| /* Reload pseudo regs into hard regs for insns that require hard regs. |
| Copyright (C) 1987-2024 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "target.h" |
| #include "rtl.h" |
| #include "tree.h" |
| #include "predict.h" |
| #include "df.h" |
| #include "memmodel.h" |
| #include "tm_p.h" |
| #include "optabs.h" |
| #include "regs.h" |
| #include "ira.h" |
| #include "recog.h" |
| |
| #include "rtl-error.h" |
| #include "expr.h" |
| #include "addresses.h" |
| #include "cfgrtl.h" |
| #include "cfgbuild.h" |
| #include "reload.h" |
| #include "except.h" |
| #include "dumpfile.h" |
| #include "rtl-iter.h" |
| #include "function-abi.h" |
| |
| /* This file contains the reload pass of the compiler, which is |
| run after register allocation has been done. It checks that |
| each insn is valid (operands required to be in registers really |
| are in registers of the proper class) and fixes up invalid ones |
| by copying values temporarily into registers for the insns |
| that need them. |
| |
| The results of register allocation are described by the vector |
| reg_renumber; the insns still contain pseudo regs, but reg_renumber |
| can be used to find which hard reg, if any, a pseudo reg is in. |
| |
| The technique we always use is to free up a few hard regs that are |
| called ``reload regs'', and for each place where a pseudo reg |
| must be in a hard reg, copy it temporarily into one of the reload regs. |
| |
| Reload regs are allocated locally for every instruction that needs |
| reloads. When there are pseudos which are allocated to a register that |
| has been chosen as a reload reg, such pseudos must be ``spilled''. |
| This means that they go to other hard regs, or to stack slots if no other |
| available hard regs can be found. Spilling can invalidate more |
| insns, requiring additional need for reloads, so we must keep checking |
| until the process stabilizes. |
| |
| For machines with different classes of registers, we must keep track |
| of the register class needed for each reload, and make sure that |
| we allocate enough reload registers of each class. |
| |
| The file reload.cc contains the code that checks one insn for |
| validity and reports the reloads that it needs. This file |
| is in charge of scanning the entire rtl code, accumulating the |
| reload needs, spilling, assigning reload registers to use for |
| fixing up each insn, and generating the new insns to copy values |
| into the reload registers. */ |
| |
| struct target_reload default_target_reload; |
| #if SWITCHABLE_TARGET |
| struct target_reload *this_target_reload = &default_target_reload; |
| #endif |
| |
| #define spill_indirect_levels \ |
| (this_target_reload->x_spill_indirect_levels) |
| |
| /* During reload_as_needed, element N contains a REG rtx for the hard reg |
| into which reg N has been reloaded (perhaps for a previous insn). */ |
| static rtx *reg_last_reload_reg; |
| |
| /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn |
| for an output reload that stores into reg N. */ |
| static regset_head reg_has_output_reload; |
| |
| /* Indicates which hard regs are reload-registers for an output reload |
| in the current insn. */ |
| static HARD_REG_SET reg_is_output_reload; |
| |
| /* Widest mode in which each pseudo reg is referred to (via subreg). */ |
| static machine_mode *reg_max_ref_mode; |
| |
| /* Vector to remember old contents of reg_renumber before spilling. */ |
| static short *reg_old_renumber; |
| |
| /* During reload_as_needed, element N contains the last pseudo regno reloaded |
| into hard register N. If that pseudo reg occupied more than one register, |
| reg_reloaded_contents points to that pseudo for each spill register in |
| use; all of these must remain set for an inheritance to occur. */ |
| static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER]; |
| |
| /* During reload_as_needed, element N contains the insn for which |
| hard register N was last used. Its contents are significant only |
| when reg_reloaded_valid is set for this register. */ |
| static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER]; |
| |
| /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */ |
| static HARD_REG_SET reg_reloaded_valid; |
| /* Indicate if the register was dead at the end of the reload. |
| This is only valid if reg_reloaded_contents is set and valid. */ |
| static HARD_REG_SET reg_reloaded_dead; |
| |
| /* Number of spill-regs so far; number of valid elements of spill_regs. */ |
| static int n_spills; |
| |
| /* In parallel with spill_regs, contains REG rtx's for those regs. |
| Holds the last rtx used for any given reg, or 0 if it has never |
| been used for spilling yet. This rtx is reused, provided it has |
| the proper mode. */ |
| static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER]; |
| |
| /* In parallel with spill_regs, contains nonzero for a spill reg |
| that was stored after the last time it was used. |
| The precise value is the insn generated to do the store. */ |
| static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER]; |
| |
| /* This is the register that was stored with spill_reg_store. This is a |
| copy of reload_out / reload_out_reg when the value was stored; if |
| reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */ |
| static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER]; |
| |
| /* This table is the inverse mapping of spill_regs: |
| indexed by hard reg number, |
| it contains the position of that reg in spill_regs, |
| or -1 for something that is not in spill_regs. |
| |
| ?!? This is no longer accurate. */ |
| static short spill_reg_order[FIRST_PSEUDO_REGISTER]; |
| |
| /* This reg set indicates registers that can't be used as spill registers for |
| the currently processed insn. These are the hard registers which are live |
| during the insn, but not allocated to pseudos, as well as fixed |
| registers. */ |
| static HARD_REG_SET bad_spill_regs; |
| |
| /* These are the hard registers that can't be used as spill register for any |
| insn. This includes registers used for user variables and registers that |
| we can't eliminate. A register that appears in this set also can't be used |
| to retry register allocation. */ |
| static HARD_REG_SET bad_spill_regs_global; |
| |
| /* Describes order of use of registers for reloading |
| of spilled pseudo-registers. `n_spills' is the number of |
| elements that are actually valid; new ones are added at the end. |
| |
| Both spill_regs and spill_reg_order are used on two occasions: |
| once during find_reload_regs, where they keep track of the spill registers |
| for a single insn, but also during reload_as_needed where they show all |
| the registers ever used by reload. For the latter case, the information |
| is calculated during finish_spills. */ |
| static short spill_regs[FIRST_PSEUDO_REGISTER]; |
| |
| /* This vector of reg sets indicates, for each pseudo, which hard registers |
| may not be used for retrying global allocation because the register was |
| formerly spilled from one of them. If we allowed reallocating a pseudo to |
| a register that it was already allocated to, reload might not |
| terminate. */ |
| static HARD_REG_SET *pseudo_previous_regs; |
| |
| /* This vector of reg sets indicates, for each pseudo, which hard |
| registers may not be used for retrying global allocation because they |
| are used as spill registers during one of the insns in which the |
| pseudo is live. */ |
| static HARD_REG_SET *pseudo_forbidden_regs; |
| |
| /* All hard regs that have been used as spill registers for any insn are |
| marked in this set. */ |
| static HARD_REG_SET used_spill_regs; |
| |
| /* Index of last register assigned as a spill register. We allocate in |
| a round-robin fashion. */ |
| static int last_spill_reg; |
| |
| /* Record the stack slot for each spilled hard register. */ |
| static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER]; |
| |
| /* Width allocated so far for that stack slot. */ |
| static poly_uint64 spill_stack_slot_width[FIRST_PSEUDO_REGISTER]; |
| |
| /* Record which pseudos needed to be spilled. */ |
| static regset_head spilled_pseudos; |
| |
| /* Record which pseudos changed their allocation in finish_spills. */ |
| static regset_head changed_allocation_pseudos; |
| |
| /* Used for communication between order_regs_for_reload and count_pseudo. |
| Used to avoid counting one pseudo twice. */ |
| static regset_head pseudos_counted; |
| |
| /* First uid used by insns created by reload in this function. |
| Used in find_equiv_reg. */ |
| int reload_first_uid; |
| |
| /* Flag set by local-alloc or global-alloc if anything is live in |
| a call-clobbered reg across calls. */ |
| int caller_save_needed; |
| |
| /* Set to 1 while reload_as_needed is operating. |
| Required by some machines to handle any generated moves differently. */ |
| int reload_in_progress = 0; |
| |
| /* This obstack is used for allocation of rtl during register elimination. |
| The allocated storage can be freed once find_reloads has processed the |
| insn. */ |
| static struct obstack reload_obstack; |
| |
| /* Points to the beginning of the reload_obstack. All insn_chain structures |
| are allocated first. */ |
| static char *reload_startobj; |
| |
| /* The point after all insn_chain structures. Used to quickly deallocate |
| memory allocated in copy_reloads during calculate_needs_all_insns. */ |
| static char *reload_firstobj; |
| |
| /* This points before all local rtl generated by register elimination. |
| Used to quickly free all memory after processing one insn. */ |
| static char *reload_insn_firstobj; |
| |
| /* List of insn_chain instructions, one for every insn that reload needs to |
| examine. */ |
| class insn_chain *reload_insn_chain; |
| |
| /* TRUE if we potentially left dead insns in the insn stream and want to |
| run DCE immediately after reload, FALSE otherwise. */ |
| static bool need_dce; |
| |
| /* List of all insns needing reloads. */ |
| static class insn_chain *insns_need_reload; |
| |
| /* This structure is used to record information about register eliminations. |
| Each array entry describes one possible way of eliminating a register |
| in favor of another. If there is more than one way of eliminating a |
| particular register, the most preferred should be specified first. */ |
| |
| struct elim_table |
| { |
| int from; /* Register number to be eliminated. */ |
| int to; /* Register number used as replacement. */ |
| poly_int64 initial_offset; /* Initial difference between values. */ |
| int can_eliminate; /* Nonzero if this elimination can be done. */ |
| int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE |
| target hook in previous scan over insns |
| made by reload. */ |
| poly_int64 offset; /* Current offset between the two regs. */ |
| poly_int64 previous_offset; /* Offset at end of previous insn. */ |
| int ref_outside_mem; /* "to" has been referenced outside a MEM. */ |
| rtx from_rtx; /* REG rtx for the register to be eliminated. |
| We cannot simply compare the number since |
| we might then spuriously replace a hard |
| register corresponding to a pseudo |
| assigned to the reg to be eliminated. */ |
| rtx to_rtx; /* REG rtx for the replacement. */ |
| }; |
| |
| static struct elim_table *reg_eliminate = 0; |
| |
| /* This is an intermediate structure to initialize the table. It has |
| exactly the members provided by ELIMINABLE_REGS. */ |
| static const struct elim_table_1 |
| { |
| const int from; |
| const int to; |
| } reg_eliminate_1[] = |
| |
| ELIMINABLE_REGS; |
| |
| #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1) |
| |
| /* Record the number of pending eliminations that have an offset not equal |
| to their initial offset. If nonzero, we use a new copy of each |
| replacement result in any insns encountered. */ |
| int num_not_at_initial_offset; |
| |
| /* Count the number of registers that we may be able to eliminate. */ |
| static int num_eliminable; |
| /* And the number of registers that are equivalent to a constant that |
| can be eliminated to frame_pointer / arg_pointer + constant. */ |
| static int num_eliminable_invariants; |
| |
| /* For each label, we record the offset of each elimination. If we reach |
| a label by more than one path and an offset differs, we cannot do the |
| elimination. This information is indexed by the difference of the |
| number of the label and the first label number. We can't offset the |
| pointer itself as this can cause problems on machines with segmented |
| memory. The first table is an array of flags that records whether we |
| have yet encountered a label and the second table is an array of arrays, |
| one entry in the latter array for each elimination. */ |
| |
| static int first_label_num; |
| static char *offsets_known_at; |
| static poly_int64 (*offsets_at)[NUM_ELIMINABLE_REGS]; |
| |
| vec<reg_equivs_t, va_gc> *reg_equivs; |
| |
| /* Stack of addresses where an rtx has been changed. We can undo the |
| changes by popping items off the stack and restoring the original |
| value at each location. |
| |
| We use this simplistic undo capability rather than copy_rtx as copy_rtx |
| will not make a deep copy of a normally sharable rtx, such as |
| (const (plus (symbol_ref) (const_int))). If such an expression appears |
| as R1 in gen_reload_chain_without_interm_reg_p, then a shared |
| rtx expression would be changed. See PR 42431. */ |
| |
| typedef rtx *rtx_p; |
| static vec<rtx_p> substitute_stack; |
| |
| /* Number of labels in the current function. */ |
| |
| static int num_labels; |
| |
| static void replace_pseudos_in (rtx *, machine_mode, rtx); |
| static void maybe_fix_stack_asms (void); |
| static void copy_reloads (class insn_chain *); |
| static void calculate_needs_all_insns (int); |
| static int find_reg (class insn_chain *, int); |
| static void find_reload_regs (class insn_chain *); |
| static void select_reload_regs (void); |
| static void delete_caller_save_insns (void); |
| |
| static void spill_failure (rtx_insn *, enum reg_class); |
| static void count_spilled_pseudo (int, int, int); |
| static void delete_dead_insn (rtx_insn *); |
| static void alter_reg (int, int, bool); |
| static void set_label_offsets (rtx, rtx_insn *, int); |
| static void check_eliminable_occurrences (rtx); |
| static void elimination_effects (rtx, machine_mode); |
| static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool); |
| static int eliminate_regs_in_insn (rtx_insn *, int); |
| static void update_eliminable_offsets (void); |
| static void mark_not_eliminable (rtx, const_rtx, void *); |
| static void set_initial_elim_offsets (void); |
| static bool verify_initial_elim_offsets (void); |
| static void set_initial_label_offsets (void); |
| static void set_offsets_for_label (rtx_insn *); |
| static void init_eliminable_invariants (rtx_insn *, bool); |
| static void init_elim_table (void); |
| static void free_reg_equiv (void); |
| static void update_eliminables (HARD_REG_SET *); |
| static bool update_eliminables_and_spill (void); |
| static void elimination_costs_in_insn (rtx_insn *); |
| static void spill_hard_reg (unsigned int, int); |
| static int finish_spills (int); |
| static void scan_paradoxical_subregs (rtx); |
| static void count_pseudo (int); |
| static void order_regs_for_reload (class insn_chain *); |
| static void reload_as_needed (int); |
| static void forget_old_reloads_1 (rtx, const_rtx, void *); |
| static void forget_marked_reloads (regset); |
| static int reload_reg_class_lower (const void *, const void *); |
| static void mark_reload_reg_in_use (unsigned int, int, enum reload_type, |
| machine_mode); |
| static void clear_reload_reg_in_use (unsigned int, int, enum reload_type, |
| machine_mode); |
| static int reload_reg_free_p (unsigned int, int, enum reload_type); |
| static int reload_reg_free_for_value_p (int, int, int, enum reload_type, |
| rtx, rtx, int, int); |
| static int free_for_value_p (int, machine_mode, int, enum reload_type, |
| rtx, rtx, int, int); |
| static int allocate_reload_reg (class insn_chain *, int, int); |
| static int conflicts_with_override (rtx); |
| static void failed_reload (rtx_insn *, int); |
| static int set_reload_reg (int, int); |
| static void choose_reload_regs_init (class insn_chain *, rtx *); |
| static void choose_reload_regs (class insn_chain *); |
| static void emit_input_reload_insns (class insn_chain *, struct reload *, |
| rtx, int); |
| static void emit_output_reload_insns (class insn_chain *, struct reload *, |
| int); |
| static void do_input_reload (class insn_chain *, struct reload *, int); |
| static void do_output_reload (class insn_chain *, struct reload *, int); |
| static void emit_reload_insns (class insn_chain *); |
| static void delete_output_reload (rtx_insn *, int, int, rtx); |
| static void delete_address_reloads (rtx_insn *, rtx_insn *); |
| static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *); |
| static void inc_for_reload (rtx, rtx, rtx, poly_int64); |
| static void substitute (rtx *, const_rtx, rtx); |
| static bool gen_reload_chain_without_interm_reg_p (int, int); |
| static int reloads_conflict (int, int); |
| static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type); |
| static rtx_insn *emit_insn_if_valid_for_reload (rtx); |
| |
| /* Initialize the reload pass. This is called at the beginning of compilation |
| and may be called again if the target is reinitialized. */ |
| |
| void |
| init_reload (void) |
| { |
| int i; |
| |
| /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack. |
| Set spill_indirect_levels to the number of levels such addressing is |
| permitted, zero if it is not permitted at all. */ |
| |
| rtx tem |
| = gen_rtx_MEM (Pmode, |
| gen_rtx_PLUS (Pmode, |
| gen_rtx_REG (Pmode, |
| LAST_VIRTUAL_REGISTER + 1), |
| gen_int_mode (4, Pmode))); |
| spill_indirect_levels = 0; |
| |
| while (memory_address_p (QImode, tem)) |
| { |
| spill_indirect_levels++; |
| tem = gen_rtx_MEM (Pmode, tem); |
| } |
| |
| /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */ |
| |
| tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo")); |
| indirect_symref_ok = memory_address_p (QImode, tem); |
| |
| /* See if reg+reg is a valid (and offsettable) address. */ |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| { |
| tem = gen_rtx_PLUS (Pmode, |
| gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM), |
| gen_rtx_REG (Pmode, i)); |
| |
| /* This way, we make sure that reg+reg is an offsettable address. */ |
| tem = plus_constant (Pmode, tem, 4); |
| |
| for (int mode = 0; mode < MAX_MACHINE_MODE; mode++) |
| if (!double_reg_address_ok[mode] |
| && memory_address_p ((enum machine_mode)mode, tem)) |
| double_reg_address_ok[mode] = 1; |
| } |
| |
| /* Initialize obstack for our rtl allocation. */ |
| if (reload_startobj == NULL) |
| { |
| gcc_obstack_init (&reload_obstack); |
| reload_startobj = XOBNEWVAR (&reload_obstack, char, 0); |
| } |
| |
| INIT_REG_SET (&spilled_pseudos); |
| INIT_REG_SET (&changed_allocation_pseudos); |
| INIT_REG_SET (&pseudos_counted); |
| } |
| |
| /* List of insn chains that are currently unused. */ |
| static class insn_chain *unused_insn_chains = 0; |
| |
| /* Allocate an empty insn_chain structure. */ |
| class insn_chain * |
| new_insn_chain (void) |
| { |
| class insn_chain *c; |
| |
| if (unused_insn_chains == 0) |
| { |
| c = XOBNEW (&reload_obstack, class insn_chain); |
| INIT_REG_SET (&c->live_throughout); |
| INIT_REG_SET (&c->dead_or_set); |
| } |
| else |
| { |
| c = unused_insn_chains; |
| unused_insn_chains = c->next; |
| } |
| c->is_caller_save_insn = 0; |
| c->need_operand_change = 0; |
| c->need_reload = 0; |
| c->need_elim = 0; |
| return c; |
| } |
| |
| /* Small utility function to set all regs in hard reg set TO which are |
| allocated to pseudos in regset FROM. */ |
| |
| void |
| compute_use_by_pseudos (HARD_REG_SET *to, regset from) |
| { |
| unsigned int regno; |
| reg_set_iterator rsi; |
| |
| EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi) |
| { |
| int r = reg_renumber[regno]; |
| |
| if (r < 0) |
| { |
| /* reload_combine uses the information from DF_LIVE_IN, |
| which might still contain registers that have not |
| actually been allocated since they have an |
| equivalence. */ |
| gcc_assert (ira_conflicts_p || reload_completed); |
| } |
| else |
| add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r); |
| } |
| } |
| |
| /* Replace all pseudos found in LOC with their corresponding |
| equivalences. */ |
| |
| static void |
| replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage) |
| { |
| rtx x = *loc; |
| enum rtx_code code; |
| const char *fmt; |
| int i, j; |
| |
| if (! x) |
| return; |
| |
| code = GET_CODE (x); |
| if (code == REG) |
| { |
| unsigned int regno = REGNO (x); |
| |
| if (regno < FIRST_PSEUDO_REGISTER) |
| return; |
| |
| x = eliminate_regs_1 (x, mem_mode, usage, true, false); |
| if (x != *loc) |
| { |
| *loc = x; |
| replace_pseudos_in (loc, mem_mode, usage); |
| return; |
| } |
| |
| if (reg_equiv_constant (regno)) |
| *loc = reg_equiv_constant (regno); |
| else if (reg_equiv_invariant (regno)) |
| *loc = reg_equiv_invariant (regno); |
| else if (reg_equiv_mem (regno)) |
| *loc = reg_equiv_mem (regno); |
| else if (reg_equiv_address (regno)) |
| *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno)); |
| else |
| { |
| gcc_assert (!REG_P (regno_reg_rtx[regno]) |
| || REGNO (regno_reg_rtx[regno]) != regno); |
| *loc = regno_reg_rtx[regno]; |
| } |
| |
| return; |
| } |
| else if (code == MEM) |
| { |
| replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage); |
| return; |
| } |
| |
| /* Process each of our operands recursively. */ |
| fmt = GET_RTX_FORMAT (code); |
| for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++) |
| if (*fmt == 'e') |
| replace_pseudos_in (&XEXP (x, i), mem_mode, usage); |
| else if (*fmt == 'E') |
| for (j = 0; j < XVECLEN (x, i); j++) |
| replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage); |
| } |
| |
| /* Determine if the current function has an exception receiver block |
| that reaches the exit block via non-exceptional edges */ |
| |
| static bool |
| has_nonexceptional_receiver (void) |
| { |
| edge e; |
| edge_iterator ei; |
| basic_block *tos, *worklist, bb; |
| |
| /* If we're not optimizing, then just err on the safe side. */ |
| if (!optimize) |
| return true; |
| |
| /* First determine which blocks can reach exit via normal paths. */ |
| tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1); |
| |
| FOR_EACH_BB_FN (bb, cfun) |
| bb->flags &= ~BB_REACHABLE; |
| |
| /* Place the exit block on our worklist. */ |
| EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE; |
| *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun); |
| |
| /* Iterate: find everything reachable from what we've already seen. */ |
| while (tos != worklist) |
| { |
| bb = *--tos; |
| |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| if (!(e->flags & EDGE_ABNORMAL)) |
| { |
| basic_block src = e->src; |
| |
| if (!(src->flags & BB_REACHABLE)) |
| { |
| src->flags |= BB_REACHABLE; |
| *tos++ = src; |
| } |
| } |
| } |
| free (worklist); |
| |
| /* Now see if there's a reachable block with an exceptional incoming |
| edge. */ |
| FOR_EACH_BB_FN (bb, cfun) |
| if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb)) |
| return true; |
| |
| /* No exceptional block reached exit unexceptionally. */ |
| return false; |
| } |
| |
| /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be |
| zero elements) to MAX_REG_NUM elements. |
| |
| Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */ |
| void |
| grow_reg_equivs (void) |
| { |
| int old_size = vec_safe_length (reg_equivs); |
| int max_regno = max_reg_num (); |
| int i; |
| reg_equivs_t ze; |
| |
| memset (&ze, 0, sizeof (reg_equivs_t)); |
| vec_safe_reserve (reg_equivs, max_regno); |
| for (i = old_size; i < max_regno; i++) |
| reg_equivs->quick_insert (i, ze); |
| } |
| |
| |
| /* Global variables used by reload and its subroutines. */ |
| |
| /* The current basic block while in calculate_elim_costs_all_insns. */ |
| static basic_block elim_bb; |
| |
| /* Set during calculate_needs if an insn needs register elimination. */ |
| static int something_needs_elimination; |
| /* Set during calculate_needs if an insn needs an operand changed. */ |
| static int something_needs_operands_changed; |
| /* Set by alter_regs if we spilled a register to the stack. */ |
| static bool something_was_spilled; |
| |
| /* Nonzero means we couldn't get enough spill regs. */ |
| static int failure; |
| |
| /* Temporary array of pseudo-register number. */ |
| static int *temp_pseudo_reg_arr; |
| |
| /* If a pseudo has no hard reg, delete the insns that made the equivalence. |
| If that insn didn't set the register (i.e., it copied the register to |
| memory), just delete that insn instead of the equivalencing insn plus |
| anything now dead. If we call delete_dead_insn on that insn, we may |
| delete the insn that actually sets the register if the register dies |
| there and that is incorrect. */ |
| static void |
| remove_init_insns () |
| { |
| for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) |
| { |
| if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0) |
| { |
| rtx list; |
| for (list = reg_equiv_init (i); list; list = XEXP (list, 1)) |
| { |
| rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0)); |
| |
| /* If we already deleted the insn or if it may trap, we can't |
| delete it. The latter case shouldn't happen, but can |
| if an insn has a variable address, gets a REG_EH_REGION |
| note added to it, and then gets converted into a load |
| from a constant address. */ |
| if (NOTE_P (equiv_insn) |
| || can_throw_internal (equiv_insn)) |
| ; |
| else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn))) |
| delete_dead_insn (equiv_insn); |
| else |
| SET_INSN_DELETED (equiv_insn); |
| } |
| } |
| } |
| } |
| |
| /* Return true if remove_init_insns will delete INSN. */ |
| static bool |
| will_delete_init_insn_p (rtx_insn *insn) |
| { |
| rtx set = single_set (insn); |
| if (!set || !REG_P (SET_DEST (set))) |
| return false; |
| unsigned regno = REGNO (SET_DEST (set)); |
| |
| if (can_throw_internal (insn)) |
| return false; |
| |
| if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0) |
| return false; |
| |
| for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1)) |
| { |
| rtx equiv_insn = XEXP (list, 0); |
| if (equiv_insn == insn) |
| return true; |
| } |
| return false; |
| } |
| |
| /* Main entry point for the reload pass. |
| |
| FIRST is the first insn of the function being compiled. |
| |
| GLOBAL nonzero means we were called from global_alloc |
| and should attempt to reallocate any pseudoregs that we |
| displace from hard regs we will use for reloads. |
| If GLOBAL is zero, we do not have enough information to do that, |
| so any pseudo reg that is spilled must go to the stack. |
| |
| Return value is TRUE if reload likely left dead insns in the |
| stream and a DCE pass should be run to elimiante them. Else the |
| return value is FALSE. */ |
| |
| bool |
| reload (rtx_insn *first, int global) |
| { |
| int i, n; |
| rtx_insn *insn; |
| struct elim_table *ep; |
| basic_block bb; |
| bool inserted; |
| |
| /* Make sure even insns with volatile mem refs are recognizable. */ |
| init_recog (); |
| |
| failure = 0; |
| |
| reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0); |
| |
| /* Make sure that the last insn in the chain |
| is not something that needs reloading. */ |
| emit_note (NOTE_INSN_DELETED); |
| |
| /* Enable find_equiv_reg to distinguish insns made by reload. */ |
| reload_first_uid = get_max_uid (); |
| |
| /* Initialize the secondary memory table. */ |
| clear_secondary_mem (); |
| |
| /* We don't have a stack slot for any spill reg yet. */ |
| memset (spill_stack_slot, 0, sizeof spill_stack_slot); |
| memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width); |
| |
| /* Initialize the save area information for caller-save, in case some |
| are needed. */ |
| init_save_areas (); |
| |
| /* Compute which hard registers are now in use |
| as homes for pseudo registers. |
| This is done here rather than (eg) in global_alloc |
| because this point is reached even if not optimizing. */ |
| for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) |
| mark_home_live (i); |
| |
| /* A function that has a nonlocal label that can reach the exit |
| block via non-exceptional paths must save all call-saved |
| registers. */ |
| if (cfun->has_nonlocal_label |
| && has_nonexceptional_receiver ()) |
| crtl->saves_all_registers = 1; |
| |
| if (crtl->saves_all_registers) |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (! crtl->abi->clobbers_full_reg_p (i) |
| && ! fixed_regs[i] |
| && ! LOCAL_REGNO (i)) |
| df_set_regs_ever_live (i, true); |
| |
| /* Find all the pseudo registers that didn't get hard regs |
| but do have known equivalent constants or memory slots. |
| These include parameters (known equivalent to parameter slots) |
| and cse'd or loop-moved constant memory addresses. |
| |
| Record constant equivalents in reg_equiv_constant |
| so they will be substituted by find_reloads. |
| Record memory equivalents in reg_mem_equiv so they can |
| be substituted eventually by altering the REG-rtx's. */ |
| |
| grow_reg_equivs (); |
| reg_old_renumber = XCNEWVEC (short, max_regno); |
| memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short)); |
| pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno); |
| pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno); |
| |
| CLEAR_HARD_REG_SET (bad_spill_regs_global); |
| |
| init_eliminable_invariants (first, true); |
| init_elim_table (); |
| |
| /* Alter each pseudo-reg rtx to contain its hard reg number. Assign |
| stack slots to the pseudos that lack hard regs or equivalents. |
| Do not touch virtual registers. */ |
| |
| temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1); |
| for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++) |
| temp_pseudo_reg_arr[n++] = i; |
| |
| if (ira_conflicts_p) |
| /* Ask IRA to order pseudo-registers for better stack slot |
| sharing. */ |
| ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_mode); |
| |
| for (i = 0; i < n; i++) |
| alter_reg (temp_pseudo_reg_arr[i], -1, false); |
| |
| /* If we have some registers we think can be eliminated, scan all insns to |
| see if there is an insn that sets one of these registers to something |
| other than itself plus a constant. If so, the register cannot be |
| eliminated. Doing this scan here eliminates an extra pass through the |
| main reload loop in the most common case where register elimination |
| cannot be done. */ |
| for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn)) |
| if (INSN_P (insn)) |
| note_pattern_stores (PATTERN (insn), mark_not_eliminable, NULL); |
| |
| maybe_fix_stack_asms (); |
| |
| insns_need_reload = 0; |
| something_needs_elimination = 0; |
| |
| /* Initialize to -1, which means take the first spill register. */ |
| last_spill_reg = -1; |
| |
| /* Spill any hard regs that we know we can't eliminate. */ |
| CLEAR_HARD_REG_SET (used_spill_regs); |
| /* There can be multiple ways to eliminate a register; |
| they should be listed adjacently. |
| Elimination for any register fails only if all possible ways fail. */ |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ) |
| { |
| int from = ep->from; |
| int can_eliminate = 0; |
| do |
| { |
| can_eliminate |= ep->can_eliminate; |
| ep++; |
| } |
| while (ep < ®_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from); |
| if (! can_eliminate) |
| spill_hard_reg (from, 1); |
| } |
| |
| if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed) |
| spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1); |
| |
| finish_spills (global); |
| |
| /* From now on, we may need to generate moves differently. We may also |
| allow modifications of insns which cause them to not be recognized. |
| Any such modifications will be cleaned up during reload itself. */ |
| reload_in_progress = 1; |
| |
| /* This loop scans the entire function each go-round |
| and repeats until one repetition spills no additional hard regs. */ |
| for (;;) |
| { |
| int something_changed; |
| poly_int64 starting_frame_size; |
| |
| starting_frame_size = get_frame_size (); |
| something_was_spilled = false; |
| |
| set_initial_elim_offsets (); |
| set_initial_label_offsets (); |
| |
| /* For each pseudo register that has an equivalent location defined, |
| try to eliminate any eliminable registers (such as the frame pointer) |
| assuming initial offsets for the replacement register, which |
| is the normal case. |
| |
| If the resulting location is directly addressable, substitute |
| the MEM we just got directly for the old REG. |
| |
| If it is not addressable but is a constant or the sum of a hard reg |
| and constant, it is probably not addressable because the constant is |
| out of range, in that case record the address; we will generate |
| hairy code to compute the address in a register each time it is |
| needed. Similarly if it is a hard register, but one that is not |
| valid as an address register. |
| |
| If the location is not addressable, but does not have one of the |
| above forms, assign a stack slot. We have to do this to avoid the |
| potential of producing lots of reloads if, e.g., a location involves |
| a pseudo that didn't get a hard register and has an equivalent memory |
| location that also involves a pseudo that didn't get a hard register. |
| |
| Perhaps at some point we will improve reload_when_needed handling |
| so this problem goes away. But that's very hairy. */ |
| |
| for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) |
| if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i)) |
| { |
| rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode, |
| NULL_RTX); |
| |
| if (strict_memory_address_addr_space_p |
| (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0), |
| MEM_ADDR_SPACE (x))) |
| reg_equiv_mem (i) = x, reg_equiv_address (i) = 0; |
| else if (CONSTANT_P (XEXP (x, 0)) |
| || (REG_P (XEXP (x, 0)) |
| && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER) |
| || (GET_CODE (XEXP (x, 0)) == PLUS |
| && REG_P (XEXP (XEXP (x, 0), 0)) |
| && (REGNO (XEXP (XEXP (x, 0), 0)) |
| < FIRST_PSEUDO_REGISTER) |
| && CONSTANT_P (XEXP (XEXP (x, 0), 1)))) |
| reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0; |
| else |
| { |
| /* Make a new stack slot. Then indicate that something |
| changed so we go back and recompute offsets for |
| eliminable registers because the allocation of memory |
| below might change some offset. reg_equiv_{mem,address} |
| will be set up for this pseudo on the next pass around |
| the loop. */ |
| reg_equiv_memory_loc (i) = 0; |
| reg_equiv_init (i) = 0; |
| alter_reg (i, -1, true); |
| } |
| } |
| |
| if (caller_save_needed) |
| setup_save_areas (); |
| |
| if (maybe_ne (starting_frame_size, 0) && crtl->stack_alignment_needed) |
| { |
| /* If we have a stack frame, we must align it now. The |
| stack size may be a part of the offset computation for |
| register elimination. So if this changes the stack size, |
| then repeat the elimination bookkeeping. We don't |
| realign when there is no stack, as that will cause a |
| stack frame when none is needed should |
| TARGET_STARTING_FRAME_OFFSET not be already aligned to |
| STACK_BOUNDARY. */ |
| assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed); |
| } |
| /* If we allocated another stack slot, redo elimination bookkeeping. */ |
| if (something_was_spilled |
| || maybe_ne (starting_frame_size, get_frame_size ())) |
| { |
| if (update_eliminables_and_spill ()) |
| finish_spills (0); |
| continue; |
| } |
| |
| if (caller_save_needed) |
| { |
| save_call_clobbered_regs (); |
| /* That might have allocated new insn_chain structures. */ |
| reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0); |
| } |
| |
| calculate_needs_all_insns (global); |
| |
| if (! ira_conflicts_p) |
| /* Don't do it for IRA. We need this info because we don't |
| change live_throughout and dead_or_set for chains when IRA |
| is used. */ |
| CLEAR_REG_SET (&spilled_pseudos); |
| |
| something_changed = 0; |
| |
| /* If we allocated any new memory locations, make another pass |
| since it might have changed elimination offsets. */ |
| if (something_was_spilled |
| || maybe_ne (starting_frame_size, get_frame_size ())) |
| something_changed = 1; |
| |
| /* Even if the frame size remained the same, we might still have |
| changed elimination offsets, e.g. if find_reloads called |
| force_const_mem requiring the back end to allocate a constant |
| pool base register that needs to be saved on the stack. */ |
| else if (!verify_initial_elim_offsets ()) |
| something_changed = 1; |
| |
| if (update_eliminables_and_spill ()) |
| { |
| finish_spills (0); |
| something_changed = 1; |
| } |
| else |
| { |
| select_reload_regs (); |
| if (failure) |
| goto failed; |
| if (insns_need_reload) |
| something_changed |= finish_spills (global); |
| } |
| |
