blob: bfb72e07b056ff127d87730ef604cac724b37c07 [file] [log] [blame]
/**
* The runtime module exposes information specific to the D runtime code.
*
* Copyright: Copyright Sean Kelly 2005 - 2009.
* License: $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost License 1.0)
* Authors: Sean Kelly
* Source: $(LINK2 https://github.com/dlang/druntime/blob/master/src/core/runtime.d, _runtime.d)
* Documentation: https://dlang.org/phobos/core_runtime.html
*/
/* NOTE: This file has been patched from the original DMD distribution to
* work with the GDC compiler.
*/
module core.runtime;
version (OSX)
version = Darwin;
else version (iOS)
version = Darwin;
else version (TVOS)
version = Darwin;
else version (WatchOS)
version = Darwin;
version (GNU)
{
import gcc.backtrace;
// This shouldn't be necessary but ensure that code doesn't get mixed
// It does however prevent the unittest SEGV handler to be installed,
// which is desireable as it uses backtrace directly.
private enum hasExecinfo = false;
}
else version (DRuntime_Use_Libunwind)
{
import core.internal.backtrace.libunwind;
// This shouldn't be necessary but ensure that code doesn't get mixed
// It does however prevent the unittest SEGV handler to be installed,
// which is desireable as it uses backtrace directly.
private enum hasExecinfo = false;
}
else
import core.internal.execinfo;
/// C interface for Runtime.loadLibrary
extern (C) void* rt_loadLibrary(const char* name);
/// ditto
version (Windows) extern (C) void* rt_loadLibraryW(const wchar* name);
/// C interface for Runtime.unloadLibrary, returns 1/0 instead of bool
extern (C) int rt_unloadLibrary(void* ptr);
/// C interface for Runtime.initialize, returns 1/0 instead of bool
extern(C) int rt_init();
/// C interface for Runtime.terminate, returns 1/0 instead of bool
extern(C) int rt_term();
/**
* This type is returned by the module unit test handler to indicate testing
* results.
*/
struct UnitTestResult
{
/**
* Number of modules which were tested
*/
size_t executed;
/**
* Number of modules passed the unittests
*/
size_t passed;
/**
* Should the main function be run or not? This is ignored if any tests
* failed.
*/
bool runMain;
/**
* Should we print a summary of the results?
*/
bool summarize;
/**
* Simple check for whether execution should continue after unit tests
* have been run. Works with legacy code that expected a bool return.
*
* Returns:
* true if execution should continue after testing is complete, false if
* not.
*/
bool opCast(T : bool)() const
{
return runMain && (executed == passed);
}
/// Simple return code that says unit tests pass, and main should be run
enum UnitTestResult pass = UnitTestResult(0, 0, true, false);
/// Simple return code that says unit tests failed.
enum UnitTestResult fail = UnitTestResult(1, 0, false, false);
}
/// Legacy module unit test handler
alias bool function() ModuleUnitTester;
/// Module unit test handler
alias UnitTestResult function() ExtendedModuleUnitTester;
private
{
alias bool function(Object) CollectHandler;
alias Throwable.TraceInfo function( void* ptr ) TraceHandler;
alias void delegate( Throwable ) ExceptionHandler;
extern (C) void _d_print_throwable(Throwable t);
extern (C) void* thread_stackBottom();
}
shared static this()
{
// NOTE: Some module ctors will run before this handler is set, so it's
// still possible the app could exit without a stack trace. If
// this becomes an issue, the handler could be set in C main
// before the module ctors are run.
Runtime.traceHandler = &defaultTraceHandler;
}
///////////////////////////////////////////////////////////////////////////////
// Runtime
///////////////////////////////////////////////////////////////////////////////
/**
* Stores the unprocessed arguments supplied when the
* process was started.
*/
struct CArgs
{
int argc; /// The argument count.
char** argv; /// The arguments as a C array of strings.
}
/**
* This struct encapsulates all functionality related to the underlying runtime
* module for the calling context.
*/
struct Runtime
{
/**
* Initializes the runtime. This call is to be used in instances where the
* standard program initialization process is not executed. This is most
* often in shared libraries or in libraries linked to a C program.
* If the runtime was already successfully initialized this returns true.
* Each call to initialize must be paired by a call to $(LREF terminate).
