blob: 642a29d30105fc909815a59eed6b6475908f10af [file] [log] [blame]
// Copyright 2018 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
// (See accompanying file LICENSE-Apache or copy at
// http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
// (See accompanying file LICENSE-Boost or copy at
// https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
// Runtime compiler options:
// -DRYU_DEBUG Generate verbose debugging output to stdout.
//
// -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower,
// depending on your compiler.
//
// -DRYU_AVOID_UINT128 Avoid using uint128_t. Slower, depending on your compiler.
#ifdef RYU_DEBUG
#endif
#define DOUBLE_MANTISSA_BITS 52
#define DOUBLE_EXPONENT_BITS 11
#define DOUBLE_BIAS 1023
#define POW10_ADDITIONAL_BITS 120
#if defined(HAS_UINT128)
static inline uint128_t umul256(const uint128_t a, const uint64_t bHi, const uint64_t bLo, uint128_t* const productHi) {
const uint64_t aLo = (uint64_t)a;
const uint64_t aHi = (uint64_t)(a >> 64);
const uint128_t b00 = (uint128_t)aLo * bLo;
const uint128_t b01 = (uint128_t)aLo * bHi;
const uint128_t b10 = (uint128_t)aHi * bLo;
const uint128_t b11 = (uint128_t)aHi * bHi;
const uint64_t b00Lo = (uint64_t)b00;
const uint64_t b00Hi = (uint64_t)(b00 >> 64);
const uint128_t mid1 = b10 + b00Hi;
const uint64_t mid1Lo = (uint64_t)(mid1);
const uint64_t mid1Hi = (uint64_t)(mid1 >> 64);
const uint128_t mid2 = b01 + mid1Lo;
const uint64_t mid2Lo = (uint64_t)(mid2);
const uint64_t mid2Hi = (uint64_t)(mid2 >> 64);
const uint128_t pHi = b11 + mid1Hi + mid2Hi;
const uint128_t pLo = ((uint128_t)mid2Lo << 64) | b00Lo;
*productHi = pHi;
return pLo;
}
// Returns the high 128 bits of the 256-bit product of a and b.
static inline uint128_t umul256_hi(const uint128_t a, const uint64_t bHi, const uint64_t bLo) {
// Reuse the umul256 implementation.
// Optimizers will likely eliminate the instructions used to compute the
// low part of the product.
uint128_t hi;
umul256(a, bHi, bLo, &hi);
return hi;
}
// Unfortunately, gcc/clang do not automatically turn a 128-bit integer division
// into a multiplication, so we have to do it manually.
static inline uint32_t uint128_mod1e9(const uint128_t v) {
// After multiplying, we're going to shift right by 29, then truncate to uint32_t.
// This means that we need only 29 + 32 = 61 bits, so we can truncate to uint64_t before shifting.
const uint64_t multiplied = (uint64_t) umul256_hi(v, 0x89705F4136B4A597u, 0x31680A88F8953031u);
// For uint32_t truncation, see the mod1e9() comment in d2s_intrinsics.h.
const uint32_t shifted = (uint32_t) (multiplied >> 29);
return ((uint32_t) v) - 1000000000 * shifted;
}
// Best case: use 128-bit type.
static inline uint32_t mulShift_mod1e9(const uint64_t m, const uint64_t* const mul, const int32_t j) {
const uint128_t b0 = ((uint128_t) m) * mul[0]; // 0
const uint128_t b1 = ((uint128_t) m) * mul[1]; // 64
const uint128_t b2 = ((uint128_t) m) * mul[2]; // 128
#ifdef RYU_DEBUG
if (j < 128 || j > 180) {
printf("%d\n", j);
}
#endif
assert(j >= 128);
assert(j <= 180);
// j: [128, 256)
const uint128_t mid = b1 + (uint64_t) (b0 >> 64); // 64
const uint128_t s1 = b2 + (uint64_t) (mid >> 64); // 128
return uint128_mod1e9(s1 >> (j - 128));
}
#else // HAS_UINT128
#if defined(HAS_64_BIT_INTRINSICS)
// Returns the low 64 bits of the high 128 bits of the 256-bit product of a and b.
