blob: 4a5deca6884a81ff6358954690ab4029e2c2073f [file] [log] [blame]
/**
* Computes RIPEMD-160 hashes of arbitrary data. RIPEMD-160 hashes are 20 byte quantities
* that are like a checksum or CRC, but are more robust.
*
$(SCRIPT inhibitQuickIndex = 1;)
$(DIVC quickindex,
$(BOOKTABLE ,
$(TR $(TH Category) $(TH Functions)
)
$(TR $(TDNW Template API) $(TD $(MYREF RIPEMD160)
)
)
$(TR $(TDNW OOP API) $(TD $(MYREF RIPEMD160Digest))
)
$(TR $(TDNW Helpers) $(TD $(MYREF ripemd160Of))
)
)
)
* This module conforms to the APIs defined in $(MREF std, digest). To understand the
* differences between the template and the OOP API, see $(MREF std, digest).
*
* This module publicly imports `std.digest` and can be used as a stand-alone
* module.
*
* License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
*
* CTFE:
* Digests do not work in CTFE
*
* Authors:
* Kai Nacke $(BR)
* The algorithm was designed by Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. $(BR)
* The D implementation is a direct translation of the ANSI C implementation by Antoon Bosselaers.
*
* References:
* $(UL
* $(LI $(LINK2 http://homes.esat.kuleuven.be/~bosselae/ripemd160.html, The hash function RIPEMD-160))
* $(LI $(LINK2 http://en.wikipedia.org/wiki/RIPEMD-160, Wikipedia on RIPEMD-160))
* )
*
* Source: $(PHOBOSSRC std/digest/ripemd.d)
*
*/
module std.digest.ripemd;
public import std.digest;
///
@safe unittest
{
//Template API
import std.digest.md;
ubyte[20] hash = ripemd160Of("abc");
assert(toHexString(hash) == "8EB208F7E05D987A9B044A8E98C6B087F15A0BFC");
//Feeding data
ubyte[1024] data;
RIPEMD160 md;
md.start();
md.put(data[]);
md.start(); //Start again
md.put(data[]);
hash = md.finish();
}
///
@safe unittest
{
//OOP API
import std.digest.md;
auto md = new RIPEMD160Digest();
ubyte[] hash = md.digest("abc");
assert(toHexString(hash) == "8EB208F7E05D987A9B044A8E98C6B087F15A0BFC");
//Feeding data
ubyte[1024] data;
md.put(data[]);
md.reset(); //Start again
md.put(data[]);
hash = md.finish();
}
/**
* Template API RIPEMD160 implementation.
* See `std.digest` for differences between template and OOP API.
*/
struct RIPEMD160
{
import core.bitop : rol;
private:
// magic initialization constants
uint[5] _state = [0x67452301,0xefcdab89,0x98badcfe,0x10325476,0xc3d2e1f0]; // state (ABCDE)
ulong _count; //number of bits, modulo 2^64
ubyte[64] _buffer; // input buffer
static immutable ubyte[64] _padding =
[
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
];
// F, G, H, I and J are basic RIPEMD160 functions
static @safe pure nothrow @nogc
{
uint F(uint x, uint y, uint z) { return x ^ y ^ z; }
uint G(uint x, uint y, uint z) { return (x & y) | (~x & z); }
uint H(uint x, uint y, uint z) { return (x | ~y) ^ z; }
uint I(uint x, uint y, uint z) { return (x & z) | (y & ~z); }
uint J(uint x, uint y, uint z) { return x ^ (y | ~z); }
}
/*
* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
* Rotation is separate from addition to prevent recomputation.
*/
/* the ten basic operations FF() through III() */
static void FF(ref uint a, uint b, ref uint c, uint d, uint e, uint x, uint s)
@safe pure nothrow @nogc
{
a += F(b, c, d) + x;
a = rol(a, s) + e;
c = rol(c, 10);
}
static void GG(ref uint a, uint b, ref uint c, uint d, uint e, uint x, uint s)
@safe pure nothrow @nogc
{
a += G(b, c, d) + x + 0x5a827999UL;
a = rol(a, s) + e;
c = rol(c, 10);
}
static void HH(ref uint a, uint b, ref uint c, uint d, uint e, uint x, uint s)
@safe pure nothrow @nogc
{
a += H(b, c, d) + x + 0x6ed9eba1UL;
a = rol(a, s) + e;
c = rol(c, 10);
}
static void II(ref uint a, uint b, ref uint c, uint d, uint e, uint x, uint s)
@safe pure nothrow @nogc
{
a += I(b, c, d) + x + 0x8f1bbcdcUL;
a = rol(a, s) + e;
c = rol(c, 10);
}
static void JJ(ref uint a, uint b, ref uint c, uint d, uint e, uint x, uint s)
@safe pure nothrow @nogc
{
a += J(b, c, d) + x + 0xa953fd4eUL;
a = rol(a, s) + e;
c = rol(c, 10);
}
/*
* FFF, GGG, HHH, and III transformations for parallel rounds 1, 2, 3, and 4.