*
* Returns:
* true if initialization succeeded or false if initialization failed.
*/
static bool initialize()
{
return !!rt_init();
}
/**
* Terminates the runtime. This call is to be used in instances where the
* standard program termination process will not be not executed. This is
* most often in shared libraries or in libraries linked to a C program.
* If the runtime was not successfully initialized the function returns false.
*
* Returns:
* true if termination succeeded or false if termination failed.
*/
static bool terminate()
{
return !!rt_term();
}
/**
* Returns the arguments supplied when the process was started.
*
* Returns:
* The arguments supplied when this process was started.
*/
extern(C) pragma(mangle, "rt_args") static @property string[] args();
/**
* Returns the unprocessed C arguments supplied when the process was started.
* Use this when you need to supply argc and argv to C libraries.
*
* Returns:
* A $(LREF CArgs) struct with the arguments supplied when this process was started.
*
* Example:
* ---
* import core.runtime;
*
* // A C library function requiring char** arguments
* extern(C) void initLibFoo(int argc, char** argv);
*
* void main()
* {
* auto args = Runtime.cArgs;
* initLibFoo(args.argc, args.argv);
* }
* ---
*/
extern(C) pragma(mangle, "rt_cArgs") static @property CArgs cArgs() @nogc;
/**
* Locates a dynamic library with the supplied library name and dynamically
* loads it into the caller's address space. If the library contains a D
* runtime it will be integrated with the current runtime.
*
* Params:
* name = The name of the dynamic library to load.
*
* Returns:
* A reference to the library or null on error.
*/
static void* loadLibrary()(const scope char[] name)
{
import core.stdc.stdlib : free, malloc;
version (Windows)
{
import core.sys.windows.winnls : CP_UTF8, MultiByteToWideChar;
import core.sys.windows.winnt : WCHAR;
if (name.length == 0) return null;
// Load a DLL at runtime
auto len = MultiByteToWideChar(
CP_UTF8, 0, name.ptr, cast(int)name.length, null, 0);
if (len == 0)
return null;
auto buf = cast(WCHAR*)malloc((len+1) * WCHAR.sizeof);
if (buf is null) return null;
scope (exit) free(buf);
len = MultiByteToWideChar(
CP_UTF8, 0, name.ptr, cast(int)name.length, buf, len);
if (len == 0)
return null;
buf[len] = '\0';
return rt_loadLibraryW(buf);
}
else version (Posix)
{
/* Need a 0-terminated C string for the dll name
*/
immutable len = name.length;
auto buf = cast(char*)malloc(len + 1);
if (!buf) return null;
scope (exit) free(buf);
buf[0 .. len] = name[];
buf[len] = 0;
return rt_loadLibrary(buf);
}
}
/**
* Unloads the dynamic library referenced by p. If this library contains a
* D runtime then any necessary finalization or cleanup of that runtime
* will be performed.
*
* Params:
* p = A reference to the library to unload.
*/
static bool unloadLibrary()(void* p)
{
return !!rt_unloadLibrary(p);
}
/**
* Overrides the default trace mechanism with a user-supplied version. A
* trace represents the context from which an exception was thrown, and the
* trace handler will be called when this occurs. The pointer supplied to
* this routine indicates the base address from which tracing should occur.
* If the supplied pointer is null then the trace routine should determine
* an appropriate calling context from which to begin the trace.
*
* Params:
* h = The new trace handler. Set to null to use the default handler.
*/
extern(C) pragma(mangle, "rt_setTraceHandler") static @property void traceHandler(TraceHandler h);
/**
* Gets the current trace handler.
*
* Returns:
* The current trace handler or null if none has been set.
*/
extern(C) pragma(mangle, "rt_getTraceHandler") static @property TraceHandler traceHandler();
/**
* Overrides the default collect hander with a user-supplied version. This
* routine will be called for each resource object that is finalized in a
* non-deterministic manner--typically during a garbage collection cycle.
* If the supplied routine returns true then the object's dtor will called
* as normal, but if the routine returns false than the dtor will not be
* called. The default behavior is for all object dtors to be called.
*
* Params:
* h = The new collect handler. Set to null to use the default handler.
*/
extern(C) pragma(mangle, "rt_setCollectHandler") static @property void collectHandler( CollectHandler h );
/**
* Gets the current collect handler.