static inline uint64_t umul256_hi128_lo64(
const uint64_t aHi, const uint64_t aLo, const uint64_t bHi, const uint64_t bLo) {
uint64_t b00Hi;
const uint64_t b00Lo = umul128(aLo, bLo, &b00Hi);
uint64_t b01Hi;
const uint64_t b01Lo = umul128(aLo, bHi, &b01Hi);
uint64_t b10Hi;
const uint64_t b10Lo = umul128(aHi, bLo, &b10Hi);
uint64_t b11Hi;
const uint64_t b11Lo = umul128(aHi, bHi, &b11Hi);
(void) b00Lo; // unused
(void) b11Hi; // unused
const uint64_t temp1Lo = b10Lo + b00Hi;
const uint64_t temp1Hi = b10Hi + (temp1Lo < b10Lo);
const uint64_t temp2Lo = b01Lo + temp1Lo;
const uint64_t temp2Hi = b01Hi + (temp2Lo < b01Lo);
return b11Lo + temp1Hi + temp2Hi;
}
static inline uint32_t uint128_mod1e9(const uint64_t vHi, const uint64_t vLo) {
// After multiplying, we're going to shift right by 29, then truncate to uint32_t.
// This means that we need only 29 + 32 = 61 bits, so we can truncate to uint64_t before shifting.
const uint64_t multiplied = umul256_hi128_lo64(vHi, vLo, 0x89705F4136B4A597u, 0x31680A88F8953031u);
// For uint32_t truncation, see the mod1e9() comment in d2s_intrinsics.h.
const uint32_t shifted = (uint32_t) (multiplied >> 29);
return ((uint32_t) vLo) - 1000000000 * shifted;
}
#endif // HAS_64_BIT_INTRINSICS
static inline uint32_t mulShift_mod1e9(const uint64_t m, const uint64_t* const mul, const int32_t j) {
uint64_t high0; // 64
const uint64_t low0 = umul128(m, mul[0], &high0); // 0
uint64_t high1; // 128
const uint64_t low1 = umul128(m, mul[1], &high1); // 64
uint64_t high2; // 192
const uint64_t low2 = umul128(m, mul[2], &high2); // 128
const uint64_t s0low = low0; // 0
(void) s0low; // unused
const uint64_t s0high = low1 + high0; // 64
const uint32_t c1 = s0high < low1;
const uint64_t s1low = low2 + high1 + c1; // 128
const uint32_t c2 = s1low < low2; // high1 + c1 can't overflow, so compare against low2
const uint64_t s1high = high2 + c2; // 192
#ifdef RYU_DEBUG
if (j < 128 || j > 180) {
printf("%d\n", j);
}
#endif
assert(j >= 128);
assert(j <= 180);
#if defined(HAS_64_BIT_INTRINSICS)
const uint32_t dist = (uint32_t) (j - 128); // dist: [0, 52]
const uint64_t shiftedhigh = s1high >> dist;
const uint64_t shiftedlow = shiftright128(s1low, s1high, dist);
return uint128_mod1e9(shiftedhigh, shiftedlow);
#else // HAS_64_BIT_INTRINSICS
if (j < 160) { // j: [128, 160)
const uint64_t r0 = mod1e9(s1high);
const uint64_t r1 = mod1e9((r0 << 32) | (s1low >> 32));
const uint64_t r2 = ((r1 << 32) | (s1low & 0xffffffff));
return mod1e9(r2 >> (j - 128));
} else { // j: [160, 192)
const uint64_t r0 = mod1e9(s1high);
const uint64_t r1 = ((r0 << 32) | (s1low >> 32));
return mod1e9(r1 >> (j - 160));
}
#endif // HAS_64_BIT_INTRINSICS
}
#endif // HAS_UINT128
// Convert `digits` to a sequence of decimal digits. Append the digits to the result.
