| dnl Support macro file for intrinsic functions. |
| dnl Contains the generic sections of the array functions. |
| dnl This file is part of the GNU Fortran 95 Runtime Library (libgfortran) |
| dnl Distributed under the GNU GPL with exception. See COPYING for details. |
| define(START_FOREACH_FUNCTION, |
| ` |
| extern void name`'rtype_qual`_'atype_code (rtype * const restrict retarray, |
| atype * const restrict array); |
| export_proto(name`'rtype_qual`_'atype_code); |
| |
| void |
| name`'rtype_qual`_'atype_code (rtype * const restrict retarray, |
| atype * const restrict array) |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type sstride[GFC_MAX_DIMENSIONS]; |
| index_type dstride; |
| const atype_name *base; |
| rtype_name * restrict dest; |
| index_type rank; |
| index_type n; |
| |
| rank = GFC_DESCRIPTOR_RANK (array); |
| if (rank <= 0) |
| runtime_error ("Rank of array needs to be > 0"); |
| |
| if (retarray->data == NULL) |
| { |
| retarray->dim[0].lbound = 0; |
| retarray->dim[0].ubound = rank-1; |
| retarray->dim[0].stride = 1; |
| retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1; |
| retarray->offset = 0; |
| retarray->data = internal_malloc_size (sizeof (rtype_name) * rank); |
| } |
| else |
| { |
| if (unlikely (compile_options.bounds_check)) |
| { |
| int ret_rank; |
| index_type ret_extent; |
| |
| ret_rank = GFC_DESCRIPTOR_RANK (retarray); |
| if (ret_rank != 1) |
| runtime_error ("rank of return array in u_name intrinsic" |
| " should be 1, is %ld", (long int) ret_rank); |
| |
| ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound; |
| if (ret_extent != rank) |
| runtime_error ("Incorrect extent in return value of" |
| " u_name intrnisic: is %ld, should be %ld", |
| (long int) ret_extent, (long int) rank); |
| } |
| } |
| |
| dstride = retarray->dim[0].stride; |
| dest = retarray->data; |
| for (n = 0; n < rank; n++) |
| { |
| sstride[n] = array->dim[n].stride; |
| extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; |
| count[n] = 0; |
| if (extent[n] <= 0) |
| { |
| /* Set the return value. */ |
| for (n = 0; n < rank; n++) |
| dest[n * dstride] = 0; |
| return; |
| } |
| } |
| |
| base = array->data; |
| |
| /* Initialize the return value. */ |
| for (n = 0; n < rank; n++) |
| dest[n * dstride] = 0; |
| { |
| ')dnl |
| define(START_FOREACH_BLOCK, |
| ` while (base) |
| { |
| { |
| /* Implementation start. */ |
| ')dnl |
| define(FINISH_FOREACH_FUNCTION, |
| ` /* Implementation end. */ |
| } |
| /* Advance to the next element. */ |
| count[0]++; |
| base += sstride[0]; |
| n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| base -= sstride[n] * extent[n]; |
| n++; |
| if (n == rank) |
| { |
| /* Break out of the loop. */ |
| base = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| base += sstride[n]; |
| } |
| } |
| } |
| } |
| }')dnl |
| define(START_MASKED_FOREACH_FUNCTION, |
| ` |
| extern void `m'name`'rtype_qual`_'atype_code (rtype * const restrict, |
| atype * const restrict, gfc_array_l1 * const restrict); |
| export_proto(`m'name`'rtype_qual`_'atype_code); |
| |
| void |
| `m'name`'rtype_qual`_'atype_code (rtype * const restrict retarray, |
| atype * const restrict array, |
| gfc_array_l1 * const restrict mask) |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type sstride[GFC_MAX_DIMENSIONS]; |
| index_type mstride[GFC_MAX_DIMENSIONS]; |
| index_type dstride; |
| rtype_name *dest; |
| const atype_name *base; |
| GFC_LOGICAL_1 *mbase; |
| int rank; |
| index_type n; |
| int mask_kind; |
| |
| rank = GFC_DESCRIPTOR_RANK (array); |
| if (rank <= 0) |
| runtime_error ("Rank of array needs to be > 0"); |
| |
| if (retarray->data == NULL) |
| { |
| retarray->dim[0].lbound = 0; |
| retarray->dim[0].ubound = rank-1; |
| retarray->dim[0].stride = 1; |
| retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1; |
| retarray->offset = 0; |
| retarray->data = internal_malloc_size (sizeof (rtype_name) * rank); |
| } |
| else |
| { |
| if (unlikely (compile_options.bounds_check)) |
| { |
| int ret_rank, mask_rank; |
| index_type ret_extent; |
| int n; |
| index_type array_extent, mask_extent; |
| |
| ret_rank = GFC_DESCRIPTOR_RANK (retarray); |
| if (ret_rank != 1) |
| runtime_error ("rank of return array in u_name intrinsic" |
