blob: 84eadd1179ea2a74b37902d2a1e97d87bc228ab6 [file] [log] [blame]
/* Predicate aware uninitialized variable warning.
Copyright (C) 2001-2021 Free Software Foundation, Inc.
Contributed by Xinliang David Li <davidxl@google.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define INCLUDE_STRING
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "tree-ssa.h"
#include "tree-cfg.h"
#include "cfghooks.h"
#include "attribs.h"
#include "builtins.h"
#include "calls.h"
#include "gimple-range.h"
/* This implements the pass that does predicate aware warning on uses of
possibly uninitialized variables. The pass first collects the set of
possibly uninitialized SSA names. For each such name, it walks through
all its immediate uses. For each immediate use, it rebuilds the condition
expression (the predicate) that guards the use. The predicate is then
examined to see if the variable is always defined under that same condition.
This is done either by pruning the unrealizable paths that lead to the
default definitions or by checking if the predicate set that guards the
defining paths is a superset of the use predicate. */
/* Max PHI args we can handle in pass. */
const unsigned max_phi_args = 32;
/* Pointer set of potentially undefined ssa names, i.e.,
ssa names that are defined by phi with operands that
are not defined or potentially undefined. */
static hash_set<tree> *possibly_undefined_names = 0;
/* Bit mask handling macros. */
#define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
#define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
#define MASK_EMPTY(mask) (mask == 0)
/* Returns the first bit position (starting from LSB)
in mask that is non zero. Returns -1 if the mask is empty. */
static int
get_mask_first_set_bit (unsigned mask)
{
int pos = 0;
if (mask == 0)
return -1;
while ((mask & (1 << pos)) == 0)
pos++;
return pos;
}
#define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
/* Return true if T, an SSA_NAME, has an undefined value. */
static bool
has_undefined_value_p (tree t)
{
return (ssa_undefined_value_p (t)
|| (possibly_undefined_names
&& possibly_undefined_names->contains (t)));
}
/* Return true if EXPR should suppress either uninitialized warning. */
static inline bool
get_no_uninit_warning (tree expr)
{
return warning_suppressed_p (expr, OPT_Wuninitialized);
}
/* Suppress both uninitialized warnings for EXPR. */
static inline void
set_no_uninit_warning (tree expr)
{
suppress_warning (expr, OPT_Wuninitialized);
}
/* Like has_undefined_value_p, but don't return true if the no-warning
bit is set on SSA_NAME_VAR for either uninit warning. */
static inline bool
uninit_undefined_value_p (tree t)
{
if (!has_undefined_value_p (t))
return false;
if (!SSA_NAME_VAR (t))
return true;
return !get_no_uninit_warning (SSA_NAME_VAR (t));
}
/* Emit warnings for uninitialized variables. This is done in two passes.
The first pass notices real uses of SSA names with undefined values.
Such uses are unconditionally uninitialized, and we can be certain that
such a use is a mistake. This pass is run before most optimizations,
so that we catch as many as we can.
The second pass follows PHI nodes to find uses that are potentially
uninitialized. In this case we can't necessarily prove that the use
is really uninitialized. This pass is run after most optimizations,
so that we thread as many jumps and possible, and delete as much dead
code as possible, in order to reduce false positives. We also look
again for plain uninitialized variables, since optimization may have
changed conditionally uninitialized to unconditionally uninitialized. */
/* Emit warning OPT for variable VAR at the point in the program where
the SSA_NAME T is being used uninitialized. The warning text is in
MSGID and STMT is the statement that does the uninitialized read.
PHI_ARG_LOC is the location of the PHI argument if T and VAR are one,
or UNKNOWN_LOCATION otherwise. */
static void
warn_uninit (opt_code opt, tree t, tree var, const char *gmsgid,
gimple *context, location_t phi_arg_loc = UNKNOWN_LOCATION)
{
/* Bail if the value isn't provably uninitialized. */
if (!has_undefined_value_p (t))
return;
/* Ignore COMPLEX_EXPR as initializing only a part of a complex
turns in a COMPLEX_EXPR with the not initialized part being
set to its previous (undefined) value. */
if (is_gimple_assign (context)
&& gimple_assign_rhs_code (context) == COMPLEX_EXPR)
return;
/* Ignore REALPART_EXPR or IMAGPART_EXPR if its operand is a call to
.DEFERRED_INIT. This is for handling the following case correctly:
1 typedef _Complex float C;
2 C foo (int cond)
3 {
4 C f;
5 __imag__ f = 0;
6 if (cond)
7 {
8 __real__ f = 1;
9 return f;
10 }
11 return f;
12 }
with -ftrivial-auto-var-init, compiler will insert the following
artificial initialization at line 4:
f = .DEFERRED_INIT (f, 2);
_1 = REALPART_EXPR <f>;
without the following special handling, _1 = REALPART_EXPR <f> will
be treated as the uninitialized use point, which is incorrect. (the
real uninitialized use point is at line 11). */
if (is_gimple_assign (context)
&& (gimple_assign_rhs_code (context) == REALPART_EXPR
|| gimple_assign_rhs_code (context) == IMAGPART_EXPR))
{
tree v = gimple_assign_rhs1 (context);
if (TREE_CODE (TREE_OPERAND (v, 0)) == SSA_NAME
&& gimple_call_internal_p (SSA_NAME_DEF_STMT (TREE_OPERAND (v, 0)),
IFN_DEFERRED_INIT))
return;
}
/* Anonymous SSA_NAMEs shouldn't be uninitialized, but ssa_undefined_value_p
can return true if the def stmt of an anonymous SSA_NAME is COMPLEX_EXPR
created for conversion from scalar to complex. Use the underlying var of
the COMPLEX_EXPRs real part in that case. See PR71581. */
if (!var && !SSA_NAME_VAR (t))
{
gimple *def_stmt = SSA_NAME_DEF_STMT (t);
if (is_gimple_assign (def_stmt)
&& gimple_assign_rhs_code (def_stmt) == COMPLEX_EXPR)
{
tree v = gimple_assign_rhs1 (def_stmt);
if (TREE_CODE (v) == SSA_NAME
&& has_undefined_value_p (v)
&& zerop (gimple_assign_rhs2 (def_stmt)))
var = SSA_NAME_VAR (v);
}
}
if (var == NULL_TREE)
return;
/* Avoid warning if we've already done so or if the warning has been
suppressed. */
if (((warning_suppressed_p (context, OPT_Wuninitialized)
|| (gimple_assign_single_p (context)
&& get_no_uninit_warning (gimple_assign_rhs1 (context)))))
|| get_no_uninit_warning (var))
return;
/* Use either the location of the read statement or that of the PHI
argument, or that of the uninitialized variable, in that order,
whichever is valid. */
location_t location;
if (gimple_has_location (context))
location = gimple_location (context);
else if (phi_arg_loc != UNKNOWN_LOCATION)
location = phi_arg_loc;
else
location = DECL_SOURCE_LOCATION (var);
location = linemap_resolve_location (line_table, location,
LRK_SPELLING_LOCATION, NULL);
auto_diagnostic_group d;
if (!warning_at (location, opt, gmsgid, var))
return;
/* Avoid subsequent warnings for reads of the same variable again. */
suppress_warning (var, opt);
/* Issue a note pointing to the read variable unless the warning
is at the same location. */
location_t var_loc = DECL_SOURCE_LOCATION (var);
if (location == var_loc)
return;
inform (var_loc, "%qD was declared here", var);
}
struct check_defs_data
{
/* If we found any may-defs besides must-def clobbers. */
bool found_may_defs;
};
/* Return true if STMT is a call to built-in function all of whose
by-reference arguments are const-qualified (i.e., the function can
be assumed not to modify them). */
static bool
builtin_call_nomodifying_p (gimple *stmt)
{
if (!gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
return false;
tree fndecl = gimple_call_fndecl (stmt);
if (!fndecl)
return false;
tree fntype = TREE_TYPE (fndecl);
if (!fntype)
return false;
/* Check the called function's signature for non-constc pointers.
