blob: 7ebb50836484311c3a0c6fee22d96aa8fc792646 [file] [log] [blame]
/* Subroutines for insn-output.c for MIPS
Copyright (C) 1989, 90, 91, 93-95, 1996 Free Software Foundation, Inc.
Contributed by A. Lichnewsky, lich@inria.inria.fr.
Changes by Michael Meissner, meissner@osf.org.
64 bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
Brendan Eich, brendan@microunity.com.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* ??? The TARGET_FP_CALL_32 macros are intended to simulate a 32 bit
calling convention in 64 bit mode. It doesn't work though, and should
be replaced with something better designed. */
#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "insn-attr.h"
#include "insn-codes.h"
#include "recog.h"
#include "output.h"
#undef MAX /* sys/param.h may also define these */
#undef MIN
#include <stdio.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/file.h>
#include <ctype.h>
#include "tree.h"
#include "expr.h"
#include "flags.h"
#ifndef R_OK
#define R_OK 4
#define W_OK 2
#define X_OK 1
#endif
#if defined(USG) || defined(NO_STAB_H)
#include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */
#else
#include <stab.h> /* On BSD, use the system's stab.h. */
#endif /* not USG */
#ifdef __GNU_STAB__
#define STAB_CODE_TYPE enum __stab_debug_code
#else
#define STAB_CODE_TYPE int
#endif
extern void abort ();
extern int atoi ();
extern char *getenv ();
extern char *mktemp ();
extern rtx adj_offsettable_operand ();
extern rtx copy_to_reg ();
extern void error ();
extern void fatal ();
extern tree lookup_name ();
extern void pfatal_with_name ();
extern void warning ();
extern FILE *asm_out_file;
/* Enumeration for all of the relational tests, so that we can build
arrays indexed by the test type, and not worry about the order
of EQ, NE, etc. */
enum internal_test {
ITEST_EQ,
ITEST_NE,
ITEST_GT,
ITEST_GE,
ITEST_LT,
ITEST_LE,
ITEST_GTU,
ITEST_GEU,
ITEST_LTU,
ITEST_LEU,
ITEST_MAX
};
/* Global variables for machine-dependent things. */
/* Threshold for data being put into the small data/bss area, instead
of the normal data area (references to the small data/bss area take
1 instruction, and use the global pointer, references to the normal
data area takes 2 instructions). */
int mips_section_threshold = -1;
/* Count the number of .file directives, so that .loc is up to date. */
int num_source_filenames = 0;
/* Count the number of sdb related labels are generated (to find block
start and end boundaries). */
int sdb_label_count = 0;
/* Next label # for each statement for Silicon Graphics IRIS systems. */
int sym_lineno = 0;
/* Non-zero if inside of a function, because the stupid MIPS asm can't
handle .files inside of functions. */
int inside_function = 0;
/* Files to separate the text and the data output, so that all of the data
can be emitted before the text, which will mean that the assembler will
generate smaller code, based on the global pointer. */
FILE *asm_out_data_file;
FILE *asm_out_text_file;
/* Linked list of all externals that are to be emitted when optimizing
for the global pointer if they haven't been declared by the end of
the program with an appropriate .comm or initialization. */
struct extern_list {
struct extern_list *next; /* next external */
char *name; /* name of the external */
int size; /* size in bytes */
} *extern_head = 0;
/* Name of the file containing the current function. */
char *current_function_file = "";
/* Warning given that Mips ECOFF can't support changing files
within a function. */
int file_in_function_warning = FALSE;
/* Whether to suppress issuing .loc's because the user attempted
to change the filename within a function. */
int ignore_line_number = FALSE;
/* Number of nested .set noreorder, noat, nomacro, and volatile requests. */
int set_noreorder;
int set_noat;
int set_nomacro;
int set_volatile;
/* The next branch instruction is a branch likely, not branch normal. */
int mips_branch_likely;
/* Count of delay slots and how many are filled. */
int dslots_load_total;
int dslots_load_filled;
int dslots_jump_total;
int dslots_jump_filled;
/* # of nops needed by previous insn */
int dslots_number_nops;
/* Number of 1/2/3 word references to data items (ie, not jal's). */
int num_refs[3];
/* registers to check for load delay */
rtx mips_load_reg, mips_load_reg2, mips_load_reg3, mips_load_reg4;
/* Cached operands, and operator to compare for use in set/branch on
condition codes. */
rtx branch_cmp[2];
/* what type of branch to use */
enum cmp_type branch_type;
/* Number of previously seen half-pic pointers and references. */
static int prev_half_pic_ptrs = 0;
static int prev_half_pic_refs = 0;
/* which cpu are we scheduling for */
enum processor_type mips_cpu;
/* which instruction set architecture to use. */
int mips_isa;
#ifdef MIPS_ABI_DEFAULT
/* which ABI to use. This is defined to a constant in mips.h if the target
doesn't support multiple ABIs. */
enum mips_abi_type mips_abi;
#endif
/* Strings to hold which cpu and instruction set architecture to use. */
char *mips_cpu_string; /* for -mcpu=<xxx> */
char *mips_isa_string; /* for -mips{1,2,3,4} */
char *mips_abi_string; /* for -mabi={o32,32,n32,n64,64,eabi} */
/* If TRUE, we split addresses into their high and low parts in the RTL. */
int mips_split_addresses;
/* Generating calls to position independent functions? */
enum mips_abicalls_type mips_abicalls;
/* High and low marks for floating point values which we will accept
as legitimate constants for LEGITIMATE_CONSTANT_P. These are
initialized in override_options. */
REAL_VALUE_TYPE dfhigh, dflow, sfhigh, sflow;
/* Array giving truth value on whether or not a given hard register
can support a given mode. */
char mips_hard_regno_mode_ok[(int)MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
/* Current frame information calculated by compute_frame_size. */
struct mips_frame_info current_frame_info;
/* Zero structure to initialize current_frame_info. */
struct mips_frame_info zero_frame_info;
/* Temporary filename used to buffer .text until end of program
for -mgpopt. */
static char *temp_filename;
/* Pseudo-reg holding the address of the current function when
generating embedded PIC code. Created by LEGITIMIZE_ADDRESS, used
by mips_finalize_pic if it was created. */
rtx embedded_pic_fnaddr_rtx;
/* List of all MIPS punctuation characters used by print_operand. */
char mips_print_operand_punct[256];
/* Map GCC register number to debugger register number. */
int mips_dbx_regno[FIRST_PSEUDO_REGISTER];
/* Buffer to use to enclose a load/store operation with %{ %} to
turn on .set volatile. */
static char volatile_buffer[60];
/* Hardware names for the registers. If -mrnames is used, this
will be overwritten with mips_sw_reg_names. */
char mips_reg_names[][8] =
{
"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7",
"$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15",
"$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23",
"$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31",
"$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
"$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
"$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
"$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",
"hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",
"$fcc5","$fcc6","$fcc7","$rap"
};
/* Mips software names for the registers, used to overwrite the
mips_reg_names array. */
char mips_sw_reg_names[][8] =
{
"$zero","$at", "$v0", "$v1", "$a0", "$a1", "$a2", "$a3",
"$t0", "$t1", "$t2", "$t3", "$t4", "$t5", "$t6", "$t7",
"$s0", "$s1", "$s2", "$s3", "$s4", "$s5", "$s6", "$s7",
"$t8", "$t9", "$k0", "$k1", "$gp", "$sp", "$fp", "$ra",
"$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
"$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
"$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
"$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",
"hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",
"$fcc5","$fcc6","$fcc7","$rap"
};
/* Map hard register number to register class */
enum reg_class mips_regno_to_class[] =
{
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
HI_REG, LO_REG, HILO_REG, ST_REGS,
ST_REGS, ST_REGS, ST_REGS, ST_REGS,
ST_REGS, ST_REGS, ST_REGS, GR_REGS
};
/* Map register constraint character to register class. */
enum reg_class mips_char_to_class[256] =
{
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
};
/* Return truth value of whether OP can be used as an operands
where a register or 16 bit unsigned integer is needed. */
int
uns_arith_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == CONST_INT && SMALL_INT_UNSIGNED (op))
return TRUE;
return register_operand (op, mode);
}
/* Return truth value of whether OP can be used as an operands
where a 16 bit integer is needed */
int
arith_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == CONST_INT && SMALL_INT (op))
return TRUE;
return register_operand (op, mode);
}
/* Return truth value of whether OP can be used as an operand in a two
address arithmetic insn (such as set 123456,%o4) of mode MODE. */
int
arith32_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == CONST_INT)
return TRUE;
return register_operand (op, mode);
}
/* Return truth value of whether OP is a integer which fits in 16 bits */
int
small_int (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == CONST_INT && SMALL_INT (op));
}
/* Return truth value of whether OP is a 32 bit integer which is too big to
be loaded with one instruction. */
int
large_int (op, mode)
rtx op;
enum machine_mode mode;
{
HOST_WIDE_INT value;
if (GET_CODE (op) != CONST_INT)
return FALSE;
value = INTVAL (op);
if ((value & ~0x0000ffff) == 0) /* ior reg,$r0,value */
return FALSE;
if (((unsigned long)(value + 32768)) <= 32767) /* subu reg,$r0,value */
return FALSE;
if ((value & 0x0000ffff) == 0) /* lui reg,value>>16 */
return FALSE;
return TRUE;
}
/* Return truth value of whether OP is a register or the constant 0. */
int
reg_or_0_operand (op, mode)
rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
default:
break;
case CONST_INT:
return (INTVAL (op) == 0);
case CONST_DOUBLE:
if (op != CONST0_RTX (mode))
return FALSE;
return TRUE;
case REG:
case SUBREG:
return register_operand (op, mode);
}
return FALSE;
}
/* Return truth value if a CONST_DOUBLE is ok to be a legitimate constant. */
int
mips_const_double_ok (op, mode)
rtx op;
enum machine_mode mode;
{
REAL_VALUE_TYPE d;
if (GET_CODE (op) != CONST_DOUBLE)
return FALSE;
if (mode == VOIDmode)
return TRUE;
if (mode != SFmode && mode != DFmode)
return FALSE;
if (op == CONST0_RTX (mode))
return TRUE;
/* ??? li.s does not work right with SGI's Irix 6 assembler. */
if (mips_abi != ABI_32 && mips_abi != ABI_EABI)
return FALSE;
REAL_VALUE_FROM_CONST_DOUBLE (d, op);
if (REAL_VALUE_ISNAN (d))
return FALSE;
if (REAL_VALUE_NEGATIVE (d))
d = REAL_VALUE_NEGATE (d);
if (mode == DFmode)
{
if (REAL_VALUES_LESS (d, dfhigh)
&& REAL_VALUES_LESS (dflow, d))
return TRUE;
}
else
{
if (REAL_VALUES_LESS (d, sfhigh)
&& REAL_VALUES_LESS (sflow, d))
return TRUE;
}
return FALSE;
}
/* Accept the floating point constant 1 in the appropriate mode. */
int
const_float_1_operand (op, mode)
rtx op;
enum machine_mode mode;
{
REAL_VALUE_TYPE d;
static REAL_VALUE_TYPE onedf;
static REAL_VALUE_TYPE onesf;
static int one_initialized;
if (GET_CODE (op) != CONST_DOUBLE
|| mode != GET_MODE (op)
|| (mode != DFmode && mode != SFmode))
return FALSE;
REAL_VALUE_FROM_CONST_DOUBLE (d, op);
/* We only initialize these values if we need them, since we will
never get called unless mips_isa >= 4. */
if (! one_initialized)
{
onedf = REAL_VALUE_ATOF ("1.0", DFmode);
onesf = REAL_VALUE_ATOF ("1.0", SFmode);
one_initialized = TRUE;
}
if (mode == DFmode)
return REAL_VALUES_EQUAL (d, onedf);
else
return REAL_VALUES_EQUAL (d, onesf);
}
/* Return truth value if a memory operand fits in a single instruction
(ie, register + small offset). */
int
simple_memory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
rtx addr, plus0, plus1;
/* Eliminate non-memory operations */
if (GET_CODE (op) != MEM)
return FALSE;
/* dword operations really put out 2 instructions, so eliminate them. */
/* ??? This isn't strictly correct. It is OK to accept multiword modes
here, since the length attributes are being set correctly, but only
if the address is offsettable. LO_SUM is not offsettable. */
if (GET_MODE_SIZE (GET_MODE (op)) > UNITS_PER_WORD)
return FALSE;
/* Decode the address now. */
addr = XEXP (op, 0);
switch (GET_CODE (addr))
{
default:
break;
case REG:
case LO_SUM:
return TRUE;
case CONST_INT:
return SMALL_INT (op);
case PLUS:
plus0 = XEXP (addr, 0);
plus1 = XEXP (addr, 1);
if (GET_CODE (plus0) == REG
&& GET_CODE (plus1) == CONST_INT
&& SMALL_INT (plus1))
return TRUE;
else if (GET_CODE (plus1) == REG
&& GET_CODE (plus0) == CONST_INT
&& SMALL_INT (plus0))
return TRUE;
else
return FALSE;
#if 0
/* We used to allow small symbol refs here (ie, stuff in .sdata
or .sbss), but this causes some bugs in G++. Also, it won't
interfere if the MIPS linker rewrites the store instruction
because the function is PIC. */
case LABEL_REF: /* never gp relative */
break;
case CONST:
/* If -G 0, we can never have a GP relative memory operation.
Also, save some time if not optimizing. */
if (!TARGET_GP_OPT)
return FALSE;
{
rtx offset = const0_rtx;
addr = eliminate_constant_term (XEXP (addr, 0), &offset);
if (GET_CODE (op) != SYMBOL_REF)
return FALSE;
/* let's be paranoid.... */
if (! SMALL_INT (offset))
return FALSE;
}
/* fall through */
case SYMBOL_REF:
return SYMBOL_REF_FLAG (addr);
#endif
}
return FALSE;
}
/* Return true if the code of this rtx pattern is EQ or NE. */
int
equality_op (op, mode)
rtx op;
enum machine_mode mode;
{
if (mode != GET_MODE (op))
return FALSE;
return (GET_CODE (op) == EQ || GET_CODE (op) == NE);
}
/* Return true if the code is a relational operations (EQ, LE, etc.) */
int
cmp_op (op, mode)
rtx op;
enum machine_mode mode;
{
if (mode != GET_MODE (op))
return FALSE;
return (GET_RTX_CLASS (GET_CODE (op)) == '<');
}
/* Return true if the operand is either the PC or a label_ref. */
int
pc_or_label_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (op == pc_rtx)
return TRUE;
if (GET_CODE (op) == LABEL_REF)
return TRUE;
return FALSE;
}
/* Test for a valid operand for a call instruction.
Don't allow the arg pointer register or virtual regs
since they may change into reg + const, which the patterns
can't handle yet. */
int
call_insn_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (CONSTANT_ADDRESS_P (op)
|| (GET_CODE (op) == REG && op != arg_pointer_rtx
&& ! (REGNO (op) >= FIRST_PSEUDO_REGISTER
&& REGNO (op) <= LAST_VIRTUAL_REGISTER)))
return 1;
return 0;
}
/* Return true if OPERAND is valid as a source operand for a move
instruction. */
int
move_operand (op, mode)
rtx op;
enum machine_mode mode;
{
/* Accept any general operand after reload has started; doing so
avoids losing if reload does an in-place replacement of a register
with a SYMBOL_REF or CONST. */
return (general_operand (op, mode)
&& (! (mips_split_addresses && mips_check_split (op, mode))
|| reload_in_progress
|| reload_completed));
}
/* Return true if OPERAND is valid as a source operand for movdi.
