| /* Copyright (C) 2007-2019 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include <ctype.h> |
| #include "bid_internal.h" |
| #include "bid128_2_str.h" |
| #include "bid128_2_str_macros.h" |
| |
| #define MAX_FORMAT_DIGITS 16 |
| #define DECIMAL_EXPONENT_BIAS 398 |
| #define MAX_DECIMAL_EXPONENT 767 |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| |
| void |
| bid64_to_string (char *ps, UINT64 * px |
| _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| UINT64 x; |
| #else |
| |
| void |
| bid64_to_string (char *ps, UINT64 x |
| _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| // the destination string (pointed to by ps) must be pre-allocated |
| UINT64 sign_x, coefficient_x, D, ER10; |
| int istart, exponent_x, j, digits_x, bin_expon_cx; |
| int_float tempx; |
| UINT32 MiDi[12], *ptr; |
| UINT64 HI_18Dig, LO_18Dig, Tmp; |
| char *c_ptr_start, *c_ptr; |
| int midi_ind, k_lcv, len; |
| unsigned int save_fpsf; |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| x = *px; |
| #endif |
| |
| save_fpsf = *pfpsf; // place holder only |
| // unpack arguments, check for NaN or Infinity |
| if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) { |
| // x is Inf. or NaN or 0 |
| |
| // Inf or NaN? |
| if ((x & 0x7800000000000000ull) == 0x7800000000000000ull) { |
| if ((x & 0x7c00000000000000ull) == 0x7c00000000000000ull) { |
| ps[0] = (sign_x) ? '-' : '+'; |
| ps[1] = ((x & MASK_SNAN) == MASK_SNAN)? 'S':'Q'; |
| ps[2] = 'N'; |
| ps[3] = 'a'; |
| ps[4] = 'N'; |
| ps[5] = 0; |
| return; |
| } |
| // x is Inf |
| ps[0] = (sign_x) ? '-' : '+'; |
| ps[1] = 'I'; |
| ps[2] = 'n'; |
| ps[3] = 'f'; |
| ps[4] = 0; |
| return; |
| } |
| // 0 |
| istart = 0; |
| if (sign_x) { |
| ps[istart++] = '-'; |
| } |
| |
| ps[istart++] = '0'; |
| ps[istart++] = 'E'; |
| |
| exponent_x -= 398; |
| if (exponent_x < 0) { |
| ps[istart++] = '-'; |
| exponent_x = -exponent_x; |
| } else |
| ps[istart++] = '+'; |
| |
| if (exponent_x) { |
| // get decimal digits in coefficient_x |
| tempx.d = (float) exponent_x; |
| bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f; |
| digits_x = estimate_decimal_digits[bin_expon_cx]; |
| if ((UINT64)exponent_x >= power10_table_128[digits_x].w[0]) |
| digits_x++; |
| |
| j = istart + digits_x - 1; |
| istart = j + 1; |
| |
| // 2^32/10 |
| ER10 = 0x1999999a; |
| |
| while (exponent_x > 9) { |
| D = (UINT64) exponent_x *ER10; |
| D >>= 32; |
| exponent_x = exponent_x - (D << 1) - (D << 3); |
| |
| ps[j--] = '0' + (char) exponent_x; |
| exponent_x = D; |
| } |
| ps[j] = '0' + (char) exponent_x; |
| } else { |
| ps[istart++] = '0'; |
| } |
| |
| ps[istart] = 0; |
| |
| return; |
| } |
| // convert expon, coeff to ASCII |
| exponent_x -= DECIMAL_EXPONENT_BIAS; |
| |
| ER10 = 0x1999999a; |
| |
| istart = 0; |
| if (sign_x) { |
| ps[0] = '-'; |
| istart = 1; |
| } |
| // if zero or non-canonical, set coefficient to '0' |
| if ((coefficient_x > 9999999999999999ull) || // non-canonical |
| ((coefficient_x == 0)) // significand is zero |
| ) { |
| ps[istart++] = '0'; |
| } else { |
| /* **************************************************** |
| This takes a bid coefficient in C1.w[1],C1.w[0] |
| and put the converted character sequence at location |
| starting at &(str[k]). The function returns the number |
| of MiDi returned. Note that the character sequence |