| if (! something_changed) |
| break; |
| |
| if (caller_save_needed) |
| delete_caller_save_insns (); |
| |
| obstack_free (&reload_obstack, reload_firstobj); |
| } |
| |
| /* If global-alloc was run, notify it of any register eliminations we have |
| done. */ |
| if (global) |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| if (ep->can_eliminate) |
| mark_elimination (ep->from, ep->to); |
| |
| remove_init_insns (); |
| |
| /* Use the reload registers where necessary |
| by generating move instructions to move the must-be-register |
| values into or out of the reload registers. */ |
| |
| if (insns_need_reload != 0 || something_needs_elimination |
| || something_needs_operands_changed) |
| { |
| poly_int64 old_frame_size = get_frame_size (); |
| |
| reload_as_needed (global); |
| |
| gcc_assert (known_eq (old_frame_size, get_frame_size ())); |
| |
| gcc_assert (verify_initial_elim_offsets ()); |
| } |
| |
| /* If we were able to eliminate the frame pointer, show that it is no |
| longer live at the start of any basic block. If it ls live by |
| virtue of being in a pseudo, that pseudo will be marked live |
| and hence the frame pointer will be known to be live via that |
| pseudo. */ |
| |
| if (! frame_pointer_needed) |
| FOR_EACH_BB_FN (bb, cfun) |
| bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM); |
| |
| /* Come here (with failure set nonzero) if we can't get enough spill |
| regs. */ |
| failed: |
| |
| CLEAR_REG_SET (&changed_allocation_pseudos); |
| CLEAR_REG_SET (&spilled_pseudos); |
| reload_in_progress = 0; |
| |
| /* Now eliminate all pseudo regs by modifying them into |
| their equivalent memory references. |
| The REG-rtx's for the pseudos are modified in place, |
| so all insns that used to refer to them now refer to memory. |
| |
| For a reg that has a reg_equiv_address, all those insns |
| were changed by reloading so that no insns refer to it any longer; |
| but the DECL_RTL of a variable decl may refer to it, |
| and if so this causes the debugging info to mention the variable. */ |
| |
| for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) |
| { |
| rtx addr = 0; |
| |
| if (reg_equiv_mem (i)) |
| addr = XEXP (reg_equiv_mem (i), 0); |
| |
| if (reg_equiv_address (i)) |
| addr = reg_equiv_address (i); |
| |
| if (addr) |
| { |
| if (reg_renumber[i] < 0) |
| { |
| rtx reg = regno_reg_rtx[i]; |
| |
| REG_USERVAR_P (reg) = 0; |
| PUT_CODE (reg, MEM); |
| XEXP (reg, 0) = addr; |
| if (reg_equiv_memory_loc (i)) |
| MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i)); |
| else |
| MEM_ATTRS (reg) = 0; |
| MEM_NOTRAP_P (reg) = 1; |
| } |
| else if (reg_equiv_mem (i)) |
| XEXP (reg_equiv_mem (i), 0) = addr; |
| } |
| |
| /* We don't want complex addressing modes in debug insns |
| if simpler ones will do, so delegitimize equivalences |
| in debug insns. */ |
| if (MAY_HAVE_DEBUG_BIND_INSNS && reg_renumber[i] < 0) |
| { |
| rtx reg = regno_reg_rtx[i]; |
| rtx equiv = 0; |
| df_ref use, next; |
| |
| if (reg_equiv_constant (i)) |
| equiv = reg_equiv_constant (i); |
| else if (reg_equiv_invariant (i)) |
| equiv = reg_equiv_invariant (i); |
| else if (reg && MEM_P (reg)) |
| equiv = targetm.delegitimize_address (reg); |
| else if (reg && REG_P (reg) && (int)REGNO (reg) != i) |
| equiv = reg; |
| |
| if (equiv == reg) |
| continue; |
| |
| for (use = DF_REG_USE_CHAIN (i); use; use = next) |
| { |
| insn = DF_REF_INSN (use); |
| |
| /* Make sure the next ref is for a different instruction, |
| so that we're not affected by the rescan. */ |
| next = DF_REF_NEXT_REG (use); |
| while (next && DF_REF_INSN (next) == insn) |
| next = DF_REF_NEXT_REG (next); |
| |
| if (DEBUG_BIND_INSN_P (insn)) |
| { |
| if (!equiv) |
| { |
| INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC (); |
| df_insn_rescan_debug_internal (insn); |
| } |
| else |
| INSN_VAR_LOCATION_LOC (insn) |
| = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn), |
| reg, equiv); |
| } |
| } |
| } |
| } |
| |
| /* We must set reload_completed now since the cleanup_subreg_operands call |
| below will re-recognize each insn and reload may have generated insns |
| which are only valid during and after reload. */ |
| reload_completed = 1; |
| |
| /* Make a pass over all the insns and delete all USEs which we inserted |
| only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED |
| notes. Delete all CLOBBER insns, except those that refer to the return |
| value and the special mem:BLK CLOBBERs added to prevent the scheduler |
| from misarranging variable-array code, and simplify (subreg (reg)) |
| operands. Strip and regenerate REG_INC notes that may have been moved |
| around. */ |
| |
| for (insn = first; insn; insn = NEXT_INSN (insn)) |
| if (INSN_P (insn)) |
| { |
| rtx *pnote; |
| |
| if (CALL_P (insn)) |
| replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn), |
| VOIDmode, CALL_INSN_FUNCTION_USAGE (insn)); |
| |
| if ((GET_CODE (PATTERN (insn)) == USE |
| /* We mark with QImode USEs introduced by reload itself. */ |
| && (GET_MODE (insn) == QImode |
| || find_reg_note (insn, REG_EQUAL, NULL_RTX))) |
| || (GET_CODE (PATTERN (insn)) == CLOBBER |
| && (!MEM_P (XEXP (PATTERN (insn), 0)) |
| || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode |
| || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH |
| && XEXP (XEXP (PATTERN (insn), 0), 0) |
| != stack_pointer_rtx)) |
| && (!REG_P (XEXP (PATTERN (insn), 0)) |
| || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0))))) |
| { |
| delete_insn (insn); |
| continue; |
| } |
| |
| /* Some CLOBBERs may survive until here and still reference unassigned |
| pseudos with const equivalent, which may in turn cause ICE in later |
| passes if the reference remains in place. */ |
| if (GET_CODE (PATTERN (insn)) == CLOBBER) |
| replace_pseudos_in (& XEXP (PATTERN (insn), 0), |
| VOIDmode, PATTERN (insn)); |
| |
| /* Discard obvious no-ops, even without -O. This optimization |
| is fast and doesn't interfere with debugging. */ |
| if (NONJUMP_INSN_P (insn) |
| && GET_CODE (PATTERN (insn)) == SET |
| && REG_P (SET_SRC (PATTERN (insn))) |
| && REG_P (SET_DEST (PATTERN (insn))) |
| && (REGNO (SET_SRC (PATTERN (insn))) |
| == REGNO (SET_DEST (PATTERN (insn))))) |
| { |
| delete_insn (insn); |
| continue; |
| } |
| |
| pnote = ®_NOTES (insn); |
| while (*pnote != 0) |
| { |
| if (REG_NOTE_KIND (*pnote) == REG_DEAD |
| || REG_NOTE_KIND (*pnote) == REG_UNUSED |
| || REG_NOTE_KIND (*pnote) == REG_INC) |
| *pnote = XEXP (*pnote, 1); |
| else |
| pnote = &XEXP (*pnote, 1); |
| } |
| |
| if (AUTO_INC_DEC) |
| add_auto_inc_notes (insn, PATTERN (insn)); |
| |
| /* Simplify (subreg (reg)) if it appears as an operand. */ |
| cleanup_subreg_operands (insn); |
| |
| /* Clean up invalid ASMs so that they don't confuse later passes. |
| See PR 21299. */ |
| if (asm_noperands (PATTERN (insn)) >= 0) |
| { |
| extract_insn (insn); |
| if (!constrain_operands (1, get_enabled_alternatives (insn))) |
| { |
| error_for_asm (insn, |
| "%<asm%> operand has impossible constraints"); |
| delete_insn (insn); |
| continue; |
| } |
| } |
| } |
| |
| free (temp_pseudo_reg_arr); |
| |
| /* Indicate that we no longer have known memory locations or constants. */ |
| free_reg_equiv (); |
| |
| free (reg_max_ref_mode); |
| free (reg_old_renumber); |
| free (pseudo_previous_regs); |
| free (pseudo_forbidden_regs); |
| |
| CLEAR_HARD_REG_SET (used_spill_regs); |
| for (i = 0; i < n_spills; i++) |
| SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]); |
| |
| /* Free all the insn_chain structures at once. */ |
| obstack_free (&reload_obstack, reload_startobj); |
| unused_insn_chains = 0; |
| |
| inserted = fixup_abnormal_edges (); |
| |
| /* We've possibly turned single trapping insn into multiple ones. */ |
| if (cfun->can_throw_non_call_exceptions) |
| { |
| auto_sbitmap blocks (last_basic_block_for_fn (cfun)); |
| bitmap_ones (blocks); |
| find_many_sub_basic_blocks (blocks); |
| } |
| |
| if (inserted) |
| commit_edge_insertions (); |
| |
| /* Replacing pseudos with their memory equivalents might have |
| created shared rtx. Subsequent passes would get confused |
| by this, so unshare everything here. */ |
| unshare_all_rtl_again (first); |
| |
| #ifdef STACK_BOUNDARY |
| /* init_emit has set the alignment of the hard frame pointer |
| to STACK_BOUNDARY. It is very likely no longer valid if |
| the hard frame pointer was used for register allocation. */ |
| if (!frame_pointer_needed) |
| REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; |
| #endif |
| |
| substitute_stack.release (); |
| |
| gcc_assert (bitmap_empty_p (&spilled_pseudos)); |
| |
| reload_completed = !failure; |
| |
| return need_dce; |
| } |
| |
| /* Yet another special case. Unfortunately, reg-stack forces people to |
| write incorrect clobbers in asm statements. These clobbers must not |
| cause the register to appear in bad_spill_regs, otherwise we'll call |
| fatal_insn later. We clear the corresponding regnos in the live |
| register sets to avoid this. |
| The whole thing is rather sick, I'm afraid. */ |
| |
| static void |
| maybe_fix_stack_asms (void) |
| { |
| #ifdef STACK_REGS |
| const char *constraints[MAX_RECOG_OPERANDS]; |
| machine_mode operand_mode[MAX_RECOG_OPERANDS]; |
| class insn_chain *chain; |
| |
| for (chain = reload_insn_chain; chain != 0; chain = chain->next) |
| { |
| int i, noperands; |
| HARD_REG_SET clobbered, allowed; |
| rtx pat; |
| |
| if (! INSN_P (chain->insn) |
| || (noperands = asm_noperands (PATTERN (chain->insn))) < 0) |
| continue; |
| pat = PATTERN (chain->insn); |
| if (GET_CODE (pat) != PARALLEL) |
| continue; |
| |
| CLEAR_HARD_REG_SET (clobbered); |
| CLEAR_HARD_REG_SET (allowed); |
| |
| /* First, make a mask of all stack regs that are clobbered. */ |
| for (i = 0; i < XVECLEN (pat, 0); i++) |
| { |
| rtx t = XVECEXP (pat, 0, i); |
| if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0))) |
| SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0))); |
| } |
| |
| /* Get the operand values and constraints out of the insn. */ |
| decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc, |
| constraints, operand_mode, NULL); |
| |
| /* For every operand, see what registers are allowed. */ |
| for (i = 0; i < noperands; i++) |
| { |
| const char *p = constraints[i]; |
| /* For every alternative, we compute the class of registers allowed |
| for reloading in CLS, and merge its contents into the reg set |
| ALLOWED. */ |
| int cls = (int) NO_REGS; |
| |
| for (;;) |
| { |
| char c = *p; |
| |
| if (c == '\0' || c == ',' || c == '#') |
| { |
| /* End of one alternative - mark the regs in the current |
| class, and reset the class. */ |
| allowed |= reg_class_contents[cls]; |
| cls = NO_REGS; |
| p++; |
| if (c == '#') |
| do { |
| c = *p++; |
| } while (c != '\0' && c != ','); |
| if (c == '\0') |
| break; |
| continue; |
| } |
| |
| switch (c) |
| { |
| case 'g': |
| cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS]; |
| break; |
| |
| default: |
| enum constraint_num cn = lookup_constraint (p); |
| if (insn_extra_address_constraint (cn)) |
| cls = (int) reg_class_subunion[cls] |
| [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC, |
| ADDRESS, SCRATCH, chain->insn)]; |
| else |
| cls = (int) reg_class_subunion[cls] |
| [reg_class_for_constraint (cn)]; |
| break; |
| } |
| p += CONSTRAINT_LEN (c, p); |
| } |
| } |
| /* Those of the registers which are clobbered, but allowed by the |
| constraints, must be usable as reload registers. So clear them |
| out of the life information. */ |
| allowed &= clobbered; |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (TEST_HARD_REG_BIT (allowed, i)) |
| { |
| CLEAR_REGNO_REG_SET (&chain->live_throughout, i); |
| CLEAR_REGNO_REG_SET (&chain->dead_or_set, i); |
| } |
| } |
| |
| #endif |
| } |
| |
| /* Copy the global variables n_reloads and rld into the corresponding elts |
| of CHAIN. */ |
| static void |
| copy_reloads (class insn_chain *chain) |
| { |
| chain->n_reloads = n_reloads; |
| chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads); |
| memcpy (chain->rld, rld, n_reloads * sizeof (struct reload)); |
| reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0); |
| } |
| |
| /* Walk the chain of insns, and determine for each whether it needs reloads |
| and/or eliminations. Build the corresponding insns_need_reload list, and |
| set something_needs_elimination as appropriate. */ |
| static void |
| calculate_needs_all_insns (int global) |
| { |
| class insn_chain **pprev_reload = &insns_need_reload; |
| class insn_chain *chain, *next = 0; |
| |
| something_needs_elimination = 0; |
| |
| reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0); |
| for (chain = reload_insn_chain; chain != 0; chain = next) |
| { |
| rtx_insn *insn = chain->insn; |
| |
| next = chain->next; |
| |
| /* Clear out the shortcuts. */ |
| chain->n_reloads = 0; |
| chain->need_elim = 0; |
| chain->need_reload = 0; |
| chain->need_operand_change = 0; |
| |
| /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might |
| include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see |
| what effects this has on the known offsets at labels. */ |
| |
| if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn) |
| || (INSN_P (insn) && REG_NOTES (insn) != 0)) |
| set_label_offsets (insn, insn, 0); |
| |
| if (INSN_P (insn)) |
| { |
| rtx old_body = PATTERN (insn); |
| int old_code = INSN_CODE (insn); |
| rtx old_notes = REG_NOTES (insn); |
| int did_elimination = 0; |
| int operands_changed = 0; |
| |
| /* Skip insns that only set an equivalence. */ |
| if (will_delete_init_insn_p (insn)) |
| continue; |
| |
| /* If needed, eliminate any eliminable registers. */ |
| if (num_eliminable || num_eliminable_invariants) |
| did_elimination = eliminate_regs_in_insn (insn, 0); |
| |
| /* Analyze the instruction. */ |
| operands_changed = find_reloads (insn, 0, spill_indirect_levels, |
| global, spill_reg_order); |
| |
| /* If a no-op set needs more than one reload, this is likely |
| to be something that needs input address reloads. We |
| can't get rid of this cleanly later, and it is of no use |
| anyway, so discard it now. |
| We only do this when expensive_optimizations is enabled, |
| since this complements reload inheritance / output |
| reload deletion, and it can make debugging harder. */ |
| if (flag_expensive_optimizations && n_reloads > 1) |
| { |
| rtx set = single_set (insn); |
| if (set |
| && |
| ((SET_SRC (set) == SET_DEST (set) |
| && REG_P (SET_SRC (set)) |
| && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER) |
| || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set)) |
| && reg_renumber[REGNO (SET_SRC (set))] < 0 |
| && reg_renumber[REGNO (SET_DEST (set))] < 0 |
| && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL |
| && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL |
| && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))), |
| reg_equiv_memory_loc (REGNO (SET_DEST (set))))))) |
| { |
| if (ira_conflicts_p) |
| /* Inform IRA about the insn deletion. */ |
| ira_mark_memory_move_deletion (REGNO (SET_DEST (set)), |
| REGNO (SET_SRC (set))); |
| delete_insn (insn); |
| /* Delete it from the reload chain. */ |
| if (chain->prev) |
| chain->prev->next = next; |
| else |
| reload_insn_chain = next; |
| if (next) |
| next->prev = chain->prev; |
| chain->next = unused_insn_chains; |
| unused_insn_chains = chain; |
| continue; |
| } |
| } |
| if (num_eliminable) |
| update_eliminable_offsets (); |
| |
| /* Remember for later shortcuts which insns had any reloads or |
| register eliminations. */ |
| chain->need_elim = did_elimination; |
| chain->need_reload = n_reloads > 0; |
| chain->need_operand_change = operands_changed; |
| |
| /* Discard any register replacements done. */ |
| if (did_elimination) |
| { |
| obstack_free (&reload_obstack, reload_insn_firstobj); |
| PATTERN (insn) = old_body; |
| INSN_CODE (insn) = old_code; |
| REG_NOTES (insn) = old_notes; |
| something_needs_elimination = 1; |
| } |
| |
| something_needs_operands_changed |= operands_changed; |
| |
| if (n_reloads != 0) |
| { |
| copy_reloads (chain); |
| *pprev_reload = chain; |
| pprev_reload = &chain->next_need_reload; |
| } |
| } |
| } |
| *pprev_reload = 0; |
| } |
| |
| /* This function is called from the register allocator to set up estimates |
| for the cost of eliminating pseudos which have REG_EQUIV equivalences to |
| an invariant. The structure is similar to calculate_needs_all_insns. */ |
| |
| void |
| calculate_elim_costs_all_insns (void) |
| { |
| int *reg_equiv_init_cost; |
| basic_block bb; |
| int i; |
| |
| reg_equiv_init_cost = XCNEWVEC (int, max_regno); |
| init_elim_table (); |
| init_eliminable_invariants (get_insns (), false); |
| |
| set_initial_elim_offsets (); |
| set_initial_label_offsets (); |
| |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| rtx_insn *insn; |
| elim_bb = bb; |
| |
| FOR_BB_INSNS (bb, insn) |
| { |
| /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might |
| include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see |
| what effects this has on the known offsets at labels. */ |
| |
| if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn) |
| || (INSN_P (insn) && REG_NOTES (insn) != 0)) |
| set_label_offsets (insn, insn, 0); |
| |
| if (INSN_P (insn)) |
| { |
| rtx set = single_set (insn); |
| |
| /* Skip insns that only set an equivalence. */ |
| if (set && REG_P (SET_DEST (set)) |
| && reg_renumber[REGNO (SET_DEST (set))] < 0 |
| && (reg_equiv_constant (REGNO (SET_DEST (set))) |
| || reg_equiv_invariant (REGNO (SET_DEST (set))))) |
| { |
| unsigned regno = REGNO (SET_DEST (set)); |
| rtx_insn_list *init = reg_equiv_init (regno); |
| if (init) |
| { |
| rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn, |
| false, true); |
| machine_mode mode = GET_MODE (SET_DEST (set)); |
| int cost = set_src_cost (t, mode, |
| optimize_bb_for_speed_p (bb)); |
| int freq = REG_FREQ_FROM_BB (bb); |
| |
| reg_equiv_init_cost[regno] = cost * freq; |
| continue; |
| } |
| } |
| /* If needed, eliminate any eliminable registers. */ |
| if (num_eliminable || num_eliminable_invariants) |
| elimination_costs_in_insn (insn); |
| |
| if (num_eliminable) |
| update_eliminable_offsets (); |
| } |
| } |
| } |
| for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) |
| { |
| if (reg_equiv_invariant (i)) |
| { |
| if (reg_equiv_init (i)) |
| { |
| int cost = reg_equiv_init_cost[i]; |
| if (dump_file) |
| fprintf (dump_file, |
| "Reg %d has equivalence, initial gains %d\n", i, cost); |
| if (cost != 0) |
| ira_adjust_equiv_reg_cost (i, cost); |
| } |
| else |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "Reg %d had equivalence, but can't be eliminated\n", |
| i); |
| ira_adjust_equiv_reg_cost (i, 0); |
| } |
| } |
| } |
| |
| free (reg_equiv_init_cost); |
| free (offsets_known_at); |
| free (offsets_at); |
| offsets_at = NULL; |
| offsets_known_at = NULL; |
| } |
| |
| /* Comparison function for qsort to decide which of two reloads |
| should be handled first. *P1 and *P2 are the reload numbers. */ |
| |
| static int |
| reload_reg_class_lower (const void *r1p, const void *r2p) |
| { |
| int r1 = *(const short *) r1p, r2 = *(const short *) r2p; |
| int t; |
| |
| /* Consider required reloads before optional ones. */ |
| t = rld[r1].optional - rld[r2].optional; |
| if (t != 0) |
| return t; |
| |
| /* Count all solitary classes before non-solitary ones. */ |
| t = ((reg_class_size[(int) rld[r2].rclass] == 1) |
| - (reg_class_size[(int) rld[r1].rclass] == 1)); |
| if (t != 0) |
| return t; |
| |
| /* Aside from solitaires, consider all multi-reg groups first. */ |
| t = rld[r2].nregs - rld[r1].nregs; |
| if (t != 0) |
| return t; |
| |
| /* Consider reloads in order of increasing reg-class number. */ |
| t = (int) rld[r1].rclass - (int) rld[r2].rclass; |
| if (t != 0) |
| return t; |
| |
| /* If reloads are equally urgent, sort by reload number, |
| so that the results of qsort leave nothing to chance. */ |
| return r1 - r2; |
| } |
| |
| /* The cost of spilling each hard reg. */ |
| static int spill_cost[FIRST_PSEUDO_REGISTER]; |
| |
| /* When spilling multiple hard registers, we use SPILL_COST for the first |
| spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST |
| only the first hard reg for a multi-reg pseudo. */ |
| static int spill_add_cost[FIRST_PSEUDO_REGISTER]; |
| |
| /* Map of hard regno to pseudo regno currently occupying the hard |
| reg. */ |
| static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER]; |
| |
| /* Update the spill cost arrays, considering that pseudo REG is live. */ |
| |
| static void |
| count_pseudo (int reg) |
| { |
| int freq = REG_FREQ (reg); |
| int r = reg_renumber[reg]; |
| int nregs; |
| |
| /* Ignore spilled pseudo-registers which can be here only if IRA is used. */ |
| if (ira_conflicts_p && r < 0) |
| return; |
| |
| if (REGNO_REG_SET_P (&pseudos_counted, reg) |
| || REGNO_REG_SET_P (&spilled_pseudos, reg)) |
| return; |
| |
| SET_REGNO_REG_SET (&pseudos_counted, reg); |
| |
| gcc_assert (r >= 0); |
| |
| spill_add_cost[r] += freq; |
| nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg)); |
| while (nregs-- > 0) |
| { |
| hard_regno_to_pseudo_regno[r + nregs] = reg; |
| spill_cost[r + nregs] += freq; |
| } |
| } |
| |
| /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the |
| contents of BAD_SPILL_REGS for the insn described by CHAIN. */ |
| |
| static void |
| order_regs_for_reload (class insn_chain *chain) |
| { |
| unsigned i; |
| HARD_REG_SET used_by_pseudos; |
| HARD_REG_SET used_by_pseudos2; |
| reg_set_iterator rsi; |
| |
| bad_spill_regs = fixed_reg_set; |
| |
| memset (spill_cost, 0, sizeof spill_cost); |
| memset (spill_add_cost, 0, sizeof spill_add_cost); |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| hard_regno_to_pseudo_regno[i] = -1; |
| |
| /* Count number of uses of each hard reg by pseudo regs allocated to it |
| and then order them by decreasing use. First exclude hard registers |
| that are live in or across this insn. */ |
| |
| REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout); |
| REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set); |
| bad_spill_regs |= used_by_pseudos; |
| bad_spill_regs |= used_by_pseudos2; |
| |
| /* Now find out which pseudos are allocated to it, and update |
| hard_reg_n_uses. */ |
| CLEAR_REG_SET (&pseudos_counted); |
| |
| EXECUTE_IF_SET_IN_REG_SET |
| (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi) |
| { |
| count_pseudo (i); |
| } |
| EXECUTE_IF_SET_IN_REG_SET |
| (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi) |
| { |
| count_pseudo (i); |
| } |
| CLEAR_REG_SET (&pseudos_counted); |
| } |
| |
| /* Vector of reload-numbers showing the order in which the reloads should |
| be processed. */ |
| static short reload_order[MAX_RELOADS]; |
| |
| /* This is used to keep track of the spill regs used in one insn. */ |
| static HARD_REG_SET used_spill_regs_local; |
| |
| /* We decided to spill hard register SPILLED, which has a size of |
| SPILLED_NREGS. Determine how pseudo REG, which is live during the insn, |
| is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will |
| update SPILL_COST/SPILL_ADD_COST. */ |
| |
| static void |
| count_spilled_pseudo (int spilled, int spilled_nregs, int reg) |
| { |
| int freq = REG_FREQ (reg); |
| int r = reg_renumber[reg]; |
| int nregs; |
| |
| /* Ignore spilled pseudo-registers which can be here only if IRA is used. */ |
| if (ira_conflicts_p && r < 0) |
| return; |
| |
| gcc_assert (r >= 0); |
| |
| nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg)); |
| |
| if (REGNO_REG_SET_P (&spilled_pseudos, reg) |
| || spilled + spilled_nregs <= r || r + nregs <= spilled) |
| return; |
| |
| SET_REGNO_REG_SET (&spilled_pseudos, reg); |
| |
| spill_add_cost[r] -= freq; |
| while (nregs-- > 0) |
| { |
| hard_regno_to_pseudo_regno[r + nregs] = -1; |
| spill_cost[r + nregs] -= freq; |
| } |
| } |
| |
| /* Find reload register to use for reload number ORDER. */ |
| |
| static int |
| find_reg (class insn_chain *chain, int order) |
| { |
| int rnum = reload_order[order]; |
| struct reload *rl = rld + rnum; |
| int best_cost = INT_MAX; |
| int best_reg = -1; |
| unsigned int i, j, n; |
| int k; |
| HARD_REG_SET not_usable; |
| HARD_REG_SET used_by_other_reload; |
| reg_set_iterator rsi; |
| static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER]; |
| static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER]; |
| |
| not_usable = (bad_spill_regs |
| | bad_spill_regs_global |
| | ~reg_class_contents[rl->rclass]); |
| |
| CLEAR_HARD_REG_SET (used_by_other_reload); |
| for (k = 0; k < order; k++) |
| { |
| int other = reload_order[k]; |
| |
| if (rld[other].regno >= 0 && reloads_conflict (other, rnum)) |
| for (j = 0; j < rld[other].nregs; j++) |
| SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j); |
| } |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| { |
| #ifdef REG_ALLOC_ORDER |
| unsigned int regno = reg_alloc_order[i]; |
| #else |
| unsigned int regno = i; |
| #endif |
| |
| if (! TEST_HARD_REG_BIT (not_usable, regno) |
| && ! TEST_HARD_REG_BIT (used_by_other_reload, regno) |
| && targetm.hard_regno_mode_ok (regno, rl->mode)) |
| { |
| int this_cost = spill_cost[regno]; |
| int ok = 1; |
| unsigned int this_nregs = hard_regno_nregs (regno, rl->mode); |
| |
| for (j = 1; j < this_nregs; j++) |
| { |
| this_cost += spill_add_cost[regno + j]; |
| if ((TEST_HARD_REG_BIT (not_usable, regno + j)) |
| || TEST_HARD_REG_BIT (used_by_other_reload, regno + j)) |
| ok = 0; |
| } |
| if (! ok) |
| continue; |
| |
| if (ira_conflicts_p) |
| { |
| /* Ask IRA to find a better pseudo-register for |
| spilling. */ |
| for (n = j = 0; j < this_nregs; j++) |
| { |
| int r = hard_regno_to_pseudo_regno[regno + j]; |
| |
| if (r < 0) |
| continue; |
| if (n == 0 || regno_pseudo_regs[n - 1] != r) |
| regno_pseudo_regs[n++] = r; |
| } |
| regno_pseudo_regs[n++] = -1; |
| if (best_reg < 0 |
| || ira_better_spill_reload_regno_p (regno_pseudo_regs, |
| best_regno_pseudo_regs, |
| rl->in, rl->out, |
| chain->insn)) |
| { |
| best_reg = regno; |
| for (j = 0;; j++) |
| { |
| best_regno_pseudo_regs[j] = regno_pseudo_regs[j]; |
| if (regno_pseudo_regs[j] < 0) |
| break; |
| } |
| } |
| continue; |
| } |
| |
| if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno) |
| this_cost--; |
| if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno) |
| this_cost--; |
| if (this_cost < best_cost |
| /* Among registers with equal cost, prefer caller-saved ones, or |
| use REG_ALLOC_ORDER if it is defined. */ |
| || (this_cost == best_cost |
| #ifdef REG_ALLOC_ORDER |
| && (inv_reg_alloc_order[regno] |
| < inv_reg_alloc_order[best_reg]) |
| #else |
| && crtl->abi->clobbers_full_reg_p (regno) |
| && !crtl->abi->clobbers_full_reg_p (best_reg) |
| #endif |
| )) |
| { |
| best_reg = regno; |
| best_cost = this_cost; |
| } |
| } |
| } |
| if (best_reg == -1) |
| return 0; |
| |
| if (dump_file) |
| fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum); |
| |
| rl->nregs = hard_regno_nregs (best_reg, rl->mode); |
| rl->regno = best_reg; |
| |
| EXECUTE_IF_SET_IN_REG_SET |
| (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi) |
| { |
| count_spilled_pseudo (best_reg, rl->nregs, j); |
| } |
| |
| EXECUTE_IF_SET_IN_REG_SET |
| (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi) |
| { |
| count_spilled_pseudo (best_reg, rl->nregs, j); |
| } |
| |
| for (i = 0; i < rl->nregs; i++) |
| { |
| gcc_assert (spill_cost[best_reg + i] == 0); |
| gcc_assert (spill_add_cost[best_reg + i] == 0); |
| gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1); |
| SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i); |
| } |
| return 1; |
| } |
| |
| /* Find more reload regs to satisfy the remaining need of an insn, which |
| is given by CHAIN. |
| Do it by ascending class number, since otherwise a reg |
| might be spilled for a big class and might fail to count |
| for a smaller class even though it belongs to that class. */ |
| |
| static void |
| find_reload_regs (class insn_chain *chain) |
| { |
| int i; |
| |
| /* In order to be certain of getting the registers we need, |
| we must sort the reloads into order of increasing register class. |
| Then our grabbing of reload registers will parallel the process |
| that provided the reload registers. */ |
| for (i = 0; i < chain->n_reloads; i++) |
| { |
| /* Show whether this reload already has a hard reg. */ |
| if (chain->rld[i].reg_rtx) |
| { |
| chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx); |
| chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx); |
| } |
| else |
| chain->rld[i].regno = -1; |
| reload_order[i] = i; |
| } |
| |
| n_reloads = chain->n_reloads; |
| memcpy (rld, chain->rld, n_reloads * sizeof (struct reload)); |
| |
| CLEAR_HARD_REG_SET (used_spill_regs_local); |
| |
| if (dump_file) |
| fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn)); |
| |
| qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower); |
| |
| /* Compute the order of preference for hard registers to spill. */ |
| |
| order_regs_for_reload (chain); |
| |
| for (i = 0; i < n_reloads; i++) |
| { |
| int r = reload_order[i]; |
| |
| /* Ignore reloads that got marked inoperative. */ |
| if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p) |
| && ! rld[r].optional |
| && rld[r].regno == -1) |
| if (! find_reg (chain, i)) |
| { |
| if (dump_file) |
| fprintf (dump_file, "reload failure for reload %d\n", r); |
| spill_failure (chain->insn, rld[r].rclass); |
| failure = 1; |
| return; |
| } |
| } |
| |
| chain->used_spill_regs = used_spill_regs_local; |
| used_spill_regs |= used_spill_regs_local; |
| |
| memcpy (chain->rld, rld, n_reloads * sizeof (struct reload)); |
| } |
| |
| static void |
| select_reload_regs (void) |
| { |
| class insn_chain *chain; |
| |
| /* Try to satisfy the needs for each insn. */ |
| for (chain = insns_need_reload; chain != 0; |
| chain = chain->next_need_reload) |
| find_reload_regs (chain); |
| } |
| |
| /* Delete all insns that were inserted by emit_caller_save_insns during |
| this iteration. */ |
| static void |
| delete_caller_save_insns (void) |
| { |
| class insn_chain *c = reload_insn_chain; |
| |
| while (c != 0) |
| { |
| while (c != 0 && c->is_caller_save_insn) |
| { |
| class insn_chain *next = c->next; |
| rtx_insn *insn = c->insn; |
| |
| if (c == reload_insn_chain) |
| reload_insn_chain = next; |
| delete_insn (insn); |
| |
| if (next) |
| next->prev = c->prev; |
| if (c->prev) |
| c->prev->next = next; |
| c->next = unused_insn_chains; |
| unused_insn_chains = c; |
| c = next; |
| } |
| if (c != 0) |
| c = c->next; |
| } |
| } |
| |
| /* Handle the failure to find a register to spill. |
| INSN should be one of the insns which needed this particular spill reg. */ |
| |
| static void |
| spill_failure (rtx_insn *insn, enum reg_class rclass) |
| { |
| if (asm_noperands (PATTERN (insn)) >= 0) |
| error_for_asm (insn, "cannot find a register in class %qs while " |
| "reloading %<asm%>", |
| reg_class_names[rclass]); |
| else |
| { |
| error ("unable to find a register to spill in class %qs", |
| reg_class_names[rclass]); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn)); |
| debug_reload_to_stream (dump_file); |
| } |
| fatal_insn ("this is the insn:", insn); |
| } |
| } |
| |
| /* Delete an unneeded INSN and any previous insns who sole purpose is loading |
| data that is dead in INSN. */ |
| |
| static void |
| delete_dead_insn (rtx_insn *insn) |
| { |
| rtx_insn *prev = prev_active_insn (insn); |
| rtx prev_dest; |
| |
| /* If the previous insn sets a register that dies in our insn make |
| a note that we want to run DCE immediately after reload. |
| |
| We used to delete the previous insn & recurse, but that's wrong for |
| block local equivalences. Instead of trying to figure out the exact |
| circumstances where we can delete the potentially dead insns, just |
| let DCE do the job. */ |
| if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn) |
| && GET_CODE (PATTERN (prev)) == SET |
| && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest)) |
| && reg_mentioned_p (prev_dest, PATTERN (insn)) |
| && find_regno_note (insn, REG_DEAD, REGNO (prev_dest)) |
| && ! side_effects_p (SET_SRC (PATTERN (prev)))) |
| need_dce = 1; |
| |
| SET_INSN_DELETED (insn); |
| } |
| |
| /* Modify the home of pseudo-reg I. |
| The new home is present in reg_renumber[I]. |
| |
| FROM_REG may be the hard reg that the pseudo-reg is being spilled from; |
| or it may be -1, meaning there is none or it is not relevant. |
| This is used so that all pseudos spilled from a given hard reg |
| can share one stack slot. */ |
| |
| static void |
| alter_reg (int i, int from_reg, bool dont_share_p) |
| { |
| /* When outputting an inline function, this can happen |
| for a reg that isn't actually used. */ |
| if (regno_reg_rtx[i] == 0) |
| return; |
| |
| /* If the reg got changed to a MEM at rtl-generation time, |
| ignore it. */ |
| if (!REG_P (regno_reg_rtx[i])) |
| return; |
| |
| /* Modify the reg-rtx to contain the new hard reg |
| number or else to contain its pseudo reg number. */ |
| SET_REGNO (regno_reg_rtx[i], |
| reg_renumber[i] >= 0 ? reg_renumber[i] : i); |
| |
| /* If we have a pseudo that is needed but has no hard reg or equivalent, |
| allocate a stack slot for it. */ |
| |
| if (reg_renumber[i] < 0 |
| && REG_N_REFS (i) > 0 |
| && reg_equiv_constant (i) == 0 |
| && (reg_equiv_invariant (i) == 0 |
| || reg_equiv_init (i) == 0) |
| && reg_equiv_memory_loc (i) == 0) |
| { |
| rtx x = NULL_RTX; |
| machine_mode mode = GET_MODE (regno_reg_rtx[i]); |
| poly_uint64 inherent_size = GET_MODE_SIZE (mode); |
| unsigned int inherent_align = GET_MODE_ALIGNMENT (mode); |
| machine_mode wider_mode = wider_subreg_mode (mode, reg_max_ref_mode[i]); |
| poly_uint64 total_size = GET_MODE_SIZE (wider_mode); |
| /* ??? Seems strange to derive the minimum alignment from the size, |
| but that's the traditional behavior. For polynomial-size modes, |
| the natural extension is to use the minimum possible size. */ |
| unsigned int min_align |
| = constant_lower_bound (GET_MODE_BITSIZE (reg_max_ref_mode[i])); |
| poly_int64 adjust = 0; |
| |
| something_was_spilled = true; |
| |
| if (ira_conflicts_p) |
| { |
| /* Mark the spill for IRA. */ |
| SET_REGNO_REG_SET (&spilled_pseudos, i); |
| if (!dont_share_p) |
| x = ira_reuse_stack_slot (i, inherent_size, total_size); |
| } |
| |
| if (x) |
| ; |
| |
| /* Each pseudo reg has an inherent size which comes from its own mode, |
| and a total size which provides room for paradoxical subregs |
| which refer to the pseudo reg in wider modes. |
| |
| We can use a slot already allocated if it provides both |
| enough inherent space and enough total space. |
| Otherwise, we allocate a new slot, making sure that it has no less |
| inherent space, and no less total space, then the previous slot. */ |
| else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p)) |
| { |
| rtx stack_slot; |
| |
| /* The sizes are taken from a subreg operation, which guarantees |
| that they're ordered. */ |
| gcc_checking_assert (ordered_p (total_size, inherent_size)); |
| |
| /* No known place to spill from => no slot to reuse. */ |
| x = assign_stack_local (mode, total_size, |
| min_align > inherent_align |
| || maybe_gt (total_size, inherent_size) |
| ? -1 : 0); |
| |
| stack_slot = x; |
| |
| /* Cancel the big-endian correction done in assign_stack_local. |
| Get the address of the beginning of the slot. This is so we |
| can do a big-endian correction unconditionally below. */ |
| if (BYTES_BIG_ENDIAN) |
| { |
| adjust = inherent_size - total_size; |
| if (maybe_ne (adjust, 0)) |
| { |
| poly_uint64 total_bits = total_size * BITS_PER_UNIT; |
| machine_mode mem_mode |
| = int_mode_for_size (total_bits, 1).else_blk (); |
| stack_slot = adjust_address_nv (x, mem_mode, adjust); |
| } |
| } |
| |
| if (! dont_share_p && ira_conflicts_p) |
| /* Inform IRA about allocation a new stack slot. */ |
| ira_mark_new_stack_slot (stack_slot, i, total_size); |
| } |
| |
| /* Reuse a stack slot if possible. */ |
| else if (spill_stack_slot[from_reg] != 0 |
| && known_ge (spill_stack_slot_width[from_reg], total_size) |
| && known_ge (GET_MODE_SIZE |
| (GET_MODE (spill_stack_slot[from_reg])), |
| inherent_size) |
| && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align) |
| x = spill_stack_slot[from_reg]; |
| |
| /* Allocate a bigger slot. */ |
| else |
| { |
| /* Compute maximum size needed, both for inherent size |
| and for total size. */ |
| rtx stack_slot; |
| |
| if (spill_stack_slot[from_reg]) |
| { |
| if (partial_subreg_p (mode, |
| GET_MODE (spill_stack_slot[from_reg]))) |
| mode = GET_MODE (spill_stack_slot[from_reg]); |
| total_size = ordered_max (total_size, |
| spill_stack_slot_width[from_reg]); |
| if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align) |
| min_align = MEM_ALIGN (spill_stack_slot[from_reg]); |
| } |
| |
| /* The sizes are taken from a subreg operation, which guarantees |
| that they're ordered. */ |
| gcc_checking_assert (ordered_p (total_size, inherent_size)); |
| |
