| /* Copyright (C) 2007-2021 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "bid_internal.h" |
| |
| /***************************************************************************** |
| * BID64 minimum function - returns greater of two numbers |
| *****************************************************************************/ |
| |
| static const UINT64 mult_factor[16] = { |
| 1ull, 10ull, 100ull, 1000ull, |
| 10000ull, 100000ull, 1000000ull, 10000000ull, |
| 100000000ull, 1000000000ull, 10000000000ull, 100000000000ull, |
| 1000000000000ull, 10000000000000ull, |
| 100000000000000ull, 1000000000000000ull |
| }; |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_minnum (UINT64 * pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| UINT64 |
| bid64_minnum (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) { |
| #endif |
| |
| UINT64 res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0; |
| |
| // check for non-canonical x |
| if ((x & MASK_NAN) == MASK_NAN) { // x is NaN |
| x = x & 0xfe03ffffffffffffull; // clear G6-G12 |
| if ((x & 0x0003ffffffffffffull) > 999999999999999ull) { |
| x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits |
| } |
| } else if ((x & MASK_INF) == MASK_INF) { // check for Infinity |
| x = x & (MASK_SIGN | MASK_INF); |
| } else { // x is not special |
| // check for non-canonical values - treated as zero |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| // if the steering bits are 11, then the exponent is G[0:w+1] |
| if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) > |
| 9999999999999999ull) { |
| // non-canonical |
| x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2); |
| } // else canonical |
| } // else canonical |
| } |
| |
| // check for non-canonical y |
| if ((y & MASK_NAN) == MASK_NAN) { // y is NaN |
| y = y & 0xfe03ffffffffffffull; // clear G6-G12 |
| if ((y & 0x0003ffffffffffffull) > 999999999999999ull) { |
| y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { // check for Infinity |
| y = y & (MASK_SIGN | MASK_INF); |
| } else { // y is not special |
| // check for non-canonical values - treated as zero |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| // if the steering bits are 11, then the exponent is G[0:w+1] |
| if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) > |
| 9999999999999999ull) { |
| // non-canonical |
| y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2); |
| } // else canonical |
| } // else canonical |
| } |
| |
| // NaN (CASE1) |
| if ((x & MASK_NAN) == MASK_NAN) { // x is NAN |
| if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN |
| // if x is SNAN, then return quiet (x) |
| *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN |
| x = x & 0xfdffffffffffffffull; // quietize x |
| res = x; |
| } else { // x is QNaN |
| if ((y & MASK_NAN) == MASK_NAN) { // y is NAN |
| if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN |
| *pfpsf |= INVALID_EXCEPTION; // set invalid flag |
| } |
| res = x; |
| } else { |
| res = y; |
| } |
| } |
| BID_RETURN (res); |
| } else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not |
| if ((y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN |
| y = y & 0xfdffffffffffffffull; // quietize y |
| res = y; |
| } else { |
| // will return x (which is not NaN) |
| res = x; |
| } |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal, return either number |
| if (x == y) { |
| res = x; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x is neg infinity, there is no way it is greater than y, return x |
| if (((x & MASK_SIGN) == MASK_SIGN)) { |
| res = x; |
| BID_RETURN (res); |
| } |
| // x is pos infinity, return y |
| else { |
| res = y; |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return y |
| // if y is negative infinity, then x is greater, return x |
| res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x; |
| BID_RETURN (res); |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| } |
| |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| } |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO == -ZERO) => therefore |
| // ignore the sign, and neither number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (sig_y == 0) { |
| y_is_zero = 1; |
| } |
| |
| if (x_is_zero && y_is_zero) { |
| // if both numbers are zero, neither is greater => return either |
| res = y; |
| BID_RETURN (res); |
| } else if (x_is_zero) { |
| // is x is zero, it is greater if Y is negative |
| res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x; |
| BID_RETURN (res); |
| } else if (y_is_zero) { |
| // is y is zero, X is greater if it is positive |
| res = ((x & MASK_SIGN) != MASK_SIGN) ? y : x;; |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is greater if y is negative |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x; |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN) ? y : x; |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN) ? y : x; |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = ((x & MASK_SIGN) != MASK_SIGN) ? y : x; // difference cannot be >10^15 |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) == MASK_SIGN) ? y : x; |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = y; |
| BID_RETURN (res); |
| } |
| |
| res = (((sig_n_prime.w[1] > 0) |
| || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)) ? y : x; |