| does not have leading zeros EXCEPT when the input is of |
| zero value. It will then output 1 character '0' |
| The algorithm essentailly tries first to get a sequence of |
| Millenial Digits "MiDi" and then uses table lookup to get the |
| character strings of these MiDis. |
| **************************************************** */ |
| /* Algorithm first decompose possibly 34 digits in hi and lo |
| 18 digits. (The high can have at most 16 digits). It then |
| uses macro that handle 18 digit portions. |
| The first step is to get hi and lo such that |
| 2^(64) C1.w[1] + C1.w[0] = hi * 10^18 + lo, 0 <= lo < 10^18. |
| We use a table lookup method to obtain the hi and lo 18 digits. |
| [C1.w[1],C1.w[0]] = c_8 2^(107) + c_7 2^(101) + ... + c_0 2^(59) + d |
| where 0 <= d < 2^59 and each c_j has 6 bits. Because d fits in |
| 18 digits, we set hi = 0, and lo = d to begin with. |
| We then retrieve from a table, for j = 0, 1, ..., 8 |
| that gives us A and B where c_j 2^(59+6j) = A * 10^18 + B. |
| hi += A ; lo += B; After each accumulation into lo, we normalize |
| immediately. So at the end, we have the decomposition as we need. */ |
| |
| Tmp = coefficient_x >> 59; |
| LO_18Dig = (coefficient_x << 5) >> 5; |
| HI_18Dig = 0; |
| k_lcv = 0; |
| |
| while (Tmp) { |
| midi_ind = (int) (Tmp & 0x000000000000003FLL); |
| midi_ind <<= 1; |
| Tmp >>= 6; |
| HI_18Dig += mod10_18_tbl[k_lcv][midi_ind++]; |
| LO_18Dig += mod10_18_tbl[k_lcv++][midi_ind]; |
| __L0_Normalize_10to18 (HI_18Dig, LO_18Dig); |
| } |
| |
| ptr = MiDi; |
| __L1_Split_MiDi_6_Lead (LO_18Dig, ptr); |
| len = ptr - MiDi; |
| c_ptr_start = &(ps[istart]); |
| c_ptr = c_ptr_start; |
| |
| /* now convert the MiDi into character strings */ |
| __L0_MiDi2Str_Lead (MiDi[0], c_ptr); |
| for (k_lcv = 1; k_lcv < len; k_lcv++) { |
| __L0_MiDi2Str (MiDi[k_lcv], c_ptr); |
| } |
| istart = istart + (c_ptr - c_ptr_start); |
| } |
| |
| ps[istart++] = 'E'; |
| |
| if (exponent_x < 0) { |
| ps[istart++] = '-'; |
| exponent_x = -exponent_x; |
| } else |
| ps[istart++] = '+'; |
| |
| if (exponent_x) { |
| // get decimal digits in coefficient_x |
| tempx.d = (float) exponent_x; |
| bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f; |
| digits_x = estimate_decimal_digits[bin_expon_cx]; |
| if ((UINT64)exponent_x >= power10_table_128[digits_x].w[0]) |
| digits_x++; |
| |
| j = istart + digits_x - 1; |
| istart = j + 1; |
| |
| // 2^32/10 |
| ER10 = 0x1999999a; |
| |
| while (exponent_x > 9) { |
| D = (UINT64) exponent_x *ER10; |
| D >>= 32; |
| exponent_x = exponent_x - (D << 1) - (D << 3); |
| |
| ps[j--] = '0' + (char) exponent_x; |
| exponent_x = D; |
| } |
| ps[j] = '0' + (char) exponent_x; |
| } else { |
| ps[istart++] = '0'; |
| } |
| |
| ps[istart] = 0; |
| |
| return; |
| |
| } |
| |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_from_string (UINT64 * pres, char *ps |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM |
| _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #else |
| UINT64 |
| bid64_from_string (char *ps |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM |
| _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| UINT64 sign_x, coefficient_x = 0, rounded = 0, res; |
| int expon_x = 0, sgn_expon, ndigits, add_expon = 0, midpoint = |
| 0, rounded_up = 0; |
