| /* Copyright (C) 2007-2021 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "bid_internal.h" |
| |
| static const UINT64 mult_factor[16] = { |
| 1ull, 10ull, 100ull, 1000ull, |
| 10000ull, 100000ull, 1000000ull, 10000000ull, |
| 100000000ull, 1000000000ull, 10000000000ull, 100000000000ull, |
| 1000000000000ull, 10000000000000ull, |
| 100000000000000ull, 1000000000000000ull |
| }; |
| |
| /***************************************************************************** |
| * BID64 non-computational functions: |
| * - bid64_isSigned |
| * - bid64_isNormal |
| * - bid64_isSubnormal |
| * - bid64_isFinite |
| * - bid64_isZero |
| * - bid64_isInf |
| * - bid64_isSignaling |
| * - bid64_isCanonical |
| * - bid64_isNaN |
| * - bid64_copy |
| * - bid64_negate |
| * - bid64_abs |
| * - bid64_copySign |
| * - bid64_class |
| * - bid64_sameQuantum |
| * - bid64_totalOrder |
| * - bid64_totalOrderMag |
| * - bid64_radix |
| ****************************************************************************/ |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_isSigned (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #else |
| int |
| bid64_isSigned (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| // return 1 iff x is not zero, nor NaN nor subnormal nor infinity |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_isNormal (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #else |
| int |
| bid64_isNormal (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| UINT128 sig_x_prime; |
| UINT64 sig_x; |
| unsigned int exp_x; |
| |
| if ((x & MASK_INF) == MASK_INF) { // x is either INF or NaN |
| res = 0; |
| } else { |
| // decode number into exponent and significand |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| // check for zero or non-canonical |
| if (sig_x > 9999999999999999ull || sig_x == 0) { |
| res = 0; // zero or non-canonical |
| BID_RETURN (res); |
| } |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| } else { |
| sig_x = (x & MASK_BINARY_SIG1); |
| if (sig_x == 0) { |
| res = 0; // zero |
| BID_RETURN (res); |
| } |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| } |
| // if exponent is less than -383, the number may be subnormal |
| // if (exp_x - 398 = -383) the number may be subnormal |
| if (exp_x < 15) { |
| __mul_64x64_to_128MACH (sig_x_prime, sig_x, mult_factor[exp_x]); |
| if (sig_x_prime.w[1] == 0 |
| && sig_x_prime.w[0] < 1000000000000000ull) { |
| res = 0; // subnormal |
| } else { |
| res = 1; // normal |
| } |
| } else { |
| res = 1; // normal |
| } |
| } |
| BID_RETURN (res); |
| } |
| |
| // return 1 iff x is not zero, nor NaN nor normal nor infinity |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_isSubnormal (int *pres, |
| UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #else |
| int |
| bid64_isSubnormal (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| UINT128 sig_x_prime; |
| UINT64 sig_x; |
| unsigned int exp_x; |
| |
| if ((x & MASK_INF) == MASK_INF) { // x is either INF or NaN |
| res = 0; |
| } else { |
| // decode number into exponent and significand |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| // check for zero or non-canonical |
| if (sig_x > 9999999999999999ull || sig_x == 0) { |
| res = 0; // zero or non-canonical |
| BID_RETURN (res); |
| } |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| } else { |
| sig_x = (x & MASK_BINARY_SIG1); |
| if (sig_x == 0) { |
| res = 0; // zero |
| BID_RETURN (res); |
| } |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| } |
| // if exponent is less than -383, the number may be subnormal |
| // if (exp_x - 398 = -383) the number may be subnormal |
| if (exp_x < 15) { |
| __mul_64x64_to_128MACH (sig_x_prime, sig_x, mult_factor[exp_x]); |
| if (sig_x_prime.w[1] == 0 |
| && sig_x_prime.w[0] < 1000000000000000ull) { |
| res = 1; // subnormal |
| } else { |
| res = 0; // normal |
| } |
| } else { |
| res = 0; // normal |
| } |
| } |
| BID_RETURN (res); |
| } |
| |
| //iff x is zero, subnormal or normal (not infinity or NaN) |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_isFinite (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #else |
| int |
| bid64_isFinite (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| |
| res = ((x & MASK_INF) != MASK_INF); |
| BID_RETURN (res); |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_isZero (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #else |
| int |
| bid64_isZero (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| |
| // if infinity or nan, return 0 |
| if ((x & MASK_INF) == MASK_INF) { |
| res = 0; |
| } else if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] |
| // => sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| // if(sig_x > 9999999999999999ull) {return 1;} |
| res = |
