blob: ca6fe0cb4cfabb26f19f56b9654af9ecd1a75cf4 [file] [log] [blame]
/* -----------------------------------------------------------------------
unix64.S - Copyright (c) 2013 The Written Word, Inc.
- Copyright (c) 2008 Red Hat, Inc
- Copyright (c) 2002 Bo Thorsen <bo@suse.de>
x86-64 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#ifdef __x86_64__
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
#include "internal64.h"
#include "asmnames.h"
.text
/* This macro allows the safe creation of jump tables without an
actual table. The entry points into the table are all 8 bytes.
The use of ORG asserts that we're at the correct location. */
/* ??? The clang assembler doesn't handle .org with symbolic expressions. */
#if defined(__clang__) || defined(__APPLE__) || (defined (__sun__) && defined(__svr4__))
# define E(BASE, X) .balign 8
#else
# ifdef __CET__
# define E(BASE, X) .balign 8; .org BASE + X * 16
# else
# define E(BASE, X) .balign 8; .org BASE + X * 8
# endif
#endif
/* ffi_call_unix64 (void *args, unsigned long bytes, unsigned flags,
void *raddr, void (*fnaddr)(void));
Bit o trickiness here -- ARGS+BYTES is the base of the stack frame
for this function. This has been allocated by ffi_call. We also
deallocate some of the stack that has been alloca'd. */
.balign 8
.globl C(ffi_call_unix64)
FFI_HIDDEN(C(ffi_call_unix64))
C(ffi_call_unix64):
L(UW0):
_CET_ENDBR
movq (%rsp), %r10 /* Load return address. */
leaq (%rdi, %rsi), %rax /* Find local stack base. */
movq %rdx, (%rax) /* Save flags. */
movq %rcx, 8(%rax) /* Save raddr. */
movq %rbp, 16(%rax) /* Save old frame pointer. */
movq %r10, 24(%rax) /* Relocate return address. */
movq %rax, %rbp /* Finalize local stack frame. */
/* New stack frame based off rbp. This is a itty bit of unwind
trickery in that the CFA *has* changed. There is no easy way
to describe it correctly on entry to the function. Fortunately,
it doesn't matter too much since at all points we can correctly
unwind back to ffi_call. Note that the location to which we
moved the return address is (the new) CFA-8, so from the
perspective of the unwind info, it hasn't moved. */
L(UW1):
/* cfi_def_cfa(%rbp, 32) */
/* cfi_rel_offset(%rbp, 16) */
movq %rdi, %r10 /* Save a copy of the register area. */
movq %r8, %r11 /* Save a copy of the target fn. */
/* Load up all argument registers. */
movq (%r10), %rdi
movq 0x08(%r10), %rsi
movq 0x10(%r10), %rdx
movq 0x18(%r10), %rcx
movq 0x20(%r10), %r8
movq 0x28(%r10), %r9
movl 0xb0(%r10), %eax /* Set number of SSE registers. */
testl %eax, %eax
jnz L(load_sse)
L(ret_from_load_sse):
/* Deallocate the reg arg area, except for r10, then load via pop. */
leaq 0xb8(%r10), %rsp
popq %r10
/* Call the user function. */
call *%r11
/* Deallocate stack arg area; local stack frame in redzone. */
leaq 24(%rbp), %rsp
movq 0(%rbp), %rcx /* Reload flags. */