| /* Make a slot with that size. */ |
| x = assign_stack_local (mode, total_size, |
| min_align > inherent_align |
| || maybe_gt (total_size, inherent_size) |
| ? -1 : 0); |
| stack_slot = x; |
| |
| /* Cancel the big-endian correction done in assign_stack_local. |
| Get the address of the beginning of the slot. This is so we |
| can do a big-endian correction unconditionally below. */ |
| if (BYTES_BIG_ENDIAN) |
| { |
| adjust = GET_MODE_SIZE (mode) - total_size; |
| if (maybe_ne (adjust, 0)) |
| { |
| poly_uint64 total_bits = total_size * BITS_PER_UNIT; |
| machine_mode mem_mode |
| = int_mode_for_size (total_bits, 1).else_blk (); |
| stack_slot = adjust_address_nv (x, mem_mode, adjust); |
| } |
| } |
| |
| spill_stack_slot[from_reg] = stack_slot; |
| spill_stack_slot_width[from_reg] = total_size; |
| } |
| |
| /* On a big endian machine, the "address" of the slot |
| is the address of the low part that fits its inherent mode. */ |
| adjust += subreg_size_lowpart_offset (inherent_size, total_size); |
| |
| /* If we have any adjustment to make, or if the stack slot is the |
| wrong mode, make a new stack slot. */ |
| x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust); |
| |
| /* Set all of the memory attributes as appropriate for a spill. */ |
| set_mem_attrs_for_spill (x); |
| |
| /* Save the stack slot for later. */ |
| reg_equiv_memory_loc (i) = x; |
| } |
| } |
| |
| /* Mark the slots in regs_ever_live for the hard regs used by |
| pseudo-reg number REGNO, accessed in MODE. */ |
| |
| static void |
| mark_home_live_1 (int regno, machine_mode mode) |
| { |
| int i, lim; |
| |
| i = reg_renumber[regno]; |
| if (i < 0) |
| return; |
| lim = end_hard_regno (mode, i); |
| while (i < lim) |
| df_set_regs_ever_live (i++, true); |
| } |
| |
| /* Mark the slots in regs_ever_live for the hard regs |
| used by pseudo-reg number REGNO. */ |
| |
| void |
| mark_home_live (int regno) |
| { |
| if (reg_renumber[regno] >= 0) |
| mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno)); |
| } |
| |
| /* This function handles the tracking of elimination offsets around branches. |
| |
| X is a piece of RTL being scanned. |
| |
| INSN is the insn that it came from, if any. |
| |
| INITIAL_P is nonzero if we are to set the offset to be the initial |
| offset and zero if we are setting the offset of the label to be the |
| current offset. */ |
| |
| static void |
| set_label_offsets (rtx x, rtx_insn *insn, int initial_p) |
| { |
| enum rtx_code code = GET_CODE (x); |
| rtx tem; |
| unsigned int i; |
| struct elim_table *p; |
| |
| switch (code) |
| { |
| case LABEL_REF: |
| if (LABEL_REF_NONLOCAL_P (x)) |
| return; |
| |
| x = label_ref_label (x); |
| |
| /* fall through */ |
| |
| case CODE_LABEL: |
| /* If we know nothing about this label, set the desired offsets. Note |
| that this sets the offset at a label to be the offset before a label |
| if we don't know anything about the label. This is not correct for |
| the label after a BARRIER, but is the best guess we can make. If |
| we guessed wrong, we will suppress an elimination that might have |
| been possible had we been able to guess correctly. */ |
| |
| if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num]) |
| { |
| for (i = 0; i < NUM_ELIMINABLE_REGS; i++) |
| offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i] |
| = (initial_p ? reg_eliminate[i].initial_offset |
| : reg_eliminate[i].offset); |
| offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1; |
| } |
| |
| /* Otherwise, if this is the definition of a label and it is |
| preceded by a BARRIER, set our offsets to the known offset of |
| that label. */ |
| |
| else if (x == insn |
| && (tem = prev_nonnote_insn (insn)) != 0 |
| && BARRIER_P (tem)) |
| set_offsets_for_label (insn); |
| else |
| /* If neither of the above cases is true, compare each offset |
| with those previously recorded and suppress any eliminations |
| where the offsets disagree. */ |
| |
| for (i = 0; i < NUM_ELIMINABLE_REGS; i++) |
| if (maybe_ne (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i], |
| (initial_p ? reg_eliminate[i].initial_offset |
| : reg_eliminate[i].offset))) |
| reg_eliminate[i].can_eliminate = 0; |
| |
| return; |
| |
| case JUMP_TABLE_DATA: |
| set_label_offsets (PATTERN (insn), insn, initial_p); |
| return; |
| |
| case JUMP_INSN: |
| set_label_offsets (PATTERN (insn), insn, initial_p); |
| |
| /* fall through */ |
| |
| case INSN: |
| case CALL_INSN: |
| /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched |
| to indirectly and hence must have all eliminations at their |
| initial offsets. */ |
| for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1)) |
| if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND) |
| set_label_offsets (XEXP (tem, 0), insn, 1); |
| return; |
| |
| case PARALLEL: |
| case ADDR_VEC: |
| case ADDR_DIFF_VEC: |
| /* Each of the labels in the parallel or address vector must be |
| at their initial offsets. We want the first field for PARALLEL |
| and ADDR_VEC and the second field for ADDR_DIFF_VEC. */ |
| |
| for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++) |
| set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i), |
| insn, initial_p); |
| return; |
| |
| case SET: |
| /* We only care about setting PC. If the source is not RETURN, |
| IF_THEN_ELSE, or a label, disable any eliminations not at |
| their initial offsets. Similarly if any arm of the IF_THEN_ELSE |
| isn't one of those possibilities. For branches to a label, |
| call ourselves recursively. |
| |
| Note that this can disable elimination unnecessarily when we have |
| a non-local goto since it will look like a non-constant jump to |
| someplace in the current function. This isn't a significant |
| problem since such jumps will normally be when all elimination |
| pairs are back to their initial offsets. */ |
| |
| if (SET_DEST (x) != pc_rtx) |
| return; |
| |
| switch (GET_CODE (SET_SRC (x))) |
| { |
| case PC: |
| case RETURN: |
| return; |
| |
| case LABEL_REF: |
| set_label_offsets (SET_SRC (x), insn, initial_p); |
| return; |
| |
| case IF_THEN_ELSE: |
| tem = XEXP (SET_SRC (x), 1); |
| if (GET_CODE (tem) == LABEL_REF) |
| set_label_offsets (label_ref_label (tem), insn, initial_p); |
| else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN) |
| break; |
| |
| tem = XEXP (SET_SRC (x), 2); |
| if (GET_CODE (tem) == LABEL_REF) |
| set_label_offsets (label_ref_label (tem), insn, initial_p); |
| else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN) |
| break; |
| return; |
| |
| default: |
| break; |
| } |
| |
| /* If we reach here, all eliminations must be at their initial |
| offset because we are doing a jump to a variable address. */ |
| for (p = reg_eliminate; p < ®_eliminate[NUM_ELIMINABLE_REGS]; p++) |
| if (maybe_ne (p->offset, p->initial_offset)) |
| p->can_eliminate = 0; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* This function examines every reg that occurs in X and adjusts the |
| costs for its elimination which are gathered by IRA. INSN is the |
| insn in which X occurs. We do not recurse into MEM expressions. */ |
| |
| static void |
| note_reg_elim_costly (const_rtx x, rtx insn) |
| { |
| subrtx_iterator::array_type array; |
| FOR_EACH_SUBRTX (iter, array, x, NONCONST) |
| { |
| const_rtx x = *iter; |
| if (MEM_P (x)) |
| iter.skip_subrtxes (); |
| else if (REG_P (x) |
| && REGNO (x) >= FIRST_PSEUDO_REGISTER |
| && reg_equiv_init (REGNO (x)) |
| && reg_equiv_invariant (REGNO (x))) |
| { |
| rtx t = reg_equiv_invariant (REGNO (x)); |
| rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true); |
| int cost = set_src_cost (new_rtx, Pmode, |
| optimize_bb_for_speed_p (elim_bb)); |
| int freq = REG_FREQ_FROM_BB (elim_bb); |
| |
| if (cost != 0) |
| ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq); |
| } |
| } |
| } |
| |
| /* Scan X and replace any eliminable registers (such as fp) with a |
| replacement (such as sp), plus an offset. |
| |
| MEM_MODE is the mode of an enclosing MEM. We need this to know how |
| much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a |
| MEM, we are allowed to replace a sum of a register and the constant zero |
| with the register, which we cannot do outside a MEM. In addition, we need |
| to record the fact that a register is referenced outside a MEM. |
| |
| If INSN is an insn, it is the insn containing X. If we replace a REG |
| in a SET_DEST with an equivalent MEM and INSN is nonzero, write a |
| CLOBBER of the pseudo after INSN so find_equiv_regs will know that |
| the REG is being modified. |
| |
| Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST). |
| That's used when we eliminate in expressions stored in notes. |
| This means, do not set ref_outside_mem even if the reference |
| is outside of MEMs. |
| |
| If FOR_COSTS is true, we are being called before reload in order to |
| estimate the costs of keeping registers with an equivalence unallocated. |
| |
| REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had |
| replacements done assuming all offsets are at their initial values. If |
| they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we |
| encounter, return the actual location so that find_reloads will do |
| the proper thing. */ |
| |
| static rtx |
| eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn, |
| bool may_use_invariant, bool for_costs) |
| { |
| enum rtx_code code = GET_CODE (x); |
| struct elim_table *ep; |
| int regno; |
| rtx new_rtx; |
| int i, j; |
| const char *fmt; |
| int copied = 0; |
| |
| if (! current_function_decl) |
| return x; |
| |
| switch (code) |
| { |
| CASE_CONST_ANY: |
| case CONST: |
| case SYMBOL_REF: |
| case CODE_LABEL: |
| case PC: |
| case ASM_INPUT: |
| case ADDR_VEC: |
| case ADDR_DIFF_VEC: |
| case RETURN: |
| return x; |
| |
| case REG: |
| regno = REGNO (x); |
| |
| /* First handle the case where we encounter a bare register that |
| is eliminable. Replace it with a PLUS. */ |
| if (regno < FIRST_PSEUDO_REGISTER) |
| { |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; |
| ep++) |
| if (ep->from_rtx == x && ep->can_eliminate) |
| return plus_constant (Pmode, ep->to_rtx, ep->previous_offset); |
| |
| } |
| else if (reg_renumber && reg_renumber[regno] < 0 |
| && reg_equivs |
| && reg_equiv_invariant (regno)) |
| { |
| if (may_use_invariant || (insn && DEBUG_INSN_P (insn))) |
| return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)), |
| mem_mode, insn, true, for_costs); |
| /* There exists at least one use of REGNO that cannot be |
| eliminated. Prevent the defining insn from being deleted. */ |
| reg_equiv_init (regno) = NULL; |
| if (!for_costs) |
| alter_reg (regno, -1, true); |
| } |
| return x; |
| |
| /* You might think handling MINUS in a manner similar to PLUS is a |
| good idea. It is not. It has been tried multiple times and every |
| time the change has had to have been reverted. |
| |
| Other parts of reload know a PLUS is special (gen_reload for example) |
| and require special code to handle code a reloaded PLUS operand. |
| |
| Also consider backends where the flags register is clobbered by a |
| MINUS, but we can emit a PLUS that does not clobber flags (IA-32, |
| lea instruction comes to mind). If we try to reload a MINUS, we |
| may kill the flags register that was holding a useful value. |
| |
| So, please before trying to handle MINUS, consider reload as a |
| whole instead of this little section as well as the backend issues. */ |
| case PLUS: |
| /* If this is the sum of an eliminable register and a constant, rework |
| the sum. */ |
| if (REG_P (XEXP (x, 0)) |
| && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER |
| && CONSTANT_P (XEXP (x, 1))) |
| { |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; |
| ep++) |
| if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate) |
| { |
| /* The only time we want to replace a PLUS with a REG (this |
| occurs when the constant operand of the PLUS is the negative |
| of the offset) is when we are inside a MEM. We won't want |
| to do so at other times because that would change the |
| structure of the insn in a way that reload can't handle. |
| We special-case the commonest situation in |
| eliminate_regs_in_insn, so just replace a PLUS with a |
| PLUS here, unless inside a MEM. In DEBUG_INSNs, it is |
| always ok to replace a PLUS with just a REG. */ |
| if ((mem_mode != 0 || (insn && DEBUG_INSN_P (insn))) |
| && CONST_INT_P (XEXP (x, 1)) |
| && known_eq (INTVAL (XEXP (x, 1)), -ep->previous_offset)) |
| return ep->to_rtx; |
| else |
| return gen_rtx_PLUS (Pmode, ep->to_rtx, |
| plus_constant (Pmode, XEXP (x, 1), |
| ep->previous_offset)); |
| } |
| |
| /* If the register is not eliminable, we are done since the other |
| operand is a constant. */ |
| return x; |
| } |
| |
| /* If this is part of an address, we want to bring any constant to the |
| outermost PLUS. We will do this by doing register replacement in |
| our operands and seeing if a constant shows up in one of them. |
| |
| Note that there is no risk of modifying the structure of the insn, |
| since we only get called for its operands, thus we are either |
| modifying the address inside a MEM, or something like an address |
| operand of a load-address insn. */ |
| |
| { |
| rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true, |
| for_costs); |
| rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true, |
| for_costs); |
| |
| if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))) |
| { |
| /* If one side is a PLUS and the other side is a pseudo that |
| didn't get a hard register but has a reg_equiv_constant, |
| we must replace the constant here since it may no longer |
| be in the position of any operand. */ |
| if (GET_CODE (new0) == PLUS && REG_P (new1) |
| && REGNO (new1) >= FIRST_PSEUDO_REGISTER |
| && reg_renumber[REGNO (new1)] < 0 |
| && reg_equivs |
| && reg_equiv_constant (REGNO (new1)) != 0) |
| new1 = reg_equiv_constant (REGNO (new1)); |
| else if (GET_CODE (new1) == PLUS && REG_P (new0) |
| && REGNO (new0) >= FIRST_PSEUDO_REGISTER |
| && reg_renumber[REGNO (new0)] < 0 |
| && reg_equiv_constant (REGNO (new0)) != 0) |
| new0 = reg_equiv_constant (REGNO (new0)); |
| |
| new_rtx = form_sum (GET_MODE (x), new0, new1); |
| |
| /* As above, if we are not inside a MEM we do not want to |
| turn a PLUS into something else. We might try to do so here |
| for an addition of 0 if we aren't optimizing. */ |
| if (! mem_mode && GET_CODE (new_rtx) != PLUS) |
| return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx); |
| else |
| return new_rtx; |
| } |
| } |
| return x; |
| |
| case MULT: |
| /* If this is the product of an eliminable register and a |
| constant, apply the distribute law and move the constant out |
| so that we have (plus (mult ..) ..). This is needed in order |
| to keep load-address insns valid. This case is pathological. |
| We ignore the possibility of overflow here. */ |
| if (REG_P (XEXP (x, 0)) |
| && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER |
| && CONST_INT_P (XEXP (x, 1))) |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; |
| ep++) |
| if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate) |
| { |
| if (! mem_mode |
| /* Refs inside notes or in DEBUG_INSNs don't count for |
| this purpose. */ |
| && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST |
| || GET_CODE (insn) == INSN_LIST |
| || DEBUG_INSN_P (insn)))) |
| ep->ref_outside_mem = 1; |
| |
| return |
| plus_constant (Pmode, |
| gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)), |
| ep->previous_offset * INTVAL (XEXP (x, 1))); |
| } |
| |
| /* fall through */ |
| |
| case CALL: |
| case COMPARE: |
| /* See comments before PLUS about handling MINUS. */ |
| case MINUS: |
| case DIV: case UDIV: |
| case MOD: case UMOD: |
| case AND: case IOR: case XOR: |
| case ROTATERT: case ROTATE: |
| case ASHIFTRT: case LSHIFTRT: case ASHIFT: |
| case NE: case EQ: |
| case GE: case GT: case GEU: case GTU: |
| case LE: case LT: case LEU: case LTU: |
| { |
| rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false, |
| for_costs); |
| rtx new1 = XEXP (x, 1) |
| ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false, |
| for_costs) : 0; |
| |
| if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)) |
| return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1); |
| } |
| return x; |
| |
| case EXPR_LIST: |
| /* If we have something in XEXP (x, 0), the usual case, eliminate it. */ |
| if (XEXP (x, 0)) |
| { |
| new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true, |
| for_costs); |
| if (new_rtx != XEXP (x, 0)) |
| { |
| /* If this is a REG_DEAD note, it is not valid anymore. |
| Using the eliminated version could result in creating a |
| REG_DEAD note for the stack or frame pointer. */ |
| if (REG_NOTE_KIND (x) == REG_DEAD) |
| return (XEXP (x, 1) |
| ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true, |
| for_costs) |
| : NULL_RTX); |
| |
| x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1)); |
| } |
| } |
| |
| /* fall through */ |
| |
| case INSN_LIST: |
| case INT_LIST: |
| /* Now do eliminations in the rest of the chain. If this was |
| an EXPR_LIST, this might result in allocating more memory than is |
| strictly needed, but it simplifies the code. */ |
| if (XEXP (x, 1)) |
| { |
| new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true, |
| for_costs); |
| if (new_rtx != XEXP (x, 1)) |
| return |
| gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx); |
| } |
| return x; |
| |
| case PRE_INC: |
| case POST_INC: |
| case PRE_DEC: |
| case POST_DEC: |
| /* We do not support elimination of a register that is modified. |
| elimination_effects has already make sure that this does not |
| happen. */ |
| return x; |
| |
| case PRE_MODIFY: |
| case POST_MODIFY: |
| /* We do not support elimination of a register that is modified. |
| elimination_effects has already make sure that this does not |
| happen. The only remaining case we need to consider here is |
| that the increment value may be an eliminable register. */ |
| if (GET_CODE (XEXP (x, 1)) == PLUS |
| && XEXP (XEXP (x, 1), 0) == XEXP (x, 0)) |
| { |
| rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode, |
| insn, true, for_costs); |
| |
| if (new_rtx != XEXP (XEXP (x, 1), 1)) |
| return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0), |
| gen_rtx_PLUS (GET_MODE (x), |
| XEXP (x, 0), new_rtx)); |
| } |
| return x; |
| |
| case STRICT_LOW_PART: |
| case NEG: case NOT: |
| case SIGN_EXTEND: case ZERO_EXTEND: |
| case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: |
| case FLOAT: case FIX: |
| case UNSIGNED_FIX: case UNSIGNED_FLOAT: |
| case ABS: |
| case SQRT: |
| case FFS: |
| case CLZ: |
| case CTZ: |
| case POPCOUNT: |
| case PARITY: |
| case BSWAP: |
| new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false, |
| for_costs); |
| if (new_rtx != XEXP (x, 0)) |
| return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx); |
| return x; |
| |
| case SUBREG: |
| /* Similar to above processing, but preserve SUBREG_BYTE. |
| Convert (subreg (mem)) to (mem) if not paradoxical. |
| Also, if we have a non-paradoxical (subreg (pseudo)) and the |
| pseudo didn't get a hard reg, we must replace this with the |
| eliminated version of the memory location because push_reload |
| may do the replacement in certain circumstances. */ |
| if (REG_P (SUBREG_REG (x)) |
| && !paradoxical_subreg_p (x) |
| && reg_equivs |
| && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0) |
| { |
| new_rtx = SUBREG_REG (x); |
| } |
| else |
| new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs); |
| |
| if (new_rtx != SUBREG_REG (x)) |
| { |
| poly_int64 x_size = GET_MODE_SIZE (GET_MODE (x)); |
| poly_int64 new_size = GET_MODE_SIZE (GET_MODE (new_rtx)); |
| |
| if (MEM_P (new_rtx) |
| && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx)) |
| /* On RISC machines, combine can create rtl of the form |
| (set (subreg:m1 (reg:m2 R) 0) ...) |
| where m1 < m2, and expects something interesting to |
| happen to the entire word. Moreover, it will use the |
| (reg:m2 R) later, expecting all bits to be preserved. |
| So if the number of words is the same, preserve the |
| subreg so that push_reload can see it. */ |
| && !(WORD_REGISTER_OPERATIONS |
| && known_equal_after_align_down (x_size - 1, |
| new_size - 1, |
| UNITS_PER_WORD))) |
| || known_eq (x_size, new_size)) |
| ) |
| return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x)); |
| else if (insn && GET_CODE (insn) == DEBUG_INSN) |
| return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x)); |
| else |
| return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x)); |
| } |
| |
| return x; |
| |
| case MEM: |
| /* Our only special processing is to pass the mode of the MEM to our |
| recursive call and copy the flags. While we are here, handle this |
| case more efficiently. */ |
| |
| new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true, |
| for_costs); |
| if (for_costs |
| && memory_address_p (GET_MODE (x), XEXP (x, 0)) |
| && !memory_address_p (GET_MODE (x), new_rtx)) |
| note_reg_elim_costly (XEXP (x, 0), insn); |
| |
| return replace_equiv_address_nv (x, new_rtx); |
| |
| case USE: |
| /* Handle insn_list USE that a call to a pure function may generate. */ |
| new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false, |
| for_costs); |
| if (new_rtx != XEXP (x, 0)) |
| return gen_rtx_USE (GET_MODE (x), new_rtx); |
| return x; |
| |
| case CLOBBER: |
| case ASM_OPERANDS: |
| gcc_assert (insn && DEBUG_INSN_P (insn)); |
| break; |
| |
| case SET: |
| gcc_unreachable (); |
| |
| default: |
| break; |
| } |
| |
| /* Process each of our operands recursively. If any have changed, make a |
| copy of the rtx. */ |
| fmt = GET_RTX_FORMAT (code); |
| for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++) |
| { |
| if (*fmt == 'e') |
| { |
| new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false, |
| for_costs); |
| if (new_rtx != XEXP (x, i) && ! copied) |
| { |
| x = shallow_copy_rtx (x); |
| copied = 1; |
| } |
| XEXP (x, i) = new_rtx; |
| } |
| else if (*fmt == 'E') |
| { |
| int copied_vec = 0; |
| for (j = 0; j < XVECLEN (x, i); j++) |
| { |
| new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false, |
| for_costs); |
| if (new_rtx != XVECEXP (x, i, j) && ! copied_vec) |
| { |
| rtvec new_v = gen_rtvec_v (XVECLEN (x, i), |
| XVEC (x, i)->elem); |
| if (! copied) |
| { |
| x = shallow_copy_rtx (x); |
| copied = 1; |
| } |
| XVEC (x, i) = new_v; |
| copied_vec = 1; |
| } |
| XVECEXP (x, i, j) = new_rtx; |
| } |
| } |
| } |
| |
| return x; |
| } |
| |
| rtx |
| eliminate_regs (rtx x, machine_mode mem_mode, rtx insn) |
| { |
| if (reg_eliminate == NULL) |
| { |
| gcc_assert (targetm.no_register_allocation); |
| return x; |
| } |
| return eliminate_regs_1 (x, mem_mode, insn, false, false); |
| } |
| |
| /* Scan rtx X for modifications of elimination target registers. Update |
| the table of eliminables to reflect the changed state. MEM_MODE is |
| the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */ |
| |
| static void |
| elimination_effects (rtx x, machine_mode mem_mode) |
| { |
| enum rtx_code code = GET_CODE (x); |
| struct elim_table *ep; |
| int regno; |
| int i, j; |
| const char *fmt; |
| |
| switch (code) |
| { |
| CASE_CONST_ANY: |
| case CONST: |
| case SYMBOL_REF: |
| case CODE_LABEL: |
| case PC: |
| case ASM_INPUT: |
| case ADDR_VEC: |
| case ADDR_DIFF_VEC: |
| case RETURN: |
| return; |
| |
| case REG: |
| regno = REGNO (x); |
| |
| /* First handle the case where we encounter a bare register that |
| is eliminable. Replace it with a PLUS. */ |
| if (regno < FIRST_PSEUDO_REGISTER) |
| { |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; |
| ep++) |
| if (ep->from_rtx == x && ep->can_eliminate) |
| { |
| if (! mem_mode) |
| ep->ref_outside_mem = 1; |
| return; |
| } |
| |
| } |
| else if (reg_renumber[regno] < 0 |
| && reg_equivs |
| && reg_equiv_constant (regno) |
| && ! function_invariant_p (reg_equiv_constant (regno))) |
| elimination_effects (reg_equiv_constant (regno), mem_mode); |
| return; |
| |
| case PRE_INC: |
| case POST_INC: |
| case PRE_DEC: |
| case POST_DEC: |
| case POST_MODIFY: |
| case PRE_MODIFY: |
| /* If we modify the source of an elimination rule, disable it. */ |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| if (ep->from_rtx == XEXP (x, 0)) |
| ep->can_eliminate = 0; |
| |
| /* If we modify the target of an elimination rule by adding a constant, |
| update its offset. If we modify the target in any other way, we'll |
| have to disable the rule as well. */ |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| if (ep->to_rtx == XEXP (x, 0)) |
| { |
| poly_int64 size = GET_MODE_SIZE (mem_mode); |
| |
| /* If more bytes than MEM_MODE are pushed, account for them. */ |
| #ifdef PUSH_ROUNDING |
| if (ep->to_rtx == stack_pointer_rtx) |
| size = PUSH_ROUNDING (size); |
| #endif |
| if (code == PRE_DEC || code == POST_DEC) |
| ep->offset += size; |
| else if (code == PRE_INC || code == POST_INC) |
| ep->offset -= size; |
| else if (code == PRE_MODIFY || code == POST_MODIFY) |
| { |
| if (GET_CODE (XEXP (x, 1)) == PLUS |
| && XEXP (x, 0) == XEXP (XEXP (x, 1), 0) |
| && CONST_INT_P (XEXP (XEXP (x, 1), 1))) |
| ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1)); |
| else |
| ep->can_eliminate = 0; |
| } |
| } |
| |
| /* These two aren't unary operators. */ |
| if (code == POST_MODIFY || code == PRE_MODIFY) |
| break; |
| |
| /* Fall through to generic unary operation case. */ |
| gcc_fallthrough (); |
| case STRICT_LOW_PART: |
| case NEG: case NOT: |
| case SIGN_EXTEND: case ZERO_EXTEND: |
| case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: |
| case FLOAT: case FIX: |
| case UNSIGNED_FIX: case UNSIGNED_FLOAT: |
| case ABS: |
| case SQRT: |
| case FFS: |
| case CLZ: |
| case CTZ: |
| case POPCOUNT: |
| case PARITY: |
| case BSWAP: |
| elimination_effects (XEXP (x, 0), mem_mode); |
| return; |
| |
| case SUBREG: |
| if (REG_P (SUBREG_REG (x)) |
| && !paradoxical_subreg_p (x) |
| && reg_equivs |
| && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0) |
| return; |
| |
| elimination_effects (SUBREG_REG (x), mem_mode); |
| return; |
| |
| case USE: |
| /* If using a register that is the source of an eliminate we still |
| think can be performed, note it cannot be performed since we don't |
| know how this register is used. */ |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| if (ep->from_rtx == XEXP (x, 0)) |
| ep->can_eliminate = 0; |
| |
| elimination_effects (XEXP (x, 0), mem_mode); |
| return; |
| |
| case CLOBBER: |
| /* If clobbering a register that is the replacement register for an |
| elimination we still think can be performed, note that it cannot |
| be performed. Otherwise, we need not be concerned about it. */ |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| if (ep->to_rtx == XEXP (x, 0)) |
| ep->can_eliminate = 0; |
| |
| elimination_effects (XEXP (x, 0), mem_mode); |
| return; |
| |
| case SET: |
| /* Check for setting a register that we know about. */ |
| if (REG_P (SET_DEST (x))) |
| { |
| /* See if this is setting the replacement register for an |
| elimination. |
| |
| If DEST is the hard frame pointer, we do nothing because we |
| assume that all assignments to the frame pointer are for |
| non-local gotos and are being done at a time when they are valid |
| and do not disturb anything else. Some machines want to |
| eliminate a fake argument pointer (or even a fake frame pointer) |
| with either the real frame or the stack pointer. Assignments to |
| the hard frame pointer must not prevent this elimination. */ |
| |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; |
| ep++) |
| if (ep->to_rtx == SET_DEST (x) |
| && SET_DEST (x) != hard_frame_pointer_rtx) |
| { |
| /* If it is being incremented, adjust the offset. Otherwise, |
| this elimination can't be done. */ |
| rtx src = SET_SRC (x); |
| |
| if (GET_CODE (src) == PLUS |
| && XEXP (src, 0) == SET_DEST (x) |
| && CONST_INT_P (XEXP (src, 1))) |
| ep->offset -= INTVAL (XEXP (src, 1)); |
| else |
| ep->can_eliminate = 0; |
| } |
| } |
| |
| elimination_effects (SET_DEST (x), VOIDmode); |
| elimination_effects (SET_SRC (x), VOIDmode); |
| return; |
| |
| case MEM: |
| /* Our only special processing is to pass the mode of the MEM to our |
| recursive call. */ |
| elimination_effects (XEXP (x, 0), GET_MODE (x)); |
| return; |
| |
| default: |
| break; |
| } |
| |
| fmt = GET_RTX_FORMAT (code); |
| for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++) |
| { |
| if (*fmt == 'e') |
| elimination_effects (XEXP (x, i), mem_mode); |
| else if (*fmt == 'E') |
| for (j = 0; j < XVECLEN (x, i); j++) |
| elimination_effects (XVECEXP (x, i, j), mem_mode); |
| } |
| } |
| |
| /* Descend through rtx X and verify that no references to eliminable registers |
| remain. If any do remain, mark the involved register as not |
| eliminable. */ |
| |
| static void |
| check_eliminable_occurrences (rtx x) |
| { |
| const char *fmt; |
| int i; |
| enum rtx_code code; |
| |
| if (x == 0) |
| return; |
| |
| code = GET_CODE (x); |
| |
| if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER) |
| { |
| struct elim_table *ep; |
| |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| if (ep->from_rtx == x) |
| ep->can_eliminate = 0; |
| return; |
| } |
| |
| fmt = GET_RTX_FORMAT (code); |
| for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++) |
| { |
| if (*fmt == 'e') |
| check_eliminable_occurrences (XEXP (x, i)); |
| else if (*fmt == 'E') |
| { |
| int j; |
| for (j = 0; j < XVECLEN (x, i); j++) |
| check_eliminable_occurrences (XVECEXP (x, i, j)); |
| } |
| } |
| } |
| |
| /* Scan INSN and eliminate all eliminable registers in it. |
| |
| If REPLACE is nonzero, do the replacement destructively. Also |
| delete the insn as dead it if it is setting an eliminable register. |
| |
| If REPLACE is zero, do all our allocations in reload_obstack. |
| |
| If no eliminations were done and this insn doesn't require any elimination |
| processing (these are not identical conditions: it might be updating sp, |
| but not referencing fp; this needs to be seen during reload_as_needed so |
| that the offset between fp and sp can be taken into consideration), zero |
| is returned. Otherwise, 1 is returned. */ |
| |
| static int |
| eliminate_regs_in_insn (rtx_insn *insn, int replace) |
| { |
| int icode = recog_memoized (insn); |
| rtx old_body = PATTERN (insn); |
| int insn_is_asm = asm_noperands (old_body) >= 0; |
| rtx old_set = single_set (insn); |
| rtx new_body; |
| int val = 0; |
| int i; |
| rtx substed_operand[MAX_RECOG_OPERANDS]; |
| rtx orig_operand[MAX_RECOG_OPERANDS]; |
| struct elim_table *ep; |
| rtx plus_src, plus_cst_src; |
| |
| if (! insn_is_asm && icode < 0) |
| { |
| gcc_assert (DEBUG_INSN_P (insn) |
| || GET_CODE (PATTERN (insn)) == USE |
| || GET_CODE (PATTERN (insn)) == CLOBBER |
| || GET_CODE (PATTERN (insn)) == ASM_INPUT); |
| if (DEBUG_BIND_INSN_P (insn)) |
| INSN_VAR_LOCATION_LOC (insn) |
| = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn); |
| return 0; |
| } |
| |
| /* We allow one special case which happens to work on all machines we |
| currently support: a single set with the source or a REG_EQUAL |
| note being a PLUS of an eliminable register and a constant. */ |
| plus_src = plus_cst_src = 0; |
| if (old_set && REG_P (SET_DEST (old_set))) |
| { |
| if (GET_CODE (SET_SRC (old_set)) == PLUS) |
| plus_src = SET_SRC (old_set); |
| /* First see if the source is of the form (plus (...) CST). */ |
| if (plus_src |
| && CONST_INT_P (XEXP (plus_src, 1))) |
| plus_cst_src = plus_src; |
| else if (REG_P (SET_SRC (old_set)) |
| || plus_src) |
| { |
| /* Otherwise, see if we have a REG_EQUAL note of the form |
| (plus (...) CST). */ |
| rtx links; |
| for (links = REG_NOTES (insn); links; links = XEXP (links, 1)) |
| { |
| if ((REG_NOTE_KIND (links) == REG_EQUAL |
| || REG_NOTE_KIND (links) == REG_EQUIV) |
| && GET_CODE (XEXP (links, 0)) == PLUS |
| && CONST_INT_P (XEXP (XEXP (links, 0), 1))) |
| { |
| plus_cst_src = XEXP (links, 0); |
| break; |
| } |
| } |
| } |
| |
| /* Check that the first operand of the PLUS is a hard reg or |
| the lowpart subreg of one. */ |
| if (plus_cst_src) |
| { |
| rtx reg = XEXP (plus_cst_src, 0); |
| if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg)) |
| reg = SUBREG_REG (reg); |
| |
| if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER) |
| plus_cst_src = 0; |
| } |
| } |
| if (plus_cst_src) |
| { |
| rtx reg = XEXP (plus_cst_src, 0); |
| poly_int64 offset = INTVAL (XEXP (plus_cst_src, 1)); |
| |
| if (GET_CODE (reg) == SUBREG) |
| reg = SUBREG_REG (reg); |
| |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| if (ep->from_rtx == reg && ep->can_eliminate) |
| { |
| rtx to_rtx = ep->to_rtx; |
| offset += ep->offset; |
| offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src)); |
| |
| if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG) |
| to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)), |
| to_rtx); |
| /* If we have a nonzero offset, and the source is already |
| a simple REG, the following transformation would |
| increase the cost of the insn by replacing a simple REG |
| with (plus (reg sp) CST). So try only when we already |
| had a PLUS before. */ |
| if (known_eq (offset, 0) || plus_src) |
| { |
| rtx new_src = plus_constant (GET_MODE (to_rtx), |
| to_rtx, offset); |
| |
| new_body = old_body; |
| if (! replace) |
| { |
| new_body = copy_insn (old_body); |
| if (REG_NOTES (insn)) |
| REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn)); |
| } |
| PATTERN (insn) = new_body; |
| old_set = single_set (insn); |
| |
| /* First see if this insn remains valid when we make the |
| change. If not, try to replace the whole pattern with |
| a simple set (this may help if the original insn was a |
| PARALLEL that was only recognized as single_set due to |
| REG_UNUSED notes). If this isn't valid either, keep |
| the INSN_CODE the same and let reload fix it up. */ |
| if (!validate_change (insn, &SET_SRC (old_set), new_src, 0)) |
| { |
| rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src); |
| |
| if (!validate_change (insn, &PATTERN (insn), new_pat, 0)) |
| SET_SRC (old_set) = new_src; |
| } |
| } |
| else |
| break; |
| |
| val = 1; |
| /* This can't have an effect on elimination offsets, so skip right |
| to the end. */ |
| goto done; |
| } |
| } |
| |
| /* Determine the effects of this insn on elimination offsets. */ |
| elimination_effects (old_body, VOIDmode); |
| |
| /* Eliminate all eliminable registers occurring in operands that |
| can be handled by reload. */ |
| extract_insn (insn); |
| for (i = 0; i < recog_data.n_operands; i++) |
| { |
| orig_operand[i] = recog_data.operand[i]; |
| substed_operand[i] = recog_data.operand[i]; |
| |
| /* For an asm statement, every operand is eliminable. */ |
| if (insn_is_asm || insn_data[icode].operand[i].eliminable) |
| { |
| bool is_set_src, in_plus; |
| |
| /* Check for setting a register that we know about. */ |
| if (recog_data.operand_type[i] != OP_IN |
| && REG_P (orig_operand[i])) |
| { |
| /* If we are assigning to a register that can be eliminated, it |
| must be as part of a PARALLEL, since the code above handles |
| single SETs. We must indicate that we can no longer |
| eliminate this reg. */ |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; |
| ep++) |
| if (ep->from_rtx == orig_operand[i]) |
| ep->can_eliminate = 0; |
| } |
| |
| /* Companion to the above plus substitution, we can allow |
| invariants as the source of a plain move. */ |
| is_set_src = false; |
| if (old_set |
| && recog_data.operand_loc[i] == &SET_SRC (old_set)) |
| is_set_src = true; |
| in_plus = false; |
| if (plus_src |
| && (recog_data.operand_loc[i] == &XEXP (plus_src, 0) |
| || recog_data.operand_loc[i] == &XEXP (plus_src, 1))) |
| in_plus = true; |
| |
| substed_operand[i] |
| = eliminate_regs_1 (recog_data.operand[i], VOIDmode, |
| replace ? insn : NULL_RTX, |
| is_set_src || in_plus, false); |
| if (substed_operand[i] != orig_operand[i]) |
| val = 1; |
| /* Terminate the search in check_eliminable_occurrences at |
| this point. */ |
| *recog_data.operand_loc[i] = 0; |
| |
| /* If an output operand changed from a REG to a MEM and INSN is an |
| insn, write a CLOBBER insn. */ |
| if (recog_data.operand_type[i] != OP_IN |
| && REG_P (orig_operand[i]) |
| && MEM_P (substed_operand[i]) |
| && replace) |
| emit_insn_after (gen_clobber (orig_operand[i]), insn); |
| } |
| } |
| |
| for (i = 0; i < recog_data.n_dups; i++) |
| *recog_data.dup_loc[i] |
| = *recog_data.operand_loc[(int) recog_data.dup_num[i]]; |
| |
| /* If any eliminable remain, they aren't eliminable anymore. */ |
| check_eliminable_occurrences (old_body); |
| |
| /* Substitute the operands; the new values are in the substed_operand |
| array. */ |
| for (i = 0; i < recog_data.n_operands; i++) |
| *recog_data.operand_loc[i] = substed_operand[i]; |
| for (i = 0; i < recog_data.n_dups; i++) |
| *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]]; |
| |
| /* If we are replacing a body that was a (set X (plus Y Z)), try to |