| (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) > |
| 9999999999999999ull); |
| } else { |
| res = ((x & MASK_BINARY_SIG1) == 0); |
| } |
| BID_RETURN (res); |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_isInf (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #else |
| int |
| bid64_isInf (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| |
| res = ((x & MASK_INF) == MASK_INF) && ((x & MASK_NAN) != MASK_NAN); |
| BID_RETURN (res); |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_isSignaling (int *pres, |
| UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #else |
| int |
| bid64_isSignaling (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| |
| res = ((x & MASK_SNAN) == MASK_SNAN); |
| BID_RETURN (res); |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_isCanonical (int *pres, |
| UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #else |
| int |
| bid64_isCanonical (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| |
| if ((x & MASK_NAN) == MASK_NAN) { // NaN |
| if (x & 0x01fc000000000000ull) { |
| res = 0; |
| } else if ((x & 0x0003ffffffffffffull) > 999999999999999ull) { // payload |
| res = 0; |
| } else { |
| res = 1; |
| } |
| } else if ((x & MASK_INF) == MASK_INF) { |
| if (x & 0x03ffffffffffffffull) { |
| res = 0; |
| } else { |
| res = 1; |
| } |
| } else if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { // 54-bit coeff. |
| res = |
| (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) <= |
| 9999999999999999ull); |
| } else { // 53-bit coeff. |
| res = 1; |
| } |
| BID_RETURN (res); |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_isNaN (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #else |
| int |
| bid64_isNaN (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| |
| res = ((x & MASK_NAN) == MASK_NAN); |
| BID_RETURN (res); |
| } |
| |
| // copies a floating-point operand x to destination y, with no change |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_copy (UINT64 * pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #else |
| UINT64 |
| bid64_copy (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| UINT64 res; |
| |
| res = x; |
| BID_RETURN (res); |
| } |
| |
| // copies a floating-point operand x to destination y, reversing the sign |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_negate (UINT64 * pres, |
| UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #else |
| UINT64 |
| bid64_negate (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| UINT64 res; |
| |
| res = x ^ MASK_SIGN; |
| BID_RETURN (res); |
| } |
| |
| // copies a floating-point operand x to destination y, changing the sign to positive |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_abs (UINT64 * pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #else |
| UINT64 |
| bid64_abs (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| UINT64 res; |
| |
| res = x & ~MASK_SIGN; |
| BID_RETURN (res); |
| } |
| |
| // copies operand x to destination in the same format as x, but |
| // with the sign of y |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_copySign (UINT64 * pres, UINT64 * px, |
| UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| UINT64 |
| bid64_copySign (UINT64 x, UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| UINT64 res; |
| |
| res = (x & ~MASK_SIGN) | (y & MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_class (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #else |
| int |
| bid64_class (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| UINT128 sig_x_prime; |
| UINT64 sig_x; |
| int exp_x; |
| |
| if ((x & MASK_NAN) == MASK_NAN) { |
| // is the NaN signaling? |
| if ((x & MASK_SNAN) == MASK_SNAN) { |
| res = signalingNaN; |
| BID_RETURN (res); |
| } |
| // if NaN and not signaling, must be quietNaN |
| res = quietNaN; |
| BID_RETURN (res); |
| } else if ((x & MASK_INF) == MASK_INF) { |
| // is the Infinity negative? |
| if ((x & MASK_SIGN) == MASK_SIGN) { |
| res = negativeInfinity; |
| } else { |
| // otherwise, must be positive infinity |
| res = positiveInfinity; |
| } |
| BID_RETURN (res); |
| } else if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| // decode number into exponent and significand |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| // check for zero or non-canonical |
| if (sig_x > 9999999999999999ull || sig_x == 0) { |
| if ((x & MASK_SIGN) == MASK_SIGN) { |
| res = negativeZero; |
| } else { |
| res = positiveZero; |
| } |
| BID_RETURN (res); |
| } |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| } else { |
| sig_x = (x & MASK_BINARY_SIG1); |
| if (sig_x == 0) { |
| res = |
| ((x & MASK_SIGN) == MASK_SIGN) ? negativeZero : positiveZero; |
| BID_RETURN (res); |
| } |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| } |