// The caller has to guarantee that:
// 10^(olength-1) <= digits < 10^olength
// e.g., by passing `olength` as `decimalLength9(digits)`.
static inline void append_n_digits(const uint32_t olength, uint32_t digits, char* const result) {
#ifdef RYU_DEBUG
printf("DIGITS=%u\n", digits);
#endif
uint32_t i = 0;
while (digits >= 10000) {
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
const uint32_t c = digits - 10000 * (digits / 10000);
#else
const uint32_t c = digits % 10000;
#endif
digits /= 10000;
const uint32_t c0 = (c % 100) << 1;
const uint32_t c1 = (c / 100) << 1;
memcpy(result + olength - i - 2, DIGIT_TABLE + c0, 2);
memcpy(result + olength - i - 4, DIGIT_TABLE + c1, 2);
i += 4;
}
if (digits >= 100) {
const uint32_t c = (digits % 100) << 1;
digits /= 100;
memcpy(result + olength - i - 2, DIGIT_TABLE + c, 2);
i += 2;
}
if (digits >= 10) {
const uint32_t c = digits << 1;
memcpy(result + olength - i - 2, DIGIT_TABLE + c, 2);
} else {
result[0] = (char) ('0' + digits);
}
}
// Convert `digits` to a sequence of decimal digits. Print the first digit, followed by a decimal
// dot '.' followed by the remaining digits. The caller has to guarantee that:
// 10^(olength-1) <= digits < 10^olength
// e.g., by passing `olength` as `decimalLength9(digits)`.
static inline void append_d_digits(const uint32_t olength, uint32_t digits, char* const result) {
#ifdef RYU_DEBUG
printf("DIGITS=%u\n", digits);
#endif
uint32_t i = 0;
while (digits >= 10000) {
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
const uint32_t c = digits - 10000 * (digits / 10000);
#else
const uint32_t c = digits % 10000;
#endif
digits /= 10000;
const uint32_t c0 = (c % 100) << 1;
const uint32_t c1 = (c / 100) << 1;
memcpy(result + olength + 1 - i - 2, DIGIT_TABLE + c0, 2);
memcpy(result + olength + 1 - i - 4, DIGIT_TABLE + c1, 2);
i += 4;
}
if (digits >= 100) {
const uint32_t c = (digits % 100) << 1;
digits /= 100;
memcpy(result + olength + 1 - i - 2, DIGIT_TABLE + c, 2);
i += 2;
}
if (digits >= 10) {
const uint32_t c = digits << 1;
result[2] = DIGIT_TABLE[c + 1];
result[1] = '.';
result[0] = DIGIT_TABLE[c];
} else {
result[1] = '.';
result[0] = (char) ('0' + digits);
}
}
// Convert `digits` to decimal and write the last `count` decimal digits to result.
// If `digits` contains additional digits, then those are silently ignored.
static inline void append_c_digits(const uint32_t count, uint32_t digits, char* const result) {
#ifdef RYU_DEBUG
printf("DIGITS=%u\n", digits);
#endif
// Copy pairs of digits from DIGIT_TABLE.
uint32_t i = 0;
for (; i < count - 1; i += 2) {
const uint32_t c = (digits % 100) << 1;
digits /= 100;
memcpy(result + count - i - 2, DIGIT_TABLE + c, 2);
}
// Generate the last digit if count is odd.
if (i < count) {
const char c = (char) ('0' + (digits % 10));
result[count - i - 1] = c;
}
}
// Convert `digits` to decimal and write the last 9 decimal digits to result.
// If `digits` contains additional digits, then those are silently ignored.
static inline void append_nine_digits(uint32_t digits, char* const result) {
#ifdef RYU_DEBUG
printf("DIGITS=%u\n", digits);
#endif
if (digits == 0) {
memset(result, '0', 9);
return;
}
for (uint32_t i = 0; i < 5; i += 4) {
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
const uint32_t c = digits - 10000 * (digits / 10000);
#else
const uint32_t c = digits % 10000;
#endif
digits /= 10000;
const uint32_t c0 = (c % 100) << 1;
const uint32_t c1 = (c / 100) << 1;
memcpy(result + 7 - i, DIGIT_TABLE + c0, 2);
memcpy(result + 5 - i, DIGIT_TABLE + c1, 2);
}
result[0] = (char) ('0' + digits);
}
static inline uint32_t indexForExponent(const uint32_t e) {
return (e + 15) / 16;
}
static inline uint32_t pow10BitsForIndex(const uint32_t idx) {
return 16 * idx + POW10_ADDITIONAL_BITS;
}
static inline uint32_t lengthForIndex(const uint32_t idx) {
// +1 for ceil, +16 for mantissa, +8 to round up when dividing by 9
return (log10Pow2(16 * (int32_t) idx) + 1 + 16 + 8) / 9;
}
int d2fixed_buffered_n(double d, uint32_t precision, char* result) {
const uint64_t bits = double_to_bits(d);
#ifdef RYU_DEBUG
printf("IN=");
for (int32_t bit = 63; bit >= 0; --bit) {
printf("%d", (int) ((bits >> bit) & 1));
}
printf("\n");
#endif
// Decode bits into sign, mantissa, and exponent.