| re-recognize the insn. We do this in case we had a simple addition |
| but now can do this as a load-address. This saves an insn in this |
| common case. |
| If re-recognition fails, the old insn code number will still be used, |
| and some register operands may have changed into PLUS expressions. |
| These will be handled by find_reloads by loading them into a register |
| again. */ |
| |
| if (val) |
| { |
| /* If we aren't replacing things permanently and we changed something, |
| make another copy to ensure that all the RTL is new. Otherwise |
| things can go wrong if find_reload swaps commutative operands |
| and one is inside RTL that has been copied while the other is not. */ |
| new_body = old_body; |
| if (! replace) |
| { |
| new_body = copy_insn (old_body); |
| if (REG_NOTES (insn)) |
| REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn)); |
| } |
| PATTERN (insn) = new_body; |
| |
| /* If we had a move insn but now we don't, rerecognize it. This will |
| cause spurious re-recognition if the old move had a PARALLEL since |
| the new one still will, but we can't call single_set without |
| having put NEW_BODY into the insn and the re-recognition won't |
| hurt in this rare case. */ |
| /* ??? Why this huge if statement - why don't we just rerecognize the |
| thing always? */ |
| if (! insn_is_asm |
| && old_set != 0 |
| && ((REG_P (SET_SRC (old_set)) |
| && (GET_CODE (new_body) != SET |
| || !REG_P (SET_SRC (new_body)))) |
| /* If this was a load from or store to memory, compare |
| the MEM in recog_data.operand to the one in the insn. |
| If they are not equal, then rerecognize the insn. */ |
| || (old_set != 0 |
| && ((MEM_P (SET_SRC (old_set)) |
| && SET_SRC (old_set) != recog_data.operand[1]) |
| || (MEM_P (SET_DEST (old_set)) |
| && SET_DEST (old_set) != recog_data.operand[0]))) |
| /* If this was an add insn before, rerecognize. */ |
| || GET_CODE (SET_SRC (old_set)) == PLUS)) |
| { |
| int new_icode = recog (PATTERN (insn), insn, 0); |
| if (new_icode >= 0) |
| INSN_CODE (insn) = new_icode; |
| } |
| } |
| |
| /* Restore the old body. If there were any changes to it, we made a copy |
| of it while the changes were still in place, so we'll correctly return |
| a modified insn below. */ |
| if (! replace) |
| { |
| /* Restore the old body. */ |
| for (i = 0; i < recog_data.n_operands; i++) |
| /* Restoring a top-level match_parallel would clobber the new_body |
| we installed in the insn. */ |
| if (recog_data.operand_loc[i] != &PATTERN (insn)) |
| *recog_data.operand_loc[i] = orig_operand[i]; |
| for (i = 0; i < recog_data.n_dups; i++) |
| *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]]; |
| } |
| |
| /* Update all elimination pairs to reflect the status after the current |
| insn. The changes we make were determined by the earlier call to |
| elimination_effects. |
| |
| We also detect cases where register elimination cannot be done, |
| namely, if a register would be both changed and referenced outside a MEM |
| in the resulting insn since such an insn is often undefined and, even if |
| not, we cannot know what meaning will be given to it. Note that it is |
| valid to have a register used in an address in an insn that changes it |
| (presumably with a pre- or post-increment or decrement). |
| |
| If anything changes, return nonzero. */ |
| |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| { |
| if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem) |
| ep->can_eliminate = 0; |
| |
| ep->ref_outside_mem = 0; |
| |
| if (maybe_ne (ep->previous_offset, ep->offset)) |
| val = 1; |
| } |
| |
| done: |
| /* If we changed something, perform elimination in REG_NOTES. This is |
| needed even when REPLACE is zero because a REG_DEAD note might refer |
| to a register that we eliminate and could cause a different number |
| of spill registers to be needed in the final reload pass than in |
| the pre-passes. */ |
| if (val && REG_NOTES (insn) != 0) |
| REG_NOTES (insn) |
| = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true, |
| false); |
| |
| return val; |
| } |
| |
| /* Like eliminate_regs_in_insn, but only estimate costs for the use of the |
| register allocator. INSN is the instruction we need to examine, we perform |
| eliminations in its operands and record cases where eliminating a reg with |
| an invariant equivalence would add extra cost. */ |
| |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic warning "-Wmaybe-uninitialized" |
| static void |
| elimination_costs_in_insn (rtx_insn *insn) |
| { |
| int icode = recog_memoized (insn); |
| rtx old_body = PATTERN (insn); |
| int insn_is_asm = asm_noperands (old_body) >= 0; |
| rtx old_set = single_set (insn); |
| int i; |
| rtx orig_operand[MAX_RECOG_OPERANDS]; |
| rtx orig_dup[MAX_RECOG_OPERANDS]; |
| struct elim_table *ep; |
| rtx plus_src, plus_cst_src; |
| bool sets_reg_p; |
| |
| if (! insn_is_asm && icode < 0) |
| { |
| gcc_assert (DEBUG_INSN_P (insn) |
| || GET_CODE (PATTERN (insn)) == USE |
| || GET_CODE (PATTERN (insn)) == CLOBBER |
| || GET_CODE (PATTERN (insn)) == ASM_INPUT); |
| return; |
| } |
| |
| if (old_set != 0 && REG_P (SET_DEST (old_set)) |
| && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER) |
| { |
| /* Check for setting an eliminable register. */ |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate) |
| return; |
| } |
| |
| /* We allow one special case which happens to work on all machines we |
| currently support: a single set with the source or a REG_EQUAL |
| note being a PLUS of an eliminable register and a constant. */ |
| plus_src = plus_cst_src = 0; |
| sets_reg_p = false; |
| if (old_set && REG_P (SET_DEST (old_set))) |
| { |
| sets_reg_p = true; |
| if (GET_CODE (SET_SRC (old_set)) == PLUS) |
| plus_src = SET_SRC (old_set); |
| /* First see if the source is of the form (plus (...) CST). */ |
| if (plus_src |
| && CONST_INT_P (XEXP (plus_src, 1))) |
| plus_cst_src = plus_src; |
| else if (REG_P (SET_SRC (old_set)) |
| || plus_src) |
| { |
| /* Otherwise, see if we have a REG_EQUAL note of the form |
| (plus (...) CST). */ |
| rtx links; |
| for (links = REG_NOTES (insn); links; links = XEXP (links, 1)) |
| { |
| if ((REG_NOTE_KIND (links) == REG_EQUAL |
| || REG_NOTE_KIND (links) == REG_EQUIV) |
| && GET_CODE (XEXP (links, 0)) == PLUS |
| && CONST_INT_P (XEXP (XEXP (links, 0), 1))) |
| { |
| plus_cst_src = XEXP (links, 0); |
| break; |
| } |
| } |
| } |
| } |
| |
| /* Determine the effects of this insn on elimination offsets. */ |
| elimination_effects (old_body, VOIDmode); |
| |
| /* Eliminate all eliminable registers occurring in operands that |
| can be handled by reload. */ |
| extract_insn (insn); |
| int n_dups = recog_data.n_dups; |
| for (i = 0; i < n_dups; i++) |
| orig_dup[i] = *recog_data.dup_loc[i]; |
| |
| int n_operands = recog_data.n_operands; |
| for (i = 0; i < n_operands; i++) |
| { |
| orig_operand[i] = recog_data.operand[i]; |
| |
| /* For an asm statement, every operand is eliminable. */ |
| if (insn_is_asm || insn_data[icode].operand[i].eliminable) |
| { |
| bool is_set_src, in_plus; |
| |
| /* Check for setting a register that we know about. */ |
| if (recog_data.operand_type[i] != OP_IN |
| && REG_P (orig_operand[i])) |
| { |
| /* If we are assigning to a register that can be eliminated, it |
| must be as part of a PARALLEL, since the code above handles |
| single SETs. We must indicate that we can no longer |
| eliminate this reg. */ |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; |
| ep++) |
| if (ep->from_rtx == orig_operand[i]) |
| ep->can_eliminate = 0; |
| } |
| |
| /* Companion to the above plus substitution, we can allow |
| invariants as the source of a plain move. */ |
| is_set_src = false; |
| if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set)) |
| is_set_src = true; |
| if (is_set_src && !sets_reg_p) |
| note_reg_elim_costly (SET_SRC (old_set), insn); |
| in_plus = false; |
| if (plus_src && sets_reg_p |
| && (recog_data.operand_loc[i] == &XEXP (plus_src, 0) |
| || recog_data.operand_loc[i] == &XEXP (plus_src, 1))) |
| in_plus = true; |
| |
| eliminate_regs_1 (recog_data.operand[i], VOIDmode, |
| NULL_RTX, |
| is_set_src || in_plus, true); |
| /* Terminate the search in check_eliminable_occurrences at |
| this point. */ |
| *recog_data.operand_loc[i] = 0; |
| } |
| } |
| |
| for (i = 0; i < n_dups; i++) |
| *recog_data.dup_loc[i] |
| = *recog_data.operand_loc[(int) recog_data.dup_num[i]]; |
| |
| /* If any eliminable remain, they aren't eliminable anymore. */ |
| check_eliminable_occurrences (old_body); |
| |
| /* Restore the old body. */ |
| for (i = 0; i < n_operands; i++) |
| *recog_data.operand_loc[i] = orig_operand[i]; |
| for (i = 0; i < n_dups; i++) |
| *recog_data.dup_loc[i] = orig_dup[i]; |
| |
| /* Update all elimination pairs to reflect the status after the current |
| insn. The changes we make were determined by the earlier call to |
| elimination_effects. */ |
| |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| { |
| if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem) |
| ep->can_eliminate = 0; |
| |
| ep->ref_outside_mem = 0; |
| } |
| |
| return; |
| } |
| #pragma GCC diagnostic pop |
| |
| /* Loop through all elimination pairs. |
| Recalculate the number not at initial offset. |
| |
| Compute the maximum offset (minimum offset if the stack does not |
| grow downward) for each elimination pair. */ |
| |
| static void |
| update_eliminable_offsets (void) |
| { |
| struct elim_table *ep; |
| |
| num_not_at_initial_offset = 0; |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| { |
| ep->previous_offset = ep->offset; |
| if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset)) |
| num_not_at_initial_offset++; |
| } |
| } |
| |
| /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register |
| replacement we currently believe is valid, mark it as not eliminable if X |
| modifies DEST in any way other than by adding a constant integer to it. |
| |
| If DEST is the frame pointer, we do nothing because we assume that |
| all assignments to the hard frame pointer are nonlocal gotos and are being |
| done at a time when they are valid and do not disturb anything else. |
| Some machines want to eliminate a fake argument pointer with either the |
| frame or stack pointer. Assignments to the hard frame pointer must not |
| prevent this elimination. |
| |
| Called via note_stores from reload before starting its passes to scan |
| the insns of the function. */ |
| |
| static void |
| mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED) |
| { |
| unsigned int i; |
| |
| /* A SUBREG of a hard register here is just changing its mode. We should |
| not see a SUBREG of an eliminable hard register, but check just in |
| case. */ |
| if (GET_CODE (dest) == SUBREG) |
| dest = SUBREG_REG (dest); |
| |
| if (dest == hard_frame_pointer_rtx) |
| return; |
| |
| for (i = 0; i < NUM_ELIMINABLE_REGS; i++) |
| if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx |
| && (GET_CODE (x) != SET |
| || GET_CODE (SET_SRC (x)) != PLUS |
| || XEXP (SET_SRC (x), 0) != dest |
| || !CONST_INT_P (XEXP (SET_SRC (x), 1)))) |
| { |
| reg_eliminate[i].can_eliminate_previous |
| = reg_eliminate[i].can_eliminate = 0; |
| num_eliminable--; |
| } |
| } |
| |
| /* Verify that the initial elimination offsets did not change since the |
| last call to set_initial_elim_offsets. This is used to catch cases |
| where something illegal happened during reload_as_needed that could |
| cause incorrect code to be generated if we did not check for it. */ |
| |
| static bool |
| verify_initial_elim_offsets (void) |
| { |
| poly_int64 t; |
| struct elim_table *ep; |
| |
| if (!num_eliminable) |
| return true; |
| |
| targetm.compute_frame_layout (); |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| { |
| INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t); |
| if (maybe_ne (t, ep->initial_offset)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Reset all offsets on eliminable registers to their initial values. */ |
| |
| static void |
| set_initial_elim_offsets (void) |
| { |
| struct elim_table *ep = reg_eliminate; |
| |
| targetm.compute_frame_layout (); |
| for (; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| { |
| INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset); |
| ep->previous_offset = ep->offset = ep->initial_offset; |
| } |
| |
| num_not_at_initial_offset = 0; |
| } |
| |
| /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */ |
| |
| static void |
| set_initial_eh_label_offset (rtx label) |
| { |
| set_label_offsets (label, NULL, 1); |
| } |
| |
| /* Initialize the known label offsets. |
| Set a known offset for each forced label to be at the initial offset |
| of each elimination. We do this because we assume that all |
| computed jumps occur from a location where each elimination is |
| at its initial offset. |
| For all other labels, show that we don't know the offsets. */ |
| |
| static void |
| set_initial_label_offsets (void) |
| { |
| memset (offsets_known_at, 0, num_labels); |
| |
| unsigned int i; |
| rtx_insn *insn; |
| FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn) |
| set_label_offsets (insn, NULL, 1); |
| |
| for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ()) |
| if (x->insn ()) |
| set_label_offsets (x->insn (), NULL, 1); |
| |
| for_each_eh_label (set_initial_eh_label_offset); |
| } |
| |
| /* Set all elimination offsets to the known values for the code label given |
| by INSN. */ |
| |
| static void |
| set_offsets_for_label (rtx_insn *insn) |
| { |
| unsigned int i; |
| int label_nr = CODE_LABEL_NUMBER (insn); |
| struct elim_table *ep; |
| |
| num_not_at_initial_offset = 0; |
| for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++) |
| { |
| ep->offset = ep->previous_offset |
| = offsets_at[label_nr - first_label_num][i]; |
| if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset)) |
| num_not_at_initial_offset++; |
| } |
| } |
| |
| /* See if anything that happened changes which eliminations are valid. |
| For example, on the SPARC, whether or not the frame pointer can |
| be eliminated can depend on what registers have been used. We need |
| not check some conditions again (such as flag_omit_frame_pointer) |
| since they can't have changed. */ |
| |
| static void |
| update_eliminables (HARD_REG_SET *pset) |
| { |
| int previous_frame_pointer_needed = frame_pointer_needed; |
| struct elim_table *ep; |
| |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| if ((ep->from == HARD_FRAME_POINTER_REGNUM |
| && targetm.frame_pointer_required ()) |
| || ! targetm.can_eliminate (ep->from, ep->to) |
| ) |
| ep->can_eliminate = 0; |
| |
| /* Look for the case where we have discovered that we can't replace |
| register A with register B and that means that we will now be |
| trying to replace register A with register C. This means we can |
| no longer replace register C with register B and we need to disable |
| such an elimination, if it exists. This occurs often with A == ap, |
| B == sp, and C == fp. */ |
| |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| { |
| struct elim_table *op; |
| int new_to = -1; |
| |
| if (! ep->can_eliminate && ep->can_eliminate_previous) |
| { |
| /* Find the current elimination for ep->from, if there is a |
| new one. */ |
| for (op = reg_eliminate; |
| op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++) |
| if (op->from == ep->from && op->can_eliminate) |
| { |
| new_to = op->to; |
| break; |
| } |
| |
| /* See if there is an elimination of NEW_TO -> EP->TO. If so, |
| disable it. */ |
| for (op = reg_eliminate; |
| op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++) |
| if (op->from == new_to && op->to == ep->to) |
| op->can_eliminate = 0; |
| } |
| } |
| |
| /* See if any registers that we thought we could eliminate the previous |
| time are no longer eliminable. If so, something has changed and we |
| must spill the register. Also, recompute the number of eliminable |
| registers and see if the frame pointer is needed; it is if there is |
| no elimination of the frame pointer that we can perform. */ |
| |
| frame_pointer_needed = 1; |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| { |
| if (ep->can_eliminate |
| && ep->from == FRAME_POINTER_REGNUM |
| && ep->to != HARD_FRAME_POINTER_REGNUM |
| && (! SUPPORTS_STACK_ALIGNMENT |
| || ! crtl->stack_realign_needed)) |
| frame_pointer_needed = 0; |
| |
| if (! ep->can_eliminate && ep->can_eliminate_previous) |
| { |
| ep->can_eliminate_previous = 0; |
| SET_HARD_REG_BIT (*pset, ep->from); |
| num_eliminable--; |
| } |
| } |
| |
| /* If we didn't need a frame pointer last time, but we do now, spill |
| the hard frame pointer. */ |
| if (frame_pointer_needed && ! previous_frame_pointer_needed) |
| SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM); |
| } |
| |
| /* Call update_eliminables an spill any registers we can't eliminate anymore. |
| Return true iff a register was spilled. */ |
| |
| static bool |
| update_eliminables_and_spill (void) |
| { |
| int i; |
| bool did_spill = false; |
| HARD_REG_SET to_spill; |
| CLEAR_HARD_REG_SET (to_spill); |
| update_eliminables (&to_spill); |
| used_spill_regs &= ~to_spill; |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (TEST_HARD_REG_BIT (to_spill, i)) |
| { |
| spill_hard_reg (i, 1); |
| did_spill = true; |
| |
| /* Regardless of the state of spills, if we previously had |
| a register that we thought we could eliminate, but now |
| cannot eliminate, we must run another pass. |
| |
| Consider pseudos which have an entry in reg_equiv_* which |
| reference an eliminable register. We must make another pass |
| to update reg_equiv_* so that we do not substitute in the |
| old value from when we thought the elimination could be |
| performed. */ |
| } |
| return did_spill; |
| } |
| |
| /* Return true if X is used as the target register of an elimination. */ |
| |
| bool |
| elimination_target_reg_p (rtx x) |
| { |
| struct elim_table *ep; |
| |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| if (ep->to_rtx == x && ep->can_eliminate) |
| return true; |
| |
| return false; |
| } |
| |
| /* Initialize the table of registers to eliminate. |
| Pre-condition: global flag frame_pointer_needed has been set before |
| calling this function. */ |
| |
| static void |
| init_elim_table (void) |
| { |
| struct elim_table *ep; |
| const struct elim_table_1 *ep1; |
| |
| if (!reg_eliminate) |
| reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS); |
| |
| num_eliminable = 0; |
| |
| for (ep = reg_eliminate, ep1 = reg_eliminate_1; |
| ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++) |
| { |
| ep->from = ep1->from; |
| ep->to = ep1->to; |
| ep->can_eliminate = ep->can_eliminate_previous |
| = (targetm.can_eliminate (ep->from, ep->to) |
| && ! (ep->to == STACK_POINTER_REGNUM |
| && frame_pointer_needed |
| && (! SUPPORTS_STACK_ALIGNMENT |
| || ! stack_realign_fp))); |
| } |
| |
| /* Count the number of eliminable registers and build the FROM and TO |
| REG rtx's. Note that code in gen_rtx_REG will cause, e.g., |
| gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx. |
| We depend on this. */ |
| for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) |
| { |
| num_eliminable += ep->can_eliminate; |
| ep->from_rtx = gen_rtx_REG (Pmode, ep->from); |
| ep->to_rtx = gen_rtx_REG (Pmode, ep->to); |
| } |
| } |
| |
| /* Find all the pseudo registers that didn't get hard regs |
| but do have known equivalent constants or memory slots. |
| These include parameters (known equivalent to parameter slots) |
| and cse'd or loop-moved constant memory addresses. |
| |
| Record constant equivalents in reg_equiv_constant |
| so they will be substituted by find_reloads. |
| Record memory equivalents in reg_mem_equiv so they can |
| be substituted eventually by altering the REG-rtx's. */ |
| |
| static void |
| init_eliminable_invariants (rtx_insn *first, bool do_subregs) |
| { |
| int i; |
| rtx_insn *insn; |
| |
| grow_reg_equivs (); |
| if (do_subregs) |
| reg_max_ref_mode = XCNEWVEC (machine_mode, max_regno); |
| else |
| reg_max_ref_mode = NULL; |
| |
| num_eliminable_invariants = 0; |
| |
| first_label_num = get_first_label_num (); |
| num_labels = max_label_num () - first_label_num; |
| |
| /* Allocate the tables used to store offset information at labels. */ |
| offsets_known_at = XNEWVEC (char, num_labels); |
| offsets_at = (poly_int64 (*)[NUM_ELIMINABLE_REGS]) |
| xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (poly_int64)); |
| |
| /* Look for REG_EQUIV notes; record what each pseudo is equivalent |
| to. If DO_SUBREGS is true, also find all paradoxical subregs and |
| find largest such for each pseudo. FIRST is the head of the insn |
| list. */ |
| |
| for (insn = first; insn; insn = NEXT_INSN (insn)) |
| { |
| rtx set = single_set (insn); |
| |
| /* We may introduce USEs that we want to remove at the end, so |
| we'll mark them with QImode. Make sure there are no |
| previously-marked insns left by say regmove. */ |
| if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE |
| && GET_MODE (insn) != VOIDmode) |
| PUT_MODE (insn, VOIDmode); |
| |
| if (do_subregs && NONDEBUG_INSN_P (insn)) |
| scan_paradoxical_subregs (PATTERN (insn)); |
| |
| if (set != 0 && REG_P (SET_DEST (set))) |
| { |
| rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX); |
| rtx x; |
| |
| if (! note) |
| continue; |
| |
| i = REGNO (SET_DEST (set)); |
| x = XEXP (note, 0); |
| |
| if (i <= LAST_VIRTUAL_REGISTER) |
| continue; |
| |
| /* If flag_pic and we have constant, verify it's legitimate. */ |
| if (!CONSTANT_P (x) |
| || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x)) |
| { |
| /* It can happen that a REG_EQUIV note contains a MEM |
| that is not a legitimate memory operand. As later |
| stages of reload assume that all addresses found |
| in the reg_equiv_* arrays were originally legitimate, |
| we ignore such REG_EQUIV notes. */ |
| if (memory_operand (x, VOIDmode)) |
| { |
| /* Always unshare the equivalence, so we can |
| substitute into this insn without touching the |
| equivalence. */ |
| reg_equiv_memory_loc (i) = copy_rtx (x); |
| } |
| else if (function_invariant_p (x)) |
| { |
| machine_mode mode; |
| |
| mode = GET_MODE (SET_DEST (set)); |
| if (GET_CODE (x) == PLUS) |
| { |
| /* This is PLUS of frame pointer and a constant, |
| and might be shared. Unshare it. */ |
| reg_equiv_invariant (i) = copy_rtx (x); |
| num_eliminable_invariants++; |
| } |
| else if (x == frame_pointer_rtx || x == arg_pointer_rtx) |
| { |
| reg_equiv_invariant (i) = x; |
| num_eliminable_invariants++; |
| } |
| else if (targetm.legitimate_constant_p (mode, x)) |
| reg_equiv_constant (i) = x; |
| else |
| { |
| reg_equiv_memory_loc (i) = force_const_mem (mode, x); |
| if (! reg_equiv_memory_loc (i)) |
| reg_equiv_init (i) = NULL; |
| } |
| } |
| else |
| { |
| reg_equiv_init (i) = NULL; |
| continue; |
| } |
| } |
| else |
| reg_equiv_init (i) = NULL; |
| } |
| } |
| |
| if (dump_file) |
| for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) |
| if (reg_equiv_init (i)) |
| { |
| fprintf (dump_file, "init_insns for %u: ", i); |
| print_inline_rtx (dump_file, reg_equiv_init (i), 20); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| |
| /* Indicate that we no longer have known memory locations or constants. |
| Free all data involved in tracking these. */ |
| |
| static void |
| free_reg_equiv (void) |
| { |
| int i; |
| |
| free (offsets_known_at); |
| free (offsets_at); |
| offsets_at = 0; |
| offsets_known_at = 0; |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (reg_equiv_alt_mem_list (i)) |
| free_EXPR_LIST_list (®_equiv_alt_mem_list (i)); |
| vec_free (reg_equivs); |
| } |
| |
| /* Kick all pseudos out of hard register REGNO. |
| |
| If CANT_ELIMINATE is nonzero, it means that we are doing this spill |
| because we found we can't eliminate some register. In the case, no pseudos |
| are allowed to be in the register, even if they are only in a block that |
| doesn't require spill registers, unlike the case when we are spilling this |
| hard reg to produce another spill register. |
| |
| Return nonzero if any pseudos needed to be kicked out. */ |
| |
| static void |
| spill_hard_reg (unsigned int regno, int cant_eliminate) |
| { |
| int i; |
| |
| if (cant_eliminate) |
| { |
| SET_HARD_REG_BIT (bad_spill_regs_global, regno); |
| df_set_regs_ever_live (regno, true); |
| } |
| |
| /* Spill every pseudo reg that was allocated to this reg |
| or to something that overlaps this reg. */ |
| |
| for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) |
| if (reg_renumber[i] >= 0 |
| && (unsigned int) reg_renumber[i] <= regno |
| && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno) |
| SET_REGNO_REG_SET (&spilled_pseudos, i); |
| } |
| |
| /* After spill_hard_reg was called and/or find_reload_regs was run for all |
| insns that need reloads, this function is used to actually spill pseudo |
| registers and try to reallocate them. It also sets up the spill_regs |
| array for use by choose_reload_regs. |
| |
| GLOBAL nonzero means we should attempt to reallocate any pseudo registers |
| that we displace from hard registers. */ |
| |
| static int |
| finish_spills (int global) |
| { |
| class insn_chain *chain; |
| int something_changed = 0; |
| unsigned i; |
| reg_set_iterator rsi; |
| |
| /* Build the spill_regs array for the function. */ |
| /* If there are some registers still to eliminate and one of the spill regs |
| wasn't ever used before, additional stack space may have to be |
| allocated to store this register. Thus, we may have changed the offset |
| between the stack and frame pointers, so mark that something has changed. |
| |
| One might think that we need only set VAL to 1 if this is a call-used |
| register. However, the set of registers that must be saved by the |
| prologue is not identical to the call-used set. For example, the |
| register used by the call insn for the return PC is a call-used register, |
| but must be saved by the prologue. */ |
| |
| n_spills = 0; |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (TEST_HARD_REG_BIT (used_spill_regs, i)) |
| { |
| spill_reg_order[i] = n_spills; |
| spill_regs[n_spills++] = i; |
| if (num_eliminable && ! df_regs_ever_live_p (i)) |
| something_changed = 1; |
| df_set_regs_ever_live (i, true); |
| } |
| else |
| spill_reg_order[i] = -1; |
| |
| EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi) |
| if (reg_renumber[i] >= 0) |
| { |
| SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]); |
| /* Mark it as no longer having a hard register home. */ |
| reg_renumber[i] = -1; |
| if (ira_conflicts_p) |
| /* Inform IRA about the change. */ |
| ira_mark_allocation_change (i); |
| /* We will need to scan everything again. */ |
| something_changed = 1; |
| } |
| |
| /* Retry global register allocation if possible. */ |
| if (global && ira_conflicts_p) |
| { |
| unsigned int n; |
| |
| memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET)); |
| /* For every insn that needs reloads, set the registers used as spill |
| regs in pseudo_forbidden_regs for every pseudo live across the |
| insn. */ |
| for (chain = insns_need_reload; chain; chain = chain->next_need_reload) |
| { |
| EXECUTE_IF_SET_IN_REG_SET |
| (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi) |
| { |
| pseudo_forbidden_regs[i] |= chain->used_spill_regs; |
| } |
| EXECUTE_IF_SET_IN_REG_SET |
| (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi) |
| { |
| pseudo_forbidden_regs[i] |= chain->used_spill_regs; |
| } |
| } |
| |
| /* Retry allocating the pseudos spilled in IRA and the |
| reload. For each reg, merge the various reg sets that |
| indicate which hard regs can't be used, and call |
| ira_reassign_pseudos. */ |
| for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++) |
| if (reg_old_renumber[i] != reg_renumber[i]) |
| { |
| if (reg_renumber[i] < 0) |
| temp_pseudo_reg_arr[n++] = i; |
| else |
| CLEAR_REGNO_REG_SET (&spilled_pseudos, i); |
| } |
| if (ira_reassign_pseudos (temp_pseudo_reg_arr, n, |
| bad_spill_regs_global, |
| pseudo_forbidden_regs, pseudo_previous_regs, |
| &spilled_pseudos)) |
| something_changed = 1; |
| } |
| /* Fix up the register information in the insn chain. |
| This involves deleting those of the spilled pseudos which did not get |
| a new hard register home from the live_{before,after} sets. */ |
| for (chain = reload_insn_chain; chain; chain = chain->next) |
| { |
| HARD_REG_SET used_by_pseudos; |
| HARD_REG_SET used_by_pseudos2; |
| |
| if (! ira_conflicts_p) |
| { |
| /* Don't do it for IRA because IRA and the reload still can |
| assign hard registers to the spilled pseudos on next |
| reload iterations. */ |
| AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos); |
| AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos); |
| } |
| /* Mark any unallocated hard regs as available for spills. That |
| makes inheritance work somewhat better. */ |
| if (chain->need_reload) |
| { |
| REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout); |
| REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set); |
| used_by_pseudos |= used_by_pseudos2; |
| |
| compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout); |
| compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set); |
| /* Value of chain->used_spill_regs from previous iteration |
| may be not included in the value calculated here because |
| of possible removing caller-saves insns (see function |
| delete_caller_save_insns. */ |
| chain->used_spill_regs = ~used_by_pseudos & used_spill_regs; |
| } |
| } |
| |
| CLEAR_REG_SET (&changed_allocation_pseudos); |
| /* Let alter_reg modify the reg rtx's for the modified pseudos. */ |
| for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++) |
| { |
| int regno = reg_renumber[i]; |
| if (reg_old_renumber[i] == regno) |
| continue; |
| |
| SET_REGNO_REG_SET (&changed_allocation_pseudos, i); |
| |
| alter_reg (i, reg_old_renumber[i], false); |
| reg_old_renumber[i] = regno; |
| if (dump_file) |
| { |
| if (regno == -1) |
| fprintf (dump_file, " Register %d now on stack.\n\n", i); |
| else |
| fprintf (dump_file, " Register %d now in %d.\n\n", |
| i, reg_renumber[i]); |
| } |
| } |
| |
| return something_changed; |
| } |
| |
| /* Find all paradoxical subregs within X and update reg_max_ref_mode. */ |
| |
| static void |
| scan_paradoxical_subregs (rtx x) |
| { |
| int i; |
| const char *fmt; |
| enum rtx_code code = GET_CODE (x); |
| |
| switch (code) |
| { |
| case REG: |
| case CONST: |
| case SYMBOL_REF: |
| case LABEL_REF: |
| CASE_CONST_ANY: |
| case PC: |
| case USE: |
| case CLOBBER: |
| return; |
| |
| case SUBREG: |
| if (REG_P (SUBREG_REG (x))) |
| { |
| unsigned int regno = REGNO (SUBREG_REG (x)); |
| if (partial_subreg_p (reg_max_ref_mode[regno], GET_MODE (x))) |
| { |
| reg_max_ref_mode[regno] = GET_MODE (x); |
| mark_home_live_1 (regno, GET_MODE (x)); |
| } |
| } |
| return; |
| |
| default: |
| break; |
| } |
| |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e') |
| scan_paradoxical_subregs (XEXP (x, i)); |
| else if (fmt[i] == 'E') |
| { |
| int j; |
| for (j = XVECLEN (x, i) - 1; j >= 0; j--) |
| scan_paradoxical_subregs (XVECEXP (x, i, j)); |
| } |
| } |
| } |
| |
| /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload. |
| If *OP_PTR is a paradoxical subreg, try to remove that subreg |
| and apply the corresponding narrowing subreg to *OTHER_PTR. |
| Return true if the operands were changed, false otherwise. */ |
| |
| static bool |
| strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr) |
| { |
| rtx op, inner, other, tem; |
| |
| op = *op_ptr; |
| if (!paradoxical_subreg_p (op)) |
| return false; |
| inner = SUBREG_REG (op); |
| |
| other = *other_ptr; |
| tem = gen_lowpart_common (GET_MODE (inner), other); |
| if (!tem) |
| return false; |
| |
| /* If the lowpart operation turned a hard register into a subreg, |
| rather than simplifying it to another hard register, then the |
| mode change cannot be properly represented. For example, OTHER |
| might be valid in its current mode, but not in the new one. */ |
| if (GET_CODE (tem) == SUBREG |
| && REG_P (other) |
| && HARD_REGISTER_P (other)) |
| return false; |
| |
| *op_ptr = inner; |
| *other_ptr = tem; |
| return true; |
| } |
| |
| /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note, |
| examine all of the reload insns between PREV and NEXT exclusive, and |
| annotate all that may trap. */ |
| |
| static void |
| fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next) |
| { |
| rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX); |
| if (note == NULL) |
| return; |
| if (!insn_could_throw_p (insn)) |
| remove_note (insn, note); |
| copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next); |
| } |
| |
| /* Reload pseudo-registers into hard regs around each insn as needed. |
| Additional register load insns are output before the insn that needs it |
| and perhaps store insns after insns that modify the reloaded pseudo reg. |
| |
| reg_last_reload_reg and reg_reloaded_contents keep track of |
| which registers are already available in reload registers. |
| We update these for the reloads that we perform, |
| as the insns are scanned. */ |
| |
| static void |
| reload_as_needed (int live_known) |
| { |
| class insn_chain *chain; |
| #if AUTO_INC_DEC |
| int i; |
| #endif |
| rtx_note *marker; |
| |
| memset (spill_reg_rtx, 0, sizeof spill_reg_rtx); |
| memset (spill_reg_store, 0, sizeof spill_reg_store); |
| reg_last_reload_reg = XCNEWVEC (rtx, max_regno); |
| INIT_REG_SET (®_has_output_reload); |
| CLEAR_HARD_REG_SET (reg_reloaded_valid); |
| |
| set_initial_elim_offsets (); |
| |
| /* Generate a marker insn that we will move around. */ |
| marker = emit_note (NOTE_INSN_DELETED); |
| unlink_insn_chain (marker, marker); |
| |
| for (chain = reload_insn_chain; chain; chain = chain->next) |
| { |
| rtx_insn *prev = 0; |
| rtx_insn *insn = chain->insn; |
| rtx_insn *old_next = NEXT_INSN (insn); |
| #if AUTO_INC_DEC |
| rtx_insn *old_prev = PREV_INSN (insn); |
| #endif |
| |
| if (will_delete_init_insn_p (insn)) |
| continue; |
| |
| /* If we pass a label, copy the offsets from the label information |
| into the current offsets of each elimination. */ |
| if (LABEL_P (insn)) |
| set_offsets_for_label (insn); |
| |
| else if (INSN_P (insn)) |
| { |
| regset_head regs_to_forget; |
| INIT_REG_SET (®s_to_forget); |
| note_stores (insn, forget_old_reloads_1, ®s_to_forget); |
| |
| /* If this is a USE and CLOBBER of a MEM, ensure that any |
| references to eliminable registers have been removed. */ |
| |
| if ((GET_CODE (PATTERN (insn)) == USE |
| || GET_CODE (PATTERN (insn)) == CLOBBER) |
| && MEM_P (XEXP (PATTERN (insn), 0))) |
| XEXP (XEXP (PATTERN (insn), 0), 0) |
| = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0), |
| GET_MODE (XEXP (PATTERN (insn), 0)), |
| NULL_RTX); |
| |
| /* If we need to do register elimination processing, do so. |
| This might delete the insn, in which case we are done. */ |
| if ((num_eliminable || num_eliminable_invariants) && chain->need_elim) |
| { |
| eliminate_regs_in_insn (insn, 1); |
| if (NOTE_P (insn)) |
| { |
| update_eliminable_offsets (); |
| CLEAR_REG_SET (®s_to_forget); |
| continue; |
| } |
| } |
| |
| /* If need_elim is nonzero but need_reload is zero, one might think |
| that we could simply set n_reloads to 0. However, find_reloads |
| could have done some manipulation of the insn (such as swapping |
| commutative operands), and these manipulations are lost during |
| the first pass for every insn that needs register elimination. |
| So the actions of find_reloads must be redone here. */ |
| |
| if (! chain->need_elim && ! chain->need_reload |
| && ! chain->need_operand_change) |
| n_reloads = 0; |
| /* First find the pseudo regs that must be reloaded for this insn. |
| This info is returned in the tables reload_... (see reload.h). |
| Also modify the body of INSN by substituting RELOAD |
| rtx's for those pseudo regs. */ |
| else |
| { |
| CLEAR_REG_SET (®_has_output_reload); |
| CLEAR_HARD_REG_SET (reg_is_output_reload); |
| |
| find_reloads (insn, 1, spill_indirect_levels, live_known, |
| spill_reg_order); |
| } |
| |
| if (n_reloads > 0) |
| { |
| rtx_insn *next = NEXT_INSN (insn); |
| |
| /* ??? PREV can get deleted by reload inheritance. |
| Work around this by emitting a marker note. */ |
| prev = PREV_INSN (insn); |
| reorder_insns_nobb (marker, marker, prev); |
| |
| /* Now compute which reload regs to reload them into. Perhaps |
| reusing reload regs from previous insns, or else output |
| load insns to reload them. Maybe output store insns too. |
| Record the choices of reload reg in reload_reg_rtx. */ |
| choose_reload_regs (chain); |
| |
| /* Generate the insns to reload operands into or out of |
| their reload regs. */ |
| emit_reload_insns (chain); |
| |
| /* Substitute the chosen reload regs from reload_reg_rtx |
| into the insn's body (or perhaps into the bodies of other |
| load and store insn that we just made for reloading |
| and that we moved the structure into). */ |