* Rotation is separate from addition to prevent recomputation.
*/
static void FFF(ref uint a, uint b, ref uint c, uint d, uint e, uint x, uint s)
@safe pure nothrow @nogc
{
a += F(b, c, d) + x;
a = rol(a, s) + e;
c = rol(c, 10);
}
static void GGG(ref uint a, uint b, ref uint c, uint d, uint e, uint x, uint s)
@safe pure nothrow @nogc
{
a += G(b, c, d) + x + 0x7a6d76e9UL;
a = rol(a, s) + e;
c = rol(c, 10);
}
static void HHH(ref uint a, uint b, ref uint c, uint d, uint e, uint x, uint s)
@safe pure nothrow @nogc
{
a += H(b, c, d) + x + 0x6d703ef3UL;
a = rol(a, s) + e;
c = rol(c, 10);
}
static void III(ref uint a, uint b, ref uint c, uint d, uint e, uint x, uint s)
@safe pure nothrow @nogc
{
a += I(b, c, d) + x + 0x5c4dd124UL;
a = rol(a, s) + e;
c = rol(c, 10);
}
static void JJJ(ref uint a, uint b, ref uint c, uint d, uint e, uint x, uint s)
@safe pure nothrow @nogc
{
a += J(b, c, d) + x + 0x50a28be6UL;
a = rol(a, s) + e;
c = rol(c, 10);
}
/*
* RIPEMD160 basic transformation. Transforms state based on block.
*/
private void transform(const(ubyte[64])* block)
pure nothrow @nogc
{
uint aa = _state[0],
bb = _state[1],
cc = _state[2],
dd = _state[3],
ee = _state[4];
uint aaa = _state[0],
bbb = _state[1],
ccc = _state[2],
ddd = _state[3],
eee = _state[4];
uint[16] x = void;
version (BigEndian)
{
import std.bitmanip : littleEndianToNative;
for (size_t i = 0; i < 16; i++)
{
x[i] = littleEndianToNative!uint(*cast(ubyte[4]*)&(*block)[i*4]);
}
}
else
{
(cast(ubyte*) x.ptr)[0 .. 64] = (cast(ubyte*) block)[0 .. 64];
}
/* round 1 */
FF(aa, bb, cc, dd, ee, x[ 0], 11);
FF(ee, aa, bb, cc, dd, x[ 1], 14);
FF(dd, ee, aa, bb, cc, x[ 2], 15);
FF(cc, dd, ee, aa, bb, x[ 3], 12);
FF(bb, cc, dd, ee, aa, x[ 4], 5);
FF(aa, bb, cc, dd, ee, x[ 5], 8);
FF(ee, aa, bb, cc, dd, x[ 6], 7);
FF(dd, ee, aa, bb, cc, x[ 7], 9);
FF(cc, dd, ee, aa, bb, x[ 8], 11);
FF(bb, cc, dd, ee, aa, x[ 9], 13);
FF(aa, bb, cc, dd, ee, x[10], 14);
FF(ee, aa, bb, cc, dd, x[11], 15);
FF(dd, ee, aa, bb, cc, x[12], 6);
FF(cc, dd, ee, aa, bb, x[13], 7);
FF(bb, cc, dd, ee, aa, x[14], 9);
FF(aa, bb, cc, dd, ee, x[15], 8);
/* round 2 */
GG(ee, aa, bb, cc, dd, x[ 7], 7);
GG(dd, ee, aa, bb, cc, x[ 4], 6);
GG(cc, dd, ee, aa, bb, x[13], 8);
GG(bb, cc, dd, ee, aa, x[ 1], 13);
GG(aa, bb, cc, dd, ee, x[10], 11);
GG(ee, aa, bb, cc, dd, x[ 6], 9);
GG(dd, ee, aa, bb, cc, x[15], 7);
GG(cc, dd, ee, aa, bb, x[ 3], 15);
GG(bb, cc, dd, ee, aa, x[12], 7);