const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
const uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
const uint32_t ieeeExponent = (uint32_t) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
// Case distinction; exit early for the easy cases.
if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u)) {
__builtin_abort();
}
if (ieeeExponent == 0 && ieeeMantissa == 0) {
__builtin_abort();
}
int32_t e2;
uint64_t m2;
if (ieeeExponent == 0) {
e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
m2 = ieeeMantissa;
} else {
e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
}
#ifdef RYU_DEBUG
printf("-> %" PRIu64 " * 2^%d\n", m2, e2);
#endif
int index = 0;
bool nonzero = false;
if (ieeeSign) {
result[index++] = '-';
}
if (e2 >= -52) {
const uint32_t idx = e2 < 0 ? 0 : indexForExponent((uint32_t) e2);
const uint32_t p10bits = pow10BitsForIndex(idx);
const int32_t len = (int32_t) lengthForIndex(idx);
#ifdef RYU_DEBUG
printf("idx=%u\n", idx);
printf("len=%d\n", len);
#endif
for (int32_t i = len - 1; i >= 0; --i) {
const uint32_t j = p10bits - e2;
// Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
// a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers.
const uint32_t digits = mulShift_mod1e9(m2 << 8, POW10_SPLIT[POW10_OFFSET[idx] + i], (int32_t) (j + 8));
if (nonzero) {
append_nine_digits(digits, result + index);
index += 9;
} else if (digits != 0) {
const uint32_t olength = decimalLength9(digits);
append_n_digits(olength, digits, result + index);
index += olength;
nonzero = true;
}
}
}
if (!nonzero) {
result[index++] = '0';
}
if (precision > 0) {
result[index++] = '.';
}
#ifdef RYU_DEBUG
printf("e2=%d\n", e2);
#endif
if (e2 < 0) {
const int32_t idx = -e2 / 16;
#ifdef RYU_DEBUG
printf("idx=%d\n", idx);
#endif
const uint32_t blocks = precision / 9 + 1;
// 0 = don't round up; 1 = round up unconditionally; 2 = round up if odd.
int roundUp = 0;
uint32_t i = 0;
if (blocks <= MIN_BLOCK_2[idx]) {
i = blocks;
memset(result + index, '0', precision);
index += precision;
} else if (i < MIN_BLOCK_2[idx]) {
i = MIN_BLOCK_2[idx];
memset(result + index, '0', 9 * i);
index += 9 * i;
}
for (; i < blocks; ++i) {
const int32_t j = ADDITIONAL_BITS_2 + (-e2 - 16 * idx);
const uint32_t p = POW10_OFFSET_2[idx] + i - MIN_BLOCK_2[idx];
if (p >= POW10_OFFSET_2[idx + 1]) {
// If the remaining digits are all 0, then we might as well use memset.
// No rounding required in this case.
const uint32_t fill = precision - 9 * i;
memset(result + index, '0', fill);
index += fill;
break;
}
// Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
// a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers.
uint32_t digits = mulShift_mod1e9(m2 << 8, POW10_SPLIT_2[p], j + 8);
#ifdef RYU_DEBUG
printf("digits=%u\n", digits);
#endif
if (i < blocks - 1) {
append_nine_digits(digits, result + index);
index += 9;
} else {
const uint32_t maximum = precision - 9 * i;
uint32_t lastDigit = 0;
for (uint32_t k = 0; k < 9 - maximum; ++k) {
lastDigit = digits % 10;
digits /= 10;
}
#ifdef RYU_DEBUG
printf("lastDigit=%u\n", lastDigit);
#endif
if (lastDigit != 5) {
roundUp = lastDigit > 5;
} else {
// Is m * 10^(additionalDigits + 1) / 2^(-e2) integer?