If one is found, return false. */
unsigned argno = 0;
tree argtype;
function_args_iterator it;
FOREACH_FUNCTION_ARGS (fntype, argtype, it)
{
if (VOID_TYPE_P (argtype))
return true;
++argno;
if (!POINTER_TYPE_P (argtype))
continue;
if (TYPE_READONLY (TREE_TYPE (argtype)))
continue;
return false;
}
/* If the number of actual arguments to the call is less than or
equal to the number of parameters, return false. */
unsigned nargs = gimple_call_num_args (stmt);
if (nargs <= argno)
return false;
/* Check arguments passed through the ellipsis in calls to variadic
functions for pointers. If one is found that's a non-constant
pointer, return false. */
for (; argno < nargs; ++argno)
{
tree arg = gimple_call_arg (stmt, argno);
argtype = TREE_TYPE (arg);
if (!POINTER_TYPE_P (argtype))
continue;
if (TYPE_READONLY (TREE_TYPE (argtype)))
continue;
return false;
}
return true;
}
/* If ARG is a FNDECL parameter declared with attribute access none or
write_only issue a warning for its read access via PTR. */
static void
maybe_warn_read_write_only (tree fndecl, gimple *stmt, tree arg, tree ptr)
{
if (!fndecl)
return;
if (get_no_uninit_warning (arg))
return;
tree fntype = TREE_TYPE (fndecl);
if (!fntype)
return;
/* Initialize a map of attribute access specifications for arguments
to the function function call. */
rdwr_map rdwr_idx;
init_attr_rdwr_indices (&rdwr_idx, TYPE_ATTRIBUTES (fntype));
unsigned argno = 0;
tree parms = DECL_ARGUMENTS (fndecl);
for (tree parm = parms; parm; parm = TREE_CHAIN (parm), ++argno)
{
if (parm != arg)
continue;
const attr_access* access = rdwr_idx.get (argno);
if (!access)
break;
if (access->mode != access_none
&& access->mode != access_write_only)
continue;
location_t stmtloc
= linemap_resolve_location (line_table, gimple_location (stmt),
LRK_SPELLING_LOCATION, NULL);
if (!warning_at (stmtloc, OPT_Wmaybe_uninitialized,
"%qE may be used uninitialized", ptr))
break;
suppress_warning (arg, OPT_Wmaybe_uninitialized);
const char* const access_str =
TREE_STRING_POINTER (access->to_external_string ());
location_t parmloc = DECL_SOURCE_LOCATION (parm);
inform (parmloc, "accessing argument %u of a function declared with "
"attribute %<%s%>",
argno + 1, access_str);
break;
}
}
/* Callback for walk_aliased_vdefs. */
static bool
check_defs (ao_ref *ref, tree vdef, void *data_)
{
check_defs_data *data = (check_defs_data *)data_;
gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
/* Ignore the vdef if the definition statement is a call
to .DEFERRED_INIT function. */
if (gimple_call_internal_p (def_stmt, IFN_DEFERRED_INIT))
return false;
/* The ASAN_MARK intrinsic doesn't modify the variable. */
if (is_gimple_call (def_stmt))
{
if (gimple_call_internal_p (def_stmt)
&& gimple_call_internal_fn (def_stmt) == IFN_ASAN_MARK)
return false;
if (tree fndecl = gimple_call_fndecl (def_stmt))
{
/* Some sanitizer calls pass integer arguments to built-ins
that expect pointers. Avoid using gimple_call_builtin_p()
which fails for such calls. */
if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
{
built_in_function fncode = DECL_FUNCTION_CODE (fndecl);
if (fncode > BEGIN_SANITIZER_BUILTINS
&& fncode < END_SANITIZER_BUILTINS)
return false;
}
}
}
/* End of VLA scope is not a kill. */
if (gimple_call_builtin_p (def_stmt, BUILT_IN_STACK_RESTORE))
return false;
/* If this is a clobber then if it is not a kill walk past it. */
if (gimple_clobber_p (def_stmt))
{
if (stmt_kills_ref_p (def_stmt, ref))
return true;
return false;
}
if (builtin_call_nomodifying_p (def_stmt))
return false;
/* Found a may-def on this path. */
data->found_may_defs = true;
return true;
}
/* Counters and limits controlling the the depth of analysis and
strictness of the warning. */
struct wlimits
{
/* Number of VDEFs encountered. */
unsigned int vdef_cnt;
/* Number of statements examined by walk_aliased_vdefs. */
unsigned int oracle_cnt;
/* Limit on the number of statements visited by walk_aliased_vdefs. */
unsigned limit;
/* Set when basic block with statement is executed unconditionally. */
bool always_executed;
/* Set to issue -Wmaybe-uninitialized. */
bool wmaybe_uninit;
};
/* Determine if REF references an uninitialized operand and diagnose
it if so. STMS is the referencing statement. LHS is the result
of the access and may be null. RHS is the variable referenced by
the access; it may not be null. */
static tree
maybe_warn_operand (ao_ref &ref, gimple *stmt, tree lhs, tree rhs,
wlimits &wlims)
{
bool has_bit_insert = false;
use_operand_p luse_p;
imm_use_iterator liter;
if (get_no_uninit_warning (rhs))
return NULL_TREE;
/* Do not warn if the base was marked so or this is a
hard register var. */
tree base = ao_ref_base (&ref);
if ((VAR_P (base)
&& DECL_HARD_REGISTER (base))
|| get_no_uninit_warning (base))
return NULL_TREE;
/* Do not warn if the access is zero size or if it's fully outside
the object. */
poly_int64 decl_size;
if (known_size_p (ref.size)
&& known_eq (ref.max_size, ref.size)
&& (known_eq (ref.size, 0)
|| known_le (ref.offset + ref.size, 0)))
return NULL_TREE;
if (DECL_P (base)
&& known_ge (ref.offset, 0)
&& DECL_SIZE (base)
&& poly_int_tree_p (DECL_SIZE (base), &decl_size)
&& known_le (decl_size, ref.offset))
return NULL_TREE;
/* Do not warn if the result of the access is then used for
a BIT_INSERT_EXPR. */
if (lhs && TREE_CODE (lhs) == SSA_NAME)
FOR_EACH_IMM_USE_FAST (luse_p, liter, lhs)
{
gimple *use_stmt = USE_STMT (luse_p);
/* BIT_INSERT_EXPR first operand should not be considered
a use for the purpose of uninit warnings. */
if (gassign *ass = dyn_cast <gassign *> (use_stmt))
{
if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR
&& luse_p->use == gimple_assign_rhs1_ptr (ass))
{
has_bit_insert = true;
break;
}
}
}
if (has_bit_insert)
return NULL_TREE;
/* Limit the walking to a constant number of stmts after
we overcommit quadratic behavior for small functions
and O(n) behavior. */
if (wlims.oracle_cnt > 128 * 128
&& wlims.oracle_cnt > wlims.vdef_cnt * 2)
wlims.limit = 32;
check_defs_data data;
bool fentry_reached = false;
data.found_may_defs = false;
tree use = gimple_vuse (stmt);
if (!use)
return NULL_TREE;
int res = walk_aliased_vdefs (&ref, use,
check_defs, &data, NULL,
&fentry_reached, wlims.limit);
if (res == -1)
{
wlims.oracle_cnt += wlims.limit;
return NULL_TREE;
}
wlims.oracle_cnt += res;
if (data.found_may_defs)
return NULL_TREE;
bool found_alloc = false;
if (fentry_reached)
{
if (TREE_CODE (base) == MEM_REF)
base = TREE_OPERAND (base, 0);
/* Follow the chain of SSA_NAME assignments looking for an alloca
call (or VLA) or malloc/realloc, or for decls. If any is found
(and in the latter case, the operand is a local variable) issue
a warning. */
while (TREE_CODE (base) == SSA_NAME)
{
gimple *def_stmt = SSA_NAME_DEF_STMT (base);
if (is_gimple_call (def_stmt)
&& gimple_call_builtin_p (def_stmt))
{
/* Detect uses of uninitialized alloca/VLAs. */
tree fndecl = gimple_call_fndecl (def_stmt);
const built_in_function fncode = DECL_FUNCTION_CODE (fndecl);
if (fncode == BUILT_IN_ALLOCA
|| fncode == BUILT_IN_ALLOCA_WITH_ALIGN
|| fncode == BUILT_IN_MALLOC)
found_alloc = true;
break;
}
if (!is_gimple_assign (def_stmt))
break;
tree_code code = gimple_assign_rhs_code (def_stmt);
if (code != ADDR_EXPR && code != POINTER_PLUS_EXPR)
break;
base = gimple_assign_rhs1 (def_stmt);
if (TREE_CODE (base) == ADDR_EXPR)
base = TREE_OPERAND (base, 0);
if (DECL_P (base)
|| TREE_CODE (base) == COMPONENT_REF)
rhs = base;
if (TREE_CODE (base) == MEM_REF)
base = TREE_OPERAND (base, 0);
if (tree ba = get_base_address (base))
base = ba;
}
/* Replace the RHS expression with BASE so that it
refers to it in the diagnostic (instead of to
'<unknown>'). */
if (DECL_P (base)
&& EXPR_P (rhs)
&& TREE_CODE (rhs) != COMPONENT_REF)
rhs = base;
}
/* Do not warn if it can be initialized outside this function.
If we did not reach function entry then we found killing
clobbers on all paths to entry. */
if (!found_alloc && fentry_reached)
{
if (TREE_CODE (base) == SSA_NAME)
{
tree var = SSA_NAME_VAR (base);
if (var && TREE_CODE (var) == PARM_DECL)
{
maybe_warn_read_write_only (cfun->decl, stmt, var, rhs);
return NULL_TREE;
}
}
if (!VAR_P (base)
|| is_global_var (base))
/* ??? We'd like to use ref_may_alias_global_p but that
excludes global readonly memory and thus we get bogus
warnings from p = cond ? "a" : "b" for example. */
return NULL_TREE;
}
/* Strip the address-of expression from arrays passed to functions. */
if (TREE_CODE (rhs) == ADDR_EXPR)
rhs = TREE_OPERAND (rhs, 0);
/* Check again since RHS may have changed above. */
if (get_no_uninit_warning (rhs))
return NULL_TREE;
/* Avoid warning about empty types such as structs with no members.