GG(aa, bb, cc, dd, ee, x[ 0], 12);
GG(ee, aa, bb, cc, dd, x[ 9], 15);
GG(dd, ee, aa, bb, cc, x[ 5], 9);
GG(cc, dd, ee, aa, bb, x[ 2], 11);
GG(bb, cc, dd, ee, aa, x[14], 7);
GG(aa, bb, cc, dd, ee, x[11], 13);
GG(ee, aa, bb, cc, dd, x[ 8], 12);
/* round 3 */
HH(dd, ee, aa, bb, cc, x[ 3], 11);
HH(cc, dd, ee, aa, bb, x[10], 13);
HH(bb, cc, dd, ee, aa, x[14], 6);
HH(aa, bb, cc, dd, ee, x[ 4], 7);
HH(ee, aa, bb, cc, dd, x[ 9], 14);
HH(dd, ee, aa, bb, cc, x[15], 9);
HH(cc, dd, ee, aa, bb, x[ 8], 13);
HH(bb, cc, dd, ee, aa, x[ 1], 15);
HH(aa, bb, cc, dd, ee, x[ 2], 14);
HH(ee, aa, bb, cc, dd, x[ 7], 8);
HH(dd, ee, aa, bb, cc, x[ 0], 13);
HH(cc, dd, ee, aa, bb, x[ 6], 6);
HH(bb, cc, dd, ee, aa, x[13], 5);
HH(aa, bb, cc, dd, ee, x[11], 12);
HH(ee, aa, bb, cc, dd, x[ 5], 7);
HH(dd, ee, aa, bb, cc, x[12], 5);
/* round 4 */
II(cc, dd, ee, aa, bb, x[ 1], 11);
II(bb, cc, dd, ee, aa, x[ 9], 12);
II(aa, bb, cc, dd, ee, x[11], 14);
II(ee, aa, bb, cc, dd, x[10], 15);
II(dd, ee, aa, bb, cc, x[ 0], 14);
II(cc, dd, ee, aa, bb, x[ 8], 15);
II(bb, cc, dd, ee, aa, x[12], 9);
II(aa, bb, cc, dd, ee, x[ 4], 8);
II(ee, aa, bb, cc, dd, x[13], 9);
II(dd, ee, aa, bb, cc, x[ 3], 14);
II(cc, dd, ee, aa, bb, x[ 7], 5);
II(bb, cc, dd, ee, aa, x[15], 6);
II(aa, bb, cc, dd, ee, x[14], 8);
II(ee, aa, bb, cc, dd, x[ 5], 6);
II(dd, ee, aa, bb, cc, x[ 6], 5);
II(cc, dd, ee, aa, bb, x[ 2], 12);
/* round 5 */
JJ(bb, cc, dd, ee, aa, x[ 4], 9);
JJ(aa, bb, cc, dd, ee, x[ 0], 15);
JJ(ee, aa, bb, cc, dd, x[ 5], 5);
JJ(dd, ee, aa, bb, cc, x[ 9], 11);
JJ(cc, dd, ee, aa, bb, x[ 7], 6);
JJ(bb, cc, dd, ee, aa, x[12], 8);
JJ(aa, bb, cc, dd, ee, x[ 2], 13);
JJ(ee, aa, bb, cc, dd, x[10], 12);
JJ(dd, ee, aa, bb, cc, x[14], 5);
JJ(cc, dd, ee, aa, bb, x[ 1], 12);
JJ(bb, cc, dd, ee, aa, x[ 3], 13);
JJ(aa, bb, cc, dd, ee, x[ 8], 14);
JJ(ee, aa, bb, cc, dd, x[11], 11);
JJ(dd, ee, aa, bb, cc, x[ 6], 8);
JJ(cc, dd, ee, aa, bb, x[15], 5);
JJ(bb, cc, dd, ee, aa, x[13], 6);
/* parallel round 1 */
JJJ(aaa, bbb, ccc, ddd, eee, x[ 5], 8);
JJJ(eee, aaa, bbb, ccc, ddd, x[14], 9);
JJJ(ddd, eee, aaa, bbb, ccc, x[ 7], 9);
JJJ(ccc, ddd, eee, aaa, bbb, x[ 0], 11);
JJJ(bbb, ccc, ddd, eee, aaa, x[ 9], 13);
JJJ(aaa, bbb, ccc, ddd, eee, x[ 2], 15);
JJJ(eee, aaa, bbb, ccc, ddd, x[11], 15);
JJJ(ddd, eee, aaa, bbb, ccc, x[ 4], 5);
JJJ(ccc, ddd, eee, aaa, bbb, x[13], 7);
JJJ(bbb, ccc, ddd, eee, aaa, x[ 6], 7);
JJJ(aaa, bbb, ccc, ddd, eee, x[15], 8);