const int32_t requiredTwos = -e2 - (int32_t) precision - 1;
const bool trailingZeros = requiredTwos <= 0
|| (requiredTwos < 60 && multipleOfPowerOf2(m2, (uint32_t) requiredTwos));
roundUp = trailingZeros ? 2 : 1;
#ifdef RYU_DEBUG
printf("requiredTwos=%d\n", requiredTwos);
printf("trailingZeros=%s\n", trailingZeros ? "true" : "false");
#endif
}
if (maximum > 0) {
append_c_digits(maximum, digits, result + index);
index += maximum;
}
break;
}
}
#ifdef RYU_DEBUG
printf("roundUp=%d\n", roundUp);
#endif
if (roundUp != 0) {
int roundIndex = index;
int dotIndex = 0; // '.' can't be located at index 0
while (true) {
--roundIndex;
char c;
if (roundIndex == -1 || (c = result[roundIndex], c == '-')) {
result[roundIndex + 1] = '1';
if (dotIndex > 0) {
result[dotIndex] = '0';
result[dotIndex + 1] = '.';
}
result[index++] = '0';
break;
}
if (c == '.') {
dotIndex = roundIndex;
continue;
} else if (c == '9') {
result[roundIndex] = '0';
roundUp = 1;
continue;
} else {
if (roundUp == 2 && c % 2 == 0) {
break;
}
result[roundIndex] = c + 1;
break;
}
}
}
} else {
memset(result + index, '0', precision);
index += precision;
}
return index;
}
int d2exp_buffered_n(double d, uint32_t precision, char* result, int* exp_out) {
const uint64_t bits = double_to_bits(d);
#ifdef RYU_DEBUG
printf("IN=");
for (int32_t bit = 63; bit >= 0; --bit) {
printf("%d", (int) ((bits >> bit) & 1));
}
printf("\n");
#endif
// Decode bits into sign, mantissa, and exponent.
const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
const uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
const uint32_t ieeeExponent = (uint32_t) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
// Case distinction; exit early for the easy cases.
if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u)) {
__builtin_abort();
}
if (ieeeExponent == 0 && ieeeMantissa == 0) {
__builtin_abort();
}
int32_t e2;
uint64_t m2;
if (ieeeExponent == 0) {
e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
m2 = ieeeMantissa;
} else {
e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
}
#ifdef RYU_DEBUG
printf("-> %" PRIu64 " * 2^%d\n", m2, e2);
#endif
const bool printDecimalPoint = precision > 0;
++precision;
int index = 0;
if (ieeeSign) {
result[index++] = '-';
}
uint32_t digits = 0;
uint32_t printedDigits = 0;
uint32_t availableDigits = 0;
int32_t exp = 0;
if (e2 >= -52) {
const uint32_t idx = e2 < 0 ? 0 : indexForExponent((uint32_t) e2);
const uint32_t p10bits = pow10BitsForIndex(idx);
const int32_t len = (int32_t) lengthForIndex(idx);
#ifdef RYU_DEBUG
printf("idx=%u\n", idx);
printf("len=%d\n", len);
#endif
for (int32_t i = len - 1; i >= 0; --i) {
const uint32_t j = p10bits - e2;
// Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
// a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers.
digits = mulShift_mod1e9(m2 << 8, POW10_SPLIT[POW10_OFFSET[idx] + i], (int32_t) (j + 8));
if (printedDigits != 0) {
if (printedDigits + 9 > precision) {
availableDigits = 9;
break;
}
append_nine_digits(digits, result + index);
index += 9;
printedDigits += 9;
} else if (digits != 0) {
availableDigits = decimalLength9(digits);
exp = i * 9 + (int32_t) availableDigits - 1;
if (availableDigits > precision) {
break;
}
if (printDecimalPoint) {
append_d_digits(availableDigits, digits, result + index);
index += availableDigits + 1; // +1 for decimal point
} else {
result[index++] = (char) ('0' + digits);
}
printedDigits = availableDigits;
availableDigits = 0;
}
}
}
if (e2 < 0 && availableDigits == 0) {
const int32_t idx = -e2 / 16;
#ifdef RYU_DEBUG
printf("idx=%d, e2=%d, min=%d\n", idx, e2, MIN_BLOCK_2[idx]);
#endif
for (int32_t i = MIN_BLOCK_2[idx]; i < 200; ++i) {
const int32_t j = ADDITIONAL_BITS_2 + (-e2 - 16 * idx);
const uint32_t p = POW10_OFFSET_2[idx] + (uint32_t) i - MIN_BLOCK_2[idx];
// Temporary: j is usually around 128, and by shifting a bit, we push it to 128 or above, which is
// a slightly faster code path in mulShift_mod1e9. Instead, we can just increase the multipliers.
