++ construct", |
| kwd->u.value); |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| } |
| |
| return error_mark_node; |
| } |
| |
| /* Parse an Objective-C message expression. |
| |
| objc-message-expression: |
| [ objc-message-receiver objc-message-args ] |
| |
| Returns a representation of an Objective-C message. */ |
| |
| static tree |
| cp_parser_objc_message_expression (cp_parser* parser) |
| { |
| tree receiver, messageargs; |
| |
| cp_lexer_consume_token (parser->lexer); /* Eat '['. */ |
| receiver = cp_parser_objc_message_receiver (parser); |
| messageargs = cp_parser_objc_message_args (parser); |
| cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE); |
| |
| return objc_build_message_expr (receiver, messageargs); |
| } |
| |
| /* Parse an objc-message-receiver. |
| |
| objc-message-receiver: |
| expression |
| simple-type-specifier |
| |
| Returns a representation of the type or expression. */ |
| |
| static tree |
| cp_parser_objc_message_receiver (cp_parser* parser) |
| { |
| tree rcv; |
| |
| /* An Objective-C message receiver may be either (1) a type |
| or (2) an expression. */ |
| cp_parser_parse_tentatively (parser); |
| rcv = cp_parser_expression (parser, false, NULL); |
| |
| if (cp_parser_parse_definitely (parser)) |
| return rcv; |
| |
| rcv = cp_parser_simple_type_specifier (parser, |
| /*decl_specs=*/NULL, |
| CP_PARSER_FLAGS_NONE); |
| |
| return objc_get_class_reference (rcv); |
| } |
| |
| /* Parse the arguments and selectors comprising an Objective-C message. |
| |
| objc-message-args: |
| objc-selector |
| objc-selector-args |
| objc-selector-args , objc-comma-args |
| |
| objc-selector-args: |
| objc-selector [opt] : assignment-expression |
| objc-selector-args objc-selector [opt] : assignment-expression |
| |
| objc-comma-args: |
| assignment-expression |
| objc-comma-args , assignment-expression |
| |
| Returns a TREE_LIST, with TREE_PURPOSE containing a list of |
| selector arguments and TREE_VALUE containing a list of comma |
| arguments. */ |
| |
| static tree |
| cp_parser_objc_message_args (cp_parser* parser) |
| { |
| tree sel_args = NULL_TREE, addl_args = NULL_TREE; |
| bool maybe_unary_selector_p = true; |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON) |
| { |
| tree selector = NULL_TREE, arg; |
| |
| if (token->type != CPP_COLON) |
| selector = cp_parser_objc_selector (parser); |
| |
| /* Detect if we have a unary selector. */ |
| if (maybe_unary_selector_p |
| && cp_lexer_next_token_is_not (parser->lexer, CPP_COLON)) |
| return build_tree_list (selector, NULL_TREE); |
| |
| maybe_unary_selector_p = false; |
| cp_parser_require (parser, CPP_COLON, RT_COLON); |
| arg = cp_parser_assignment_expression (parser, false, NULL); |
| |
| sel_args |
| = chainon (sel_args, |
| build_tree_list (selector, arg)); |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| } |
| |
| /* Handle non-selector arguments, if any. */ |
| while (token->type == CPP_COMMA) |
| { |
| tree arg; |
| |
| cp_lexer_consume_token (parser->lexer); |
| arg = cp_parser_assignment_expression (parser, false, NULL); |
| |
| addl_args |
| = chainon (addl_args, |
| build_tree_list (NULL_TREE, arg)); |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| } |
| |
| if (sel_args == NULL_TREE && addl_args == NULL_TREE) |
| { |
| cp_parser_error (parser, "objective-c++ message argument(s) are expected"); |
| return build_tree_list (error_mark_node, error_mark_node); |
| } |
| |
| return build_tree_list (sel_args, addl_args); |
| } |
| |
| /* Parse an Objective-C encode expression. |
| |
| objc-encode-expression: |
| @encode objc-typename |
| |
| Returns an encoded representation of the type argument. */ |
| |
| static tree |
| cp_parser_objc_encode_expression (cp_parser* parser) |
| { |
| tree type; |
| cp_token *token; |
| |
| cp_lexer_consume_token (parser->lexer); /* Eat '@encode'. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| token = cp_lexer_peek_token (parser->lexer); |
| type = complete_type (cp_parser_type_id (parser)); |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| |
| if (!type) |
| { |
| error_at (token->location, |
| "%<@encode%> must specify a type as an argument"); |
| return error_mark_node; |
| } |
| |
| /* This happens if we find @encode(T) (where T is a template |
| typename or something dependent on a template typename) when |
| parsing a template. In that case, we can't compile it |
| immediately, but we rather create an AT_ENCODE_EXPR which will |
| need to be instantiated when the template is used. |
| */ |
| if (dependent_type_p (type)) |
| { |
| tree value = build_min (AT_ENCODE_EXPR, size_type_node, type); |
| TREE_READONLY (value) = 1; |
| return value; |
| } |
| |
| return objc_build_encode_expr (type); |
| } |
| |
| /* Parse an Objective-C @defs expression. */ |
| |
| static tree |
| cp_parser_objc_defs_expression (cp_parser *parser) |
| { |
| tree name; |
| |
| cp_lexer_consume_token (parser->lexer); /* Eat '@defs'. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| name = cp_parser_identifier (parser); |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| |
| return objc_get_class_ivars (name); |
| } |
| |
| /* Parse an Objective-C protocol expression. |
| |
| objc-protocol-expression: |
| @protocol ( identifier ) |
| |
| Returns a representation of the protocol expression. */ |
| |
| static tree |
| cp_parser_objc_protocol_expression (cp_parser* parser) |
| { |
| tree proto; |
| |
| cp_lexer_consume_token (parser->lexer); /* Eat '@protocol'. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| proto = cp_parser_identifier (parser); |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| |
| return objc_build_protocol_expr (proto); |
| } |
| |
| /* Parse an Objective-C selector expression. |
| |
| objc-selector-expression: |
| @selector ( objc-method-signature ) |
| |
| objc-method-signature: |
| objc-selector |
| objc-selector-seq |
| |
| objc-selector-seq: |
| objc-selector : |
| objc-selector-seq objc-selector : |
| |
| Returns a representation of the method selector. */ |
| |
| static tree |
| cp_parser_objc_selector_expression (cp_parser* parser) |
| { |
| tree sel_seq = NULL_TREE; |
| bool maybe_unary_selector_p = true; |
| cp_token *token; |
| location_t loc = cp_lexer_peek_token (parser->lexer)->location; |
| |
| cp_lexer_consume_token (parser->lexer); /* Eat '@selector'. */ |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON |
| || token->type == CPP_SCOPE) |
| { |
| tree selector = NULL_TREE; |
| |
| if (token->type != CPP_COLON |
| || token->type == CPP_SCOPE) |
| selector = cp_parser_objc_selector (parser); |
| |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON) |
| && cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE)) |
| { |
| /* Detect if we have a unary selector. */ |
| if (maybe_unary_selector_p) |
| { |
| sel_seq = selector; |
| goto finish_selector; |
| } |
| else |
| { |
| cp_parser_error (parser, "expected %<:%>"); |
| } |
| } |
| maybe_unary_selector_p = false; |
| token = cp_lexer_consume_token (parser->lexer); |
| |
| if (token->type == CPP_SCOPE) |
| { |
| sel_seq |
| = chainon (sel_seq, |
| build_tree_list (selector, NULL_TREE)); |
| sel_seq |
| = chainon (sel_seq, |
| build_tree_list (NULL_TREE, NULL_TREE)); |
| } |
| else |
| sel_seq |
| = chainon (sel_seq, |
| build_tree_list (selector, NULL_TREE)); |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| } |
| |
| finish_selector: |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| |
| return objc_build_selector_expr (loc, sel_seq); |
| } |
| |
| /* Parse a list of identifiers. |
| |
| objc-identifier-list: |
| identifier |
| objc-identifier-list , identifier |
| |
| Returns a TREE_LIST of identifier nodes. */ |
| |
| static tree |
| cp_parser_objc_identifier_list (cp_parser* parser) |
| { |
| tree identifier; |
| tree list; |
| cp_token *sep; |
| |
| identifier = cp_parser_identifier (parser); |
| if (identifier == error_mark_node) |
| return error_mark_node; |
| |
| list = build_tree_list (NULL_TREE, identifier); |
| sep = cp_lexer_peek_token (parser->lexer); |
| |
| while (sep->type == CPP_COMMA) |
| { |
| cp_lexer_consume_token (parser->lexer); /* Eat ','. */ |
| identifier = cp_parser_identifier (parser); |
| if (identifier == error_mark_node) |
| return list; |
| |
| list = chainon (list, build_tree_list (NULL_TREE, |
| identifier)); |
| sep = cp_lexer_peek_token (parser->lexer); |
| } |
| |
| return list; |
| } |
| |
| /* Parse an Objective-C alias declaration. |
| |
| objc-alias-declaration: |
| @compatibility_alias identifier identifier ; |
| |
| This function registers the alias mapping with the Objective-C front end. |
| It returns nothing. */ |
| |
| static void |
| cp_parser_objc_alias_declaration (cp_parser* parser) |
| { |
| tree alias, orig; |
| |
| cp_lexer_consume_token (parser->lexer); /* Eat '@compatibility_alias'. */ |
| alias = cp_parser_identifier (parser); |
| orig = cp_parser_identifier (parser); |
| objc_declare_alias (alias, orig); |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| } |
| |
| /* Parse an Objective-C class forward-declaration. |
| |
| objc-class-declaration: |
| @class objc-identifier-list ; |
| |
| The function registers the forward declarations with the Objective-C |
| front end. It returns nothing. */ |
| |
| static void |
| cp_parser_objc_class_declaration (cp_parser* parser) |
| { |
| cp_lexer_consume_token (parser->lexer); /* Eat '@class'. */ |
| while (true) |
| { |
| tree id; |
| |
| id = cp_parser_identifier (parser); |
| if (id == error_mark_node) |
| break; |
| |
| objc_declare_class (id); |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA)) |
| cp_lexer_consume_token (parser->lexer); |
| else |
| break; |
| } |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| } |
| |
| /* Parse a list of Objective-C protocol references. |
| |
| objc-protocol-refs-opt: |
| objc-protocol-refs [opt] |
| |
| objc-protocol-refs: |
| < objc-identifier-list > |
| |
| Returns a TREE_LIST of identifiers, if any. */ |
| |
| static tree |
| cp_parser_objc_protocol_refs_opt (cp_parser* parser) |
| { |
| tree protorefs = NULL_TREE; |
| |
| if(cp_lexer_next_token_is (parser->lexer, CPP_LESS)) |
| { |
| cp_lexer_consume_token (parser->lexer); /* Eat '<'. */ |
| protorefs = cp_parser_objc_identifier_list (parser); |
| cp_parser_require (parser, CPP_GREATER, RT_GREATER); |
| } |
| |
| return protorefs; |
| } |
| |
| /* Parse a Objective-C visibility specification. */ |
| |
| static void |
| cp_parser_objc_visibility_spec (cp_parser* parser) |
| { |
| cp_token *vis = cp_lexer_peek_token (parser->lexer); |
| |
| switch (vis->keyword) |
| { |
| case RID_AT_PRIVATE: |
| objc_set_visibility (OBJC_IVAR_VIS_PRIVATE); |
| break; |
| case RID_AT_PROTECTED: |
| objc_set_visibility (OBJC_IVAR_VIS_PROTECTED); |
| break; |
| case RID_AT_PUBLIC: |
| objc_set_visibility (OBJC_IVAR_VIS_PUBLIC); |
| break; |
| case RID_AT_PACKAGE: |
| objc_set_visibility (OBJC_IVAR_VIS_PACKAGE); |
| break; |
| default: |
| return; |
| } |
| |
| /* Eat '@private'/'@protected'/'@public'. */ |
| cp_lexer_consume_token (parser->lexer); |
| } |
| |
| /* Parse an Objective-C method type. Return 'true' if it is a class |
| (+) method, and 'false' if it is an instance (-) method. */ |
| |
| static inline bool |
| cp_parser_objc_method_type (cp_parser* parser) |
| { |
| if (cp_lexer_consume_token (parser->lexer)->type == CPP_PLUS) |
| return true; |
| else |
| return false; |
| } |
| |
| /* Parse an Objective-C protocol qualifier. */ |
| |
| static tree |
| cp_parser_objc_protocol_qualifiers (cp_parser* parser) |
| { |
| tree quals = NULL_TREE, node; |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| node = token->u.value; |
| |
| while (node && TREE_CODE (node) == IDENTIFIER_NODE |
| && (node == ridpointers [(int) RID_IN] |
| || node == ridpointers [(int) RID_OUT] |
| || node == ridpointers [(int) RID_INOUT] |
| || node == ridpointers [(int) RID_BYCOPY] |
| || node == ridpointers [(int) RID_BYREF] |
| || node == ridpointers [(int) RID_ONEWAY])) |
| { |
| quals = tree_cons (NULL_TREE, node, quals); |
| cp_lexer_consume_token (parser->lexer); |
| token = cp_lexer_peek_token (parser->lexer); |
| node = token->u.value; |
| } |
| |
| return quals; |
| } |
| |
| /* Parse an Objective-C typename. */ |
| |
| static tree |
| cp_parser_objc_typename (cp_parser* parser) |
| { |
| tree type_name = NULL_TREE; |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)) |
| { |
| tree proto_quals, cp_type = NULL_TREE; |
| |
| cp_lexer_consume_token (parser->lexer); /* Eat '('. */ |
| proto_quals = cp_parser_objc_protocol_qualifiers (parser); |
| |
| /* An ObjC type name may consist of just protocol qualifiers, in which |
| case the type shall default to 'id'. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)) |
| { |
| cp_type = cp_parser_type_id (parser); |
| |
| /* If the type could not be parsed, an error has already |
| been produced. For error recovery, behave as if it had |
| not been specified, which will use the default type |
| 'id'. */ |
| if (cp_type == error_mark_node) |
| { |
| cp_type = NULL_TREE; |
| /* We need to skip to the closing parenthesis as |
| cp_parser_type_id() does not seem to do it for |
| us. */ |
| cp_parser_skip_to_closing_parenthesis (parser, |
| /*recovering=*/true, |
| /*or_comma=*/false, |
| /*consume_paren=*/false); |
| } |
| } |
| |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| type_name = build_tree_list (proto_quals, cp_type); |
| } |
| |
| return type_name; |
| } |
| |
| /* Check to see if TYPE refers to an Objective-C selector name. */ |
| |
| static bool |
| cp_parser_objc_selector_p (enum cpp_ttype type) |
| { |
| return (type == CPP_NAME || type == CPP_KEYWORD |
| || type == CPP_AND_AND || type == CPP_AND_EQ || type == CPP_AND |