JJJ(eee, aaa, bbb, ccc, ddd, x[ 8], 11);
JJJ(ddd, eee, aaa, bbb, ccc, x[ 1], 14);
JJJ(ccc, ddd, eee, aaa, bbb, x[10], 14);
JJJ(bbb, ccc, ddd, eee, aaa, x[ 3], 12);
JJJ(aaa, bbb, ccc, ddd, eee, x[12], 6);
/* parallel round 2 */
III(eee, aaa, bbb, ccc, ddd, x[ 6], 9);
III(ddd, eee, aaa, bbb, ccc, x[11], 13);
III(ccc, ddd, eee, aaa, bbb, x[ 3], 15);
III(bbb, ccc, ddd, eee, aaa, x[ 7], 7);
III(aaa, bbb, ccc, ddd, eee, x[ 0], 12);
III(eee, aaa, bbb, ccc, ddd, x[13], 8);
III(ddd, eee, aaa, bbb, ccc, x[ 5], 9);
III(ccc, ddd, eee, aaa, bbb, x[10], 11);
III(bbb, ccc, ddd, eee, aaa, x[14], 7);
III(aaa, bbb, ccc, ddd, eee, x[15], 7);
III(eee, aaa, bbb, ccc, ddd, x[ 8], 12);
III(ddd, eee, aaa, bbb, ccc, x[12], 7);
III(ccc, ddd, eee, aaa, bbb, x[ 4], 6);
III(bbb, ccc, ddd, eee, aaa, x[ 9], 15);
III(aaa, bbb, ccc, ddd, eee, x[ 1], 13);
III(eee, aaa, bbb, ccc, ddd, x[ 2], 11);
/* parallel round 3 */
HHH(ddd, eee, aaa, bbb, ccc, x[15], 9);
HHH(ccc, ddd, eee, aaa, bbb, x[ 5], 7);
HHH(bbb, ccc, ddd, eee, aaa, x[ 1], 15);
HHH(aaa, bbb, ccc, ddd, eee, x[ 3], 11);
HHH(eee, aaa, bbb, ccc, ddd, x[ 7], 8);
HHH(ddd, eee, aaa, bbb, ccc, x[14], 6);
HHH(ccc, ddd, eee, aaa, bbb, x[ 6], 6);
HHH(bbb, ccc, ddd, eee, aaa, x[ 9], 14);
HHH(aaa, bbb, ccc, ddd, eee, x[11], 12);
HHH(eee, aaa, bbb, ccc, ddd, x[ 8], 13);
HHH(ddd, eee, aaa, bbb, ccc, x[12], 5);
HHH(ccc, ddd, eee, aaa, bbb, x[ 2], 14);
HHH(bbb, ccc, ddd, eee, aaa, x[10], 13);
HHH(aaa, bbb, ccc, ddd, eee, x[ 0], 13);
HHH(eee, aaa, bbb, ccc, ddd, x[ 4], 7);
HHH(ddd, eee, aaa, bbb, ccc, x[13], 5);
/* parallel round 4 */
GGG(ccc, ddd, eee, aaa, bbb, x[ 8], 15);
GGG(bbb, ccc, ddd, eee, aaa, x[ 6], 5);
GGG(aaa, bbb, ccc, ddd, eee, x[ 4], 8);
GGG(eee, aaa, bbb, ccc, ddd, x[ 1], 11);
GGG(ddd, eee, aaa, bbb, ccc, x[ 3], 14);
GGG(ccc, ddd, eee, aaa, bbb, x[11], 14);
GGG(bbb, ccc, ddd, eee, aaa, x[15], 6);
GGG(aaa, bbb, ccc, ddd, eee, x[ 0], 14);
GGG(eee, aaa, bbb, ccc, ddd, x[ 5], 6);
GGG(ddd, eee, aaa, bbb, ccc, x[12], 9);
GGG(ccc, ddd, eee, aaa, bbb, x[ 2], 12);
GGG(bbb, ccc, ddd, eee, aaa, x[13], 9);
GGG(aaa, bbb, ccc, ddd, eee, x[ 9], 12);
GGG(eee, aaa, bbb, ccc, ddd, x[ 7], 5);
GGG(ddd, eee, aaa, bbb, ccc, x[10], 15);
GGG(ccc, ddd, eee, aaa, bbb, x[14], 8);
/* parallel round 5 */
FFF(bbb, ccc, ddd, eee, aaa, x[12] , 8);
FFF(aaa, bbb, ccc, ddd, eee, x[15] , 5);
FFF(eee, aaa, bbb, ccc, ddd, x[10] , 12);
FFF(ddd, eee, aaa, bbb, ccc, x[ 4] , 9);