| subst_reloads (insn); |
| |
| prev = PREV_INSN (marker); |
| unlink_insn_chain (marker, marker); |
| |
| /* Adjust the exception region notes for loads and stores. */ |
| if (cfun->can_throw_non_call_exceptions && !CALL_P (insn)) |
| fixup_eh_region_note (insn, prev, next); |
| |
| /* Adjust the location of REG_ARGS_SIZE. */ |
| rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX); |
| if (p) |
| { |
| remove_note (insn, p); |
| fixup_args_size_notes (prev, PREV_INSN (next), |
| get_args_size (p)); |
| } |
| |
| /* If this was an ASM, make sure that all the reload insns |
| we have generated are valid. If not, give an error |
| and delete them. */ |
| if (asm_noperands (PATTERN (insn)) >= 0) |
| for (rtx_insn *p = NEXT_INSN (prev); |
| p != next; |
| p = NEXT_INSN (p)) |
| if (p != insn && INSN_P (p) |
| && GET_CODE (PATTERN (p)) != USE |
| && (recog_memoized (p) < 0 |
| || (extract_insn (p), |
| !(constrain_operands (1, |
| get_enabled_alternatives (p)))))) |
| { |
| error_for_asm (insn, |
| "%<asm%> operand requires " |
| "impossible reload"); |
| delete_insn (p); |
| } |
| } |
| |
| if (num_eliminable && chain->need_elim) |
| update_eliminable_offsets (); |
| |
| /* Any previously reloaded spilled pseudo reg, stored in this insn, |
| is no longer validly lying around to save a future reload. |
| Note that this does not detect pseudos that were reloaded |
| for this insn in order to be stored in |
| (obeying register constraints). That is correct; such reload |
| registers ARE still valid. */ |
| forget_marked_reloads (®s_to_forget); |
| CLEAR_REG_SET (®s_to_forget); |
| |
| /* There may have been CLOBBER insns placed after INSN. So scan |
| between INSN and NEXT and use them to forget old reloads. */ |
| for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x)) |
| if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER) |
| note_stores (x, forget_old_reloads_1, NULL); |
| |
| #if AUTO_INC_DEC |
| /* Likewise for regs altered by auto-increment in this insn. |
| REG_INC notes have been changed by reloading: |
| find_reloads_address_1 records substitutions for them, |
| which have been performed by subst_reloads above. */ |
| for (i = n_reloads - 1; i >= 0; i--) |
| { |
| rtx in_reg = rld[i].in_reg; |
| if (in_reg) |
| { |
| enum rtx_code code = GET_CODE (in_reg); |
| /* PRE_INC / PRE_DEC will have the reload register ending up |
| with the same value as the stack slot, but that doesn't |
| hold true for POST_INC / POST_DEC. Either we have to |
| convert the memory access to a true POST_INC / POST_DEC, |
| or we can't use the reload register for inheritance. */ |
| if ((code == POST_INC || code == POST_DEC) |
| && TEST_HARD_REG_BIT (reg_reloaded_valid, |
| REGNO (rld[i].reg_rtx)) |
| /* Make sure it is the inc/dec pseudo, and not |
| some other (e.g. output operand) pseudo. */ |
| && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)] |
| == REGNO (XEXP (in_reg, 0)))) |
| |
| { |
| rtx reload_reg = rld[i].reg_rtx; |
| machine_mode mode = GET_MODE (reload_reg); |
| int n = 0; |
| rtx_insn *p; |
| |
| for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p)) |
| { |
| /* We really want to ignore REG_INC notes here, so |
| use PATTERN (p) as argument to reg_set_p . */ |
| if (reg_set_p (reload_reg, PATTERN (p))) |
| break; |
| n = count_occurrences (PATTERN (p), reload_reg, 0); |
| if (! n) |
| continue; |
| if (n == 1) |
| { |
| rtx replace_reg |
| = gen_rtx_fmt_e (code, mode, reload_reg); |
| |
| validate_replace_rtx_group (reload_reg, |
| replace_reg, p); |
| n = verify_changes (0); |
| |
| /* We must also verify that the constraints |
| are met after the replacement. Make sure |
| extract_insn is only called for an insn |
| where the replacements were found to be |
| valid so far. */ |
| if (n) |
| { |
| extract_insn (p); |
| n = constrain_operands (1, |
| get_enabled_alternatives (p)); |
| } |
| |
| /* If the constraints were not met, then |
| undo the replacement, else confirm it. */ |
| if (!n) |
| cancel_changes (0); |
| else |
| confirm_change_group (); |
| } |
| break; |
| } |
| if (n == 1) |
| { |
| add_reg_note (p, REG_INC, reload_reg); |
| /* Mark this as having an output reload so that the |
| REG_INC processing code below won't invalidate |
| the reload for inheritance. */ |
| SET_HARD_REG_BIT (reg_is_output_reload, |
| REGNO (reload_reg)); |
| SET_REGNO_REG_SET (®_has_output_reload, |
| REGNO (XEXP (in_reg, 0))); |
| } |
| else |
| forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX, |
| NULL); |
| } |
| else if ((code == PRE_INC || code == PRE_DEC) |
| && TEST_HARD_REG_BIT (reg_reloaded_valid, |
| REGNO (rld[i].reg_rtx)) |
| /* Make sure it is the inc/dec pseudo, and not |
| some other (e.g. output operand) pseudo. */ |
| && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)] |
| == REGNO (XEXP (in_reg, 0)))) |
| { |
| SET_HARD_REG_BIT (reg_is_output_reload, |
| REGNO (rld[i].reg_rtx)); |
| SET_REGNO_REG_SET (®_has_output_reload, |
| REGNO (XEXP (in_reg, 0))); |
| } |
| else if (code == PRE_INC || code == PRE_DEC |
| || code == POST_INC || code == POST_DEC) |
| { |
| int in_regno = REGNO (XEXP (in_reg, 0)); |
| |
| if (reg_last_reload_reg[in_regno] != NULL_RTX) |
| { |
| int in_hard_regno; |
| bool forget_p = true; |
| |
| in_hard_regno = REGNO (reg_last_reload_reg[in_regno]); |
| if (TEST_HARD_REG_BIT (reg_reloaded_valid, |
| in_hard_regno)) |
| { |
| for (rtx_insn *x = (old_prev ? |
| NEXT_INSN (old_prev) : insn); |
| x != old_next; |
| x = NEXT_INSN (x)) |
| if (x == reg_reloaded_insn[in_hard_regno]) |
| { |
| forget_p = false; |
| break; |
| } |
| } |
| /* If for some reasons, we didn't set up |
| reg_last_reload_reg in this insn, |
| invalidate inheritance from previous |
| insns for the incremented/decremented |
| register. Such registers will be not in |
| reg_has_output_reload. Invalidate it |
| also if the corresponding element in |
| reg_reloaded_insn is also |
| invalidated. */ |
| if (forget_p) |
| forget_old_reloads_1 (XEXP (in_reg, 0), |
| NULL_RTX, NULL); |
| } |
| } |
| } |
| } |
| /* If a pseudo that got a hard register is auto-incremented, |
| we must purge records of copying it into pseudos without |
| hard registers. */ |
| for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1)) |
| if (REG_NOTE_KIND (x) == REG_INC) |
| { |
| /* See if this pseudo reg was reloaded in this insn. |
| If so, its last-reload info is still valid |
| because it is based on this insn's reload. */ |
| for (i = 0; i < n_reloads; i++) |
| if (rld[i].out == XEXP (x, 0)) |
| break; |
| |
| if (i == n_reloads) |
| forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL); |
| } |
| #endif |
| } |
| /* A reload reg's contents are unknown after a label. */ |
| if (LABEL_P (insn)) |
| CLEAR_HARD_REG_SET (reg_reloaded_valid); |
| |
| /* Don't assume a reload reg is still good after a call insn |
| if it is a call-used reg, or if it contains a value that will |
| be partially clobbered by the call. */ |
| else if (CALL_P (insn)) |
| { |
| reg_reloaded_valid |
| &= ~insn_callee_abi (insn).full_and_partial_reg_clobbers (); |
| |
| /* If this is a call to a setjmp-type function, we must not |
| reuse any reload reg contents across the call; that will |
| just be clobbered by other uses of the register in later |
| code, before the longjmp. */ |
| if (find_reg_note (insn, REG_SETJMP, NULL_RTX)) |
| CLEAR_HARD_REG_SET (reg_reloaded_valid); |
| } |
| } |
| |
| /* Clean up. */ |
| free (reg_last_reload_reg); |
| CLEAR_REG_SET (®_has_output_reload); |
| } |
| |
| /* Discard all record of any value reloaded from X, |
| or reloaded in X from someplace else; |
| unless X is an output reload reg of the current insn. |
| |
| X may be a hard reg (the reload reg) |
| or it may be a pseudo reg that was reloaded from. |
| |
| When DATA is non-NULL just mark the registers in regset |
| to be forgotten later. */ |
| |
| static void |
| forget_old_reloads_1 (rtx x, const_rtx, void *data) |
| { |
| unsigned int regno; |
| unsigned int nr; |
| regset regs = (regset) data; |
| |
| /* note_stores does give us subregs of hard regs, |
| subreg_regno_offset requires a hard reg. */ |
| while (GET_CODE (x) == SUBREG) |
| { |
| /* We ignore the subreg offset when calculating the regno, |
| because we are using the entire underlying hard register |
| below. */ |
| x = SUBREG_REG (x); |
| } |
| |
| if (!REG_P (x)) |
| return; |
| |
| regno = REGNO (x); |
| |
| if (regno >= FIRST_PSEUDO_REGISTER) |
| nr = 1; |
| else |
| { |
| unsigned int i; |
| |
| nr = REG_NREGS (x); |
| /* Storing into a spilled-reg invalidates its contents. |
| This can happen if a block-local pseudo is allocated to that reg |
| and it wasn't spilled because this block's total need is 0. |
| Then some insn might have an optional reload and use this reg. */ |
| if (!regs) |
| for (i = 0; i < nr; i++) |
| /* But don't do this if the reg actually serves as an output |
| reload reg in the current instruction. */ |
| if (n_reloads == 0 |
| || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i)) |
| { |
| CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i); |
| spill_reg_store[regno + i] = 0; |
| } |
| } |
| |
| if (regs) |
| while (nr-- > 0) |
| SET_REGNO_REG_SET (regs, regno + nr); |
| else |
| { |
| /* Since value of X has changed, |
| forget any value previously copied from it. */ |
| |
| while (nr-- > 0) |
| /* But don't forget a copy if this is the output reload |
| that establishes the copy's validity. */ |
| if (n_reloads == 0 |
| || !REGNO_REG_SET_P (®_has_output_reload, regno + nr)) |
| reg_last_reload_reg[regno + nr] = 0; |
| } |
| } |
| |
| /* Forget the reloads marked in regset by previous function. */ |
| static void |
| forget_marked_reloads (regset regs) |
| { |
| unsigned int reg; |
| reg_set_iterator rsi; |
| EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi) |
| { |
| if (reg < FIRST_PSEUDO_REGISTER |
| /* But don't do this if the reg actually serves as an output |
| reload reg in the current instruction. */ |
| && (n_reloads == 0 |
| || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg))) |
| { |
| CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg); |
| spill_reg_store[reg] = 0; |
| } |
| if (n_reloads == 0 |
| || !REGNO_REG_SET_P (®_has_output_reload, reg)) |
| reg_last_reload_reg[reg] = 0; |
| } |
| } |
| |
| /* The following HARD_REG_SETs indicate when each hard register is |
| used for a reload of various parts of the current insn. */ |
| |
| /* If reg is unavailable for all reloads. */ |
| static HARD_REG_SET reload_reg_unavailable; |
| /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */ |
| static HARD_REG_SET reload_reg_used; |
| /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */ |
| static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS]; |
| /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */ |
| static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS]; |
| /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */ |
| static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS]; |
| /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */ |
| static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS]; |
| /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */ |
| static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS]; |
| /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */ |
| static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS]; |
| /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */ |
| static HARD_REG_SET reload_reg_used_in_op_addr; |
| /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */ |
| static HARD_REG_SET reload_reg_used_in_op_addr_reload; |
| /* If reg is in use for a RELOAD_FOR_INSN reload. */ |
| static HARD_REG_SET reload_reg_used_in_insn; |
| /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */ |
| static HARD_REG_SET reload_reg_used_in_other_addr; |
| |
| /* If reg is in use as a reload reg for any sort of reload. */ |
| static HARD_REG_SET reload_reg_used_at_all; |
| |
| /* If reg is use as an inherited reload. We just mark the first register |
| in the group. */ |
| static HARD_REG_SET reload_reg_used_for_inherit; |
| |
| /* Records which hard regs are used in any way, either as explicit use or |
| by being allocated to a pseudo during any point of the current insn. */ |
| static HARD_REG_SET reg_used_in_insn; |
| |
| /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and |
| TYPE. MODE is used to indicate how many consecutive regs are |
| actually used. */ |
| |
| static void |
| mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type, |
| machine_mode mode) |
| { |
| switch (type) |
| { |
| case RELOAD_OTHER: |
| add_to_hard_reg_set (&reload_reg_used, mode, regno); |
| break; |
| |
| case RELOAD_FOR_INPUT_ADDRESS: |
| add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno); |
| break; |
| |
| case RELOAD_FOR_INPADDR_ADDRESS: |
| add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno); |
| break; |
| |
| case RELOAD_FOR_OUTPUT_ADDRESS: |
| add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno); |
| break; |
| |
| case RELOAD_FOR_OUTADDR_ADDRESS: |
| add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno); |
| break; |
| |
| case RELOAD_FOR_OPERAND_ADDRESS: |
| add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno); |
| break; |
| |
| case RELOAD_FOR_OPADDR_ADDR: |
| add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno); |
| break; |
| |
| case RELOAD_FOR_OTHER_ADDRESS: |
| add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno); |
| break; |
| |
| case RELOAD_FOR_INPUT: |
| add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno); |
| break; |
| |
| case RELOAD_FOR_OUTPUT: |
| add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno); |
| break; |
| |
| case RELOAD_FOR_INSN: |
| add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno); |
| break; |
| } |
| |
| add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno); |
| } |
| |
| /* Similarly, but show REGNO is no longer in use for a reload. */ |
| |
| static void |
| clear_reload_reg_in_use (unsigned int regno, int opnum, |
| enum reload_type type, machine_mode mode) |
| { |
| unsigned int nregs = hard_regno_nregs (regno, mode); |
| unsigned int start_regno, end_regno, r; |
| int i; |
| /* A complication is that for some reload types, inheritance might |
| allow multiple reloads of the same types to share a reload register. |
| We set check_opnum if we have to check only reloads with the same |
| operand number, and check_any if we have to check all reloads. */ |
| int check_opnum = 0; |
| int check_any = 0; |
| HARD_REG_SET *used_in_set; |
| |
| switch (type) |
| { |
| case RELOAD_OTHER: |
| used_in_set = &reload_reg_used; |
| break; |
| |
| case RELOAD_FOR_INPUT_ADDRESS: |
| used_in_set = &reload_reg_used_in_input_addr[opnum]; |
| break; |
| |
| case RELOAD_FOR_INPADDR_ADDRESS: |
| check_opnum = 1; |
| used_in_set = &reload_reg_used_in_inpaddr_addr[opnum]; |
| break; |
| |
| case RELOAD_FOR_OUTPUT_ADDRESS: |
| used_in_set = &reload_reg_used_in_output_addr[opnum]; |
| break; |
| |
| case RELOAD_FOR_OUTADDR_ADDRESS: |
| check_opnum = 1; |
| used_in_set = &reload_reg_used_in_outaddr_addr[opnum]; |
| break; |
| |
| case RELOAD_FOR_OPERAND_ADDRESS: |
| used_in_set = &reload_reg_used_in_op_addr; |
| break; |
| |
| case RELOAD_FOR_OPADDR_ADDR: |
| check_any = 1; |
| used_in_set = &reload_reg_used_in_op_addr_reload; |
| break; |
| |
| case RELOAD_FOR_OTHER_ADDRESS: |
| used_in_set = &reload_reg_used_in_other_addr; |
| check_any = 1; |
| break; |
| |
| case RELOAD_FOR_INPUT: |
| used_in_set = &reload_reg_used_in_input[opnum]; |
| break; |
| |
| case RELOAD_FOR_OUTPUT: |
| used_in_set = &reload_reg_used_in_output[opnum]; |
| break; |
| |
| case RELOAD_FOR_INSN: |
| used_in_set = &reload_reg_used_in_insn; |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| /* We resolve conflicts with remaining reloads of the same type by |
| excluding the intervals of reload registers by them from the |
| interval of freed reload registers. Since we only keep track of |
| one set of interval bounds, we might have to exclude somewhat |
| more than what would be necessary if we used a HARD_REG_SET here. |
| But this should only happen very infrequently, so there should |
| be no reason to worry about it. */ |
| |
| start_regno = regno; |
| end_regno = regno + nregs; |
| if (check_opnum || check_any) |
| { |
| for (i = n_reloads - 1; i >= 0; i--) |
| { |
| if (rld[i].when_needed == type |
| && (check_any || rld[i].opnum == opnum) |
| && rld[i].reg_rtx) |
| { |
| unsigned int conflict_start = true_regnum (rld[i].reg_rtx); |
| unsigned int conflict_end |
| = end_hard_regno (rld[i].mode, conflict_start); |
| |
| /* If there is an overlap with the first to-be-freed register, |
| adjust the interval start. */ |
| if (conflict_start <= start_regno && conflict_end > start_regno) |
| start_regno = conflict_end; |
| /* Otherwise, if there is a conflict with one of the other |
| to-be-freed registers, adjust the interval end. */ |
| if (conflict_start > start_regno && conflict_start < end_regno) |
| end_regno = conflict_start; |
| } |
| } |
| } |
| |
| for (r = start_regno; r < end_regno; r++) |
| CLEAR_HARD_REG_BIT (*used_in_set, r); |
| } |
| |
| /* 1 if reg REGNO is free as a reload reg for a reload of the sort |
| specified by OPNUM and TYPE. */ |
| |
| static int |
| reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type) |
| { |
| int i; |
| |
| /* In use for a RELOAD_OTHER means it's not available for anything. */ |
| if (TEST_HARD_REG_BIT (reload_reg_used, regno) |
| || TEST_HARD_REG_BIT (reload_reg_unavailable, regno)) |
| return 0; |
| |
| switch (type) |
| { |
| case RELOAD_OTHER: |
| /* In use for anything means we can't use it for RELOAD_OTHER. */ |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)) |
| return 0; |
| |
| for (i = 0; i < reload_n_operands; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) |
| return 0; |
| |
| return 1; |
| |
| case RELOAD_FOR_INPUT: |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)) |
| return 0; |
| |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)) |
| return 0; |
| |
| /* If it is used for some other input, can't use it. */ |
| for (i = 0; i < reload_n_operands; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) |
| return 0; |
| |
| /* If it is used in a later operand's address, can't use it. */ |
| for (i = opnum + 1; i < reload_n_operands; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)) |
| return 0; |
| |
| return 1; |
| |
| case RELOAD_FOR_INPUT_ADDRESS: |
| /* Can't use a register if it is used for an input address for this |
| operand or used as an input in an earlier one. */ |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno)) |
| return 0; |
| |
| for (i = 0; i < opnum; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) |
| return 0; |
| |
| return 1; |
| |
| case RELOAD_FOR_INPADDR_ADDRESS: |
| /* Can't use a register if it is used for an input address |
| for this operand or used as an input in an earlier |
| one. */ |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno)) |
| return 0; |
| |
| for (i = 0; i < opnum; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) |
| return 0; |
| |
| return 1; |
| |
| case RELOAD_FOR_OUTPUT_ADDRESS: |
| /* Can't use a register if it is used for an output address for this |
| operand or used as an output in this or a later operand. Note |
| that multiple output operands are emitted in reverse order, so |
| the conflicting ones are those with lower indices. */ |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno)) |
| return 0; |
| |
| for (i = 0; i <= opnum; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) |
| return 0; |
| |
| return 1; |
| |
| case RELOAD_FOR_OUTADDR_ADDRESS: |
| /* Can't use a register if it is used for an output address |
| for this operand or used as an output in this or a |
| later operand. Note that multiple output operands are |
| emitted in reverse order, so the conflicting ones are |
| those with lower indices. */ |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno)) |
| return 0; |
| |
| for (i = 0; i <= opnum; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) |
| return 0; |
| |
| return 1; |
| |
| case RELOAD_FOR_OPERAND_ADDRESS: |
| for (i = 0; i < reload_n_operands; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) |
| return 0; |
| |
| return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno) |
| && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)); |
| |
| case RELOAD_FOR_OPADDR_ADDR: |
| for (i = 0; i < reload_n_operands; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) |
| return 0; |
| |
| return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)); |
| |
| case RELOAD_FOR_OUTPUT: |
| /* This cannot share a register with RELOAD_FOR_INSN reloads, other |
| outputs, or an operand address for this or an earlier output. |
| Note that multiple output operands are emitted in reverse order, |
| so the conflicting ones are those with higher indices. */ |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)) |
| return 0; |
| |
| for (i = 0; i < reload_n_operands; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) |
| return 0; |
| |
| for (i = opnum; i < reload_n_operands; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)) |
| return 0; |
| |
| return 1; |
| |
| case RELOAD_FOR_INSN: |
| for (i = 0; i < reload_n_operands; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) |
| return 0; |
| |
| return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno) |
| && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)); |
| |
| case RELOAD_FOR_OTHER_ADDRESS: |
| return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno); |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Return 1 if the value in reload reg REGNO, as used by the reload with |
| the number RELOADNUM, is still available in REGNO at the end of the insn. |
| |
| We can assume that the reload reg was already tested for availability |
| at the time it is needed, and we should not check this again, |
| in case the reg has already been marked in use. */ |
| |
| static int |
| reload_reg_reaches_end_p (unsigned int regno, int reloadnum) |
| { |
| int opnum = rld[reloadnum].opnum; |
| enum reload_type type = rld[reloadnum].when_needed; |
| int i; |
| |
| /* See if there is a reload with the same type for this operand, using |
| the same register. This case is not handled by the code below. */ |
| for (i = reloadnum + 1; i < n_reloads; i++) |
| { |
| rtx reg; |
| |
| if (rld[i].opnum != opnum || rld[i].when_needed != type) |
| continue; |
| reg = rld[i].reg_rtx; |
| if (reg == NULL_RTX) |
| continue; |
| if (regno >= REGNO (reg) && regno < END_REGNO (reg)) |
| return 0; |
| } |
| |
| switch (type) |
| { |
| case RELOAD_OTHER: |
| /* Since a RELOAD_OTHER reload claims the reg for the entire insn, |
| its value must reach the end. */ |
| return 1; |
| |
| /* If this use is for part of the insn, |
| its value reaches if no subsequent part uses the same register. |
| Just like the above function, don't try to do this with lots |
| of fallthroughs. */ |
| |
| case RELOAD_FOR_OTHER_ADDRESS: |
| /* Here we check for everything else, since these don't conflict |
| with anything else and everything comes later. */ |
| |
| for (i = 0; i < reload_n_operands; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) |
| return 0; |
| |
| return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno) |
| && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno) |
| && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno) |
| && ! TEST_HARD_REG_BIT (reload_reg_used, regno)); |
| |
| case RELOAD_FOR_INPUT_ADDRESS: |
| case RELOAD_FOR_INPADDR_ADDRESS: |
| /* Similar, except that we check only for this and subsequent inputs |
| and the address of only subsequent inputs and we do not need |
| to check for RELOAD_OTHER objects since they are known not to |
| conflict. */ |
| |
| for (i = opnum; i < reload_n_operands; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) |
| return 0; |
| |
| /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS |
| could be killed if the register is also used by reload with type |
| RELOAD_FOR_INPUT_ADDRESS, so check it. */ |
| if (type == RELOAD_FOR_INPADDR_ADDRESS |
| && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)) |
| return 0; |
| |
| for (i = opnum + 1; i < reload_n_operands; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)) |
| return 0; |
| |
| for (i = 0; i < reload_n_operands; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) |
| return 0; |
| |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)) |
| return 0; |
| |
| return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno) |
| && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno) |
| && !TEST_HARD_REG_BIT (reload_reg_used, regno)); |
| |
| case RELOAD_FOR_INPUT: |
| /* Similar to input address, except we start at the next operand for |
| both input and input address and we do not check for |
| RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these |
| would conflict. */ |
| |
| for (i = opnum + 1; i < reload_n_operands; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) |
| return 0; |
| |
| /* ... fall through ... */ |
| |
| case RELOAD_FOR_OPERAND_ADDRESS: |
| /* Check outputs and their addresses. */ |
| |
| for (i = 0; i < reload_n_operands; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) |
| return 0; |
| |
| return (!TEST_HARD_REG_BIT (reload_reg_used, regno)); |
| |
| case RELOAD_FOR_OPADDR_ADDR: |
| for (i = 0; i < reload_n_operands; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) |
| return 0; |
| |
| return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno) |
| && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno) |
| && !TEST_HARD_REG_BIT (reload_reg_used, regno)); |
| |
| case RELOAD_FOR_INSN: |
| /* These conflict with other outputs with RELOAD_OTHER. So |
| we need only check for output addresses. */ |
| |
| opnum = reload_n_operands; |
| |
| /* fall through */ |
| |
| case RELOAD_FOR_OUTPUT: |
| case RELOAD_FOR_OUTPUT_ADDRESS: |
| case RELOAD_FOR_OUTADDR_ADDRESS: |
| /* We already know these can't conflict with a later output. So the |
| only thing to check are later output addresses. |
| Note that multiple output operands are emitted in reverse order, |
| so the conflicting ones are those with lower indices. */ |
| for (i = 0; i < opnum; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) |
| || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)) |
| return 0; |
| |
| /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS |
| could be killed if the register is also used by reload with type |
| RELOAD_FOR_OUTPUT_ADDRESS, so check it. */ |
| if (type == RELOAD_FOR_OUTADDR_ADDRESS |
| && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno)) |
| return 0; |
| |
| return 1; |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Like reload_reg_reaches_end_p, but check that the condition holds for |
| every register in REG. */ |
| |
| static bool |
| reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum) |
| { |
| unsigned int i; |
| |
| for (i = REGNO (reg); i < END_REGNO (reg); i++) |
| if (!reload_reg_reaches_end_p (i, reloadnum)) |
| return false; |
| return true; |
| } |
| |
| |
| /* Returns whether R1 and R2 are uniquely chained: the value of one |
| is used by the other, and that value is not used by any other |
| reload for this insn. This is used to partially undo the decision |
| made in find_reloads when in the case of multiple |
| RELOAD_FOR_OPERAND_ADDRESS reloads it converts all |
| RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS |
| reloads. This code tries to avoid the conflict created by that |
| change. It might be cleaner to explicitly keep track of which |
| RELOAD_FOR_OPADDR_ADDR reload is associated with which |
| RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect |
| this after the fact. */ |
| static bool |
| reloads_unique_chain_p (int r1, int r2) |
| { |
| int i; |
| |
| /* We only check input reloads. */ |
| if (! rld[r1].in || ! rld[r2].in) |
| return false; |
| |
| /* Avoid anything with output reloads. */ |
| if (rld[r1].out || rld[r2].out) |
| return false; |
| |
| /* "chained" means one reload is a component of the other reload, |
| not the same as the other reload. */ |
| if (rld[r1].opnum != rld[r2].opnum |
| || rtx_equal_p (rld[r1].in, rld[r2].in) |
| || rld[r1].optional || rld[r2].optional |
| || ! (reg_mentioned_p (rld[r1].in, rld[r2].in) |
| || reg_mentioned_p (rld[r2].in, rld[r1].in))) |
| return false; |
| |
| /* The following loop assumes that r1 is the reload that feeds r2. */ |
| if (r1 > r2) |
| std::swap (r1, r2); |
| |
| for (i = 0; i < n_reloads; i ++) |
| /* Look for input reloads that aren't our two */ |
| if (i != r1 && i != r2 && rld[i].in) |
| { |
| /* If our reload is mentioned at all, it isn't a simple chain. */ |
| if (reg_mentioned_p (rld[r1].in, rld[i].in)) |
| return false; |
| } |
| return true; |
| } |
| |
| /* The recursive function change all occurrences of WHAT in *WHERE |
| to REPL. */ |
| static void |
| substitute (rtx *where, const_rtx what, rtx repl) |
| { |
| const char *fmt; |
| int i; |
| enum rtx_code code; |
| |
| if (*where == 0) |
| return; |
| |
| if (*where == what || rtx_equal_p (*where, what)) |
| { |
| /* Record the location of the changed rtx. */ |
| substitute_stack.safe_push (where); |
| *where = repl; |
| return; |
| } |
| |
| code = GET_CODE (*where); |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'E') |
| { |
| int j; |
| |
| for (j = XVECLEN (*where, i) - 1; j >= 0; j--) |
| substitute (&XVECEXP (*where, i, j), what, repl); |
| } |
| else if (fmt[i] == 'e') |
| substitute (&XEXP (*where, i), what, repl); |
| } |
| } |
| |
| /* The function returns TRUE if chain of reload R1 and R2 (in any |
| order) can be evaluated without usage of intermediate register for |
| the reload containing another reload. It is important to see |
| gen_reload to understand what the function is trying to do. As an |
| example, let us have reload chain |
| |
| r2: const |
| r1: <something> + const |
| |
| and reload R2 got reload reg HR. The function returns true if |
| there is a correct insn HR = HR + <something>. Otherwise, |
| gen_reload will use intermediate register (and this is the reload |
| reg for R1) to reload <something>. |
| |
| We need this function to find a conflict for chain reloads. In our |
| example, if HR = HR + <something> is incorrect insn, then we cannot |
| use HR as a reload register for R2. If we do use it then we get a |
| wrong code: |
| |
| HR = const |
| HR = <something> |
| HR = HR + HR |
| |
| */ |
| static bool |
| gen_reload_chain_without_interm_reg_p (int r1, int r2) |
| { |
| /* Assume other cases in gen_reload are not possible for |
| chain reloads or do need an intermediate hard registers. */ |
| bool result = true; |
| int regno, code; |
| rtx out, in; |
| rtx_insn *insn; |
| rtx_insn *last = get_last_insn (); |
| |
| /* Make r2 a component of r1. */ |
| if (reg_mentioned_p (rld[r1].in, rld[r2].in)) |
| std::swap (r1, r2); |
| |
| gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in)); |
| regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno; |
| gcc_assert (regno >= 0); |
| out = gen_rtx_REG (rld[r1].mode, regno); |
| in = rld[r1].in; |
| substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno)); |
| |
| /* If IN is a paradoxical SUBREG, remove it and try to put the |
| opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */ |
| strip_paradoxical_subreg (&in, &out); |
| |
| if (GET_CODE (in) == PLUS |
| && (REG_P (XEXP (in, 0)) |
| || GET_CODE (XEXP (in, 0)) == SUBREG |
| || MEM_P (XEXP (in, 0))) |
| && (REG_P (XEXP (in, 1)) |
| || GET_CODE (XEXP (in, 1)) == SUBREG |
| || CONSTANT_P (XEXP (in, 1)) |
| || MEM_P (XEXP (in, 1)))) |
| { |
| insn = emit_insn (gen_rtx_SET (out, in)); |
| code = recog_memoized (insn); |
| result = false; |
| |
| if (code >= 0) |
| { |
| extract_insn (insn); |
| /* We want constrain operands to treat this insn strictly in |
| its validity determination, i.e., the way it would after |
| reload has completed. */ |
| result = constrain_operands (1, get_enabled_alternatives (insn)); |
| } |
| |
| delete_insns_since (last); |
| } |
| |
| /* Restore the original value at each changed address within R1. */ |
| while (!substitute_stack.is_empty ()) |
| { |
| rtx *where = substitute_stack.pop (); |
| *where = rld[r2].in; |
| } |
| |
| return result; |
| } |
| |
| /* Return 1 if the reloads denoted by R1 and R2 cannot share a register. |
| Return 0 otherwise. |
| |
| This function uses the same algorithm as reload_reg_free_p above. */ |
| |
| static int |
| reloads_conflict (int r1, int r2) |
| { |
| enum reload_type r1_type = rld[r1].when_needed; |
| enum reload_type r2_type = rld[r2].when_needed; |
| int r1_opnum = rld[r1].opnum; |
| int r2_opnum = rld[r2].opnum; |
| |
| /* RELOAD_OTHER conflicts with everything. */ |
| if (r2_type == RELOAD_OTHER) |
| return 1; |
| |
| /* Otherwise, check conflicts differently for each type. */ |
| |
| switch (r1_type) |
| { |
| case RELOAD_FOR_INPUT: |
| return (r2_type == RELOAD_FOR_INSN |
| || r2_type == RELOAD_FOR_OPERAND_ADDRESS |
| || r2_type == RELOAD_FOR_OPADDR_ADDR |
| || r2_type == RELOAD_FOR_INPUT |
| || ((r2_type == RELOAD_FOR_INPUT_ADDRESS |
| || r2_type == RELOAD_FOR_INPADDR_ADDRESS) |
| && r2_opnum > r1_opnum)); |
| |
| case RELOAD_FOR_INPUT_ADDRESS: |
| return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum) |
| || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum)); |
| |
| case RELOAD_FOR_INPADDR_ADDRESS: |
| return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum) |
| || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum)); |
| |
| case RELOAD_FOR_OUTPUT_ADDRESS: |
| return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum) |
| || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum)); |
| |
| case RELOAD_FOR_OUTADDR_ADDRESS: |
| return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum) |
| || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum)); |
| |
| case RELOAD_FOR_OPERAND_ADDRESS: |
| return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN |
| || (r2_type == RELOAD_FOR_OPERAND_ADDRESS |
| && (!reloads_unique_chain_p (r1, r2) |
| || !gen_reload_chain_without_interm_reg_p (r1, r2)))); |
| |
| case RELOAD_FOR_OPADDR_ADDR: |
| return (r2_type == RELOAD_FOR_INPUT |
| || r2_type == RELOAD_FOR_OPADDR_ADDR); |
| |
| case RELOAD_FOR_OUTPUT: |
| return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT |
| || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS |
| || r2_type == RELOAD_FOR_OUTADDR_ADDRESS) |
| && r2_opnum >= r1_opnum)); |
| |
| case RELOAD_FOR_INSN: |
| return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT |
| || r2_type == RELOAD_FOR_INSN |
| || r2_type == RELOAD_FOR_OPERAND_ADDRESS); |
| |
| case RELOAD_FOR_OTHER_ADDRESS: |
| return r2_type == RELOAD_FOR_OTHER_ADDRESS; |
| |
| case RELOAD_OTHER: |
| return 1; |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Indexed by reload number, 1 if incoming value |
| inherited from previous insns. */ |
| static char reload_inherited[MAX_RELOADS]; |
| |
| /* For an inherited reload, this is the insn the reload was inherited from, |
| if we know it. Otherwise, this is 0. */ |
| static rtx_insn *reload_inheritance_insn[MAX_RELOADS]; |
| |
| /* If nonzero, this is a place to get the value of the reload, |
| rather than using reload_in. */ |
| static rtx reload_override_in[MAX_RELOADS]; |
| |
| /* For each reload, the hard register number of the register used, |
| or -1 if we did not need a register for this reload. */ |
| static int reload_spill_index[MAX_RELOADS]; |
| |
| /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */ |
| static rtx reload_reg_rtx_for_input[MAX_RELOADS]; |
| |
| /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */ |
| static rtx reload_reg_rtx_for_output[MAX_RELOADS]; |
| |
| /* Subroutine of free_for_value_p, used to check a single register. |
| START_REGNO is the starting regno of the full reload register |
| (possibly comprising multiple hard registers) that we are considering. */ |
| |
| static int |
| reload_reg_free_for_value_p (int start_regno, int regno, int opnum, |
| enum reload_type type, rtx value, rtx out, |
| int reloadnum, int ignore_address_reloads) |
| { |
| int time1; |
| /* Set if we see an input reload that must not share its reload register |
| with any new earlyclobber, but might otherwise share the reload |
| register with an output or input-output reload. */ |
| int check_earlyclobber = 0; |
| int i; |
| int copy = 0; |
| |
| if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno)) |
| return 0; |
| |
| if (out == const0_rtx) |
| { |
| copy = 1; |
| out = NULL_RTX; |
| } |
| |
| /* We use some pseudo 'time' value to check if the lifetimes of the |
| new register use would overlap with the one of a previous reload |
| that is not read-only or uses a different value. |
| The 'time' used doesn't have to be linear in any shape or form, just |
| monotonic. |
| Some reload types use different 'buckets' for each operand. |