| BID_RETURN (res); |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| |
| // if postitive, return whichever significand is larger (converse if negative) |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = y; |
| BID_RETURN (res); |
| } |
| res = (((sig_n_prime.w[1] == 0) |
| && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)) ? y : x; |
| BID_RETURN (res); |
| } |
| |
| /***************************************************************************** |
| * BID64 minimum magnitude function - returns greater of two numbers |
| *****************************************************************************/ |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_minnum_mag (UINT64 * pres, UINT64 * px, |
| UINT64 * py _EXC_FLAGS_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| UINT64 |
| bid64_minnum_mag (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) { |
| #endif |
| |
| UINT64 res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| |
| // check for non-canonical x |
| if ((x & MASK_NAN) == MASK_NAN) { // x is NaN |
| x = x & 0xfe03ffffffffffffull; // clear G6-G12 |
| if ((x & 0x0003ffffffffffffull) > 999999999999999ull) { |
| x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits |
| } |
| } else if ((x & MASK_INF) == MASK_INF) { // check for Infinity |
| x = x & (MASK_SIGN | MASK_INF); |
| } else { // x is not special |
| // check for non-canonical values - treated as zero |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| // if the steering bits are 11, then the exponent is G[0:w+1] |
| if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) > |
| 9999999999999999ull) { |
| // non-canonical |
| x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2); |
| } // else canonical |
| } // else canonical |
| } |
| |
| // check for non-canonical y |
| if ((y & MASK_NAN) == MASK_NAN) { // y is NaN |
| y = y & 0xfe03ffffffffffffull; // clear G6-G12 |
| if ((y & 0x0003ffffffffffffull) > 999999999999999ull) { |
| y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { // check for Infinity |
| y = y & (MASK_SIGN | MASK_INF); |
| } else { // y is not special |
| // check for non-canonical values - treated as zero |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| // if the steering bits are 11, then the exponent is G[0:w+1] |
| if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) > |
| 9999999999999999ull) { |
| // non-canonical |
| y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2); |
| } // else canonical |
| } // else canonical |
| } |
| |
| // NaN (CASE1) |
| if ((x & MASK_NAN) == MASK_NAN) { // x is NAN |
| if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN |
| // if x is SNAN, then return quiet (x) |
| *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN |
| x = x & 0xfdffffffffffffffull; // quietize x |
| res = x; |
| } else { // x is QNaN |
| if ((y & MASK_NAN) == MASK_NAN) { // y is NAN |
| if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN |
| *pfpsf |= INVALID_EXCEPTION; // set invalid flag |
| } |
| res = x; |
| } else { |
| res = y; |
| } |
| } |
| BID_RETURN (res); |
| } else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not |
| if ((y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN |
| y = y & 0xfdffffffffffffffull; // quietize y |
| res = y; |
| } else { |
| // will return x (which is not NaN) |
| res = x; |
| } |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal, return either number |
| if (x == y) { |
| res = x; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // x is infinity, its magnitude is greater than or equal to y |
| // return x only if y is infinity and x is negative |
| res = ((x & MASK_SIGN) == MASK_SIGN |
| && (y & MASK_INF) == MASK_INF) ? x : y; |
| BID_RETURN (res); |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // y is infinity, then it must be greater in magnitude, return x |
| res = x; |
| BID_RETURN (res); |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| } |
| |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| } |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO == -ZERO) => therefore |
| // ignore the sign, and neither number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (sig_x == 0) { |
| res = x; // x_is_zero, its magnitude must be smaller than y |
| BID_RETURN (res); |
| } |
| if (sig_y == 0) { |
| res = y; // y_is_zero, its magnitude must be smaller than x |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = y; |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = x; |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = y; // difference cannot be greater than 10^15 |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = x; |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| // now, sig_n_prime has: sig_x * 10^(exp_x-exp_y), this is |
| // the compensated signif. |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| // two numbers are equal, return minNum(x,y) |
| res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x; |
| BID_RETURN (res); |
| } |
| // now, if compensated_x (sig_n_prime) is greater than y, return y, |
| // otherwise return x |
| res = ((sig_n_prime.w[1] != 0) || sig_n_prime.w[0] > sig_y) ? y : x; |
| BID_RETURN (res); |
| } |
| // exp_y must be greater than exp_x, thus adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x; |
| // two numbers are equal, return either |