| int dec_expon_scale = 0, right_radix_leading_zeros = 0, rdx_pt_enc = |
| 0; |
| unsigned fpsc; |
| char c; |
| unsigned int save_fpsf; |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| #if !DECIMAL_GLOBAL_ROUNDING |
| _IDEC_round rnd_mode = *prnd_mode; |
| #endif |
| #endif |
| |
| save_fpsf = *pfpsf; // place holder only |
| // eliminate leading whitespace |
| while (((*ps == ' ') || (*ps == '\t')) && (*ps)) |
| ps++; |
| |
| // get first non-whitespace character |
| c = *ps; |
| |
| // detect special cases (INF or NaN) |
| if (!c || (c != '.' && c != '-' && c != '+' && (c < '0' || c > '9'))) { |
| // Infinity? |
| if ((tolower_macro (ps[0]) == 'i' && tolower_macro (ps[1]) == 'n' && |
| tolower_macro (ps[2]) == 'f') && (!ps[3] || |
| (tolower_macro (ps[3]) == 'i' && |
| tolower_macro (ps[4]) == 'n' && tolower_macro (ps[5]) == 'i' && |
| tolower_macro (ps[6]) == 't' && tolower_macro (ps[7]) == 'y' && |
| !ps[8]))) { |
| res = 0x7800000000000000ull; |
| BID_RETURN (res); |
| } |
| // return sNaN |
| if (tolower_macro (ps[0]) == 's' && tolower_macro (ps[1]) == 'n' && |
| tolower_macro (ps[2]) == 'a' && tolower_macro (ps[3]) == 'n') { |
| // case insensitive check for snan |
| res = 0x7e00000000000000ull; |
| BID_RETURN (res); |
| } else { |
| // return qNaN |
| res = 0x7c00000000000000ull; |
| BID_RETURN (res); |
| } |
| } |
| // detect +INF or -INF |
| if ((tolower_macro (ps[1]) == 'i' && tolower_macro (ps[2]) == 'n' && |
| tolower_macro (ps[3]) == 'f') && (!ps[4] || |
| (tolower_macro (ps[4]) == 'i' && tolower_macro (ps[5]) == 'n' && |
| tolower_macro (ps[6]) == 'i' && tolower_macro (ps[7]) == 't' && |
| tolower_macro (ps[8]) == 'y' && !ps[9]))) { |
| if (c == '+') |
| res = 0x7800000000000000ull; |
| else if (c == '-') |
| res = 0xf800000000000000ull; |
| else |
| res = 0x7c00000000000000ull; |
| BID_RETURN (res); |
| } |
| // if +sNaN, +SNaN, -sNaN, or -SNaN |
| if (tolower_macro (ps[1]) == 's' && tolower_macro (ps[2]) == 'n' |
| && tolower_macro (ps[3]) == 'a' && tolower_macro (ps[4]) == 'n') { |
| if (c == '-') |
| res = 0xfe00000000000000ull; |
| else |
| res = 0x7e00000000000000ull; |
| BID_RETURN (res); |
| } |
| // determine sign |
| if (c == '-') |
| sign_x = 0x8000000000000000ull; |
| else |
| sign_x = 0; |
| |
| // get next character if leading +/- sign |
| if (c == '-' || c == '+') { |
| ps++; |
| c = *ps; |
| } |
| // if c isn't a decimal point or a decimal digit, return NaN |
| if (c != '.' && (c < '0' || c > '9')) { |
| // return NaN |
| res = 0x7c00000000000000ull | sign_x; |
| BID_RETURN (res); |
| } |
| |
| rdx_pt_enc = 0; |
| |
| // detect zero (and eliminate/ignore leading zeros) |
| if (*(ps) == '0' || *(ps) == '.') { |
| |
| if (*(ps) == '.') { |
| rdx_pt_enc = 1; |
| ps++; |
| } |
| // if all numbers are zeros (with possibly 1 radix point, the number is zero |
| // should catch cases such as: 000.0 |
| while (*ps == '0') { |
| ps++; |
| // for numbers such as 0.0000000000000000000000000000000000001001, |
| // we want to count the leading zeros |
| if (rdx_pt_enc) { |
| right_radix_leading_zeros++; |
| } |
| // if this character is a radix point, make sure we haven't already |
| // encountered one |
| if (*(ps) == '.') { |
| if (rdx_pt_enc == 0) { |
| rdx_pt_enc = 1; |
| // if this is the first radix point, and the next character is NULL, |
| // we have a zero |