FFF(ccc, ddd, eee, aaa, bbb, x[ 1] , 12);
FFF(bbb, ccc, ddd, eee, aaa, x[ 5] , 5);
FFF(aaa, bbb, ccc, ddd, eee, x[ 8] , 14);
FFF(eee, aaa, bbb, ccc, ddd, x[ 7] , 6);
FFF(ddd, eee, aaa, bbb, ccc, x[ 6] , 8);
FFF(ccc, ddd, eee, aaa, bbb, x[ 2] , 13);
FFF(bbb, ccc, ddd, eee, aaa, x[13] , 6);
FFF(aaa, bbb, ccc, ddd, eee, x[14] , 5);
FFF(eee, aaa, bbb, ccc, ddd, x[ 0] , 15);
FFF(ddd, eee, aaa, bbb, ccc, x[ 3] , 13);
FFF(ccc, ddd, eee, aaa, bbb, x[ 9] , 11);
FFF(bbb, ccc, ddd, eee, aaa, x[11] , 11);
/* combine results */
ddd += cc + _state[1]; /* final result for _state[0] */
_state[1] = _state[2] + dd + eee;
_state[2] = _state[3] + ee + aaa;
_state[3] = _state[4] + aa + bbb;
_state[4] = _state[0] + bb + ccc;
_state[0] = ddd;
//Zeroize sensitive information.
x[] = 0;
}
public:
enum blockSize = 512;
/**
* Use this to feed the digest with data.
* Also implements the $(REF isOutputRange, std,range,primitives)
* interface for `ubyte` and `const(ubyte)[]`.
*
* Example:
* ----
* RIPEMD160 dig;
* dig.put(cast(ubyte) 0); //single ubyte
* dig.put(cast(ubyte) 0, cast(ubyte) 0); //variadic
* ubyte[10] buf;
* dig.put(buf); //buffer
* ----
*/
void put(scope const(ubyte)[] data...) @trusted pure nothrow @nogc
{
uint i, index, partLen;
auto inputLen = data.length;
//Compute number of bytes mod 64
index = (cast(uint)_count >> 3) & (64 - 1);
//Update number of bits
_count += inputLen * 8;
partLen = 64 - index;
//Transform as many times as possible
if (inputLen >= partLen)
{
(&_buffer[index])[0 .. partLen] = data.ptr[0 .. partLen];
transform(&_buffer);
for (i = partLen; i + 63 < inputLen; i += 64)
{
transform(cast(const(ubyte[64])*)(data[i .. i + 64].ptr));
}
index = 0;
}
else
{
i = 0;
}
/* Buffer remaining input */
if (inputLen - i)
(&_buffer[index])[0 .. inputLen-i] = (&data[i])[0 .. inputLen-i];
}
/**
* Used to (re)initialize the RIPEMD160 digest.
*
* Note:
* For this RIPEMD160 Digest implementation calling start after default construction
* is not necessary. Calling start is only necessary to reset the Digest.
*
* Generic code which deals with different Digest types should always call start though.
*
* Example:
* --------
* RIPEMD160 digest;
* //digest.start(); //Not necessary
* digest.put(0);
* --------
*/
void start() @safe pure nothrow @nogc
{
this = RIPEMD160.init;
}
/**
* Returns the finished RIPEMD160 hash. This also calls $(LREF start) to
* reset the internal state.