| // if exponent is less than -383, number may be subnormal |
| // if (exp_x - 398 < -383) |
| if (exp_x < 15) { // sig_x *10^exp_x |
| __mul_64x64_to_128MACH (sig_x_prime, sig_x, mult_factor[exp_x]); |
| if (sig_x_prime.w[1] == 0 |
| && (sig_x_prime.w[0] < 1000000000000000ull)) { |
| res = |
| ((x & MASK_SIGN) == |
| MASK_SIGN) ? negativeSubnormal : positiveSubnormal; |
| BID_RETURN (res); |
| } |
| } |
| // otherwise, normal number, determine the sign |
| res = |
| ((x & MASK_SIGN) == MASK_SIGN) ? negativeNormal : positiveNormal; |
| BID_RETURN (res); |
| } |
| |
| // true if the exponents of x and y are the same, false otherwise. |
| // The special cases of sameQuantum (NaN, NaN) and sameQuantum (Inf, Inf) are |
| // true. |
| // If exactly one operand is infinite or exactly one operand is NaN, then false |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_sameQuantum (int *pres, UINT64 * px, |
| UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_sameQuantum (UINT64 x, UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| unsigned int exp_x, exp_y; |
| |
| // if both operands are NaN, return true; if just one is NaN, return false |
| if ((x & MASK_NAN) == MASK_NAN || ((y & MASK_NAN) == MASK_NAN)) { |
| res = ((x & MASK_NAN) == MASK_NAN && (y & MASK_NAN) == MASK_NAN); |
| BID_RETURN (res); |
| } |
| // if both operands are INF, return true; if just one is INF, return false |
| if ((x & MASK_INF) == MASK_INF || (y & MASK_INF) == MASK_INF) { |
| res = ((x & MASK_INF) == MASK_INF && (y & MASK_INF) == MASK_INF); |
| BID_RETURN (res); |
| } |
| // decode exponents for both numbers, and return true if they match |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| } |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| } |
| res = (exp_x == exp_y); |
| BID_RETURN (res); |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_totalOrder (int *pres, UINT64 * px, |
| UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_totalOrder (UINT64 x, UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y, pyld_y, pyld_x; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0; |
| |
| // NaN (CASE1) |
| // if x and y are unordered numerically because either operand is NaN |
| // (1) totalOrder(-NaN, number) is true |
| // (2) totalOrder(number, +NaN) is true |
| // (3) if x and y are both NaN: |
| // i) negative sign bit < positive sign bit |
| // ii) signaling < quiet for +NaN, reverse for -NaN |
| // iii) lesser payload < greater payload for +NaN (reverse for -NaN) |
| // iv) else if bitwise identical (in canonical form), return 1 |
| if ((x & MASK_NAN) == MASK_NAN) { |
| // if x is -NaN |
| if ((x & MASK_SIGN) == MASK_SIGN) { |
| // return true, unless y is -NaN also |
| if ((y & MASK_NAN) != MASK_NAN || (y & MASK_SIGN) != MASK_SIGN) { |
| res = 1; // y is a number, return 1 |
| BID_RETURN (res); |
| } else { // if y and x are both -NaN |
| // if x and y are both -sNaN or both -qNaN, we have to compare payloads |
| // this xnor statement evaluates to true if both are sNaN or qNaN |
| if (! |
| (((y & MASK_SNAN) == MASK_SNAN) ^ ((x & MASK_SNAN) == |
| MASK_SNAN))) { |
| // it comes down to the payload. we want to return true if x has a |
| // larger payload, or if the payloads are equal (canonical forms |
| // are bitwise identical) |
| pyld_y = y & 0x0003ffffffffffffull; |
| pyld_x = x & 0x0003ffffffffffffull; |
| if (pyld_y > 999999999999999ull || pyld_y == 0) { |
| // if y is zero, x must be less than or numerically equal |
| // y's payload is 0 |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if x is zero and y isn't, x has the smaller payload |
| // definitely (since we know y isn't 0 at this point) |
| if (pyld_x > 999999999999999ull || pyld_x == 0) { |
| // x's payload is 0 |
| res = 0; |
| BID_RETURN (res); |
| } |
| res = (pyld_x >= pyld_y); |
| BID_RETURN (res); |
| } else { |
| // either x = -sNaN and y = -qNaN or x = -qNaN and y = -sNaN |
| res = (y & MASK_SNAN) == MASK_SNAN; // totalOrder(-qNaN, -sNaN) == 1 |
| BID_RETURN (res); |
| } |
| } |
| } else { // x is +NaN |
| // return false, unless y is +NaN also |
| if ((y & MASK_NAN) != MASK_NAN || (y & MASK_SIGN) == MASK_SIGN) { |
| res = 0; // y is a number, return 1 |
| BID_RETURN (res); |
| } else { |
| // x and y are both +NaN; |
| // must investigate payload if both quiet or both signaling |
| // this xnor statement will be true if both x and y are +qNaN or +sNaN |
| if (! |
| (((y & MASK_SNAN) == MASK_SNAN) ^ ((x & MASK_SNAN) == |
| MASK_SNAN))) { |
| // it comes down to the payload. we want to return true if x has a |
| // smaller payload, or if the payloads are equal (canonical forms |
| // are bitwise identical) |
| pyld_y = y & 0x0003ffffffffffffull; |
| pyld_x = x & 0x0003ffffffffffffull; |
| // if x is zero and y isn't, x has the smaller |