This accepts not only general_operand, but also sign extended
constants and registers. We need to accept sign extended constants
in case a sign extended register which is used in an expression,
and is equivalent to a constant, is spilled. */
int
movdi_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (TARGET_64BIT
&& mode == DImode
&& GET_CODE (op) == SIGN_EXTEND
&& GET_MODE (op) == DImode
&& (GET_MODE (XEXP (op, 0)) == SImode
|| (GET_CODE (XEXP (op, 0)) == CONST_INT
&& GET_MODE (XEXP (op, 0)) == VOIDmode))
&& (register_operand (XEXP (op, 0), SImode)
|| immediate_operand (XEXP (op, 0), SImode)))
return 1;
return general_operand (op, mode);
}
/* Like register_operand, but when in 64 bit mode also accept a sign
extend of a 32 bit register, since the value is known to be already
sign extended. */
int
se_register_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (TARGET_64BIT
&& mode == DImode
&& GET_CODE (op) == SIGN_EXTEND
&& GET_MODE (op) == DImode
&& GET_MODE (XEXP (op, 0)) == SImode
&& register_operand (XEXP (op, 0), SImode))
return 1;
return register_operand (op, mode);
}
/* Like reg_or_0_operand, but when in 64 bit mode also accept a sign
extend of a 32 bit register, since the value is known to be already
sign extended. */
int
se_reg_or_0_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (TARGET_64BIT
&& mode == DImode
&& GET_CODE (op) == SIGN_EXTEND
&& GET_MODE (op) == DImode
&& GET_MODE (XEXP (op, 0)) == SImode
&& register_operand (XEXP (op, 0), SImode))
return 1;
return reg_or_0_operand (op, mode);
}
/* Like uns_arith_operand, but when in 64 bit mode also accept a sign
extend of a 32 bit register, since the value is known to be already
sign extended. */
int
se_uns_arith_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (TARGET_64BIT
&& mode == DImode
&& GET_CODE (op) == SIGN_EXTEND
&& GET_MODE (op) == DImode
&& GET_MODE (XEXP (op, 0)) == SImode
&& register_operand (XEXP (op, 0), SImode))
return 1;
return uns_arith_operand (op, mode);
}
/* Like arith_operand, but when in 64 bit mode also accept a sign
extend of a 32 bit register, since the value is known to be already
sign extended. */
int
se_arith_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (TARGET_64BIT
&& mode == DImode
&& GET_CODE (op) == SIGN_EXTEND
&& GET_MODE (op) == DImode
&& GET_MODE (XEXP (op, 0)) == SImode
&& register_operand (XEXP (op, 0), SImode))
return 1;
return arith_operand (op, mode);
}
/* Like nonmemory_operand, but when in 64 bit mode also accept a sign
extend of a 32 bit register, since the value is known to be already
sign extended. */
int
se_nonmemory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (TARGET_64BIT
&& mode == DImode
&& GET_CODE (op) == SIGN_EXTEND
&& GET_MODE (op) == DImode
&& GET_MODE (XEXP (op, 0)) == SImode
&& register_operand (XEXP (op, 0), SImode))
return 1;
return nonmemory_operand (op, mode);
}
/* Like nonimmediate_operand, but when in 64 bit mode also accept a
sign extend of a 32 bit register, since the value is known to be
already sign extended. */
int
se_nonimmediate_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (TARGET_64BIT
&& mode == DImode
&& GET_CODE (op) == SIGN_EXTEND
&& GET_MODE (op) == DImode
&& GET_MODE (XEXP (op, 0)) == SImode
&& register_operand (XEXP (op, 0), SImode))
return 1;
return nonimmediate_operand (op, mode);
}
/* Return true if we split the address into high and low parts. */
/* ??? We should also handle reg+array somewhere. We get four
instructions currently, lui %hi/addui %lo/addui reg/lw. Better is
lui %hi/addui reg/lw %lo. Fixing GO_IF_LEGITIMATE_ADDRESS to accept
(plus (reg) (symbol_ref)) doesn't work because the SYMBOL_REF is broken
out of the address, then we have 4 instructions to combine. Perhaps
add a 3->2 define_split for combine. */
/* ??? We could also split a CONST_INT here if it is a large_int().
However, it doesn't seem to be very useful to have %hi(constant).
We would be better off by doing the masking ourselves and then putting
the explicit high part of the constant in the RTL. This will give better
optimization. Also, %hi(constant) needs assembler changes to work.
There is already a define_split that does this. */
int
mips_check_split (address, mode)
rtx address;
enum machine_mode mode;
{
/* ??? This is the same check used in simple_memory_operand.
We use it here because LO_SUM is not offsettable. */
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
return 0;
if ((GET_CODE (address) == SYMBOL_REF && ! SYMBOL_REF_FLAG (address))
|| (GET_CODE (address) == CONST
&& GET_CODE (XEXP (XEXP (address, 0), 0)) == SYMBOL_REF
&& ! SYMBOL_REF_FLAG (XEXP (XEXP (address, 0), 0)))
|| GET_CODE (address) == LABEL_REF)
return 1;
return 0;
}
/* Returns an operand string for the given instruction's delay slot,
after updating filled delay slot statistics.
We assume that operands[0] is the target register that is set.
In order to check the next insn, most of this functionality is moved
to FINAL_PRESCAN_INSN, and we just set the global variables that
it needs. */
/* ??? This function no longer does anything useful, because final_prescan_insn
now will never emit a nop. */
char *
mips_fill_delay_slot (ret, type, operands, cur_insn)
char *ret; /* normal string to return */
enum delay_type type; /* type of delay */
rtx operands[]; /* operands to use */
rtx cur_insn; /* current insn */
{
register rtx set_reg;
register enum machine_mode mode;
register rtx next_insn = (cur_insn) ? NEXT_INSN (cur_insn) : (rtx)0;
register int num_nops;
if (type == DELAY_LOAD || type == DELAY_FCMP)
num_nops = 1;
else if (type == DELAY_HILO)
num_nops = 2;
else
num_nops = 0;
/* Make sure that we don't put nop's after labels. */
next_insn = NEXT_INSN (cur_insn);
while (next_insn != (rtx)0 && GET_CODE (next_insn) == NOTE)
next_insn = NEXT_INSN (next_insn);
dslots_load_total += num_nops;
if (TARGET_DEBUG_F_MODE
|| !optimize
|| type == DELAY_NONE
|| operands == (rtx *)0
|| cur_insn == (rtx)0
|| next_insn == (rtx)0
|| GET_CODE (next_insn) == CODE_LABEL
|| (set_reg = operands[0]) == (rtx)0)
{
dslots_number_nops = 0;
mips_load_reg = (rtx)0;
mips_load_reg2 = (rtx)0;
mips_load_reg3 = (rtx)0;
mips_load_reg4 = (rtx)0;
return ret;
}
set_reg = operands[0];
if (set_reg == (rtx)0)
return ret;
while (GET_CODE (set_reg) == SUBREG)
set_reg = SUBREG_REG (set_reg);
mode = GET_MODE (set_reg);
dslots_number_nops = num_nops;
mips_load_reg = set_reg;
if (GET_MODE_SIZE (mode)
> (FP_REG_P (REGNO (set_reg)) ? UNITS_PER_FPREG : UNITS_PER_WORD))
mips_load_reg2 = gen_rtx (REG, SImode, REGNO (set_reg) + 1);
else
mips_load_reg2 = 0;
if (type == DELAY_HILO)
{
mips_load_reg3 = gen_rtx (REG, SImode, MD_REG_FIRST);
mips_load_reg4 = gen_rtx (REG, SImode, MD_REG_FIRST+1);
}
else
{
mips_load_reg3 = 0;
mips_load_reg4 = 0;
}
return ret;
}
/* Determine whether a memory reference takes one (based off of the GP pointer),
two (normal), or three (label + reg) instructions, and bump the appropriate
counter for -mstats. */
void
mips_count_memory_refs (op, num)
rtx op;
int num;
{
int additional = 0;
int n_words = 0;
rtx addr, plus0, plus1;
enum rtx_code code0, code1;
int looping;
if (TARGET_DEBUG_B_MODE)
{
fprintf (stderr, "\n========== mips_count_memory_refs:\n");
debug_rtx (op);
}
/* Skip MEM if passed, otherwise handle movsi of address. */
addr = (GET_CODE (op) != MEM) ? op : XEXP (op, 0);
/* Loop, going through the address RTL */
do
{
looping = FALSE;
switch (GET_CODE (addr))
{
default:
break;
case REG:
case CONST_INT:
case LO_SUM:
break;
case PLUS:
plus0 = XEXP (addr, 0);
plus1 = XEXP (addr, 1);
code0 = GET_CODE (plus0);
code1 = GET_CODE (plus1);
if (code0 == REG)
{
additional++;
addr = plus1;
looping = TRUE;
continue;
}
if (code0 == CONST_INT)
{
addr = plus1;
looping = TRUE;
continue;
}
if (code1 == REG)
{
additional++;
addr = plus0;
looping = TRUE;
continue;
}
if (code1 == CONST_INT)
{
addr = plus0;
looping = TRUE;
continue;
}
if (code0 == SYMBOL_REF || code0 == LABEL_REF || code0 == CONST)
{
addr = plus0;
looping = TRUE;
continue;
}
if (code1 == SYMBOL_REF || code1 == LABEL_REF || code1 == CONST)
{
addr = plus1;
looping = TRUE;
continue;
}
break;
case LABEL_REF:
n_words = 2; /* always 2 words */
break;
case CONST:
addr = XEXP (addr, 0);
looping = TRUE;
continue;
case SYMBOL_REF:
n_words = SYMBOL_REF_FLAG (addr) ? 1 : 2;
break;
}
}
while (looping);
if (n_words == 0)
return;
n_words += additional;
if (n_words > 3)
n_words = 3;
num_refs[n_words-1] += num;
}
/* Return RTL for the offset from the current function to the
argument. */
rtx
embedded_pic_offset (x)
rtx x;
{
if (embedded_pic_fnaddr_rtx == NULL)
{
rtx seq;
embedded_pic_fnaddr_rtx = gen_reg_rtx (Pmode);
/* Output code at function start to initialize the pseudo-reg. */
/* ??? We used to do this in FINALIZE_PIC, but that does not work for
inline functions, because it is called after RTL for the function
has been copied. The pseudo-reg in embedded_pic_fnaddr_rtx however
does not get copied, and ends up not matching the rest of the RTL.
This solution works, but means that we get unnecessary code to
initialize this value every time a function is inlined into another
function. */
start_sequence ();
emit_insn (gen_get_fnaddr (embedded_pic_fnaddr_rtx,
XEXP (DECL_RTL (current_function_decl), 0)));
seq = gen_sequence ();
end_sequence ();
push_topmost_sequence ();
emit_insn_after (seq, get_insns ());
pop_topmost_sequence ();
}
return gen_rtx (CONST, Pmode,
gen_rtx (MINUS, Pmode, x,
XEXP (DECL_RTL (current_function_decl), 0)));
}
/* Return the appropriate instructions to move one operand to another. */
char *
mips_move_1word (operands, insn, unsignedp)
rtx operands[];
rtx insn;
int unsignedp;
{
char *ret = 0;
rtx op0 = operands[0];
rtx op1 = operands[1];
enum rtx_code code0 = GET_CODE (op0);
enum rtx_code code1 = GET_CODE (op1);
enum machine_mode mode = GET_MODE (op0);
int subreg_word0 = 0;
int subreg_word1 = 0;
enum delay_type delay = DELAY_NONE;
while (code0 == SUBREG)
{
subreg_word0 += SUBREG_WORD (op0);
op0 = SUBREG_REG (op0);
code0 = GET_CODE (op0);
}
while (code1 == SUBREG)
{
subreg_word1 += SUBREG_WORD (op1);
op1 = SUBREG_REG (op1);
code1 = GET_CODE (op1);
}
/* For our purposes, a condition code mode is the same as SImode. */
if (mode == CCmode)
mode = SImode;
if (code0 == REG)
{
int regno0 = REGNO (op0) + subreg_word0;
if (code1 == REG)
{
int regno1 = REGNO (op1) + subreg_word1;
/* Just in case, don't do anything for assigning a register
to itself, unless we are filling a delay slot. */
if (regno0 == regno1 && set_nomacro == 0)
ret = "";
else if (GP_REG_P (regno0))
{
if (GP_REG_P (regno1))
ret = "move\t%0,%1";
else if (MD_REG_P (regno1))
{
delay = DELAY_HILO;
if (regno1 != HILO_REGNUM)
ret = "mf%1\t%0";
else
ret = "mflo\t%0";
}
else if (ST_REG_P (regno1) && mips_isa >= 4)
ret = "li\t%0,1\n\tmovf\t%0,%.,%1";
else
{
delay = DELAY_LOAD;
if (FP_REG_P (regno1))
ret = "mfc1\t%0,%1";
else if (regno1 == FPSW_REGNUM && mips_isa < 4)
ret = "cfc1\t%0,$31";
}
}
else if (FP_REG_P (regno0))
{
if (GP_REG_P (regno1))
{
delay = DELAY_LOAD;
ret = "mtc1\t%1,%0";
}
if (FP_REG_P (regno1))
ret = "mov.s\t%0,%1";
}
else if (MD_REG_P (regno0))
{
if (GP_REG_P (regno1))
{
delay = DELAY_HILO;
if (regno0 != HILO_REGNUM)
ret = "mt%0\t%1";
}
}
else if (regno0 == FPSW_REGNUM && mips_isa < 4)
{
if (GP_REG_P (regno1))
{
delay = DELAY_LOAD;
ret = "ctc1\t%0,$31";
}
}
}
else if (code1 == MEM)
{
delay = DELAY_LOAD;
if (TARGET_STATS)
mips_count_memory_refs (op1, 1);
if (GP_REG_P (regno0))
{
/* For loads, use the mode of the memory item, instead of the
target, so zero/sign extend can use this code as well. */
switch (GET_MODE (op1))
{
default:
break;
case SFmode:
ret = "lw\t%0,%1";
break;
case SImode:
case CCmode:
ret = ((unsignedp && TARGET_64BIT)
? "lwu\t%0,%1"
: "lw\t%0,%1");
break;
case HImode:
ret = (unsignedp) ? "lhu\t%0,%1" : "lh\t%0,%1";
break;
case QImode:
ret = (unsignedp) ? "lbu\t%0,%1" : "lb\t%0,%1";
break;
}
}
else if (FP_REG_P (regno0) && (mode == SImode || mode == SFmode))
ret = "l.s\t%0,%1";
if (ret != (char *)0 && MEM_VOLATILE_P (op1))
{
int i = strlen (ret);
if (i > sizeof (volatile_buffer) - sizeof ("%{%}"))
abort ();
sprintf (volatile_buffer, "%%{%s%%}", ret);
ret = volatile_buffer;
}
}
else if (code1 == CONST_INT
|| (code1 == CONST_DOUBLE
&& GET_MODE (op1) == VOIDmode))
{
if (code1 == CONST_DOUBLE)
{
/* This can happen when storing constants into long long
bitfields. Just store the least significant word of
the value. */
operands[1] = op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
}
if (INTVAL (op1) == 0)
{
if (GP_REG_P (regno0))
ret = "move\t%0,%z1";
else if (FP_REG_P (regno0))
{
delay = DELAY_LOAD;
ret = "mtc1\t%z1,%0";
}
else if (MD_REG_P (regno0))
{
delay = DELAY_HILO;
ret = "mt%0\t%.";
}
}
else if (GP_REG_P (regno0))
/* Don't use X format, because that will give out of range
numbers for 64 bit host and 32 bit target. */
ret = "li\t%0,%1\t\t\t# %X1";
}
else if (code1 == CONST_DOUBLE && mode == SFmode)
{
if (op1 == CONST0_RTX (SFmode))
{
if (GP_REG_P (regno0))
ret = "move\t%0,%.";
else if (FP_REG_P (regno0))
{
delay = DELAY_LOAD;
ret = "mtc1\t%.,%0";
}
}
else
{
delay = DELAY_LOAD;
ret = "li.s\t%0,%1";
}
}
else if (code1 == LABEL_REF)
{
if (TARGET_STATS)
mips_count_memory_refs (op1, 1);
ret = "la\t%0,%a1";
}
else if (code1 == SYMBOL_REF || code1 == CONST)
{
if (HALF_PIC_P () && CONSTANT_P (op1) && HALF_PIC_ADDRESS_P (op1))
{
rtx offset = const0_rtx;
if (GET_CODE (op1) == CONST)
op1 = eliminate_constant_term (XEXP (op1, 0), &offset);
if (GET_CODE (op1) == SYMBOL_REF)
{
operands[2] = HALF_PIC_PTR (op1);
if (TARGET_STATS)
mips_count_memory_refs (operands[2], 1);
if (INTVAL (offset) == 0)
{
delay = DELAY_LOAD;
ret = (unsignedp && TARGET_64BIT
? "lwu\t%0,%2"
: "lw\t%0,%2");
}
else
{
dslots_load_total++;
operands[3] = offset;
if (unsignedp && TARGET_64BIT)
ret = (SMALL_INT (offset))
? "lwu\t%0,%2%#\n\tadd\t%0,%0,%3"
: "lwu\t%0,%2%#\n\t%[li\t%@,%3\n\tadd\t%0,%0,%@%]";
else
ret = (SMALL_INT (offset))
? "lw\t%0,%2%#\n\tadd\t%0,%0,%3"
: "lw\t%0,%2%#\n\t%[li\t%@,%3\n\tadd\t%0,%0,%@%]";
}
}
}
else
{
if (TARGET_STATS)
mips_count_memory_refs (op1, 1);
ret = "la\t%0,%a1";
}
}
else if (code1 == PLUS)
{
rtx add_op0 = XEXP (op1, 0);
rtx add_op1 = XEXP (op1, 1);
if (GET_CODE (XEXP (op1, 1)) == REG && GET_CODE (XEXP (op1, 0)) == CONST_INT)
{
add_op0 = XEXP (op1, 1); /* reverse operands */
add_op1 = XEXP (op1, 0);
}
operands[2] = add_op0;