*
* Example:
* --------
* //Simple example
* RIPEMD160 hash;
* hash.start();
* hash.put(cast(ubyte) 0);
* ubyte[20] result = hash.finish();
* assert(toHexString(result) == "C81B94933420221A7AC004A90242D8B1D3E5070D");
* --------
*/
ubyte[20] finish() @trusted pure nothrow @nogc
{
import std.bitmanip : nativeToLittleEndian;
ubyte[20] data = void;
ubyte[8] bits = void;
uint index, padLen;
//Save number of bits
bits[0 .. 8] = nativeToLittleEndian(_count)[];
//Pad out to 56 mod 64
index = (cast(uint)_count >> 3) & (64 - 1);
padLen = (index < 56) ? (56 - index) : (120 - index);
put(_padding[0 .. padLen]);
//Append length (before padding)
put(bits);
//Store state in digest
data[0 .. 4] = nativeToLittleEndian(_state[0])[];
data[4 .. 8] = nativeToLittleEndian(_state[1])[];
data[8 .. 12] = nativeToLittleEndian(_state[2])[];
data[12 .. 16] = nativeToLittleEndian(_state[3])[];
data[16 .. 20] = nativeToLittleEndian(_state[4])[];
/* Zeroize sensitive information. */
start();
return data;
}
}
///
@safe unittest
{
//Simple example, hashing a string using ripemd160Of helper function
ubyte[20] hash = ripemd160Of("abc");
//Let's get a hash string
assert(toHexString(hash) == "8EB208F7E05D987A9B044A8E98C6B087F15A0BFC");
}
///
@safe unittest
{
//Using the basic API
RIPEMD160 hash;
hash.start();
ubyte[1024] data;
//Initialize data here...
hash.put(data);
ubyte[20] result = hash.finish();
}
///
@safe unittest
{
//Let's use the template features:
void doSomething(T)(ref T hash)
if (isDigest!T)
{
hash.put(cast(ubyte) 0);
}
RIPEMD160 md;
md.start();
doSomething(md);
assert(toHexString(md.finish()) == "C81B94933420221A7AC004A90242D8B1D3E5070D");
}
///
@safe unittest
{
//Simple example
RIPEMD160 hash;
hash.start();
hash.put(cast(ubyte) 0);
ubyte[20] result = hash.finish();
assert(toHexString(result) == "C81B94933420221A7AC004A90242D8B1D3E5070D");
}
@safe unittest
{
assert(isDigest!RIPEMD160);
}
@system unittest
{
import std.conv : hexString;
import std.range;
ubyte[20] digest;
RIPEMD160 md;
md.put(cast(ubyte[])"abcdef");
md.start();
md.put(cast(ubyte[])"");
assert(md.finish() == cast(ubyte[]) hexString!"9c1185a5c5e9fc54612808977ee8f548b2258d31");
digest = ripemd160Of("");
assert(digest == cast(ubyte[]) hexString!"9c1185a5c5e9fc54612808977ee8f548b2258d31");
digest = ripemd160Of("a");
assert(digest == cast(ubyte[]) hexString!"0bdc9d2d256b3ee9daae347be6f4dc835a467ffe");
digest = ripemd160Of("abc");
assert(digest == cast(ubyte[]) hexString!"8eb208f7e05d987a9b044a8e98c6b087f15a0bfc");
digest = ripemd160Of("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq");
assert(digest == cast(ubyte[]) hexString!"12a053384a9c0c88e405a06c27dcf49ada62eb2b");
digest = ripemd160Of("message digest");
assert(digest == cast(ubyte[]) hexString!"5d0689ef49d2fae572b881b123a85ffa21595f36");
digest = ripemd160Of("abcdefghijklmnopqrstuvwxyz");
assert(digest == cast(ubyte[]) hexString!"f71c27109c692c1b56bbdceb5b9d2865b3708dbc");
digest = ripemd160Of("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");
assert(digest == cast(ubyte[]) hexString!"b0e20b6e3116640286ed3a87a5713079b21f5189");
digest = ripemd160Of("1234567890123456789012345678901234567890"~
"1234567890123456789012345678901234567890");
assert(digest == cast(ubyte[]) hexString!"9b752e45573d4b39f4dbd3323cab82bf63326bfb");
enum ubyte[20] input = cast(ubyte[20]) hexString!"f71c27109c692c1b56bbdceb5b9d2865b3708dbc";
assert(toHexString(input)
== "F71C27109C692C1B56BBDCEB5B9D2865B3708DBC");
ubyte[] onemilliona = new ubyte[1000000];
onemilliona[] = 'a';
digest = ripemd160Of(onemilliona);
assert(digest == cast(ubyte[]) hexString!"52783243c1697bdbe16d37f97f68f08325dc1528");
auto oneMillionRange = repeat!ubyte(cast(ubyte)'a', 1000000);
digest = ripemd160Of(oneMillionRange);
assert(digest == cast(ubyte[]) hexString!"52783243c1697bdbe16d37f97f68f08325dc1528");
}
/**
* This is a convenience alias for $(REF digest, std,digest) using the
* RIPEMD160 implementation.