movq 8(%rbp), %rdi /* Reload raddr. */
movq 16(%rbp), %rbp /* Reload old frame pointer. */
L(UW2):
/* cfi_remember_state */
/* cfi_def_cfa(%rsp, 8) */
/* cfi_restore(%rbp) */
/* The first byte of the flags contains the FFI_TYPE. */
cmpb $UNIX64_RET_LAST, %cl
movzbl %cl, %r10d
leaq L(store_table)(%rip), %r11
ja L(sa)
#ifdef __CET__
/* NB: Originally, each slot is 8 byte. 4 bytes of ENDBR64 +
4 bytes NOP padding double slot size to 16 bytes. */
addl %r10d, %r10d
#endif
leaq (%r11, %r10, 8), %r10
/* Prep for the structure cases: scratch area in redzone. */
leaq -20(%rsp), %rsi
jmp *%r10
.balign 8
L(store_table):
E(L(store_table), UNIX64_RET_VOID)
_CET_ENDBR
ret
E(L(store_table), UNIX64_RET_UINT8)
_CET_ENDBR
movzbl %al, %eax
movq %rax, (%rdi)
ret
E(L(store_table), UNIX64_RET_UINT16)
_CET_ENDBR
movzwl %ax, %eax
movq %rax, (%rdi)
ret
E(L(store_table), UNIX64_RET_UINT32)
_CET_ENDBR
movl %eax, %eax
movq %rax, (%rdi)
ret
E(L(store_table), UNIX64_RET_SINT8)
_CET_ENDBR
movsbq %al, %rax
movq %rax, (%rdi)
ret
E(L(store_table), UNIX64_RET_SINT16)
_CET_ENDBR
movswq %ax, %rax
movq %rax, (%rdi)
ret
E(L(store_table), UNIX64_RET_SINT32)
_CET_ENDBR
cltq
movq %rax, (%rdi)
ret
E(L(store_table), UNIX64_RET_INT64)
_CET_ENDBR
movq %rax, (%rdi)
ret
E(L(store_table), UNIX64_RET_XMM32)
_CET_ENDBR
movd %xmm0, (%rdi)
ret
E(L(store_table), UNIX64_RET_XMM64)
_CET_ENDBR
movq %xmm0, (%rdi)
ret
E(L(store_table), UNIX64_RET_X87)
_CET_ENDBR
fstpt (%rdi)
ret
E(L(store_table), UNIX64_RET_X87_2)
_CET_ENDBR
fstpt (%rdi)
fstpt 16(%rdi)
ret
E(L(store_table), UNIX64_RET_ST_XMM0_RAX)
_CET_ENDBR
movq %rax, 8(%rsi)
jmp L(s3)
E(L(store_table), UNIX64_RET_ST_RAX_XMM0)
_CET_ENDBR
movq %xmm0, 8(%rsi)
jmp L(s2)
E(L(store_table), UNIX64_RET_ST_XMM0_XMM1)
_CET_ENDBR
movq %xmm1, 8(%rsi)
jmp L(s3)
E(L(store_table), UNIX64_RET_ST_RAX_RDX)
_CET_ENDBR
movq %rdx, 8(%rsi)
L(s2):
movq %rax, (%rsi)
shrl $UNIX64_SIZE_SHIFT, %ecx
rep movsb
ret
.balign 8
L(s3):
movq %xmm0, (%rsi)
shrl $UNIX64_SIZE_SHIFT, %ecx
rep movsb
ret
L(sa): call PLT(C(abort))
/* Many times we can avoid loading any SSE registers at all.
It's not worth an indirect jump to load the exact set of
SSE registers needed; zero or all is a good compromise. */
.balign 2
L(UW3):
/* cfi_restore_state */
L(load_sse):
movdqa 0x30(%r10), %xmm0
movdqa 0x40(%r10), %xmm1
movdqa 0x50(%r10), %xmm2
movdqa 0x60(%r10), %xmm3
movdqa 0x70(%r10), %xmm4
movdqa 0x80(%r10), %xmm5
movdqa 0x90(%r10), %xmm6
movdqa 0xa0(%r10), %xmm7
jmp L(ret_from_load_sse)
L(UW4):
ENDF(C(ffi_call_unix64))
/* 6 general registers, 8 vector registers,
32 bytes of rvalue, 8 bytes of alignment. */
#define ffi_closure_OFS_G 0
#define ffi_closure_OFS_V (6*8)
#define ffi_closure_OFS_RVALUE (ffi_closure_OFS_V + 8*16)
#define ffi_closure_FS (ffi_closure_OFS_RVALUE + 32 + 8)
/* The location of rvalue within the red zone after deallocating the frame. */