| || type == CPP_OR || type == CPP_COMPL || type == CPP_NOT |
| || type == CPP_NOT_EQ || type == CPP_OR_OR || type == CPP_OR_EQ |
| || type == CPP_XOR || type == CPP_XOR_EQ); |
| } |
| |
| /* Parse an Objective-C selector. */ |
| |
| static tree |
| cp_parser_objc_selector (cp_parser* parser) |
| { |
| cp_token *token = cp_lexer_consume_token (parser->lexer); |
| |
| if (!cp_parser_objc_selector_p (token->type)) |
| { |
| error_at (token->location, "invalid Objective-C++ selector name"); |
| return error_mark_node; |
| } |
| |
| /* C++ operator names are allowed to appear in ObjC selectors. */ |
| switch (token->type) |
| { |
| case CPP_AND_AND: return get_identifier ("and"); |
| case CPP_AND_EQ: return get_identifier ("and_eq"); |
| case CPP_AND: return get_identifier ("bitand"); |
| case CPP_OR: return get_identifier ("bitor"); |
| case CPP_COMPL: return get_identifier ("compl"); |
| case CPP_NOT: return get_identifier ("not"); |
| case CPP_NOT_EQ: return get_identifier ("not_eq"); |
| case CPP_OR_OR: return get_identifier ("or"); |
| case CPP_OR_EQ: return get_identifier ("or_eq"); |
| case CPP_XOR: return get_identifier ("xor"); |
| case CPP_XOR_EQ: return get_identifier ("xor_eq"); |
| default: return token->u.value; |
| } |
| } |
| |
| /* Parse an Objective-C params list. */ |
| |
| static tree |
| cp_parser_objc_method_keyword_params (cp_parser* parser, tree* attributes) |
| { |
| tree params = NULL_TREE; |
| bool maybe_unary_selector_p = true; |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON) |
| { |
| tree selector = NULL_TREE, type_name, identifier; |
| tree parm_attr = NULL_TREE; |
| |
| if (token->keyword == RID_ATTRIBUTE) |
| break; |
| |
| if (token->type != CPP_COLON) |
| selector = cp_parser_objc_selector (parser); |
| |
| /* Detect if we have a unary selector. */ |
| if (maybe_unary_selector_p |
| && cp_lexer_next_token_is_not (parser->lexer, CPP_COLON)) |
| { |
| params = selector; /* Might be followed by attributes. */ |
| break; |
| } |
| |
| maybe_unary_selector_p = false; |
| if (!cp_parser_require (parser, CPP_COLON, RT_COLON)) |
| { |
| /* Something went quite wrong. There should be a colon |
| here, but there is not. Stop parsing parameters. */ |
| break; |
| } |
| type_name = cp_parser_objc_typename (parser); |
| /* New ObjC allows attributes on parameters too. */ |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE)) |
| parm_attr = cp_parser_attributes_opt (parser); |
| identifier = cp_parser_identifier (parser); |
| |
| params |
| = chainon (params, |
| objc_build_keyword_decl (selector, |
| type_name, |
| identifier, |
| parm_attr)); |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| } |
| |
| if (params == NULL_TREE) |
| { |
| cp_parser_error (parser, "objective-c++ method declaration is expected"); |
| return error_mark_node; |
| } |
| |
| /* We allow tail attributes for the method. */ |
| if (token->keyword == RID_ATTRIBUTE) |
| { |
| *attributes = cp_parser_attributes_opt (parser); |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON) |
| || cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| return params; |
| cp_parser_error (parser, |
| "method attributes must be specified at the end"); |
| return error_mark_node; |
| } |
| |
| if (params == NULL_TREE) |
| { |
| cp_parser_error (parser, "objective-c++ method declaration is expected"); |
| return error_mark_node; |
| } |
| return params; |
| } |
| |
| /* Parse the non-keyword Objective-C params. */ |
| |
| static tree |
| cp_parser_objc_method_tail_params_opt (cp_parser* parser, bool *ellipsisp, |
| tree* attributes) |
| { |
| tree params = make_node (TREE_LIST); |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| *ellipsisp = false; /* Initially, assume no ellipsis. */ |
| |
| while (token->type == CPP_COMMA) |
| { |
| cp_parameter_declarator *parmdecl; |
| tree parm; |
| |
| cp_lexer_consume_token (parser->lexer); /* Eat ','. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| if (token->type == CPP_ELLIPSIS) |
| { |
| cp_lexer_consume_token (parser->lexer); /* Eat '...'. */ |
| *ellipsisp = true; |
| token = cp_lexer_peek_token (parser->lexer); |
| break; |
| } |
| |
| /* TODO: parse attributes for tail parameters. */ |
| parmdecl = cp_parser_parameter_declaration (parser, false, NULL); |
| parm = grokdeclarator (parmdecl->declarator, |
| &parmdecl->decl_specifiers, |
| PARM, /*initialized=*/0, |
| /*attrlist=*/NULL); |
| |
| chainon (params, build_tree_list (NULL_TREE, parm)); |
| token = cp_lexer_peek_token (parser->lexer); |
| } |
| |
| /* We allow tail attributes for the method. */ |
| if (token->keyword == RID_ATTRIBUTE) |
| { |
| if (*attributes == NULL_TREE) |
| { |
| *attributes = cp_parser_attributes_opt (parser); |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON) |
| || cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| return params; |
| } |
| else |
| /* We have an error, but parse the attributes, so that we can |
| carry on. */ |
| *attributes = cp_parser_attributes_opt (parser); |
| |
| cp_parser_error (parser, |
| "method attributes must be specified at the end"); |
| return error_mark_node; |
| } |
| |
| return params; |
| } |
| |
| /* Parse a linkage specification, a pragma, an extra semicolon or a block. */ |
| |
| static void |
| cp_parser_objc_interstitial_code (cp_parser* parser) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| /* If the next token is `extern' and the following token is a string |
| literal, then we have a linkage specification. */ |
| if (token->keyword == RID_EXTERN |
| && cp_parser_is_string_literal (cp_lexer_peek_nth_token (parser->lexer, 2))) |
| cp_parser_linkage_specification (parser); |
| /* Handle #pragma, if any. */ |
| else if (token->type == CPP_PRAGMA) |
| cp_parser_pragma (parser, pragma_external); |
| /* Allow stray semicolons. */ |
| else if (token->type == CPP_SEMICOLON) |
| cp_lexer_consume_token (parser->lexer); |
| /* Mark methods as optional or required, when building protocols. */ |
| else if (token->keyword == RID_AT_OPTIONAL) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| objc_set_method_opt (true); |
| } |
| else if (token->keyword == RID_AT_REQUIRED) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| objc_set_method_opt (false); |
| } |
| else if (token->keyword == RID_NAMESPACE) |
| cp_parser_namespace_definition (parser); |
| /* Other stray characters must generate errors. */ |
| else if (token->type == CPP_OPEN_BRACE || token->type == CPP_CLOSE_BRACE) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| error ("stray %qs between Objective-C++ methods", |
| token->type == CPP_OPEN_BRACE ? "{" : "}"); |
| } |
| /* Finally, try to parse a block-declaration, or a function-definition. */ |
| else |
| cp_parser_block_declaration (parser, /*statement_p=*/false); |
| } |
| |
| /* Parse a method signature. */ |
| |
| static tree |
| cp_parser_objc_method_signature (cp_parser* parser, tree* attributes) |
| { |
| tree rettype, kwdparms, optparms; |
| bool ellipsis = false; |
| bool is_class_method; |
| |
| is_class_method = cp_parser_objc_method_type (parser); |
| rettype = cp_parser_objc_typename (parser); |
| *attributes = NULL_TREE; |
| kwdparms = cp_parser_objc_method_keyword_params (parser, attributes); |
| if (kwdparms == error_mark_node) |
| return error_mark_node; |
| optparms = cp_parser_objc_method_tail_params_opt (parser, &ellipsis, attributes); |
| if (optparms == error_mark_node) |
| return error_mark_node; |
| |
| return objc_build_method_signature (is_class_method, rettype, kwdparms, optparms, ellipsis); |
| } |
| |
| static bool |
| cp_parser_objc_method_maybe_bad_prefix_attributes (cp_parser* parser) |
| { |
| tree tattr; |
| cp_lexer_save_tokens (parser->lexer); |
| tattr = cp_parser_attributes_opt (parser); |
| gcc_assert (tattr) ; |
| |
| /* If the attributes are followed by a method introducer, this is not allowed. |
| Dump the attributes and flag the situation. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_PLUS) |
| || cp_lexer_next_token_is (parser->lexer, CPP_MINUS)) |
| return true; |
| |
| /* Otherwise, the attributes introduce some interstitial code, possibly so |
| rewind to allow that check. */ |
| cp_lexer_rollback_tokens (parser->lexer); |
| return false; |
| } |
| |
| /* Parse an Objective-C method prototype list. */ |
| |
| static void |
| cp_parser_objc_method_prototype_list (cp_parser* parser) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| while (token->keyword != RID_AT_END && token->type != CPP_EOF) |
| { |
| if (token->type == CPP_PLUS || token->type == CPP_MINUS) |
| { |
| tree attributes, sig; |
| bool is_class_method; |
| if (token->type == CPP_PLUS) |
| is_class_method = true; |
| else |
| is_class_method = false; |
| sig = cp_parser_objc_method_signature (parser, &attributes); |
| if (sig == error_mark_node) |
| { |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| token = cp_lexer_peek_token (parser->lexer); |
| continue; |
| } |
| objc_add_method_declaration (is_class_method, sig, attributes); |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| } |
| else if (token->keyword == RID_AT_PROPERTY) |
| cp_parser_objc_at_property_declaration (parser); |
| else if (token->keyword == RID_ATTRIBUTE |
| && cp_parser_objc_method_maybe_bad_prefix_attributes(parser)) |
| warning_at (cp_lexer_peek_token (parser->lexer)->location, |
| OPT_Wattributes, |
| "prefix attributes are ignored for methods"); |
| else |
| /* Allow for interspersed non-ObjC++ code. */ |
| cp_parser_objc_interstitial_code (parser); |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| } |
| |
| if (token->type != CPP_EOF) |
| cp_lexer_consume_token (parser->lexer); /* Eat '@end'. */ |
| else |
| cp_parser_error (parser, "expected %<@end%>"); |
| |
| objc_finish_interface (); |
| } |
| |
| /* Parse an Objective-C method definition list. */ |
| |
| static void |
| cp_parser_objc_method_definition_list (cp_parser* parser) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| while (token->keyword != RID_AT_END && token->type != CPP_EOF) |
| { |
| tree meth; |
| |
| if (token->type == CPP_PLUS || token->type == CPP_MINUS) |
| { |
| cp_token *ptk; |
| tree sig, attribute; |
| bool is_class_method; |
| if (token->type == CPP_PLUS) |
| is_class_method = true; |
| else |
| is_class_method = false; |
| push_deferring_access_checks (dk_deferred); |
| sig = cp_parser_objc_method_signature (parser, &attribute); |
| if (sig == error_mark_node) |
| { |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| token = cp_lexer_peek_token (parser->lexer); |
| continue; |
| } |
| objc_start_method_definition (is_class_method, sig, attribute, |
| NULL_TREE); |
| |
| /* For historical reasons, we accept an optional semicolon. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)) |
| cp_lexer_consume_token (parser->lexer); |
| |
| ptk = cp_lexer_peek_token (parser->lexer); |
| if (!(ptk->type == CPP_PLUS || ptk->type == CPP_MINUS |
| || ptk->type == CPP_EOF || ptk->keyword == RID_AT_END)) |
| { |
| perform_deferred_access_checks (); |
| stop_deferring_access_checks (); |
| meth = cp_parser_function_definition_after_declarator (parser, |
| false); |
| pop_deferring_access_checks (); |
| objc_finish_method_definition (meth); |
| } |
| } |
| /* The following case will be removed once @synthesize is |
| completely implemented. */ |
| else if (token->keyword == RID_AT_PROPERTY) |
| cp_parser_objc_at_property_declaration (parser); |
| else if (token->keyword == RID_AT_SYNTHESIZE) |
| cp_parser_objc_at_synthesize_declaration (parser); |
| else if (token->keyword == RID_AT_DYNAMIC) |
| cp_parser_objc_at_dynamic_declaration (parser); |
| else if (token->keyword == RID_ATTRIBUTE |
| && cp_parser_objc_method_maybe_bad_prefix_attributes(parser)) |
| warning_at (token->location, OPT_Wattributes, |
| "prefix attributes are ignored for methods"); |
| else |
| /* Allow for interspersed non-ObjC++ code. */ |
| cp_parser_objc_interstitial_code (parser); |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| } |
| |
| if (token->type != CPP_EOF) |
| cp_lexer_consume_token (parser->lexer); /* Eat '@end'. */ |
| else |
| cp_parser_error (parser, "expected %<@end%>"); |
| |
| objc_finish_implementation (); |
| } |
| |
| /* Parse Objective-C ivars. */ |
| |
| static void |
| cp_parser_objc_class_ivars (cp_parser* parser) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| |
| if (token->type != CPP_OPEN_BRACE) |
| return; /* No ivars specified. */ |
| |
| cp_lexer_consume_token (parser->lexer); /* Eat '{'. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| while (token->type != CPP_CLOSE_BRACE |
| && token->keyword != RID_AT_END && token->type != CPP_EOF) |
| { |
| cp_decl_specifier_seq declspecs; |
| int decl_class_or_enum_p; |
| tree prefix_attributes; |
| |
| cp_parser_objc_visibility_spec (parser); |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE)) |
| break; |
| |
| cp_parser_decl_specifier_seq (parser, |
| CP_PARSER_FLAGS_OPTIONAL, |
| &declspecs, |
| &decl_class_or_enum_p); |
| |
| /* auto, register, static, extern, mutable. */ |
| if (declspecs.storage_class != sc_none) |
| { |
| cp_parser_error (parser, "invalid type for instance variable"); |
| declspecs.storage_class = sc_none; |
| } |
| |
| /* __thread. */ |
| if (declspecs.specs[(int) ds_thread]) |
| { |
| cp_parser_error (parser, "invalid type for instance variable"); |
| declspecs.specs[(int) ds_thread] = 0; |
| } |
| |
| /* typedef. */ |
| if (declspecs.specs[(int) ds_typedef]) |
| { |
| cp_parser_error (parser, "invalid type for instance variable"); |
| declspecs.specs[(int) ds_typedef] = 0; |
| } |
| |
| prefix_attributes = declspecs.attributes; |
| declspecs.attributes = NULL_TREE; |
| |
| /* Keep going until we hit the `;' at the end of the |
| declaration. */ |
| while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)) |