operands[3] = add_op1;
ret = "add%:\t%0,%2,%3";
}
else if (code1 == HIGH)
{
operands[1] = XEXP (op1, 0);
ret = "lui\t%0,%%hi(%1)";
}
}
else if (code0 == MEM)
{
if (TARGET_STATS)
mips_count_memory_refs (op0, 1);
if (code1 == REG)
{
int regno1 = REGNO (op1) + subreg_word1;
if (GP_REG_P (regno1))
{
switch (mode)
{
default: break;
case SFmode: ret = "sw\t%1,%0"; break;
case SImode: ret = "sw\t%1,%0"; break;
case HImode: ret = "sh\t%1,%0"; break;
case QImode: ret = "sb\t%1,%0"; break;
}
}
else if (FP_REG_P (regno1) && (mode == SImode || mode == SFmode))
ret = "s.s\t%1,%0";
}
else if (code1 == CONST_INT && INTVAL (op1) == 0)
{
switch (mode)
{
default: break;
case SFmode: ret = "sw\t%z1,%0"; break;
case SImode: ret = "sw\t%z1,%0"; break;
case HImode: ret = "sh\t%z1,%0"; break;
case QImode: ret = "sb\t%z1,%0"; break;
}
}
else if (code1 == CONST_DOUBLE && op1 == CONST0_RTX (mode))
{
switch (mode)
{
default: break;
case SFmode: ret = "sw\t%.,%0"; break;
case SImode: ret = "sw\t%.,%0"; break;
case HImode: ret = "sh\t%.,%0"; break;
case QImode: ret = "sb\t%.,%0"; break;
}
}
if (ret != (char *)0 && MEM_VOLATILE_P (op0))
{
int i = strlen (ret);
if (i > sizeof (volatile_buffer) - sizeof ("%{%}"))
abort ();
sprintf (volatile_buffer, "%%{%s%%}", ret);
ret = volatile_buffer;
}
}
if (ret == (char *)0)
{
abort_with_insn (insn, "Bad move");
return 0;
}
if (delay != DELAY_NONE)
return mips_fill_delay_slot (ret, delay, operands, insn);
return ret;
}
/* Return the appropriate instructions to move 2 words */
char *
mips_move_2words (operands, insn)
rtx operands[];
rtx insn;
{
char *ret = 0;
rtx op0 = operands[0];
rtx op1 = operands[1];
enum rtx_code code0 = GET_CODE (operands[0]);
enum rtx_code code1 = GET_CODE (operands[1]);
int subreg_word0 = 0;
int subreg_word1 = 0;
enum delay_type delay = DELAY_NONE;
while (code0 == SUBREG)
{
subreg_word0 += SUBREG_WORD (op0);
op0 = SUBREG_REG (op0);
code0 = GET_CODE (op0);
}
if (code1 == SIGN_EXTEND)
{
op1 = XEXP (op1, 0);
code1 = GET_CODE (op1);
}
while (code1 == SUBREG)
{
subreg_word1 += SUBREG_WORD (op1);
op1 = SUBREG_REG (op1);
code1 = GET_CODE (op1);
}
/* Sanity check. */
if (GET_CODE (operands[1]) == SIGN_EXTEND
&& code1 != REG
&& code1 != CONST_INT
/* The following three can happen as the result of a questionable
cast. */
&& code1 != LABEL_REF
&& code1 != SYMBOL_REF
&& code1 != CONST)
abort ();
if (code0 == REG)
{
int regno0 = REGNO (op0) + subreg_word0;
if (code1 == REG)
{
int regno1 = REGNO (op1) + subreg_word1;
/* Just in case, don't do anything for assigning a register
to itself, unless we are filling a delay slot. */
if (regno0 == regno1 && set_nomacro == 0)
ret = "";
else if (FP_REG_P (regno0))
{
if (FP_REG_P (regno1))
ret = "mov.d\t%0,%1";
else
{
delay = DELAY_LOAD;
if (TARGET_FLOAT64)
{
if (!TARGET_64BIT)
abort_with_insn (insn, "Bad move");
#ifdef TARGET_FP_CALL_32
if (FP_CALL_GP_REG_P (regno1))
ret = "dsll\t%1,32\n\tor\t%1,%D1\n\tdmtc1\t%1,%0";
else
#endif
ret = "dmtc1\t%1,%0";
}
else
ret = "mtc1\t%L1,%0\n\tmtc1\t%M1,%D0";
}
}
else if (FP_REG_P (regno1))
{
delay = DELAY_LOAD;
if (TARGET_FLOAT64)
{
if (!TARGET_64BIT)
abort_with_insn (insn, "Bad move");
#ifdef TARGET_FP_CALL_32
if (FP_CALL_GP_REG_P (regno0))
ret = "dmfc1\t%0,%1\n\tmfc1\t%D0,%1\n\tdsrl\t%0,32";
else
#endif
ret = "dmfc1\t%0,%1";
}
else
ret = "mfc1\t%L0,%1\n\tmfc1\t%M0,%D1";
}
else if (MD_REG_P (regno0) && GP_REG_P (regno1))
{
delay = DELAY_HILO;
if (TARGET_64BIT)
{
if (regno0 != HILO_REGNUM)
ret = "mt%0\t%1";
else if (regno1 == 0)
ret = "mtlo\t%.\n\tmthi\t%.";
}
else
ret = "mthi\t%M1\n\tmtlo\t%L1";
}
else if (GP_REG_P (regno0) && MD_REG_P (regno1))
{
delay = DELAY_HILO;
if (TARGET_64BIT)
{
if (regno1 != HILO_REGNUM)
ret = "mf%1\t%0";
}
else
ret = "mfhi\t%M0\n\tmflo\t%L0";
}
else if (TARGET_64BIT)
ret = "move\t%0,%1";
else if (regno0 != (regno1+1))
ret = "move\t%0,%1\n\tmove\t%D0,%D1";
else
ret = "move\t%D0,%D1\n\tmove\t%0,%1";
}
else if (code1 == CONST_DOUBLE)
{
/* Move zero from $0 unless !TARGET_64BIT and recipient
is 64-bit fp reg, in which case generate a constant. */
if (op1 != CONST0_RTX (GET_MODE (op1))
|| (TARGET_FLOAT64 && !TARGET_64BIT && FP_REG_P (regno0)))
{
if (GET_MODE (op1) == DFmode)
{
delay = DELAY_LOAD;
#ifdef TARGET_FP_CALL_32
if (FP_CALL_GP_REG_P (regno0))
{
if (TARGET_FLOAT64 && !TARGET_64BIT)
{
split_double (op1, operands + 2, operands + 3);
ret = "li\t%0,%2\n\tli\t%D0,%3";
}
else
ret = "li.d\t%0,%1\n\tdsll\t%D0,%0,32\n\tdsrl\t%D0,32\n\tdsrl\t%0,32";
}
else
#endif
ret = "li.d\t%0,%1";
}
else if (TARGET_64BIT)
ret = "dli\t%0,%1";
else
{
split_double (op1, operands + 2, operands + 3);
ret = "li\t%0,%2\n\tli\t%D0,%3";
}
}
else
{
if (GP_REG_P (regno0))
ret = (TARGET_64BIT
#ifdef TARGET_FP_CALL_32
&& ! FP_CALL_GP_REG_P (regno0)
#endif
)
? "move\t%0,%."
: "move\t%0,%.\n\tmove\t%D0,%.";
else if (FP_REG_P (regno0))
{
delay = DELAY_LOAD;
ret = (TARGET_64BIT)
? "dmtc1\t%.,%0"
: "mtc1\t%.,%0\n\tmtc1\t%.,%D0";
}
}
}
else if (code1 == CONST_INT && INTVAL (op1) == 0)
{
if (GP_REG_P (regno0))
ret = (TARGET_64BIT)
? "move\t%0,%."
: "move\t%0,%.\n\tmove\t%D0,%.";
else if (FP_REG_P (regno0))
{
delay = DELAY_LOAD;
ret = (TARGET_64BIT)
? "dmtc1\t%.,%0"
: (TARGET_FLOAT64
? "li.d\t%0,%1"
: "mtc1\t%.,%0\n\tmtc1\t%.,%D0");
}
else if (MD_REG_P (regno0))
{
delay = DELAY_HILO;
if (regno0 != HILO_REGNUM)
ret = "mt%0\t%.\n";
else
ret = "mtlo\t%.\n\tmthi\t%.";
}
}
else if (code1 == CONST_INT && GET_MODE (op0) == DImode && GP_REG_P (regno0))
{
if (TARGET_64BIT)
{
if (GET_CODE (operands[1]) == SIGN_EXTEND)
ret = "li\t%0,%1\t\t# %X1";
else if (HOST_BITS_PER_WIDE_INT < 64)
/* We can't use 'X' for negative numbers, because then we won't
get the right value for the upper 32 bits. */
ret = ((INTVAL (op1) < 0) ? "dli\t%0,%1\t\t\t# %X1"
: "dli\t%0,%X1\t\t# %1");
else
/* We must use 'X', because otherwise LONG_MIN will print as
a number that the assembler won't accept. */
ret = "dli\t%0,%X1\t\t# %1";
}
else if (HOST_BITS_PER_WIDE_INT < 64)
{
operands[2] = GEN_INT (INTVAL (operands[1]) >= 0 ? 0 : -1);
ret = "li\t%M0,%2\n\tli\t%L0,%1";
}
else
{
/* We use multiple shifts here, to avoid warnings about out
of range shifts on 32 bit hosts. */
operands[2] = GEN_INT (INTVAL (operands[1]) >> 16 >> 16);
operands[1] = GEN_INT (INTVAL (operands[1]) << 16 << 16 >> 16 >> 16);
ret = "li\t%M0,%2\n\tli\t%L0,%1";
}
}
else if (code1 == MEM)
{
delay = DELAY_LOAD;
if (TARGET_STATS)
mips_count_memory_refs (op1, 2);
if (FP_REG_P (regno0))
ret = "l.d\t%0,%1";
else if (TARGET_64BIT)
{
#ifdef TARGET_FP_CALL_32
if (FP_CALL_GP_REG_P (regno0))
{
if (offsettable_address_p (FALSE, SImode, op1))
ret = "lwu\t%0,%1\n\tlwu\t%D0,4+%1";
else
ret = "ld\t%0,%1\n\tdsll\t%D0,%0,32\n\tdsrl\t%D0,32\n\tdsrl\t%0,32";
}
else
#endif
ret = "ld\t%0,%1";
}
else if (offsettable_address_p (1, DFmode, XEXP (op1, 0)))
{
operands[2] = adj_offsettable_operand (op1, 4);
if (reg_mentioned_p (op0, op1))
ret = "lw\t%D0,%2\n\tlw\t%0,%1";
else
ret = "lw\t%0,%1\n\tlw\t%D0,%2";
}
if (ret != (char *)0 && MEM_VOLATILE_P (op1))
{
int i = strlen (ret);
if (i > sizeof (volatile_buffer) - sizeof ("%{%}"))
abort ();
sprintf (volatile_buffer, "%%{%s%%}", ret);
ret = volatile_buffer;
}
}
else if (code1 == LABEL_REF
|| code1 == SYMBOL_REF
|| code1 == CONST)
{
if (TARGET_STATS)
mips_count_memory_refs (op1, 2);
if (GET_CODE (operands[1]) == SIGN_EXTEND)
/* We deliberately remove the 'a' from '%1', so that we don't
have to add SIGN_EXTEND support to print_operand_address.
print_operand will just call print_operand_address in this
case, so there is no problem. */
ret = "la\t%0,%1";
else
ret = "dla\t%0,%a1";
}
}
else if (code0 == MEM)
{
if (code1 == REG)
{
int regno1 = REGNO (op1) + subreg_word1;
if (FP_REG_P (regno1))
ret = "s.d\t%1,%0";
else if (TARGET_64BIT)
{
#ifdef TARGET_FP_CALL_32
if (FP_CALL_GP_REG_P (regno1))
ret = "dsll\t%1,32\n\tor\t%1,%D1\n\tsd\t%1,%0";
else
#endif
ret = "sd\t%1,%0";
}
else if (offsettable_address_p (1, DFmode, XEXP (op0, 0)))
{
operands[2] = adj_offsettable_operand (op0, 4);
ret = "sw\t%1,%0\n\tsw\t%D1,%2";
}
}
else if (((code1 == CONST_INT && INTVAL (op1) == 0)
|| (code1 == CONST_DOUBLE
&& op1 == CONST0_RTX (GET_MODE (op1))))
&& (TARGET_64BIT
|| offsettable_address_p (1, DFmode, XEXP (op0, 0))))
{
if (TARGET_64BIT)
ret = "sd\t%.,%0";
else
{
operands[2] = adj_offsettable_operand (op0, 4);
ret = "sw\t%.,%0\n\tsw\t%.,%2";
}
}
if (TARGET_STATS)
mips_count_memory_refs (op0, 2);
if (ret != (char *)0 && MEM_VOLATILE_P (op0))
{
int i = strlen (ret);
if (i > sizeof (volatile_buffer) - sizeof ("%{%}"))
abort ();
sprintf (volatile_buffer, "%%{%s%%}", ret);
ret = volatile_buffer;
}
}
if (ret == (char *)0)
{
abort_with_insn (insn, "Bad move");
return 0;
}
if (delay != DELAY_NONE)
return mips_fill_delay_slot (ret, delay, operands, insn);
return ret;
}
/* Provide the costs of an addressing mode that contains ADDR.
If ADDR is not a valid address, its cost is irrelevant. */
int
mips_address_cost (addr)
rtx addr;
{
switch (GET_CODE (addr))
{
default:
break;
case LO_SUM:
return 1;
case LABEL_REF:
return 2;
case CONST:
{
rtx offset = const0_rtx;
addr = eliminate_constant_term (XEXP (addr, 0), &offset);
if (GET_CODE (addr) == LABEL_REF)
return 2;
if (GET_CODE (addr) != SYMBOL_REF)
return 4;
if (! SMALL_INT (offset))
return 2;
}
/* fall through */
case SYMBOL_REF:
return SYMBOL_REF_FLAG (addr) ? 1 : 2;
case PLUS:
{
register rtx plus0 = XEXP (addr, 0);
register rtx plus1 = XEXP (addr, 1);
if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG)
{
plus0 = XEXP (addr, 1);
plus1 = XEXP (addr, 0);
}
if (GET_CODE (plus0) != REG)
break;
switch (GET_CODE (plus1))
{
default:
break;
case CONST_INT:
return (SMALL_INT (plus1) ? 1 : 2);
case CONST:
case SYMBOL_REF:
case LABEL_REF:
case HIGH:
case LO_SUM:
return mips_address_cost (plus1) + 1;
}
}
}
return 4;
}
/* Return true if X is an address which needs a temporary register when
reloaded while generating PIC code. */
int
pic_address_needs_scratch (x)
rtx x;
{
/* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */
if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& ! SMALL_INT (XEXP (XEXP (x, 0), 1)))
return 1;
return 0;
}
/* Make normal rtx_code into something we can index from an array */
static enum internal_test
map_test_to_internal_test (test_code)
enum rtx_code test_code;
{
enum internal_test test = ITEST_MAX;
switch (test_code)
{
default: break;
case EQ: test = ITEST_EQ; break;
case NE: test = ITEST_NE; break;
case GT: test = ITEST_GT; break;
case GE: test = ITEST_GE; break;
case LT: test = ITEST_LT; break;
case LE: test = ITEST_LE; break;
case GTU: test = ITEST_GTU; break;
case GEU: test = ITEST_GEU; break;
case LTU: test = ITEST_LTU; break;
case LEU: test = ITEST_LEU; break;
}
return test;
}
/* Generate the code to compare two integer values. The return value is:
(reg:SI xx) The pseudo register the comparison is in
(rtx)0 No register, generate a simple branch.
??? This is called with result nonzero by the Scond patterns in
mips.md. These patterns are called with a target in the mode of
the Scond instruction pattern. Since this must be a constant, we
must use SImode. This means that if RESULT is non-zero, it will
always be an SImode register, even if TARGET_64BIT is true. We
cope with this by calling convert_move rather than emit_move_insn.
This will sometimes lead to an unnecessary extension of the result;
for example:
long long
foo (long long i)
{
return i < 5;
}
*/
rtx
gen_int_relational (test_code, result, cmp0, cmp1, p_invert)
enum rtx_code test_code; /* relational test (EQ, etc) */
rtx result; /* result to store comp. or 0 if branch */
rtx cmp0; /* first operand to compare */
rtx cmp1; /* second operand to compare */
int *p_invert; /* NULL or ptr to hold whether branch needs */
/* to reverse its test */
{
struct cmp_info {
enum rtx_code test_code; /* code to use in instruction (LT vs. LTU) */
int const_low; /* low bound of constant we can accept */
int const_high; /* high bound of constant we can accept */
int const_add; /* constant to add (convert LE -> LT) */
int reverse_regs; /* reverse registers in test */
int invert_const; /* != 0 if invert value if cmp1 is constant */
int invert_reg; /* != 0 if invert value if cmp1 is register */
int unsignedp; /* != 0 for unsigned comparisons. */
};
static struct cmp_info info[ (int)ITEST_MAX ] = {
{ XOR, 0, 65535, 0, 0, 0, 0, 0 }, /* EQ */
{ XOR, 0, 65535, 0, 0, 1, 1, 0 }, /* NE */
{ LT, -32769, 32766, 1, 1, 1, 0, 0 }, /* GT */
{ LT, -32768, 32767, 0, 0, 1, 1, 0 }, /* GE */
{ LT, -32768, 32767, 0, 0, 0, 0, 0 }, /* LT */
{ LT, -32769, 32766, 1, 1, 0, 1, 0 }, /* LE */
{ LTU, -32769, 32766, 1, 1, 1, 0, 1 }, /* GTU */
{ LTU, -32768, 32767, 0, 0, 1, 1, 1 }, /* GEU */
{ LTU, -32768, 32767, 0, 0, 0, 0, 1 }, /* LTU */
{ LTU, -32769, 32766, 1, 1, 0, 1, 1 }, /* LEU */
};
enum internal_test test;
enum machine_mode mode;
struct cmp_info *p_info;
int branch_p;
int eqne_p;
int invert;
rtx reg;
rtx reg2;
test = map_test_to_internal_test (test_code);
if (test == ITEST_MAX)
abort ();
p_info = &info[ (int)test ];
eqne_p = (p_info->test_code == XOR);
mode = GET_MODE (cmp0);
if (mode == VOIDmode)
mode = GET_MODE (cmp1);
/* Eliminate simple branches */
branch_p = (result == (rtx)0);
if (branch_p)
{
if (GET_CODE (cmp0) == REG || GET_CODE (cmp0) == SUBREG)
{
/* Comparisons against zero are simple branches */
if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0)
return (rtx)0;
/* Test for beq/bne. */
if (eqne_p)
return (rtx)0;
}
/* allocate a pseudo to calculate the value in. */
result = gen_reg_rtx (mode);
}
/* Make sure we can handle any constants given to us. */
if (GET_CODE (cmp0) == CONST_INT)
cmp0 = force_reg (mode, cmp0);
if (GET_CODE (cmp1) == CONST_INT)
{
HOST_WIDE_INT value = INTVAL (cmp1);
if (value < p_info->const_low
|| value > p_info->const_high
/* ??? Why? And why wasn't the similar code below modified too? */
|| (TARGET_64BIT
&& HOST_BITS_PER_WIDE_INT < 64
&& p_info->const_add != 0
&& ((p_info->unsignedp
? ((unsigned HOST_WIDE_INT) (value + p_info->const_add)
> INTVAL (cmp1))
: (value + p_info->const_add) > INTVAL (cmp1))
!= (p_info->const_add > 0))))
cmp1 = force_reg (mode, cmp1);
}
/* See if we need to invert the result. */
invert = (GET_CODE (cmp1) == CONST_INT)
? p_info->invert_const
: p_info->invert_reg;
if (p_invert != (int *)0)
{
*p_invert = invert;
invert = FALSE;
}
/* Comparison to constants, may involve adding 1 to change a LT into LE.