#define ffi_closure_RED_RVALUE (ffi_closure_OFS_RVALUE - ffi_closure_FS)
.balign 2
.globl C(ffi_closure_unix64_sse)
FFI_HIDDEN(C(ffi_closure_unix64_sse))
C(ffi_closure_unix64_sse):
L(UW5):
_CET_ENDBR
subq $ffi_closure_FS, %rsp
L(UW6):
/* cfi_adjust_cfa_offset(ffi_closure_FS) */
movdqa %xmm0, ffi_closure_OFS_V+0x00(%rsp)
movdqa %xmm1, ffi_closure_OFS_V+0x10(%rsp)
movdqa %xmm2, ffi_closure_OFS_V+0x20(%rsp)
movdqa %xmm3, ffi_closure_OFS_V+0x30(%rsp)
movdqa %xmm4, ffi_closure_OFS_V+0x40(%rsp)
movdqa %xmm5, ffi_closure_OFS_V+0x50(%rsp)
movdqa %xmm6, ffi_closure_OFS_V+0x60(%rsp)
movdqa %xmm7, ffi_closure_OFS_V+0x70(%rsp)
jmp L(sse_entry1)
L(UW7):
ENDF(C(ffi_closure_unix64_sse))
.balign 2
.globl C(ffi_closure_unix64)
FFI_HIDDEN(C(ffi_closure_unix64))
C(ffi_closure_unix64):
L(UW8):
_CET_ENDBR
subq $ffi_closure_FS, %rsp
L(UW9):
/* cfi_adjust_cfa_offset(ffi_closure_FS) */
L(sse_entry1):
movq %rdi, ffi_closure_OFS_G+0x00(%rsp)
movq %rsi, ffi_closure_OFS_G+0x08(%rsp)
movq %rdx, ffi_closure_OFS_G+0x10(%rsp)
movq %rcx, ffi_closure_OFS_G+0x18(%rsp)
movq %r8, ffi_closure_OFS_G+0x20(%rsp)
movq %r9, ffi_closure_OFS_G+0x28(%rsp)
#ifdef __ILP32__
movl FFI_TRAMPOLINE_SIZE(%r10), %edi /* Load cif */
movl FFI_TRAMPOLINE_SIZE+4(%r10), %esi /* Load fun */
movl FFI_TRAMPOLINE_SIZE+8(%r10), %edx /* Load user_data */
#else
movq FFI_TRAMPOLINE_SIZE(%r10), %rdi /* Load cif */
movq FFI_TRAMPOLINE_SIZE+8(%r10), %rsi /* Load fun */
movq FFI_TRAMPOLINE_SIZE+16(%r10), %rdx /* Load user_data */
#endif
L(do_closure):
leaq ffi_closure_OFS_RVALUE(%rsp), %rcx /* Load rvalue */
movq %rsp, %r8 /* Load reg_args */
leaq ffi_closure_FS+8(%rsp), %r9 /* Load argp */
call PLT(C(ffi_closure_unix64_inner))
/* Deallocate stack frame early; return value is now in redzone. */
addq $ffi_closure_FS, %rsp
L(UW10):
/* cfi_adjust_cfa_offset(-ffi_closure_FS) */
/* The first byte of the return value contains the FFI_TYPE. */
cmpb $UNIX64_RET_LAST, %al
movzbl %al, %r10d
leaq L(load_table)(%rip), %r11
ja L(la)
#ifdef __CET__
/* NB: Originally, each slot is 8 byte. 4 bytes of ENDBR64 +
4 bytes NOP padding double slot size to 16 bytes. */
addl %r10d, %r10d
#endif
leaq (%r11, %r10, 8), %r10
leaq ffi_closure_RED_RVALUE(%rsp), %rsi
jmp *%r10
.balign 8
L(load_table):
E(L(load_table), UNIX64_RET_VOID)
_CET_ENDBR
ret
E(L(load_table), UNIX64_RET_UINT8)
_CET_ENDBR
movzbl (%rsi), %eax
ret
E(L(load_table), UNIX64_RET_UINT16)
_CET_ENDBR
movzwl (%rsi), %eax
ret
E(L(load_table), UNIX64_RET_UINT32)
_CET_ENDBR
movl (%rsi), %eax
ret
E(L(load_table), UNIX64_RET_SINT8)
_CET_ENDBR
movsbl (%rsi), %eax
ret
E(L(load_table), UNIX64_RET_SINT16)
_CET_ENDBR
movswl (%rsi), %eax
ret
E(L(load_table), UNIX64_RET_SINT32)
_CET_ENDBR
movl (%rsi), %eax
ret
E(L(load_table), UNIX64_RET_INT64)
_CET_ENDBR
movq (%rsi), %rax
ret
E(L(load_table), UNIX64_RET_XMM32)
_CET_ENDBR
movd (%rsi), %xmm0
