| /*							expm1q.c | 
 |  * | 
 |  *	Exponential function, minus 1 | 
 |  *      128-bit long double precision | 
 |  * | 
 |  * | 
 |  * | 
 |  * SYNOPSIS: | 
 |  * | 
 |  * long double x, y, expm1q(); | 
 |  * | 
 |  * y = expm1q( x ); | 
 |  * | 
 |  * | 
 |  * | 
 |  * DESCRIPTION: | 
 |  * | 
 |  * Returns e (2.71828...) raised to the x power, minus one. | 
 |  * | 
 |  * Range reduction is accomplished by separating the argument | 
 |  * into an integer k and fraction f such that | 
 |  * | 
 |  *     x    k  f | 
 |  *    e  = 2  e. | 
 |  * | 
 |  * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1 | 
 |  * in the basic range [-0.5 ln 2, 0.5 ln 2]. | 
 |  * | 
 |  * | 
 |  * ACCURACY: | 
 |  * | 
 |  *                      Relative error: | 
 |  * arithmetic   domain     # trials      peak         rms | 
 |  *    IEEE    -79,+MAXLOG    100,000     1.7e-34     4.5e-35 | 
 |  * | 
 |  */ | 
 |  | 
 | /* Copyright 2001 by Stephen L. Moshier | 
 |  | 
 |     This library is free software; you can redistribute it and/or | 
 |     modify it under the terms of the GNU Lesser General Public | 
 |     License as published by the Free Software Foundation; either | 
 |     version 2.1 of the License, or (at your option) any later version. | 
 |  | 
 |     This library is distributed in the hope that it will be useful, | 
 |     but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |     Lesser General Public License for more details. | 
 |  | 
 |     You should have received a copy of the GNU Lesser General Public | 
 |     License along with this library; if not, see | 
 |     <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "quadmath-imp.h" | 
 |  | 
 | /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x) | 
 |    -.5 ln 2  <  x  <  .5 ln 2 | 
 |    Theoretical peak relative error = 8.1e-36  */ | 
 |  | 
 | static const __float128 | 
 |   P0 = 2.943520915569954073888921213330863757240E8Q, | 
 |   P1 = -5.722847283900608941516165725053359168840E7Q, | 
 |   P2 = 8.944630806357575461578107295909719817253E6Q, | 
 |   P3 = -7.212432713558031519943281748462837065308E5Q, | 
 |   P4 = 4.578962475841642634225390068461943438441E4Q, | 
 |   P5 = -1.716772506388927649032068540558788106762E3Q, | 
 |   P6 = 4.401308817383362136048032038528753151144E1Q, | 
 |   P7 = -4.888737542888633647784737721812546636240E-1Q, | 
 |   Q0 = 1.766112549341972444333352727998584753865E9Q, | 
 |   Q1 = -7.848989743695296475743081255027098295771E8Q, | 
 |   Q2 = 1.615869009634292424463780387327037251069E8Q, | 
 |   Q3 = -2.019684072836541751428967854947019415698E7Q, | 
 |   Q4 = 1.682912729190313538934190635536631941751E6Q, | 
 |   Q5 = -9.615511549171441430850103489315371768998E4Q, | 
 |   Q6 = 3.697714952261803935521187272204485251835E3Q, | 
 |   Q7 = -8.802340681794263968892934703309274564037E1Q, | 
 |   /* Q8 = 1.000000000000000000000000000000000000000E0 */ | 
 | /* C1 + C2 = ln 2 */ | 
 |  | 
 |   C1 = 6.93145751953125E-1Q, | 
 |   C2 = 1.428606820309417232121458176568075500134E-6Q, | 
 | /* ln 2^-114 */ | 
 |   minarg = -7.9018778583833765273564461846232128760607E1Q, big = 1e4932Q; | 
 |  | 
 |  | 
 | __float128 | 
 | expm1q (__float128 x) | 
 | { | 
 |   __float128 px, qx, xx; | 
 |   int32_t ix, sign; | 
 |   ieee854_float128 u; | 
 |   int k; | 
 |  | 
 |   /* Detect infinity and NaN.  */ | 
 |   u.value = x; | 
 |   ix = u.words32.w0; | 
 |   sign = ix & 0x80000000; | 
 |   ix &= 0x7fffffff; | 
 |   if (!sign && ix >= 0x40060000) | 
 |     { | 
 |       /* If num is positive and exp >= 6 use plain exp.  */ | 
 |       return expq (x); | 
 |     } | 
 |   if (ix >= 0x7fff0000) | 
 |     { | 
 |       /* Infinity (which must be negative infinity). */ | 
 |       if (((ix & 0xffff) | u.words32.w1 | u.words32.w2 | u.words32.w3) == 0) | 
 | 	return -1; | 
 |       /* NaN.  Invalid exception if signaling.  */ | 
 |       return x + x; | 
 |     } | 
 |  | 
 |   /* expm1(+- 0) = +- 0.  */ | 
 |   if ((ix == 0) && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0) | 
 |     return x; | 
 |  | 
 |   /* Minimum value.  */ | 
 |   if (x < minarg) | 
 |     return (4.0/big - 1); | 
 |  | 
 |   /* Avoid internal underflow when result does not underflow, while | 
 |      ensuring underflow (without returning a zero of the wrong sign) | 
 |      when the result does underflow.  */ | 
 |   if (fabsq (x) < 0x1p-113Q) | 
 |     { | 
 |       math_check_force_underflow (x); | 
 |       return x; | 
 |     } | 
 |  | 
 |   /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */ | 
 |   xx = C1 + C2;			/* ln 2. */ | 
 |   px = floorq (0.5 + x / xx); | 
 |   k = px; | 
 |   /* remainder times ln 2 */ | 
 |   x -= px * C1; | 
 |   x -= px * C2; | 
 |  | 
 |   /* Approximate exp(remainder ln 2).  */ | 
 |   px = (((((((P7 * x | 
 | 	      + P6) * x | 
 | 	     + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x; | 
 |  | 
 |   qx = (((((((x | 
 | 	      + Q7) * x | 
 | 	     + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0; | 
 |  | 
 |   xx = x * x; | 
 |   qx = x + (0.5 * xx + xx * px / qx); | 
 |  | 
 |   /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2). | 
 |  | 
 |   We have qx = exp(remainder ln 2) - 1, so | 
 |   exp(x) - 1 = 2^k (qx + 1) - 1 | 
 |              = 2^k qx + 2^k - 1.  */ | 
 |  | 
 |   px = ldexpq (1, k); | 
 |   x = px * qx + (px - 1.0); | 
 |   return x; | 
 | } |