Comparison between two registers, may involve switching operands. */
if (GET_CODE (cmp1) == CONST_INT)
{
if (p_info->const_add != 0)
{
HOST_WIDE_INT new = INTVAL (cmp1) + p_info->const_add;
/* If modification of cmp1 caused overflow,
we would get the wrong answer if we follow the usual path;
thus, x > 0xffffffffU would turn into x > 0U. */
if ((p_info->unsignedp
? (unsigned HOST_WIDE_INT) new > INTVAL (cmp1)
: new > INTVAL (cmp1))
!= (p_info->const_add > 0))
{
/* This test is always true, but if INVERT is true then
the result of the test needs to be inverted so 0 should
be returned instead. */
emit_move_insn (result, invert ? const0_rtx : const_true_rtx);
return result;
}
else
cmp1 = GEN_INT (new);
}
}
else if (p_info->reverse_regs)
{
rtx temp = cmp0;
cmp0 = cmp1;
cmp1 = temp;
}
if (test == ITEST_NE && GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0)
reg = cmp0;
else
{
reg = (invert || eqne_p) ? gen_reg_rtx (mode) : result;
convert_move (reg, gen_rtx (p_info->test_code, mode, cmp0, cmp1), 0);
}
if (test == ITEST_NE)
{
convert_move (result, gen_rtx (GTU, mode, reg, const0_rtx), 0);
invert = FALSE;
}
else if (test == ITEST_EQ)
{
reg2 = (invert) ? gen_reg_rtx (mode) : result;
convert_move (reg2, gen_rtx (LTU, mode, reg, const1_rtx), 0);
reg = reg2;
}
if (invert)
convert_move (result, gen_rtx (XOR, mode, reg, const1_rtx), 0);
return result;
}
/* Emit the common code for doing conditional branches.
operand[0] is the label to jump to.
The comparison operands are saved away by cmp{si,di,sf,df}. */
void
gen_conditional_branch (operands, test_code)
rtx operands[];
enum rtx_code test_code;
{
enum cmp_type type = branch_type;
rtx cmp0 = branch_cmp[0];
rtx cmp1 = branch_cmp[1];
enum machine_mode mode;
rtx reg;
int invert;
rtx label1, label2;
switch (type)
{
default:
abort_with_insn (gen_rtx (test_code, VOIDmode, cmp0, cmp1), "bad test");
case CMP_SI:
case CMP_DI:
mode = type == CMP_SI ? SImode : DImode;
invert = FALSE;
reg = gen_int_relational (test_code, NULL_RTX, cmp0, cmp1, &invert);
if (reg)
{
cmp0 = reg;
cmp1 = const0_rtx;
test_code = NE;
}
else if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) != 0)
{
/* We don't want to build a comparison against a non-zero
constant. */
cmp1 = force_reg (mode, cmp1);
}
break;
case CMP_SF:
case CMP_DF:
if (mips_isa < 4)
reg = gen_rtx (REG, CCmode, FPSW_REGNUM);
else
reg = gen_reg_rtx (CCmode);
/* For cmp0 != cmp1, build cmp0 == cmp1, and test for result ==
0 in the instruction built below. The MIPS FPU handles
inequality testing by testing for equality and looking for a
false result. */
emit_insn (gen_rtx (SET, VOIDmode,
reg,
gen_rtx (test_code == NE ? EQ : test_code,
CCmode, cmp0, cmp1)));
test_code = test_code == NE ? EQ : NE;
mode = CCmode;
cmp0 = reg;
cmp1 = const0_rtx;
invert = FALSE;
break;
}
/* Generate the branch. */
label1 = gen_rtx (LABEL_REF, VOIDmode, operands[0]);
label2 = pc_rtx;
if (invert)
{
label2 = label1;
label1 = pc_rtx;
}
emit_jump_insn (gen_rtx (SET, VOIDmode,
pc_rtx,
gen_rtx (IF_THEN_ELSE, VOIDmode,
gen_rtx (test_code, mode, cmp0, cmp1),
label1,
label2)));
}
/* Emit the common code for conditional moves. OPERANDS is the array
of operands passed to the conditional move defined_expand. */
void
gen_conditional_move (operands)
rtx *operands;
{
rtx op0 = branch_cmp[0];
rtx op1 = branch_cmp[1];
enum machine_mode mode = GET_MODE (branch_cmp[0]);
enum rtx_code cmp_code = GET_CODE (operands[1]);
enum rtx_code move_code = NE;
enum machine_mode op_mode = GET_MODE (operands[0]);
enum machine_mode cmp_mode;
rtx cmp_reg;
if (GET_MODE_CLASS (mode) != MODE_FLOAT)
{
switch (cmp_code)
{
case EQ:
cmp_code = XOR;
move_code = EQ;
break;
case NE:
cmp_code = XOR;
break;
case LT:
break;
case GE:
cmp_code = LT;
move_code = EQ;
break;
case GT:
cmp_code = LT;
op0 = force_reg (mode, branch_cmp[1]);
op1 = branch_cmp[0];
break;
case LE:
cmp_code = LT;
op0 = force_reg (mode, branch_cmp[1]);
op1 = branch_cmp[0];
move_code = EQ;
break;
case LTU:
break;
case GEU:
cmp_code = LTU;
move_code = EQ;
break;
case GTU:
cmp_code = LTU;
op0 = force_reg (mode, branch_cmp[1]);
op1 = branch_cmp[0];
break;
case LEU:
cmp_code = LTU;
op0 = force_reg (mode, branch_cmp[1]);
op1 = branch_cmp[0];
move_code = EQ;
break;
default:
abort ();
}
}
else
{
if (cmp_code == NE)
{
cmp_code = EQ;
move_code = EQ;
}
}
if (mode == SImode || mode == DImode)
cmp_mode = mode;
else if (mode == SFmode || mode == DFmode)
cmp_mode = CCmode;
else
abort ();
cmp_reg = gen_reg_rtx (cmp_mode);
emit_insn (gen_rtx (SET, cmp_mode,
cmp_reg,
gen_rtx (cmp_code, cmp_mode, op0, op1)));
emit_insn (gen_rtx (SET, op_mode,
operands[0],
gen_rtx (IF_THEN_ELSE, op_mode,
gen_rtx (move_code, VOIDmode,
cmp_reg,
CONST0_RTX (SImode)),
operands[2],
operands[3])));
}
/* Write a loop to move a constant number of bytes. Generate load/stores as follows:
do {
temp1 = src[0];
temp2 = src[1];
...
temp<last> = src[MAX_MOVE_REGS-1];
dest[0] = temp1;
dest[1] = temp2;
...
dest[MAX_MOVE_REGS-1] = temp<last>;
src += MAX_MOVE_REGS;
dest += MAX_MOVE_REGS;
} while (src != final);
This way, no NOP's are needed, and only MAX_MOVE_REGS+3 temp
registers are needed.
Aligned moves move MAX_MOVE_REGS*4 bytes every (2*MAX_MOVE_REGS)+3
cycles, unaligned moves move MAX_MOVE_REGS*4 bytes every
(4*MAX_MOVE_REGS)+3 cycles, assuming no cache misses. */
#define MAX_MOVE_REGS 4
#define MAX_MOVE_BYTES (MAX_MOVE_REGS * UNITS_PER_WORD)
static void
block_move_loop (dest_reg, src_reg, bytes, align, orig_dest, orig_src)
rtx dest_reg; /* register holding destination address */
rtx src_reg; /* register holding source address */
int bytes; /* # bytes to move */
int align; /* alignment */
rtx orig_dest; /* original dest for change_address */
rtx orig_src; /* original source for making a reg note */
{
rtx dest_mem = change_address (orig_dest, BLKmode, dest_reg);
rtx src_mem = change_address (orig_src, BLKmode, src_reg);
rtx align_rtx = GEN_INT (align);
rtx label;
rtx final_src;
rtx bytes_rtx;
int leftover;
if (bytes < 2*MAX_MOVE_BYTES)
abort ();
leftover = bytes % MAX_MOVE_BYTES;
bytes -= leftover;
label = gen_label_rtx ();
final_src = gen_reg_rtx (Pmode);
bytes_rtx = GEN_INT (bytes);
if (bytes > 0x7fff)
{
if (TARGET_LONG64)
{
emit_insn (gen_movdi (final_src, bytes_rtx));
emit_insn (gen_adddi3 (final_src, final_src, src_reg));
}
else
{
emit_insn (gen_movsi (final_src, bytes_rtx));
emit_insn (gen_addsi3 (final_src, final_src, src_reg));
}
}
else
{
if (TARGET_LONG64)
emit_insn (gen_adddi3 (final_src, src_reg, bytes_rtx));
else
emit_insn (gen_addsi3 (final_src, src_reg, bytes_rtx));
}
emit_label (label);
bytes_rtx = GEN_INT (MAX_MOVE_BYTES);
emit_insn (gen_movstrsi_internal (dest_mem, src_mem, bytes_rtx, align_rtx));
if (TARGET_LONG64)
{
emit_insn (gen_adddi3 (src_reg, src_reg, bytes_rtx));
emit_insn (gen_adddi3 (dest_reg, dest_reg, bytes_rtx));
emit_insn (gen_cmpdi (src_reg, final_src));
}
else
{
emit_insn (gen_addsi3 (src_reg, src_reg, bytes_rtx));
emit_insn (gen_addsi3 (dest_reg, dest_reg, bytes_rtx));
emit_insn (gen_cmpsi (src_reg, final_src));
}
emit_jump_insn (gen_bne (label));
if (leftover)
emit_insn (gen_movstrsi_internal (dest_mem, src_mem,
GEN_INT (leftover),
align_rtx));
}
/* Use a library function to move some bytes. */
static void
block_move_call (dest_reg, src_reg, bytes_rtx)
rtx dest_reg;
rtx src_reg;
rtx bytes_rtx;
{
/* We want to pass the size as Pmode, which will normally be SImode
but will be DImode if we are using 64 bit longs and pointers. */
if (GET_MODE (bytes_rtx) != VOIDmode
&& GET_MODE (bytes_rtx) != Pmode)
bytes_rtx = convert_to_mode (Pmode, bytes_rtx, TRUE);
#ifdef TARGET_MEM_FUNCTIONS
emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "memcpy"), 0,
VOIDmode, 3,
dest_reg, Pmode,
src_reg, Pmode,
convert_to_mode (TYPE_MODE (sizetype), bytes_rtx,
TREE_UNSIGNED (sizetype)),
TYPE_MODE (sizetype));
#else
emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "bcopy"), 0,
VOIDmode, 3,
src_reg, Pmode,
dest_reg, Pmode,
convert_to_mode (TYPE_MODE (integer_type_node),
bytes_rtx,
TREE_UNSIGNED (integer_type_node)),
TYPE_MODE (integer_type_node));
#endif
}
/* Expand string/block move operations.
operands[0] is the pointer to the destination.
operands[1] is the pointer to the source.
operands[2] is the number of bytes to move.
operands[3] is the alignment. */
void
expand_block_move (operands)
rtx operands[];
{
rtx bytes_rtx = operands[2];
rtx align_rtx = operands[3];
int constp = (GET_CODE (bytes_rtx) == CONST_INT);
int bytes = (constp ? INTVAL (bytes_rtx) : 0);
int align = INTVAL (align_rtx);
rtx orig_src = operands[1];
rtx orig_dest = operands[0];
rtx src_reg;
rtx dest_reg;
if (constp && bytes <= 0)
return;
if (align > UNITS_PER_WORD)
align = UNITS_PER_WORD;
/* Move the address into scratch registers. */
dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0));
src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
if (TARGET_MEMCPY)
block_move_call (dest_reg, src_reg, bytes_rtx);
else if (constp && bytes <= 2*MAX_MOVE_BYTES)
emit_insn (gen_movstrsi_internal (change_address (orig_dest, BLKmode,
dest_reg),
change_address (orig_src, BLKmode,
src_reg),
bytes_rtx, align_rtx));
else if (constp && align >= UNITS_PER_WORD && optimize)
block_move_loop (dest_reg, src_reg, bytes, align, orig_dest, orig_src);
else if (constp && optimize)
{
/* If the alignment is not word aligned, generate a test at
runtime, to see whether things wound up aligned, and we
can use the faster lw/sw instead ulw/usw. */
rtx temp = gen_reg_rtx (Pmode);
rtx aligned_label = gen_label_rtx ();
rtx join_label = gen_label_rtx ();
int leftover = bytes % MAX_MOVE_BYTES;
bytes -= leftover;
if (TARGET_LONG64)
{
emit_insn (gen_iordi3 (temp, src_reg, dest_reg));
emit_insn (gen_anddi3 (temp, temp, GEN_INT (UNITS_PER_WORD-1)));
emit_insn (gen_cmpdi (temp, const0_rtx));
}
else
{
emit_insn (gen_iorsi3 (temp, src_reg, dest_reg));
emit_insn (gen_andsi3 (temp, temp, GEN_INT (UNITS_PER_WORD-1)));
emit_insn (gen_cmpsi (temp, const0_rtx));
}
emit_jump_insn (gen_beq (aligned_label));
/* Unaligned loop. */
block_move_loop (dest_reg, src_reg, bytes, 1, orig_dest, orig_src);
emit_jump_insn (gen_jump (join_label));
emit_barrier ();
/* Aligned loop. */
emit_label (aligned_label);
block_move_loop (dest_reg, src_reg, bytes, UNITS_PER_WORD, orig_dest,
orig_src);
emit_label (join_label);
/* Bytes at the end of the loop. */
if (leftover)
emit_insn (gen_movstrsi_internal (change_address (orig_dest, BLKmode,
dest_reg),
change_address (orig_src, BLKmode,
src_reg),
GEN_INT (leftover),
GEN_INT (align)));
}
else
block_move_call (dest_reg, src_reg, bytes_rtx);
}
/* Emit load/stores for a small constant block_move.
operands[0] is the memory address of the destination.
operands[1] is the memory address of the source.
operands[2] is the number of bytes to move.
operands[3] is the alignment.
operands[4] is a temp register.
operands[5] is a temp register.
...
operands[3+num_regs] is the last temp register.
The block move type can be one of the following:
BLOCK_MOVE_NORMAL Do all of the block move.
BLOCK_MOVE_NOT_LAST Do all but the last store.
BLOCK_MOVE_LAST Do just the last store. */
char *
output_block_move (insn, operands, num_regs, move_type)
rtx insn;
rtx operands[];
int num_regs;
enum block_move_type move_type;
{
rtx dest_reg = XEXP (operands[0], 0);
rtx src_reg = XEXP (operands[1], 0);
int bytes = INTVAL (operands[2]);
int align = INTVAL (operands[3]);
int num = 0;
int offset = 0;
int use_lwl_lwr = FALSE;
int last_operand = num_regs+4;
int safe_regs = 4;
int i;
rtx xoperands[10];
struct {
char *load; /* load insn without nop */
char *load_nop; /* load insn with trailing nop */
char *store; /* store insn */
char *final; /* if last_store used: NULL or swr */
char *last_store; /* last store instruction */
int offset; /* current offset */
enum machine_mode mode; /* mode to use on (MEM) */
} load_store[4];
/* Detect a bug in GCC, where it can give us a register
the same as one of the addressing registers and reduce
the number of registers available. */
for (i = 4;
i < last_operand && safe_regs < (sizeof(xoperands) / sizeof(xoperands[0]));
i++)
{
if (!reg_mentioned_p (operands[i], operands[0])
&& !reg_mentioned_p (operands[i], operands[1]))
xoperands[safe_regs++] = operands[i];
}
if (safe_regs < last_operand)
{
xoperands[0] = operands[0];
xoperands[1] = operands[1];
xoperands[2] = operands[2];
xoperands[3] = operands[3];
return output_block_move (insn, xoperands, safe_regs-4, move_type);
}
/* If we are given global or static addresses, and we would be
emitting a few instructions, try to save time by using a
temporary register for the pointer. */
/* ??? The SGI Irix6 assembler fails when a SYMBOL_REF is used in
an ldl/ldr instruction pair. We play it safe, and always move
constant addresses into registers when generating N32/N64 code, just
in case we might emit an unaligned load instruction. */
if (num_regs > 2 && (bytes > 2*align || move_type != BLOCK_MOVE_NORMAL
|| mips_abi == ABI_N32 || mips_abi == ABI_64))
{
if (CONSTANT_P (src_reg))
{
if (TARGET_STATS)
mips_count_memory_refs (operands[1], 1);
src_reg = operands[ 3 + num_regs-- ];
if (move_type != BLOCK_MOVE_LAST)
{
xoperands[1] = operands[1];
xoperands[0] = src_reg;
if (Pmode == DImode)
output_asm_insn ("dla\t%0,%1", xoperands);
else
output_asm_insn ("la\t%0,%1", xoperands);
}
}
if (CONSTANT_P (dest_reg))
{
if (TARGET_STATS)
mips_count_memory_refs (operands[0], 1);
dest_reg = operands[ 3 + num_regs-- ];
if (move_type != BLOCK_MOVE_LAST)
{
xoperands[1] = operands[0];
xoperands[0] = dest_reg;
if (Pmode == DImode)
output_asm_insn ("dla\t%0,%1", xoperands);
else
output_asm_insn ("la\t%0,%1", xoperands);
}
}
}
/* ??? We really shouldn't get any LO_SUM addresses here, because they
are not offsettable, however, offsettable_address_p says they are
offsettable. I think this is a bug in offsettable_address_p.