The first_field() test is important for C++ where the predicate
alone isn't always sufficient. */
tree rhstype = TREE_TYPE (rhs);
if (POINTER_TYPE_P (rhstype))
rhstype = TREE_TYPE (rhstype);
if (is_empty_type (rhstype))
return NULL_TREE;
bool warned = false;
/* We didn't find any may-defs so on all paths either
reached function entry or a killing clobber. */
location_t location
= linemap_resolve_location (line_table, gimple_location (stmt),
LRK_SPELLING_LOCATION, NULL);
if (wlims.always_executed)
{
if (warning_at (location, OPT_Wuninitialized,
"%qE is used uninitialized", rhs))
{
/* ??? This is only effective for decls as in
gcc.dg/uninit-B-O0.c. Avoid doing this for maybe-uninit
uses or accesses by functions as it may hide important
locations. */
if (lhs)
set_no_uninit_warning (rhs);
warned = true;
}
}
else if (wlims.wmaybe_uninit)
warned = warning_at (location, OPT_Wmaybe_uninitialized,
"%qE may be used uninitialized", rhs);
return warned ? base : NULL_TREE;
}
/* Diagnose passing addresses of uninitialized objects to either const
pointer arguments to functions, or to functions declared with attribute
access implying read access to those objects. */
static void
maybe_warn_pass_by_reference (gcall *stmt, wlimits &wlims)
{
if (!wlims.wmaybe_uninit)
return;
unsigned nargs = gimple_call_num_args (stmt);
if (!nargs)
return;
tree fndecl = gimple_call_fndecl (stmt);
tree fntype = gimple_call_fntype (stmt);
if (!fntype)
return;
/* Const function do not read their arguments. */
if (gimple_call_flags (stmt) & ECF_CONST)
return;
const built_in_function fncode
= (fndecl && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
? DECL_FUNCTION_CODE (fndecl) : (built_in_function)BUILT_IN_LAST);
if (fncode == BUILT_IN_MEMCPY || fncode == BUILT_IN_MEMMOVE)
/* Avoid diagnosing calls to raw memory functions (this is overly
permissive; consider tightening it up). */
return;
/* Save the current warning setting and replace it either a "maybe"
when passing addresses of uninitialized variables to const-qualified
pointers or arguments declared with attribute read_write, or with
a "certain" when passing them to arguments declared with attribute
read_only. */
const bool save_always_executed = wlims.always_executed;
/* Initialize a map of attribute access specifications for arguments
to the function function call. */
rdwr_map rdwr_idx;
init_attr_rdwr_indices (&rdwr_idx, TYPE_ATTRIBUTES (fntype));
tree argtype;
unsigned argno = 0;
function_args_iterator it;
FOREACH_FUNCTION_ARGS (fntype, argtype, it)
{
++argno;
if (!POINTER_TYPE_P (argtype))
continue;
tree access_size = NULL_TREE;
const attr_access* access = rdwr_idx.get (argno - 1);
if (access)
{
if (access->mode == access_none
|| access->mode == access_write_only)
continue;
if (access->mode == access_deferred
&& !TYPE_READONLY (TREE_TYPE (argtype)))
continue;
if (save_always_executed && access->mode == access_read_only)
/* Attribute read_only arguments imply read access. */
wlims.always_executed = true;
else
/* Attribute read_write arguments are documented as requiring
initialized objects but it's expected that aggregates may
be only partially initialized regardless. */
wlims.always_executed = false;
if (access->sizarg < nargs)
access_size = gimple_call_arg (stmt, access->sizarg);
}
else if (!TYPE_READONLY (TREE_TYPE (argtype)))
continue;
else if (save_always_executed && fncode != BUILT_IN_LAST)
/* Const-qualified arguments to built-ins imply read access. */
wlims.always_executed = true;
else
/* Const-qualified arguments to ordinary functions imply a likely
(but not definitive) read access. */
wlims.always_executed = false;
/* Ignore args we are not going to read from. */
if (gimple_call_arg_flags (stmt, argno - 1) & (EAF_UNUSED | EAF_NOREAD))
continue;
tree arg = gimple_call_arg (stmt, argno - 1);
if (!POINTER_TYPE_P (TREE_TYPE (arg)))
/* Avoid actual arguments with invalid types. */
continue;
ao_ref ref;
ao_ref_init_from_ptr_and_size (&ref, arg, access_size);
tree argbase = maybe_warn_operand (ref, stmt, NULL_TREE, arg, wlims);
if (!argbase)
continue;
if (access && access->mode != access_deferred)
{
const char* const access_str =
TREE_STRING_POINTER (access->to_external_string ());
if (fndecl)
{
location_t loc = DECL_SOURCE_LOCATION (fndecl);
inform (loc, "in a call to %qD declared with "
"attribute %<%s%> here", fndecl, access_str);
}
else
{
/* Handle calls through function pointers. */
location_t loc = gimple_location (stmt);
inform (loc, "in a call to %qT declared with "
"attribute %<%s%>", fntype, access_str);
}
}
else
{
/* For a declaration with no relevant attribute access create
a dummy object and use the formatting function to avoid
having to complicate things here. */
attr_access ptr_access = { };
if (!access)
access = &ptr_access;
const std::string argtypestr = access->array_as_string (argtype);
if (fndecl)
{
location_t loc (DECL_SOURCE_LOCATION (fndecl));
inform (loc, "by argument %u of type %s to %qD "
"declared here",
argno, argtypestr.c_str (), fndecl);
}
else
{
/* Handle calls through function pointers. */
location_t loc (gimple_location (stmt));
inform (loc, "by argument %u of type %s to %qT",
argno, argtypestr.c_str (), fntype);
}
}
if (DECL_P (argbase))
{
location_t loc = DECL_SOURCE_LOCATION (argbase);
inform (loc, "%qD declared here", argbase);
}
}
wlims.always_executed = save_always_executed;
}
/* Warn about an uninitialized PHI argument on the fallthru path to
an always executed block BB. */
static void
warn_uninit_phi_uses (basic_block bb)
{
edge_iterator ei;
edge e, found = NULL, found_back = NULL;
/* Look for a fallthru and possibly a single backedge. */
FOR_EACH_EDGE (e, ei, bb->preds)
{
/* Ignore backedges. */
if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
{
if (found_back)
{
found = NULL;
break;
}
found_back = e;
continue;
}
if (found)
{
found = NULL;
break;
}
found = e;
}
if (!found)
return;
basic_block succ = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
gsi_next (&si))
{
gphi *phi = si.phi ();
tree def = PHI_ARG_DEF_FROM_EDGE (phi, found);
if (TREE_CODE (def) != SSA_NAME
|| !SSA_NAME_IS_DEFAULT_DEF (def)
|| virtual_operand_p (def))
continue;
/* If there's a default def on the fallthru edge PHI
value and there's a use that post-dominates entry
then that use is uninitialized and we can warn. */
imm_use_iterator iter;
use_operand_p use_p;
gimple *use_stmt = NULL;
FOR_EACH_IMM_USE_FAST (use_p, iter, gimple_phi_result (phi))
{
use_stmt = USE_STMT (use_p);
if (gimple_location (use_stmt) != UNKNOWN_LOCATION
&& dominated_by_p (CDI_POST_DOMINATORS, succ,
gimple_bb (use_stmt))
/* If we found a non-fallthru edge make sure the
use is inside the loop, otherwise the backedge
can serve as initialization. */
&& (!found_back
|| dominated_by_p (CDI_DOMINATORS, found_back->src,
gimple_bb (use_stmt))))
break;
use_stmt = NULL;
}
if (use_stmt)
warn_uninit (OPT_Wuninitialized, def, SSA_NAME_VAR (def),
"%qD is used uninitialized", use_stmt);
}
}
/* Issue warnings about reads of uninitialized variables. WMAYBE_UNINIT
is true to issue -Wmaybe-uninitialized, otherwise -Wuninitialized. */
static void
warn_uninitialized_vars (bool wmaybe_uninit)
{
/* Counters and limits controlling the the depth of the warning. */
wlimits wlims = { };
wlims.wmaybe_uninit = wmaybe_uninit;
gimple_stmt_iterator gsi;
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
{
basic_block succ = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
wlims.always_executed = dominated_by_p (CDI_POST_DOMINATORS, succ, bb);
if (wlims.always_executed)
warn_uninit_phi_uses (bb);
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
/* The call is an artificial use, will not provide meaningful
error message. If the result of the call is used somewhere
else, we warn there instead. */
if (gimple_call_internal_p (stmt, IFN_DEFERRED_INIT))
continue;
if (is_gimple_debug (stmt))
continue;
/* We only do data flow with SSA_NAMEs, so that's all we
can warn about. */
use_operand_p use_p;
ssa_op_iter op_iter;
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, op_iter, SSA_OP_USE)
{
/* BIT_INSERT_EXPR first operand should not be considered
a use for the purpose of uninit warnings. */
if (gassign *ass = dyn_cast <gassign *> (stmt))
{
if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR
&& use_p->use == gimple_assign_rhs1_ptr (ass))
continue;
}
tree use = USE_FROM_PTR (use_p);
if (wlims.always_executed)
warn_uninit (OPT_Wuninitialized, use, SSA_NAME_VAR (use),
"%qD is used uninitialized", stmt);
else if (wmaybe_uninit)
warn_uninit (OPT_Wmaybe_uninitialized, use, SSA_NAME_VAR (use),
"%qD may be used uninitialized", stmt);
}
/* For limiting the alias walk below we count all
vdefs in the function. */
if (gimple_vdef (stmt))
wlims.vdef_cnt++;
if (gcall *call = dyn_cast <gcall *> (stmt))
maybe_warn_pass_by_reference (call, wlims);
else if (gimple_assign_load_p (stmt)
&& gimple_has_location (stmt))
{
tree rhs = gimple_assign_rhs1 (stmt);
tree lhs = gimple_assign_lhs (stmt);
ao_ref ref;
ao_ref_init (&ref, rhs);
tree var = maybe_warn_operand (ref, stmt, lhs, rhs, wlims);
if (!var)
continue;
if (DECL_P (var))
{
location_t loc = DECL_SOURCE_LOCATION (var);
inform (loc, "%qD declared here", var);
}
}
}
}
}
/* Checks if the operand OPND of PHI is defined by
another phi with one operand defined by this PHI,
but the rest operands are all defined. If yes,
returns true to skip this operand as being
redundant. Can be enhanced to be more general. */
static bool
can_skip_redundant_opnd (tree opnd, gimple *phi)
{
tree phi_def = gimple_phi_result (phi);
gimple *op_def = SSA_NAME_DEF_STMT (opnd);
if (gimple_code (op_def) != GIMPLE_PHI)
return false;
unsigned n = gimple_phi_num_args (op_def);
for (unsigned i = 0; i < n; ++i)
{
tree op = gimple_phi_arg_def (op_def, i);
if (TREE_CODE (op) != SSA_NAME)
continue;
if (op != phi_def && uninit_undefined_value_p (op))
return false;
}
return true;
}
/* Returns a bit mask holding the positions of arguments in PHI
that have empty (or possibly empty) definitions. */
static unsigned
compute_uninit_opnds_pos (gphi *phi)
{
unsigned uninit_opnds = 0;
unsigned n = gimple_phi_num_args (phi);