| { |
| tree width = NULL_TREE, attributes, first_attribute, decl; |
| cp_declarator *declarator = NULL; |
| int ctor_dtor_or_conv_p; |
| |
| /* Check for a (possibly unnamed) bitfield declaration. */ |
| token = cp_lexer_peek_token (parser->lexer); |
| if (token->type == CPP_COLON) |
| goto eat_colon; |
| |
| if (token->type == CPP_NAME |
| && (cp_lexer_peek_nth_token (parser->lexer, 2)->type |
| == CPP_COLON)) |
| { |
| /* Get the name of the bitfield. */ |
| declarator = make_id_declarator (NULL_TREE, |
| cp_parser_identifier (parser), |
| sfk_none); |
| |
| eat_colon: |
| cp_lexer_consume_token (parser->lexer); /* Eat ':'. */ |
| /* Get the width of the bitfield. */ |
| width |
| = cp_parser_constant_expression (parser, |
| /*allow_non_constant=*/false, |
| NULL); |
| } |
| else |
| { |
| /* Parse the declarator. */ |
| declarator |
| = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED, |
| &ctor_dtor_or_conv_p, |
| /*parenthesized_p=*/NULL, |
| /*member_p=*/false); |
| } |
| |
| /* Look for attributes that apply to the ivar. */ |
| attributes = cp_parser_attributes_opt (parser); |
| /* Remember which attributes are prefix attributes and |
| which are not. */ |
| first_attribute = attributes; |
| /* Combine the attributes. */ |
| attributes = chainon (prefix_attributes, attributes); |
| |
| if (width) |
| /* Create the bitfield declaration. */ |
| decl = grokbitfield (declarator, &declspecs, |
| width, |
| attributes); |
| else |
| decl = grokfield (declarator, &declspecs, |
| NULL_TREE, /*init_const_expr_p=*/false, |
| NULL_TREE, attributes); |
| |
| /* Add the instance variable. */ |
| if (decl != error_mark_node && decl != NULL_TREE) |
| objc_add_instance_variable (decl); |
| |
| /* Reset PREFIX_ATTRIBUTES. */ |
| while (attributes && TREE_CHAIN (attributes) != first_attribute) |
| attributes = TREE_CHAIN (attributes); |
| if (attributes) |
| TREE_CHAIN (attributes) = NULL_TREE; |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| |
| if (token->type == CPP_COMMA) |
| { |
| cp_lexer_consume_token (parser->lexer); /* Eat ','. */ |
| continue; |
| } |
| break; |
| } |
| |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| token = cp_lexer_peek_token (parser->lexer); |
| } |
| |
| if (token->keyword == RID_AT_END) |
| cp_parser_error (parser, "expected %<}%>"); |
| |
| /* Do not consume the RID_AT_END, so it will be read again as terminating |
| the @interface of @implementation. */ |
| if (token->keyword != RID_AT_END && token->type != CPP_EOF) |
| cp_lexer_consume_token (parser->lexer); /* Eat '}'. */ |
| |
| /* For historical reasons, we accept an optional semicolon. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)) |
| cp_lexer_consume_token (parser->lexer); |
| } |
| |
| /* Parse an Objective-C protocol declaration. */ |
| |
| static void |
| cp_parser_objc_protocol_declaration (cp_parser* parser, tree attributes) |
| { |
| tree proto, protorefs; |
| cp_token *tok; |
| |
| cp_lexer_consume_token (parser->lexer); /* Eat '@protocol'. */ |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)) |
| { |
| tok = cp_lexer_peek_token (parser->lexer); |
| error_at (tok->location, "identifier expected after %<@protocol%>"); |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| return; |
| } |
| |
| /* See if we have a forward declaration or a definition. */ |
| tok = cp_lexer_peek_nth_token (parser->lexer, 2); |
| |
| /* Try a forward declaration first. */ |
| if (tok->type == CPP_COMMA || tok->type == CPP_SEMICOLON) |
| { |
| while (true) |
| { |
| tree id; |
| |
| id = cp_parser_identifier (parser); |
| if (id == error_mark_node) |
| break; |
| |
| objc_declare_protocol (id, attributes); |
| |
| if(cp_lexer_next_token_is (parser->lexer, CPP_COMMA)) |
| cp_lexer_consume_token (parser->lexer); |
| else |
| break; |
| } |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| } |
| |
| /* Ok, we got a full-fledged definition (or at least should). */ |
| else |
| { |
| proto = cp_parser_identifier (parser); |
| protorefs = cp_parser_objc_protocol_refs_opt (parser); |
| objc_start_protocol (proto, protorefs, attributes); |
| cp_parser_objc_method_prototype_list (parser); |
| } |
| } |
| |
| /* Parse an Objective-C superclass or category. */ |
| |
| static void |
| cp_parser_objc_superclass_or_category (cp_parser *parser, |
| bool iface_p, |
| tree *super, |
| tree *categ, bool *is_class_extension) |
| { |
| cp_token *next = cp_lexer_peek_token (parser->lexer); |
| |
| *super = *categ = NULL_TREE; |
| *is_class_extension = false; |
| if (next->type == CPP_COLON) |
| { |
| cp_lexer_consume_token (parser->lexer); /* Eat ':'. */ |
| *super = cp_parser_identifier (parser); |
| } |
| else if (next->type == CPP_OPEN_PAREN) |
| { |
| cp_lexer_consume_token (parser->lexer); /* Eat '('. */ |
| |
| /* If there is no category name, and this is an @interface, we |
| have a class extension. */ |
| if (iface_p && cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)) |
| { |
| *categ = NULL_TREE; |
| *is_class_extension = true; |
| } |
| else |
| *categ = cp_parser_identifier (parser); |
| |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| } |
| } |
| |
| /* Parse an Objective-C class interface. */ |
| |
| static void |
| cp_parser_objc_class_interface (cp_parser* parser, tree attributes) |
| { |
| tree name, super, categ, protos; |
| bool is_class_extension; |
| |
| cp_lexer_consume_token (parser->lexer); /* Eat '@interface'. */ |
| name = cp_parser_identifier (parser); |
| if (name == error_mark_node) |
| { |
| /* It's hard to recover because even if valid @interface stuff |
| is to follow, we can't compile it (or validate it) if we |
| don't even know which class it refers to. Let's assume this |
| was a stray '@interface' token in the stream and skip it. |
| */ |
| return; |
| } |
| cp_parser_objc_superclass_or_category (parser, true, &super, &categ, |
| &is_class_extension); |
| protos = cp_parser_objc_protocol_refs_opt (parser); |
| |
| /* We have either a class or a category on our hands. */ |
| if (categ || is_class_extension) |
| objc_start_category_interface (name, categ, protos, attributes); |
| else |
| { |
| objc_start_class_interface (name, super, protos, attributes); |
| /* Handle instance variable declarations, if any. */ |
| cp_parser_objc_class_ivars (parser); |
| objc_continue_interface (); |
| } |
| |
| cp_parser_objc_method_prototype_list (parser); |
| } |
| |
| /* Parse an Objective-C class implementation. */ |
| |
| static void |
| cp_parser_objc_class_implementation (cp_parser* parser) |
| { |
| tree name, super, categ; |
| bool is_class_extension; |
| |
| cp_lexer_consume_token (parser->lexer); /* Eat '@implementation'. */ |
| name = cp_parser_identifier (parser); |
| if (name == error_mark_node) |
| { |
| /* It's hard to recover because even if valid @implementation |
| stuff is to follow, we can't compile it (or validate it) if |
| we don't even know which class it refers to. Let's assume |
| this was a stray '@implementation' token in the stream and |
| skip it. |
| */ |
| return; |
| } |
| cp_parser_objc_superclass_or_category (parser, false, &super, &categ, |
| &is_class_extension); |
| |
| /* We have either a class or a category on our hands. */ |
| if (categ) |
| objc_start_category_implementation (name, categ); |
| else |
| { |
| objc_start_class_implementation (name, super); |
| /* Handle instance variable declarations, if any. */ |
| cp_parser_objc_class_ivars (parser); |
| objc_continue_implementation (); |
| } |
| |
| cp_parser_objc_method_definition_list (parser); |
| } |
| |
| /* Consume the @end token and finish off the implementation. */ |
| |
| static void |
| cp_parser_objc_end_implementation (cp_parser* parser) |
| { |
| cp_lexer_consume_token (parser->lexer); /* Eat '@end'. */ |
| objc_finish_implementation (); |
| } |
| |
| /* Parse an Objective-C declaration. */ |
| |
| static void |
| cp_parser_objc_declaration (cp_parser* parser, tree attributes) |
| { |
| /* Try to figure out what kind of declaration is present. */ |
| cp_token *kwd = cp_lexer_peek_token (parser->lexer); |
| |
| if (attributes) |
| switch (kwd->keyword) |
| { |
| case RID_AT_ALIAS: |
| case RID_AT_CLASS: |
| case RID_AT_END: |
| error_at (kwd->location, "attributes may not be specified before" |
| " the %<@%D%> Objective-C++ keyword", |
| kwd->u.value); |
| attributes = NULL; |
| break; |
| case RID_AT_IMPLEMENTATION: |
| warning_at (kwd->location, OPT_Wattributes, |
| "prefix attributes are ignored before %<@%D%>", |
| kwd->u.value); |
| attributes = NULL; |
| default: |
| break; |
| } |
| |
| switch (kwd->keyword) |
| { |
| case RID_AT_ALIAS: |
| cp_parser_objc_alias_declaration (parser); |
| break; |
| case RID_AT_CLASS: |
| cp_parser_objc_class_declaration (parser); |
| break; |
| case RID_AT_PROTOCOL: |
| cp_parser_objc_protocol_declaration (parser, attributes); |
| break; |
| case RID_AT_INTERFACE: |
| cp_parser_objc_class_interface (parser, attributes); |
| break; |
| case RID_AT_IMPLEMENTATION: |
| cp_parser_objc_class_implementation (parser); |
| break; |
| case RID_AT_END: |
| cp_parser_objc_end_implementation (parser); |
| break; |
| default: |
| error_at (kwd->location, "misplaced %<@%D%> Objective-C++ construct", |
| kwd->u.value); |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| } |
| } |
| |
| /* Parse an Objective-C try-catch-finally statement. |
| |
| objc-try-catch-finally-stmt: |
| @try compound-statement objc-catch-clause-seq [opt] |
| objc-finally-clause [opt] |
| |
| objc-catch-clause-seq: |
| objc-catch-clause objc-catch-clause-seq [opt] |
| |
| objc-catch-clause: |
| @catch ( objc-exception-declaration ) compound-statement |
| |
| objc-finally-clause: |
| @finally compound-statement |
| |
| objc-exception-declaration: |
| parameter-declaration |
| '...' |
| |
| where '...' is to be interpreted literally, that is, it means CPP_ELLIPSIS. |
| |
| Returns NULL_TREE. |
| |
| PS: This function is identical to c_parser_objc_try_catch_finally_statement |
| for C. Keep them in sync. */ |
| |
| static tree |
| cp_parser_objc_try_catch_finally_statement (cp_parser *parser) |
| { |
| location_t location; |
| tree stmt; |
| |
| cp_parser_require_keyword (parser, RID_AT_TRY, RT_AT_TRY); |
| location = cp_lexer_peek_token (parser->lexer)->location; |
| objc_maybe_warn_exceptions (location); |
| /* NB: The @try block needs to be wrapped in its own STATEMENT_LIST |
| node, lest it get absorbed into the surrounding block. */ |
| stmt = push_stmt_list (); |
| cp_parser_compound_statement (parser, NULL, false, false); |
| objc_begin_try_stmt (location, pop_stmt_list (stmt)); |
| |
| while (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_CATCH)) |
| { |
| cp_parameter_declarator *parm; |
| tree parameter_declaration = error_mark_node; |
| bool seen_open_paren = false; |
| |
| cp_lexer_consume_token (parser->lexer); |
| if (cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN)) |
| seen_open_paren = true; |
| if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)) |
| { |
| /* We have "@catch (...)" (where the '...' are literally |
| what is in the code). Skip the '...'. |
| parameter_declaration is set to NULL_TREE, and |
| objc_being_catch_clauses() knows that that means |
| '...'. */ |
| cp_lexer_consume_token (parser->lexer); |
| parameter_declaration = NULL_TREE; |
| } |
| else |
| { |
| /* We have "@catch (NSException *exception)" or something |
| like that. Parse the parameter declaration. */ |
| parm = cp_parser_parameter_declaration (parser, false, NULL); |
| if (parm == NULL) |
| parameter_declaration = error_mark_node; |
| else |
| parameter_declaration = grokdeclarator (parm->declarator, |
| &parm->decl_specifiers, |
| PARM, /*initialized=*/0, |
| /*attrlist=*/NULL); |
| } |
| if (seen_open_paren) |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| else |
| { |
| /* If there was no open parenthesis, we are recovering from |
| an error, and we are trying to figure out what mistake |
| the user has made. */ |
| |
| /* If there is an immediate closing parenthesis, the user |
| probably forgot the opening one (ie, they typed "@catch |
| NSException *e)". Parse the closing parenthesis and keep |
| going. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)) |
| cp_lexer_consume_token (parser->lexer); |
| |
| /* If these is no immediate closing parenthesis, the user |
| probably doesn't know that parenthesis are required at |
| all (ie, they typed "@catch NSException *e"). So, just |
| forget about the closing parenthesis and keep going. */ |
| } |
| objc_begin_catch_clause (parameter_declaration); |
| cp_parser_compound_statement (parser, NULL, false, false); |
| objc_finish_catch_clause (); |
| } |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_FINALLY)) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| location = cp_lexer_peek_token (parser->lexer)->location; |
| /* NB: The @finally block needs to be wrapped in its own STATEMENT_LIST |
| node, lest it get absorbed into the surrounding block. */ |
| stmt = push_stmt_list (); |
| cp_parser_compound_statement (parser, NULL, false, false); |
| objc_build_finally_clause (location, pop_stmt_list (stmt)); |
| } |
| |
| return objc_finish_try_stmt (); |
| } |
| |
| /* Parse an Objective-C synchronized statement. |
| |
| objc-synchronized-stmt: |
| @synchronized ( expression ) compound-statement |
| |
| Returns NULL_TREE. */ |
| |
| static tree |
| cp_parser_objc_synchronized_statement (cp_parser *parser) |
| { |
| location_t location; |
| tree lock, stmt; |
| |
| cp_parser_require_keyword (parser, RID_AT_SYNCHRONIZED, RT_AT_SYNCHRONIZED); |
| |
| location = cp_lexer_peek_token (parser->lexer)->location; |
| objc_maybe_warn_exceptions (location); |
| cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN); |
| lock = cp_parser_expression (parser, false, NULL); |
| cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN); |
| |
| /* NB: The @synchronized block needs to be wrapped in its own STATEMENT_LIST |
| node, lest it get absorbed into the surrounding block. */ |
| stmt = push_stmt_list (); |
| cp_parser_compound_statement (parser, NULL, false, false); |
| |
| return objc_build_synchronized (location, lock, pop_stmt_list (stmt)); |
| } |
| |
| /* Parse an Objective-C throw statement. |
| |
| objc-throw-stmt: |
| @throw assignment-expression [opt] ; |
| |
| Returns a constructed '@throw' statement. */ |
| |
| static tree |
| cp_parser_objc_throw_statement (cp_parser *parser) |
| { |
| tree expr = NULL_TREE; |
| location_t loc = cp_lexer_peek_token (parser->lexer)->location; |
| |
| cp_parser_require_keyword (parser, RID_AT_THROW, RT_AT_THROW); |
| |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)) |
| expr = cp_parser_expression (parser, /*cast_p=*/false, NULL); |
| |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| |
| return objc_build_throw_stmt (loc, expr); |
| } |
| |
| /* Parse an Objective-C statement. */ |
| |
| static tree |
| cp_parser_objc_statement (cp_parser * parser) |
| { |
| /* Try to figure out what kind of declaration is present. */ |
| cp_token *kwd = cp_lexer_peek_token (parser->lexer); |
| |
| switch (kwd->keyword) |
| { |
| case RID_AT_TRY: |
| return cp_parser_objc_try_catch_finally_statement (parser); |
| case RID_AT_SYNCHRONIZED: |
| return cp_parser_objc_synchronized_statement (parser); |
| case RID_AT_THROW: |
| return cp_parser_objc_throw_statement (parser); |
| default: |
| error_at (kwd->location, "misplaced %<@%D%> Objective-C++ construct", |
| kwd->u.value); |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| } |
| |
| return error_mark_node; |
| } |
| |
| /* If we are compiling ObjC++ and we see an __attribute__ we neeed to |
| look ahead to see if an objc keyword follows the attributes. This |
| is to detect the use of prefix attributes on ObjC @interface and |
| @protocol. */ |
| |
| static bool |
| cp_parser_objc_valid_prefix_attributes (cp_parser* parser, tree *attrib) |
| { |
| cp_lexer_save_tokens (parser->lexer); |
| *attrib = cp_parser_attributes_opt (parser); |
| gcc_assert (*attrib); |
| if (OBJC_IS_AT_KEYWORD (cp_lexer_peek_token (parser->lexer)->keyword)) |
| { |
| cp_lexer_commit_tokens (parser->lexer); |
| return true; |
| } |
| cp_lexer_rollback_tokens (parser->lexer); |
| return false; |
| } |
| |
| /* This routine is a minimal replacement for |
| c_parser_struct_declaration () used when parsing the list of |
| types/names or ObjC++ properties. For example, when parsing the |
| code |
| |
| @property (readonly) int a, b, c; |
| |
| this function is responsible for parsing "int a, int b, int c" and |
| returning the declarations as CHAIN of DECLs. |
| |
| TODO: Share this code with cp_parser_objc_class_ivars. It's very |
| similar parsing. */ |
| static tree |
| cp_parser_objc_struct_declaration (cp_parser *parser) |
| { |
| tree decls = NULL_TREE; |
| cp_decl_specifier_seq declspecs; |
| int decl_class_or_enum_p; |
| tree prefix_attributes; |
| |
| cp_parser_decl_specifier_seq (parser, |
| CP_PARSER_FLAGS_NONE, |
| &declspecs, |
| &decl_class_or_enum_p); |
| |
| if (declspecs.type == error_mark_node) |
| return error_mark_node; |
| |
| /* auto, register, static, extern, mutable. */ |
| if (declspecs.storage_class != sc_none) |
| { |
| cp_parser_error (parser, "invalid type for property"); |
| declspecs.storage_class = sc_none; |
| } |
| |
| /* __thread. */ |
| if (declspecs.specs[(int) ds_thread]) |
| { |
| cp_parser_error (parser, "invalid type for property"); |
| declspecs.specs[(int) ds_thread] = 0; |
| } |
| |
| /* typedef. */ |
| if (declspecs.specs[(int) ds_typedef]) |
| { |
| cp_parser_error (parser, "invalid type for property"); |
| declspecs.specs[(int) ds_typedef] = 0; |
| } |
| |
| prefix_attributes = declspecs.attributes; |
| declspecs.attributes = NULL_TREE; |
| |
| /* Keep going until we hit the `;' at the end of the declaration. */ |
| while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)) |
| { |
| tree attributes, first_attribute, decl; |
| cp_declarator *declarator; |
| cp_token *token; |
| |
| /* Parse the declarator. */ |
| declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED, |
| NULL, NULL, false); |
| |
| /* Look for attributes that apply to the ivar. */ |
| attributes = cp_parser_attributes_opt (parser); |
| /* Remember which attributes are prefix attributes and |
| which are not. */ |
| first_attribute = attributes; |
| /* Combine the attributes. */ |
| attributes = chainon (prefix_attributes, attributes); |
| |
| decl = grokfield (declarator, &declspecs, |
| NULL_TREE, /*init_const_expr_p=*/false, |
| NULL_TREE, attributes); |
| |
| if (decl == error_mark_node || decl == NULL_TREE) |
| return error_mark_node; |
| |
| /* Reset PREFIX_ATTRIBUTES. */ |
| while (attributes && TREE_CHAIN (attributes) != first_attribute) |
| attributes = TREE_CHAIN (attributes); |
| if (attributes) |
| TREE_CHAIN (attributes) = NULL_TREE; |
| |
| DECL_CHAIN (decl) = decls; |
| decls = decl; |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| if (token->type == CPP_COMMA) |
| { |
| cp_lexer_consume_token (parser->lexer); /* Eat ','. */ |
| continue; |
| } |
| else |
| break; |
| } |
| return decls; |
| } |
| |
| /* Parse an Objective-C @property declaration. The syntax is: |
| |
| objc-property-declaration: |
| '@property' objc-property-attributes[opt] struct-declaration ; |
| |
| objc-property-attributes: |
| '(' objc-property-attribute-list ')' |
| |
| objc-property-attribute-list: |
| objc-property-attribute |
| objc-property-attribute-list, objc-property-attribute |
| |
| objc-property-attribute |
| 'getter' = identifier |
| 'setter' = identifier |
| 'readonly' |
| 'readwrite' |
| 'assign' |
| 'retain' |
| 'copy' |
| 'nonatomic' |
| |
| For example: |
| @property NSString *name; |
| @property (readonly) id object; |
| @property (retain, nonatomic, getter=getTheName) id name; |
| @property int a, b, c; |
| |
| PS: This function is identical to |
| c_parser_objc_at_property_declaration for C. Keep them in sync. */ |
| static void |
| cp_parser_objc_at_property_declaration (cp_parser *parser) |
| { |
| /* The following variables hold the attributes of the properties as |
| parsed. They are 'false' or 'NULL_TREE' if the attribute was not |
| seen. When we see an attribute, we set them to 'true' (if they |
| are boolean properties) or to the identifier (if they have an |
| argument, ie, for getter and setter). Note that here we only |
| parse the list of attributes, check the syntax and accumulate the |
| attributes that we find. objc_add_property_declaration() will |
| then process the information. */ |
| bool property_assign = false; |
| bool property_copy = false; |
| tree property_getter_ident = NULL_TREE; |
| bool property_nonatomic = false; |
| bool property_readonly = false; |
| bool property_readwrite = false; |
| bool property_retain = false; |
| tree property_setter_ident = NULL_TREE; |
| |
| /* 'properties' is the list of properties that we read. Usually a |
| single one, but maybe more (eg, in "@property int a, b, c;" there |
| are three). */ |
| tree properties; |
| location_t loc; |
| |
| loc = cp_lexer_peek_token (parser->lexer)->location; |
| |
| cp_lexer_consume_token (parser->lexer); /* Eat '@property'. */ |
| |
| /* Parse the optional attribute list... */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)) |
| { |
| /* Eat the '('. */ |
| cp_lexer_consume_token (parser->lexer); |
| |
| while (true) |
| { |
| bool syntax_error = false; |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| enum rid keyword; |
| |
| if (token->type != CPP_NAME) |
| { |
| cp_parser_error (parser, "expected identifier"); |
| break; |
| } |
| keyword = C_RID_CODE (token->u.value); |
| cp_lexer_consume_token (parser->lexer); |
| switch (keyword) |
| { |
| case RID_ASSIGN: property_assign = true; break; |
| case RID_COPY: property_copy = true; break; |
| case RID_NONATOMIC: property_nonatomic = true; break; |
| case RID_READONLY: property_readonly = true; break; |
| case RID_READWRITE: property_readwrite = true; break; |
| case RID_RETAIN: property_retain = true; break; |
| |
| case RID_GETTER: |
| case RID_SETTER: |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)) |
| { |
| if (keyword == RID_GETTER) |
| cp_parser_error (parser, |
| "missing %<=%> (after %<getter%> attribute)"); |
| else |
| cp_parser_error (parser, |
| "missing %<=%> (after %<setter%> attribute)"); |
| syntax_error = true; |
| break; |
| } |
| cp_lexer_consume_token (parser->lexer); /* eat the = */ |
| if (!cp_parser_objc_selector_p (cp_lexer_peek_token (parser->lexer)->type)) |
| { |
| cp_parser_error (parser, "expected identifier"); |
| syntax_error = true; |
| break; |
| } |
| if (keyword == RID_SETTER) |
| { |
| if (property_setter_ident != NULL_TREE) |
| { |
| cp_parser_error (parser, "the %<setter%> attribute may only be specified once"); |
| cp_lexer_consume_token (parser->lexer); |
| } |
| else |
| property_setter_ident = cp_parser_objc_selector (parser); |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON)) |
| cp_parser_error (parser, "setter name must terminate with %<:%>"); |
| else |
| cp_lexer_consume_token (parser->lexer); |
| } |
| else |
| { |
| if (property_getter_ident != NULL_TREE) |
| { |
| cp_parser_error (parser, "the %<getter%> attribute may only be specified once"); |
| cp_lexer_consume_token (parser->lexer); |
| } |
| else |
| property_getter_ident = cp_parser_objc_selector (parser); |
| } |
| break; |
| default: |
| cp_parser_error (parser, "unknown property attribute"); |
| syntax_error = true; |
| break; |
| } |
| |
| if (syntax_error) |
| break; |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA)) |
| cp_lexer_consume_token (parser->lexer); |
| else |
| break; |
| } |
| |
| /* FIXME: "@property (setter, assign);" will generate a spurious |
| "error: expected ‘)’ before ‘,’ token". This is because |
| cp_parser_require, unlike the C counterpart, will produce an |
| error even if we are in error recovery. */ |
| if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN)) |
| { |
| cp_parser_skip_to_closing_parenthesis (parser, |
| /*recovering=*/true, |
| /*or_comma=*/false, |
| /*consume_paren=*/true); |
| } |
| } |
| |
| /* ... and the property declaration(s). */ |
| properties = cp_parser_objc_struct_declaration (parser); |
| |
| if (properties == error_mark_node) |
| { |
| cp_parser_skip_to_end_of_statement (parser); |
| /* If the next token is now a `;', consume it. */ |
| if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)) |
| cp_lexer_consume_token (parser->lexer); |
| return; |
| } |
| |
| if (properties == NULL_TREE) |
| cp_parser_error (parser, "expected identifier"); |
| else |
| { |
| /* Comma-separated properties are chained together in |
| reverse order; add them one by one. */ |
| properties = nreverse (properties); |
| |
| for (; properties; properties = TREE_CHAIN (properties)) |
| objc_add_property_declaration (loc, copy_node (properties), |
| property_readonly, property_readwrite, |
| property_assign, property_retain, |
| property_copy, property_nonatomic, |
| property_getter_ident, property_setter_ident); |
| } |
| |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| } |
| |
| /* Parse an Objective-C++ @synthesize declaration. The syntax is: |
| |
| objc-synthesize-declaration: |
| @synthesize objc-synthesize-identifier-list ; |
| |
| objc-synthesize-identifier-list: |
| objc-synthesize-identifier |
| objc-synthesize-identifier-list, objc-synthesize-identifier |
| |
| objc-synthesize-identifier |
| identifier |
| identifier = identifier |
| |
| For example: |
| @synthesize MyProperty; |
| @synthesize OneProperty, AnotherProperty=MyIvar, YetAnotherProperty; |
| |
| PS: This function is identical to c_parser_objc_at_synthesize_declaration |
| for C. Keep them in sync. |
| */ |
| static void |
| cp_parser_objc_at_synthesize_declaration (cp_parser *parser) |
| { |
| tree list = NULL_TREE; |
| location_t loc; |
| loc = cp_lexer_peek_token (parser->lexer)->location; |
| |
| cp_lexer_consume_token (parser->lexer); /* Eat '@synthesize'. */ |
| while (true) |
| { |
| tree property, ivar; |
| property = cp_parser_identifier (parser); |
| if (property == error_mark_node) |
| { |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| return; |
| } |
| if (cp_lexer_next_token_is (parser->lexer, CPP_EQ)) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| ivar = cp_parser_identifier (parser); |
| if (ivar == error_mark_node) |
| { |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| return; |
| } |
| } |
| else |
| ivar = NULL_TREE; |
| list = chainon (list, build_tree_list (ivar, property)); |
| if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA)) |
| cp_lexer_consume_token (parser->lexer); |
| else |
| break; |
| } |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| objc_add_synthesize_declaration (loc, list); |
| } |
| |
| /* Parse an Objective-C++ @dynamic declaration. The syntax is: |
| |
| objc-dynamic-declaration: |
| @dynamic identifier-list ; |
| |
| For example: |
| @dynamic MyProperty; |
| @dynamic MyProperty, AnotherProperty; |
| |
| PS: This function is identical to c_parser_objc_at_dynamic_declaration |
| for C. Keep them in sync. |
| */ |
| static void |
| cp_parser_objc_at_dynamic_declaration (cp_parser *parser) |
| { |
| tree list = NULL_TREE; |
| location_t loc; |
| loc = cp_lexer_peek_token (parser->lexer)->location; |
| |
| cp_lexer_consume_token (parser->lexer); /* Eat '@dynamic'. */ |
| while (true) |
| { |
| tree property; |
| property = cp_parser_identifier (parser); |
| if (property == error_mark_node) |
| { |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| return; |