*
* Returns:
* The current collect handler or null if none has been set.
*/
extern(C) pragma(mangle, "rt_getCollectHandler") static @property CollectHandler collectHandler();
/**
* Overrides the default module unit tester with a user-supplied version.
* This routine will be called once on program initialization. The return
* value of this routine indicates to the runtime whether the tests ran
* without error.
*
* There are two options for handlers. The `bool` version is deprecated but
* will be kept for legacy support. Returning `true` from the handler is
* equivalent to returning `UnitTestResult.pass` from the extended version.
* Returning `false` from the handler is equivalent to returning
* `UnitTestResult.fail` from the extended version.
*
* See the documentation for `UnitTestResult` to see how you should set up
* the return structure.
*
* See the documentation for `runModuleUnitTests` for how the default
* algorithm works, or read the example below.
*
* Params:
* h = The new unit tester. Set both to null to use the default unit
* tester.
*
* Example:
* ---------
* shared static this()
* {
* import core.runtime;
*
* Runtime.extendedModuleUnitTester = &customModuleUnitTester;
* }
*
* UnitTestResult customModuleUnitTester()
* {
* import std.stdio;
*
* writeln("Using customModuleUnitTester");
*
* // Do the same thing as the default moduleUnitTester:
* UnitTestResult result;
* foreach (m; ModuleInfo)
* {
* if (m)
* {
* auto fp = m.unitTest;
*
* if (fp)
* {
* ++result.executed;
* try
* {
* fp();
* ++result.passed;
* }
* catch (Throwable e)
* {
* writeln(e);
* }
* }
* }
* }
* if (result.executed != result.passed)
* {
* result.runMain = false; // don't run main
* result.summarize = true; // print failure
* }
* else
* {
* result.runMain = true; // all UT passed
* result.summarize = false; // be quiet about it.
* }
* return result;
* }
* ---------
*/
static @property void extendedModuleUnitTester( ExtendedModuleUnitTester h )
{
sm_extModuleUnitTester = h;
}
/// Ditto
static @property void moduleUnitTester( ModuleUnitTester h )
{
sm_moduleUnitTester = h;
}
/**
* Gets the current legacy module unit tester.
*
* This property should not be used, but is supported for legacy purposes.
*
* Note that if the extended unit test handler is set, this handler will
* be ignored.
*
* Returns:
* The current legacy module unit tester handler or null if none has been
* set.
*/
static @property ModuleUnitTester moduleUnitTester()
{
return sm_moduleUnitTester;
}
/**
* Gets the current module unit tester.
*
* This handler overrides any legacy module unit tester set by the
* moduleUnitTester property.
*
* Returns:
* The current module unit tester handler or null if none has been
* set.
*/
static @property ExtendedModuleUnitTester extendedModuleUnitTester()
{
return sm_extModuleUnitTester;
}
private:
// NOTE: This field will only ever be set in a static ctor and should
// never occur within any but the main thread, so it is safe to
// make it __gshared.
__gshared ExtendedModuleUnitTester sm_extModuleUnitTester = null;
__gshared ModuleUnitTester sm_moduleUnitTester = null;
}
/**
* Set source file path for coverage reports.
*
* Params:
* path = The new path name.
* Note:
* This is a dmd specific setting.
*/
extern (C) void dmd_coverSourcePath(string path);
/**
* Set output path for coverage reports.
*
* Params:
* path = The new path name.
* Note:
* This is a dmd specific setting.
*/
extern (C) void dmd_coverDestPath(string path);
/**
* Enable merging of coverage reports with existing data.
*
* Params:
* flag = enable/disable coverage merge mode
* Note:
* This is a dmd specific setting.
*/
extern (C) void dmd_coverSetMerge(bool flag);
/**
* Set the output file name for profile reports (-profile switch).
* An empty name will set the output to stdout.
*
* Params:
* name = file name
* Note:
* This is a dmd specific setting.
*/
extern (C) void trace_setlogfilename(string name);
/**
* Set the output file name for the optimized profile linker DEF file (-profile switch).
* An empty name will set the output to stdout.
*
* Params:
* name = file name
* Note:
* This is a dmd specific setting.
*/
extern (C) void trace_setdeffilename(string name);
/**
* Set the output file name for memory profile reports (-profile=gc switch).