/* Bail out for phi with too many args. */
if (n > max_phi_args)
return 0;
for (unsigned i = 0; i < n; ++i)
{
tree op = gimple_phi_arg_def (phi, i);
if (TREE_CODE (op) == SSA_NAME
&& uninit_undefined_value_p (op)
&& !can_skip_redundant_opnd (op, phi))
{
if (cfun->has_nonlocal_label || cfun->calls_setjmp)
{
/* Ignore SSA_NAMEs that appear on abnormal edges
somewhere. */
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
continue;
}
MASK_SET_BIT (uninit_opnds, i);
}
}
return uninit_opnds;
}
/* Find the immediate postdominator of the specified basic block BLOCK. */
static inline basic_block
find_pdom (basic_block block)
{
if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
return EXIT_BLOCK_PTR_FOR_FN (cfun);
else
{
basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
if (!bb)
return EXIT_BLOCK_PTR_FOR_FN (cfun);
return bb;
}
}
/* Find the immediate dominator of the specified basic block BLOCK. */
static inline basic_block
find_dom (basic_block block)
{
if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun))
return ENTRY_BLOCK_PTR_FOR_FN (cfun);
else
{
basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
if (!bb)
return ENTRY_BLOCK_PTR_FOR_FN (cfun);
return bb;
}
}
/* Returns true if BB1 is postdominating BB2 and BB1 is
not a loop exit bb. The loop exit bb check is simple and does
not cover all cases. */
static bool
is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
{
if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
return false;
if (single_pred_p (bb1) && !single_succ_p (bb2))
return false;
return true;
}
/* Find the closest postdominator of a specified BB, which is control
equivalent to BB. */
static inline basic_block
find_control_equiv_block (basic_block bb)
{
basic_block pdom = find_pdom (bb);
/* Skip the postdominating bb that is also loop exit. */
if (!is_non_loop_exit_postdominating (pdom, bb))
return NULL;
if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
return pdom;
return NULL;
}
#define MAX_NUM_CHAINS 8
#define MAX_CHAIN_LEN 5
#define MAX_POSTDOM_CHECK 8
#define MAX_SWITCH_CASES 40
/* Computes the control dependence chains (paths of edges)
for DEP_BB up to the dominating basic block BB (the head node of a
chain should be dominated by it). CD_CHAINS is pointer to an
array holding the result chains. CUR_CD_CHAIN is the current
chain being computed. *NUM_CHAINS is total number of chains. The
function returns true if the information is successfully computed,
return false if there is no control dependence or not computed. */
static bool
compute_control_dep_chain (basic_block bb, basic_block dep_bb,
vec<edge> *cd_chains,
size_t *num_chains,
vec<edge> *cur_cd_chain,
int *num_calls)
{
edge_iterator ei;
edge e;
size_t i;
bool found_cd_chain = false;
size_t cur_chain_len = 0;
if (*num_calls > param_uninit_control_dep_attempts)
return false;
++*num_calls;
/* Could use a set instead. */
cur_chain_len = cur_cd_chain->length ();
if (cur_chain_len > MAX_CHAIN_LEN)
return false;
for (i = 0; i < cur_chain_len; i++)
{
edge e = (*cur_cd_chain)[i];
/* Cycle detected. */
if (e->src == bb)
return false;
}
FOR_EACH_EDGE (e, ei, bb->succs)
{
basic_block cd_bb;
int post_dom_check = 0;
if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
continue;
cd_bb = e->dest;
cur_cd_chain->safe_push (e);
while (!is_non_loop_exit_postdominating (cd_bb, bb))
{
if (cd_bb == dep_bb)
{
/* Found a direct control dependence. */
if (*num_chains < MAX_NUM_CHAINS)
{
cd_chains[*num_chains] = cur_cd_chain->copy ();
(*num_chains)++;
}
found_cd_chain = true;
/* Check path from next edge. */
break;
}
/* Now check if DEP_BB is indirectly control dependent on BB. */
if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains, num_chains,
cur_cd_chain, num_calls))
{
found_cd_chain = true;
break;
}
cd_bb = find_pdom (cd_bb);
post_dom_check++;
if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
|| post_dom_check > MAX_POSTDOM_CHECK)
break;
}
cur_cd_chain->pop ();
gcc_assert (cur_cd_chain->length () == cur_chain_len);
}
gcc_assert (cur_cd_chain->length () == cur_chain_len);
return found_cd_chain;
}
/* The type to represent a simple predicate. */
struct pred_info
{
tree pred_lhs;
tree pred_rhs;
enum tree_code cond_code;
bool invert;
};
/* The type to represent a sequence of predicates grouped
with .AND. operation. */
typedef vec<pred_info, va_heap, vl_ptr> pred_chain;
/* The type to represent a sequence of pred_chains grouped
with .OR. operation. */
typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union;
/* Converts the chains of control dependence edges into a set of
predicates. A control dependence chain is represented by a vector
edges. DEP_CHAINS points to an array of dependence chains.
NUM_CHAINS is the size of the chain array. One edge in a dependence
chain is mapped to predicate expression represented by pred_info
type. One dependence chain is converted to a composite predicate that
is the result of AND operation of pred_info mapped to each edge.
A composite predicate is presented by a vector of pred_info. On
return, *PREDS points to the resulting array of composite predicates.
*NUM_PREDS is the number of composite predictes. */
static bool
convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
size_t num_chains,
pred_chain_union *preds)
{
bool has_valid_pred = false;
size_t i, j;
if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
return false;
/* Now convert the control dep chain into a set
of predicates. */
preds->reserve (num_chains);
for (i = 0; i < num_chains; i++)
{
vec<edge> one_cd_chain = dep_chains[i];
has_valid_pred = false;
pred_chain t_chain = vNULL;
for (j = 0; j < one_cd_chain.length (); j++)
{
gimple *cond_stmt;
gimple_stmt_iterator gsi;
basic_block guard_bb;
pred_info one_pred;
edge e;
e = one_cd_chain[j];
guard_bb = e->src;
gsi = gsi_last_bb (guard_bb);
/* Ignore empty forwarder blocks. */
if (empty_block_p (guard_bb) && single_succ_p (guard_bb))
continue;
/* An empty basic block here is likely a PHI, and is not one
of the cases we handle below. */
if (gsi_end_p (gsi))
{
has_valid_pred = false;
break;
}
cond_stmt = gsi_stmt (gsi);
if (is_gimple_call (cond_stmt) && EDGE_COUNT (e->src->succs) >= 2)
/* Ignore EH edge. Can add assertion on the other edge's flag. */
continue;
/* Skip if there is essentially one succesor. */
if (EDGE_COUNT (e->src->succs) == 2)
{
edge e1;
edge_iterator ei1;
bool skip = false;
FOR_EACH_EDGE (e1, ei1, e->src->succs)
{
if (EDGE_COUNT (e1->dest->succs) == 0)
{
skip = true;
break;
}
}
if (skip)
continue;
}
if (gimple_code (cond_stmt) == GIMPLE_COND)
{
one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
one_pred.cond_code = gimple_cond_code (cond_stmt);
one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);
t_chain.safe_push (one_pred);
has_valid_pred = true;
}
else if (gswitch *gs = dyn_cast<gswitch *> (cond_stmt))
{
/* Avoid quadratic behavior. */
if (gimple_switch_num_labels (gs) > MAX_SWITCH_CASES)
{
has_valid_pred = false;
break;
}
/* Find the case label. */
tree l = NULL_TREE;
unsigned idx;
for (idx = 0; idx < gimple_switch_num_labels (gs); ++idx)
{
tree tl = gimple_switch_label (gs, idx);
if (e->dest == label_to_block (cfun, CASE_LABEL (tl)))
{
if (!l)
l = tl;
else
{
l = NULL_TREE;
break;
}
}
}
/* If more than one label reaches this block or the case
label doesn't have a single value (like the default one)
fail. */
if (!l
|| !CASE_LOW (l)
|| (CASE_HIGH (l)
&& !operand_equal_p (CASE_LOW (l), CASE_HIGH (l), 0)))
{
has_valid_pred = false;
break;
}
one_pred.pred_lhs = gimple_switch_index (gs);
one_pred.pred_rhs = CASE_LOW (l);
one_pred.cond_code = EQ_EXPR;
one_pred.invert = false;
t_chain.safe_push (one_pred);
has_valid_pred = true;
}
else
{
has_valid_pred = false;
break;
}
}
if (!has_valid_pred)
break;
else
preds->safe_push (t_chain);
}
return has_valid_pred;
}
/* Computes all control dependence chains for USE_BB. The control
dependence chains are then converted to an array of composite
predicates pointed to by PREDS. PHI_BB is the basic block of
the phi whose result is used in USE_BB. */
static bool
find_predicates (pred_chain_union *preds,
basic_block phi_bb,
basic_block use_bb)
{
size_t num_chains = 0, i;
int num_calls = 0;
vec<edge> dep_chains[MAX_NUM_CHAINS];
auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
bool has_valid_pred = false;
basic_block cd_root = 0;
/* First find the closest bb that is control equivalent to PHI_BB
that also dominates USE_BB. */
cd_root = phi_bb;
while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
{
basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
cd_root = ctrl_eq_bb;
else
break;
}
compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains,
&cur_chain, &num_calls);
has_valid_pred
= convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
for (i = 0; i < num_chains; i++)
dep_chains[i].release ();
return has_valid_pred;
}
/* Computes the set of incoming edges of PHI that have non empty
definitions of a phi chain. The collection will be done
recursively on operands that are defined by phis. CD_ROOT
is the control dependence root. *EDGES holds the result, and
VISITED_PHIS is a pointer set for detecting cycles. */
static void
collect_phi_def_edges (gphi *phi, basic_block cd_root,
auto_vec<edge> *edges,
hash_set<gimple *> *visited_phis)
{
size_t i, n;
edge opnd_edge;
tree opnd;
if (visited_phis->add (phi))
return;
n = gimple_phi_num_args (phi);
for (i = 0; i < n; i++)
{
opnd_edge = gimple_phi_arg_edge (phi, i);
opnd = gimple_phi_arg_def (phi, i);
if (TREE_CODE (opnd) != SSA_NAME)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int) i);
print_gimple_stmt (dump_file, phi, 0);
}
edges->safe_push (opnd_edge);
}
else
{
gimple *def = SSA_NAME_DEF_STMT (opnd);
if (gimple_code (def) == GIMPLE_PHI
&& dominated_by_p (CDI_DOMINATORS, gimple_bb (def), cd_root))
collect_phi_def_edges (as_a<gphi *> (def), cd_root, edges,
visited_phis);
else if (!uninit_undefined_value_p (opnd))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\n[CHECK] Found def edge %d in ",
(int) i);
print_gimple_stmt (dump_file, phi, 0);
}
edges->safe_push (opnd_edge);
}
}
}
}
/* For each use edge of PHI, computes all control dependence chains.