ret
E(L(load_table), UNIX64_RET_XMM64)
_CET_ENDBR
movq (%rsi), %xmm0
ret
E(L(load_table), UNIX64_RET_X87)
_CET_ENDBR
fldt (%rsi)
ret
E(L(load_table), UNIX64_RET_X87_2)
_CET_ENDBR
fldt 16(%rsi)
fldt (%rsi)
ret
E(L(load_table), UNIX64_RET_ST_XMM0_RAX)
_CET_ENDBR
movq 8(%rsi), %rax
jmp L(l3)
E(L(load_table), UNIX64_RET_ST_RAX_XMM0)
_CET_ENDBR
movq 8(%rsi), %xmm0
jmp L(l2)
E(L(load_table), UNIX64_RET_ST_XMM0_XMM1)
_CET_ENDBR
movq 8(%rsi), %xmm1
jmp L(l3)
E(L(load_table), UNIX64_RET_ST_RAX_RDX)
_CET_ENDBR
movq 8(%rsi), %rdx
L(l2):
movq (%rsi), %rax
ret
.balign 8
L(l3):
movq (%rsi), %xmm0
ret
L(la): call PLT(C(abort))
L(UW11):
ENDF(C(ffi_closure_unix64))
.balign 2
.globl C(ffi_go_closure_unix64_sse)
FFI_HIDDEN(C(ffi_go_closure_unix64_sse))
C(ffi_go_closure_unix64_sse):
L(UW12):
_CET_ENDBR
subq $ffi_closure_FS, %rsp
L(UW13):
/* cfi_adjust_cfa_offset(ffi_closure_FS) */
movdqa %xmm0, ffi_closure_OFS_V+0x00(%rsp)
movdqa %xmm1, ffi_closure_OFS_V+0x10(%rsp)
movdqa %xmm2, ffi_closure_OFS_V+0x20(%rsp)
movdqa %xmm3, ffi_closure_OFS_V+0x30(%rsp)
movdqa %xmm4, ffi_closure_OFS_V+0x40(%rsp)
movdqa %xmm5, ffi_closure_OFS_V+0x50(%rsp)
movdqa %xmm6, ffi_closure_OFS_V+0x60(%rsp)
movdqa %xmm7, ffi_closure_OFS_V+0x70(%rsp)
jmp L(sse_entry2)
L(UW14):
ENDF(C(ffi_go_closure_unix64_sse))
.balign 2
.globl C(ffi_go_closure_unix64)
FFI_HIDDEN(C(ffi_go_closure_unix64))
C(ffi_go_closure_unix64):
L(UW15):
_CET_ENDBR
subq $ffi_closure_FS, %rsp
L(UW16):
/* cfi_adjust_cfa_offset(ffi_closure_FS) */
L(sse_entry2):
movq %rdi, ffi_closure_OFS_G+0x00(%rsp)
movq %rsi, ffi_closure_OFS_G+0x08(%rsp)
movq %rdx, ffi_closure_OFS_G+0x10(%rsp)
movq %rcx, ffi_closure_OFS_G+0x18(%rsp)
movq %r8, ffi_closure_OFS_G+0x20(%rsp)
movq %r9, ffi_closure_OFS_G+0x28(%rsp)
#ifdef __ILP32__
movl 4(%r10), %edi /* Load cif */
movl 8(%r10), %esi /* Load fun */
movl %r10d, %edx /* Load closure (user_data) */
#else
movq 8(%r10), %rdi /* Load cif */
movq 16(%r10), %rsi /* Load fun */
movq %r10, %rdx /* Load closure (user_data) */
#endif
jmp L(do_closure)
L(UW17):
ENDF(C(ffi_go_closure_unix64))
#if defined(FFI_EXEC_STATIC_TRAMP)
.balign 8
.globl C(ffi_closure_unix64_sse_alt)
FFI_HIDDEN(C(ffi_closure_unix64_sse_alt))
C(ffi_closure_unix64_sse_alt):
/* See the comments above trampoline_code_table. */
_CET_ENDBR
movq 8(%rsp), %r10 /* Load closure in r10 */
addq $16, %rsp /* Restore the stack */
jmp C(ffi_closure_unix64_sse)
ENDF(C(ffi_closure_unix64_sse_alt))
.balign 8
.globl C(ffi_closure_unix64_alt)
FFI_HIDDEN(C(ffi_closure_unix64_alt))
C(ffi_closure_unix64_alt):
/* See the comments above trampoline_code_table. */
_CET_ENDBR
movq 8(%rsp), %r10 /* Load closure in r10 */
addq $16, %rsp /* Restore the stack */
jmp C(ffi_closure_unix64)
ENDF(C(ffi_closure_unix64_alt))
/*
* Below is the definition of the trampoline code table. Each element in
* the code table is a trampoline.