| " should be 1, is %ld", (long int) ret_rank); |
| |
| ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound; |
| if (ret_extent != rank) |
| runtime_error ("Incorrect extent in return value of" |
| " u_name intrnisic: is %ld, should be %ld", |
| (long int) ret_extent, (long int) rank); |
| |
| mask_rank = GFC_DESCRIPTOR_RANK (mask); |
| if (rank != mask_rank) |
| runtime_error ("rank of MASK argument in u_name intrnisic" |
| "should be %ld, is %ld", (long int) rank, |
| (long int) mask_rank); |
| |
| for (n=0; n<rank; n++) |
| { |
| array_extent = array->dim[n].ubound + 1 - array->dim[n].lbound; |
| mask_extent = mask->dim[n].ubound + 1 - mask->dim[n].lbound; |
| if (array_extent != mask_extent) |
| runtime_error ("Incorrect extent in MASK argument of" |
| " u_name intrinsic in dimension %ld:" |
| " is %ld, should be %ld", (long int) n + 1, |
| (long int) mask_extent, (long int) array_extent); |
| } |
| } |
| } |
| |
| mask_kind = GFC_DESCRIPTOR_SIZE (mask); |
| |
| mbase = mask->data; |
| |
| if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 |
| #ifdef HAVE_GFC_LOGICAL_16 |
| || mask_kind == 16 |
| #endif |
| ) |
| mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); |
| else |
| runtime_error ("Funny sized logical array"); |
| |
| dstride = retarray->dim[0].stride; |
| dest = retarray->data; |
| for (n = 0; n < rank; n++) |
| { |
| sstride[n] = array->dim[n].stride; |
| mstride[n] = mask->dim[n].stride * mask_kind; |
| extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; |
| count[n] = 0; |
| if (extent[n] <= 0) |
| { |
| /* Set the return value. */ |
| for (n = 0; n < rank; n++) |
| dest[n * dstride] = 0; |
| return; |
| } |
| } |
| |
| base = array->data; |
| |
| /* Initialize the return value. */ |
| for (n = 0; n < rank; n++) |
| dest[n * dstride] = 0; |
| { |
| ')dnl |
| define(START_MASKED_FOREACH_BLOCK, `START_FOREACH_BLOCK')dnl |
| define(FINISH_MASKED_FOREACH_FUNCTION, |
| ` /* Implementation end. */ |
| } |
| /* Advance to the next element. */ |
| count[0]++; |
| base += sstride[0]; |
| mbase += mstride[0]; |
| n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| base -= sstride[n] * extent[n]; |
| mbase -= mstride[n] * extent[n]; |
| n++; |
| if (n == rank) |
| { |
| /* Break out of the loop. */ |
| base = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| base += sstride[n]; |
| mbase += mstride[n]; |
| } |
| } |
| } |
| } |
| }')dnl |
| define(FOREACH_FUNCTION, |
| `START_FOREACH_FUNCTION |
| $1 |
| START_FOREACH_BLOCK |
| $2 |
| FINISH_FOREACH_FUNCTION')dnl |
| define(MASKED_FOREACH_FUNCTION, |
| `START_MASKED_FOREACH_FUNCTION |
| $1 |
| START_MASKED_FOREACH_BLOCK |
| $2 |
| FINISH_MASKED_FOREACH_FUNCTION')dnl |
| define(SCALAR_FOREACH_FUNCTION, |
| ` |
| extern void `s'name`'rtype_qual`_'atype_code (rtype * const restrict, |
| atype * const restrict, GFC_LOGICAL_4 *); |
| export_proto(`s'name`'rtype_qual`_'atype_code); |
| |
| void |
| `s'name`'rtype_qual`_'atype_code (rtype * const restrict retarray, |
| atype * const restrict array, |
| GFC_LOGICAL_4 * mask) |
| { |
| index_type rank; |
| index_type dstride; |
| index_type n; |
| rtype_name *dest; |
| |
| if (*mask) |
| { |
| name`'rtype_qual`_'atype_code (retarray, array); |
| return; |
| } |
| |
| rank = GFC_DESCRIPTOR_RANK (array); |
| |
| if (rank <= 0) |
| runtime_error ("Rank of array needs to be > 0"); |
| |
| if (retarray->data == NULL) |
| { |
| retarray->dim[0].lbound = 0; |
| retarray->dim[0].ubound = rank-1; |
| retarray->dim[0].stride = 1; |
| retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1; |
| retarray->offset = 0; |
| retarray->data = internal_malloc_size (sizeof (rtype_name) * rank); |
| } |
| else |
| { |
| if (unlikely (compile_options.bounds_check)) |
| { |
| int ret_rank; |
| index_type ret_extent; |
| |
| ret_rank = GFC_DESCRIPTOR_RANK (retarray); |
| if (ret_rank != 1) |
| runtime_error ("rank of return array in u_name intrinsic" |
| " should be 1, is %ld", (long int) ret_rank); |
| |
| ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound; |
| if (ret_extent != rank) |
| runtime_error ("dimension of return array incorrect"); |
| } |
| } |
| |
| dstride = retarray->dim[0].stride; |
| dest = retarray->data; |
| for (n = 0; n<rank; n++) |
| dest[n * dstride] = $1 ; |
| }')dnl |