The control dependence chains are then converted to an array of
composite predicates pointed to by PREDS. */
static bool
find_def_preds (pred_chain_union *preds, gphi *phi)
{
size_t num_chains = 0, i, n;
vec<edge> dep_chains[MAX_NUM_CHAINS];
auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
auto_vec<edge> def_edges;
bool has_valid_pred = false;
basic_block phi_bb, cd_root = 0;
phi_bb = gimple_bb (phi);
/* First find the closest dominating bb to be
the control dependence root. */
cd_root = find_dom (phi_bb);
if (!cd_root)
return false;
hash_set<gimple *> visited_phis;
collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis);
n = def_edges.length ();
if (n == 0)
return false;
for (i = 0; i < n; i++)
{
size_t prev_nc, j;
int num_calls = 0;
edge opnd_edge;
opnd_edge = def_edges[i];
prev_nc = num_chains;
compute_control_dep_chain (cd_root, opnd_edge->src, dep_chains,
&num_chains, &cur_chain, &num_calls);
/* Now update the newly added chains with
the phi operand edge: */
if (EDGE_COUNT (opnd_edge->src->succs) > 1)
{
if (prev_nc == num_chains && num_chains < MAX_NUM_CHAINS)
dep_chains[num_chains++] = vNULL;
for (j = prev_nc; j < num_chains; j++)
dep_chains[j].safe_push (opnd_edge);
}
}
has_valid_pred
= convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
for (i = 0; i < num_chains; i++)
dep_chains[i].release ();
return has_valid_pred;
}
/* Dump a pred_info. */
static void
dump_pred_info (pred_info one_pred)
{
if (one_pred.invert)
fprintf (dump_file, " (.NOT.) ");
print_generic_expr (dump_file, one_pred.pred_lhs);
fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code));
print_generic_expr (dump_file, one_pred.pred_rhs);
}
/* Dump a pred_chain. */
static void
dump_pred_chain (pred_chain one_pred_chain)
{
size_t np = one_pred_chain.length ();
for (size_t j = 0; j < np; j++)
{
dump_pred_info (one_pred_chain[j]);
if (j < np - 1)
fprintf (dump_file, " (.AND.) ");
else
fprintf (dump_file, "\n");
}
}
/* Dumps the predicates (PREDS) for USESTMT. */
static void
dump_predicates (gimple *usestmt, pred_chain_union preds, const char *msg)
{
fprintf (dump_file, "%s", msg);
if (usestmt)
{
print_gimple_stmt (dump_file, usestmt, 0);
fprintf (dump_file, "is guarded by :\n\n");
}
size_t num_preds = preds.length ();
for (size_t i = 0; i < num_preds; i++)
{
dump_pred_chain (preds[i]);
if (i < num_preds - 1)
fprintf (dump_file, "(.OR.)\n");
else
fprintf (dump_file, "\n\n");
}
}
/* Destroys the predicate set *PREDS. */
static void
destroy_predicate_vecs (pred_chain_union *preds)
{
size_t i;
size_t n = preds->length ();
for (i = 0; i < n; i++)
(*preds)[i].release ();
preds->release ();
}
/* Computes the 'normalized' conditional code with operand
swapping and condition inversion. */
static enum tree_code
get_cmp_code (enum tree_code orig_cmp_code, bool swap_cond, bool invert)
{
enum tree_code tc = orig_cmp_code;
if (swap_cond)
tc = swap_tree_comparison (orig_cmp_code);
if (invert)
tc = invert_tree_comparison (tc, false);
switch (tc)
{
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
case EQ_EXPR:
case NE_EXPR:
break;
default:
return ERROR_MARK;
}
return tc;
}
/* Returns whether VAL CMPC BOUNDARY is true. */
static bool
is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
{
bool inverted = false;
bool result;
/* Only handle integer constant here. */
if (TREE_CODE (val) != INTEGER_CST || TREE_CODE (boundary) != INTEGER_CST)
return true;
if (cmpc == GE_EXPR || cmpc == GT_EXPR || cmpc == NE_EXPR)
{
cmpc = invert_tree_comparison (cmpc, false);
inverted = true;
}
if (cmpc == EQ_EXPR)
result = tree_int_cst_equal (val, boundary);
else if (cmpc == LT_EXPR)
result = tree_int_cst_lt (val, boundary);
else
{
gcc_assert (cmpc == LE_EXPR);
result = tree_int_cst_le (val, boundary);
}
if (inverted)
result ^= 1;
return result;
}
/* Returns whether VAL satisfies (x CMPC BOUNDARY) predicate. CMPC can be
either one of the range comparison codes ({GE,LT,EQ,NE}_EXPR and the like),
or BIT_AND_EXPR. EXACT_P is only meaningful for the latter. It modifies the
question from whether VAL & BOUNDARY != 0 to whether VAL & BOUNDARY == VAL.
For other values of CMPC, EXACT_P is ignored. */
static bool
value_sat_pred_p (tree val, tree boundary, enum tree_code cmpc,
bool exact_p = false)
{
if (cmpc != BIT_AND_EXPR)
return is_value_included_in (val, boundary, cmpc);
wide_int andw = wi::to_wide (val) & wi::to_wide (boundary);
if (exact_p)
return andw == wi::to_wide (val);
else
return andw.to_uhwi ();
}
/* Returns true if PRED is common among all the predicate
chains (PREDS) (and therefore can be factored out). */
static bool
find_matching_predicate_in_rest_chains (pred_info pred, pred_chain_union preds)
{
size_t i, j, n;
/* Trival case. */
if (preds.length () == 1)
return true;
for (i = 1; i < preds.length (); i++)
{
bool found = false;
pred_chain one_chain = preds[i];
n = one_chain.length ();
for (j = 0; j < n; j++)
{
pred_info pred2 = one_chain[j];
/* Can relax the condition comparison to not
use address comparison. However, the most common
case is that multiple control dependent paths share
a common path prefix, so address comparison should
be ok. */
if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
&& operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
&& pred2.invert == pred.invert)
{
found = true;
break;
}
}
if (!found)
return false;
}
return true;
}
/* Forward declaration. */
static bool is_use_properly_guarded (gimple *use_stmt,
basic_block use_bb,
gphi *phi,
unsigned uninit_opnds,
pred_chain_union *def_preds,
hash_set<gphi *> *visited_phis);
/* Returns true if all uninitialized opnds are pruned. Returns false
otherwise. PHI is the phi node with uninitialized operands,
UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
FLAG_DEF is the statement defining the flag guarding the use of the
PHI output, BOUNDARY_CST is the const value used in the predicate
associated with the flag, CMP_CODE is the comparison code used in
the predicate, VISITED_PHIS is the pointer set of phis visited, and
VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
that are also phis.
Example scenario:
BB1:
flag_1 = phi <0, 1> // (1)
var_1 = phi <undef, some_val>
BB2:
flag_2 = phi <0, flag_1, flag_1> // (2)
var_2 = phi <undef, var_1, var_1>
if (flag_2 == 1)
goto BB3;
BB3:
use of var_2 // (3)
Because some flag arg in (1) is not constant, if we do not look into the
flag phis recursively, it is conservatively treated as unknown and var_1
is thought to be flowed into use at (3). Since var_1 is potentially
uninitialized a false warning will be emitted.