| So there are MAX_RECOG_OPERANDS different time values for each |
| such reload type. |
| We compute TIME1 as the time when the register for the prospective |
| new reload ceases to be live, and TIME2 for each existing |
| reload as the time when that the reload register of that reload |
| becomes live. |
| Where there is little to be gained by exact lifetime calculations, |
| we just make conservative assumptions, i.e. a longer lifetime; |
| this is done in the 'default:' cases. */ |
| switch (type) |
| { |
| case RELOAD_FOR_OTHER_ADDRESS: |
| /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */ |
| time1 = copy ? 0 : 1; |
| break; |
| case RELOAD_OTHER: |
| time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5; |
| break; |
| /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS, |
| RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 , |
| respectively, to the time values for these, we get distinct time |
| values. To get distinct time values for each operand, we have to |
| multiply opnum by at least three. We round that up to four because |
| multiply by four is often cheaper. */ |
| case RELOAD_FOR_INPADDR_ADDRESS: |
| time1 = opnum * 4 + 2; |
| break; |
| case RELOAD_FOR_INPUT_ADDRESS: |
| time1 = opnum * 4 + 3; |
| break; |
| case RELOAD_FOR_INPUT: |
| /* All RELOAD_FOR_INPUT reloads remain live till the instruction |
| executes (inclusive). */ |
| time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3; |
| break; |
| case RELOAD_FOR_OPADDR_ADDR: |
| /* opnum * 4 + 4 |
| <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */ |
| time1 = MAX_RECOG_OPERANDS * 4 + 1; |
| break; |
| case RELOAD_FOR_OPERAND_ADDRESS: |
| /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn |
| is executed. */ |
| time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3; |
| break; |
| case RELOAD_FOR_OUTADDR_ADDRESS: |
| time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum; |
| break; |
| case RELOAD_FOR_OUTPUT_ADDRESS: |
| time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum; |
| break; |
| default: |
| time1 = MAX_RECOG_OPERANDS * 5 + 5; |
| } |
| |
| for (i = 0; i < n_reloads; i++) |
| { |
| rtx reg = rld[i].reg_rtx; |
| if (reg && REG_P (reg) |
| && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg) |
| && i != reloadnum) |
| { |
| rtx other_input = rld[i].in; |
| |
| /* If the other reload loads the same input value, that |
| will not cause a conflict only if it's loading it into |
| the same register. */ |
| if (true_regnum (reg) != start_regno) |
| other_input = NULL_RTX; |
| if (! other_input || ! rtx_equal_p (other_input, value) |
| || rld[i].out || out) |
| { |
| int time2; |
| switch (rld[i].when_needed) |
| { |
| case RELOAD_FOR_OTHER_ADDRESS: |
| time2 = 0; |
| break; |
| case RELOAD_FOR_INPADDR_ADDRESS: |
| /* find_reloads makes sure that a |
| RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used |
| by at most one - the first - |
| RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the |
| address reload is inherited, the address address reload |
| goes away, so we can ignore this conflict. */ |
| if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1 |
| && ignore_address_reloads |
| /* Unless the RELOAD_FOR_INPUT is an auto_inc expression. |
| Then the address address is still needed to store |
| back the new address. */ |
| && ! rld[reloadnum].out) |
| continue; |
| /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its |
| RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS |
| reloads go away. */ |
| if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum |
| && ignore_address_reloads |
| /* Unless we are reloading an auto_inc expression. */ |
| && ! rld[reloadnum].out) |
| continue; |
| time2 = rld[i].opnum * 4 + 2; |
| break; |
| case RELOAD_FOR_INPUT_ADDRESS: |
| if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum |
| && ignore_address_reloads |
| && ! rld[reloadnum].out) |
| continue; |
| time2 = rld[i].opnum * 4 + 3; |
| break; |
| case RELOAD_FOR_INPUT: |
| time2 = rld[i].opnum * 4 + 4; |
| check_earlyclobber = 1; |
| break; |
| /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4 |
| == MAX_RECOG_OPERAND * 4 */ |
| case RELOAD_FOR_OPADDR_ADDR: |
| if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1 |
| && ignore_address_reloads |
| && ! rld[reloadnum].out) |
| continue; |
| time2 = MAX_RECOG_OPERANDS * 4 + 1; |
| break; |
| case RELOAD_FOR_OPERAND_ADDRESS: |
| time2 = MAX_RECOG_OPERANDS * 4 + 2; |
| check_earlyclobber = 1; |
| break; |
| case RELOAD_FOR_INSN: |
| time2 = MAX_RECOG_OPERANDS * 4 + 3; |
| break; |
| case RELOAD_FOR_OUTPUT: |
| /* All RELOAD_FOR_OUTPUT reloads become live just after the |
| instruction is executed. */ |
| time2 = MAX_RECOG_OPERANDS * 4 + 4; |
| break; |
| /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with |
| the RELOAD_FOR_OUTPUT reloads, so assign it the same time |
| value. */ |
| case RELOAD_FOR_OUTADDR_ADDRESS: |
| if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1 |
| && ignore_address_reloads |
| && ! rld[reloadnum].out) |
| continue; |
| time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum; |
| break; |
| case RELOAD_FOR_OUTPUT_ADDRESS: |
| time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum; |
| break; |
| case RELOAD_OTHER: |
| /* If there is no conflict in the input part, handle this |
| like an output reload. */ |
| if (! rld[i].in || rtx_equal_p (other_input, value)) |
| { |
| time2 = MAX_RECOG_OPERANDS * 4 + 4; |
| /* Earlyclobbered outputs must conflict with inputs. */ |
| if (earlyclobber_operand_p (rld[i].out)) |
| time2 = MAX_RECOG_OPERANDS * 4 + 3; |
| |
| break; |
| } |
| time2 = 1; |
| /* RELOAD_OTHER might be live beyond instruction execution, |
| but this is not obvious when we set time2 = 1. So check |
| here if there might be a problem with the new reload |
| clobbering the register used by the RELOAD_OTHER. */ |
| if (out) |
| return 0; |
| break; |
| default: |
| return 0; |
| } |
| if ((time1 >= time2 |
| && (! rld[i].in || rld[i].out |
| || ! rtx_equal_p (other_input, value))) |
| || (out && rld[reloadnum].out_reg |
| && time2 >= MAX_RECOG_OPERANDS * 4 + 3)) |
| return 0; |
| } |
| } |
| } |
| |
| /* Earlyclobbered outputs must conflict with inputs. */ |
| if (check_earlyclobber && out && earlyclobber_operand_p (out)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Return 1 if the value in reload reg REGNO, as used by a reload |
| needed for the part of the insn specified by OPNUM and TYPE, |
| may be used to load VALUE into it. |
| |
| MODE is the mode in which the register is used, this is needed to |
| determine how many hard regs to test. |
| |
| Other read-only reloads with the same value do not conflict |
| unless OUT is nonzero and these other reloads have to live while |
| output reloads live. |
| If OUT is CONST0_RTX, this is a special case: it means that the |
| test should not be for using register REGNO as reload register, but |
| for copying from register REGNO into the reload register. |
| |
| RELOADNUM is the number of the reload we want to load this value for; |
| a reload does not conflict with itself. |
| |
| When IGNORE_ADDRESS_RELOADS is set, we cannot have conflicts with |
| reloads that load an address for the very reload we are considering. |
| |
| The caller has to make sure that there is no conflict with the return |
| register. */ |
| |
| static int |
| free_for_value_p (int regno, machine_mode mode, int opnum, |
| enum reload_type type, rtx value, rtx out, int reloadnum, |
| int ignore_address_reloads) |
| { |
| int nregs = hard_regno_nregs (regno, mode); |
| while (nregs-- > 0) |
| if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type, |
| value, out, reloadnum, |
| ignore_address_reloads)) |
| return 0; |
| return 1; |
| } |
| |
| /* Return true if the rtx X is invariant over the current function. */ |
| /* ??? Actually, the places where we use this expect exactly what is |
| tested here, and not everything that is function invariant. In |
| particular, the frame pointer and arg pointer are special cased; |
| pic_offset_table_rtx is not, and we must not spill these things to |
| memory. */ |
| |
| bool |
| function_invariant_p (const_rtx x) |
| { |
| if (CONSTANT_P (x)) |
| return 1; |
| if (x == frame_pointer_rtx || x == arg_pointer_rtx) |
| return 1; |
| if (GET_CODE (x) == PLUS |
| && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx) |
| && GET_CODE (XEXP (x, 1)) == CONST_INT) |
| return 1; |
| return 0; |
| } |
| |
| /* Determine whether the reload reg X overlaps any rtx'es used for |
| overriding inheritance. Return nonzero if so. */ |
| |
| static int |
| conflicts_with_override (rtx x) |
| { |
| int i; |
| for (i = 0; i < n_reloads; i++) |
| if (reload_override_in[i] |
| && reg_overlap_mentioned_p (x, reload_override_in[i])) |
| return 1; |
| return 0; |
| } |
| |
| /* Give an error message saying we failed to find a reload for INSN, |
| and clear out reload R. */ |
| static void |
| failed_reload (rtx_insn *insn, int r) |
| { |
| if (asm_noperands (PATTERN (insn)) < 0) |
| /* It's the compiler's fault. */ |
| fatal_insn ("could not find a spill register", insn); |
| |
| /* It's the user's fault; the operand's mode and constraint |
| don't match. Disable this reload so we don't crash in final. */ |
| error_for_asm (insn, |
| "%<asm%> operand constraint incompatible with operand size"); |
| rld[r].in = 0; |
| rld[r].out = 0; |
| rld[r].reg_rtx = 0; |
| rld[r].optional = 1; |
| rld[r].secondary_p = 1; |
| } |
| |
| /* I is the index in SPILL_REG_RTX of the reload register we are to allocate |
| for reload R. If it's valid, get an rtx for it. Return nonzero if |
| successful. */ |
| static int |
| set_reload_reg (int i, int r) |
| { |
| int regno; |
| rtx reg = spill_reg_rtx[i]; |
| |
| if (reg == 0 || GET_MODE (reg) != rld[r].mode) |
| spill_reg_rtx[i] = reg |
| = gen_rtx_REG (rld[r].mode, spill_regs[i]); |
| |
| regno = true_regnum (reg); |
| |
| /* Detect when the reload reg can't hold the reload mode. |
| This used to be one `if', but Sequent compiler can't handle that. */ |
| if (targetm.hard_regno_mode_ok (regno, rld[r].mode)) |
| { |
| machine_mode test_mode = VOIDmode; |
| if (rld[r].in) |
| test_mode = GET_MODE (rld[r].in); |
| /* If rld[r].in has VOIDmode, it means we will load it |
| in whatever mode the reload reg has: to wit, rld[r].mode. |
| We have already tested that for validity. */ |
| /* Aside from that, we need to test that the expressions |
| to reload from or into have modes which are valid for this |
| reload register. Otherwise the reload insns would be invalid. */ |
| if (! (rld[r].in != 0 && test_mode != VOIDmode |
| && !targetm.hard_regno_mode_ok (regno, test_mode))) |
| if (! (rld[r].out != 0 |
| && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out)))) |
| { |
| /* The reg is OK. */ |
| last_spill_reg = i; |
| |
| /* Mark as in use for this insn the reload regs we use |
| for this. */ |
| mark_reload_reg_in_use (spill_regs[i], rld[r].opnum, |
| rld[r].when_needed, rld[r].mode); |
| |
| rld[r].reg_rtx = reg; |
| reload_spill_index[r] = spill_regs[i]; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* Find a spill register to use as a reload register for reload R. |
| LAST_RELOAD is nonzero if this is the last reload for the insn being |
| processed. |
| |
| Set rld[R].reg_rtx to the register allocated. |
| |
| We return 1 if successful, or 0 if we couldn't find a spill reg and |
| we didn't change anything. */ |
| |
| static int |
| allocate_reload_reg (class insn_chain *chain ATTRIBUTE_UNUSED, int r, |
| int last_reload) |
| { |
| int i, pass, count; |
| |
| /* If we put this reload ahead, thinking it is a group, |
| then insist on finding a group. Otherwise we can grab a |
| reg that some other reload needs. |
| (That can happen when we have a 68000 DATA_OR_FP_REG |
| which is a group of data regs or one fp reg.) |
| We need not be so restrictive if there are no more reloads |
| for this insn. |
| |
| ??? Really it would be nicer to have smarter handling |
| for that kind of reg class, where a problem like this is normal. |
| Perhaps those classes should be avoided for reloading |
| by use of more alternatives. */ |
| |
| int force_group = rld[r].nregs > 1 && ! last_reload; |
| |
| /* If we want a single register and haven't yet found one, |
| take any reg in the right class and not in use. |
| If we want a consecutive group, here is where we look for it. |
| |
| We use three passes so we can first look for reload regs to |
| reuse, which are already in use for other reloads in this insn, |
| and only then use additional registers which are not "bad", then |
| finally any register. |
| |
| I think that maximizing reuse is needed to make sure we don't |
| run out of reload regs. Suppose we have three reloads, and |
| reloads A and B can share regs. These need two regs. |
| Suppose A and B are given different regs. |
| That leaves none for C. */ |
| for (pass = 0; pass < 3; pass++) |
| { |
| /* I is the index in spill_regs. |
| We advance it round-robin between insns to use all spill regs |
| equally, so that inherited reloads have a chance |
| of leapfrogging each other. */ |
| |
| i = last_spill_reg; |
| |
| for (count = 0; count < n_spills; count++) |
| { |
| int rclass = (int) rld[r].rclass; |
| int regnum; |
| |
| i++; |
| if (i >= n_spills) |
| i -= n_spills; |
| regnum = spill_regs[i]; |
| |
| if ((reload_reg_free_p (regnum, rld[r].opnum, |
| rld[r].when_needed) |
| || (rld[r].in |
| /* We check reload_reg_used to make sure we |
| don't clobber the return register. */ |
| && ! TEST_HARD_REG_BIT (reload_reg_used, regnum) |
| && free_for_value_p (regnum, rld[r].mode, rld[r].opnum, |
| rld[r].when_needed, rld[r].in, |
| rld[r].out, r, 1))) |
| && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum) |
| && targetm.hard_regno_mode_ok (regnum, rld[r].mode) |
| /* Look first for regs to share, then for unshared. But |
| don't share regs used for inherited reloads; they are |
| the ones we want to preserve. */ |
| && (pass |
| || (TEST_HARD_REG_BIT (reload_reg_used_at_all, |
| regnum) |
| && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit, |
| regnum)))) |
| { |
| int nr = hard_regno_nregs (regnum, rld[r].mode); |
| |
| /* During the second pass we want to avoid reload registers |
| which are "bad" for this reload. */ |
| if (pass == 1 |
| && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out)) |
| continue; |
| |
| /* Avoid the problem where spilling a GENERAL_OR_FP_REG |
| (on 68000) got us two FP regs. If NR is 1, |
| we would reject both of them. */ |
| if (force_group) |
| nr = rld[r].nregs; |
| /* If we need only one reg, we have already won. */ |
| if (nr == 1) |
| { |
| /* But reject a single reg if we demand a group. */ |
| if (force_group) |
| continue; |
| break; |
| } |
| /* Otherwise check that as many consecutive regs as we need |
| are available here. */ |
| while (nr > 1) |
| { |
| int regno = regnum + nr - 1; |
| if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno) |
| && spill_reg_order[regno] >= 0 |
| && reload_reg_free_p (regno, rld[r].opnum, |
| rld[r].when_needed))) |
| break; |
| nr--; |
| } |
| if (nr == 1) |
| break; |
| } |
| } |
| |
| /* If we found something on the current pass, omit later passes. */ |
| if (count < n_spills) |
| break; |
| } |
| |
| /* We should have found a spill register by now. */ |
| if (count >= n_spills) |
| return 0; |
| |
| /* I is the index in SPILL_REG_RTX of the reload register we are to |
| allocate. Get an rtx for it and find its register number. */ |
| |
| return set_reload_reg (i, r); |
| } |
| |
| /* Initialize all the tables needed to allocate reload registers. |
| CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX |
| is the array we use to restore the reg_rtx field for every reload. */ |
| |
| static void |
| choose_reload_regs_init (class insn_chain *chain, rtx *save_reload_reg_rtx) |
| { |
| int i; |
| |
| for (i = 0; i < n_reloads; i++) |
| rld[i].reg_rtx = save_reload_reg_rtx[i]; |
| |
| memset (reload_inherited, 0, MAX_RELOADS); |
| memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx)); |
| memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx)); |
| |
| CLEAR_HARD_REG_SET (reload_reg_used); |
| CLEAR_HARD_REG_SET (reload_reg_used_at_all); |
| CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr); |
| CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload); |
| CLEAR_HARD_REG_SET (reload_reg_used_in_insn); |
| CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr); |
| |
| CLEAR_HARD_REG_SET (reg_used_in_insn); |
| { |
| HARD_REG_SET tmp; |
| REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout); |
| reg_used_in_insn |= tmp; |
| REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set); |
| reg_used_in_insn |= tmp; |
| compute_use_by_pseudos (®_used_in_insn, &chain->live_throughout); |
| compute_use_by_pseudos (®_used_in_insn, &chain->dead_or_set); |
| } |
| |
| for (i = 0; i < reload_n_operands; i++) |
| { |
| CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]); |
| CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]); |
| CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]); |
| CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]); |
| CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]); |
| CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]); |
| } |
| |
| reload_reg_unavailable = ~chain->used_spill_regs; |
| |
| CLEAR_HARD_REG_SET (reload_reg_used_for_inherit); |
| |
| for (i = 0; i < n_reloads; i++) |
| /* If we have already decided to use a certain register, |
| don't use it in another way. */ |
| if (rld[i].reg_rtx) |
| mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum, |
| rld[i].when_needed, rld[i].mode); |
| } |
| |
| /* If X is not a subreg, return it unmodified. If it is a subreg, |
| look up whether we made a replacement for the SUBREG_REG. Return |
| either the replacement or the SUBREG_REG. */ |
| |
| static rtx |
| replaced_subreg (rtx x) |
| { |
| if (GET_CODE (x) == SUBREG) |
| return find_replacement (&SUBREG_REG (x)); |
| return x; |
| } |
| |
| /* Compute the offset to pass to subreg_regno_offset, for a pseudo of |
| mode OUTERMODE that is available in a hard reg of mode INNERMODE. |
| SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo, |
| otherwise it is NULL. */ |
| |
| static poly_int64 |
| compute_reload_subreg_offset (machine_mode outermode, |
| rtx subreg, |
| machine_mode innermode) |
| { |
| poly_int64 outer_offset; |
| machine_mode middlemode; |
| |
| if (!subreg) |
| return subreg_lowpart_offset (outermode, innermode); |
| |
| outer_offset = SUBREG_BYTE (subreg); |
| middlemode = GET_MODE (SUBREG_REG (subreg)); |
| |
| /* If SUBREG is paradoxical then return the normal lowpart offset |
| for OUTERMODE and INNERMODE. Our caller has already checked |
| that OUTERMODE fits in INNERMODE. */ |
| if (paradoxical_subreg_p (outermode, middlemode)) |
| return subreg_lowpart_offset (outermode, innermode); |
| |
| /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET |
| plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */ |
| return outer_offset + subreg_lowpart_offset (middlemode, innermode); |
| } |
| |
| /* Assign hard reg targets for the pseudo-registers we must reload |
| into hard regs for this insn. |
| Also output the instructions to copy them in and out of the hard regs. |
| |
| For machines with register classes, we are responsible for |
| finding a reload reg in the proper class. */ |
| |
| static void |
| choose_reload_regs (class insn_chain *chain) |
| { |
| rtx_insn *insn = chain->insn; |
| int i, j; |
| unsigned int max_group_size = 1; |
| enum reg_class group_class = NO_REGS; |
| int pass, win, inheritance; |
| |
| rtx save_reload_reg_rtx[MAX_RELOADS]; |
| |
| /* In order to be certain of getting the registers we need, |
| we must sort the reloads into order of increasing register class. |
| Then our grabbing of reload registers will parallel the process |
| that provided the reload registers. |
| |
| Also note whether any of the reloads wants a consecutive group of regs. |
| If so, record the maximum size of the group desired and what |
| register class contains all the groups needed by this insn. */ |
| |
| for (j = 0; j < n_reloads; j++) |
| { |
| reload_order[j] = j; |
| if (rld[j].reg_rtx != NULL_RTX) |
| { |
| gcc_assert (REG_P (rld[j].reg_rtx) |
| && HARD_REGISTER_P (rld[j].reg_rtx)); |
| reload_spill_index[j] = REGNO (rld[j].reg_rtx); |
| } |
| else |
| reload_spill_index[j] = -1; |
| |
| if (rld[j].nregs > 1) |
| { |
| max_group_size = MAX (rld[j].nregs, max_group_size); |
| group_class |
| = reg_class_superunion[(int) rld[j].rclass][(int) group_class]; |
| } |
| |
| save_reload_reg_rtx[j] = rld[j].reg_rtx; |
| } |
| |
| if (n_reloads > 1) |
| qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower); |
| |
| /* If -O, try first with inheritance, then turning it off. |
| If not -O, don't do inheritance. |
| Using inheritance when not optimizing leads to paradoxes |
| with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves |
| because one side of the comparison might be inherited. */ |
| win = 0; |
| for (inheritance = optimize > 0; inheritance >= 0; inheritance--) |
| { |
| choose_reload_regs_init (chain, save_reload_reg_rtx); |
| |
| /* Process the reloads in order of preference just found. |
| Beyond this point, subregs can be found in reload_reg_rtx. |
| |
| This used to look for an existing reloaded home for all of the |
| reloads, and only then perform any new reloads. But that could lose |
| if the reloads were done out of reg-class order because a later |
| reload with a looser constraint might have an old home in a register |
| needed by an earlier reload with a tighter constraint. |
| |
| To solve this, we make two passes over the reloads, in the order |
| described above. In the first pass we try to inherit a reload |
| from a previous insn. If there is a later reload that needs a |
| class that is a proper subset of the class being processed, we must |
| also allocate a spill register during the first pass. |
| |
| Then make a second pass over the reloads to allocate any reloads |
| that haven't been given registers yet. */ |
| |
| for (j = 0; j < n_reloads; j++) |
| { |
| int r = reload_order[j]; |
| rtx search_equiv = NULL_RTX; |
| |
| /* Ignore reloads that got marked inoperative. */ |
| if (rld[r].out == 0 && rld[r].in == 0 |
| && ! rld[r].secondary_p) |
| continue; |
| |
| /* If find_reloads chose to use reload_in or reload_out as a reload |
| register, we don't need to chose one. Otherwise, try even if it |
| found one since we might save an insn if we find the value lying |
| around. |
| Try also when reload_in is a pseudo without a hard reg. */ |
| if (rld[r].in != 0 && rld[r].reg_rtx != 0 |
| && (rtx_equal_p (rld[r].in, rld[r].reg_rtx) |
| || (rtx_equal_p (rld[r].out, rld[r].reg_rtx) |
| && !MEM_P (rld[r].in) |
| && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER))) |
| continue; |
| |
| #if 0 /* No longer needed for correct operation. |
| It might give better code, or might not; worth an experiment? */ |
| /* If this is an optional reload, we can't inherit from earlier insns |
| until we are sure that any non-optional reloads have been allocated. |
| The following code takes advantage of the fact that optional reloads |
| are at the end of reload_order. */ |
| if (rld[r].optional != 0) |
| for (i = 0; i < j; i++) |
| if ((rld[reload_order[i]].out != 0 |
| || rld[reload_order[i]].in != 0 |
| || rld[reload_order[i]].secondary_p) |
| && ! rld[reload_order[i]].optional |
| && rld[reload_order[i]].reg_rtx == 0) |
| allocate_reload_reg (chain, reload_order[i], 0); |
| #endif |
| |
| /* First see if this pseudo is already available as reloaded |
| for a previous insn. We cannot try to inherit for reloads |
| that are smaller than the maximum number of registers needed |
| for groups unless the register we would allocate cannot be used |
| for the groups. |
| |
| We could check here to see if this is a secondary reload for |
| an object that is already in a register of the desired class. |
| This would avoid the need for the secondary reload register. |
| But this is complex because we can't easily determine what |
| objects might want to be loaded via this reload. So let a |
| register be allocated here. In `emit_reload_insns' we suppress |
| one of the loads in the case described above. */ |
| |
| if (inheritance) |
| { |
| poly_int64 byte = 0; |
| int regno = -1; |
| machine_mode mode = VOIDmode; |
| rtx subreg = NULL_RTX; |
| |
| if (rld[r].in == 0) |
| ; |
| else if (REG_P (rld[r].in)) |
| { |
| regno = REGNO (rld[r].in); |
| mode = GET_MODE (rld[r].in); |
| } |
| else if (REG_P (rld[r].in_reg)) |
| { |
| regno = REGNO (rld[r].in_reg); |
| mode = GET_MODE (rld[r].in_reg); |
| } |
| else if (GET_CODE (rld[r].in_reg) == SUBREG |
| && REG_P (SUBREG_REG (rld[r].in_reg))) |
| { |
| regno = REGNO (SUBREG_REG (rld[r].in_reg)); |
| if (regno < FIRST_PSEUDO_REGISTER) |
| regno = subreg_regno (rld[r].in_reg); |
| else |
| { |
| subreg = rld[r].in_reg; |
| byte = SUBREG_BYTE (subreg); |
| } |
| mode = GET_MODE (rld[r].in_reg); |
| } |
| #if AUTO_INC_DEC |
| else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC |
| && REG_P (XEXP (rld[r].in_reg, 0))) |
| { |
| regno = REGNO (XEXP (rld[r].in_reg, 0)); |
| mode = GET_MODE (XEXP (rld[r].in_reg, 0)); |
| rld[r].out = rld[r].in; |
| } |
| #endif |
| #if 0 |
| /* This won't work, since REGNO can be a pseudo reg number. |
| Also, it takes much more hair to keep track of all the things |
| that can invalidate an inherited reload of part of a pseudoreg. */ |
| else if (GET_CODE (rld[r].in) == SUBREG |
| && REG_P (SUBREG_REG (rld[r].in))) |
| regno = subreg_regno (rld[r].in); |
| #endif |
| |
| if (regno >= 0 |
| && reg_last_reload_reg[regno] != 0 |
| && (known_ge |
| (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno])), |
| GET_MODE_SIZE (mode) + byte)) |
| /* Verify that the register it's in can be used in |
| mode MODE. */ |
| && (REG_CAN_CHANGE_MODE_P |
| (REGNO (reg_last_reload_reg[regno]), |
| GET_MODE (reg_last_reload_reg[regno]), |
| mode))) |
| { |
| enum reg_class rclass = rld[r].rclass, last_class; |
| rtx last_reg = reg_last_reload_reg[regno]; |
| |
| i = REGNO (last_reg); |
| byte = compute_reload_subreg_offset (mode, |
| subreg, |
| GET_MODE (last_reg)); |
| i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode); |
| last_class = REGNO_REG_CLASS (i); |
| |
| if (reg_reloaded_contents[i] == regno |
| && TEST_HARD_REG_BIT (reg_reloaded_valid, i) |
| && targetm.hard_regno_mode_ok (i, rld[r].mode) |
| && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i) |
| /* Even if we can't use this register as a reload |
| register, we might use it for reload_override_in, |
| if copying it to the desired class is cheap |
| enough. */ |
| || ((register_move_cost (mode, last_class, rclass) |
| < memory_move_cost (mode, rclass, true)) |
| && (secondary_reload_class (1, rclass, mode, |
| last_reg) |
| == NO_REGS) |
| && !(targetm.secondary_memory_needed |
| (mode, last_class, rclass)))) |
| && (rld[r].nregs == max_group_size |
| || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class], |
| i)) |
| && free_for_value_p (i, rld[r].mode, rld[r].opnum, |
| rld[r].when_needed, rld[r].in, |
| const0_rtx, r, 1)) |
| { |
| /* If a group is needed, verify that all the subsequent |
| registers still have their values intact. */ |
| int nr = hard_regno_nregs (i, rld[r].mode); |
| int k; |
| |
| for (k = 1; k < nr; k++) |
| if (reg_reloaded_contents[i + k] != regno |
| || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k)) |
| break; |
| |
| if (k == nr) |
| { |
| int i1; |
| int bad_for_class; |
| |
| last_reg = (GET_MODE (last_reg) == mode |
| ? last_reg : gen_rtx_REG (mode, i)); |
| |
| bad_for_class = 0; |
| for (k = 0; k < nr; k++) |
| bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass], |
| i+k); |
| |
| /* We found a register that contains the |
| value we need. If this register is the |
| same as an `earlyclobber' operand of the |
| current insn, just mark it as a place to |
| reload from since we can't use it as the |
| reload register itself. */ |
| |
| for (i1 = 0; i1 < n_earlyclobbers; i1++) |
| if (reg_overlap_mentioned_for_reload_p |
| (reg_last_reload_reg[regno], |
| reload_earlyclobbers[i1])) |
| break; |
| |
| if (i1 != n_earlyclobbers |
| || ! (free_for_value_p (i, rld[r].mode, |
| rld[r].opnum, |
| rld[r].when_needed, rld[r].in, |
| rld[r].out, r, 1)) |
| /* Don't use it if we'd clobber a pseudo reg. */ |
| || (TEST_HARD_REG_BIT (reg_used_in_insn, i) |
| && rld[r].out |
| && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i)) |
| /* Don't clobber the frame pointer. */ |
| || (i == HARD_FRAME_POINTER_REGNUM |
| && frame_pointer_needed |
| && rld[r].out) |
| /* Don't really use the inherited spill reg |
| if we need it wider than we've got it. */ |
| || paradoxical_subreg_p (rld[r].mode, mode) |
| || bad_for_class |
| |
| /* If find_reloads chose reload_out as reload |
| register, stay with it - that leaves the |
| inherited register for subsequent reloads. */ |
| || (rld[r].out && rld[r].reg_rtx |
| && rtx_equal_p (rld[r].out, rld[r].reg_rtx))) |
| { |
| if (! rld[r].optional) |
| { |
| reload_override_in[r] = last_reg; |
| reload_inheritance_insn[r] |
| = reg_reloaded_insn[i]; |
| } |
| } |
| else |
| { |
| int k; |
| /* We can use this as a reload reg. */ |
| /* Mark the register as in use for this part of |
| the insn. */ |
| mark_reload_reg_in_use (i, |
| rld[r].opnum, |
| rld[r].when_needed, |
| rld[r].mode); |
| rld[r].reg_rtx = last_reg; |
| reload_inherited[r] = 1; |
| reload_inheritance_insn[r] |
| = reg_reloaded_insn[i]; |
| reload_spill_index[r] = i; |
| for (k = 0; k < nr; k++) |
| SET_HARD_REG_BIT (reload_reg_used_for_inherit, |
| i + k); |
| } |
| } |
| } |
| } |
| } |
| |
| /* Here's another way to see if the value is already lying around. */ |
| if (inheritance |
| && rld[r].in != 0 |
| && ! reload_inherited[r] |
| && rld[r].out == 0 |
| && (CONSTANT_P (rld[r].in) |
| || GET_CODE (rld[r].in) == PLUS |
| || REG_P (rld[r].in) |
| || MEM_P (rld[r].in)) |
| && (rld[r].nregs == max_group_size |
| || ! reg_classes_intersect_p (rld[r].rclass, group_class))) |
| search_equiv = rld[r].in; |
| |
| if (search_equiv) |
| { |
| rtx equiv |
| = find_equiv_reg (search_equiv, insn, rld[r].rclass, |
| -1, NULL, 0, rld[r].mode); |
| int regno = 0; |
| |
| if (equiv != 0) |
| { |
| if (REG_P (equiv)) |
| regno = REGNO (equiv); |
| else |
| { |
| /* This must be a SUBREG of a hard register. |
| Make a new REG since this might be used in an |
| address and not all machines support SUBREGs |
| there. */ |
| gcc_assert (GET_CODE (equiv) == SUBREG); |
| regno = subreg_regno (equiv); |
| equiv = gen_rtx_REG (rld[r].mode, regno); |
| /* If we choose EQUIV as the reload register, but the |
| loop below decides to cancel the inheritance, we'll |
| end up reloading EQUIV in rld[r].mode, not the mode |
| it had originally. That isn't safe when EQUIV isn't |
| available as a spill register since its value might |
| still be live at this point. */ |
| for (i = regno; i < regno + (int) rld[r].nregs; i++) |
| if (TEST_HARD_REG_BIT (reload_reg_unavailable, i)) |
| equiv = 0; |
| } |
| } |
| |
| /* If we found a spill reg, reject it unless it is free |
| and of the desired class. */ |
| if (equiv != 0) |
| { |
| int regs_used = 0; |
| int bad_for_class = 0; |
| int max_regno = regno + rld[r].nregs; |
| |
| for (i = regno; i < max_regno; i++) |
| { |
| regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all, |
| i); |
| bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass], |
| i); |
| } |
| |
| if ((regs_used |
| && ! free_for_value_p (regno, rld[r].mode, |
| rld[r].opnum, rld[r].when_needed, |
| rld[r].in, rld[r].out, r, 1)) |
| || bad_for_class) |
| equiv = 0; |
| } |
| |
| if (equiv != 0 |
| && !targetm.hard_regno_mode_ok (regno, rld[r].mode)) |
| equiv = 0; |
| |
| /* We found a register that contains the value we need. |
| If this register is the same as an `earlyclobber' operand |
| of the current insn, just mark it as a place to reload from |
| since we can't use it as the reload register itself. */ |
| |
| if (equiv != 0) |
| for (i = 0; i < n_earlyclobbers; i++) |
| if (reg_overlap_mentioned_for_reload_p (equiv, |
| reload_earlyclobbers[i])) |
| { |
| if (! rld[r].optional) |
| reload_override_in[r] = equiv; |
| equiv = 0; |
| break; |
| } |
| |
| /* If the equiv register we have found is explicitly clobbered |
| in the current insn, it depends on the reload type if we |
| can use it, use it for reload_override_in, or not at all. |
| In particular, we then can't use EQUIV for a |
| RELOAD_FOR_OUTPUT_ADDRESS reload. */ |
| |
| if (equiv != 0) |
| { |
| if (regno_clobbered_p (regno, insn, rld[r].mode, 2)) |
| switch (rld[r].when_needed) |
| { |
| case RELOAD_FOR_OTHER_ADDRESS: |
| case RELOAD_FOR_INPADDR_ADDRESS: |
| case RELOAD_FOR_INPUT_ADDRESS: |
| case RELOAD_FOR_OPADDR_ADDR: |
| break; |
| case RELOAD_OTHER: |
| case RELOAD_FOR_INPUT: |
| case RELOAD_FOR_OPERAND_ADDRESS: |
| if (! rld[r].optional) |
| reload_override_in[r] = equiv; |
| /* Fall through. */ |
| default: |
| equiv = 0; |
| break; |
| } |
| else if (regno_clobbered_p (regno, insn, rld[r].mode, 1)) |
| switch (rld[r].when_needed) |
| { |
| case RELOAD_FOR_OTHER_ADDRESS: |
| case RELOAD_FOR_INPADDR_ADDRESS: |
| case RELOAD_FOR_INPUT_ADDRESS: |
| case RELOAD_FOR_OPADDR_ADDR: |
| case RELOAD_FOR_OPERAND_ADDRESS: |
| case RELOAD_FOR_INPUT: |
| break; |
| case RELOAD_OTHER: |
| if (! rld[r].optional) |
| reload_override_in[r] = equiv; |
| /* Fall through. */ |
| default: |
| equiv = 0; |
| break; |
| } |
| } |
| |
| /* If we found an equivalent reg, say no code need be generated |
| to load it, and use it as our reload reg. */ |
| if (equiv != 0 |
| && (regno != HARD_FRAME_POINTER_REGNUM |
| || !frame_pointer_needed)) |
| { |
| int nr = hard_regno_nregs (regno, rld[r].mode); |
| int k; |
| rld[r].reg_rtx = equiv; |
| reload_spill_index[r] = regno; |
| reload_inherited[r] = 1; |
| |
| /* If reg_reloaded_valid is not set for this register, |
| there might be a stale spill_reg_store lying around. |
| We must clear it, since otherwise emit_reload_insns |
| might delete the store. */ |
| if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno)) |
| spill_reg_store[regno] = NULL; |
| /* If any of the hard registers in EQUIV are spill |
| registers, mark them as in use for this insn. */ |
| for (k = 0; k < nr; k++) |
| { |
| i = spill_reg_order[regno + k]; |
| if (i >= 0) |
| { |
| mark_reload_reg_in_use (regno, rld[r].opnum, |
| rld[r].when_needed, |
| rld[r].mode); |
| SET_HARD_REG_BIT (reload_reg_used_for_inherit, |
| regno + k); |
| } |
| } |
| } |
| } |
| |
| /* If we found a register to use already, or if this is an optional |
| reload, we are done. */ |
| if (rld[r].reg_rtx != 0 || rld[r].optional != 0) |
| continue; |
| |
| #if 0 |
| /* No longer needed for correct operation. Might or might |
| not give better code on the average. Want to experiment? */ |
| |
| /* See if there is a later reload that has a class different from our |
| class that intersects our class or that requires less register |
| than our reload. If so, we must allocate a register to this |
| reload now, since that reload might inherit a previous reload |
| and take the only available register in our class. Don't do this |
| for optional reloads since they will force all previous reloads |
| to be allocated. Also don't do this for reloads that have been |
| turned off. */ |
| |
| for (i = j + 1; i < n_reloads; i++) |
| { |
| int s = reload_order[i]; |
| |
| if ((rld[s].in == 0 && rld[s].out == 0 |
| && ! rld[s].secondary_p) |
| || rld[s].optional) |
| continue; |
| |
| if ((rld[s].rclass != rld[r].rclass |
| && reg_classes_intersect_p (rld[r].rclass, |
| rld[s].rclass)) |
| || rld[s].nregs < rld[r].nregs) |
| break; |
| } |
| |
| if (i == n_reloads) |
| continue; |
| |
| allocate_reload_reg (chain, r, j == n_reloads - 1); |
| #endif |
| } |
| |
| /* Now allocate reload registers for anything non-optional that |
| didn't get one yet. */ |
| for (j = 0; j < n_reloads; j++) |
| { |
| int r = reload_order[j]; |
| |
| /* Ignore reloads that got marked inoperative. */ |
| if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p) |
| continue; |
| |
| /* Skip reloads that already have a register allocated or are |
| optional. */ |
| if (rld[r].reg_rtx != 0 || rld[r].optional) |
| continue; |
| |
| if (! allocate_reload_reg (chain, r, j == n_reloads - 1)) |
| break; |
| } |
| |
| /* If that loop got all the way, we have won. */ |
| if (j == n_reloads) |
| { |
| win = 1; |
| break; |
| } |
| |
| /* Loop around and try without any inheritance. */ |
| } |
| |
| if (! win) |
| { |
| /* First undo everything done by the failed attempt |
| to allocate with inheritance. */ |
| choose_reload_regs_init (chain, save_reload_reg_rtx); |
| |
| /* Some sanity tests to verify that the reloads found in the first |
| pass are identical to the ones we have now. */ |