| } |
| list = chainon (list, build_tree_list (NULL, property)); |
| if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA)) |
| cp_lexer_consume_token (parser->lexer); |
| else |
| break; |
| } |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| objc_add_dynamic_declaration (loc, list); |
| } |
| |
| |
| /* OpenMP 2.5 parsing routines. */ |
| |
| /* Returns name of the next clause. |
| If the clause is not recognized PRAGMA_OMP_CLAUSE_NONE is returned and |
| the token is not consumed. Otherwise appropriate pragma_omp_clause is |
| returned and the token is consumed. */ |
| |
| static pragma_omp_clause |
| cp_parser_omp_clause_name (cp_parser *parser) |
| { |
| pragma_omp_clause result = PRAGMA_OMP_CLAUSE_NONE; |
| |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_IF)) |
| result = PRAGMA_OMP_CLAUSE_IF; |
| else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_DEFAULT)) |
| result = PRAGMA_OMP_CLAUSE_DEFAULT; |
| else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_PRIVATE)) |
| result = PRAGMA_OMP_CLAUSE_PRIVATE; |
| else if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)) |
| { |
| tree id = cp_lexer_peek_token (parser->lexer)->u.value; |
| const char *p = IDENTIFIER_POINTER (id); |
| |
| switch (p[0]) |
| { |
| case 'c': |
| if (!strcmp ("collapse", p)) |
| result = PRAGMA_OMP_CLAUSE_COLLAPSE; |
| else if (!strcmp ("copyin", p)) |
| result = PRAGMA_OMP_CLAUSE_COPYIN; |
| else if (!strcmp ("copyprivate", p)) |
| result = PRAGMA_OMP_CLAUSE_COPYPRIVATE; |
| break; |
| case 'f': |
| if (!strcmp ("firstprivate", p)) |
| result = PRAGMA_OMP_CLAUSE_FIRSTPRIVATE; |
| break; |
| case 'l': |
| if (!strcmp ("lastprivate", p)) |
| result = PRAGMA_OMP_CLAUSE_LASTPRIVATE; |
| break; |
| case 'n': |
| if (!strcmp ("nowait", p)) |
| result = PRAGMA_OMP_CLAUSE_NOWAIT; |
| else if (!strcmp ("num_threads", p)) |
| result = PRAGMA_OMP_CLAUSE_NUM_THREADS; |
| break; |
| case 'o': |
| if (!strcmp ("ordered", p)) |
| result = PRAGMA_OMP_CLAUSE_ORDERED; |
| break; |
| case 'r': |
| if (!strcmp ("reduction", p)) |
| result = PRAGMA_OMP_CLAUSE_REDUCTION; |
| break; |
| case 's': |
| if (!strcmp ("schedule", p)) |
| result = PRAGMA_OMP_CLAUSE_SCHEDULE; |
| else if (!strcmp ("shared", p)) |
| result = PRAGMA_OMP_CLAUSE_SHARED; |
| break; |
| case 'u': |
| if (!strcmp ("untied", p)) |
| result = PRAGMA_OMP_CLAUSE_UNTIED; |
| break; |
| } |
| } |
| |
| if (result != PRAGMA_OMP_CLAUSE_NONE) |
| cp_lexer_consume_token (parser->lexer); |
| |
| return result; |
| } |
| |
| /* Validate that a clause of the given type does not already exist. */ |
| |
| static void |
| check_no_duplicate_clause (tree clauses, enum omp_clause_code code, |
| const char *name, location_t location) |
| { |
| tree c; |
| |
| for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c)) |
| if (OMP_CLAUSE_CODE (c) == code) |
| { |
| error_at (location, "too many %qs clauses", name); |
| break; |
| } |
| } |
| |
| /* OpenMP 2.5: |
| variable-list: |
| identifier |
| variable-list , identifier |
| |
| In addition, we match a closing parenthesis. An opening parenthesis |
| will have been consumed by the caller. |
| |
| If KIND is nonzero, create the appropriate node and install the decl |
| in OMP_CLAUSE_DECL and add the node to the head of the list. |
| |
| If KIND is zero, create a TREE_LIST with the decl in TREE_PURPOSE; |
| return the list created. */ |
| |
| static tree |
| cp_parser_omp_var_list_no_open (cp_parser *parser, enum omp_clause_code kind, |
| tree list) |
| { |
| cp_token *token; |
| while (1) |
| { |
| tree name, decl; |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| name = cp_parser_id_expression (parser, /*template_p=*/false, |
| /*check_dependency_p=*/true, |
| /*template_p=*/NULL, |
| /*declarator_p=*/false, |
| /*optional_p=*/false); |
| if (name == error_mark_node) |
| goto skip_comma; |
| |
| decl = cp_parser_lookup_name_simple (parser, name, token->location); |
| if (decl == error_mark_node) |
| cp_parser_name_lookup_error (parser, name, decl, NLE_NULL, |
| token->location); |
| else if (kind != 0) |
| { |
| tree u = build_omp_clause (token->location, kind); |
| OMP_CLAUSE_DECL (u) = decl; |
| OMP_CLAUSE_CHAIN (u) = list; |
| list = u; |
| } |
| else |
| list = tree_cons (decl, NULL_TREE, list); |
| |
| get_comma: |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA)) |
| break; |
| cp_lexer_consume_token (parser->lexer); |
| } |
| |
| if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN)) |
| { |
| int ending; |
| |
| /* Try to resync to an unnested comma. Copied from |
| cp_parser_parenthesized_expression_list. */ |
| skip_comma: |
| ending = cp_parser_skip_to_closing_parenthesis (parser, |
| /*recovering=*/true, |
| /*or_comma=*/true, |
| /*consume_paren=*/true); |
| if (ending < 0) |
| goto get_comma; |
| } |
| |
| return list; |
| } |
| |
| /* Similarly, but expect leading and trailing parenthesis. This is a very |
| common case for omp clauses. */ |
| |
| static tree |
| cp_parser_omp_var_list (cp_parser *parser, enum omp_clause_code kind, tree list) |
| { |
| if (cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN)) |
| return cp_parser_omp_var_list_no_open (parser, kind, list); |
| return list; |
| } |
| |
| /* OpenMP 3.0: |
| collapse ( constant-expression ) */ |
| |
| static tree |
| cp_parser_omp_clause_collapse (cp_parser *parser, tree list, location_t location) |
| { |
| tree c, num; |
| location_t loc; |
| HOST_WIDE_INT n; |
| |
| loc = cp_lexer_peek_token (parser->lexer)->location; |
| if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN)) |
| return list; |
| |
| num = cp_parser_constant_expression (parser, false, NULL); |
| |
| if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN)) |
| cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true, |
| /*or_comma=*/false, |
| /*consume_paren=*/true); |
| |
| if (num == error_mark_node) |
| return list; |
| num = fold_non_dependent_expr (num); |
| if (!INTEGRAL_TYPE_P (TREE_TYPE (num)) |
| || !host_integerp (num, 0) |
| || (n = tree_low_cst (num, 0)) <= 0 |
| || (int) n != n) |
| { |
| error_at (loc, "collapse argument needs positive constant integer expression"); |
| return list; |
| } |
| |
| check_no_duplicate_clause (list, OMP_CLAUSE_COLLAPSE, "collapse", location); |
| c = build_omp_clause (loc, OMP_CLAUSE_COLLAPSE); |
| OMP_CLAUSE_CHAIN (c) = list; |
| OMP_CLAUSE_COLLAPSE_EXPR (c) = num; |
| |
| return c; |
| } |
| |
| /* OpenMP 2.5: |
| default ( shared | none ) */ |
| |
| static tree |
| cp_parser_omp_clause_default (cp_parser *parser, tree list, location_t location) |
| { |
| enum omp_clause_default_kind kind = OMP_CLAUSE_DEFAULT_UNSPECIFIED; |
| tree c; |
| |
| if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN)) |
| return list; |
| if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)) |
| { |
| tree id = cp_lexer_peek_token (parser->lexer)->u.value; |
| const char *p = IDENTIFIER_POINTER (id); |
| |
| switch (p[0]) |
| { |
| case 'n': |
| if (strcmp ("none", p) != 0) |
| goto invalid_kind; |
| kind = OMP_CLAUSE_DEFAULT_NONE; |
| break; |
| |
| case 's': |
| if (strcmp ("shared", p) != 0) |
| goto invalid_kind; |
| kind = OMP_CLAUSE_DEFAULT_SHARED; |
| break; |
| |
| default: |
| goto invalid_kind; |
| } |
| |
| cp_lexer_consume_token (parser->lexer); |
| } |
| else |
| { |
| invalid_kind: |
| cp_parser_error (parser, "expected %<none%> or %<shared%>"); |
| } |
| |
| if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN)) |
| cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true, |
| /*or_comma=*/false, |
| /*consume_paren=*/true); |
| |
| if (kind == OMP_CLAUSE_DEFAULT_UNSPECIFIED) |
| return list; |
| |
| check_no_duplicate_clause (list, OMP_CLAUSE_DEFAULT, "default", location); |
| c = build_omp_clause (location, OMP_CLAUSE_DEFAULT); |
| OMP_CLAUSE_CHAIN (c) = list; |
| OMP_CLAUSE_DEFAULT_KIND (c) = kind; |
| |
| return c; |
| } |
| |
| /* OpenMP 2.5: |
| if ( expression ) */ |
| |
| static tree |
| cp_parser_omp_clause_if (cp_parser *parser, tree list, location_t location) |
| { |
| tree t, c; |
| |
| if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN)) |
| return list; |
| |
| t = cp_parser_condition (parser); |
| |
| if (t == error_mark_node |
| || !cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN)) |
| cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true, |
| /*or_comma=*/false, |
| /*consume_paren=*/true); |
| |
| check_no_duplicate_clause (list, OMP_CLAUSE_IF, "if", location); |
| |
| c = build_omp_clause (location, OMP_CLAUSE_IF); |
| OMP_CLAUSE_IF_EXPR (c) = t; |
| OMP_CLAUSE_CHAIN (c) = list; |
| |
| return c; |
| } |
| |
| /* OpenMP 2.5: |
| nowait */ |
| |
| static tree |
| cp_parser_omp_clause_nowait (cp_parser *parser ATTRIBUTE_UNUSED, |
| tree list, location_t location) |
| { |
| tree c; |
| |
| check_no_duplicate_clause (list, OMP_CLAUSE_NOWAIT, "nowait", location); |
| |
| c = build_omp_clause (location, OMP_CLAUSE_NOWAIT); |
| OMP_CLAUSE_CHAIN (c) = list; |
| return c; |
| } |
| |
| /* OpenMP 2.5: |
| num_threads ( expression ) */ |
| |
| static tree |
| cp_parser_omp_clause_num_threads (cp_parser *parser, tree list, |
| location_t location) |
| { |
| tree t, c; |
| |
| if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN)) |
| return list; |
| |
| t = cp_parser_expression (parser, false, NULL); |
| |
| if (t == error_mark_node |
| || !cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN)) |
| cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true, |
| /*or_comma=*/false, |
| /*consume_paren=*/true); |
| |
| check_no_duplicate_clause (list, OMP_CLAUSE_NUM_THREADS, |
| "num_threads", location); |
| |
| c = build_omp_clause (location, OMP_CLAUSE_NUM_THREADS); |
| OMP_CLAUSE_NUM_THREADS_EXPR (c) = t; |
| OMP_CLAUSE_CHAIN (c) = list; |
| |
| return c; |
| } |
| |
| /* OpenMP 2.5: |
| ordered */ |
| |
| static tree |
| cp_parser_omp_clause_ordered (cp_parser *parser ATTRIBUTE_UNUSED, |
| tree list, location_t location) |
| { |
| tree c; |
| |
| check_no_duplicate_clause (list, OMP_CLAUSE_ORDERED, |
| "ordered", location); |
| |
| c = build_omp_clause (location, OMP_CLAUSE_ORDERED); |
| OMP_CLAUSE_CHAIN (c) = list; |
| return c; |
| } |
| |
| /* OpenMP 2.5: |
| reduction ( reduction-operator : variable-list ) |
| |
| reduction-operator: |
| One of: + * - & ^ | && || */ |
| |
| static tree |
| cp_parser_omp_clause_reduction (cp_parser *parser, tree list) |
| { |
| enum tree_code code; |
| tree nlist, c; |
| |
| if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN)) |
| return list; |
| |
| switch (cp_lexer_peek_token (parser->lexer)->type) |
| { |
| case CPP_PLUS: |
| code = PLUS_EXPR; |
| break; |
| case CPP_MULT: |
| code = MULT_EXPR; |
| break; |
| case CPP_MINUS: |
| code = MINUS_EXPR; |
| break; |
| case CPP_AND: |
| code = BIT_AND_EXPR; |
| break; |
| case CPP_XOR: |
| code = BIT_XOR_EXPR; |
| break; |
| case CPP_OR: |
| code = BIT_IOR_EXPR; |
| break; |
| case CPP_AND_AND: |
| code = TRUTH_ANDIF_EXPR; |
| break; |
| case CPP_OR_OR: |
| code = TRUTH_ORIF_EXPR; |
| break; |
| default: |
| cp_parser_error (parser, "expected %<+%>, %<*%>, %<-%>, %<&%>, %<^%>, " |
| "%<|%>, %<&&%>, or %<||%>"); |
| resync_fail: |
| cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true, |
| /*or_comma=*/false, |
| /*consume_paren=*/true); |
| return list; |
| } |
| cp_lexer_consume_token (parser->lexer); |
| |
| if (!cp_parser_require (parser, CPP_COLON, RT_COLON)) |
| goto resync_fail; |
| |
| nlist = cp_parser_omp_var_list_no_open (parser, OMP_CLAUSE_REDUCTION, list); |
| for (c = nlist; c != list; c = OMP_CLAUSE_CHAIN (c)) |
| OMP_CLAUSE_REDUCTION_CODE (c) = code; |
| |
| return nlist; |
| } |
| |
| /* OpenMP 2.5: |
| schedule ( schedule-kind ) |
| schedule ( schedule-kind , expression ) |
| |
| schedule-kind: |
| static | dynamic | guided | runtime | auto */ |
| |
| static tree |
| cp_parser_omp_clause_schedule (cp_parser *parser, tree list, location_t location) |
| { |
| tree c, t; |
| |
| if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN)) |
| return list; |
| |
| c = build_omp_clause (location, OMP_CLAUSE_SCHEDULE); |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)) |
| { |
| tree id = cp_lexer_peek_token (parser->lexer)->u.value; |
| const char *p = IDENTIFIER_POINTER (id); |
| |
| switch (p[0]) |
| { |
| case 'd': |
| if (strcmp ("dynamic", p) != 0) |
| goto invalid_kind; |
| OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_DYNAMIC; |
| break; |
| |
| case 'g': |
| if (strcmp ("guided", p) != 0) |
| goto invalid_kind; |
| OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_GUIDED; |
| break; |
| |
| case 'r': |
| if (strcmp ("runtime", p) != 0) |
| goto invalid_kind; |
| OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_RUNTIME; |
| break; |
| |
| default: |
| goto invalid_kind; |
| } |
| } |
| else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_STATIC)) |
| OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_STATIC; |
| else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_AUTO)) |
| OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_AUTO; |
| else |
| goto invalid_kind; |
| cp_lexer_consume_token (parser->lexer); |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA)) |
| { |
| cp_token *token; |
| cp_lexer_consume_token (parser->lexer); |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| t = cp_parser_assignment_expression (parser, false, NULL); |
| |
| if (t == error_mark_node) |
| goto resync_fail; |
| else if (OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_RUNTIME) |
| error_at (token->location, "schedule %<runtime%> does not take " |
| "a %<chunk_size%> parameter"); |
| else if (OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_AUTO) |
| error_at (token->location, "schedule %<auto%> does not take " |