Checking recursively into (1), the compiler can find out that only some_val
(which is defined) can flow into (3) which is OK. */
static bool
prune_uninit_phi_opnds (gphi *phi, unsigned uninit_opnds, gphi *flag_def,
tree boundary_cst, enum tree_code cmp_code,
hash_set<gphi *> *visited_phis,
bitmap *visited_flag_phis)
{
unsigned i;
for (i = 0; i < MIN (max_phi_args, gimple_phi_num_args (flag_def)); i++)
{
tree flag_arg;
if (!MASK_TEST_BIT (uninit_opnds, i))
continue;
flag_arg = gimple_phi_arg_def (flag_def, i);
if (!is_gimple_constant (flag_arg))
{
gphi *flag_arg_def, *phi_arg_def;
tree phi_arg;
unsigned uninit_opnds_arg_phi;
if (TREE_CODE (flag_arg) != SSA_NAME)
return false;
flag_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (flag_arg));
if (!flag_arg_def)
return false;
phi_arg = gimple_phi_arg_def (phi, i);
if (TREE_CODE (phi_arg) != SSA_NAME)
return false;
phi_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (phi_arg));
if (!phi_arg_def)
return false;
if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
return false;
if (!*visited_flag_phis)
*visited_flag_phis = BITMAP_ALLOC (NULL);
tree phi_result = gimple_phi_result (flag_arg_def);
if (bitmap_bit_p (*visited_flag_phis, SSA_NAME_VERSION (phi_result)))
return false;
bitmap_set_bit (*visited_flag_phis,
SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
/* Now recursively prune the uninitialized phi args. */
uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
if (!prune_uninit_phi_opnds
(phi_arg_def, uninit_opnds_arg_phi, flag_arg_def, boundary_cst,
cmp_code, visited_phis, visited_flag_phis))
return false;
phi_result = gimple_phi_result (flag_arg_def);
bitmap_clear_bit (*visited_flag_phis, SSA_NAME_VERSION (phi_result));
continue;
}
/* Now check if the constant is in the guarded range. */
if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
{
tree opnd;
gimple *opnd_def;
/* Now that we know that this undefined edge is not
pruned. If the operand is defined by another phi,
we can further prune the incoming edges of that
phi by checking the predicates of this operands. */
opnd = gimple_phi_arg_def (phi, i);
opnd_def = SSA_NAME_DEF_STMT (opnd);
if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def))
{
edge opnd_edge;
unsigned uninit_opnds2 = compute_uninit_opnds_pos (opnd_def_phi);
if (!MASK_EMPTY (uninit_opnds2))
{
pred_chain_union def_preds = vNULL;
bool ok;
opnd_edge = gimple_phi_arg_edge (phi, i);
ok = is_use_properly_guarded (phi,
opnd_edge->src,
opnd_def_phi,
uninit_opnds2,
&def_preds,
visited_phis);
destroy_predicate_vecs (&def_preds);
if (!ok)
return false;
}
}
else
return false;
}
}
return true;
}
/* A helper function finds predicate which will be examined against uninit
paths. If there is no "flag_var cmp const" form predicate, the function
tries to find predicate of form like "flag_var cmp flag_var" with value
range info. PHI is the phi node whose incoming (undefined) paths need to
be examined. On success, the function returns the comparsion code, sets
defintion gimple of the flag_var to FLAG_DEF, sets boundary_cst to
BOUNDARY_CST. On fail, the function returns ERROR_MARK. */
static enum tree_code
find_var_cmp_const (pred_chain_union preds, gphi *phi, gimple **flag_def,
tree *boundary_cst)
{
enum tree_code vrinfo_code = ERROR_MARK, code;
gimple *vrinfo_def = NULL;
tree vrinfo_cst = NULL, cond_lhs, cond_rhs;
gcc_assert (preds.length () > 0);
pred_chain the_pred_chain = preds[0];
for (unsigned i = 0; i < the_pred_chain.length (); i++)
{
bool use_vrinfo_p = false;
pred_info the_pred = the_pred_chain[i];
cond_lhs = the_pred.pred_lhs;
cond_rhs = the_pred.pred_rhs;
if (cond_lhs == NULL_TREE || cond_rhs == NULL_TREE)
continue;
code = get_cmp_code (the_pred.cond_code, false, the_pred.invert);
if (code == ERROR_MARK)
continue;
if (TREE_CODE (cond_lhs) == SSA_NAME && is_gimple_constant (cond_rhs))
;
else if (TREE_CODE (cond_rhs) == SSA_NAME
&& is_gimple_constant (cond_lhs))
{
std::swap (cond_lhs, cond_rhs);
if ((code = get_cmp_code (code, true, false)) == ERROR_MARK)
continue;
}
/* Check if we can take advantage of "flag_var comp flag_var" predicate
with value range info. Note only first of such case is handled. */
else if (vrinfo_code == ERROR_MARK
&& TREE_CODE (cond_lhs) == SSA_NAME
&& TREE_CODE (cond_rhs) == SSA_NAME)
{
gimple* lhs_def = SSA_NAME_DEF_STMT (cond_lhs);
if (!lhs_def || gimple_code (lhs_def) != GIMPLE_PHI
|| gimple_bb (lhs_def) != gimple_bb (phi))
{
std::swap (cond_lhs, cond_rhs);
if ((code = get_cmp_code (code, true, false)) == ERROR_MARK)
continue;
}
/* Check value range info of rhs, do following transforms:
flag_var < [min, max] -> flag_var < max
flag_var > [min, max] -> flag_var > min
We can also transform LE_EXPR/GE_EXPR to LT_EXPR/GT_EXPR:
flag_var <= [min, max] -> flag_var < [min, max+1]
flag_var >= [min, max] -> flag_var > [min-1, max]
if no overflow/wrap. */
tree type = TREE_TYPE (cond_lhs);
value_range r;
if (!INTEGRAL_TYPE_P (type)
|| !get_range_query (cfun)->range_of_expr (r, cond_rhs)
|| r.kind () != VR_RANGE)
continue;
wide_int min = r.lower_bound ();
wide_int max = r.upper_bound ();
if (code == LE_EXPR
&& max != wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type)))
{
code = LT_EXPR;
max = max + 1;
}
if (code == GE_EXPR
&& min != wi::min_value (TYPE_PRECISION (type), TYPE_SIGN (type)))
{
code = GT_EXPR;
min = min - 1;
}
if (code == LT_EXPR)
cond_rhs = wide_int_to_tree (type, max);
else if (code == GT_EXPR)
cond_rhs = wide_int_to_tree (type, min);
else
continue;
use_vrinfo_p = true;
}
else
continue;
if ((*flag_def = SSA_NAME_DEF_STMT (cond_lhs)) == NULL)
continue;
if (gimple_code (*flag_def) != GIMPLE_PHI
|| gimple_bb (*flag_def) != gimple_bb (phi)
|| !find_matching_predicate_in_rest_chains (the_pred, preds))
continue;
/* Return if any "flag_var comp const" predicate is found. */
if (!use_vrinfo_p)
{
*boundary_cst = cond_rhs;
return code;
}
/* Record if any "flag_var comp flag_var[vinfo]" predicate is found. */
else if (vrinfo_code == ERROR_MARK)
{
vrinfo_code = code;
vrinfo_def = *flag_def;
vrinfo_cst = cond_rhs;
}
}
/* Return the "flag_var cmp flag_var[vinfo]" predicate we found. */
if (vrinfo_code != ERROR_MARK)
{
*flag_def = vrinfo_def;
*boundary_cst = vrinfo_cst;
}
return vrinfo_code;
}
/* A helper function that determines if the predicate set
of the use is not overlapping with that of the uninit paths.
The most common senario of guarded use is in Example 1:
Example 1:
if (some_cond)
{
x = ...;
flag = true;
}
... some code ...
if (flag)
use (x);
The real world examples are usually more complicated, but similar
and usually result from inlining:
bool init_func (int * x)
{
if (some_cond)
return false;
*x = ..
return true;
}
void foo (..)
{
int x;
if (!init_func (&x))
return;
.. some_code ...
use (x);
}
Another possible use scenario is in the following trivial example:
Example 2:
if (n > 0)
x = 1;
...
if (n > 0)
{
if (m < 2)
.. = x;
}
Predicate analysis needs to compute the composite predicate:
1) 'x' use predicate: (n > 0) .AND. (m < 2)
2) 'x' default value (non-def) predicate: .NOT. (n > 0)
(the predicate chain for phi operand defs can be computed
starting from a bb that is control equivalent to the phi's
bb and is dominating the operand def.)
and check overlapping:
(n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
<==> false
This implementation provides framework that can handle
scenarios. (Note that many simple cases are handled properly
without the predicate analysis -- this is due to jump threading
transformation which eliminates the merge point thus makes
path sensitive analysis unnecessary.)