*
* Because we jump to the trampoline, we place a _CET_ENDBR at the
* beginning of the trampoline to mark it as a valid branch target. This is
* part of the the Intel CET (Control Flow Enforcement Technology).
*/
/*
* The trampoline uses register r10. It saves the original value of r10 on
* the stack.
*
* The trampoline has two parameters - target code to jump to and data for
* the target code. The trampoline extracts the parameters from its parameter
* block (see tramp_table_map()). The trampoline saves the data address on
* the stack. Finally, it jumps to the target code.
*
* The target code can choose to:
*
* - restore the value of r10
* - load the data address in a register
* - restore the stack pointer to what it was when the trampoline was invoked.
*/
#ifdef ENDBR_PRESENT
#define X86_DATA_OFFSET 4077
#define X86_CODE_OFFSET 4073
#else
#define X86_DATA_OFFSET 4081
#define X86_CODE_OFFSET 4077
#endif
.align UNIX64_TRAMP_MAP_SIZE
.globl trampoline_code_table
FFI_HIDDEN(C(trampoline_code_table))
C(trampoline_code_table):
.rept UNIX64_TRAMP_MAP_SIZE / UNIX64_TRAMP_SIZE
_CET_ENDBR
subq $16, %rsp /* Make space on the stack */
movq %r10, (%rsp) /* Save %r10 on stack */
movq X86_DATA_OFFSET(%rip), %r10 /* Copy data into %r10 */
movq %r10, 8(%rsp) /* Save data on stack */
movq X86_CODE_OFFSET(%rip), %r10 /* Copy code into %r10 */
jmp *%r10 /* Jump to code */
.align 8
.endr
ENDF(C(trampoline_code_table))
.align UNIX64_TRAMP_MAP_SIZE
#endif /* FFI_EXEC_STATIC_TRAMP */
/* Sadly, OSX cctools-as doesn't understand .cfi directives at all. */
#ifdef __APPLE__
.section __TEXT,__eh_frame,coalesced,no_toc+strip_static_syms+live_support
EHFrame0:
#elif defined(HAVE_AS_X86_64_UNWIND_SECTION_TYPE)
.section .eh_frame,"a",@unwind
#else
.section .eh_frame,"a",@progbits
#endif
#ifdef HAVE_AS_X86_PCREL
# define PCREL(X) X - .
#else
# define PCREL(X) X@rel
#endif
/* Simplify advancing between labels. Assume DW_CFA_advance_loc1 fits. */
#ifdef __CET__
/* Use DW_CFA_advance_loc2 when IBT is enabled. */
# define ADV(N, P) .byte 3; .2byte L(N)-L(P)
#else
# define ADV(N, P) .byte 2, L(N)-L(P)
#endif
.balign 8
L(CIE):
.set L(set0),L(ECIE)-L(SCIE)
.long L(set0) /* CIE Length */
L(SCIE):
.long 0 /* CIE Identifier Tag */
.byte 1 /* CIE Version */
.ascii "zR\0" /* CIE Augmentation */
.byte 1 /* CIE Code Alignment Factor */
.byte 0x78 /* CIE Data Alignment Factor */
.byte 0x10 /* CIE RA Column */
.byte 1 /* Augmentation size */
.byte 0x1b /* FDE Encoding (pcrel sdata4) */
.byte 0xc, 7, 8 /* DW_CFA_def_cfa, %rsp offset 8 */
.byte 0x80+16, 1 /* DW_CFA_offset, %rip offset 1*-8 */
.balign 8
L(ECIE):
.set L(set1),L(EFDE1)-L(SFDE1)
.long L(set1) /* FDE Length */
L(SFDE1):
.long L(SFDE1)-L(CIE) /* FDE CIE offset */
.long PCREL(L(UW0)) /* Initial location */
.long L(UW4)-L(UW0) /* Address range */
.byte 0 /* Augmentation size */
ADV(UW1, UW0)