* An empty name will set the output to stdout.
*
* Params:
* name = file name
* Note:
* This is a dmd specific setting.
*/
extern (C) void profilegc_setlogfilename(string name);
///////////////////////////////////////////////////////////////////////////////
// Overridable Callbacks
///////////////////////////////////////////////////////////////////////////////
/**
* This routine is called by the runtime to run module unit tests on startup.
* The user-supplied unit tester will be called if one has been set,
* otherwise all unit tests will be run in sequence.
*
* If the extended unittest handler is registered, this function returns the
* result from that handler directly.
*
* If a legacy boolean returning custom handler is used, `false` maps to
* `UnitTestResult.fail`, and `true` maps to `UnitTestResult.pass`. This was
* the original behavior of the unit testing system.
*
* If no unittest custom handlers are registered, the following algorithm is
* executed (the behavior can be affected by the `--DRT-testmode` switch
* below):
* 1. Execute any unittests present. For each that fails, print the stack
* trace and continue.
* 2. If no unittests were present, set summarize to false, and runMain to
* true.
* 3. Otherwise, set summarize to true, and runMain to false.
*
* See the documentation for `UnitTestResult` for details on how the runtime
* treats the return value from this function.
*
* If the switch `--DRT-testmode` is passed to the executable, it can have
* one of 3 values:
* 1. "run-main": even if unit tests are run (and all pass), runMain is set
to true.
* 2. "test-or-main": any unit tests present will cause the program to
* summarize the results and exit regardless of the result. This is the
* default.
* 3. "test-only", runMain is set to false, even with no tests present.
*
* This command-line parameter does not affect custom unit test handlers.
*
* Returns:
* A `UnitTestResult` struct indicating the result of running unit tests.
*/
extern (C) UnitTestResult runModuleUnitTests()
{
version (Windows)
import core.sys.windows.stacktrace;
static if (__traits(compiles, new LibBacktrace(0)))
{
import core.sys.posix.signal; // segv handler
static extern (C) void unittestSegvHandler(int signum, siginfo_t* info, void* ptr)
{
import core.stdc.stdio;
fprintf(stderr, "Segmentation fault while running unittests:\n");
fprintf(stderr, "----------------\n");
// First frame is LibBacktrace ctor. Second is signal handler,
// but include that for now
scope bt = new LibBacktrace(1);
foreach (size_t i, const(char[]) msg; bt)
fprintf(stderr, "%s\n", msg.ptr ? msg.ptr : "???");
}
sigaction_t action = void;
sigaction_t oldseg = void;
sigaction_t oldbus = void;
(cast(byte*) &action)[0 .. action.sizeof] = 0;
sigfillset(&action.sa_mask); // block other signals
action.sa_flags = SA_SIGINFO | SA_RESETHAND;
action.sa_sigaction = &unittestSegvHandler;
sigaction(SIGSEGV, &action, &oldseg);
sigaction(SIGBUS, &action, &oldbus);
scope (exit)
{
sigaction(SIGSEGV, &oldseg, null);
sigaction(SIGBUS, &oldbus, null);
}
}
else static if (hasExecinfo)
{
import core.sys.posix.signal; // segv handler
static extern (C) void unittestSegvHandler( int signum, siginfo_t* info, void* ptr ) nothrow
{
static enum MAXFRAMES = 128;
void*[MAXFRAMES] callstack;
auto numframes = backtrace( callstack.ptr, MAXFRAMES );
backtrace_symbols_fd( callstack.ptr, numframes, 2 );
}
sigaction_t action = void;
sigaction_t oldseg = void;
sigaction_t oldbus = void;
(cast(byte*) &action)[0 .. action.sizeof] = 0;
sigfillset( &action.sa_mask ); // block other signals
action.sa_flags = SA_SIGINFO | SA_RESETHAND;
action.sa_sigaction = &unittestSegvHandler;
sigaction( SIGSEGV, &action, &oldseg );
sigaction( SIGBUS, &action, &oldbus );
scope( exit )
{
sigaction( SIGSEGV, &oldseg, null );
sigaction( SIGBUS, &oldbus, null );
}
}
if (Runtime.sm_extModuleUnitTester !is null)
return Runtime.sm_extModuleUnitTester();
else if (Runtime.sm_moduleUnitTester !is null)
return Runtime.sm_moduleUnitTester() ? UnitTestResult.pass : UnitTestResult.fail;
UnitTestResult results;
foreach ( m; ModuleInfo )
{
if ( !m )
continue;
auto fp = m.unitTest;
if ( !fp )
continue;
import core.exception;
++results.executed;
try
{
fp();
++results.passed;
}
catch ( Throwable e )
{
if ( typeid(e) == typeid(AssertError) )
{
// Crude heuristic to figure whether the assertion originates in
// the unittested module. TODO: improve.