PHI is the phi node whose incoming (undefined) paths need to be
pruned, and UNINIT_OPNDS is the bitmap holding uninit operand
positions. VISITED_PHIS is the pointer set of phi stmts being
checked. */
static bool
use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds,
gphi *phi, unsigned uninit_opnds,
hash_set<gphi *> *visited_phis)
{
gimple *flag_def = 0;
tree boundary_cst = 0;
enum tree_code cmp_code;
bitmap visited_flag_phis = NULL;
bool all_pruned = false;
/* Find within the common prefix of multiple predicate chains
a predicate that is a comparison of a flag variable against
a constant. */
cmp_code = find_var_cmp_const (preds, phi, &flag_def, &boundary_cst);
if (cmp_code == ERROR_MARK)
return false;
/* Now check all the uninit incoming edge has a constant flag value
that is in conflict with the use guard/predicate. */
all_pruned = prune_uninit_phi_opnds
(phi, uninit_opnds, as_a<gphi *> (flag_def), boundary_cst, cmp_code,
visited_phis, &visited_flag_phis);
if (visited_flag_phis)
BITMAP_FREE (visited_flag_phis);
return all_pruned;
}
/* The helper function returns true if two predicates X1 and X2
are equivalent. It assumes the expressions have already
properly re-associated. */
static inline bool
pred_equal_p (pred_info x1, pred_info x2)
{
enum tree_code c1, c2;
if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
|| !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
return false;
c1 = x1.cond_code;
if (x1.invert != x2.invert
&& TREE_CODE_CLASS (x2.cond_code) == tcc_comparison)
c2 = invert_tree_comparison (x2.cond_code, false);
else
c2 = x2.cond_code;
return c1 == c2;
}
/* Returns true if the predication is testing !=. */
static inline bool
is_neq_relop_p (pred_info pred)
{
return ((pred.cond_code == NE_EXPR && !pred.invert)
|| (pred.cond_code == EQ_EXPR && pred.invert));
}
/* Returns true if pred is of the form X != 0. */
static inline bool
is_neq_zero_form_p (pred_info pred)
{
if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
|| TREE_CODE (pred.pred_lhs) != SSA_NAME)
return false;
return true;
}
/* The helper function returns true if two predicates X1
is equivalent to X2 != 0. */
static inline bool
pred_expr_equal_p (pred_info x1, tree x2)
{
if (!is_neq_zero_form_p (x1))
return false;
return operand_equal_p (x1.pred_lhs, x2, 0);
}
/* Returns true of the domain of single predicate expression
EXPR1 is a subset of that of EXPR2. Returns false if it
cannot be proved. */
static bool
is_pred_expr_subset_of (pred_info expr1, pred_info expr2)
{
enum tree_code code1, code2;
if (pred_equal_p (expr1, expr2))
return true;
if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST)
|| (TREE_CODE (expr2.pred_rhs) != INTEGER_CST))
return false;
if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0))
return false;
code1 = expr1.cond_code;
if (expr1.invert)
code1 = invert_tree_comparison (code1, false);
code2 = expr2.cond_code;
if (expr2.invert)
code2 = invert_tree_comparison (code2, false);
if (code2 == NE_EXPR && code1 == NE_EXPR)
return false;
if (code2 == NE_EXPR)
return !value_sat_pred_p (expr2.pred_rhs, expr1.pred_rhs, code1);
if (code1 == EQ_EXPR)
return value_sat_pred_p (expr1.pred_rhs, expr2.pred_rhs, code2);
if (code1 == code2)
return value_sat_pred_p (expr1.pred_rhs, expr2.pred_rhs, code2,
code1 == BIT_AND_EXPR);
return false;
}
/* Returns true if the domain of PRED1 is a subset
of that of PRED2. Returns false if it cannot be proved so. */
static bool
is_pred_chain_subset_of (pred_chain pred1, pred_chain pred2)
{
size_t np1, np2, i1, i2;
np1 = pred1.length ();
np2 = pred2.length ();
for (i2 = 0; i2 < np2; i2++)
{
bool found = false;
pred_info info2 = pred2[i2];
for (i1 = 0; i1 < np1; i1++)
{
pred_info info1 = pred1[i1];
if (is_pred_expr_subset_of (info1, info2))
{
found = true;
break;
}
}
if (!found)
return false;
}
return true;
}
/* Returns true if the domain defined by
one pred chain ONE_PRED is a subset of the domain
of *PREDS. It returns false if ONE_PRED's domain is
not a subset of any of the sub-domains of PREDS
(corresponding to each individual chains in it), even
though it may be still be a subset of whole domain
of PREDS which is the union (ORed) of all its subdomains.
In other words, the result is conservative. */
static bool
is_included_in (pred_chain one_pred, pred_chain_union preds)
{
size_t i;
size_t n = preds.length ();
for (i = 0; i < n; i++)
{
if (is_pred_chain_subset_of (one_pred, preds[i]))
return true;
}
return false;
}
/* Compares two predicate sets PREDS1 and PREDS2 and returns
true if the domain defined by PREDS1 is a superset
of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
PREDS2 respectively. The implementation chooses not to build
generic trees (and relying on the folding capability of the
compiler), but instead performs brute force comparison of
individual predicate chains (won't be a compile time problem
as the chains are pretty short). When the function returns
false, it does not necessarily mean *PREDS1 is not a superset
of *PREDS2, but mean it may not be so since the analysis cannot
prove it. In such cases, false warnings may still be
emitted. */
static bool
is_superset_of (pred_chain_union preds1, pred_chain_union preds2)
{
size_t i, n2;
pred_chain one_pred_chain = vNULL;
n2 = preds2.length ();
for (i = 0; i < n2; i++)
{
one_pred_chain = preds2[i];
if (!is_included_in (one_pred_chain, preds1))
return false;
}
return true;
}
/* Returns true if X1 is the negate of X2. */
static inline bool
pred_neg_p (pred_info x1, pred_info x2)
{
enum tree_code c1, c2;
if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
|| !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
return false;
c1 = x1.cond_code;
if (x1.invert == x2.invert)
c2 = invert_tree_comparison (x2.cond_code, false);
else
c2 = x2.cond_code;
return c1 == c2;
}
/* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
2) (X AND Y) OR (!X AND Y) is equivalent to Y;
3) X OR (!X AND Y) is equivalent to (X OR Y);
4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
(x != 0 AND y != 0)
5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
(X AND Y) OR Z
PREDS is the predicate chains, and N is the number of chains. */
/* Helper function to implement rule 1 above. ONE_CHAIN is
the AND predication to be simplified. */
static void
simplify_pred (pred_chain *one_chain)
{
size_t i, j, n;
bool simplified = false;
pred_chain s_chain = vNULL;
n = one_chain->length ();
for (i = 0; i < n; i++)
{
pred_info *a_pred = &(*one_chain)[i];
if (!a_pred->pred_lhs)
continue;
if (!is_neq_zero_form_p (*a_pred))
continue;
gimple *def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs);
if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
continue;
if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
{
for (j = 0; j < n; j++)
{
pred_info *b_pred = &(*one_chain)[j];
if (!b_pred->pred_lhs)
continue;
if (!is_neq_zero_form_p (*b_pred))
continue;
if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt))
|| pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt)))
{
/* Mark a_pred for removal. */
a_pred->pred_lhs = NULL;
a_pred->pred_rhs = NULL;
simplified = true;
break;
}
}
}
}
if (!simplified)
return;
for (i = 0; i < n; i++)
{
pred_info *a_pred = &(*one_chain)[i];
if (!a_pred->pred_lhs)
continue;
s_chain.safe_push (*a_pred);
}
one_chain->release ();
*one_chain = s_chain;
}
/* The helper function implements the rule 2 for the
OR predicate PREDS.
2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
static bool
simplify_preds_2 (pred_chain_union *preds)
{
size_t i, j, n;
bool simplified = false;
pred_chain_union s_preds = vNULL;
/* (X AND Y) OR (!X AND Y) is equivalent to Y.
(X AND Y) OR (X AND !Y) is equivalent to X. */
n = preds->length ();
for (i = 0; i < n; i++)
{
pred_info x, y;
pred_chain *a_chain = &(*preds)[i];
if (a_chain->length () != 2)
continue;
x = (*a_chain)[0];
y = (*a_chain)[1];
for (j = 0; j < n; j++)
{
pred_chain *b_chain;
pred_info x2, y2;
if (j == i)
continue;
b_chain = &(*preds)[j];
if (b_chain->length () != 2)
continue;
x2 = (*b_chain)[0];
y2 = (*b_chain)[1];
if (pred_equal_p (x, x2) && pred_neg_p (y, y2))
{
/* Kill a_chain. */
a_chain->release ();
b_chain->release ();
b_chain->safe_push (x);
simplified = true;
break;
}
if (pred_neg_p (x, x2) && pred_equal_p (y, y2))
{
/* Kill a_chain. */
a_chain->release ();
b_chain->release ();
b_chain->safe_push (y);
simplified = true;
break;
}
}
}
/* Now clean up the chain. */
if (simplified)
{
for (i = 0; i < n; i++)
{
if ((*preds)[i].is_empty ())
continue;
s_preds.safe_push ((*preds)[i]);
}
preds->release ();
(*preds) = s_preds;
s_preds = vNULL;
}
return simplified;
}
/* The helper function implements the rule 2 for the
OR predicate PREDS.
3) x OR (!x AND y) is equivalent to x OR y. */
static bool
simplify_preds_3 (pred_chain_union *preds)
{
size_t i, j, n;
bool simplified = false;
/* Now iteratively simplify X OR (!X AND Z ..)
into X OR (Z ...). */
n = preds->length ();
if (n < 2)
return false;
for (i = 0; i < n; i++)
{
pred_info x;
pred_chain *a_chain = &(*preds)[i];
if (a_chain->length () != 1)
continue;
x = (*a_chain)[0];
for (j = 0; j < n; j++)
{
pred_chain *b_chain;
pred_info x2;
size_t k;
if (j == i)
continue;
b_chain = &(*preds)[j];
if (b_chain->length () < 2)
continue;
for (k = 0; k < b_chain->length (); k++)
{
x2 = (*b_chain)[k];
if (pred_neg_p (x, x2))
{
b_chain->unordered_remove (k);
simplified = true;
break;
}
}
}
}
return simplified;
}
/* The helper function implements the rule 4 for the
OR predicate PREDS.
2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
(x != 0 ANd y != 0). */
static bool
simplify_preds_4 (pred_chain_union *preds)
{
size_t i, j, n;
bool simplified = false;
pred_chain_union s_preds = vNULL;
gimple *def_stmt;
n = preds->length ();
for (i = 0; i < n; i++)
{
pred_info z;
pred_chain *a_chain = &(*preds)[i];
if (a_chain->length () != 1)
continue;
z = (*a_chain)[0];
if (!is_neq_zero_form_p (z))
continue;
def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
continue;
if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
continue;
for (j = 0; j < n; j++)
{
pred_chain *b_chain;
pred_info x2, y2;
if (j == i)
continue;
b_chain = &(*preds)[j];
if (b_chain->length () != 2)
continue;
x2 = (*b_chain)[0];
y2 = (*b_chain)[1];
if (!is_neq_zero_form_p (x2) || !is_neq_zero_form_p (y2))
continue;
if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
&& pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
|| (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
&& pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
{
/* Kill a_chain. */
a_chain->release ();
simplified = true;
break;
}
}
}
/* Now clean up the chain. */
if (simplified)
{
for (i = 0; i < n; i++)
{
if ((*preds)[i].is_empty ())
continue;
s_preds.safe_push ((*preds)[i]);
}
preds->release ();
(*preds) = s_preds;
s_preds = vNULL;
}
return simplified;
}
/* This function simplifies predicates in PREDS. */
static void
simplify_preds (pred_chain_union *preds, gimple *use_or_def, bool is_use)
{
size_t i, n;
bool changed = false;
if (dump_file && dump_flags & TDF_DETAILS)
{
fprintf (dump_file, "[BEFORE SIMPLICATION -- ");
dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n");
}
for (i = 0; i < preds->length (); i++)
simplify_pred (&(*preds)[i]);
n = preds->length ();
if (n < 2)
return;
do
{
changed = false;
if (simplify_preds_2 (preds))
changed = true;
/* Now iteratively simplify X OR (!X AND Z ..)
into X OR (Z ...). */
if (simplify_preds_3 (preds))
changed = true;
if (simplify_preds_4 (preds))
changed = true;
}
while (changed);
return;
}
/* This is a helper function which attempts to normalize predicate chains
by following UD chains. It basically builds up a big tree of either IOR
operations or AND operations, and convert the IOR tree into a
pred_chain_union or BIT_AND tree into a pred_chain.