*/
//simple alias doesn't work here, hope this gets inlined...
auto ripemd160Of(T...)(T data)
{
return digest!(RIPEMD160, T)(data);
}
///
@safe unittest
{
ubyte[20] hash = ripemd160Of("abc");
assert(hash == digest!RIPEMD160("abc"));
}
/**
* OOP API RIPEMD160 implementation.
* See `std.digest` for differences between template and OOP API.
*
* This is an alias for $(D $(REF WrapperDigest, std,digest)!RIPEMD160),
* see there for more information.
*/
alias RIPEMD160Digest = WrapperDigest!RIPEMD160;
///
@safe unittest
{
//Simple example, hashing a string using Digest.digest helper function
auto md = new RIPEMD160Digest();
ubyte[] hash = md.digest("abc");
//Let's get a hash string
assert(toHexString(hash) == "8EB208F7E05D987A9B044A8E98C6B087F15A0BFC");
}
///
@system unittest
{
//Let's use the OOP features:
void test(Digest dig)
{
dig.put(cast(ubyte) 0);
}
auto md = new RIPEMD160Digest();
test(md);
//Let's use a custom buffer:
ubyte[20] buf;
ubyte[] result = md.finish(buf[]);
assert(toHexString(result) == "C81B94933420221A7AC004A90242D8B1D3E5070D");
}
@system unittest
{
import std.conv : hexString;
auto md = new RIPEMD160Digest();
md.put(cast(ubyte[])"abcdef");
md.reset();
md.put(cast(ubyte[])"");
assert(md.finish() == cast(ubyte[]) hexString!"9c1185a5c5e9fc54612808977ee8f548b2258d31");
md.put(cast(ubyte[])"abcdefghijklmnopqrstuvwxyz");
ubyte[20] result;
auto result2 = md.finish(result[]);
assert(result[0 .. 20] == result2 && result2 == cast(ubyte[]) hexString!"f71c27109c692c1b56bbdceb5b9d2865b3708dbc");
debug
{
import std.exception;
assertThrown!Error(md.finish(result[0 .. 19]));
}
assert(md.length == 20);
assert(md.digest("") == cast(ubyte[]) hexString!"9c1185a5c5e9fc54612808977ee8f548b2258d31");
assert(md.digest("a") == cast(ubyte[]) hexString!"0bdc9d2d256b3ee9daae347be6f4dc835a467ffe");
assert(md.digest("abc") == cast(ubyte[]) hexString!"8eb208f7e05d987a9b044a8e98c6b087f15a0bfc");
assert(md.digest("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq")
== cast(ubyte[]) hexString!"12a053384a9c0c88e405a06c27dcf49ada62eb2b");
assert(md.digest("message digest") == cast(ubyte[]) hexString!"5d0689ef49d2fae572b881b123a85ffa21595f36");
assert(md.digest("abcdefghijklmnopqrstuvwxyz")
== cast(ubyte[]) hexString!"f71c27109c692c1b56bbdceb5b9d2865b3708dbc");
assert(md.digest("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789")
== cast(ubyte[]) hexString!"b0e20b6e3116640286ed3a87a5713079b21f5189");
assert(md.digest("1234567890123456789012345678901234567890",
"1234567890123456789012345678901234567890")
== cast(ubyte[]) hexString!"9b752e45573d4b39f4dbd3323cab82bf63326bfb");
assert(md.digest(new ubyte[160/8]) // 160 zero bits
== cast(ubyte[]) hexString!"5c00bd4aca04a9057c09b20b05f723f2e23deb65");
}