| gcc_assert (chain->n_reloads == n_reloads); |
| |
| for (i = 0; i < n_reloads; i++) |
| { |
| if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0) |
| continue; |
| gcc_assert (chain->rld[i].when_needed == rld[i].when_needed); |
| for (j = 0; j < n_spills; j++) |
| if (spill_regs[j] == chain->rld[i].regno) |
| if (! set_reload_reg (j, i)) |
| failed_reload (chain->insn, i); |
| } |
| } |
| |
| /* If we thought we could inherit a reload, because it seemed that |
| nothing else wanted the same reload register earlier in the insn, |
| verify that assumption, now that all reloads have been assigned. |
| Likewise for reloads where reload_override_in has been set. */ |
| |
| /* If doing expensive optimizations, do one preliminary pass that doesn't |
| cancel any inheritance, but removes reloads that have been needed only |
| for reloads that we know can be inherited. */ |
| for (pass = flag_expensive_optimizations; pass >= 0; pass--) |
| { |
| for (j = 0; j < n_reloads; j++) |
| { |
| int r = reload_order[j]; |
| rtx check_reg; |
| rtx tem; |
| if (reload_inherited[r] && rld[r].reg_rtx) |
| check_reg = rld[r].reg_rtx; |
| else if (reload_override_in[r] |
| && (REG_P (reload_override_in[r]) |
| || GET_CODE (reload_override_in[r]) == SUBREG)) |
| check_reg = reload_override_in[r]; |
| else |
| continue; |
| if (! free_for_value_p (true_regnum (check_reg), rld[r].mode, |
| rld[r].opnum, rld[r].when_needed, rld[r].in, |
| (reload_inherited[r] |
| ? rld[r].out : const0_rtx), |
| r, 1)) |
| { |
| if (pass) |
| continue; |
| reload_inherited[r] = 0; |
| reload_override_in[r] = 0; |
| } |
| /* If we can inherit a RELOAD_FOR_INPUT, or can use a |
| reload_override_in, then we do not need its related |
| RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads; |
| likewise for other reload types. |
| We handle this by removing a reload when its only replacement |
| is mentioned in reload_in of the reload we are going to inherit. |
| A special case are auto_inc expressions; even if the input is |
| inherited, we still need the address for the output. We can |
| recognize them because they have RELOAD_OUT set to RELOAD_IN. |
| If we succeeded removing some reload and we are doing a preliminary |
| pass just to remove such reloads, make another pass, since the |
| removal of one reload might allow us to inherit another one. */ |
| else if (rld[r].in |
| && rld[r].out != rld[r].in |
| && remove_address_replacements (rld[r].in)) |
| { |
| if (pass) |
| pass = 2; |
| } |
| /* If we needed a memory location for the reload, we also have to |
| remove its related reloads. */ |
| else if (rld[r].in |
| && rld[r].out != rld[r].in |
| && (tem = replaced_subreg (rld[r].in), REG_P (tem)) |
| && REGNO (tem) < FIRST_PSEUDO_REGISTER |
| && (targetm.secondary_memory_needed |
| (rld[r].inmode, REGNO_REG_CLASS (REGNO (tem)), |
| rld[r].rclass)) |
| && remove_address_replacements |
| (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum, |
| rld[r].when_needed))) |
| { |
| if (pass) |
| pass = 2; |
| } |
| } |
| } |
| |
| /* Now that reload_override_in is known valid, |
| actually override reload_in. */ |
| for (j = 0; j < n_reloads; j++) |
| if (reload_override_in[j]) |
| rld[j].in = reload_override_in[j]; |
| |
| /* If this reload won't be done because it has been canceled or is |
| optional and not inherited, clear reload_reg_rtx so other |
| routines (such as subst_reloads) don't get confused. */ |
| for (j = 0; j < n_reloads; j++) |
| if (rld[j].reg_rtx != 0 |
| && ((rld[j].optional && ! reload_inherited[j]) |
| || (rld[j].in == 0 && rld[j].out == 0 |
| && ! rld[j].secondary_p))) |
| { |
| int regno = true_regnum (rld[j].reg_rtx); |
| |
| if (spill_reg_order[regno] >= 0) |
| clear_reload_reg_in_use (regno, rld[j].opnum, |
| rld[j].when_needed, rld[j].mode); |
| rld[j].reg_rtx = 0; |
| reload_spill_index[j] = -1; |
| } |
| |
| /* Record which pseudos and which spill regs have output reloads. */ |
| for (j = 0; j < n_reloads; j++) |
| { |
| int r = reload_order[j]; |
| |
| i = reload_spill_index[r]; |
| |
| /* I is nonneg if this reload uses a register. |
| If rld[r].reg_rtx is 0, this is an optional reload |
| that we opted to ignore. */ |
| if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg) |
| && rld[r].reg_rtx != 0) |
| { |
| int nregno = REGNO (rld[r].out_reg); |
| int nr = 1; |
| |
| if (nregno < FIRST_PSEUDO_REGISTER) |
| nr = hard_regno_nregs (nregno, rld[r].mode); |
| |
| while (--nr >= 0) |
| SET_REGNO_REG_SET (®_has_output_reload, |
| nregno + nr); |
| |
| if (i >= 0) |
| add_to_hard_reg_set (®_is_output_reload, rld[r].mode, i); |
| |
| gcc_assert (rld[r].when_needed == RELOAD_OTHER |
| || rld[r].when_needed == RELOAD_FOR_OUTPUT |
| || rld[r].when_needed == RELOAD_FOR_INSN); |
| } |
| } |
| } |
| |
| /* Deallocate the reload register for reload R. This is called from |
| remove_address_replacements. */ |
| |
| void |
| deallocate_reload_reg (int r) |
| { |
| int regno; |
| |
| if (! rld[r].reg_rtx) |
| return; |
| regno = true_regnum (rld[r].reg_rtx); |
| rld[r].reg_rtx = 0; |
| if (spill_reg_order[regno] >= 0) |
| clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed, |
| rld[r].mode); |
| reload_spill_index[r] = -1; |
| } |
| |
| /* These arrays are filled by emit_reload_insns and its subroutines. */ |
| static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS]; |
| static rtx_insn *other_input_address_reload_insns = 0; |
| static rtx_insn *other_input_reload_insns = 0; |
| static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS]; |
| static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS]; |
| static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS]; |
| static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS]; |
| static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS]; |
| static rtx_insn *operand_reload_insns = 0; |
| static rtx_insn *other_operand_reload_insns = 0; |
| static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS]; |
| |
| /* Values to be put in spill_reg_store are put here first. Instructions |
| must only be placed here if the associated reload register reaches |
| the end of the instruction's reload sequence. */ |
| static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER]; |
| static HARD_REG_SET reg_reloaded_died; |
| |
| /* Check if *RELOAD_REG is suitable as an intermediate or scratch register |
| of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg |
| is nonzero, if that is suitable. On success, change *RELOAD_REG to the |
| adjusted register, and return true. Otherwise, return false. */ |
| static bool |
| reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg, |
| enum reg_class new_class, |
| machine_mode new_mode) |
| |
| { |
| rtx reg; |
| |
| for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0) |
| { |
| unsigned regno = REGNO (reg); |
| |
| if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno)) |
| continue; |
| if (GET_MODE (reg) != new_mode) |
| { |
| if (!targetm.hard_regno_mode_ok (regno, new_mode)) |
| continue; |
| if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg)) |
| continue; |
| reg = reload_adjust_reg_for_mode (reg, new_mode); |
| } |
| *reload_reg = reg; |
| return true; |
| } |
| return false; |
| } |
| |
| /* Check if *RELOAD_REG is suitable as a scratch register for the reload |
| pattern with insn_code ICODE, or alternatively, if alt_reload_reg is |
| nonzero, if that is suitable. On success, change *RELOAD_REG to the |
| adjusted register, and return true. Otherwise, return false. */ |
| static bool |
| reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg, |
| enum insn_code icode) |
| |
| { |
| enum reg_class new_class = scratch_reload_class (icode); |
| machine_mode new_mode = insn_data[(int) icode].operand[2].mode; |
| |
| return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg, |
| new_class, new_mode); |
| } |
| |
| /* Generate insns to perform reload RL, which is for the insn in CHAIN and |
| has the number J. OLD contains the value to be used as input. */ |
| |
| static void |
| emit_input_reload_insns (class insn_chain *chain, struct reload *rl, |
| rtx old, int j) |
| { |
| rtx_insn *insn = chain->insn; |
| rtx reloadreg; |
| rtx oldequiv_reg = 0; |
| rtx oldequiv = 0; |
| int special = 0; |
| machine_mode mode; |
| rtx_insn **where; |
| |
| /* delete_output_reload is only invoked properly if old contains |
| the original pseudo register. Since this is replaced with a |
| hard reg when RELOAD_OVERRIDE_IN is set, see if we can |
| find the pseudo in RELOAD_IN_REG. This is also used to |
| determine whether a secondary reload is needed. */ |
| if (reload_override_in[j] |
| && (REG_P (rl->in_reg) |
| || (GET_CODE (rl->in_reg) == SUBREG |
| && REG_P (SUBREG_REG (rl->in_reg))))) |
| { |
| oldequiv = old; |
| old = rl->in_reg; |
| } |
| if (oldequiv == 0) |
| oldequiv = old; |
| else if (REG_P (oldequiv)) |
| oldequiv_reg = oldequiv; |
| else if (GET_CODE (oldequiv) == SUBREG) |
| oldequiv_reg = SUBREG_REG (oldequiv); |
| |
| reloadreg = reload_reg_rtx_for_input[j]; |
| mode = GET_MODE (reloadreg); |
| |
| /* If we are reloading from a register that was recently stored in |
| with an output-reload, see if we can prove there was |
| actually no need to store the old value in it. */ |
| |
| if (optimize && REG_P (oldequiv) |
| && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER |
| && spill_reg_store[REGNO (oldequiv)] |
| && REG_P (old) |
| && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)]) |
| || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)], |
| rl->out_reg))) |
| delete_output_reload (insn, j, REGNO (oldequiv), reloadreg); |
| |
| /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from |
| OLDEQUIV. */ |
| |
| while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode) |
| oldequiv = SUBREG_REG (oldequiv); |
| if (GET_MODE (oldequiv) != VOIDmode |
| && mode != GET_MODE (oldequiv)) |
| oldequiv = gen_lowpart_SUBREG (mode, oldequiv); |
| |
| /* Switch to the right place to emit the reload insns. */ |
| switch (rl->when_needed) |
| { |
| case RELOAD_OTHER: |
| where = &other_input_reload_insns; |
| break; |
| case RELOAD_FOR_INPUT: |
| where = &input_reload_insns[rl->opnum]; |
| break; |
| case RELOAD_FOR_INPUT_ADDRESS: |
| where = &input_address_reload_insns[rl->opnum]; |
| break; |
| case RELOAD_FOR_INPADDR_ADDRESS: |
| where = &inpaddr_address_reload_insns[rl->opnum]; |
| break; |
| case RELOAD_FOR_OUTPUT_ADDRESS: |
| where = &output_address_reload_insns[rl->opnum]; |
| break; |
| case RELOAD_FOR_OUTADDR_ADDRESS: |
| where = &outaddr_address_reload_insns[rl->opnum]; |
| break; |
| case RELOAD_FOR_OPERAND_ADDRESS: |
| where = &operand_reload_insns; |
| break; |
| case RELOAD_FOR_OPADDR_ADDR: |
| where = &other_operand_reload_insns; |
| break; |
| case RELOAD_FOR_OTHER_ADDRESS: |
| where = &other_input_address_reload_insns; |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| |
| push_to_sequence (*where); |
| |
| /* Auto-increment addresses must be reloaded in a special way. */ |
| if (rl->out && ! rl->out_reg) |
| { |
| /* We are not going to bother supporting the case where a |
| incremented register can't be copied directly from |
| OLDEQUIV since this seems highly unlikely. */ |
| gcc_assert (rl->secondary_in_reload < 0); |
| |
| if (reload_inherited[j]) |
| oldequiv = reloadreg; |
| |
| old = XEXP (rl->in_reg, 0); |
| |
| /* Prevent normal processing of this reload. */ |
| special = 1; |
| /* Output a special code sequence for this case. */ |
| inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc); |
| } |
| |
| /* If we are reloading a pseudo-register that was set by the previous |
| insn, see if we can get rid of that pseudo-register entirely |
| by redirecting the previous insn into our reload register. */ |
| |
| else if (optimize && REG_P (old) |
| && REGNO (old) >= FIRST_PSEUDO_REGISTER |
| && dead_or_set_p (insn, old) |
| /* This is unsafe if some other reload |
| uses the same reg first. */ |
| && ! conflicts_with_override (reloadreg) |
| && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum, |
| rl->when_needed, old, rl->out, j, 0)) |
| { |
| rtx_insn *temp = PREV_INSN (insn); |
| while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp))) |
| temp = PREV_INSN (temp); |
| if (temp |
| && NONJUMP_INSN_P (temp) |
| && GET_CODE (PATTERN (temp)) == SET |
| && SET_DEST (PATTERN (temp)) == old |
| /* Make sure we can access insn_operand_constraint. */ |
| && asm_noperands (PATTERN (temp)) < 0 |
| /* This is unsafe if operand occurs more than once in current |
| insn. Perhaps some occurrences aren't reloaded. */ |
| && count_occurrences (PATTERN (insn), old, 0) == 1) |
| { |
| rtx old = SET_DEST (PATTERN (temp)); |
| /* Store into the reload register instead of the pseudo. */ |
| SET_DEST (PATTERN (temp)) = reloadreg; |
| |
| /* Verify that resulting insn is valid. |
| |
| Note that we have replaced the destination of TEMP with |
| RELOADREG. If TEMP references RELOADREG within an |
| autoincrement addressing mode, then the resulting insn |
| is ill-formed and we must reject this optimization. */ |
| extract_insn (temp); |
| if (constrain_operands (1, get_enabled_alternatives (temp)) |
| && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg))) |
| { |
| /* If the previous insn is an output reload, the source is |
| a reload register, and its spill_reg_store entry will |
| contain the previous destination. This is now |
| invalid. */ |
| if (REG_P (SET_SRC (PATTERN (temp))) |
| && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER) |
| { |
| spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0; |
| spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0; |
| } |
| |
| /* If these are the only uses of the pseudo reg, |
| pretend for GDB it lives in the reload reg we used. */ |
| if (REG_N_DEATHS (REGNO (old)) == 1 |
| && REG_N_SETS (REGNO (old)) == 1) |
| { |
| reg_renumber[REGNO (old)] = REGNO (reloadreg); |
| if (ira_conflicts_p) |
| /* Inform IRA about the change. */ |
| ira_mark_allocation_change (REGNO (old)); |
| alter_reg (REGNO (old), -1, false); |
| } |
| special = 1; |
| |
| /* Adjust any debug insns between temp and insn. */ |
| while ((temp = NEXT_INSN (temp)) != insn) |
| if (DEBUG_BIND_INSN_P (temp)) |
| INSN_VAR_LOCATION_LOC (temp) |
| = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp), |
| old, reloadreg); |
| else |
| gcc_assert (DEBUG_INSN_P (temp) || NOTE_P (temp)); |
| } |
| else |
| { |
| SET_DEST (PATTERN (temp)) = old; |
| } |
| } |
| } |
| |
| /* We can't do that, so output an insn to load RELOADREG. */ |
| |
| /* If we have a secondary reload, pick up the secondary register |
| and icode, if any. If OLDEQUIV and OLD are different or |
| if this is an in-out reload, recompute whether or not we |
| still need a secondary register and what the icode should |
| be. If we still need a secondary register and the class or |
| icode is different, go back to reloading from OLD if using |
| OLDEQUIV means that we got the wrong type of register. We |
| cannot have different class or icode due to an in-out reload |
| because we don't make such reloads when both the input and |
| output need secondary reload registers. */ |
| |
| if (! special && rl->secondary_in_reload >= 0) |
| { |
| rtx second_reload_reg = 0; |
| rtx third_reload_reg = 0; |
| int secondary_reload = rl->secondary_in_reload; |
| rtx real_oldequiv = oldequiv; |
| rtx real_old = old; |
| rtx tmp; |
| enum insn_code icode; |
| enum insn_code tertiary_icode = CODE_FOR_nothing; |
| |
| /* If OLDEQUIV is a pseudo with a MEM, get the real MEM |
| and similarly for OLD. |
| See comments in get_secondary_reload in reload.cc. */ |
| /* If it is a pseudo that cannot be replaced with its |
| equivalent MEM, we must fall back to reload_in, which |
| will have all the necessary substitutions registered. |
| Likewise for a pseudo that can't be replaced with its |
| equivalent constant. |
| |
| Take extra care for subregs of such pseudos. Note that |
| we cannot use reg_equiv_mem in this case because it is |
| not in the right mode. */ |
| |
| tmp = oldequiv; |
| if (GET_CODE (tmp) == SUBREG) |
| tmp = SUBREG_REG (tmp); |
| if (REG_P (tmp) |
| && REGNO (tmp) >= FIRST_PSEUDO_REGISTER |
| && (reg_equiv_memory_loc (REGNO (tmp)) != 0 |
| || reg_equiv_constant (REGNO (tmp)) != 0)) |
| { |
| if (! reg_equiv_mem (REGNO (tmp)) |
| || num_not_at_initial_offset |
| || GET_CODE (oldequiv) == SUBREG) |
| real_oldequiv = rl->in; |
| else |
| real_oldequiv = reg_equiv_mem (REGNO (tmp)); |
| } |
| |
| tmp = old; |
| if (GET_CODE (tmp) == SUBREG) |
| tmp = SUBREG_REG (tmp); |
| if (REG_P (tmp) |
| && REGNO (tmp) >= FIRST_PSEUDO_REGISTER |
| && (reg_equiv_memory_loc (REGNO (tmp)) != 0 |
| || reg_equiv_constant (REGNO (tmp)) != 0)) |
| { |
| if (! reg_equiv_mem (REGNO (tmp)) |
| || num_not_at_initial_offset |
| || GET_CODE (old) == SUBREG) |
| real_old = rl->in; |
| else |
| real_old = reg_equiv_mem (REGNO (tmp)); |
| } |
| |
| second_reload_reg = rld[secondary_reload].reg_rtx; |
| if (rld[secondary_reload].secondary_in_reload >= 0) |
| { |
| int tertiary_reload = rld[secondary_reload].secondary_in_reload; |
| |
| third_reload_reg = rld[tertiary_reload].reg_rtx; |
| tertiary_icode = rld[secondary_reload].secondary_in_icode; |
| /* We'd have to add more code for quartary reloads. */ |
| gcc_assert (rld[tertiary_reload].secondary_in_reload < 0); |
| } |
| icode = rl->secondary_in_icode; |
| |
| if ((old != oldequiv && ! rtx_equal_p (old, oldequiv)) |
| || (rl->in != 0 && rl->out != 0)) |
| { |
| secondary_reload_info sri, sri2; |
| enum reg_class new_class, new_t_class; |
| |
| sri.icode = CODE_FOR_nothing; |
| sri.prev_sri = NULL; |
| new_class |
| = (enum reg_class) targetm.secondary_reload (1, real_oldequiv, |
| rl->rclass, mode, |
| &sri); |
| |
| if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing) |
| second_reload_reg = 0; |
| else if (new_class == NO_REGS) |
| { |
| if (reload_adjust_reg_for_icode (&second_reload_reg, |
| third_reload_reg, |
| (enum insn_code) sri.icode)) |
| { |
| icode = (enum insn_code) sri.icode; |
| third_reload_reg = 0; |
| } |
| else |
| { |
| oldequiv = old; |
| real_oldequiv = real_old; |
| } |
| } |
| else if (sri.icode != CODE_FOR_nothing) |
| /* We currently lack a way to express this in reloads. */ |
| gcc_unreachable (); |
| else |
| { |
| sri2.icode = CODE_FOR_nothing; |
| sri2.prev_sri = &sri; |
| new_t_class |
| = (enum reg_class) targetm.secondary_reload (1, real_oldequiv, |
| new_class, mode, |
| &sri); |
| if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing) |
| { |
| if (reload_adjust_reg_for_temp (&second_reload_reg, |
| third_reload_reg, |
| new_class, mode)) |
| { |
| third_reload_reg = 0; |
| tertiary_icode = (enum insn_code) sri2.icode; |
| } |
| else |
| { |
| oldequiv = old; |
| real_oldequiv = real_old; |
| } |
| } |
| else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing) |
| { |
| rtx intermediate = second_reload_reg; |
| |
| if (reload_adjust_reg_for_temp (&intermediate, NULL, |
| new_class, mode) |
| && reload_adjust_reg_for_icode (&third_reload_reg, NULL, |
| ((enum insn_code) |
| sri2.icode))) |
| { |
| second_reload_reg = intermediate; |
| tertiary_icode = (enum insn_code) sri2.icode; |
| } |
| else |
| { |
| oldequiv = old; |
| real_oldequiv = real_old; |
| } |
| } |
| else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing) |
| { |
| rtx intermediate = second_reload_reg; |
| |
| if (reload_adjust_reg_for_temp (&intermediate, NULL, |
| new_class, mode) |
| && reload_adjust_reg_for_temp (&third_reload_reg, NULL, |
| new_t_class, mode)) |
| { |
| second_reload_reg = intermediate; |
| tertiary_icode = (enum insn_code) sri2.icode; |
| } |
| else |
| { |
| oldequiv = old; |
| real_oldequiv = real_old; |
| } |
| } |
| else |
| { |
| /* This could be handled more intelligently too. */ |
| oldequiv = old; |
| real_oldequiv = real_old; |
| } |
| } |
| } |
| |
| /* If we still need a secondary reload register, check |
| to see if it is being used as a scratch or intermediate |
| register and generate code appropriately. If we need |
| a scratch register, use REAL_OLDEQUIV since the form of |
| the insn may depend on the actual address if it is |
| a MEM. */ |
| |
| if (second_reload_reg) |
| { |
| if (icode != CODE_FOR_nothing) |
| { |
| /* We'd have to add extra code to handle this case. */ |
| gcc_assert (!third_reload_reg); |
| |
| emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv, |
| second_reload_reg)); |
| special = 1; |
| } |
| else |
| { |
| /* See if we need a scratch register to load the |
| intermediate register (a tertiary reload). */ |
| if (tertiary_icode != CODE_FOR_nothing) |
| { |
| emit_insn ((GEN_FCN (tertiary_icode) |
| (second_reload_reg, real_oldequiv, |
| third_reload_reg))); |
| } |
| else if (third_reload_reg) |
| { |
| gen_reload (third_reload_reg, real_oldequiv, |
| rl->opnum, |
| rl->when_needed); |
| gen_reload (second_reload_reg, third_reload_reg, |
| rl->opnum, |
| rl->when_needed); |
| } |
| else |
| gen_reload (second_reload_reg, real_oldequiv, |
| rl->opnum, |
| rl->when_needed); |
| |
| oldequiv = second_reload_reg; |
| } |
| } |
| } |
| |
| if (! special && ! rtx_equal_p (reloadreg, oldequiv)) |
| { |
| rtx real_oldequiv = oldequiv; |
| |
| if ((REG_P (oldequiv) |
| && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER |
| && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0 |
| || reg_equiv_constant (REGNO (oldequiv)) != 0)) |
| || (GET_CODE (oldequiv) == SUBREG |
| && REG_P (SUBREG_REG (oldequiv)) |
| && (REGNO (SUBREG_REG (oldequiv)) |
| >= FIRST_PSEUDO_REGISTER) |
| && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0) |
| || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0))) |
| || (CONSTANT_P (oldequiv) |
| && (targetm.preferred_reload_class (oldequiv, |
| REGNO_REG_CLASS (REGNO (reloadreg))) |
| == NO_REGS))) |
| real_oldequiv = rl->in; |
| gen_reload (reloadreg, real_oldequiv, rl->opnum, |
| rl->when_needed); |
| } |
| |
| if (cfun->can_throw_non_call_exceptions) |
| copy_reg_eh_region_note_forward (insn, get_insns (), NULL); |
| |
| /* End this sequence. */ |
| *where = get_insns (); |
| end_sequence (); |
| |
| /* Update reload_override_in so that delete_address_reloads_1 |
| can see the actual register usage. */ |
| if (oldequiv_reg) |
| reload_override_in[j] = oldequiv; |
| } |
| |
| /* Generate insns to for the output reload RL, which is for the insn described |
| by CHAIN and has the number J. */ |
| static void |
| emit_output_reload_insns (class insn_chain *chain, struct reload *rl, |
| int j) |
| { |
| rtx reloadreg; |
| rtx_insn *insn = chain->insn; |
| int special = 0; |
| rtx old = rl->out; |
| machine_mode mode; |
| rtx_insn *p; |
| rtx rl_reg_rtx; |
| |
| if (rl->when_needed == RELOAD_OTHER) |
| start_sequence (); |
| else |
| push_to_sequence (output_reload_insns[rl->opnum]); |
| |
| rl_reg_rtx = reload_reg_rtx_for_output[j]; |
| mode = GET_MODE (rl_reg_rtx); |
| |
| reloadreg = rl_reg_rtx; |
| |
| /* If we need two reload regs, set RELOADREG to the intermediate |
| one, since it will be stored into OLD. We might need a secondary |
| register only for an input reload, so check again here. */ |
| |
| if (rl->secondary_out_reload >= 0) |
| { |
| rtx real_old = old; |
| int secondary_reload = rl->secondary_out_reload; |
| int tertiary_reload = rld[secondary_reload].secondary_out_reload; |
| |
| if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER |
| && reg_equiv_mem (REGNO (old)) != 0) |
| real_old = reg_equiv_mem (REGNO (old)); |
| |
| if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS) |
| { |
| rtx second_reloadreg = reloadreg; |
| reloadreg = rld[secondary_reload].reg_rtx; |
| |
| /* See if RELOADREG is to be used as a scratch register |
| or as an intermediate register. */ |
| if (rl->secondary_out_icode != CODE_FOR_nothing) |
| { |
| /* We'd have to add extra code to handle this case. */ |
| gcc_assert (tertiary_reload < 0); |
| |
| emit_insn ((GEN_FCN (rl->secondary_out_icode) |
| (real_old, second_reloadreg, reloadreg))); |
| special = 1; |
| } |
| else |
| { |
| /* See if we need both a scratch and intermediate reload |
| register. */ |
| |
| enum insn_code tertiary_icode |
| = rld[secondary_reload].secondary_out_icode; |
| |
| /* We'd have to add more code for quartary reloads. */ |
| gcc_assert (tertiary_reload < 0 |
| || rld[tertiary_reload].secondary_out_reload < 0); |
| |
| if (GET_MODE (reloadreg) != mode) |
| reloadreg = reload_adjust_reg_for_mode (reloadreg, mode); |
| |
| if (tertiary_icode != CODE_FOR_nothing) |
| { |
| rtx third_reloadreg = rld[tertiary_reload].reg_rtx; |
| |
| /* Copy primary reload reg to secondary reload reg. |
| (Note that these have been swapped above, then |
| secondary reload reg to OLD using our insn.) */ |
| |
| /* If REAL_OLD is a paradoxical SUBREG, remove it |
| and try to put the opposite SUBREG on |
| RELOADREG. */ |
| strip_paradoxical_subreg (&real_old, &reloadreg); |
| |
| gen_reload (reloadreg, second_reloadreg, |
| rl->opnum, rl->when_needed); |
| emit_insn ((GEN_FCN (tertiary_icode) |
| (real_old, reloadreg, third_reloadreg))); |
| special = 1; |
| } |
| |
| else |
| { |
| /* Copy between the reload regs here and then to |
| OUT later. */ |
| |
| gen_reload (reloadreg, second_reloadreg, |
| rl->opnum, rl->when_needed); |
| if (tertiary_reload >= 0) |
| { |
| rtx third_reloadreg = rld[tertiary_reload].reg_rtx; |
| |
| gen_reload (third_reloadreg, reloadreg, |
| rl->opnum, rl->when_needed); |
| reloadreg = third_reloadreg; |
| } |
| } |
| } |
| } |
| } |
| |
| /* Output the last reload insn. */ |
| if (! special) |
| { |
| rtx set; |
| |
| /* Don't output the last reload if OLD is not the dest of |
| INSN and is in the src and is clobbered by INSN. */ |
| if (! flag_expensive_optimizations |
| || !REG_P (old) |
| || !(set = single_set (insn)) |
| || rtx_equal_p (old, SET_DEST (set)) |
| || !reg_mentioned_p (old, SET_SRC (set)) |
| || !((REGNO (old) < FIRST_PSEUDO_REGISTER) |
| && regno_clobbered_p (REGNO (old), insn, rl->mode, 0))) |
| gen_reload (old, reloadreg, rl->opnum, |
| rl->when_needed); |
| } |
| |
| /* Look at all insns we emitted, just to be safe. */ |
| for (p = get_insns (); p; p = NEXT_INSN (p)) |
| if (INSN_P (p)) |
| { |
| rtx pat = PATTERN (p); |
| |
| /* If this output reload doesn't come from a spill reg, |
| clear any memory of reloaded copies of the pseudo reg. |
| If this output reload comes from a spill reg, |
| reg_has_output_reload will make this do nothing. */ |
| note_stores (p, forget_old_reloads_1, NULL); |
| |
| if (reg_mentioned_p (rl_reg_rtx, pat)) |
| { |
| rtx set = single_set (insn); |
| if (reload_spill_index[j] < 0 |
| && set |
| && SET_SRC (set) == rl_reg_rtx) |
| { |
| int src = REGNO (SET_SRC (set)); |
| |
| reload_spill_index[j] = src; |
| SET_HARD_REG_BIT (reg_is_output_reload, src); |
| if (find_regno_note (insn, REG_DEAD, src)) |
| SET_HARD_REG_BIT (reg_reloaded_died, src); |
| } |
| if (HARD_REGISTER_P (rl_reg_rtx)) |
| { |
| int s = rl->secondary_out_reload; |
| set = single_set (p); |
| /* If this reload copies only to the secondary reload |
| register, the secondary reload does the actual |
| store. */ |
| if (s >= 0 && set == NULL_RTX) |
| /* We can't tell what function the secondary reload |
| has and where the actual store to the pseudo is |
| made; leave new_spill_reg_store alone. */ |
| ; |
| else if (s >= 0 |
| && SET_SRC (set) == rl_reg_rtx |
| && SET_DEST (set) == rld[s].reg_rtx) |
| { |
| /* Usually the next instruction will be the |
| secondary reload insn; if we can confirm |
| that it is, setting new_spill_reg_store to |
| that insn will allow an extra optimization. */ |
| rtx s_reg = rld[s].reg_rtx; |
| rtx_insn *next = NEXT_INSN (p); |
| rld[s].out = rl->out; |
| rld[s].out_reg = rl->out_reg; |
| set = single_set (next); |
| if (set && SET_SRC (set) == s_reg |
| && reload_reg_rtx_reaches_end_p (s_reg, s)) |
| { |
| SET_HARD_REG_BIT (reg_is_output_reload, |
| REGNO (s_reg)); |
| new_spill_reg_store[REGNO (s_reg)] = next; |
| } |
| } |
| else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j)) |
| new_spill_reg_store[REGNO (rl_reg_rtx)] = p; |
| } |
| } |
| } |
| |
| if (rl->when_needed == RELOAD_OTHER) |
| { |
| emit_insn (other_output_reload_insns[rl->opnum]); |
| other_output_reload_insns[rl->opnum] = get_insns (); |
| } |
| else |
| output_reload_insns[rl->opnum] = get_insns (); |
| |
| if (cfun->can_throw_non_call_exceptions) |
| copy_reg_eh_region_note_forward (insn, get_insns (), NULL); |
| |
| end_sequence (); |
| } |
| |
| /* Do input reloading for reload RL, which is for the insn described by CHAIN |
| and has the number J. */ |
| static void |
| do_input_reload (class insn_chain *chain, struct reload *rl, int j) |
| { |
| rtx_insn *insn = chain->insn; |
| rtx old = (rl->in && MEM_P (rl->in) |
| ? rl->in_reg : rl->in); |
| rtx reg_rtx = rl->reg_rtx; |
| |
| if (old && reg_rtx) |
| { |
| machine_mode mode; |
| |
| /* Determine the mode to reload in. |
| This is very tricky because we have three to choose from. |
| There is the mode the insn operand wants (rl->inmode). |
| There is the mode of the reload register RELOADREG. |
| There is the intrinsic mode of the operand, which we could find |
| by stripping some SUBREGs. |
| It turns out that RELOADREG's mode is irrelevant: |
| we can change that arbitrarily. |
| |
| Consider (SUBREG:SI foo:QI) as an operand that must be SImode; |
| then the reload reg may not support QImode moves, so use SImode. |
| If foo is in memory due to spilling a pseudo reg, this is safe, |
| because the QImode value is in the least significant part of a |
| slot big enough for a SImode. If foo is some other sort of |
| memory reference, then it is impossible to reload this case, |
| so previous passes had better make sure this never happens. |
| |
| Then consider a one-word union which has SImode and one of its |
| members is a float, being fetched as (SUBREG:SF union:SI). |
| We must fetch that as SFmode because we could be loading into |
| a float-only register. In this case OLD's mode is correct. |
| |
| Consider an immediate integer: it has VOIDmode. Here we need |
| to get a mode from something else. |
| |
| In some cases, there is a fourth mode, the operand's |
| containing mode. If the insn specifies a containing mode for |
| this operand, it overrides all others. |
| |
| I am not sure whether the algorithm here is always right, |
| but it does the right things in those cases. */ |
| |
| mode = GET_MODE (old); |
| if (mode == VOIDmode) |
| mode = rl->inmode; |
| |
| /* We cannot use gen_lowpart_common since it can do the wrong thing |
| when REG_RTX has a multi-word mode. Note that REG_RTX must |
| always be a REG here. */ |
| if (GET_MODE (reg_rtx) != mode) |
| reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode); |
| } |
| reload_reg_rtx_for_input[j] = reg_rtx; |
| |
| if (old != 0 |
| /* AUTO_INC reloads need to be handled even if inherited. We got an |
| AUTO_INC reload if reload_out is set but reload_out_reg isn't. */ |
| && (! reload_inherited[j] || (rl->out && ! rl->out_reg)) |
| && ! rtx_equal_p (reg_rtx, old) |
| && reg_rtx != 0) |
| emit_input_reload_insns (chain, rld + j, old, j); |
| |
| /* When inheriting a wider reload, we have a MEM in rl->in, |
| e.g. inheriting a SImode output reload for |
| (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */ |
| if (optimize && reload_inherited[j] && rl->in |
| && MEM_P (rl->in) |
| && MEM_P (rl->in_reg) |
| && reload_spill_index[j] >= 0 |
| && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j])) |
| rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]]; |
| |
| /* If we are reloading a register that was recently stored in with an |
| output-reload, see if we can prove there was |
| actually no need to store the old value in it. */ |
| |
| if (optimize |
| && (reload_inherited[j] || reload_override_in[j]) |
| && reg_rtx |
| && REG_P (reg_rtx) |
| && spill_reg_store[REGNO (reg_rtx)] != 0 |
| #if 0 |
| /* There doesn't seem to be any reason to restrict this to pseudos |
| and doing so loses in the case where we are copying from a |
| register of the wrong class. */ |
| && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)]) |
| #endif |
| /* The insn might have already some references to stackslots |
| replaced by MEMs, while reload_out_reg still names the |
| original pseudo. */ |
| && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)]) |
| || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg))) |
| delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx); |
| } |
| |
| /* Do output reloading for reload RL, which is for the insn described by |
| CHAIN and has the number J. |
| ??? At some point we need to support handling output reloads of |
| JUMP_INSNs. */ |
| static void |
| do_output_reload (class insn_chain *chain, struct reload *rl, int j) |
| { |
| rtx note, old; |
| rtx_insn *insn = chain->insn; |
| /* If this is an output reload that stores something that is |
| not loaded in this same reload, see if we can eliminate a previous |
| store. */ |
| rtx pseudo = rl->out_reg; |
| rtx reg_rtx = rl->reg_rtx; |
| |
| if (rl->out && reg_rtx) |
| { |
| machine_mode mode; |
| |
| /* Determine the mode to reload in. |
| See comments above (for input reloading). */ |
| mode = GET_MODE (rl->out); |
| if (mode == VOIDmode) |
| { |
| /* VOIDmode should never happen for an output. */ |
| if (asm_noperands (PATTERN (insn)) < 0) |
| /* It's the compiler's fault. */ |
| fatal_insn ("VOIDmode on an output", insn); |
| error_for_asm (insn, "output operand is constant in %<asm%>"); |
| /* Prevent crash--use something we know is valid. */ |
| mode = word_mode; |
| rl->out = gen_rtx_REG (mode, REGNO (reg_rtx)); |
| } |
| if (GET_MODE (reg_rtx) != mode) |
| reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode); |
| } |
| reload_reg_rtx_for_output[j] = reg_rtx; |
| |
| if (pseudo |
| && optimize |
| && REG_P (pseudo) |
| && ! rtx_equal_p (rl->in_reg, pseudo) |
| && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER |
| && reg_last_reload_reg[REGNO (pseudo)]) |
| { |
| int pseudo_no = REGNO (pseudo); |
| int last_regno = REGNO (reg_last_reload_reg[pseudo_no]); |
| |
| /* We don't need to test full validity of last_regno for |
| inherit here; we only want to know if the store actually |
| matches the pseudo. */ |
| if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno) |
| && reg_reloaded_contents[last_regno] == pseudo_no |
| && spill_reg_store[last_regno] |
| && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno])) |
| delete_output_reload (insn, j, last_regno, reg_rtx); |
| } |
| |
| old = rl->out_reg; |
| if (old == 0 |
| || reg_rtx == 0 |
| || rtx_equal_p (old, reg_rtx)) |
| return; |
| |
| /* An output operand that dies right away does need a reload, |
| but need not be copied from it. Show the new location in the |
| REG_UNUSED note. */ |
| if ((REG_P (old) || GET_CODE (old) == SCRATCH) |
| && (note = find_reg_note (insn, REG_UNUSED, old)) != 0) |
| { |
| XEXP (note, 0) = reg_rtx; |
| return; |
| } |
| /* Likewise for a SUBREG of an operand that dies. */ |
| else if (GET_CODE (old) == SUBREG |
| && REG_P (SUBREG_REG (old)) |
| && (note = find_reg_note (insn, REG_UNUSED, |
| SUBREG_REG (old))) != 0) |
| { |
| XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx); |
| return; |
| } |
| else if (GET_CODE (old) == SCRATCH) |
| /* If we aren't optimizing, there won't be a REG_UNUSED note, |
| but we don't want to make an output reload. */ |
| return; |
| |
| /* If is a JUMP_INSN, we can't support output reloads yet. */ |
| gcc_assert (NONJUMP_INSN_P (insn)); |
| |
| emit_output_reload_insns (chain, rld + j, j); |
| } |
| |
| /* A reload copies values of MODE from register SRC to register DEST. |
| Return true if it can be treated for inheritance purposes like a |
| group of reloads, each one reloading a single hard register. The |
| caller has already checked that (reg:MODE SRC) and (reg:MODE DEST) |
| occupy the same number of hard registers. */ |
| |
| static bool |
| inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED, |
| int src ATTRIBUTE_UNUSED, |
| machine_mode mode ATTRIBUTE_UNUSED) |
| { |
| return (REG_CAN_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest]) |
| && REG_CAN_CHANGE_MODE_P (src, mode, reg_raw_mode[src])); |
| } |
| |
| /* Output insns to reload values in and out of the chosen reload regs. */ |
| |
| static void |
| emit_reload_insns (class insn_chain *chain) |
| { |
| rtx_insn *insn = chain->insn; |
| |
| int j; |
| |
| CLEAR_HARD_REG_SET (reg_reloaded_died); |
| |
| for (j = 0; j < reload_n_operands; j++) |
| input_reload_insns[j] = input_address_reload_insns[j] |
| = inpaddr_address_reload_insns[j] |
| = output_reload_insns[j] = output_address_reload_insns[j] |
| = outaddr_address_reload_insns[j] |
| = other_output_reload_insns[j] = 0; |
| other_input_address_reload_insns = 0; |
| other_input_reload_insns = 0; |
| operand_reload_insns = 0; |
| other_operand_reload_insns = 0; |
| |
| /* Dump reloads into the dump file. */ |
| if (dump_file) |
| { |
| fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn)); |