| if (!*(ps + 1)) { |
| res = |
| ((UINT64) (398 - right_radix_leading_zeros) << 53) | |
| sign_x; |
| BID_RETURN (res); |
| } |
| ps = ps + 1; |
| } else { |
| // if 2 radix points, return NaN |
| res = 0x7c00000000000000ull | sign_x; |
| BID_RETURN (res); |
| } |
| } else if (!*(ps)) { |
| //pres->w[1] = 0x3040000000000000ull | sign_x; |
| res = |
| ((UINT64) (398 - right_radix_leading_zeros) << 53) | sign_x; |
| BID_RETURN (res); |
| } |
| } |
| } |
| |
| c = *ps; |
| |
| ndigits = 0; |
| while ((c >= '0' && c <= '9') || c == '.') { |
| if (c == '.') { |
| if (rdx_pt_enc) { |
| // return NaN |
| res = 0x7c00000000000000ull | sign_x; |
| BID_RETURN (res); |
| } |
| rdx_pt_enc = 1; |
| ps++; |
| c = *ps; |
| continue; |
| } |
| dec_expon_scale += rdx_pt_enc; |
| |
| ndigits++; |
| if (ndigits <= 16) { |
| coefficient_x = (coefficient_x << 1) + (coefficient_x << 3); |
| coefficient_x += (UINT64) (c - '0'); |
| } else if (ndigits == 17) { |
| // coefficient rounding |
| switch(rnd_mode){ |
| case ROUNDING_TO_NEAREST: |
| midpoint = (c == '5' && !(coefficient_x & 1)) ? 1 : 0; |
| // if coefficient is even and c is 5, prepare to round up if |
| // subsequent digit is nonzero |
| // if str[MAXDIG+1] > 5, we MUST round up |
| // if str[MAXDIG+1] == 5 and coefficient is ODD, ROUND UP! |
| if (c > '5' || (c == '5' && (coefficient_x & 1))) { |
| coefficient_x++; |
| rounded_up = 1; |
| break; |
| |
| case ROUNDING_DOWN: |
| if(sign_x) { coefficient_x++; rounded_up=1; } |
| break; |
| case ROUNDING_UP: |
| if(!sign_x) { coefficient_x++; rounded_up=1; } |
| break; |
| case ROUNDING_TIES_AWAY: |
| if(c>='5') { coefficient_x++; rounded_up=1; } |
| break; |
| } |
| if (coefficient_x == 10000000000000000ull) { |
| coefficient_x = 1000000000000000ull; |
| add_expon = 1; |
| } |
| } |
| if (c > '0') |
| rounded = 1; |
| add_expon += 1; |
| } else { // ndigits > 17 |
| add_expon++; |
| if (midpoint && c > '0') { |
| coefficient_x++; |
| midpoint = 0; |
| rounded_up = 1; |
| } |
| if (c > '0') |
| rounded = 1; |
| } |
| ps++; |
| c = *ps; |
| } |
| |
| add_expon -= (dec_expon_scale + right_radix_leading_zeros); |
| |
| if (!c) { |
| res = |
| fast_get_BID64_check_OF (sign_x, |
| add_expon + DECIMAL_EXPONENT_BIAS, |
| coefficient_x, 0, &fpsc); |
| BID_RETURN (res); |
| } |
| |
| if (c != 'E' && c != 'e') { |
| // return NaN |
| res = 0x7c00000000000000ull | sign_x; |
| BID_RETURN (res); |
| } |
| ps++; |
| c = *ps; |
| sgn_expon = (c == '-') ? 1 : 0; |
| if (c == '-' || c == '+') { |
| ps++; |
| c = *ps; |
| } |
| if (!c || c < '0' || c > '9') { |
| // return NaN |
| res = 0x7c00000000000000ull | sign_x; |
| BID_RETURN (res); |
| } |
| |
| while (c >= '0' && c <= '9') { |
| expon_x = (expon_x << 1) + (expon_x << 3); |
| expon_x += (int) (c - '0'); |
| |
| ps++; |
| c = *ps; |
| } |
| |
| if (c) { |
| // return NaN |
| res = 0x7c00000000000000ull | sign_x; |
| BID_RETURN (res); |
| } |
| |
| if (sgn_expon) |
| expon_x = -expon_x; |
| |
| expon_x += add_expon + DECIMAL_EXPONENT_BIAS; |
| |
| if (expon_x < 0) { |
| if (rounded_up) |
| coefficient_x--; |
| rnd_mode = 0; |
| res = |
| get_BID64_UF (sign_x, expon_x, coefficient_x, rounded, rnd_mode, |
| &fpsc); |
| BID_RETURN (res); |
| } |
| res = get_BID64 (sign_x, expon_x, coefficient_x, rnd_mode, &fpsc); |
| BID_RETURN (res); |
| } |