For expediency, we fix this by just loading the address into a register
if we happen to get one. */
if (GET_CODE (src_reg) == LO_SUM)
{
src_reg = operands[ 3 + num_regs-- ];
if (move_type != BLOCK_MOVE_LAST)
{
xoperands[2] = XEXP (XEXP (operands[1], 0), 1);
xoperands[1] = XEXP (XEXP (operands[1], 0), 0);
xoperands[0] = src_reg;
if (Pmode == DImode)
output_asm_insn ("daddiu\t%0,%1,%%lo(%2)", xoperands);
else
output_asm_insn ("addiu\t%0,%1,%%lo(%2)", xoperands);
}
}
if (GET_CODE (dest_reg) == LO_SUM)
{
dest_reg = operands[ 3 + num_regs-- ];
if (move_type != BLOCK_MOVE_LAST)
{
xoperands[2] = XEXP (XEXP (operands[0], 0), 1);
xoperands[1] = XEXP (XEXP (operands[0], 0), 0);
xoperands[0] = dest_reg;
if (Pmode == DImode)
output_asm_insn ("daddiu\t%0,%1,%%lo(%2)", xoperands);
else
output_asm_insn ("addiu\t%0,%1,%%lo(%2)", xoperands);
}
}
if (num_regs > (sizeof (load_store) / sizeof (load_store[0])))
num_regs = (sizeof (load_store) / sizeof (load_store[0]));
else if (num_regs < 1)
abort_with_insn (insn, "Cannot do block move, not enough scratch registers");
while (bytes > 0)
{
load_store[num].offset = offset;
if (TARGET_64BIT && bytes >= 8 && align >= 8)
{
load_store[num].load = "ld\t%0,%1";
load_store[num].load_nop = "ld\t%0,%1%#";
load_store[num].store = "sd\t%0,%1";
load_store[num].last_store = "sd\t%0,%1";
load_store[num].final = (char *)0;
load_store[num].mode = DImode;
offset += 8;
bytes -= 8;
}
else if (TARGET_64BIT && bytes >= 8)
{
if (BYTES_BIG_ENDIAN)
{
load_store[num].load = "ldl\t%0,%1\n\tldr\t%0,%2";
load_store[num].load_nop = "ldl\t%0,%1\n\tldr\t%0,%2%#";
load_store[num].store = "sdl\t%0,%1\n\tsdr\t%0,%2";
load_store[num].last_store = "sdr\t%0,%2";
load_store[num].final = "sdl\t%0,%1";
}
else
{
load_store[num].load = "ldl\t%0,%2\n\tldr\t%0,%1";
load_store[num].load_nop = "ldl\t%0,%2\n\tldr\t%0,%1%#";
load_store[num].store = "sdl\t%0,%2\n\tsdr\t%0,%1";
load_store[num].last_store = "sdr\t%0,%1";
load_store[num].final = "sdl\t%0,%2";
}
load_store[num].mode = DImode;
offset += 8;
bytes -= 8;
use_lwl_lwr = TRUE;
}
else if (bytes >= 4 && align >= 4)
{
load_store[num].load = "lw\t%0,%1";
load_store[num].load_nop = "lw\t%0,%1%#";
load_store[num].store = "sw\t%0,%1";
load_store[num].last_store = "sw\t%0,%1";
load_store[num].final = (char *)0;
load_store[num].mode = SImode;
offset += 4;
bytes -= 4;
}
else if (bytes >= 4)
{
if (BYTES_BIG_ENDIAN)
{
load_store[num].load = "lwl\t%0,%1\n\tlwr\t%0,%2";
load_store[num].load_nop = "lwl\t%0,%1\n\tlwr\t%0,%2%#";
load_store[num].store = "swl\t%0,%1\n\tswr\t%0,%2";
load_store[num].last_store = "swr\t%0,%2";
load_store[num].final = "swl\t%0,%1";
}
else
{
load_store[num].load = "lwl\t%0,%2\n\tlwr\t%0,%1";
load_store[num].load_nop = "lwl\t%0,%2\n\tlwr\t%0,%1%#";
load_store[num].store = "swl\t%0,%2\n\tswr\t%0,%1";
load_store[num].last_store = "swr\t%0,%1";
load_store[num].final = "swl\t%0,%2";
}
load_store[num].mode = SImode;
offset += 4;
bytes -= 4;
use_lwl_lwr = TRUE;
}
else if (bytes >= 2 && align >= 2)
{
load_store[num].load = "lh\t%0,%1";
load_store[num].load_nop = "lh\t%0,%1%#";
load_store[num].store = "sh\t%0,%1";
load_store[num].last_store = "sh\t%0,%1";
load_store[num].final = (char *)0;
load_store[num].mode = HImode;
offset += 2;
bytes -= 2;
}
else
{
load_store[num].load = "lb\t%0,%1";
load_store[num].load_nop = "lb\t%0,%1%#";
load_store[num].store = "sb\t%0,%1";
load_store[num].last_store = "sb\t%0,%1";
load_store[num].final = (char *)0;
load_store[num].mode = QImode;
offset++;
bytes--;
}
if (TARGET_STATS && move_type != BLOCK_MOVE_LAST)
{
dslots_load_total++;
dslots_load_filled++;
if (CONSTANT_P (src_reg))
mips_count_memory_refs (src_reg, 1);
if (CONSTANT_P (dest_reg))
mips_count_memory_refs (dest_reg, 1);
}
/* Emit load/stores now if we have run out of registers or are
at the end of the move. */
if (++num == num_regs || bytes == 0)
{
/* If only load/store, we need a NOP after the load. */
if (num == 1)
{
load_store[0].load = load_store[0].load_nop;
if (TARGET_STATS && move_type != BLOCK_MOVE_LAST)
dslots_load_filled--;
}
if (move_type != BLOCK_MOVE_LAST)
{
for (i = 0; i < num; i++)
{
int offset;
if (!operands[i+4])
abort ();
if (GET_MODE (operands[i+4]) != load_store[i].mode)
operands[i+4] = gen_rtx (REG, load_store[i].mode, REGNO (operands[i+4]));
offset = load_store[i].offset;
xoperands[0] = operands[i+4];
xoperands[1] = gen_rtx (MEM, load_store[i].mode,
plus_constant (src_reg, offset));
if (use_lwl_lwr)
{
int extra_offset;
extra_offset = GET_MODE_SIZE (load_store[i].mode) - 1;
xoperands[2] = gen_rtx (MEM, load_store[i].mode,
plus_constant (src_reg,
extra_offset
+ offset));
}
output_asm_insn (load_store[i].load, xoperands);
}
}
for (i = 0; i < num; i++)
{
int last_p = (i == num-1 && bytes == 0);
int offset = load_store[i].offset;
xoperands[0] = operands[i+4];
xoperands[1] = gen_rtx (MEM, load_store[i].mode,
plus_constant (dest_reg, offset));
if (use_lwl_lwr)
{
int extra_offset;
extra_offset = GET_MODE_SIZE (load_store[i].mode) - 1;
xoperands[2] = gen_rtx (MEM, load_store[i].mode,
plus_constant (dest_reg,
extra_offset
+ offset));
}
if (move_type == BLOCK_MOVE_NORMAL)
output_asm_insn (load_store[i].store, xoperands);
else if (move_type == BLOCK_MOVE_NOT_LAST)
{
if (!last_p)
output_asm_insn (load_store[i].store, xoperands);
else if (load_store[i].final != (char *)0)
output_asm_insn (load_store[i].final, xoperands);
}
else if (last_p)
output_asm_insn (load_store[i].last_store, xoperands);
}
num = 0; /* reset load_store */
use_lwl_lwr = FALSE;
}
}
return "";
}
/* Argument support functions. */
/* Initialize CUMULATIVE_ARGS for a function. */
void
init_cumulative_args (cum, fntype, libname)
CUMULATIVE_ARGS *cum; /* argument info to initialize */
tree fntype; /* tree ptr for function decl */
rtx libname; /* SYMBOL_REF of library name or 0 */
{
static CUMULATIVE_ARGS zero_cum;
tree param, next_param;
if (TARGET_DEBUG_E_MODE)
{
fprintf (stderr, "\ninit_cumulative_args, fntype = 0x%.8lx", (long)fntype);
if (!fntype)
fputc ('\n', stderr);
else
{
tree ret_type = TREE_TYPE (fntype);
fprintf (stderr, ", fntype code = %s, ret code = %s\n",
tree_code_name[ (int)TREE_CODE (fntype) ],
tree_code_name[ (int)TREE_CODE (ret_type) ]);
}
}
*cum = zero_cum;
/* Determine if this function has variable arguments. This is
indicated by the last argument being 'void_type_mode' if there
are no variable arguments. The standard MIPS calling sequence
passes all arguments in the general purpose registers in this
case. */
for (param = (fntype) ? TYPE_ARG_TYPES (fntype) : 0;
param != (tree)0;
param = next_param)
{
next_param = TREE_CHAIN (param);
if (next_param == (tree)0 && TREE_VALUE (param) != void_type_node)
cum->gp_reg_found = 1;
}
}
/* Advance the argument to the next argument position. */
void
function_arg_advance (cum, mode, type, named)
CUMULATIVE_ARGS *cum; /* current arg information */
enum machine_mode mode; /* current arg mode */
tree type; /* type of the argument or 0 if lib support */
int named; /* whether or not the argument was named */
{
if (TARGET_DEBUG_E_MODE)
fprintf (stderr,
"function_adv( {gp reg found = %d, arg # = %2d, words = %2d}, %4s, 0x%.8x, %d )\n\n",
cum->gp_reg_found, cum->arg_number, cum->arg_words, GET_MODE_NAME (mode),
type, named);
cum->arg_number++;
switch (mode)
{
case VOIDmode:
break;
default:
if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
abort ();
cum->gp_reg_found = 1;
cum->arg_words += ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1)
/ UNITS_PER_WORD);
break;
case BLKmode:
cum->gp_reg_found = 1;
cum->arg_words += ((int_size_in_bytes (type) + UNITS_PER_WORD - 1)
/ UNITS_PER_WORD);
break;
case SFmode:
if (mips_abi == ABI_EABI && ! TARGET_SOFT_FLOAT)
cum->fp_arg_words++;
else
cum->arg_words++;
break;
case DFmode:
if (mips_abi == ABI_EABI && ! TARGET_SOFT_FLOAT && ! TARGET_SINGLE_FLOAT)
cum->fp_arg_words += (TARGET_64BIT ? 1 : 2);
else
cum->arg_words += (TARGET_64BIT ? 1 : 2);
break;
case DImode:
cum->gp_reg_found = 1;
cum->arg_words += (TARGET_64BIT ? 1 : 2);
break;
case QImode:
case HImode:
case SImode:
cum->gp_reg_found = 1;
cum->arg_words++;
break;
}
}
/* Return an RTL expression containing the register for the given mode,
or 0 if the argument is to be passed on the stack. */
struct rtx_def *
function_arg (cum, mode, type, named)
CUMULATIVE_ARGS *cum; /* current arg information */
enum machine_mode mode; /* current arg mode */
tree type; /* type of the argument or 0 if lib support */
int named; /* != 0 for normal args, == 0 for ... args */
{
rtx ret;
int regbase = -1;
int bias = 0;
int *arg_words = &cum->arg_words;
int struct_p = ((type != (tree)0)
&& (TREE_CODE (type) == RECORD_TYPE
|| TREE_CODE (type) == UNION_TYPE));
if (TARGET_DEBUG_E_MODE)
fprintf (stderr,
"function_arg( {gp reg found = %d, arg # = %2d, words = %2d}, %4s, 0x%.8x, %d ) = ",
cum->gp_reg_found, cum->arg_number, cum->arg_words, GET_MODE_NAME (mode),
type, named);
cum->last_arg_fp = 0;
switch (mode)
{
case SFmode:
if (mips_abi == ABI_32)
{
if (cum->gp_reg_found || cum->arg_number >= 2 || TARGET_SOFT_FLOAT)
regbase = GP_ARG_FIRST;
else
{
regbase = FP_ARG_FIRST;
/* If the first arg was a float in a floating point register,
then set bias to align this float arg properly. */
if (cum->arg_words == 1)
bias = 1;
}
}
else if (mips_abi == ABI_EABI && ! TARGET_SOFT_FLOAT)
{
if (! TARGET_64BIT)
cum->fp_arg_words += cum->fp_arg_words & 1;
cum->last_arg_fp = 1;
arg_words = &cum->fp_arg_words;
regbase = FP_ARG_FIRST;
}
else
regbase = (TARGET_SOFT_FLOAT || ! named ? GP_ARG_FIRST : FP_ARG_FIRST);
break;
case DFmode:
if (! TARGET_64BIT)
{
if (mips_abi == ABI_EABI
&& ! TARGET_SOFT_FLOAT
&& ! TARGET_SINGLE_FLOAT)
cum->fp_arg_words += cum->fp_arg_words & 1;
else
cum->arg_words += cum->arg_words & 1;
}
if (mips_abi == ABI_32)
regbase = ((cum->gp_reg_found
|| TARGET_SOFT_FLOAT
|| TARGET_SINGLE_FLOAT
|| cum->arg_number >= 2)
? GP_ARG_FIRST
: FP_ARG_FIRST);
else if (mips_abi == ABI_EABI
&& ! TARGET_SOFT_FLOAT
&& ! TARGET_SINGLE_FLOAT)
{
cum->last_arg_fp = 1;
arg_words = &cum->fp_arg_words;
regbase = FP_ARG_FIRST;
}
else
regbase = (TARGET_SOFT_FLOAT || TARGET_SINGLE_FLOAT || ! named
? GP_ARG_FIRST : FP_ARG_FIRST);
break;
default:
if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
abort ();
/* Drops through. */
case BLKmode:
if (type != (tree)0 && TYPE_ALIGN (type) > BITS_PER_WORD
&& ! TARGET_64BIT && mips_abi != ABI_EABI)
cum->arg_words += (cum->arg_words & 1);
regbase = GP_ARG_FIRST;
break;
case VOIDmode:
case QImode:
case HImode:
case SImode:
regbase = GP_ARG_FIRST;
break;
case DImode:
if (! TARGET_64BIT)
cum->arg_words += (cum->arg_words & 1);
regbase = GP_ARG_FIRST;
}
if (*arg_words >= MAX_ARGS_IN_REGISTERS)
{
if (TARGET_DEBUG_E_MODE)
fprintf (stderr, "<stack>%s\n", struct_p ? ", [struct]" : "");
ret = (rtx)0;
}
else
{
if (regbase == -1)
abort ();
if (! type || TREE_CODE (type) != RECORD_TYPE || mips_abi == ABI_32
|| mips_abi == ABI_EABI || ! named)
ret = gen_rtx (REG, mode, regbase + *arg_words + bias);
else
{
/* The Irix 6 n32/n64 ABIs say that if any 64 bit chunk of the
structure contains a double in its entirety, then that 64 bit
chunk is passed in a floating point register. */
tree field;
/* First check to see if there is any such field. */
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL
&& TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
&& TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
&& (TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field))
% BITS_PER_WORD == 0))
break;
if (! field)
ret = gen_rtx (REG, mode, regbase + *arg_words + bias);
else
{
/* Now handle the special case by returning a PARALLEL
indicating where each 64 bit chunk goes. */
int chunks;
int bitpos;
int regno;
int i;
/* ??? If this is a packed structure, then the last hunk won't
be 64 bits. */
/* ??? If this is a structure with a single double field,
it would be more convenient to return (REG:DI %fX) than
a parallel. However, we would have to modify the mips
backend to allow DImode values in fp registers. */
chunks = TREE_INT_CST_LOW (TYPE_SIZE (type)) / BITS_PER_WORD;
if (chunks + *arg_words + bias > MAX_ARGS_IN_REGISTERS)
chunks = MAX_ARGS_IN_REGISTERS - *arg_words - bias;
/* assign_parms checks the mode of ENTRY_PARM, so we must
use the actual mode here. */
ret = gen_rtx (PARALLEL, mode, rtvec_alloc (chunks));
bitpos = 0;
regno = regbase + *arg_words + bias;
field = TYPE_FIELDS (type);
for (i = 0; i < chunks; i++)
{
rtx reg;
for (; field; field = TREE_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL
&& (TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field))
>= bitpos))
break;
if (field
&& TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field)) == bitpos
&& TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
&& TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
reg = gen_rtx (REG, DFmode,
regno + FP_ARG_FIRST - GP_ARG_FIRST);
else
reg = gen_rtx (REG, word_mode, regno);
XVECEXP (ret, 0, i) = gen_rtx (EXPR_LIST, VOIDmode, reg,
GEN_INT (bitpos / BITS_PER_UNIT));
bitpos += 64;
regno++;
}
}
}
if (TARGET_DEBUG_E_MODE)
fprintf (stderr, "%s%s\n", reg_names[regbase + *arg_words + bias],
struct_p ? ", [struct]" : "");
/* The following is a hack in order to pass 1 byte structures
the same way that the MIPS compiler does (namely by passing
the structure in the high byte or half word of the register).