| debug_reload_to_stream (dump_file); |
| } |
| |
| for (j = 0; j < n_reloads; j++) |
| if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx)) |
| { |
| unsigned int i; |
| |
| for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++) |
| new_spill_reg_store[i] = 0; |
| } |
| |
| /* Now output the instructions to copy the data into and out of the |
| reload registers. Do these in the order that the reloads were reported, |
| since reloads of base and index registers precede reloads of operands |
| and the operands may need the base and index registers reloaded. */ |
| |
| for (j = 0; j < n_reloads; j++) |
| { |
| do_input_reload (chain, rld + j, j); |
| do_output_reload (chain, rld + j, j); |
| } |
| |
| /* Now write all the insns we made for reloads in the order expected by |
| the allocation functions. Prior to the insn being reloaded, we write |
| the following reloads: |
| |
| RELOAD_FOR_OTHER_ADDRESS reloads for input addresses. |
| |
| RELOAD_OTHER reloads. |
| |
| For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed |
| by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the |
| RELOAD_FOR_INPUT reload for the operand. |
| |
| RELOAD_FOR_OPADDR_ADDRS reloads. |
| |
| RELOAD_FOR_OPERAND_ADDRESS reloads. |
| |
| After the insn being reloaded, we write the following: |
| |
| For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed |
| by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the |
| RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output |
| reloads for the operand. The RELOAD_OTHER output reloads are |
| output in descending order by reload number. */ |
| |
| emit_insn_before (other_input_address_reload_insns, insn); |
| emit_insn_before (other_input_reload_insns, insn); |
| |
| for (j = 0; j < reload_n_operands; j++) |
| { |
| emit_insn_before (inpaddr_address_reload_insns[j], insn); |
| emit_insn_before (input_address_reload_insns[j], insn); |
| emit_insn_before (input_reload_insns[j], insn); |
| } |
| |
| emit_insn_before (other_operand_reload_insns, insn); |
| emit_insn_before (operand_reload_insns, insn); |
| |
| for (j = 0; j < reload_n_operands; j++) |
| { |
| rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn); |
| x = emit_insn_after (output_address_reload_insns[j], x); |
| x = emit_insn_after (output_reload_insns[j], x); |
| emit_insn_after (other_output_reload_insns[j], x); |
| } |
| |
| /* For all the spill regs newly reloaded in this instruction, |
| record what they were reloaded from, so subsequent instructions |
| can inherit the reloads. |
| |
| Update spill_reg_store for the reloads of this insn. |
| Copy the elements that were updated in the loop above. */ |
| |
| for (j = 0; j < n_reloads; j++) |
| { |
| int r = reload_order[j]; |
| int i = reload_spill_index[r]; |
| |
| /* If this is a non-inherited input reload from a pseudo, we must |
| clear any memory of a previous store to the same pseudo. Only do |
| something if there will not be an output reload for the pseudo |
| being reloaded. */ |
| if (rld[r].in_reg != 0 |
| && ! (reload_inherited[r] || reload_override_in[r])) |
| { |
| rtx reg = rld[r].in_reg; |
| |
| if (GET_CODE (reg) == SUBREG) |
| reg = SUBREG_REG (reg); |
| |
| if (REG_P (reg) |
| && REGNO (reg) >= FIRST_PSEUDO_REGISTER |
| && !REGNO_REG_SET_P (®_has_output_reload, REGNO (reg))) |
| { |
| int nregno = REGNO (reg); |
| |
| if (reg_last_reload_reg[nregno]) |
| { |
| int last_regno = REGNO (reg_last_reload_reg[nregno]); |
| |
| if (reg_reloaded_contents[last_regno] == nregno) |
| spill_reg_store[last_regno] = 0; |
| } |
| } |
| } |
| |
| /* I is nonneg if this reload used a register. |
| If rld[r].reg_rtx is 0, this is an optional reload |
| that we opted to ignore. */ |
| |
| if (i >= 0 && rld[r].reg_rtx != 0) |
| { |
| int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx)); |
| int k; |
| |
| /* For a multi register reload, we need to check if all or part |
| of the value lives to the end. */ |
| for (k = 0; k < nr; k++) |
| if (reload_reg_reaches_end_p (i + k, r)) |
| CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k); |
| |
| /* Maybe the spill reg contains a copy of reload_out. */ |
| if (rld[r].out != 0 |
| && (REG_P (rld[r].out) |
| || (rld[r].out_reg |
| ? REG_P (rld[r].out_reg) |
| /* The reload value is an auto-modification of |
| some kind. For PRE_INC, POST_INC, PRE_DEC |
| and POST_DEC, we record an equivalence |
| between the reload register and the operand |
| on the optimistic assumption that we can make |
| the equivalence hold. reload_as_needed must |
| then either make it hold or invalidate the |
| equivalence. |
| |
| PRE_MODIFY and POST_MODIFY addresses are reloaded |
| somewhat differently, and allowing them here leads |
| to problems. */ |
| : (GET_CODE (rld[r].out) != POST_MODIFY |
| && GET_CODE (rld[r].out) != PRE_MODIFY)))) |
| { |
| rtx reg; |
| |
| reg = reload_reg_rtx_for_output[r]; |
| if (reload_reg_rtx_reaches_end_p (reg, r)) |
| { |
| machine_mode mode = GET_MODE (reg); |
| int regno = REGNO (reg); |
| int nregs = REG_NREGS (reg); |
| rtx out = (REG_P (rld[r].out) |
| ? rld[r].out |
| : rld[r].out_reg |
| ? rld[r].out_reg |
| /* AUTO_INC */ : XEXP (rld[r].in_reg, 0)); |
| int out_regno = REGNO (out); |
| int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1 |
| : hard_regno_nregs (out_regno, mode)); |
| bool piecemeal; |
| |
| spill_reg_store[regno] = new_spill_reg_store[regno]; |
| spill_reg_stored_to[regno] = out; |
| reg_last_reload_reg[out_regno] = reg; |
| |
| piecemeal = (HARD_REGISTER_NUM_P (out_regno) |
| && nregs == out_nregs |
| && inherit_piecemeal_p (out_regno, regno, mode)); |
| |
| /* If OUT_REGNO is a hard register, it may occupy more than |
| one register. If it does, say what is in the |
| rest of the registers assuming that both registers |
| agree on how many words the object takes. If not, |
| invalidate the subsequent registers. */ |
| |
| if (HARD_REGISTER_NUM_P (out_regno)) |
| for (k = 1; k < out_nregs; k++) |
| reg_last_reload_reg[out_regno + k] |
| = (piecemeal ? regno_reg_rtx[regno + k] : 0); |
| |
| /* Now do the inverse operation. */ |
| for (k = 0; k < nregs; k++) |
| { |
| CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k); |
| reg_reloaded_contents[regno + k] |
| = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal |
| ? out_regno |
| : out_regno + k); |
| reg_reloaded_insn[regno + k] = insn; |
| SET_HARD_REG_BIT (reg_reloaded_valid, regno + k); |
| } |
| } |
| } |
| /* Maybe the spill reg contains a copy of reload_in. Only do |
| something if there will not be an output reload for |
| the register being reloaded. */ |
| else if (rld[r].out_reg == 0 |
| && rld[r].in != 0 |
| && ((REG_P (rld[r].in) |
| && !HARD_REGISTER_P (rld[r].in) |
| && !REGNO_REG_SET_P (®_has_output_reload, |
| REGNO (rld[r].in))) |
| || (REG_P (rld[r].in_reg) |
| && !REGNO_REG_SET_P (®_has_output_reload, |
| REGNO (rld[r].in_reg)))) |
| && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn))) |
| { |
| rtx reg; |
| |
| reg = reload_reg_rtx_for_input[r]; |
| if (reload_reg_rtx_reaches_end_p (reg, r)) |
| { |
| machine_mode mode; |
| int regno; |
| int nregs; |
| int in_regno; |
| int in_nregs; |
| rtx in; |
| bool piecemeal; |
| |
| mode = GET_MODE (reg); |
| regno = REGNO (reg); |
| nregs = REG_NREGS (reg); |
| if (REG_P (rld[r].in) |
| && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER) |
| in = rld[r].in; |
| else if (REG_P (rld[r].in_reg)) |
| in = rld[r].in_reg; |
| else |
| in = XEXP (rld[r].in_reg, 0); |
| in_regno = REGNO (in); |
| |
| in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1 |
| : hard_regno_nregs (in_regno, mode)); |
| |
| reg_last_reload_reg[in_regno] = reg; |
| |
| piecemeal = (HARD_REGISTER_NUM_P (in_regno) |
| && nregs == in_nregs |
| && inherit_piecemeal_p (regno, in_regno, mode)); |
| |
| if (HARD_REGISTER_NUM_P (in_regno)) |
| for (k = 1; k < in_nregs; k++) |
| reg_last_reload_reg[in_regno + k] |
| = (piecemeal ? regno_reg_rtx[regno + k] : 0); |
| |
| /* Unless we inherited this reload, show we haven't |
| recently done a store. |
| Previous stores of inherited auto_inc expressions |
| also have to be discarded. */ |
| if (! reload_inherited[r] |
| || (rld[r].out && ! rld[r].out_reg)) |
| spill_reg_store[regno] = 0; |
| |
| for (k = 0; k < nregs; k++) |
| { |
| CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k); |
| reg_reloaded_contents[regno + k] |
| = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal |
| ? in_regno |
| : in_regno + k); |
| reg_reloaded_insn[regno + k] = insn; |
| SET_HARD_REG_BIT (reg_reloaded_valid, regno + k); |
| } |
| } |
| } |
| } |
| |
| /* The following if-statement was #if 0'd in 1.34 (or before...). |
| It's reenabled in 1.35 because supposedly nothing else |
| deals with this problem. */ |
| |
| /* If a register gets output-reloaded from a non-spill register, |
| that invalidates any previous reloaded copy of it. |
| But forget_old_reloads_1 won't get to see it, because |
| it thinks only about the original insn. So invalidate it here. |
| Also do the same thing for RELOAD_OTHER constraints where the |
| output is discarded. */ |
| if (i < 0 |
| && ((rld[r].out != 0 |
| && (REG_P (rld[r].out) |
| || (MEM_P (rld[r].out) |
| && REG_P (rld[r].out_reg)))) |
| || (rld[r].out == 0 && rld[r].out_reg |
| && REG_P (rld[r].out_reg)))) |
| { |
| rtx out = ((rld[r].out && REG_P (rld[r].out)) |
| ? rld[r].out : rld[r].out_reg); |
| int out_regno = REGNO (out); |
| machine_mode mode = GET_MODE (out); |
| |
| /* REG_RTX is now set or clobbered by the main instruction. |
| As the comment above explains, forget_old_reloads_1 only |
| sees the original instruction, and there is no guarantee |
| that the original instruction also clobbered REG_RTX. |
| For example, if find_reloads sees that the input side of |
| a matched operand pair dies in this instruction, it may |
| use the input register as the reload register. |
| |
| Calling forget_old_reloads_1 is a waste of effort if |
| REG_RTX is also the output register. |
| |
| If we know that REG_RTX holds the value of a pseudo |
| register, the code after the call will record that fact. */ |
| if (rld[r].reg_rtx && rld[r].reg_rtx != out) |
| forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL); |
| |
| if (!HARD_REGISTER_NUM_P (out_regno)) |
| { |
| rtx src_reg; |
| rtx_insn *store_insn = NULL; |
| |
| reg_last_reload_reg[out_regno] = 0; |
| |
| /* If we can find a hard register that is stored, record |
| the storing insn so that we may delete this insn with |
| delete_output_reload. */ |
| src_reg = reload_reg_rtx_for_output[r]; |
| |
| if (src_reg) |
| { |
| if (reload_reg_rtx_reaches_end_p (src_reg, r)) |
| store_insn = new_spill_reg_store[REGNO (src_reg)]; |
| else |
| src_reg = NULL_RTX; |
| } |
| else |
| { |
| /* If this is an optional reload, try to find the |
| source reg from an input reload. */ |
| rtx set = single_set (insn); |
| if (set && SET_DEST (set) == rld[r].out) |
| { |
| int k; |
| |
| src_reg = SET_SRC (set); |
| store_insn = insn; |
| for (k = 0; k < n_reloads; k++) |
| { |
| if (rld[k].in == src_reg) |
| { |
| src_reg = reload_reg_rtx_for_input[k]; |
| break; |
| } |
| } |
| } |
| } |
| if (src_reg && REG_P (src_reg) |
| && REGNO (src_reg) < FIRST_PSEUDO_REGISTER) |
| { |
| int src_regno, src_nregs, k; |
| rtx note; |
| |
| gcc_assert (GET_MODE (src_reg) == mode); |
| src_regno = REGNO (src_reg); |
| src_nregs = hard_regno_nregs (src_regno, mode); |
| /* The place where to find a death note varies with |
| PRESERVE_DEATH_INFO_REGNO_P . The condition is not |
| necessarily checked exactly in the code that moves |
| notes, so just check both locations. */ |
| note = find_regno_note (insn, REG_DEAD, src_regno); |
| if (! note && store_insn) |
| note = find_regno_note (store_insn, REG_DEAD, src_regno); |
| for (k = 0; k < src_nregs; k++) |
| { |
| spill_reg_store[src_regno + k] = store_insn; |
| spill_reg_stored_to[src_regno + k] = out; |
| reg_reloaded_contents[src_regno + k] = out_regno; |
| reg_reloaded_insn[src_regno + k] = store_insn; |
| CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k); |
| SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k); |
| SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k); |
| if (note) |
| SET_HARD_REG_BIT (reg_reloaded_died, src_regno); |
| else |
| CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno); |
| } |
| reg_last_reload_reg[out_regno] = src_reg; |
| /* We have to set reg_has_output_reload here, or else |
| forget_old_reloads_1 will clear reg_last_reload_reg |
| right away. */ |
| SET_REGNO_REG_SET (®_has_output_reload, |
| out_regno); |
| } |
| } |
| else |
| { |
| int k, out_nregs = hard_regno_nregs (out_regno, mode); |
| |
| for (k = 0; k < out_nregs; k++) |
| reg_last_reload_reg[out_regno + k] = 0; |
| } |
| } |
| } |
| reg_reloaded_dead |= reg_reloaded_died; |
| } |
| |
| |
| /* Helper for emit_insn_if_valid_for_reload. */ |
| |
| static rtx_insn * |
| emit_insn_if_valid_for_reload_1 (rtx pat) |
| { |
| rtx_insn *last = get_last_insn (); |
| int code; |
| |
| rtx_insn *insn = emit_insn (pat); |
| code = recog_memoized (insn); |
| |
| if (code >= 0) |
| { |
| extract_insn (insn); |
| /* We want constrain operands to treat this insn strictly in its |
| validity determination, i.e., the way it would after reload has |
| completed. */ |
| if (constrain_operands (1, get_enabled_alternatives (insn))) |
| return insn; |
| } |
| |
| delete_insns_since (last); |
| return NULL; |
| } |
| |
| /* Go through the motions to emit INSN and test if it is strictly valid. |
| Return the emitted insn if valid, else return NULL. */ |
| |
| static rtx_insn * |
| emit_insn_if_valid_for_reload (rtx pat) |
| { |
| rtx_insn *insn = emit_insn_if_valid_for_reload_1 (pat); |
| |
| if (insn) |
| return insn; |
| |
| /* If the pattern is a SET, and this target has a single |
| flags-register, try again with a PARALLEL that clobbers that |
| register. */ |
| if (targetm.flags_regnum == INVALID_REGNUM || GET_CODE (pat) != SET) |
| return NULL; |
| |
| rtx flags_clobber = gen_hard_reg_clobber (CCmode, targetm.flags_regnum); |
| rtx parpat = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, pat, flags_clobber)); |
| |
| return emit_insn_if_valid_for_reload (parpat); |
| } |
| |
| /* Emit code to perform a reload from IN (which may be a reload register) to |
| OUT (which may also be a reload register). IN or OUT is from operand |
| OPNUM with reload type TYPE. |
| |
| Returns first insn emitted. */ |
| |
| static rtx_insn * |
| gen_reload (rtx out, rtx in, int opnum, enum reload_type type) |
| { |
| rtx_insn *last = get_last_insn (); |
| rtx_insn *tem; |
| rtx tem1, tem2; |
| |
| /* If IN is a paradoxical SUBREG, remove it and try to put the |
| opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */ |
| if (!strip_paradoxical_subreg (&in, &out)) |
| strip_paradoxical_subreg (&out, &in); |
| |
| /* How to do this reload can get quite tricky. Normally, we are being |
| asked to reload a simple operand, such as a MEM, a constant, or a pseudo |
| register that didn't get a hard register. In that case we can just |
| call emit_move_insn. |
| |
| We can also be asked to reload a PLUS that adds a register or a MEM to |
| another register, constant or MEM. This can occur during frame pointer |
| elimination and while reloading addresses. This case is handled by |
| trying to emit a single insn to perform the add. If it is not valid, |
| we use a two insn sequence. |
| |
| Or we can be asked to reload an unary operand that was a fragment of |
| an addressing mode, into a register. If it isn't recognized as-is, |
| we try making the unop operand and the reload-register the same: |
| (set reg:X (unop:X expr:Y)) |
| -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)). |
| |
| Finally, we could be called to handle an 'o' constraint by putting |
| an address into a register. In that case, we first try to do this |
| with a named pattern of "reload_load_address". If no such pattern |
| exists, we just emit a SET insn and hope for the best (it will normally |
| be valid on machines that use 'o'). |
| |
| This entire process is made complex because reload will never |
| process the insns we generate here and so we must ensure that |
| they will fit their constraints and also by the fact that parts of |
| IN might be being reloaded separately and replaced with spill registers. |
| Because of this, we are, in some sense, just guessing the right approach |
| here. The one listed above seems to work. |
| |
| ??? At some point, this whole thing needs to be rethought. */ |
| |
| if (GET_CODE (in) == PLUS |
| && (REG_P (XEXP (in, 0)) |
| || GET_CODE (XEXP (in, 0)) == SUBREG |
| || MEM_P (XEXP (in, 0))) |
| && (REG_P (XEXP (in, 1)) |
| || GET_CODE (XEXP (in, 1)) == SUBREG |
| || CONSTANT_P (XEXP (in, 1)) |
| || MEM_P (XEXP (in, 1)))) |
| { |
| /* We need to compute the sum of a register or a MEM and another |
| register, constant, or MEM, and put it into the reload |
| register. The best possible way of doing this is if the machine |
| has a three-operand ADD insn that accepts the required operands. |
| |
| The simplest approach is to try to generate such an insn and see if it |
| is recognized and matches its constraints. If so, it can be used. |
| |
| It might be better not to actually emit the insn unless it is valid, |
| but we need to pass the insn as an operand to `recog' and |
| `extract_insn' and it is simpler to emit and then delete the insn if |
| not valid than to dummy things up. */ |
| |
| rtx op0, op1, tem; |
| rtx_insn *insn; |
| enum insn_code code; |
| |
| op0 = find_replacement (&XEXP (in, 0)); |
| op1 = find_replacement (&XEXP (in, 1)); |
| |
| /* Since constraint checking is strict, commutativity won't be |
| checked, so we need to do that here to avoid spurious failure |
| if the add instruction is two-address and the second operand |
| of the add is the same as the reload reg, which is frequently |
| the case. If the insn would be A = B + A, rearrange it so |
| it will be A = A + B as constrain_operands expects. */ |
| |
| if (REG_P (XEXP (in, 1)) |
| && REGNO (out) == REGNO (XEXP (in, 1))) |
| tem = op0, op0 = op1, op1 = tem; |
| |
| if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1)) |
| in = gen_rtx_PLUS (GET_MODE (in), op0, op1); |
| |
| insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in)); |
| if (insn) |
| return insn; |
| |
| /* If that failed, we must use a conservative two-insn sequence. |
| |
| Use a move to copy one operand into the reload register. Prefer |
| to reload a constant, MEM or pseudo since the move patterns can |
| handle an arbitrary operand. If OP1 is not a constant, MEM or |
| pseudo and OP1 is not a valid operand for an add instruction, then |
| reload OP1. |
| |
| After reloading one of the operands into the reload register, add |
| the reload register to the output register. |
| |
| If there is another way to do this for a specific machine, a |
| DEFINE_PEEPHOLE should be specified that recognizes the sequence |
| we emit below. */ |
| |
| code = optab_handler (add_optab, GET_MODE (out)); |
| |
| if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG |
| || (REG_P (op1) |
| && REGNO (op1) >= FIRST_PSEUDO_REGISTER) |
| || (code != CODE_FOR_nothing |
| && !insn_operand_matches (code, 2, op1))) |
| tem = op0, op0 = op1, op1 = tem; |
| |
| gen_reload (out, op0, opnum, type); |
| |
| /* If OP0 and OP1 are the same, we can use OUT for OP1. |
| This fixes a problem on the 32K where the stack pointer cannot |
| be used as an operand of an add insn. */ |
| |
| if (rtx_equal_p (op0, op1)) |
| op1 = out; |
| |
| insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1)); |
| if (insn) |
| { |
| /* Add a REG_EQUIV note so that find_equiv_reg can find it. */ |
| set_dst_reg_note (insn, REG_EQUIV, in, out); |
| return insn; |
| } |
| |
| /* If that failed, copy the address register to the reload register. |
| Then add the constant to the reload register. */ |
| |
| gcc_assert (!reg_overlap_mentioned_p (out, op0)); |
| gen_reload (out, op1, opnum, type); |
| insn = emit_insn (gen_add2_insn (out, op0)); |
| set_dst_reg_note (insn, REG_EQUIV, in, out); |
| } |
| |
| /* If we need a memory location to do the move, do it that way. */ |
| else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out), |
| (REG_P (tem1) && REG_P (tem2))) |
| && REGNO (tem1) < FIRST_PSEUDO_REGISTER |
| && REGNO (tem2) < FIRST_PSEUDO_REGISTER |
| && targetm.secondary_memory_needed (GET_MODE (out), |
| REGNO_REG_CLASS (REGNO (tem1)), |
| REGNO_REG_CLASS (REGNO (tem2)))) |
| { |
| /* Get the memory to use and rewrite both registers to its mode. */ |
| rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type); |
| |
| if (GET_MODE (loc) != GET_MODE (out)) |
| out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out)); |
| |
| if (GET_MODE (loc) != GET_MODE (in)) |
| in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in)); |
| |
| gen_reload (loc, in, opnum, type); |
| gen_reload (out, loc, opnum, type); |
| } |
| else if (REG_P (out) && UNARY_P (in)) |
| { |
| rtx op1; |
| rtx out_moded; |
| rtx_insn *set; |
| |
| op1 = find_replacement (&XEXP (in, 0)); |
| if (op1 != XEXP (in, 0)) |
| in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1); |
| |
| /* First, try a plain SET. */ |
| set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in)); |
| if (set) |
| return set; |
| |
| /* If that failed, move the inner operand to the reload |
| register, and try the same unop with the inner expression |
| replaced with the reload register. */ |
| |
| if (GET_MODE (op1) != GET_MODE (out)) |
| out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out)); |
| else |
| out_moded = out; |
| |
| gen_reload (out_moded, op1, opnum, type); |
| |
| rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), |
| out_moded)); |
| rtx_insn *insn = emit_insn_if_valid_for_reload (temp); |
| if (insn) |
| { |
| set_unique_reg_note (insn, REG_EQUIV, in); |
| return insn; |
| } |
| |
| fatal_insn ("failure trying to reload:", in); |
| } |
| /* If IN is a simple operand, use gen_move_insn. */ |
| else if (OBJECT_P (in) || GET_CODE (in) == SUBREG) |
| { |
| tem = emit_insn (gen_move_insn (out, in)); |
| /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */ |
| mark_jump_label (in, tem, 0); |
| } |
| |
| else if (targetm.have_reload_load_address ()) |
| emit_insn (targetm.gen_reload_load_address (out, in)); |
| |
| /* Otherwise, just write (set OUT IN) and hope for the best. */ |
| else |
| emit_insn (gen_rtx_SET (out, in)); |
| |
| /* Return the first insn emitted. |
| We cannot just return get_last_insn, because there may have |
| been multiple instructions emitted. Also note that gen_move_insn may |
| emit more than one insn itself, so we cannot assume that there is one |
| insn emitted per emit_insn_before call. */ |
| |
| return last ? NEXT_INSN (last) : get_insns (); |
| } |
| |
| /* Delete a previously made output-reload whose result we now believe |
| is not needed. First we double-check. |
| |
| INSN is the insn now being processed. |
| LAST_RELOAD_REG is the hard register number for which we want to delete |
| the last output reload. |
| J is the reload-number that originally used REG. The caller has made |
| certain that reload J doesn't use REG any longer for input. |
| NEW_RELOAD_REG is reload register that reload J is using for REG. */ |
| |
| static void |
| delete_output_reload (rtx_insn *insn, int j, int last_reload_reg, |
| rtx new_reload_reg) |
| { |
| rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg]; |
| rtx reg = spill_reg_stored_to[last_reload_reg]; |
| int k; |
| int n_occurrences; |
| int n_inherited = 0; |
| rtx substed; |
| unsigned regno; |
| int nregs; |
| |
| /* It is possible that this reload has been only used to set another reload |
| we eliminated earlier and thus deleted this instruction too. */ |
| if (output_reload_insn->deleted ()) |
| return; |
| |
| /* Get the raw pseudo-register referred to. */ |
| |
| while (GET_CODE (reg) == SUBREG) |
| reg = SUBREG_REG (reg); |
| substed = reg_equiv_memory_loc (REGNO (reg)); |
| |
| /* This is unsafe if the operand occurs more often in the current |
| insn than it is inherited. */ |
| for (k = n_reloads - 1; k >= 0; k--) |
| { |
| rtx reg2 = rld[k].in; |
| if (! reg2) |
| continue; |
| if (MEM_P (reg2) || reload_override_in[k]) |
| reg2 = rld[k].in_reg; |
| |
| if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg) |
| reg2 = XEXP (rld[k].in_reg, 0); |
| |
| while (GET_CODE (reg2) == SUBREG) |
| reg2 = SUBREG_REG (reg2); |
| if (rtx_equal_p (reg2, reg)) |
| { |
| if (reload_inherited[k] || reload_override_in[k] || k == j) |
| n_inherited++; |
| else |
| return; |
| } |
| } |
| n_occurrences = count_occurrences (PATTERN (insn), reg, 0); |
| if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn)) |
| n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn), |
| reg, 0); |
| if (substed) |
| n_occurrences += count_occurrences (PATTERN (insn), |
| eliminate_regs (substed, VOIDmode, |
| NULL_RTX), 0); |
| for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1)) |
| { |
| gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed)); |
| n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0); |
| } |
| if (n_occurrences > n_inherited) |
| return; |
| |
| regno = REGNO (reg); |
| nregs = REG_NREGS (reg); |
| |
| /* If the pseudo-reg we are reloading is no longer referenced |
| anywhere between the store into it and here, |
| and we're within the same basic block, then the value can only |
| pass through the reload reg and end up here. |
| Otherwise, give up--return. */ |
| for (rtx_insn *i1 = NEXT_INSN (output_reload_insn); |
| i1 != insn; i1 = NEXT_INSN (i1)) |
| { |
| if (NOTE_INSN_BASIC_BLOCK_P (i1)) |
| return; |
| if ((NONJUMP_INSN_P (i1) || CALL_P (i1)) |
| && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL)) |
| { |
| /* If this is USE in front of INSN, we only have to check that |
| there are no more references than accounted for by inheritance. */ |
| while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE) |
| { |
| n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0; |
| i1 = NEXT_INSN (i1); |
| } |
| if (n_occurrences <= n_inherited && i1 == insn) |
| break; |
| return; |
| } |
| } |
| |
| /* We will be deleting the insn. Remove the spill reg information. */ |
| for (k = hard_regno_nregs (last_reload_reg, GET_MODE (reg)); k-- > 0; ) |
| { |
| spill_reg_store[last_reload_reg + k] = 0; |
| spill_reg_stored_to[last_reload_reg + k] = 0; |
| } |
| |
| /* The caller has already checked that REG dies or is set in INSN. |
| It has also checked that we are optimizing, and thus some |
| inaccuracies in the debugging information are acceptable. |
| So we could just delete output_reload_insn. But in some cases |
| we can improve the debugging information without sacrificing |
| optimization - maybe even improving the code: See if the pseudo |
| reg has been completely replaced with reload regs. If so, delete |
| the store insn and forget we had a stack slot for the pseudo. */ |
| if (rld[j].out != rld[j].in |
| && REG_N_DEATHS (REGNO (reg)) == 1 |
| && REG_N_SETS (REGNO (reg)) == 1 |
| && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS |
| && find_regno_note (insn, REG_DEAD, REGNO (reg))) |
| { |
| rtx_insn *i2; |
| |
| /* We know that it was used only between here and the beginning of |
| the current basic block. (We also know that the last use before |
| INSN was the output reload we are thinking of deleting, but never |
| mind that.) Search that range; see if any ref remains. */ |
| for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2)) |
| { |
| rtx set = single_set (i2); |
| |
| /* Uses which just store in the pseudo don't count, |
| since if they are the only uses, they are dead. */ |
| if (set != 0 && SET_DEST (set) == reg) |
| continue; |
| if (LABEL_P (i2) || JUMP_P (i2)) |
| break; |
| if ((NONJUMP_INSN_P (i2) || CALL_P (i2)) |
| && reg_mentioned_p (reg, PATTERN (i2))) |
| { |
| /* Some other ref remains; just delete the output reload we |
| know to be dead. */ |
| delete_address_reloads (output_reload_insn, insn); |
| delete_insn (output_reload_insn); |
| return; |
| } |
| } |
| |
| /* Delete the now-dead stores into this pseudo. Note that this |
| loop also takes care of deleting output_reload_insn. */ |
| for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2)) |
| { |
| rtx set = single_set (i2); |
| |
| if (set != 0 && SET_DEST (set) == reg) |
| { |
| delete_address_reloads (i2, insn); |
| delete_insn (i2); |
| } |
| if (LABEL_P (i2) || JUMP_P (i2)) |
| break; |
| } |
| |
| /* For the debugging info, say the pseudo lives in this reload reg. */ |
| reg_renumber[REGNO (reg)] = REGNO (new_reload_reg); |
| if (ira_conflicts_p) |
| /* Inform IRA about the change. */ |
| ira_mark_allocation_change (REGNO (reg)); |
| alter_reg (REGNO (reg), -1, false); |
| } |
| else |
| { |
| delete_address_reloads (output_reload_insn, insn); |
| delete_insn (output_reload_insn); |
| } |
| } |
| |
| /* We are going to delete DEAD_INSN. Recursively delete loads of |
| reload registers used in DEAD_INSN that are not used till CURRENT_INSN. |
| CURRENT_INSN is being reloaded, so we have to check its reloads too. */ |
| static void |
| delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn) |
| { |
| rtx set = single_set (dead_insn); |
| rtx set2, dst; |
| rtx_insn *prev, *next; |
| if (set) |
| { |
| rtx dst = SET_DEST (set); |
| if (MEM_P (dst)) |
| delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn); |
| } |
| /* If we deleted the store from a reloaded post_{in,de}c expression, |
| we can delete the matching adds. */ |
| prev = PREV_INSN (dead_insn); |
| next = NEXT_INSN (dead_insn); |
| if (! prev || ! next) |
| return; |
| set = single_set (next); |
| set2 = single_set (prev); |
| if (! set || ! set2 |
| || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS |
| || !CONST_INT_P (XEXP (SET_SRC (set), 1)) |
| || !CONST_INT_P (XEXP (SET_SRC (set2), 1))) |
| return; |
| dst = SET_DEST (set); |
| if (! rtx_equal_p (dst, SET_DEST (set2)) |
| || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0)) |
| || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0)) |
| || (INTVAL (XEXP (SET_SRC (set), 1)) |
| != -INTVAL (XEXP (SET_SRC (set2), 1)))) |
| return; |
| delete_related_insns (prev); |
| delete_related_insns (next); |
| } |
| |
| /* Subfunction of delete_address_reloads: process registers found in X. */ |
| static void |
| delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn) |
| { |
| rtx_insn *prev, *i2; |
| rtx set, dst; |
| int i, j; |
| enum rtx_code code = GET_CODE (x); |
| |
| if (code != REG) |
| { |
| const char *fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e') |
| delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn); |
| else if (fmt[i] == 'E') |
| { |
| for (j = XVECLEN (x, i) - 1; j >= 0; j--) |
| delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j), |
| current_insn); |
| } |
| } |
| return; |
| } |
| |
| if (spill_reg_order[REGNO (x)] < 0) |
| return; |
| |
| /* Scan backwards for the insn that sets x. This might be a way back due |
| to inheritance. */ |
| for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev)) |
| { |
| code = GET_CODE (prev); |
| if (code == CODE_LABEL || code == JUMP_INSN) |
| return; |
| if (!INSN_P (prev)) |
| continue; |
| if (reg_set_p (x, PATTERN (prev))) |
| break; |
| if (reg_referenced_p (x, PATTERN (prev))) |
| return; |
| } |
| if (! prev || INSN_UID (prev) < reload_first_uid) |
| return; |
| /* Check that PREV only sets the reload register. */ |
| set = single_set (prev); |
| if (! set) |
| return; |
| dst = SET_DEST (set); |
| if (!REG_P (dst) |
| || ! rtx_equal_p (dst, x)) |
| return; |
| if (! reg_set_p (dst, PATTERN (dead_insn))) |
| { |
| /* Check if DST was used in a later insn - |
| it might have been inherited. */ |
| for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2)) |
| { |
| if (LABEL_P (i2)) |
| break; |
| if (! INSN_P (i2)) |
| continue; |
| if (reg_referenced_p (dst, PATTERN (i2))) |
| { |
| /* If there is a reference to the register in the current insn, |
| it might be loaded in a non-inherited reload. If no other |
| reload uses it, that means the register is set before |
| referenced. */ |
| if (i2 == current_insn) |
| { |
| for (j = n_reloads - 1; j >= 0; j--) |
| if ((rld[j].reg_rtx == dst && reload_inherited[j]) |
| || reload_override_in[j] == dst) |
| return; |
| for (j = n_reloads - 1; j >= 0; j--) |
| if (rld[j].in && rld[j].reg_rtx == dst) |
| break; |
| if (j >= 0) |
| break; |
| } |
| return; |
| } |
| if (JUMP_P (i2)) |
| break; |
| /* If DST is still live at CURRENT_INSN, check if it is used for |
| any reload. Note that even if CURRENT_INSN sets DST, we still |
| have to check the reloads. */ |
| if (i2 == current_insn) |
| { |
| for (j = n_reloads - 1; j >= 0; j--) |
| if ((rld[j].reg_rtx == dst && reload_inherited[j]) |
| || reload_override_in[j] == dst) |
| return; |
| /* ??? We can't finish the loop here, because dst might be |
| allocated to a pseudo in this block if no reload in this |
| block needs any of the classes containing DST - see |
| spill_hard_reg. There is no easy way to tell this, so we |
| have to scan till the end of the basic block. */ |
| } |
| if (reg_set_p (dst, PATTERN (i2))) |
| break; |
| } |
| } |
| delete_address_reloads_1 (prev, SET_SRC (set), current_insn); |
| reg_reloaded_contents[REGNO (dst)] = -1; |
| delete_insn (prev); |
| } |
| |
| /* Output reload-insns to reload VALUE into RELOADREG. |
| VALUE is an autoincrement or autodecrement RTX whose operand |
| is a register or memory location; |
| so reloading involves incrementing that location. |
| IN is either identical to VALUE, or some cheaper place to reload from. |
| |
| INC_AMOUNT is the number to increment or decrement by (always positive). |
| This cannot be deduced from VALUE. */ |
| |
| static void |
| inc_for_reload (rtx reloadreg, rtx in, rtx value, poly_int64 inc_amount) |
| { |
| /* REG or MEM to be copied and incremented. */ |
| rtx incloc = find_replacement (&XEXP (value, 0)); |
| /* Nonzero if increment after copying. */ |
| int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC |
| || GET_CODE (value) == POST_MODIFY); |
| rtx_insn *last; |
| rtx inc; |
| rtx_insn *add_insn; |
| int code; |
| rtx real_in = in == value ? incloc : in; |
| |
| /* No hard register is equivalent to this register after |
| inc/dec operation. If REG_LAST_RELOAD_REG were nonzero, |
| we could inc/dec that register as well (maybe even using it for |
| the source), but I'm not sure it's worth worrying about. */ |
| if (REG_P (incloc)) |
| reg_last_reload_reg[REGNO (incloc)] = 0; |
| |
| if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY) |
| { |
| gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS); |
| inc = find_replacement (&XEXP (XEXP (value, 1), 1)); |
| } |
| else |
| { |
| if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC) |
| inc_amount = -inc_amount; |
| |
| inc = gen_int_mode (inc_amount, Pmode); |
| } |
| |
| /* If this is post-increment, first copy the location to the reload reg. */ |
| if (post && real_in != reloadreg) |
| emit_insn (gen_move_insn (reloadreg, real_in)); |
| |
| if (in == value) |
| { |
| /* See if we can directly increment INCLOC. Use a method similar to |
| that in gen_reload. */ |
| |
| last = get_last_insn (); |
| add_insn = emit_insn (gen_rtx_SET (incloc, |
| gen_rtx_PLUS (GET_MODE (incloc), |
| incloc, inc))); |
| |
| code = recog_memoized (add_insn); |
| if (code >= 0) |
| { |
| extract_insn (add_insn); |
| if (constrain_operands (1, get_enabled_alternatives (add_insn))) |
| { |
| /* If this is a pre-increment and we have incremented the value |
| where it lives, copy the incremented value to RELOADREG to |
| be used as an address. */ |
| |
| if (! post) |
| emit_insn (gen_move_insn (reloadreg, incloc)); |
| return; |
| } |
| } |
| delete_insns_since (last); |
| } |
| |
| /* If couldn't do the increment directly, must increment in RELOADREG. |
| The way we do this depends on whether this is pre- or post-increment. |
| For pre-increment, copy INCLOC to the reload register, increment it |
| there, then save back. */ |
| |
| if (! post) |
| { |
| if (in != reloadreg) |
| emit_insn (gen_move_insn (reloadreg, real_in)); |
| emit_insn (gen_add2_insn (reloadreg, inc)); |
| emit_insn (gen_move_insn (incloc, reloadreg)); |
| } |
| else |
| { |
| /* Postincrement. |
| Because this might be a jump insn or a compare, and because RELOADREG |
| may not be available after the insn in an input reload, we must do |
| the incrementation before the insn being reloaded for. |
| |
| We have already copied IN to RELOADREG. Increment the copy in |
| RELOADREG, save that back, then decrement RELOADREG so it has |
| the original value. */ |
| |
| emit_insn (gen_add2_insn (reloadreg, inc)); |
| emit_insn (gen_move_insn (incloc, reloadreg)); |
| if (CONST_INT_P (inc)) |
| emit_insn (gen_add2_insn (reloadreg, |
| gen_int_mode (-INTVAL (inc), |
| GET_MODE (reloadreg)))); |
| else |
| emit_insn (gen_sub2_insn (reloadreg, inc)); |
| } |
| } |