| BID_RETURN (res); |
| } |
| |
| res = ((sig_n_prime.w[1] == 0) && (sig_x > sig_n_prime.w[0])) ? y : x; |
| BID_RETURN (res); |
| } |
| |
| /***************************************************************************** |
| * BID64 maximum function - returns greater of two numbers |
| *****************************************************************************/ |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_maxnum (UINT64 * pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| UINT64 |
| bid64_maxnum (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) { |
| #endif |
| |
| UINT64 res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0; |
| |
| // check for non-canonical x |
| if ((x & MASK_NAN) == MASK_NAN) { // x is NaN |
| x = x & 0xfe03ffffffffffffull; // clear G6-G12 |
| if ((x & 0x0003ffffffffffffull) > 999999999999999ull) { |
| x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits |
| } |
| } else if ((x & MASK_INF) == MASK_INF) { // check for Infinity |
| x = x & (MASK_SIGN | MASK_INF); |
| } else { // x is not special |
| // check for non-canonical values - treated as zero |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| // if the steering bits are 11, then the exponent is G[0:w+1] |
| if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) > |
| 9999999999999999ull) { |
| // non-canonical |
| x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2); |
| } // else canonical |
| } // else canonical |
| } |
| |
| // check for non-canonical y |
| if ((y & MASK_NAN) == MASK_NAN) { // y is NaN |
| y = y & 0xfe03ffffffffffffull; // clear G6-G12 |
| if ((y & 0x0003ffffffffffffull) > 999999999999999ull) { |
| y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { // check for Infinity |
| y = y & (MASK_SIGN | MASK_INF); |
| } else { // y is not special |
| // check for non-canonical values - treated as zero |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| // if the steering bits are 11, then the exponent is G[0:w+1] |
| if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) > |
| 9999999999999999ull) { |
| // non-canonical |
| y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2); |
| } // else canonical |
| } // else canonical |
| } |
| |
| // NaN (CASE1) |
| if ((x & MASK_NAN) == MASK_NAN) { // x is NAN |
| if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN |
| // if x is SNAN, then return quiet (x) |
| *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN |
| x = x & 0xfdffffffffffffffull; // quietize x |
| res = x; |
| } else { // x is QNaN |
| if ((y & MASK_NAN) == MASK_NAN) { // y is NAN |
| if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN |
| *pfpsf |= INVALID_EXCEPTION; // set invalid flag |
| } |
| res = x; |
| } else { |
| res = y; |
| } |
| } |
| BID_RETURN (res); |
| } else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not |
| if ((y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN |
| y = y & 0xfdffffffffffffffull; // quietize y |
| res = y; |
| } else { |
| // will return x (which is not NaN) |
| res = x; |
| } |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (not Greater). |
| if (x == y) { |
| res = x; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x is neg infinity, there is no way it is greater than y, return y |
| // x is pos infinity, it is greater, unless y is positive infinity => |
| // return y!=pos_infinity |
| if (((x & MASK_SIGN) == MASK_SIGN)) { |
| res = y; |
| BID_RETURN (res); |
| } else { |
| res = (((y & MASK_INF) != MASK_INF) |
| || ((y & MASK_SIGN) == MASK_SIGN)) ? x : y; |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return y |
| // if y is negative infinity, then x is greater, return x |
| res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y; |
| BID_RETURN (res); |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| } |
| |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| } |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO == -ZERO) => therefore |
| // ignore the sign, and neither number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (sig_y == 0) { |
| y_is_zero = 1; |
| } |
| |
| if (x_is_zero && y_is_zero) { |
| // if both numbers are zero, neither is greater => return NOTGREATERTHAN |
| res = y; |
| BID_RETURN (res); |
| } else if (x_is_zero) { |
| // is x is zero, it is greater if Y is negative |
| res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y; |
| BID_RETURN (res); |
| } else if (y_is_zero) { |
| // is y is zero, X is greater if it is positive |
| res = ((x & MASK_SIGN) != MASK_SIGN) ? x : y;; |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is greater if y is negative |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y; |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN) ? x : y; |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN) ? x : y; |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = ((x & MASK_SIGN) != MASK_SIGN) ? x : y; |
| // difference cannot be > 10^15 |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) == MASK_SIGN) ? x : y; |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = y; |
| BID_RETURN (res); |
| } |
| res = (((sig_n_prime.w[1] > 0) |
| || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)) ? x : y; |
| BID_RETURN (res); |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| |