| "a %<chunk_size%> parameter"); |
| else |
| OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (c) = t; |
| |
| if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN)) |
| goto resync_fail; |
| } |
| else if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_COMMA_CLOSE_PAREN)) |
| goto resync_fail; |
| |
| check_no_duplicate_clause (list, OMP_CLAUSE_SCHEDULE, "schedule", location); |
| OMP_CLAUSE_CHAIN (c) = list; |
| return c; |
| |
| invalid_kind: |
| cp_parser_error (parser, "invalid schedule kind"); |
| resync_fail: |
| cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true, |
| /*or_comma=*/false, |
| /*consume_paren=*/true); |
| return list; |
| } |
| |
| /* OpenMP 3.0: |
| untied */ |
| |
| static tree |
| cp_parser_omp_clause_untied (cp_parser *parser ATTRIBUTE_UNUSED, |
| tree list, location_t location) |
| { |
| tree c; |
| |
| check_no_duplicate_clause (list, OMP_CLAUSE_UNTIED, "untied", location); |
| |
| c = build_omp_clause (location, OMP_CLAUSE_UNTIED); |
| OMP_CLAUSE_CHAIN (c) = list; |
| return c; |
| } |
| |
| /* Parse all OpenMP clauses. The set clauses allowed by the directive |
| is a bitmask in MASK. Return the list of clauses found; the result |
| of clause default goes in *pdefault. */ |
| |
| static tree |
| cp_parser_omp_all_clauses (cp_parser *parser, unsigned int mask, |
| const char *where, cp_token *pragma_tok) |
| { |
| tree clauses = NULL; |
| bool first = true; |
| cp_token *token = NULL; |
| |
| while (cp_lexer_next_token_is_not (parser->lexer, CPP_PRAGMA_EOL)) |
| { |
| pragma_omp_clause c_kind; |
| const char *c_name; |
| tree prev = clauses; |
| |
| if (!first && cp_lexer_next_token_is (parser->lexer, CPP_COMMA)) |
| cp_lexer_consume_token (parser->lexer); |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| c_kind = cp_parser_omp_clause_name (parser); |
| first = false; |
| |
| switch (c_kind) |
| { |
| case PRAGMA_OMP_CLAUSE_COLLAPSE: |
| clauses = cp_parser_omp_clause_collapse (parser, clauses, |
| token->location); |
| c_name = "collapse"; |
| break; |
| case PRAGMA_OMP_CLAUSE_COPYIN: |
| clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_COPYIN, clauses); |
| c_name = "copyin"; |
| break; |
| case PRAGMA_OMP_CLAUSE_COPYPRIVATE: |
| clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_COPYPRIVATE, |
| clauses); |
| c_name = "copyprivate"; |
| break; |
| case PRAGMA_OMP_CLAUSE_DEFAULT: |
| clauses = cp_parser_omp_clause_default (parser, clauses, |
| token->location); |
| c_name = "default"; |
| break; |
| case PRAGMA_OMP_CLAUSE_FIRSTPRIVATE: |
| clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_FIRSTPRIVATE, |
| clauses); |
| c_name = "firstprivate"; |
| break; |
| case PRAGMA_OMP_CLAUSE_IF: |
| clauses = cp_parser_omp_clause_if (parser, clauses, token->location); |
| c_name = "if"; |
| break; |
| case PRAGMA_OMP_CLAUSE_LASTPRIVATE: |
| clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_LASTPRIVATE, |
| clauses); |
| c_name = "lastprivate"; |
| break; |
| case PRAGMA_OMP_CLAUSE_NOWAIT: |
| clauses = cp_parser_omp_clause_nowait (parser, clauses, token->location); |
| c_name = "nowait"; |
| break; |
| case PRAGMA_OMP_CLAUSE_NUM_THREADS: |
| clauses = cp_parser_omp_clause_num_threads (parser, clauses, |
| token->location); |
| c_name = "num_threads"; |
| break; |
| case PRAGMA_OMP_CLAUSE_ORDERED: |
| clauses = cp_parser_omp_clause_ordered (parser, clauses, |
| token->location); |
| c_name = "ordered"; |
| break; |
| case PRAGMA_OMP_CLAUSE_PRIVATE: |
| clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_PRIVATE, |
| clauses); |
| c_name = "private"; |
| break; |
| case PRAGMA_OMP_CLAUSE_REDUCTION: |
| clauses = cp_parser_omp_clause_reduction (parser, clauses); |
| c_name = "reduction"; |
| break; |
| case PRAGMA_OMP_CLAUSE_SCHEDULE: |
| clauses = cp_parser_omp_clause_schedule (parser, clauses, |
| token->location); |
| c_name = "schedule"; |
| break; |
| case PRAGMA_OMP_CLAUSE_SHARED: |
| clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_SHARED, |
| clauses); |
| c_name = "shared"; |
| break; |
| case PRAGMA_OMP_CLAUSE_UNTIED: |
| clauses = cp_parser_omp_clause_untied (parser, clauses, |
| token->location); |
| c_name = "nowait"; |
| break; |
| default: |
| cp_parser_error (parser, "expected %<#pragma omp%> clause"); |
| goto saw_error; |
| } |
| |
| if (((mask >> c_kind) & 1) == 0) |
| { |
| /* Remove the invalid clause(s) from the list to avoid |
| confusing the rest of the compiler. */ |
| clauses = prev; |
| error_at (token->location, "%qs is not valid for %qs", c_name, where); |
| } |
| } |
| saw_error: |
| cp_parser_skip_to_pragma_eol (parser, pragma_tok); |
| return finish_omp_clauses (clauses); |
| } |
| |
| /* OpenMP 2.5: |
| structured-block: |
| statement |
| |
| In practice, we're also interested in adding the statement to an |
| outer node. So it is convenient if we work around the fact that |
| cp_parser_statement calls add_stmt. */ |
| |
| static unsigned |
| cp_parser_begin_omp_structured_block (cp_parser *parser) |
| { |
| unsigned save = parser->in_statement; |
| |
| /* Only move the values to IN_OMP_BLOCK if they weren't false. |
| This preserves the "not within loop or switch" style error messages |
| for nonsense cases like |
| void foo() { |
| #pragma omp single |
| break; |
| } |
| */ |
| if (parser->in_statement) |
| parser->in_statement = IN_OMP_BLOCK; |
| |
| return save; |
| } |
| |
| static void |
| cp_parser_end_omp_structured_block (cp_parser *parser, unsigned save) |
| { |
| parser->in_statement = save; |
| } |
| |
| static tree |
| cp_parser_omp_structured_block (cp_parser *parser) |
| { |
| tree stmt = begin_omp_structured_block (); |
| unsigned int save = cp_parser_begin_omp_structured_block (parser); |
| |
| cp_parser_statement (parser, NULL_TREE, false, NULL); |
| |
| cp_parser_end_omp_structured_block (parser, save); |
| return finish_omp_structured_block (stmt); |
| } |
| |
| /* OpenMP 2.5: |
| # pragma omp atomic new-line |
| expression-stmt |
| |
| expression-stmt: |
| x binop= expr | x++ | ++x | x-- | --x |
| binop: |
| +, *, -, /, &, ^, |, <<, >> |
| |
| where x is an lvalue expression with scalar type. */ |
| |
| static void |
| cp_parser_omp_atomic (cp_parser *parser, cp_token *pragma_tok) |
| { |
| tree lhs, rhs; |
| enum tree_code code; |
| |
| cp_parser_require_pragma_eol (parser, pragma_tok); |
| |
| lhs = cp_parser_unary_expression (parser, /*address_p=*/false, |
| /*cast_p=*/false, NULL); |
| switch (TREE_CODE (lhs)) |
| { |
| case ERROR_MARK: |
| goto saw_error; |
| |
| case PREINCREMENT_EXPR: |
| case POSTINCREMENT_EXPR: |
| lhs = TREE_OPERAND (lhs, 0); |
| code = PLUS_EXPR; |
| rhs = integer_one_node; |
| break; |
| |
| case PREDECREMENT_EXPR: |
| case POSTDECREMENT_EXPR: |
| lhs = TREE_OPERAND (lhs, 0); |
| code = MINUS_EXPR; |
| rhs = integer_one_node; |
| break; |
| |
| case COMPOUND_EXPR: |
| if (TREE_CODE (TREE_OPERAND (lhs, 0)) == SAVE_EXPR |
| && TREE_CODE (TREE_OPERAND (lhs, 1)) == COMPOUND_EXPR |
| && TREE_CODE (TREE_OPERAND (TREE_OPERAND (lhs, 1), 0)) == MODIFY_EXPR |
| && TREE_OPERAND (TREE_OPERAND (lhs, 1), 1) == TREE_OPERAND (lhs, 0) |
| && TREE_CODE (TREE_TYPE (TREE_OPERAND (TREE_OPERAND |
| (TREE_OPERAND (lhs, 1), 0), 0))) |
| == BOOLEAN_TYPE) |
| /* Undo effects of boolean_increment for post {in,de}crement. */ |
| lhs = TREE_OPERAND (TREE_OPERAND (lhs, 1), 0); |
| /* FALLTHRU */ |
| case MODIFY_EXPR: |
| if (TREE_CODE (lhs) == MODIFY_EXPR |
| && TREE_CODE (TREE_TYPE (TREE_OPERAND (lhs, 0))) == BOOLEAN_TYPE) |
| { |
| /* Undo effects of boolean_increment. */ |
| if (integer_onep (TREE_OPERAND (lhs, 1))) |
| { |
| /* This is pre or post increment. */ |
| rhs = TREE_OPERAND (lhs, 1); |
| lhs = TREE_OPERAND (lhs, 0); |
| code = NOP_EXPR; |
| break; |
| } |
| } |
| /* FALLTHRU */ |
| default: |
| switch (cp_lexer_peek_token (parser->lexer)->type) |
| { |
| case CPP_MULT_EQ: |
| code = MULT_EXPR; |
| break; |
| case CPP_DIV_EQ: |
| code = TRUNC_DIV_EXPR; |
| break; |
| case CPP_PLUS_EQ: |
| code = PLUS_EXPR; |
| break; |
| case CPP_MINUS_EQ: |
| code = MINUS_EXPR; |
| break; |
| case CPP_LSHIFT_EQ: |
| code = LSHIFT_EXPR; |
| break; |
| case CPP_RSHIFT_EQ: |
| code = RSHIFT_EXPR; |
| break; |
| case CPP_AND_EQ: |
| code = BIT_AND_EXPR; |
| break; |
| case CPP_OR_EQ: |
| code = BIT_IOR_EXPR; |
| break; |
| case CPP_XOR_EQ: |
| code = BIT_XOR_EXPR; |
| break; |
| default: |
| cp_parser_error (parser, |
| "invalid operator for %<#pragma omp atomic%>"); |
| goto saw_error; |
| } |
| cp_lexer_consume_token (parser->lexer); |
| |
| rhs = cp_parser_expression (parser, false, NULL); |
| if (rhs == error_mark_node) |
| goto saw_error; |
| break; |
| } |
| finish_omp_atomic (code, lhs, rhs); |
| cp_parser_consume_semicolon_at_end_of_statement (parser); |
| return; |
| |
| saw_error: |
| cp_parser_skip_to_end_of_block_or_statement (parser); |
| } |
| |
| |
| /* OpenMP 2.5: |
| # pragma omp barrier new-line */ |
| |
| static void |
| cp_parser_omp_barrier (cp_parser *parser, cp_token *pragma_tok) |
| { |
| cp_parser_require_pragma_eol (parser, pragma_tok); |
| finish_omp_barrier (); |
| } |
| |
| /* OpenMP 2.5: |
| # pragma omp critical [(name)] new-line |
| structured-block */ |
| |
| static tree |
| cp_parser_omp_critical (cp_parser *parser, cp_token *pragma_tok) |
| { |
| tree stmt, name = NULL; |
| |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| |
| name = cp_parser_identifier (parser); |
| |
| if (name == error_mark_node |
| || !cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN)) |
| cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true, |
| /*or_comma=*/false, |
| /*consume_paren=*/true); |
| if (name == error_mark_node) |
| name = NULL; |
| } |
| cp_parser_require_pragma_eol (parser, pragma_tok); |
| |
| stmt = cp_parser_omp_structured_block (parser); |
| return c_finish_omp_critical (input_location, stmt, name); |
| } |
| |
| /* OpenMP 2.5: |
| # pragma omp flush flush-vars[opt] new-line |
| |
| flush-vars: |
| ( variable-list ) */ |
| |
| static void |
| cp_parser_omp_flush (cp_parser *parser, cp_token *pragma_tok) |
| { |
| if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)) |
| (void) cp_parser_omp_var_list (parser, OMP_CLAUSE_ERROR, NULL); |
| cp_parser_require_pragma_eol (parser, pragma_tok); |
| |
| finish_omp_flush (); |
| } |
| |
| /* Helper function, to parse omp for increment expression. */ |
| |
| static tree |
| cp_parser_omp_for_cond (cp_parser *parser, tree decl) |
| { |
| tree cond = cp_parser_binary_expression (parser, false, true, |
| PREC_NOT_OPERATOR, NULL); |
| if (cond == error_mark_node |
| || cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)) |
| { |
| cp_parser_skip_to_end_of_statement (parser); |
| return error_mark_node; |
| } |
| |
| switch (TREE_CODE (cond)) |
| { |
| case GT_EXPR: |
| case GE_EXPR: |
| case LT_EXPR: |
| case LE_EXPR: |
| break; |
| default: |
| return error_mark_node; |
| } |
| |
| /* If decl is an iterator, preserve LHS and RHS of the relational |
| expr until finish_omp_for. */ |
| if (decl |
| && (type_dependent_expression_p (decl) |
| || CLASS_TYPE_P (TREE_TYPE (decl)))) |
| return cond; |
| |
| return build_x_binary_op (TREE_CODE (cond), |
| TREE_OPERAND (cond, 0), ERROR_MARK, |
| TREE_OPERAND (cond, 1), ERROR_MARK, |
| /*overload=*/NULL, tf_warning_or_error); |
| } |
| |
| /* Helper function, to parse omp for increment expression. */ |
| |
| static tree |
| cp_parser_omp_for_incr (cp_parser *parser, tree decl) |
| { |
| cp_token *token = cp_lexer_peek_token (parser->lexer); |
| enum tree_code op; |
| tree lhs, rhs; |
| cp_id_kind idk; |
| bool decl_first; |
| |
| if (token->type == CPP_PLUS_PLUS || token->type == CPP_MINUS_MINUS) |
| { |
| op = (token->type == CPP_PLUS_PLUS |
| ? PREINCREMENT_EXPR : PREDECREMENT_EXPR); |
| cp_lexer_consume_token (parser->lexer); |
| lhs = cp_parser_cast_expression (parser, false, false, NULL); |
| if (lhs != decl) |
| return error_mark_node; |
| return build2 (op, TREE_TYPE (decl), decl, NULL_TREE); |
| } |
| |
| lhs = cp_parser_primary_expression (parser, false, false, false, &idk); |
| if (lhs != decl) |
| return error_mark_node; |
| |
| token = cp_lexer_peek_token (parser->lexer); |
| if (token->type == CPP_PLUS_PLUS || token->type == CPP_MINUS_MINUS) |
| { |
| op = (token->type == CPP_PLUS_PLUS |
| ? POSTINCREMENT_EXPR : POSTDECREMENT_EXPR); |
| cp_lexer_consume_token (parser->lexer); |
| return build2 (op, TREE_TYPE (decl), decl, NULL_TREE); |
| } |
| |
| op = cp_parser_assignment_operator_opt (parser); |
| if (op == ERROR_MARK) |
| return error_mark_node; |
| |
| if (op != NOP_EXPR) |
| { |
| rhs = cp_parser_assignment_expression (parser, false, NULL); |
| rhs = build2 (op, TREE_TYPE (decl), decl, rhs); |
| return build2 (MODIFY_EXPR, TREE_TYPE (decl), decl, rhs); |
| } |
| |
| lhs = cp_parser_binary_expression (parser, false, false, |
| PREC_ADDITIVE_EXPRESSION, NULL); |
| token = cp_lexer_peek_token (parser->lexer); |
| decl_first = lhs == decl; |
| if (decl_first) |
| lhs = NULL_TREE; |
| if (token->type != CPP_PLUS |
| && token->type != CPP_MINUS) |
| return error_mark_node; |
| |
| do |
| { |
| op = token->type == CPP_PLUS ? PLUS_EXPR : MINUS_EXPR; |
| cp_lexer_consume_token (parser->lexer); |
| rhs = cp_parser_binary_expression (parser, false, false, |
| PREC_ADDITIVE_EXPRESSION, NULL); |
| token = cp_lexer_peek_token (parser->lexer); |
| if (token->type == CPP_PLUS || token->type == CPP_MINUS || decl_first) |
| { |
| if (lhs == NULL_TREE) |
| { |
| if (op == PLUS_EXPR) |
| lhs = rhs; |
| else |
| lhs = build_x_unary_op (NEGATE_EXPR, rhs, tf_warning_or_error); |
| } |
| else |
| lhs = build_x_binary_op (op, lhs, ERROR_MARK, rhs, ERROR_MARK, |
| NULL, tf_warning_or_error); |
| } |
| } |
| while (token->type == CPP_PLUS || token->type == CPP_MINUS); |
| |
| if (!decl_first) |
| { |
| if (rhs != decl || op == MINUS_EXPR) |