digits = (p >= POW10_OFFSET_2[idx + 1]) ? 0 : mulShift_mod1e9(m2 << 8, POW10_SPLIT_2[p], j + 8);
#ifdef RYU_DEBUG
printf("exact=%" PRIu64 " * (%" PRIu64 " + %" PRIu64 " << 64) >> %d\n", m2, POW10_SPLIT_2[p][0], POW10_SPLIT_2[p][1], j);
printf("digits=%u\n", digits);
#endif
if (printedDigits != 0) {
if (printedDigits + 9 > precision) {
availableDigits = 9;
break;
}
append_nine_digits(digits, result + index);
index += 9;
printedDigits += 9;
} else if (digits != 0) {
availableDigits = decimalLength9(digits);
exp = -(i + 1) * 9 + (int32_t) availableDigits - 1;
if (availableDigits > precision) {
break;
}
if (printDecimalPoint) {
append_d_digits(availableDigits, digits, result + index);
index += availableDigits + 1; // +1 for decimal point
} else {
result[index++] = (char) ('0' + digits);
}
printedDigits = availableDigits;
availableDigits = 0;
}
}
}
const uint32_t maximum = precision - printedDigits;
#ifdef RYU_DEBUG
printf("availableDigits=%u\n", availableDigits);
printf("digits=%u\n", digits);
printf("maximum=%u\n", maximum);
#endif
if (availableDigits == 0) {
digits = 0;
}
uint32_t lastDigit = 0;
if (availableDigits > maximum) {
for (uint32_t k = 0; k < availableDigits - maximum; ++k) {
lastDigit = digits % 10;
digits /= 10;
}
}
#ifdef RYU_DEBUG
printf("lastDigit=%u\n", lastDigit);
#endif
// 0 = don't round up; 1 = round up unconditionally; 2 = round up if odd.
int roundUp = 0;
if (lastDigit != 5) {
roundUp = lastDigit > 5;
} else {
// Is m * 2^e2 * 10^(precision + 1 - exp) integer?
// precision was already increased by 1, so we don't need to write + 1 here.
const int32_t rexp = (int32_t) precision - exp;
const int32_t requiredTwos = -e2 - rexp;
bool trailingZeros = requiredTwos <= 0
|| (requiredTwos < 60 && multipleOfPowerOf2(m2, (uint32_t) requiredTwos));
if (rexp < 0) {
const int32_t requiredFives = -rexp;
trailingZeros = trailingZeros && multipleOfPowerOf5(m2, (uint32_t) requiredFives);
}
roundUp = trailingZeros ? 2 : 1;
#ifdef RYU_DEBUG
printf("requiredTwos=%d\n", requiredTwos);
printf("trailingZeros=%s\n", trailingZeros ? "true" : "false");
#endif
}
if (printedDigits != 0) {
if (digits == 0) {
memset(result + index, '0', maximum);
} else {
append_c_digits(maximum, digits, result + index);
}
index += maximum;
} else {
if (printDecimalPoint) {
append_d_digits(maximum, digits, result + index);
index += maximum + 1; // +1 for decimal point
} else {
result[index++] = (char) ('0' + digits);
}
}
#ifdef RYU_DEBUG
printf("roundUp=%d\n", roundUp);
#endif
if (roundUp != 0) {
int roundIndex = index;
while (true) {
--roundIndex;
char c;
if (roundIndex == -1 || (c = result[roundIndex], c == '-')) {
result[roundIndex + 1] = '1';
++exp;
break;
}
if (c == '.') {
continue;
} else if (c == '9') {
result[roundIndex] = '0';
roundUp = 1;
continue;
} else {
if (roundUp == 2 && c % 2 == 0) {
break;
}
result[roundIndex] = c + 1;
break;
}
}
}
if (exp_out) {
*exp_out = exp;
}
result[index++] = 'e';
if (exp < 0) {
result[index++] = '-';
exp = -exp;
} else {
result[index++] = '+';
}
if (exp >= 100) {
const int32_t c = exp % 10;
memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2);
result[index + 2] = (char) ('0' + c);
index += 3;
} else {
memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
index += 2;
}
return index;
}