auto moduleName = m.name;
if (moduleName.length && e.file.length > moduleName.length
&& e.file[0 .. moduleName.length] == moduleName)
{
import core.stdc.stdio;
printf("%.*s(%llu): [unittest] %.*s\n",
cast(int) e.file.length, e.file.ptr, cast(ulong) e.line,
cast(int) e.message.length, e.message.ptr);
// Exception originates in the same module, don't print
// the stack trace.
// TODO: omit stack trace only if assert was thrown
// directly by the unittest.
continue;
}
}
// TODO: perhaps indent all of this stuff.
_d_print_throwable(e);
}
}
import core.internal.parseoptions : rt_configOption;
if (results.passed != results.executed)
{
// by default, we always print a summary if there are failures.
results.summarize = true;
}
else switch (rt_configOption("testmode", null, false))
{
case "run-main":
results.runMain = true;
break;
case "test-only":
// Never run main, always summarize
results.summarize = true;
break;
case "":
// By default, do not run main if tests are present.
case "test-or-main":
// only run main if there were no tests. Only summarize if we are not
// running main.
results.runMain = (results.executed == 0);
results.summarize = !results.runMain;
break;
default:
assert(0, "Unknown --DRT-testmode option: " ~ rt_configOption("testmode", null, false));
}
return results;
}
/**
* Get the default `Throwable.TraceInfo` implementation for the platform
*
* This functions returns a trace handler, allowing to inspect the
* current stack trace.
*
* Params:
* ptr = (Windows only) The context to get the stack trace from.
* When `null` (the default), start from the current frame.
*
* Returns:
* A `Throwable.TraceInfo` implementation suitable to iterate over the stack,
* or `null`. If called from a finalizer (destructor), always returns `null`
* as trace handlers allocate.
*/
Throwable.TraceInfo defaultTraceHandler( void* ptr = null )
{
// avoid recursive GC calls in finalizer, trace handlers should be made @nogc instead
import core.memory : GC;
if (GC.inFinalizer)
return null;
static if (__traits(compiles, new LibBacktrace(0)))
{
version (Posix)
static enum FIRSTFRAME = 4;
else version (Win64)
static enum FIRSTFRAME = 4;
else
static enum FIRSTFRAME = 0;
return new LibBacktrace(FIRSTFRAME);
}
else static if (__traits(compiles, new UnwindBacktrace(0)))
{
version (Posix)
static enum FIRSTFRAME = 5;
else version (Win64)
static enum FIRSTFRAME = 4;
else
static enum FIRSTFRAME = 0;
return new UnwindBacktrace(FIRSTFRAME);
}
else version (Windows)
{
import core.sys.windows.stacktrace;
static if (__traits(compiles, new StackTrace(0, null)))
{
import core.sys.windows.winnt : CONTEXT;
version (Win64)
enum FIRSTFRAME = 4;
else version (Win32)
enum FIRSTFRAME = 0;
return new StackTrace(FIRSTFRAME, cast(CONTEXT*)ptr);
}
else
return null;
}
else static if (__traits(compiles, new DefaultTraceInfo()))
return new DefaultTraceInfo();
else
return null;
}
/// Example of a simple program printing its stack trace
unittest
{
import core.runtime;
import core.stdc.stdio;
void main()
{
auto trace = defaultTraceHandler(null);
foreach (line; trace)
{
printf("%.*s\n", cast(int)line.length, line.ptr);
}
}
}
version (DRuntime_Use_Libunwind)
{
import core.internal.backtrace.handler;
alias DefaultTraceInfo = LibunwindHandler;
}
/// Default implementation for most POSIX systems
else static if (hasExecinfo) private class DefaultTraceInfo : Throwable.TraceInfo