| return error_mark_node; |
| rhs = build2 (op, TREE_TYPE (decl), lhs, decl); |
| } |
| else |
| rhs = build2 (PLUS_EXPR, TREE_TYPE (decl), decl, lhs); |
| |
| return build2 (MODIFY_EXPR, TREE_TYPE (decl), decl, rhs); |
| } |
| |
| /* Parse the restricted form of the for statement allowed by OpenMP. */ |
| |
| static tree |
| cp_parser_omp_for_loop (cp_parser *parser, tree clauses, tree *par_clauses) |
| { |
| tree init, cond, incr, body, decl, pre_body = NULL_TREE, ret; |
| tree real_decl, initv, condv, incrv, declv; |
| tree this_pre_body, cl; |
| location_t loc_first; |
| bool collapse_err = false; |
| int i, collapse = 1, nbraces = 0; |
| VEC(tree,gc) *for_block = make_tree_vector (); |
| |
| for (cl = clauses; cl; cl = OMP_CLAUSE_CHAIN (cl)) |
| if (OMP_CLAUSE_CODE (cl) == OMP_CLAUSE_COLLAPSE) |
| collapse = tree_low_cst (OMP_CLAUSE_COLLAPSE_EXPR (cl), 0); |
| |
| gcc_assert (collapse >= 1); |
| |
| declv = make_tree_vec (collapse); |
| initv = make_tree_vec (collapse); |
| condv = make_tree_vec (collapse); |
| incrv = make_tree_vec (collapse); |
| |
| loc_first = cp_lexer_peek_token (parser->lexer)->location; |
| |
| for (i = 0; i < collapse; i++) |
| { |
| int bracecount = 0; |
| bool add_private_clause = false; |
| location_t loc; |
| |
| if (!cp_lexer_next_token_is_keyword (parser->lexer, RID_FOR)) |
| { |
| cp_parser_error (parser, "for statement expected"); |
| return NULL; |
| } |
| loc = cp_lexer_consume_token (parser->lexer)->location; |
| |
| if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN)) |
| return NULL; |
| |
| init = decl = real_decl = NULL; |
| this_pre_body = push_stmt_list (); |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)) |
| { |
| /* See 2.5.1 (in OpenMP 3.0, similar wording is in 2.5 standard too): |
| |
| init-expr: |
| var = lb |
| integer-type var = lb |
| random-access-iterator-type var = lb |
| pointer-type var = lb |
| */ |
| cp_decl_specifier_seq type_specifiers; |
| |
| /* First, try to parse as an initialized declaration. See |
| cp_parser_condition, from whence the bulk of this is copied. */ |
| |
| cp_parser_parse_tentatively (parser); |
| cp_parser_type_specifier_seq (parser, /*is_declaration=*/true, |
| /*is_trailing_return=*/false, |
| &type_specifiers); |
| if (cp_parser_parse_definitely (parser)) |
| { |
| /* If parsing a type specifier seq succeeded, then this |
| MUST be a initialized declaration. */ |
| tree asm_specification, attributes; |
| cp_declarator *declarator; |
| |
| declarator = cp_parser_declarator (parser, |
| CP_PARSER_DECLARATOR_NAMED, |
| /*ctor_dtor_or_conv_p=*/NULL, |
| /*parenthesized_p=*/NULL, |
| /*member_p=*/false); |
| attributes = cp_parser_attributes_opt (parser); |
| asm_specification = cp_parser_asm_specification_opt (parser); |
| |
| if (declarator == cp_error_declarator) |
| cp_parser_skip_to_end_of_statement (parser); |
| |
| else |
| { |
| tree pushed_scope, auto_node; |
| |
| decl = start_decl (declarator, &type_specifiers, |
| SD_INITIALIZED, attributes, |
| /*prefix_attributes=*/NULL_TREE, |
| &pushed_scope); |
| |
| auto_node = type_uses_auto (TREE_TYPE (decl)); |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)) |
| { |
| if (cp_lexer_next_token_is (parser->lexer, |
| CPP_OPEN_PAREN)) |
| error ("parenthesized initialization is not allowed in " |
| "OpenMP %<for%> loop"); |
| else |
| /* Trigger an error. */ |
| cp_parser_require (parser, CPP_EQ, RT_EQ); |
| |
| init = error_mark_node; |
| cp_parser_skip_to_end_of_statement (parser); |
| } |
| else if (CLASS_TYPE_P (TREE_TYPE (decl)) |
| || type_dependent_expression_p (decl) |
| || auto_node) |
| { |
| bool is_direct_init, is_non_constant_init; |
| |
| init = cp_parser_initializer (parser, |
| &is_direct_init, |
| &is_non_constant_init); |
| |
| if (auto_node) |
| { |
| TREE_TYPE (decl) |
| = do_auto_deduction (TREE_TYPE (decl), init, |
| auto_node); |
| |
| if (!CLASS_TYPE_P (TREE_TYPE (decl)) |
| && !type_dependent_expression_p (decl)) |
| goto non_class; |
| } |
| |
| cp_finish_decl (decl, init, !is_non_constant_init, |
| asm_specification, |
| LOOKUP_ONLYCONVERTING); |
| if (CLASS_TYPE_P (TREE_TYPE (decl))) |
| { |
| VEC_safe_push (tree, gc, for_block, this_pre_body); |
| init = NULL_TREE; |
| } |
| else |
| init = pop_stmt_list (this_pre_body); |
| this_pre_body = NULL_TREE; |
| } |
| else |
| { |
| /* Consume '='. */ |
| cp_lexer_consume_token (parser->lexer); |
| init = cp_parser_assignment_expression (parser, false, NULL); |
| |
| non_class: |
| if (TREE_CODE (TREE_TYPE (decl)) == REFERENCE_TYPE) |
| init = error_mark_node; |
| else |
| cp_finish_decl (decl, NULL_TREE, |
| /*init_const_expr_p=*/false, |
| asm_specification, |
| LOOKUP_ONLYCONVERTING); |
| } |
| |
| if (pushed_scope) |
| pop_scope (pushed_scope); |
| } |
| } |
| else |
| { |
| cp_id_kind idk; |
| /* If parsing a type specifier sequence failed, then |
| this MUST be a simple expression. */ |
| cp_parser_parse_tentatively (parser); |
| decl = cp_parser_primary_expression (parser, false, false, |
| false, &idk); |
| if (!cp_parser_error_occurred (parser) |
| && decl |
| && DECL_P (decl) |
| && CLASS_TYPE_P (TREE_TYPE (decl))) |
| { |
| tree rhs; |
| |
| cp_parser_parse_definitely (parser); |
| cp_parser_require (parser, CPP_EQ, RT_EQ); |
| rhs = cp_parser_assignment_expression (parser, false, NULL); |
| finish_expr_stmt (build_x_modify_expr (decl, NOP_EXPR, |
| rhs, |
| tf_warning_or_error)); |
| add_private_clause = true; |
| } |
| else |
| { |
| decl = NULL; |
| cp_parser_abort_tentative_parse (parser); |
| init = cp_parser_expression (parser, false, NULL); |
| if (init) |
| { |
| if (TREE_CODE (init) == MODIFY_EXPR |
| || TREE_CODE (init) == MODOP_EXPR) |
| real_decl = TREE_OPERAND (init, 0); |
| } |
| } |
| } |
| } |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| if (this_pre_body) |
| { |
| this_pre_body = pop_stmt_list (this_pre_body); |
| if (pre_body) |
| { |
| tree t = pre_body; |
| pre_body = push_stmt_list (); |
| add_stmt (t); |
| add_stmt (this_pre_body); |
| pre_body = pop_stmt_list (pre_body); |
| } |
| else |
| pre_body = this_pre_body; |
| } |
| |
| if (decl) |
| real_decl = decl; |
| if (par_clauses != NULL && real_decl != NULL_TREE) |
| { |
| tree *c; |
| for (c = par_clauses; *c ; ) |
| if (OMP_CLAUSE_CODE (*c) == OMP_CLAUSE_FIRSTPRIVATE |
| && OMP_CLAUSE_DECL (*c) == real_decl) |
| { |
| error_at (loc, "iteration variable %qD" |
| " should not be firstprivate", real_decl); |
| *c = OMP_CLAUSE_CHAIN (*c); |
| } |
| else if (OMP_CLAUSE_CODE (*c) == OMP_CLAUSE_LASTPRIVATE |
| && OMP_CLAUSE_DECL (*c) == real_decl) |
| { |
| /* Add lastprivate (decl) clause to OMP_FOR_CLAUSES, |
| change it to shared (decl) in OMP_PARALLEL_CLAUSES. */ |
| tree l = build_omp_clause (loc, OMP_CLAUSE_LASTPRIVATE); |
| OMP_CLAUSE_DECL (l) = real_decl; |
| OMP_CLAUSE_CHAIN (l) = clauses; |
| CP_OMP_CLAUSE_INFO (l) = CP_OMP_CLAUSE_INFO (*c); |
| clauses = l; |
| OMP_CLAUSE_SET_CODE (*c, OMP_CLAUSE_SHARED); |
| CP_OMP_CLAUSE_INFO (*c) = NULL; |
| add_private_clause = false; |
| } |
| else |
| { |
| if (OMP_CLAUSE_CODE (*c) == OMP_CLAUSE_PRIVATE |
| && OMP_CLAUSE_DECL (*c) == real_decl) |
| add_private_clause = false; |
| c = &OMP_CLAUSE_CHAIN (*c); |
| } |
| } |
| |
| if (add_private_clause) |
| { |
| tree c; |
| for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c)) |
| { |
| if ((OMP_CLAUSE_CODE (c) == OMP_CLAUSE_PRIVATE |
| || OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LASTPRIVATE) |
| && OMP_CLAUSE_DECL (c) == decl) |
| break; |
| else if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_FIRSTPRIVATE |
| && OMP_CLAUSE_DECL (c) == decl) |
| error_at (loc, "iteration variable %qD " |
| "should not be firstprivate", |
| decl); |
| else if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION |
| && OMP_CLAUSE_DECL (c) == decl) |
| error_at (loc, "iteration variable %qD should not be reduction", |
| decl); |
| } |
| if (c == NULL) |
| { |
| c = build_omp_clause (loc, OMP_CLAUSE_PRIVATE); |
| OMP_CLAUSE_DECL (c) = decl; |
| c = finish_omp_clauses (c); |
| if (c) |
| { |
| OMP_CLAUSE_CHAIN (c) = clauses; |
| clauses = c; |
| } |
| } |
| } |
| |
| cond = NULL; |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)) |
| cond = cp_parser_omp_for_cond (parser, decl); |
| cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON); |
| |
| incr = NULL; |
| if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)) |
| { |
| /* If decl is an iterator, preserve the operator on decl |
| until finish_omp_for. */ |
| if (decl |
| && ((type_dependent_expression_p (decl) |
| && !POINTER_TYPE_P (TREE_TYPE (decl))) |
| || CLASS_TYPE_P (TREE_TYPE (decl)))) |
| incr = cp_parser_omp_for_incr (parser, decl); |
| else |
| incr = cp_parser_expression (parser, false, NULL); |
| } |
| |
| if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN)) |
| cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true, |
| /*or_comma=*/false, |
| /*consume_paren=*/true); |
| |
| TREE_VEC_ELT (declv, i) = decl; |
| TREE_VEC_ELT (initv, i) = init; |
| TREE_VEC_ELT (condv, i) = cond; |
| TREE_VEC_ELT (incrv, i) = incr; |
| |
| if (i == collapse - 1) |
| break; |
| |
| /* FIXME: OpenMP 3.0 draft isn't very clear on what exactly is allowed |
| in between the collapsed for loops to be still considered perfectly |
| nested. Hopefully the final version clarifies this. |
| For now handle (multiple) {'s and empty statements. */ |
| cp_parser_parse_tentatively (parser); |
| do |
| { |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_FOR)) |
| break; |
| else if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| bracecount++; |
| } |
| else if (bracecount |
| && cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)) |
| cp_lexer_consume_token (parser->lexer); |
| else |
| { |
| loc = cp_lexer_peek_token (parser->lexer)->location; |
| error_at (loc, "not enough collapsed for loops"); |
| collapse_err = true; |
| cp_parser_abort_tentative_parse (parser); |
| declv = NULL_TREE; |
| break; |
| } |
| } |
| while (1); |
| |
| if (declv) |
| { |
| cp_parser_parse_definitely (parser); |
| nbraces += bracecount; |
| } |
| } |
| |
| /* Note that we saved the original contents of this flag when we entered |
| the structured block, and so we don't need to re-save it here. */ |
| parser->in_statement = IN_OMP_FOR; |
| |
| /* Note that the grammar doesn't call for a structured block here, |
| though the loop as a whole is a structured block. */ |
| body = push_stmt_list (); |
| cp_parser_statement (parser, NULL_TREE, false, NULL); |
| body = pop_stmt_list (body); |
| |
| if (declv == NULL_TREE) |
| ret = NULL_TREE; |
| else |
| ret = finish_omp_for (loc_first, declv, initv, condv, incrv, body, |
| pre_body, clauses); |
| |
| while (nbraces) |
| { |
| if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE)) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| nbraces--; |
| } |
| else if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)) |
| cp_lexer_consume_token (parser->lexer); |
| else |
| { |
| if (!collapse_err) |
| { |
| error_at (cp_lexer_peek_token (parser->lexer)->location, |
| "collapsed loops not perfectly nested"); |
| } |
| collapse_err = true; |
| cp_parser_statement_seq_opt (parser, NULL); |
| if (cp_lexer_next_token_is (parser->lexer, CPP_EOF)) |
| break; |
| } |
| } |
| |
| while (!VEC_empty (tree, for_block)) |
| add_stmt (pop_stmt_list (VEC_pop (tree, for_block))); |
| release_tree_vector (for_block); |
| |
| return ret; |
| } |
| |
| /* OpenMP 2.5: |
| #pragma omp for for-clause[optseq] new-line |
| for-loop */ |
| |
| #define OMP_FOR_CLAUSE_MASK \ |
| ( (1u << PRAGMA_OMP_CLAUSE_PRIVATE) \ |
| | (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \ |
| | (1u << PRAGMA_OMP_CLAUSE_LASTPRIVATE) \ |
| | (1u << PRAGMA_OMP_CLAUSE_REDUCTION) \ |
| | (1u << PRAGMA_OMP_CLAUSE_ORDERED) \ |
| | (1u << PRAGMA_OMP_CLAUSE_SCHEDULE) \ |
| | (1u << PRAGMA_OMP_CLAUSE_NOWAIT) \ |
| | (1u << PRAGMA_OMP_CLAUSE_COLLAPSE)) |
| |
| static tree |
| cp_parser_omp_for (cp_parser *parser, cp_token *pragma_tok) |
| { |
| tree clauses, sb, ret; |
| unsigned int save; |
| |
| clauses = cp_parser_omp_all_clauses (parser, OMP_FOR_CLAUSE_MASK, |
| "#pragma omp for", pragma_tok); |
| |
| sb = begin_omp_structured_block (); |
| save = cp_parser_begin_omp_structured_block (parser); |
| |
| ret = cp_parser_omp_for_loop (parser, clauses, NULL); |
| |
| cp_parser_end_omp_structured_block (parser, save); |
| add_stmt (finish_omp_structured_block (sb)); |
| |
| return ret; |
| } |
| |
| /* OpenMP 2.5: |
| # pragma omp master new-line |
| structured-block */ |
| |
| static tree |
| cp_parser_omp_master (cp_parser *parser, cp_token *pragma_tok) |
| { |
| cp_parser_require_pragma_eol (parser, pragma_tok); |
| return c_finish_omp_master (input_location, |
| cp_parser_omp_structured_block (parser)); |
| } |
| |
| /* OpenMP 2.5: |
| # pragma omp ordered new-line |
| structured-block */ |
| |
| static tree |
| cp_parser_omp_ordered (cp_parser *parser, cp_token *pragma_tok) |
| { |
| location_t loc = cp_lexer_peek_token (parser->lexer)->location; |
| cp_parser_require_pragma_eol (parser, pragma_tok); |
| return c_finish_omp_ordered (loc, cp_parser_omp_structured_block (parser)); |
| } |
| |
| /* OpenMP 2.5: |
| |
| section-scope: |
| { section-sequence } |
| |
| section-sequence: |
| section-directive[opt] structured-block |
| section-sequence section-directive structured-block */ |
| |
| static tree |
| cp_parser_omp_sections_scope (cp_parser *parser) |
| { |
| tree stmt, substmt; |
| bool error_suppress = false; |
| cp_token *tok; |
| |
| if (!cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE)) |
| return NULL_TREE; |
| |
| stmt = push_stmt_list (); |
| |
| if (cp_lexer_peek_token (parser->lexer)->pragma_kind != PRAGMA_OMP_SECTION) |
| { |
| unsigned save; |