.byte 0xc, 6, 32 /* DW_CFA_def_cfa, %rbp 32 */
.byte 0x80+6, 2 /* DW_CFA_offset, %rbp 2*-8 */
ADV(UW2, UW1)
.byte 0xa /* DW_CFA_remember_state */
.byte 0xc, 7, 8 /* DW_CFA_def_cfa, %rsp 8 */
.byte 0xc0+6 /* DW_CFA_restore, %rbp */
ADV(UW3, UW2)
.byte 0xb /* DW_CFA_restore_state */
.balign 8
L(EFDE1):
.set L(set2),L(EFDE2)-L(SFDE2)
.long L(set2) /* FDE Length */
L(SFDE2):
.long L(SFDE2)-L(CIE) /* FDE CIE offset */
.long PCREL(L(UW5)) /* Initial location */
.long L(UW7)-L(UW5) /* Address range */
.byte 0 /* Augmentation size */
ADV(UW6, UW5)
.byte 0xe /* DW_CFA_def_cfa_offset */
.byte ffi_closure_FS + 8, 1 /* uleb128, assuming 128 <= FS < 255 */
.balign 8
L(EFDE2):
.set L(set3),L(EFDE3)-L(SFDE3)
.long L(set3) /* FDE Length */
L(SFDE3):
.long L(SFDE3)-L(CIE) /* FDE CIE offset */
.long PCREL(L(UW8)) /* Initial location */
.long L(UW11)-L(UW8) /* Address range */
.byte 0 /* Augmentation size */
ADV(UW9, UW8)
.byte 0xe /* DW_CFA_def_cfa_offset */
.byte ffi_closure_FS + 8, 1 /* uleb128, assuming 128 <= FS < 255 */
ADV(UW10, UW9)
.byte 0xe, 8 /* DW_CFA_def_cfa_offset 8 */
L(EFDE3):
.set L(set4),L(EFDE4)-L(SFDE4)
.long L(set4) /* FDE Length */
L(SFDE4):
.long L(SFDE4)-L(CIE) /* FDE CIE offset */
.long PCREL(L(UW12)) /* Initial location */
.long L(UW14)-L(UW12) /* Address range */
.byte 0 /* Augmentation size */
ADV(UW13, UW12)
.byte 0xe /* DW_CFA_def_cfa_offset */
.byte ffi_closure_FS + 8, 1 /* uleb128, assuming 128 <= FS < 255 */
.balign 8
L(EFDE4):
.set L(set5),L(EFDE5)-L(SFDE5)
.long L(set5) /* FDE Length */
L(SFDE5):
.long L(SFDE5)-L(CIE) /* FDE CIE offset */
.long PCREL(L(UW15)) /* Initial location */
.long L(UW17)-L(UW15) /* Address range */
.byte 0 /* Augmentation size */
ADV(UW16, UW15)
.byte 0xe /* DW_CFA_def_cfa_offset */
.byte ffi_closure_FS + 8, 1 /* uleb128, assuming 128 <= FS < 255 */
.balign 8
L(EFDE5):
#ifdef __APPLE__
.subsections_via_symbols
.section __LD,__compact_unwind,regular,debug
/* compact unwind for ffi_call_unix64 */
.quad C(ffi_call_unix64)
.set L1,L(UW4)-L(UW0)
.long L1
.long 0x04000000 /* use dwarf unwind info */
.quad 0
.quad 0
/* compact unwind for ffi_closure_unix64_sse */
.quad C(ffi_closure_unix64_sse)
.set L2,L(UW7)-L(UW5)
.long L2
.long 0x04000000 /* use dwarf unwind info */
.quad 0
.quad 0
/* compact unwind for ffi_closure_unix64 */
.quad C(ffi_closure_unix64)
.set L3,L(UW11)-L(UW8)
.long L3
.long 0x04000000 /* use dwarf unwind info */
.quad 0
.quad 0
/* compact unwind for ffi_go_closure_unix64_sse */
.quad C(ffi_go_closure_unix64_sse)
.set L4,L(UW14)-L(UW12)
.long L4
.long 0x04000000 /* use dwarf unwind info */
.quad 0
.quad 0
/* compact unwind for ffi_go_closure_unix64 */
.quad C(ffi_go_closure_unix64)
.set L5,L(UW17)-L(UW15)
.long L5
.long 0x04000000 /* use dwarf unwind info */
.quad 0
.quad 0
#endif
#endif /* __x86_64__ */
#if defined __ELF__ && defined __linux__
.section .note.GNU-stack,"",@progbits
#endif