| // if postitive, return whichever significand is larger (converse if negative) |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = y; |
| BID_RETURN (res); |
| } |
| res = (((sig_n_prime.w[1] == 0) |
| && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)) ? x : y; |
| BID_RETURN (res); |
| } |
| |
| /***************************************************************************** |
| * BID64 maximum magnitude function - returns greater of two numbers |
| *****************************************************************************/ |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_maxnum_mag (UINT64 * pres, UINT64 * px, |
| UINT64 * py _EXC_FLAGS_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| UINT64 |
| bid64_maxnum_mag (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) { |
| #endif |
| |
| UINT64 res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| |
| // check for non-canonical x |
| if ((x & MASK_NAN) == MASK_NAN) { // x is NaN |
| x = x & 0xfe03ffffffffffffull; // clear G6-G12 |
| if ((x & 0x0003ffffffffffffull) > 999999999999999ull) { |
| x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits |
| } |
| } else if ((x & MASK_INF) == MASK_INF) { // check for Infinity |
| x = x & (MASK_SIGN | MASK_INF); |
| } else { // x is not special |
| // check for non-canonical values - treated as zero |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| // if the steering bits are 11, then the exponent is G[0:w+1] |
| if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) > |
| 9999999999999999ull) { |
| // non-canonical |
| x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2); |
| } // else canonical |
| } // else canonical |
| } |
| |
| // check for non-canonical y |
| if ((y & MASK_NAN) == MASK_NAN) { // y is NaN |
| y = y & 0xfe03ffffffffffffull; // clear G6-G12 |
| if ((y & 0x0003ffffffffffffull) > 999999999999999ull) { |
| y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { // check for Infinity |
| y = y & (MASK_SIGN | MASK_INF); |
| } else { // y is not special |
| // check for non-canonical values - treated as zero |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| // if the steering bits are 11, then the exponent is G[0:w+1] |
| if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) > |
| 9999999999999999ull) { |
| // non-canonical |
| y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2); |
| } // else canonical |
| } // else canonical |
| } |
| |
| // NaN (CASE1) |
| if ((x & MASK_NAN) == MASK_NAN) { // x is NAN |
| if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN |
| // if x is SNAN, then return quiet (x) |
| *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN |
| x = x & 0xfdffffffffffffffull; // quietize x |
| res = x; |
| } else { // x is QNaN |
| if ((y & MASK_NAN) == MASK_NAN) { // y is NAN |
| if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN |
| *pfpsf |= INVALID_EXCEPTION; // set invalid flag |
| } |
| res = x; |
| } else { |
| res = y; |
| } |
| } |
| BID_RETURN (res); |
| } else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not |
| if ((y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if SNaN |
| y = y & 0xfdffffffffffffffull; // quietize y |
| res = y; |
| } else { |
| // will return x (which is not NaN) |
| res = x; |
| } |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal, return either number |
| if (x == y) { |
| res = x; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // x is infinity, its magnitude is greater than or equal to y |
| // return y as long as x isn't negative infinity |
| res = ((x & MASK_SIGN) == MASK_SIGN |
| && (y & MASK_INF) == MASK_INF) ? y : x; |
| BID_RETURN (res); |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // y is infinity, then it must be greater in magnitude |
| res = y; |
| BID_RETURN (res); |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| } |
| |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| } |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO == -ZERO) => therefore |
| // ignore the sign, and neither number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (sig_x == 0) { |
| res = y; // x_is_zero, its magnitude must be smaller than y |
| BID_RETURN (res); |
| } |
| if (sig_y == 0) { |
| res = x; // y_is_zero, its magnitude must be smaller than x |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = x; |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = y; |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = x; // difference cannot be greater than 10^15 |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = y; |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| // now, sig_n_prime has: sig_x * 10^(exp_x-exp_y), |
| // this is the compensated signif. |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| // two numbers are equal, return maxNum(x,y) |
| res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y; |
| BID_RETURN (res); |
| } |
| // now, if compensated_x (sig_n_prime) is greater than y return y, |
| // otherwise return x |
| res = ((sig_n_prime.w[1] != 0) || sig_n_prime.w[0] > sig_y) ? x : y; |
| BID_RETURN (res); |
| } |
| // exp_y must be greater than exp_x, thus adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y; |
| // two numbers are equal, return either |
| BID_RETURN (res); |
| } |
| |
| res = ((sig_n_prime.w[1] == 0) && (sig_x > sig_n_prime.w[0])) ? x : y; |
| BID_RETURN (res); |
| } |