| /* Implementation of the MAXLOC intrinsic |
| Copyright (C) 2017-2021 Free Software Foundation, Inc. |
| Contributed by Thomas Koenig |
| |
| This file is part of the GNU Fortran runtime library (libgfortran). |
| |
| Libgfortran is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public |
| License as published by the Free Software Foundation; either |
| version 3 of the License, or (at your option) any later version. |
| |
| Libgfortran is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "libgfortran.h" |
| #include <stdlib.h> |
| #include <string.h> |
| #include <assert.h> |
| #include <limits.h> |
| |
| |
| #if defined (HAVE_GFC_UINTEGER_4) && defined (HAVE_GFC_UINTEGER_4) |
| |
| static inline int |
| compare_fcn (const GFC_UINTEGER_4 *a, const GFC_UINTEGER_4 *b, gfc_charlen_type n) |
| { |
| if (sizeof (GFC_UINTEGER_4) == 1) |
| return memcmp (a, b, n); |
| else |
| return memcmp_char4 (a, b, n); |
| |
| } |
| |
| #define INITVAL 255 |
| |
| extern void minval0_s4 (GFC_UINTEGER_4 * restrict, |
| gfc_charlen_type, |
| gfc_array_s4 * const restrict array, gfc_charlen_type); |
| export_proto(minval0_s4); |
| |
| void |
| minval0_s4 (GFC_UINTEGER_4 * restrict ret, |
| gfc_charlen_type xlen, |
| gfc_array_s4 * const restrict array, gfc_charlen_type len) |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type sstride[GFC_MAX_DIMENSIONS]; |
| const GFC_UINTEGER_4 *base; |
| index_type rank; |
| index_type n; |
| |
| rank = GFC_DESCRIPTOR_RANK (array); |
| if (rank <= 0) |
| runtime_error ("Rank of array needs to be > 0"); |
| |
| assert (xlen == len); |
| |
| /* Initialize return value. */ |
| memset (ret, INITVAL, sizeof(*ret) * len); |
| |
| for (n = 0; n < rank; n++) |
| { |
| sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len; |
| extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); |
| count[n] = 0; |
| if (extent[n] <= 0) |
| return; |
| } |
| |
| base = array->base_addr; |
| |
| { |
| |
| const GFC_UINTEGER_4 *retval; |
| retval = ret; |
| |
| while (base) |
| { |
| do |
| { |
| /* Implementation start. */ |
| |
| if (compare_fcn (base, retval, len) < 0) |
| { |
| retval = base; |
| } |
| /* Implementation end. */ |
| /* Advance to the next element. */ |
| base += sstride[0]; |
| } |
| while (++count[0] != extent[0]); |
| n = 0; |
| do |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| base -= sstride[n] * extent[n]; |
| n++; |
| if (n >= rank) |
| { |
| /* Break out of the loop. */ |
| base = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| base += sstride[n]; |
| } |
| } |
| while (count[n] == extent[n]); |
| } |
| memcpy (ret, retval, len * sizeof (*ret)); |
| } |
| } |
| |
| |
| extern void mminval0_s4 (GFC_UINTEGER_4 * restrict, |
| gfc_charlen_type, gfc_array_s4 * const restrict array, |
| gfc_array_l1 * const restrict mask, gfc_charlen_type len); |
| export_proto(mminval0_s4); |
| |
| void |
| mminval0_s4 (GFC_UINTEGER_4 * const restrict ret, |
| gfc_charlen_type xlen, gfc_array_s4 * const restrict array, |
| gfc_array_l1 * const restrict mask, gfc_charlen_type len) |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type sstride[GFC_MAX_DIMENSIONS]; |
| index_type mstride[GFC_MAX_DIMENSIONS]; |
| const GFC_UINTEGER_4 *base; |
| GFC_LOGICAL_1 *mbase; |
| int rank; |
| index_type n; |
| int mask_kind; |
| |
| if (mask == NULL) |
| { |
| minval0_s4 (ret, xlen, array, len); |
| return; |
| } |
| |
| rank = GFC_DESCRIPTOR_RANK (array); |
| if (rank <= 0) |
| runtime_error ("Rank of array needs to be > 0"); |
| |
| assert (xlen == len); |
| |
| /* Initialize return value. */ |
| memset (ret, INITVAL, sizeof(*ret) * len); |
| |
| mask_kind = GFC_DESCRIPTOR_SIZE (mask); |
| |
| mbase = mask->base_addr; |
| |
| if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 |
| #ifdef HAVE_GFC_LOGICAL_16 |
| || mask_kind == 16 |
| #endif |
| ) |
| mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); |
| else |
| runtime_error ("Funny sized logical array"); |
| |
| for (n = 0; n < rank; n++) |
| { |
| sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len; |
| mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); |
| extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); |
| count[n] = 0; |
| if (extent[n] <= 0) |
| return; |
| } |
| |
| base = array->base_addr; |
| { |
| |
| const GFC_UINTEGER_4 *retval; |
| |
| retval = ret; |
| |
| while (base) |
| { |
| do |
| { |
| /* Implementation start. */ |
| |
| if (*mbase && compare_fcn (base, retval, len) < 0) |
| { |
| retval = base; |
| } |
| /* Implementation end. */ |
| /* Advance to the next element. */ |
| base += sstride[0]; |
| mbase += mstride[0]; |
| } |
| while (++count[0] != extent[0]); |
| n = 0; |
| do |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| base -= sstride[n] * extent[n]; |
| mbase -= mstride[n] * extent[n]; |
| n++; |
| if (n >= rank) |
| { |
| /* Break out of the loop. */ |
| base = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| base += sstride[n]; |
| mbase += mstride[n]; |
| } |
| } |
| while (count[n] == extent[n]); |
| } |
| memcpy (ret, retval, len * sizeof (*ret)); |
| } |
| } |
| |
| |
| extern void sminval0_s4 (GFC_UINTEGER_4 * restrict, |
| gfc_charlen_type, |
| gfc_array_s4 * const restrict array, GFC_LOGICAL_4 *, gfc_charlen_type); |
| export_proto(sminval0_s4); |
| |
| void |
| sminval0_s4 (GFC_UINTEGER_4 * restrict ret, |
| gfc_charlen_type xlen, gfc_array_s4 * const restrict array, |
| GFC_LOGICAL_4 *mask, gfc_charlen_type len) |
| |
| { |
| if (mask == NULL || *mask) |
| { |
| minval0_s4 (ret, xlen, array, len); |
| return; |
| } |
| memset (ret, INITVAL, sizeof (*ret) * len); |
| } |
| |
| #endif |