This also makes varargs work. If we have such a structure,
we save the adjustment RTL, and the call define expands will
emit them. For the VOIDmode argument (argument after the
last real argument), pass back a parallel vector holding each
of the adjustments. */
/* ??? function_arg can be called more than once for each argument.
As a result, we compute more adjustments than we need here.
See the CUMULATIVE_ARGS definition in mips.h. */
/* ??? This scheme requires everything smaller than the word size to
shifted to the left, but when TARGET_64BIT and ! TARGET_INT64,
that would mean every int needs to be shifted left, which is very
inefficient. Let's not carry this compatibility to the 64 bit
calling convention for now. */
if (struct_p && int_size_in_bytes (type) < UNITS_PER_WORD
&& ! TARGET_64BIT && mips_abi != ABI_EABI)
{
rtx amount = GEN_INT (BITS_PER_WORD
- int_size_in_bytes (type) * BITS_PER_UNIT);
rtx reg = gen_rtx (REG, word_mode, regbase + *arg_words + bias);
if (TARGET_64BIT)
cum->adjust[ cum->num_adjusts++ ] = gen_ashldi3 (reg, reg, amount);
else
cum->adjust[ cum->num_adjusts++ ] = gen_ashlsi3 (reg, reg, amount);
}
}
if (mode == VOIDmode && cum->num_adjusts > 0)
ret = gen_rtx (PARALLEL, VOIDmode, gen_rtvec_v (cum->num_adjusts, cum->adjust));
return ret;
}
int
function_arg_partial_nregs (cum, mode, type, named)
CUMULATIVE_ARGS *cum; /* current arg information */
enum machine_mode mode; /* current arg mode */
tree type; /* type of the argument or 0 if lib support */
int named; /* != 0 for normal args, == 0 for ... args */
{
if ((mode == BLKmode
|| GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
|| GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
&& cum->arg_words < MAX_ARGS_IN_REGISTERS
&& mips_abi != ABI_EABI)
{
int words;
if (mode == BLKmode)
words = ((int_size_in_bytes (type) + UNITS_PER_WORD - 1)
/ UNITS_PER_WORD);
else
words = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
if (words + cum->arg_words <= MAX_ARGS_IN_REGISTERS)
return 0; /* structure fits in registers */
if (TARGET_DEBUG_E_MODE)
fprintf (stderr, "function_arg_partial_nregs = %d\n",
MAX_ARGS_IN_REGISTERS - cum->arg_words);
return MAX_ARGS_IN_REGISTERS - cum->arg_words;
}
else if (mode == DImode && cum->arg_words == MAX_ARGS_IN_REGISTERS-1
&& ! TARGET_64BIT
&& mips_abi != ABI_EABI)
{
if (TARGET_DEBUG_E_MODE)
fprintf (stderr, "function_arg_partial_nregs = 1\n");
return 1;
}
return 0;
}
/* Abort after printing out a specific insn. */
void
abort_with_insn (insn, reason)
rtx insn;
char *reason;
{
error (reason);
debug_rtx (insn);
abort ();
}
/* Write a message to stderr (for use in macros expanded in files that do not
include stdio.h). */
void
trace (s, s1, s2)
char *s, *s1, *s2;
{
fprintf (stderr, s, s1, s2);
}
#ifdef SIGINFO
static void
siginfo (signo)
int signo;
{
fprintf (stderr, "compiling '%s' in '%s'\n",
(current_function_name != (char *)0) ? current_function_name : "<toplevel>",
(current_function_file != (char *)0) ? current_function_file : "<no file>");
fflush (stderr);
}
#endif /* SIGINFO */
/* Set up the threshold for data to go into the small data area, instead
of the normal data area, and detect any conflicts in the switches. */
void
override_options ()
{
register int i, start;
register int regno;
register enum machine_mode mode;
mips_section_threshold = (g_switch_set) ? g_switch_value : MIPS_DEFAULT_GVALUE;
if (mips_section_threshold <= 0)
target_flags &= ~MASK_GPOPT;
else if (optimize)
target_flags |= MASK_GPOPT;
/* Get the architectural level. */
if (mips_isa_string == (char *)0)
{
#ifdef MIPS_ISA_DEFAULT
mips_isa = MIPS_ISA_DEFAULT;
#else
mips_isa = 1;
#endif
}
else if (isdigit (*mips_isa_string))
{
mips_isa = atoi (mips_isa_string);
if (mips_isa < 1 || mips_isa > 4)
{
error ("-mips%d not supported", mips_isa);
mips_isa = 1;
}
}
else
{
error ("bad value (%s) for -mips switch", mips_isa_string);
mips_isa = 1;
}
#ifdef MIPS_ABI_DEFAULT
/* Get the ABI to use. Currently this code is only used for Irix 6. */
if (mips_abi_string == (char *) 0)
mips_abi = MIPS_ABI_DEFAULT;
else if (! strcmp (mips_abi_string, "32")
|| ! strcmp (mips_abi_string, "o32"))
mips_abi = ABI_32;
else if (! strcmp (mips_abi_string, "n32"))
mips_abi = ABI_N32;
else if (! strcmp (mips_abi_string, "64")
|| ! strcmp (mips_abi_string, "n64"))
mips_abi = ABI_64;
else if (! strcmp (mips_abi_string, "eabi"))
mips_abi = ABI_EABI;
else
error ("bad value (%s) for -mabi= switch", mips_abi_string);
/* A specified ISA defaults the ABI if it was not specified. */
if (mips_abi_string == 0 && mips_isa_string && mips_abi != ABI_EABI)
{
if (mips_isa <= 2)
mips_abi = ABI_32;
else
mips_abi = ABI_64;
}
/* A specified ABI defaults the ISA if it was not specified. */
else if (mips_isa_string == 0 && mips_abi_string && mips_abi != ABI_EABI)
{
if (mips_abi == ABI_32)
mips_isa = 1;
else if (mips_abi == ABI_N32)
mips_isa = 3;
else
mips_isa = 4;
}
/* If both ABI and ISA were specified, check for conflicts. */
else if (mips_isa_string && mips_abi_string)
{
if ((mips_isa <= 2 && (mips_abi == ABI_N32 || mips_abi == ABI_64))
|| (mips_isa >= 3 && mips_abi == ABI_32))
error ("-mabi=%s does not support -mips%d", mips_abi_string, mips_isa);
}
/* Override TARGET_DEFAULT if necessary. */
if (mips_abi == ABI_32)
target_flags &= ~ (MASK_FLOAT64|MASK_64BIT);
/* In the EABI in 64 bit mode, longs and pointers are 64 bits. */
if (mips_abi == ABI_EABI && TARGET_64BIT)
target_flags |= MASK_LONG64;
/* ??? This doesn't work yet, so don't let people try to use it. */
if (mips_abi == ABI_32)
error ("The -mabi=32 support does not work yet.");
#else
if (mips_abi_string)
error ("This target does not support the -mabi switch.");
#endif
#ifdef MIPS_CPU_STRING_DEFAULT
/* ??? There is a minor inconsistency here. If the user specifies an ISA
greater than that supported by the default processor, then the user gets
an error. Normally, the compiler will just default to the base level cpu
for the indicated isa. */
if (mips_cpu_string == (char *)0)
mips_cpu_string = MIPS_CPU_STRING_DEFAULT;
#endif
/* Identify the processor type */
if (mips_cpu_string == (char *)0
|| !strcmp (mips_cpu_string, "default")
|| !strcmp (mips_cpu_string, "DEFAULT"))
{
switch (mips_isa)
{
default:
mips_cpu_string = "3000";
mips_cpu = PROCESSOR_R3000;
break;
case 2:
mips_cpu_string = "6000";
mips_cpu = PROCESSOR_R6000;
break;
case 3:
mips_cpu_string = "4000";
mips_cpu = PROCESSOR_R4000;
break;
case 4:
mips_cpu_string = "8000";
mips_cpu = PROCESSOR_R8000;
break;
}
}
else
{
char *p = mips_cpu_string;
int seen_v = FALSE;
/* We need to cope with the various "vr" prefixes for the NEC 4300
and 4100 processors. */
if (*p == 'v' || *p == 'V')
{
seen_v = TRUE;
p++;
}
if (*p == 'r' || *p == 'R')
p++;
/* Since there is no difference between a R2000 and R3000 in
terms of the scheduler, we collapse them into just an R3000. */
mips_cpu = PROCESSOR_DEFAULT;
switch (*p)
{
case '2':
if (!strcmp (p, "2000") || !strcmp (p, "2k") || !strcmp (p, "2K"))
mips_cpu = PROCESSOR_R3000;
break;
case '3':
if (!strcmp (p, "3000") || !strcmp (p, "3k") || !strcmp (p, "3K"))
mips_cpu = PROCESSOR_R3000;
break;
case '4':
if (!strcmp (p, "4000") || !strcmp (p, "4k") || !strcmp (p, "4K"))
mips_cpu = PROCESSOR_R4000;
/* The vr4100 is a non-FP ISA III processor with some extra
instructions. */
else if (!strcmp (p, "4100")) {
mips_cpu = PROCESSOR_R4100;
target_flags |= MASK_SOFT_FLOAT ;
}
/* The vr4300 is a standard ISA III processor, but with a different
pipeline. */
else if (!strcmp (p, "4300"))
mips_cpu = PROCESSOR_R4300;
/* The r4400 is exactly the same as the r4000 from the compiler's
viewpoint. */
else if (!strcmp (p, "4400"))
mips_cpu = PROCESSOR_R4000;
else if (!strcmp (p, "4600"))
mips_cpu = PROCESSOR_R4600;
else if (!strcmp (p, "4650"))
mips_cpu = PROCESSOR_R4650;
break;
case '5':
if (!strcmp (p, "5000") || !strcmp (p, "5k") || !strcmp (p, "5K"))
mips_cpu = PROCESSOR_R5000;
break;
case '6':
if (!strcmp (p, "6000") || !strcmp (p, "6k") || !strcmp (p, "6K"))
mips_cpu = PROCESSOR_R6000;
break;
case '8':
if (!strcmp (p, "8000"))
mips_cpu = PROCESSOR_R8000;
break;
case 'o':
if (!strcmp (p, "orion"))
mips_cpu = PROCESSOR_R4600;
break;
}
if (seen_v
&& mips_cpu != PROCESSOR_R4300
&& mips_cpu != PROCESSOR_R4100
&& mips_cpu != PROCESSOR_R5000)
mips_cpu = PROCESSOR_DEFAULT;
if (mips_cpu == PROCESSOR_DEFAULT)
{
error ("bad value (%s) for -mcpu= switch", mips_cpu_string);
mips_cpu_string = "default";
}
}
if ((mips_cpu == PROCESSOR_R3000 && mips_isa > 1)
|| (mips_cpu == PROCESSOR_R6000 && mips_isa > 2)
|| ((mips_cpu == PROCESSOR_R4000
|| mips_cpu == PROCESSOR_R4100
|| mips_cpu == PROCESSOR_R4300
|| mips_cpu == PROCESSOR_R4600
|| mips_cpu == PROCESSOR_R4650)
&& mips_isa > 3))
error ("-mcpu=%s does not support -mips%d", mips_cpu_string, mips_isa);
/* make sure sizes of ints/longs/etc. are ok */
if (mips_isa < 3)
{
if (TARGET_INT64)
fatal ("Only MIPS-III or MIPS-IV CPUs can support 64 bit ints");
else if (TARGET_LONG64)
fatal ("Only MIPS-III or MIPS-IV CPUs can support 64 bit longs");
else if (TARGET_FLOAT64)
fatal ("Only MIPS-III or MIPS-IV CPUs can support 64 bit fp registers");
else if (TARGET_64BIT)
fatal ("Only MIPS-III or MIPS-IV CPUs can support 64 bit gp registers");
}
if (mips_abi != ABI_32)
flag_pcc_struct_return = 0;
/* Tell halfpic.c that we have half-pic code if we do. */
if (TARGET_HALF_PIC)
HALF_PIC_INIT ();
/* -fpic (-KPIC) is the default when TARGET_ABICALLS is defined. We need
to set flag_pic so that the LEGITIMATE_PIC_OPERAND_P macro will work. */
/* ??? -non_shared turns off pic code generation, but this is not
implemented. */
if (TARGET_ABICALLS)
{
mips_abicalls = MIPS_ABICALLS_YES;
flag_pic = 1;
if (mips_section_threshold > 0)
warning ("-G is incompatible with PIC code which is the default");
}
else
mips_abicalls = MIPS_ABICALLS_NO;
/* -membedded-pic is a form of PIC code suitable for embedded
systems. All calls are made using PC relative addressing, and
all data is addressed using the $gp register. This requires gas,
which does most of the work, and GNU ld, which automatically
expands PC relative calls which are out of range into a longer
instruction sequence. All gcc really does differently is
generate a different sequence for a switch. */
if (TARGET_EMBEDDED_PIC)
{
flag_pic = 1;
if (TARGET_ABICALLS)
warning ("-membedded-pic and -mabicalls are incompatible");
if (g_switch_set)
warning ("-G and -membedded-pic are incompatible");
/* Setting mips_section_threshold is not required, because gas
will force everything to be GP addressable anyhow, but
setting it will cause gcc to make better estimates of the
number of instructions required to access a particular data
item. */
mips_section_threshold = 0x7fffffff;
}
/* This optimization requires a linker that can support a R_MIPS_LO16
relocation which is not immediately preceeded by a R_MIPS_HI16 relocation.
GNU ld has this support, but not all other MIPS linkers do, so we enable
this optimization only if the user requests it, or if GNU ld is the
standard linker for this configuration. */
/* ??? This does not work when target addresses are DImode.
This is because we are missing DImode high/lo_sum patterns. */
if (TARGET_GAS && TARGET_SPLIT_ADDRESSES && optimize && ! flag_pic
&& Pmode == SImode)
mips_split_addresses = 1;
else
mips_split_addresses = 0;
/* -mrnames says to use the MIPS software convention for register
names instead of the hardware names (ie, $a0 instead of $4).
We do this by switching the names in mips_reg_names, which the
reg_names points into via the REGISTER_NAMES macro. */
if (TARGET_NAME_REGS)
bcopy ((char *) mips_sw_reg_names, (char *) mips_reg_names, sizeof (mips_reg_names));
/* If this is OSF/1, set up a SIGINFO handler so we can see what function
is currently being compiled. */
#ifdef SIGINFO
if (getenv ("GCC_SIGINFO") != (char *)0)
{
struct sigaction action;
action.sa_handler = siginfo;
action.sa_mask = 0;
action.sa_flags = SA_RESTART;
sigaction (SIGINFO, &action, (struct sigaction *)0);
}
#endif
#if defined(_IOLBF)
#if defined(ultrix) || defined(__ultrix) || defined(__OSF1__) || defined(__osf__) || defined(osf)
/* If -mstats and -quiet, make stderr line buffered. */
if (quiet_flag && TARGET_STATS)
setvbuf (stderr, (char *)0, _IOLBF, BUFSIZ);
#endif
#endif
/* Initialize the high and low values for legitimate floating point
constants. Rather than trying to get the accuracy down to the
last bit, just use approximate ranges. */
dfhigh = REAL_VALUE_ATOF ("1.0e300", DFmode);
dflow = REAL_VALUE_ATOF ("1.0e-300", DFmode);
sfhigh = REAL_VALUE_ATOF ("1.0e38", SFmode);
sflow = REAL_VALUE_ATOF ("1.0e-38", SFmode);
mips_print_operand_punct['?'] = TRUE;
mips_print_operand_punct['#'] = TRUE;
mips_print_operand_punct['&'] = TRUE;
mips_print_operand_punct['!'] = TRUE;
mips_print_operand_punct['*'] = TRUE;
mips_print_operand_punct['@'] = TRUE;
mips_print_operand_punct['.'] = TRUE;
mips_print_operand_punct['('] = TRUE;
mips_print_operand_punct[')'] = TRUE;
mips_print_operand_punct['['] = TRUE;
mips_print_operand_punct[']'] = TRUE;
mips_print_operand_punct['<'] = TRUE;
mips_print_operand_punct['>'] = TRUE;
mips_print_operand_punct['{'] = TRUE;
mips_print_operand_punct['}'] = TRUE;
mips_print_operand_punct['^'] = TRUE;
mips_char_to_class['d'] = GR_REGS;
mips_char_to_class['f'] = ((TARGET_HARD_FLOAT) ? FP_REGS : NO_REGS);
mips_char_to_class['h'] = HI_REG;
mips_char_to_class['l'] = LO_REG;
mips_char_to_class['a'] = HILO_REG;
mips_char_to_class['x'] = MD_REGS;
mips_char_to_class['b'] = ALL_REGS;
mips_char_to_class['y'] = GR_REGS;
mips_char_to_class['z'] = ST_REGS;
/* Set up array to map GCC register number to debug register number.