{
import core.demangle;
import core.stdc.stdlib : free;
import core.stdc.string : strlen, memchr, memmove;
this()
{
// it may not be 1 but it is good enough to get
// in CALL instruction address range for backtrace
enum CALL_INSTRUCTION_SIZE = 1;
static if (__traits(compiles, backtrace((void**).init, int.init)))
numframes = backtrace(this.callstack.ptr, MAXFRAMES);
// Backtrace succeeded, adjust the frame to point to the caller
if (numframes >= 2)
foreach (ref elem; this.callstack)
elem -= CALL_INSTRUCTION_SIZE;
else // backtrace() failed, do it ourselves
{
static void** getBasePtr()
{
version (D_InlineAsm_X86)
asm { naked; mov EAX, EBP; ret; }
else
version (D_InlineAsm_X86_64)
asm { naked; mov RAX, RBP; ret; }
else
return null;
}
auto stackTop = getBasePtr();
auto stackBottom = cast(void**) thread_stackBottom();
void* dummy;
if ( stackTop && &dummy < stackTop && stackTop < stackBottom )
{
auto stackPtr = stackTop;
for ( numframes = 0; stackTop <= stackPtr &&
stackPtr < stackBottom &&
numframes < MAXFRAMES; )
{
callstack[numframes++] = *(stackPtr + 1) - CALL_INSTRUCTION_SIZE;
stackPtr = cast(void**) *stackPtr;
}
}
}
}
override int opApply( scope int delegate(ref const(char[])) dg ) const
{
return opApply( (ref size_t, ref const(char[]) buf)
{
return dg( buf );
} );
}
override int opApply( scope int delegate(ref size_t, ref const(char[])) dg ) const
{
version (linux) enum enableDwarf = true;
else version (FreeBSD) enum enableDwarf = true;
else version (DragonFlyBSD) enum enableDwarf = true;
else version (Darwin) enum enableDwarf = true;
else enum enableDwarf = false;
const framelist = backtrace_symbols( callstack.ptr, numframes );
scope(exit) free(cast(void*) framelist);
static if (enableDwarf)
{
import core.internal.backtrace.dwarf;
return traceHandlerOpApplyImpl(numframes,
i => callstack[i],
(i) { auto str = framelist[i][0 .. strlen(framelist[i])]; return getMangledSymbolName(str); },
dg);
}
else
{
int ret = 0;
for (size_t pos = 0; pos < numframes; ++pos)
{
char[4096] fixbuf = void;
auto buf = framelist[pos][0 .. strlen(framelist[pos])];
buf = fixline( buf, fixbuf );
ret = dg( pos, buf );
if ( ret )
break;
}
return ret;
}
}
override string toString() const
{
string buf;
foreach ( i, line; this )
buf ~= i ? "\n" ~ line : line;
return buf;
}
private:
int numframes;
static enum MAXFRAMES = 128;
void*[MAXFRAMES] callstack = void;
private:
const(char)[] fixline( const(char)[] buf, return ref char[4096] fixbuf ) const
{
size_t symBeg, symEnd;
getMangledSymbolName(buf, symBeg, symEnd);
enum min = (size_t a, size_t b) => a <= b ? a : b;
if (symBeg == symEnd || symBeg >= fixbuf.length)
{
immutable len = min(buf.length, fixbuf.length);
fixbuf[0 .. len] = buf[0 .. len];
return fixbuf[0 .. len];
}
else
{
fixbuf[0 .. symBeg] = buf[0 .. symBeg];
auto sym = demangle(buf[symBeg .. symEnd], fixbuf[symBeg .. $]);
if (sym.ptr !is fixbuf.ptr + symBeg)
{
// demangle reallocated the buffer, copy the symbol to fixbuf
immutable len = min(fixbuf.length - symBeg, sym.length);
memmove(fixbuf.ptr + symBeg, sym.ptr, len);
if (symBeg + len == fixbuf.length)
return fixbuf[];
}
immutable pos = symBeg + sym.length;
assert(pos < fixbuf.length);
immutable tail = buf.length - symEnd;
immutable len = min(fixbuf.length - pos, tail);
fixbuf[pos .. pos + len] = buf[symEnd .. symEnd + len];
return fixbuf[0 .. pos + len];
}
}
}