| // payload definitely (since we know y isn't 0 at this point) |
| if (pyld_x > 999999999999999ull || pyld_x == 0) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| if (pyld_y > 999999999999999ull || pyld_y == 0) { |
| // if y is zero, x must be less than or numerically equal |
| res = 0; |
| BID_RETURN (res); |
| } |
| res = (pyld_x <= pyld_y); |
| BID_RETURN (res); |
| } else { |
| // return true if y is +qNaN and x is +sNaN |
| // (we know they're different bc of xor if_stmt above) |
| res = ((x & MASK_SNAN) == MASK_SNAN); |
| BID_RETURN (res); |
| } |
| } |
| } |
| } else if ((y & MASK_NAN) == MASK_NAN) { |
| // x is certainly not NAN in this case. |
| // return true if y is positive |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal. |
| if (x == y) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGNS (CASE 3) |
| // if signs are opposite, return 1 if x is negative |
| // (if x<y, totalOrder is true) |
| if (((x & MASK_SIGN) == MASK_SIGN) ^ ((y & MASK_SIGN) == MASK_SIGN)) { |
| res = (x & MASK_SIGN) == MASK_SIGN; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE4) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x==neg_inf, return (y == neg_inf)?1:0; |
| if ((x & MASK_SIGN) == MASK_SIGN) { |
| res = 1; |
| BID_RETURN (res); |
| } else { |
| // x is positive infinity, only return1 if y |
| // is positive infinity as well |
| // (we know y has same sign as x) |
| res = ((y & MASK_INF) == MASK_INF); |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so: |
| // if y is +inf, x<y |
| // if y is -inf, x>y |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| if (sig_x == 0) { |
| x_is_zero = 1; |
| } |
| } |
| |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| if (sig_y == 0) { |
| y_is_zero = 1; |
| } |
| } |
| |
| // ZERO (CASE 5) |
| // if x and y represent the same entities, and |
| // both are negative , return true iff exp_x <= exp_y |
| if (x_is_zero && y_is_zero) { |
| if (!((x & MASK_SIGN) == MASK_SIGN) ^ |
| ((y & MASK_SIGN) == MASK_SIGN)) { |
| // if signs are the same: |
| // totalOrder(x,y) iff exp_x >= exp_y for negative numbers |
| // totalOrder(x,y) iff exp_x <= exp_y for positive numbers |
| if (exp_x == exp_y) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| res = (exp_x <= exp_y) ^ ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } else { |
| // signs are different. |
| // totalOrder(-0, +0) is true |
| // totalOrder(+0, -0) is false |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // if x is zero and y isn't, clearly x has the smaller payload. |
| if (x_is_zero) { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if y is zero, and x isn't, clearly y has the smaller payload. |
| if (y_is_zero) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, it is |
| // definitely larger, so no need for compensation |
| if (exp_x - exp_y > 15) { |
| // difference cannot be greater than 10^15 |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 less than exp_y, it is |
| // definitely smaller, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down |
| // to the compensated significand |
| if (exp_x > exp_y) { |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| // if x and y represent the same entities, |
| // and both are negative, return true iff exp_x <= exp_y |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| // case cannot occure, because all bits must |
| // be the same - would have been caught if (x==y) |
| res = (exp_x <= exp_y) ^ ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if positive, return 1 if adjusted x is smaller than y |
| res = ((sig_n_prime.w[1] == 0) |
| && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == |
| MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| |
| // if x and y represent the same entities, |
| // and both are negative, return true iff exp_x <= exp_y |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| // Cannot occur, because all bits must be the same. |
| // Case would have been caught if (x==y) |
| res = (exp_x <= exp_y) ^ ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // values are not equal, for positive numbers return 1 |
| // if x is less than y. 0 otherwise |
| res = ((sig_n_prime.w[1] > 0) |
| || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == |
| MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| // totalOrderMag is TotalOrder(abs(x), abs(y)) |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_totalOrderMag (int *pres, UINT64 * px, |
| UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_totalOrderMag (UINT64 x, |
| UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y, pyld_y, pyld_x; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0; |
| |
| // NaN (CASE 1) |
| // if x and y are unordered numerically because either operand is NaN |