Ignore the special purpose register numbers. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
mips_dbx_regno[i] = -1;
start = GP_DBX_FIRST - GP_REG_FIRST;
for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++)
mips_dbx_regno[i] = i + start;
start = FP_DBX_FIRST - FP_REG_FIRST;
for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
mips_dbx_regno[i] = i + start;
/* Set up array giving whether a given register can hold a given mode.
At present, restrict ints from being in FP registers, because reload
is a little enthusiastic about storing extra values in FP registers,
and this is not good for things like OS kernels. Also, due to the
mandatory delay, it is as fast to load from cached memory as to move
from the FP register. */
for (mode = VOIDmode;
mode != MAX_MACHINE_MODE;
mode = (enum machine_mode)((int)mode + 1))
{
register int size = GET_MODE_SIZE (mode);
register enum mode_class class = GET_MODE_CLASS (mode);
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
register int temp;
if (mode == CCmode)
{
if (mips_isa < 4)
temp = (regno == FPSW_REGNUM);
else
temp = (ST_REG_P (regno)
|| GP_REG_P (regno)
|| FP_REG_P (regno));
}
else if (GP_REG_P (regno))
temp = ((regno & 1) == 0 || (size <= UNITS_PER_WORD));
else if (FP_REG_P (regno))
temp = ((TARGET_FLOAT64 || ((regno & 1) == 0))
&& (class == MODE_FLOAT
|| class == MODE_COMPLEX_FLOAT
|| (TARGET_DEBUG_H_MODE && class == MODE_INT))
&& (! TARGET_SINGLE_FLOAT || size <= 4));
else if (MD_REG_P (regno))
temp = (class == MODE_INT
&& (size <= UNITS_PER_WORD
|| (regno == MD_REG_FIRST && size == 2 * UNITS_PER_WORD)));
else
temp = FALSE;
mips_hard_regno_mode_ok[(int)mode][regno] = temp;
}
}
}
/*
* The MIPS debug format wants all automatic variables and arguments
* to be in terms of the virtual frame pointer (stack pointer before
* any adjustment in the function), while the MIPS 3.0 linker wants
* the frame pointer to be the stack pointer after the initial
* adjustment. So, we do the adjustment here. The arg pointer (which
* is eliminated) points to the virtual frame pointer, while the frame
* pointer (which may be eliminated) points to the stack pointer after
* the initial adjustments.
*/
int
mips_debugger_offset (addr, offset)
rtx addr;
int offset;
{
rtx offset2 = const0_rtx;
rtx reg = eliminate_constant_term (addr, &offset2);
if (!offset)
offset = INTVAL (offset2);
if (reg == stack_pointer_rtx || reg == frame_pointer_rtx)
{
int frame_size = (!current_frame_info.initialized)
? compute_frame_size (get_frame_size ())
: current_frame_info.total_size;
offset = offset - frame_size;
}
/* sdbout_parms does not want this to crash for unrecognized cases. */
#if 0
else if (reg != arg_pointer_rtx)
abort_with_insn (addr, "mips_debugger_offset called with non stack/frame/arg pointer.");
#endif
return offset;
}
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand X. X is an RTL
expression.
CODE is a value that can be used to specify one of several ways
of printing the operand. It is used when identical operands
must be printed differently depending on the context. CODE
comes from the `%' specification that was used to request
printing of the operand. If the specification was just `%DIGIT'
then CODE is 0; if the specification was `%LTR DIGIT' then CODE
is the ASCII code for LTR.
If X is a register, this macro should print the register's name.
The names can be found in an array `reg_names' whose type is
`char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
When the machine description has a specification `%PUNCT' (a `%'
followed by a punctuation character), this macro is called with
a null pointer for X and the punctuation character for CODE.
The MIPS specific codes are:
'X' X is CONST_INT, prints 32 bits in hexadecimal format = "0x%08x",
'x' X is CONST_INT, prints 16 bits in hexadecimal format = "0x%04x",
'd' output integer constant in decimal,
'z' if the operand is 0, use $0 instead of normal operand.
'D' print second register of double-word register operand.
'L' print low-order register of double-word register operand.
'M' print high-order register of double-word register operand.
'C' print part of opcode for a branch condition.
'N' print part of opcode for a branch condition, inverted.
'S' X is CODE_LABEL, print with prefix of "LS" (for embedded switch).
'B' print 'z' for EQ, 'n' for NE
'b' print 'n' for EQ, 'z' for NE
'T' print 'f' for EQ, 't' for NE
't' print 't' for EQ, 'f' for NE
'Z' print register and a comma, but print nothing for $fcc0
'(' Turn on .set noreorder
')' Turn on .set reorder
'[' Turn on .set noat
']' Turn on .set at
'<' Turn on .set nomacro
'>' Turn on .set macro
'{' Turn on .set volatile (not GAS)
'}' Turn on .set novolatile (not GAS)
'&' Turn on .set noreorder if filling delay slots
'*' Turn on both .set noreorder and .set nomacro if filling delay slots
'!' Turn on .set nomacro if filling delay slots
'#' Print nop if in a .set noreorder section.
'?' Print 'l' if we are to use a branch likely instead of normal branch.
'@' Print the name of the assembler temporary register (at or $1).
'.' Print the name of the register with a hard-wired zero (zero or $0).
'^' Print the name of the pic call-through register (t9 or $25). */
void
print_operand (file, op, letter)
FILE *file; /* file to write to */
rtx op; /* operand to print */
int letter; /* %<letter> or 0 */
{
register enum rtx_code code;
if (PRINT_OPERAND_PUNCT_VALID_P (letter))
{
switch (letter)
{
default:
error ("PRINT_OPERAND: Unknown punctuation '%c'", letter);
break;
case '?':
if (mips_branch_likely)
putc ('l', file);
break;
case '@':
fputs (reg_names [GP_REG_FIRST + 1], file);
break;
case '^':
fputs (reg_names [PIC_FUNCTION_ADDR_REGNUM], file);
break;
case '.':
fputs (reg_names [GP_REG_FIRST + 0], file);
break;
case '&':
if (final_sequence != 0 && set_noreorder++ == 0)
fputs (".set\tnoreorder\n\t", file);
break;
case '*':
if (final_sequence != 0)
{
if (set_noreorder++ == 0)
fputs (".set\tnoreorder\n\t", file);
if (set_nomacro++ == 0)
fputs (".set\tnomacro\n\t", file);
}
break;
case '!':
if (final_sequence != 0 && set_nomacro++ == 0)
fputs ("\n\t.set\tnomacro", file);
break;
case '#':
if (set_noreorder != 0)
fputs ("\n\tnop", file);
else if (TARGET_STATS)
fputs ("\n\t#nop", file);
break;
case '(':
if (set_noreorder++ == 0)
fputs (".set\tnoreorder\n\t", file);
break;
case ')':
if (set_noreorder == 0)
error ("internal error: %%) found without a %%( in assembler pattern");
else if (--set_noreorder == 0)
fputs ("\n\t.set\treorder", file);
break;
case '[':
if (set_noat++ == 0)
fputs (".set\tnoat\n\t", file);
break;
case ']':
if (set_noat == 0)
error ("internal error: %%] found without a %%[ in assembler pattern");
else if (--set_noat == 0)
fputs ("\n\t.set\tat", file);
break;
case '<':
if (set_nomacro++ == 0)
fputs (".set\tnomacro\n\t", file);
break;
case '>':
if (set_nomacro == 0)
error ("internal error: %%> found without a %%< in assembler pattern");
else if (--set_nomacro == 0)
fputs ("\n\t.set\tmacro", file);
break;
case '{':
if (set_volatile++ == 0)
fprintf (file, "%s.set\tvolatile\n\t", (TARGET_MIPS_AS) ? "" : "#");
break;
case '}':
if (set_volatile == 0)
error ("internal error: %%} found without a %%{ in assembler pattern");
else if (--set_volatile == 0)
fprintf (file, "\n\t%s.set\tnovolatile", (TARGET_MIPS_AS) ? "" : "#");
break;
}
return;
}
if (! op)
{
error ("PRINT_OPERAND null pointer");
return;
}
code = GET_CODE (op);
if (code == SIGN_EXTEND)
{
op = XEXP (op, 0);
code = GET_CODE (op);
}
if (letter == 'C')
switch (code)
{
case EQ: fputs ("eq", file); break;
case NE: fputs ("ne", file); break;
case GT: fputs ("gt", file); break;
case GE: fputs ("ge", file); break;
case LT: fputs ("lt", file); break;
case LE: fputs ("le", file); break;
case GTU: fputs ("gtu", file); break;
case GEU: fputs ("geu", file); break;
case LTU: fputs ("ltu", file); break;
case LEU: fputs ("leu", file); break;
default:
abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%C");
}
else if (letter == 'N')
switch (code)
{
case EQ: fputs ("ne", file); break;
case NE: fputs ("eq", file); break;
case GT: fputs ("le", file); break;
case GE: fputs ("lt", file); break;
case LT: fputs ("ge", file); break;
case LE: fputs ("gt", file); break;
case GTU: fputs ("leu", file); break;
case GEU: fputs ("ltu", file); break;
case LTU: fputs ("geu", file); break;
case LEU: fputs ("gtu", file); break;
default:
abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%N");
}
else if (letter == 'S')
{
char buffer[100];
ASM_GENERATE_INTERNAL_LABEL (buffer, "LS", CODE_LABEL_NUMBER (op));
assemble_name (file, buffer);
}
else if (letter == 'Z')
{
register int regnum;
if (code != REG)
abort ();
regnum = REGNO (op);
if (! ST_REG_P (regnum))
abort ();
if (regnum != ST_REG_FIRST)
fprintf (file, "%s,", reg_names[regnum]);
}
else if (code == REG || code == SUBREG)
{
register int regnum;
if (code == REG)
regnum = REGNO (op);
else
regnum = true_regnum (op);
if ((letter == 'M' && ! WORDS_BIG_ENDIAN)
|| (letter == 'L' && WORDS_BIG_ENDIAN)
|| letter == 'D')
regnum++;
fprintf (file, "%s", reg_names[regnum]);
}
else if (code == MEM)
output_address (XEXP (op, 0));
else if (code == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT)
{
REAL_VALUE_TYPE d;
char s[30];
REAL_VALUE_FROM_CONST_DOUBLE (d, op);
REAL_VALUE_TO_DECIMAL (d, "%.20e", s);
fprintf (file, s);
}
else if ((letter == 'x') && (GET_CODE(op) == CONST_INT))
fprintf (file, "0x%04x", 0xffff & (INTVAL(op)));
else if ((letter == 'X') && (GET_CODE(op) == CONST_INT)
&& HOST_BITS_PER_WIDE_INT == 32)
fprintf (file, "0x%08x", INTVAL(op));
else if ((letter == 'X') && (GET_CODE(op) == CONST_INT)
&& HOST_BITS_PER_WIDE_INT == 64)
fprintf (file, "0x%016lx", INTVAL(op));
else if ((letter == 'd') && (GET_CODE(op) == CONST_INT))
fprintf (file, "%d", (INTVAL(op)));
else if (letter == 'z'
&& (GET_CODE (op) == CONST_INT)
&& INTVAL (op) == 0)
fputs (reg_names[GP_REG_FIRST], file);
else if (letter == 'd' || letter == 'x' || letter == 'X')
fatal ("PRINT_OPERAND: letter %c was found & insn was not CONST_INT", letter);
else if (letter == 'B')
fputs (code == EQ ? "z" : "n", file);
else if (letter == 'b')
fputs (code == EQ ? "n" : "z", file);
else if (letter == 'T')
fputs (code == EQ ? "f" : "t", file);
else if (letter == 't')
fputs (code == EQ ? "t" : "f", file);
else
output_addr_const (file, op);
}
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand that is a memory
reference whose address is ADDR. ADDR is an RTL expression.
On some machines, the syntax for a symbolic address depends on
the section that the address refers to. On these machines,
define the macro `ENCODE_SECTION_INFO' to store the information
into the `symbol_ref', and then check for it here. */
void
print_operand_address (file, addr)
FILE *file;
rtx addr;
{
if (!addr)
error ("PRINT_OPERAND_ADDRESS, null pointer");
else
switch (GET_CODE (addr))
{
default:
abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, invalid insn #1");
break;
case REG:
if (REGNO (addr) == ARG_POINTER_REGNUM)
abort_with_insn (addr, "Arg pointer not eliminated.");
fprintf (file, "0(%s)", reg_names [REGNO (addr)]);
break;
case LO_SUM:
{
register rtx arg0 = XEXP (addr, 0);
register rtx arg1 = XEXP (addr, 1);
if (! mips_split_addresses)
abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, Spurious LO_SUM.");
if (GET_CODE (arg0) != REG)
abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, LO_SUM with #1 not REG.");
fprintf (file, "%%lo(");
print_operand_address (file, arg1);
fprintf (file, ")(%s)", reg_names [REGNO (arg0)]);
}
break;
case PLUS:
{
register rtx reg = (rtx)0;
register rtx offset = (rtx)0;
register rtx arg0 = XEXP (addr, 0);
register rtx arg1 = XEXP (addr, 1);
if (GET_CODE (arg0) == REG)
{
reg = arg0;
offset = arg1;
if (GET_CODE (offset) == REG)
abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, 2 regs");
}
else if (GET_CODE (arg1) == REG)
{
reg = arg1;
offset = arg0;
}
else if (CONSTANT_P (arg0) && CONSTANT_P (arg1))
{
output_addr_const (file, addr);
break;
}
else
abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, no regs");
if (!CONSTANT_P (offset))
abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, invalid insn #2");
if (REGNO (reg) == ARG_POINTER_REGNUM)
abort_with_insn (addr, "Arg pointer not eliminated.");
output_addr_const (file, offset);
fprintf (file, "(%s)", reg_names [REGNO (reg)]);
}
break;
case LABEL_REF:
case SYMBOL_REF:
case CONST_INT:
case CONST:
output_addr_const (file, addr);
break;
}
}
/* If optimizing for the global pointer, keep track of all of
the externs, so that at the end of the file, we can emit
the appropriate .extern declaration for them, before writing
out the text section. We assume that all names passed to
us are in the permanent obstack, so that they will be valid
at the end of the compilation.
If we have -G 0, or the extern size is unknown, or the object is in
a user specified section that is not .sbss/.sdata, don't bother
emitting the .externs. In the case of user specified sections this
behaviour is required as otherwise GAS will think the object lives in
.sbss/.sdata. */
int
mips_output_external (file, decl, name)
FILE *file;
tree decl;
char *name;
{
register struct extern_list *p;
int len;
tree section_name;
if (TARGET_GP_OPT
&& ((TREE_CODE (decl)) != FUNCTION_DECL)
&& ((len = int_size_in_bytes (TREE_TYPE (decl))) > 0)
&& (((section_name = DECL_SECTION_NAME (decl)) == NULL)
|| strcmp (TREE_STRING_POINTER (section_name), ".sbss") == 0
|| strcmp (TREE_STRING_POINTER (section_name), ".sdata") == 0))
{
p = (struct extern_list *)permalloc ((long) sizeof (struct extern_list));
p->next = extern_head;
p->name = name;
p->size = len;
extern_head = p;
}
#ifdef ASM_OUTPUT_UNDEF_FUNCTION
if (TREE_CODE (decl) == FUNCTION_DECL
/* ??? Don't include alloca, since gcc will always expand it
inline. If we don't do this, libg++ fails to build. */
&& strcmp (name, "alloca")
/* ??? Don't include __builtin_next_arg, because then gcc will not
bootstrap under Irix 5.1. */
&& strcmp (name, "__builtin_next_arg"))
{
p = (struct extern_list *)permalloc ((long) sizeof (struct extern_list));
p->next = extern_head;
p->name = name;
p->size = -1;
extern_head = p;
}
#endif
return 0;
}
#ifdef ASM_OUTPUT_UNDEF_FUNCTION
int
mips_output_external_libcall (file, name)
FILE *file;
char *name;
{
register struct extern_list *p;
p = (struct extern_list *)permalloc ((long) sizeof (struct extern_list));
p->next = extern_head;
p->name = name;
p->size = -1;
extern_head = p;
return 0;
}
#endif
/* Compute a string to use as a temporary file name. */
/* On MSDOS, write temp files in current dir
because there's no place else we can expect to use. */
#if __MSDOS__
#ifndef P_tmpdir
#define P_tmpdir "./"
#endif
#endif
static FILE *
make_temp_file ()
{
FILE *stream;
char *base = getenv ("TMPDIR");
int len;
if (base == (char *)0)
{
#ifdef P_tmpdir
if (access (P_tmpdir, R_OK | W_OK) == 0)
base = P_tmpdir;
else
#endif
if (access ("/usr/tmp", R_OK | W_OK) == 0)
base = "/usr/tmp/";
else
base = "/tmp/";
}
len = strlen (base);
/* temp_filename is global, so we must use malloc, not alloca. */
temp_filename = (char *) xmalloc (len + sizeof("/ctXXXXXX"));
strcpy (temp_filename, base);
if (len > 0 && temp_filename[len-1] != '/')
temp_filename[len++] = '/';
strcpy (temp_filename + len, "ctXXXXXX");
mktemp (temp_filename);
stream = fopen (temp_filename, "w+");
if (!stream)
pfatal_with_name (temp_filename);
#ifndef __MSDOS__
/* In MSDOS, we cannot unlink the temporary file until we are finished using
it. Otherwise, we delete it now, so that it will be gone even if the
compiler happens to crash. */
unlink (temp_filename);
#endif
return stream;
}
/* Emit a new filename to a stream. If this is MIPS ECOFF, watch out
for .file's that start within a function. If we are smuggling stabs, try to
put out a MIPS ECOFF file and a stab. */
void
mips_output_filename (stream, name)
FILE *stream;
char *name;
{
static int first_time = TRUE;
char ltext_label_name[100];
if (first_time)
{
first_time = FALSE;
SET_FILE_NUMBER ();
current_function_file = name;
ASM_OUTPUT_FILENAME (stream, num_source_filenames, name);
/* This tells mips-tfile that stabs will follow. */
if (!TARGET_GAS && write_symbols == DBX_DEBUG)
fprintf (stream, "\t#@stabs\n");
}
else if (write_symbols == DBX_DEBUG)
{
ASM_GENERATE_INTERNAL_LABEL (ltext_label_name, "Ltext", 0);
fprintf (stream, "%s ", ASM_STABS_OP);
output_quoted_string (stream, name);
fprintf (stream, ",%d,0,0,%s\n", N_SOL, &ltext_label_name[1]);
}
else if (name != current_function_file
&& strcmp (name, current_function_file) != 0)
{
if (inside_function && !TARGET_GAS)
{
if (!file_in_function_warning)
{
file_in_function_warning = TRUE;
ignore_line_number = TRUE;
warning ("MIPS ECOFF format does not allow changing filenames within functions with #line");
}
}
else
{
SET_FILE_NUMBER ();
current_function_file = name;
ASM_OUTPUT_FILENAME (stream, num_source_filenames, name);
}
}
}
/* Emit a linenumber. For encapsulated stabs, we need to put out a stab
as well as a .loc, since it is possible that MIPS ECOFF might not be
able to represent the location for inlines that come from a different
file. */
void
mips_output_lineno (stream, line)
FILE *stream;
int line;
{
if (write_symbols == DBX_DEBUG)
{
++sym_lineno;
fprintf (stream, "%sLM%d:\n\t%s %d,0,%d,%sLM%d\n",
LOCAL_LABEL_PREFIX, sym_lineno, ASM_STABN_OP, N_SLINE, line,
LOCAL_LABEL_PREFIX, sym_lineno);
}
else
{
fprintf (stream, "\n\t%s.loc\t%d %d\n",
(ignore_line_number) ? "#" : "",
num_source_filenames, line);
LABEL_AFTER_LOC (stream);
}
}
/* If defined, a C statement to be executed just prior to the
output of assembler code for INSN, to modify the extracted
operands so they will be output differently.