Example:
_3 = _2 RELOP1 _1;
_6 = _5 RELOP2 _4;
_9 = _8 RELOP3 _7;
_10 = _3 | _6;
_12 = _9 | _0;
_t = _10 | _12;
then _t != 0 will be normalized into a pred_chain_union
(_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
Similarly given,
_3 = _2 RELOP1 _1;
_6 = _5 RELOP2 _4;
_9 = _8 RELOP3 _7;
_10 = _3 & _6;
_12 = _9 & _0;
then _t != 0 will be normalized into a pred_chain:
(_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
*/
/* This is a helper function that stores a PRED into NORM_PREDS. */
inline static void
push_pred (pred_chain_union *norm_preds, pred_info pred)
{
pred_chain pred_chain = vNULL;
pred_chain.safe_push (pred);
norm_preds->safe_push (pred_chain);
}
/* A helper function that creates a predicate of the form
OP != 0 and push it WORK_LIST. */
inline static void
push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list,
hash_set<tree> *mark_set)
{
if (mark_set->contains (op))
return;
mark_set->add (op);
pred_info arg_pred;
arg_pred.pred_lhs = op;
arg_pred.pred_rhs = integer_zero_node;
arg_pred.cond_code = NE_EXPR;
arg_pred.invert = false;
work_list->safe_push (arg_pred);
}
/* A helper that generates a pred_info from a gimple assignment
CMP_ASSIGN with comparison rhs. */
static pred_info
get_pred_info_from_cmp (gimple *cmp_assign)
{
pred_info n_pred;
n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
n_pred.cond_code = gimple_assign_rhs_code (cmp_assign);
n_pred.invert = false;
return n_pred;
}
/* Returns true if the PHI is a degenerated phi with
all args with the same value (relop). In that case, *PRED
will be updated to that value. */
static bool
is_degenerated_phi (gimple *phi, pred_info *pred_p)
{
int i, n;
tree op0;
gimple *def0;
pred_info pred0;
n = gimple_phi_num_args (phi);
op0 = gimple_phi_arg_def (phi, 0);
if (TREE_CODE (op0) != SSA_NAME)
return false;
def0 = SSA_NAME_DEF_STMT (op0);
if (gimple_code (def0) != GIMPLE_ASSIGN)
return false;
if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0)) != tcc_comparison)
return false;
pred0 = get_pred_info_from_cmp (def0);
for (i = 1; i < n; ++i)
{
gimple *def;
pred_info pred;
tree op = gimple_phi_arg_def (phi, i);
if (TREE_CODE (op) != SSA_NAME)
return false;
def = SSA_NAME_DEF_STMT (op);
if (gimple_code (def) != GIMPLE_ASSIGN)
return false;
if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
return false;
pred = get_pred_info_from_cmp (def);
if (!pred_equal_p (pred, pred0))
return false;
}
*pred_p = pred0;
return true;
}
/* Normalize one predicate PRED
1) if PRED can no longer be normlized, put it into NORM_PREDS.
2) otherwise if PRED is of the form x != 0, follow x's definition
and put normalized predicates into WORK_LIST. */
static void
normalize_one_pred_1 (pred_chain_union *norm_preds,
pred_chain *norm_chain,
pred_info pred,
enum tree_code and_or_code,
vec<pred_info, va_heap, vl_ptr> *work_list,
hash_set<tree> *mark_set)
{
if (!is_neq_zero_form_p (pred))
{
if (and_or_code == BIT_IOR_EXPR)
push_pred (norm_preds, pred);
else
norm_chain->safe_push (pred);
return;
}
gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
if (gimple_code (def_stmt) == GIMPLE_PHI
&& is_degenerated_phi (def_stmt, &pred))
work_list->safe_push (pred);
else if (gimple_code (def_stmt) == GIMPLE_PHI && and_or_code == BIT_IOR_EXPR)
{
int i, n;
n = gimple_phi_num_args (def_stmt);
/* If we see non zero constant, we should punt. The predicate
* should be one guarding the phi edge. */
for (i = 0; i < n; ++i)
{
tree op = gimple_phi_arg_def (def_stmt, i);
if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
{
push_pred (norm_preds, pred);
return;
}
}
for (i = 0; i < n; ++i)
{
tree op = gimple_phi_arg_def (def_stmt, i);
if (integer_zerop (op))
continue;
push_to_worklist (op, work_list, mark_set);
}
}
else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
{
if (and_or_code == BIT_IOR_EXPR)
push_pred (norm_preds, pred);
else
norm_chain->safe_push (pred);
}
else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
{
/* Avoid splitting up bit manipulations like x & 3 or y | 1. */
if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt)))
{
/* But treat x & 3 as condition. */
if (and_or_code == BIT_AND_EXPR)
{
pred_info n_pred;
n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt);
n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt);
n_pred.cond_code = and_or_code;
n_pred.invert = false;
norm_chain->safe_push (n_pred);
}
}
else
{
push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set);
push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set);
}
}
else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
== tcc_comparison)
{
pred_info n_pred = get_pred_info_from_cmp (def_stmt);
if (and_or_code == BIT_IOR_EXPR)
push_pred (norm_preds, n_pred);
else
norm_chain->safe_push (n_pred);
}
else
{
if (and_or_code == BIT_IOR_EXPR)
push_pred (norm_preds, pred);
else
norm_chain->safe_push (pred);
}
}
/* Normalize PRED and store the normalized predicates into NORM_PREDS. */
static void
normalize_one_pred (pred_chain_union *norm_preds, pred_info pred)
{
vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
enum tree_code and_or_code = ERROR_MARK;
pred_chain norm_chain = vNULL;
if (!is_neq_zero_form_p (pred))
{
push_pred (norm_preds, pred);
return;
}
gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
and_or_code = gimple_assign_rhs_code (def_stmt);
if (and_or_code != BIT_IOR_EXPR && and_or_code != BIT_AND_EXPR)
{
if (TREE_CODE_CLASS (and_or_code) == tcc_comparison)
{
pred_info n_pred = get_pred_info_from_cmp (def_stmt);
push_pred (norm_preds, n_pred);
}
else
push_pred (norm_preds, pred);
return;
}
work_list.safe_push (pred);
hash_set<tree> mark_set;
while (!work_list.is_empty ())
{
pred_info a_pred = work_list.pop ();
normalize_one_pred_1 (norm_preds, &norm_chain, a_pred, and_or_code,
&work_list, &mark_set);
}
if (and_or_code == BIT_AND_EXPR)
norm_preds->safe_push (norm_chain);
work_list.release ();
}
static void
normalize_one_pred_chain (pred_chain_union *norm_preds, pred_chain one_chain)
{
vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
hash_set<tree> mark_set;
pred_chain norm_chain = vNULL;
size_t i;
for (i = 0; i < one_chain.length (); i++)
{
work_list.safe_push (one_chain[i]);
mark_set.add (one_chain[i].pred_lhs);
}
while (!work_list.is_empty ())
{
pred_info a_pred = work_list.pop ();
normalize_one_pred_1 (0, &norm_chain, a_pred, BIT_AND_EXPR, &work_list,
&mark_set);
}
norm_preds->safe_push (norm_chain);
work_list.release ();
}
/* Normalize predicate chains PREDS and returns the normalized one. */
static pred_chain_union
normalize_preds (pred_chain_union preds, gimple *use_or_def, bool is_use)
{
pred_chain_union norm_preds = vNULL;
size_t n = preds.length ();
size_t i;
if (dump_file && dump_flags & TDF_DETAILS)
{
fprintf (dump_file, "[BEFORE NORMALIZATION --");
dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n");
}
for (i = 0; i < n; i++)
{
if (preds[i].length () != 1)
normalize_one_pred_chain (&norm_preds, preds[i]);
else
{
normalize_one_pred (&norm_preds, preds[i][0]);
preds[i].release ();
}
}
if (dump_file)
{
fprintf (dump_file, "[AFTER NORMALIZATION -- ");
dump_predicates (use_or_def, norm_preds,
is_use ? "[USE]:\n" : "[DEF]:\n");
}
destroy_predicate_vecs (&preds);
return norm_preds;
}
/* Return TRUE if PREDICATE can be invalidated by any individual
predicate in USE_GUARD. */
static bool
can_one_predicate_be_invalidated_p (pred_info predicate,
pred_chain use_guard)
{
if (dump_file && dump_flags & TDF_DETAILS)
{
fprintf (dump_file, "Testing if this predicate: ");
dump_pred_info (predicate);
fprintf (dump_file, "\n...can be invalidated by a USE guard of: ");
dump_pred_chain (use_guard);
}
for <