| |
| substmt = begin_omp_structured_block (); |
| save = cp_parser_begin_omp_structured_block (parser); |
| |
| while (1) |
| { |
| cp_parser_statement (parser, NULL_TREE, false, NULL); |
| |
| tok = cp_lexer_peek_token (parser->lexer); |
| if (tok->pragma_kind == PRAGMA_OMP_SECTION) |
| break; |
| if (tok->type == CPP_CLOSE_BRACE) |
| break; |
| if (tok->type == CPP_EOF) |
| break; |
| } |
| |
| cp_parser_end_omp_structured_block (parser, save); |
| substmt = finish_omp_structured_block (substmt); |
| substmt = build1 (OMP_SECTION, void_type_node, substmt); |
| add_stmt (substmt); |
| } |
| |
| while (1) |
| { |
| tok = cp_lexer_peek_token (parser->lexer); |
| if (tok->type == CPP_CLOSE_BRACE) |
| break; |
| if (tok->type == CPP_EOF) |
| break; |
| |
| if (tok->pragma_kind == PRAGMA_OMP_SECTION) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| cp_parser_require_pragma_eol (parser, tok); |
| error_suppress = false; |
| } |
| else if (!error_suppress) |
| { |
| cp_parser_error (parser, "expected %<#pragma omp section%> or %<}%>"); |
| error_suppress = true; |
| } |
| |
| substmt = cp_parser_omp_structured_block (parser); |
| substmt = build1 (OMP_SECTION, void_type_node, substmt); |
| add_stmt (substmt); |
| } |
| cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE); |
| |
| substmt = pop_stmt_list (stmt); |
| |
| stmt = make_node (OMP_SECTIONS); |
| TREE_TYPE (stmt) = void_type_node; |
| OMP_SECTIONS_BODY (stmt) = substmt; |
| |
| add_stmt (stmt); |
| return stmt; |
| } |
| |
| /* OpenMP 2.5: |
| # pragma omp sections sections-clause[optseq] newline |
| sections-scope */ |
| |
| #define OMP_SECTIONS_CLAUSE_MASK \ |
| ( (1u << PRAGMA_OMP_CLAUSE_PRIVATE) \ |
| | (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \ |
| | (1u << PRAGMA_OMP_CLAUSE_LASTPRIVATE) \ |
| | (1u << PRAGMA_OMP_CLAUSE_REDUCTION) \ |
| | (1u << PRAGMA_OMP_CLAUSE_NOWAIT)) |
| |
| static tree |
| cp_parser_omp_sections (cp_parser *parser, cp_token *pragma_tok) |
| { |
| tree clauses, ret; |
| |
| clauses = cp_parser_omp_all_clauses (parser, OMP_SECTIONS_CLAUSE_MASK, |
| "#pragma omp sections", pragma_tok); |
| |
| ret = cp_parser_omp_sections_scope (parser); |
| if (ret) |
| OMP_SECTIONS_CLAUSES (ret) = clauses; |
| |
| return ret; |
| } |
| |
| /* OpenMP 2.5: |
| # pragma parallel parallel-clause new-line |
| # pragma parallel for parallel-for-clause new-line |
| # pragma parallel sections parallel-sections-clause new-line */ |
| |
| #define OMP_PARALLEL_CLAUSE_MASK \ |
| ( (1u << PRAGMA_OMP_CLAUSE_IF) \ |
| | (1u << PRAGMA_OMP_CLAUSE_PRIVATE) \ |
| | (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \ |
| | (1u << PRAGMA_OMP_CLAUSE_DEFAULT) \ |
| | (1u << PRAGMA_OMP_CLAUSE_SHARED) \ |
| | (1u << PRAGMA_OMP_CLAUSE_COPYIN) \ |
| | (1u << PRAGMA_OMP_CLAUSE_REDUCTION) \ |
| | (1u << PRAGMA_OMP_CLAUSE_NUM_THREADS)) |
| |
| static tree |
| cp_parser_omp_parallel (cp_parser *parser, cp_token *pragma_tok) |
| { |
| enum pragma_kind p_kind = PRAGMA_OMP_PARALLEL; |
| const char *p_name = "#pragma omp parallel"; |
| tree stmt, clauses, par_clause, ws_clause, block; |
| unsigned int mask = OMP_PARALLEL_CLAUSE_MASK; |
| unsigned int save; |
| location_t loc = cp_lexer_peek_token (parser->lexer)->location; |
| |
| if (cp_lexer_next_token_is_keyword (parser->lexer, RID_FOR)) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| p_kind = PRAGMA_OMP_PARALLEL_FOR; |
| p_name = "#pragma omp parallel for"; |
| mask |= OMP_FOR_CLAUSE_MASK; |
| mask &= ~(1u << PRAGMA_OMP_CLAUSE_NOWAIT); |
| } |
| else if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)) |
| { |
| tree id = cp_lexer_peek_token (parser->lexer)->u.value; |
| const char *p = IDENTIFIER_POINTER (id); |
| if (strcmp (p, "sections") == 0) |
| { |
| cp_lexer_consume_token (parser->lexer); |
| p_kind = PRAGMA_OMP_PARALLEL_SECTIONS; |
| p_name = "#pragma omp parallel sections"; |
| mask |= OMP_SECTIONS_CLAUSE_MASK; |
| mask &= ~(1u << PRAGMA_OMP_CLAUSE_NOWAIT); |
| } |
| } |
| |
| clauses = cp_parser_omp_all_clauses (parser, mask, p_name, pragma_tok); |
| block = begin_omp_parallel (); |
| save = cp_parser_begin_omp_structured_block (parser); |
| |
| switch (p_kind) |
| { |
| case PRAGMA_OMP_PARALLEL: |
| cp_parser_statement (parser, NULL_TREE, false, NULL); |
| par_clause = clauses; |
| break; |
| |
| case PRAGMA_OMP_PARALLEL_FOR: |
| c_split_parallel_clauses (loc, clauses, &par_clause, &ws_clause); |
| cp_parser_omp_for_loop (parser, ws_clause, &par_clause); |
| break; |
| |
| case PRAGMA_OMP_PARALLEL_SECTIONS: |
| c_split_parallel_clauses (loc, clauses, &par_clause, &ws_clause); |
| stmt = cp_parser_omp_sections_scope (parser); |
| if (stmt) |
| OMP_SECTIONS_CLAUSES (stmt) = ws_clause; |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| cp_parser_end_omp_structured_block (parser, save); |
| stmt = finish_omp_parallel (par_clause, block); |
| if (p_kind != PRAGMA_OMP_PARALLEL) |
| OMP_PARALLEL_COMBINED (stmt) = 1; |
| return stmt; |
| } |
| |
| /* OpenMP 2.5: |
| # pragma omp single single-clause[optseq] new-line |
| structured-block */ |
| |
| #define OMP_SINGLE_CLAUSE_MASK \ |
| ( (1u << PRAGMA_OMP_CLAUSE_PRIVATE) \ |
| | (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \ |
| | (1u << PRAGMA_OMP_CLAUSE_COPYPRIVATE) \ |
| | (1u << PRAGMA_OMP_CLAUSE_NOWAIT)) |
| |
| static tree |
| cp_parser_omp_single (cp_parser *parser, cp_token *pragma_tok) |
| { |
| tree stmt = make_node (OMP_SINGLE); |
| TREE_TYPE (stmt) = void_type_node; |
| |
| OMP_SINGLE_CLAUSES (stmt) |
| = cp_parser_omp_all_clauses (parser, OMP_SINGLE_CLAUSE_MASK, |
| "#pragma omp single", pragma_tok); |
| OMP_SINGLE_BODY (stmt) = cp_parser_omp_structured_block (parser); |
| |
| return add_stmt (stmt); |
| } |
| |
| /* OpenMP 3.0: |
| # pragma omp task task-clause[optseq] new-line |
| structured-block */ |
| |
| #define OMP_TASK_CLAUSE_MASK \ |
| ( (1u << PRAGMA_OMP_CLAUSE_IF) \ |
| | (1u << PRAGMA_OMP_CLAUSE_UNTIED) \ |
| | (1u << PRAGMA_OMP_CLAUSE_DEFAULT) \ |
| | (1u << PRAGMA_OMP_CLAUSE_PRIVATE) \ |
| | (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \ |
| | (1u << PRAGMA_OMP_CLAUSE_SHARED)) |
| |
| static tree |
| cp_parser_omp_task (cp_parser *parser, cp_token *pragma_tok) |
| { |
| tree clauses, block; |
| unsigned int save; |
| |
| clauses = cp_parser_omp_all_clauses (parser, OMP_TASK_CLAUSE_MASK, |
| "#pragma omp task", pragma_tok); |
| block = begin_omp_task (); |
| save = cp_parser_begin_omp_structured_block (parser); |
| cp_parser_statement (parser, NULL_TREE, false, NULL); |
| cp_parser_end_omp_structured_block (parser, save); |
| return finish_omp_task (clauses, block); |
| } |
| |
| /* OpenMP 3.0: |
| # pragma omp taskwait new-line */ |
| |
| static void |
| cp_parser_omp_taskwait (cp_parser *parser, cp_token *pragma_tok) |
| { |
| cp_parser_require_pragma_eol (parser, pragma_tok); |
| finish_omp_taskwait (); |
| } |
| |
| /* OpenMP 2.5: |
| # pragma omp threadprivate (variable-list) */ |
| |
| static void |
| cp_parser_omp_threadprivate (cp_parser *parser, cp_token *pragma_tok) |
| { |
| tree vars; |
| |
| vars = cp_parser_omp_var_list (parser, OMP_CLAUSE_ERROR, NULL); |
| cp_parser_require_pragma_eol (parser, pragma_tok); |
| |
| finish_omp_threadprivate (vars); |
| } |
| |
| /* Main entry point to OpenMP statement pragmas. */ |
| |
| static void |
| cp_parser_omp_construct (cp_parser *parser, cp_token *pragma_tok) |
| { |
| tree stmt; |
| |
| switch (pragma_tok->pragma_kind) |
| { |
| case PRAGMA_OMP_ATOMIC: |
| cp_parser_omp_atomic (parser, pragma_tok); |
| return; |
| case PRAGMA_OMP_CRITICAL: |
| stmt = cp_parser_omp_critical (parser, pragma_tok); |
| break; |
| case PRAGMA_OMP_FOR: |
| stmt = cp_parser_omp_for (parser, pragma_tok); |
| break; |
| case PRAGMA_OMP_MASTER: |
| stmt = cp_parser_omp_master (parser, pragma_tok); |
| break; |
| case PRAGMA_OMP_ORDERED: |
| stmt = cp_parser_omp_ordered (parser, pragma_tok); |
| break; |
| case PRAGMA_OMP_PARALLEL: |
| stmt = cp_parser_omp_parallel (parser, pragma_tok); |
| break; |
| case PRAGMA_OMP_SECTIONS: |
| stmt = cp_parser_omp_sections (parser, pragma_tok); |
| break; |
| case PRAGMA_OMP_SINGLE: |
| stmt = cp_parser_omp_single (parser, pragma_tok); |
| break; |
| case PRAGMA_OMP_TASK: |
| stmt = cp_parser_omp_task (parser, pragma_tok); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| |
| if (stmt) |
| SET_EXPR_LOCATION (stmt, pragma_tok->location); |
| } |
| |
| /* The parser. */ |
| |
| static GTY (()) cp_parser *the_parser; |
| |
| |
| /* Special handling for the first token or line in the file. The first |
| thing in the file might be #pragma GCC pch_preprocess, which loads a |
| PCH file, which is a GC collection point. So we need to handle this |
| first pragma without benefit of an existing lexer structure. |
| |
| Always returns one token to the caller in *FIRST_TOKEN. This is |
| either the true first token of the file, or the first token after |
| the initial pragma. */ |
| |
| static void |
| cp_parser_initial_pragma (cp_token *first_token) |
| { |
| tree name = NULL; |
| |
| cp_lexer_get_preprocessor_token (NULL, first_token); |
| if (first_token->pragma_kind != PRAGMA_GCC_PCH_PREPROCESS) |
| return; |
| |
| cp_lexer_get_preprocessor_token (NULL, first_token); |
| if (first_token->type == CPP_STRING) |
| { |
| name = first_token->u.value; |
| |
| cp_lexer_get_preprocessor_token (NULL, first_token); |
| if (first_token->type != CPP_PRAGMA_EOL) |
| error_at (first_token->location, |
| "junk at end of %<#pragma GCC pch_preprocess%>"); |
| } |
| else |
| error_at (first_token->location, "expected string literal"); |
| |
| /* Skip to the end of the pragma. */ |
| while (first_token->type != CPP_PRAGMA_EOL && first_token->type != CPP_EOF) |
| cp_lexer_get_preprocessor_token (NULL, first_token); |
| |
| /* Now actually load the PCH file. */ |
| if (name) |
| c_common_pch_pragma (parse_in, TREE_STRING_POINTER (name)); |
| |
| /* Read one more token to return to our caller. We have to do this |
| after reading the PCH file in, since its pointers have to be |
| live. */ |
| cp_lexer_get_preprocessor_token (NULL, first_token); |
| } |
| |
| /* Normal parsing of a pragma token. Here we can (and must) use the |
| regular lexer. */ |
| |
| static bool |
| cp_parser_pragma (cp_parser *parser, enum pragma_context context) |
| { |
| cp_token *pragma_tok; |
| unsigned int id; |
| |
| pragma_tok = cp_lexer_consume_token (parser->lexer); |
| gcc_assert (pragma_tok->type == CPP_PRAGMA); |
| parser->lexer->in_pragma = true; |
| |
| id = pragma_tok->pragma_kind; |
| switch (id) |
| { |
| case PRAGMA_GCC_PCH_PREPROCESS: |
| error_at (pragma_tok->location, |
| "%<#pragma GCC pch_preprocess%> must be first"); |
| break; |
| |
| case PRAGMA_OMP_BARRIER: |
| switch (context) |
| { |
| case pragma_compound: |
| cp_parser_omp_barrier (parser, pragma_tok); |
| return false; |
| case pragma_stmt: |
| error_at (pragma_tok->location, "%<#pragma omp barrier%> may only be " |
| "used in compound statements"); |
| break; |
| default: |
| goto bad_stmt; |
| } |
| break; |
| |
| case PRAGMA_OMP_FLUSH: |
| switch (context) |
| { |
| case pragma_compound: |
| cp_parser_omp_flush (parser, pragma_tok); |
| return false; |
| case pragma_stmt: |
| error_at (pragma_tok->location, "%<#pragma omp flush%> may only be " |
| "used in compound statements"); |
| break; |
| default: |
| goto bad_stmt; |
| } |
| break; |
| |
| case PRAGMA_OMP_TASKWAIT: |
| switch (context) |
| { |
| case pragma_compound: |
| cp_parser_omp_taskwait (parser, pragma_tok); |
| return false; |
| case pragma_stmt: |
| error_at (pragma_tok->location, |
| "%<#pragma omp taskwait%> may only be " |
| "used in compound statements"); |
| break; |
| default: |
| goto bad_stmt; |
| } |
| break; |
| |
| case PRAGMA_OMP_THREADPRIVATE: |
| cp_parser_omp_threadprivate (parser, pragma_tok); |
| return false; |
| |
| case PRAGMA_OMP_ATOMIC: |
| case PRAGMA_OMP_CRITICAL: |
| case PRAGMA_OMP_FOR: |
| case PRAGMA_OMP_MASTER: |
| case PRAGMA_OMP_ORDERED: |
| case PRAGMA_OMP_PARALLEL: |
| case PRAGMA_OMP_SECTIONS: |
| case PRAGMA_OMP_SINGLE: |
| case PRAGMA_OMP_TASK: |
| if (context == pragma_external) |
| goto bad_stmt; |
| cp_parser_omp_construct (parser, pragma_tok); |
| return true; |
| |
| case PRAGMA_OMP_SECTION: |
| error_at (pragma_tok->location, |
| "%<#pragma omp section%> may only be used in " |
| "%<#pragma omp sections%> construct"); |
| break; |
| |
| default: |
| gcc_assert (id >= PRAGMA_FIRST_EXTERNAL); |
| c_invoke_pragma_handler (id); |
| break; |
| |
| bad_stmt: |
| cp_parser_error (parser, "expected declaration specifiers"); |
| break; |
| } |
| |
| cp_parser_skip_to_pragma_eol (parser, pragma_tok); |
| return false; |
| } |
| |
| /* The interface the pragma parsers have to the lexer. */ |
| |
| enum cpp_ttype |
| pragma_lex (tree *value) |
| { |
| cp_token *tok; |
| enum cpp_ttype ret; |
| |
| tok = cp_lexer_peek_token (the_parser->lexer); |
| |
| ret = tok->type; |
| *value = tok->u.value; |
| |
| if (ret == CPP_PRAGMA_EOL || ret == CPP_EOF) |
| ret = CPP_EOF; |
| else if (ret == CPP_STRING) |
| *value = cp_parser_string_literal (the_parser, false, false); |
| else |
| { |
| cp_lexer_consume_token (the_parser->lexer); |
| if (ret == CPP_KEYWORD) |
| ret = CPP_NAME; |
| } |
| |
| return ret; |
| } |
| |
| |
| /* External interface. */ |
| |
| /* Parse one entire translation unit. */ |
| |
| void |
| c_parse_file (void) |
| { |
| static bool already_called = false; |
| |
| if (already_called) |
| { |
| sorry ("inter-module optimizations not implemented for C++"); |
| return; |
| } |
| already_called = true; |
| |
| the_parser = cp_parser_new (); |
| push_deferring_access_checks (flag_access_control |
| ? dk_no_deferred : dk_no_check); |
| cp_parser_translation_unit (the_parser); |
| the_parser = NULL; |
| } |
| |
| #include "gt-cp-parser.h" |