| // (1) totalOrder(number, +NaN) is true |
| // (2) if x and y are both NaN: |
| // i) signaling < quiet for +NaN |
| // ii) lesser payload < greater payload for +NaN |
| // iii) else if bitwise identical (in canonical form), return 1 |
| if ((x & MASK_NAN) == MASK_NAN) { |
| // x is +NaN |
| |
| // return false, unless y is +NaN also |
| if ((y & MASK_NAN) != MASK_NAN) { |
| res = 0; // y is a number, return 1 |
| BID_RETURN (res); |
| |
| } else { |
| |
| // x and y are both +NaN; |
| // must investigate payload if both quiet or both signaling |
| // this xnor statement will be true if both x and y are +qNaN or +sNaN |
| if (! |
| (((y & MASK_SNAN) == MASK_SNAN) ^ ((x & MASK_SNAN) == |
| MASK_SNAN))) { |
| // it comes down to the payload. we want to return true if x has a |
| // smaller payload, or if the payloads are equal (canonical forms |
| // are bitwise identical) |
| pyld_y = y & 0x0003ffffffffffffull; |
| pyld_x = x & 0x0003ffffffffffffull; |
| // if x is zero and y isn't, x has the smaller |
| // payload definitely (since we know y isn't 0 at this point) |
| if (pyld_x > 999999999999999ull || pyld_x == 0) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| |
| if (pyld_y > 999999999999999ull || pyld_y == 0) { |
| // if y is zero, x must be less than or numerically equal |
| res = 0; |
| BID_RETURN (res); |
| } |
| res = (pyld_x <= pyld_y); |
| BID_RETURN (res); |
| |
| } else { |
| // return true if y is +qNaN and x is +sNaN |
| // (we know they're different bc of xor if_stmt above) |
| res = ((x & MASK_SNAN) == MASK_SNAN); |
| BID_RETURN (res); |
| } |
| } |
| |
| } else if ((y & MASK_NAN) == MASK_NAN) { |
| // x is certainly not NAN in this case. |
| // return true if y is positive |
| res = 1; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits (except sign bit) are the same, |
| // these numbers are equal. |
| if ((x & ~MASK_SIGN) == (y & ~MASK_SIGN)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // x is positive infinity, only return1 |
| // if y is positive infinity as well |
| res = ((y & MASK_INF) == MASK_INF); |
| BID_RETURN (res); |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so: |
| // if y is +inf, x<y |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if steering bits are 11 (condition will be 0), |
| // then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| if (sig_x == 0) { |
| x_is_zero = 1; |
| } |
| } |
| |
| // if steering bits are 11 (condition will be 0), |
| // then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| if (sig_y == 0) { |
| y_is_zero = 1; |
| } |
| } |
| |
| // ZERO (CASE 5) |
| // if x and y represent the same entities, |
| // and both are negative , return true iff exp_x <= exp_y |
| if (x_is_zero && y_is_zero) { |
| // totalOrder(x,y) iff exp_x <= exp_y for positive numbers |
| res = (exp_x <= exp_y); |
| BID_RETURN (res); |
| } |
| // if x is zero and y isn't, clearly x has the smaller payload. |
| if (x_is_zero) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if y is zero, and x isn't, clearly y has the smaller payload. |
| if (y_is_zero) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, it is definitely |
| // larger, so no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = 0; // difference cannot be greater than 10^15 |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 less than exp_y, it is definitely |
| // smaller, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down |
| // to the compensated significand |
| if (exp_x > exp_y) { |
| |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| |
| // if x and y represent the same entities, |
| // and both are negative, return true iff exp_x <= exp_y |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| // case cannot occur, because all bits |
| // must be the same - would have been caught if (x==y) |
| res = (exp_x <= exp_y); |
| BID_RETURN (res); |
| } |
| // if positive, return 1 if adjusted x is smaller than y |
| res = ((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y); |
| BID_RETURN (res); |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| |
| // if x and y represent the same entities, |
| // and both are negative, return true iff exp_x <= exp_y |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = (exp_x <= exp_y); |
| BID_RETURN (res); |
| } |
| // values are not equal, for positive numbers |
| // return 1 if x is less than y. 0 otherwise |
| res = ((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0])); |
| BID_RETURN (res); |
| |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_radix (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #else |
| int |
| bid64_radix (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| if (x) // dummy test |
| res = 10; |
| else |
| res = 10; |
| BID_RETURN (res); |
| } |