Here the argument OPVEC is the vector containing the operands
extracted from INSN, and NOPERANDS is the number of elements of
the vector which contain meaningful data for this insn. The
contents of this vector are what will be used to convert the
insn template into assembler code, so you can change the
assembler output by changing the contents of the vector.
We use it to check if the current insn needs a nop in front of it
because of load delays, and also to update the delay slot
statistics. */
/* ??? There is no real need for this function, because it never actually
emits a NOP anymore. */
void
final_prescan_insn (insn, opvec, noperands)
rtx insn;
rtx opvec[];
int noperands;
{
if (dslots_number_nops > 0)
{
rtx pattern = PATTERN (insn);
int length = get_attr_length (insn);
/* Do we need to emit a NOP? */
if (length == 0
|| (mips_load_reg != (rtx)0 && reg_mentioned_p (mips_load_reg, pattern))
|| (mips_load_reg2 != (rtx)0 && reg_mentioned_p (mips_load_reg2, pattern))
|| (mips_load_reg3 != (rtx)0 && reg_mentioned_p (mips_load_reg3, pattern))
|| (mips_load_reg4 != (rtx)0 && reg_mentioned_p (mips_load_reg4, pattern)))
fputs ("\t#nop\n", asm_out_file);
else
dslots_load_filled++;
while (--dslots_number_nops > 0)
fputs ("\t#nop\n", asm_out_file);
mips_load_reg = (rtx)0;
mips_load_reg2 = (rtx)0;
mips_load_reg3 = (rtx)0;
mips_load_reg4 = (rtx)0;
}
if (TARGET_STATS)
{
enum rtx_code code = GET_CODE (insn);
if (code == JUMP_INSN || code == CALL_INSN)
dslots_jump_total++;
}
}
/* Output at beginning of assembler file.
If we are optimizing to use the global pointer, create a temporary
file to hold all of the text stuff, and write it out to the end.
This is needed because the MIPS assembler is evidently one pass,
and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
declaration when the code is processed, it generates a two
instruction sequence. */
void
mips_asm_file_start (stream)
FILE *stream;
{
ASM_OUTPUT_SOURCE_FILENAME (stream, main_input_filename);
/* Versions of the MIPS assembler before 2.20 generate errors
if a branch inside of a .set noreorder section jumps to a
label outside of the .set noreorder section. Revision 2.20
just set nobopt silently rather than fixing the bug. */
if (TARGET_MIPS_AS && optimize && flag_delayed_branch)
fprintf (stream, "\t.set\tnobopt\n");
/* Generate the pseudo ops that System V.4 wants. */
#ifndef ABICALLS_ASM_OP
#define ABICALLS_ASM_OP ".abicalls"
#endif
if (TARGET_ABICALLS)
/* ??? but do not want this (or want pic0) if -non-shared? */
fprintf (stream, "\t%s\n", ABICALLS_ASM_OP);
/* Start a section, so that the first .popsection directive is guaranteed
to have a previously defined section to pop back to. */
if (mips_abi != ABI_32 && mips_abi != ABI_EABI)
fprintf (stream, "\t.section\t.text\n");
/* This code exists so that we can put all externs before all symbol
references. This is necessary for the MIPS assembler's global pointer
optimizations to work. */
if (TARGET_FILE_SWITCHING)
{
asm_out_data_file = stream;
asm_out_text_file = make_temp_file ();
}
else
asm_out_data_file = asm_out_text_file = stream;
if (flag_verbose_asm)
fprintf (stream, "\n%s -G value = %d, Cpu = %s, ISA = %d\n",
ASM_COMMENT_START,
mips_section_threshold, mips_cpu_string, mips_isa);
}
/* If we are optimizing the global pointer, emit the text section now
and any small externs which did not have .comm, etc that are
needed. Also, give a warning if the data area is more than 32K and
-pic because 3 instructions are needed to reference the data
pointers. */
void
mips_asm_file_end (file)
FILE *file;
{
char buffer[8192];
tree name_tree;
struct extern_list *p;
int len;
if (HALF_PIC_P ())
HALF_PIC_FINISH (file);
if (extern_head)
{
fputs ("\n", file);
for (p = extern_head; p != 0; p = p->next)
{
name_tree = get_identifier (p->name);
/* Positively ensure only one .extern for any given symbol. */
if (! TREE_ASM_WRITTEN (name_tree))
{
TREE_ASM_WRITTEN (name_tree) = 1;
#ifdef ASM_OUTPUT_UNDEF_FUNCTION
if (p->size == -1)
ASM_OUTPUT_UNDEF_FUNCTION (file, p->name);
else
#endif
{
fputs ("\t.extern\t", file);
assemble_name (file, p->name);
fprintf (file, ", %d\n", p->size);
}
}
}
}
if (TARGET_FILE_SWITCHING)
{
fprintf (file, "\n\t.text\n");
rewind (asm_out_text_file);
if (ferror (asm_out_text_file))
fatal_io_error (temp_filename);
while ((len = fread (buffer, 1, sizeof (buffer), asm_out_text_file)) > 0)
if (fwrite (buffer, 1, len, file) != len)
pfatal_with_name (asm_file_name);
if (len < 0)
pfatal_with_name (temp_filename);
if (fclose (asm_out_text_file) != 0)
pfatal_with_name (temp_filename);
#ifdef __MSDOS__
unlink (temp_filename);
#endif
}
}
/* Emit either a label, .comm, or .lcomm directive, and mark
that the symbol is used, so that we don't emit an .extern
for it in mips_asm_file_end. */
void
mips_declare_object (stream, name, init_string, final_string, size)
FILE *stream;
char *name;
char *init_string;
char *final_string;
int size;
{
fputs (init_string, stream); /* "", "\t.comm\t", or "\t.lcomm\t" */
assemble_name (stream, name);
fprintf (stream, final_string, size); /* ":\n", ",%u\n", ",%u\n" */
if (TARGET_GP_OPT)
{
tree name_tree = get_identifier (name);
TREE_ASM_WRITTEN (name_tree) = 1;
}
}
/* Output a double precision value to the assembler. If both the
host and target are IEEE, emit the values in hex. */
void
mips_output_double (stream, value)
FILE *stream;
REAL_VALUE_TYPE value;
{
#ifdef REAL_VALUE_TO_TARGET_DOUBLE
long value_long[2];
REAL_VALUE_TO_TARGET_DOUBLE (value, value_long);
fprintf (stream, "\t.word\t0x%08lx\t\t# %.20g\n\t.word\t0x%08lx\n",
value_long[0], value, value_long[1]);
#else
fprintf (stream, "\t.double\t%.20g\n", value);
#endif
}
/* Output a single precision value to the assembler. If both the
host and target are IEEE, emit the values in hex. */
void
mips_output_float (stream, value)
FILE *stream;
REAL_VALUE_TYPE value;
{
#ifdef REAL_VALUE_TO_TARGET_SINGLE
long value_long;
REAL_VALUE_TO_TARGET_SINGLE (value, value_long);
fprintf (stream, "\t.word\t0x%08lx\t\t# %.12g (float)\n", value_long, value);
#else
fprintf (stream, "\t.float\t%.12g\n", value);
#endif
}
/* Return the bytes needed to compute the frame pointer from the current
stack pointer.
Mips stack frames look like:
Before call After call
+-----------------------+ +-----------------------+
high | | | |
mem. | | | |
| caller's temps. | | caller's temps. |
| | | |
+-----------------------+ +-----------------------+
| | | |
| arguments on stack. | | arguments on stack. |
| | | |
+-----------------------+ +-----------------------+
| 4 words to save | | 4 words to save |
| arguments passed | | arguments passed |
| in registers, even | | in registers, even |
SP->| if not passed. | VFP->| if not passed. |
+-----------------------+ +-----------------------+
| |
| fp register save |
| |
+-----------------------+
| |
| gp register save |
| |
+-----------------------+
| |
| local variables |
| |
+-----------------------+
| |
| alloca allocations |
| |
+-----------------------+
| |
| GP save for V.4 abi |
| |
+-----------------------+
| |
| arguments on stack |
| |
+-----------------------+
| 4 words to save |
| arguments passed |
| in registers, even |
low SP->| if not passed. |
memory +-----------------------+
*/
long
compute_frame_size (size)
int size; /* # of var. bytes allocated */
{
int regno;
long total_size; /* # bytes that the entire frame takes up */
long var_size; /* # bytes that variables take up */
long args_size; /* # bytes that outgoing arguments take up */
long extra_size; /* # extra bytes */
long gp_reg_rounded; /* # bytes needed to store gp after rounding */
long gp_reg_size; /* # bytes needed to store gp regs */
long fp_reg_size; /* # bytes needed to store fp regs */
long mask; /* mask of saved gp registers */
long fmask; /* mask of saved fp registers */
int fp_inc; /* 1 or 2 depending on the size of fp regs */
long fp_bits; /* bitmask to use for each fp register */
gp_reg_size = 0;
fp_reg_size = 0;
mask = 0;
fmask = 0;
extra_size = MIPS_STACK_ALIGN (((TARGET_ABICALLS) ? UNITS_PER_WORD : 0));
var_size = MIPS_STACK_ALIGN (size);
args_size = MIPS_STACK_ALIGN (current_function_outgoing_args_size);
/* The MIPS 3.0 linker does not like functions that dynamically
allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it
looks like we are trying to create a second frame pointer to the
function, so allocate some stack space to make it happy. */
if (args_size == 0 && current_function_calls_alloca)
args_size = 4*UNITS_PER_WORD;
total_size = var_size + args_size + extra_size;
/* Calculate space needed for gp registers. */
for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
{
if (MUST_SAVE_REGISTER (regno))
{
gp_reg_size += UNITS_PER_WORD;
mask |= 1L << (regno - GP_REG_FIRST);
}
}
/* Calculate space needed for fp registers. */
if (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT)
{
fp_inc = 1;
fp_bits = 1;
}
else
{
fp_inc = 2;
fp_bits = 3;
}
for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno += fp_inc)
{
if (regs_ever_live[regno] && !call_used_regs[regno])
{
fp_reg_size += fp_inc * UNITS_PER_FPREG;
fmask |= fp_bits << (regno - FP_REG_FIRST);
}
}
gp_reg_rounded = MIPS_STACK_ALIGN (gp_reg_size);
total_size += gp_reg_rounded + MIPS_STACK_ALIGN (fp_reg_size);
/* The gp reg is caller saved in the 32 bit ABI, so there is no need
for leaf routines (total_size == extra_size) to save the gp reg.
The gp reg is callee saved in the 64 bit ABI, so all routines must
save the gp reg. */
if (total_size == extra_size && (mips_abi == ABI_32 || mips_abi == ABI_EABI))
total_size = extra_size = 0;
else if (TARGET_ABICALLS)
{
/* Add the context-pointer to the saved registers. */
gp_reg_size += UNITS_PER_WORD;
mask |= 1L << (PIC_OFFSET_TABLE_REGNUM - GP_REG_FIRST);
total_size -= gp_reg_rounded;
gp_reg_rounded = MIPS_STACK_ALIGN (gp_reg_size);
total_size += gp_reg_rounded;
}
/* Add in space reserved on the stack by the callee for storing arguments
passed in registers. */
if (mips_abi != ABI_32)
total_size += MIPS_STACK_ALIGN (current_function_pretend_args_size);
/* Save other computed information. */
current_frame_info.total_size = total_size;
current_frame_info.var_size = var_size;
current_frame_info.args_size = args_size;
current_frame_info.extra_size = extra_size;
current_frame_info.gp_reg_size = gp_reg_size;
current_frame_info.fp_reg_size = fp_reg_size;
current_frame_info.mask = mask;
current_frame_info.fmask = fmask;
current_frame_info.initialized = reload_completed;
current_frame_info.num_gp = gp_reg_size / UNITS_PER_WORD;
current_frame_info.num_fp = fp_reg_size / (fp_inc * UNITS_PER_FPREG);
if (mask)
{
unsigned long offset = (args_size + extra_size + var_size
+ gp_reg_size - UNITS_PER_WORD);
current_frame_info.gp_sp_offset = offset;
current_frame_info.gp_save_offset = offset - total_size;
}
else
{
current_frame_info.gp_sp_offset = 0;
current_frame_info.gp_save_offset = 0;
}
if (fmask)
{
unsigned long offset = (args_size + extra_size + var_size
+ gp_reg_rounded + fp_reg_size
- fp_inc * UNITS_PER_FPREG);
current_frame_info.fp_sp_offset = offset;
current_frame_info.fp_save_offset = offset - total_size;
}
else
{
current_frame_info.fp_sp_offset = 0;
current_frame_info.fp_save_offset = 0;
}
/* Ok, we're done. */
return total_size;
}
/* Common code to emit the insns (or to write the instructions to a file)
to save/restore registers.
Other parts of the code assume that MIPS_TEMP1_REGNUM (aka large_reg)
is not modified within save_restore_insns. */
#define BITSET_P(value,bit) (((value) & (1L << (bit))) != 0)
static void
save_restore_insns (store_p, large_reg, large_offset, file)
int store_p; /* true if this is prologue */
rtx large_reg; /* register holding large offset constant or NULL */
long large_offset; /* large constant offset value */
FILE *file; /* file to write instructions to instead of making RTL */
{
long mask = current_frame_info.mask;
long fmask = current_frame_info.fmask;
int regno;
rtx base_reg_rtx;
long base_offset;
long gp_offset;
long fp_offset;
long end_offset;
rtx insn;
if (frame_pointer_needed && !BITSET_P (mask, FRAME_POINTER_REGNUM - GP_REG_FIRST))
abort ();
if (mask == 0 && fmask == 0)
return;
/* Save registers starting from high to low. The debuggers prefer
at least the return register be stored at func+4, and also it
allows us not to need a nop in the epilog if at least one
register is reloaded in addition to return address. */
/* Save GP registers if needed. */
if (mask)
{
/* Pick which pointer to use as a base register. For small
frames, just use the stack pointer. Otherwise, use a
temporary register. Save 2 cycles if the save area is near
the end of a large frame, by reusing the constant created in
the prologue/epilogue to adjust the stack frame. */
gp_offset = current_frame_info.gp_sp_offset;
end_offset = gp_offset - (current_frame_info.gp_reg_size - UNITS_PER_WORD);
if (gp_offset < 0 || end_offset < 0)
fatal ("gp_offset (%ld) or end_offset (%ld) is less than zero.",
gp_offset, end_offset);
else if (gp_offset < 32768)
{
base_reg_rtx = stack_pointer_rtx;
base_offset = 0;
}
else if (large_reg != (rtx)0
&& (((unsigned long)(large_offset - gp_offset)) < 32768)
&& (((unsigned long)(large_offset - end_offset)) < 32768))
{
base_reg_rtx = gen_rtx (REG, Pmode, MIPS_TEMP2_REGNUM);
base_offset = large_offset;
if (file == (FILE *)0)
{
if (TARGET_LONG64)
insn = emit_insn (gen_adddi3 (base_reg_rtx, large_reg, stack_pointer_rtx));
else
insn = emit_insn (gen_addsi3 (base_reg_rtx, large_reg, stack_pointer_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
}
else
fprintf (file, "\t%s\t%s,%s,%s\n",
TARGET_LONG64 ? "daddu" : "addu",
reg_names[MIPS_TEMP2_REGNUM],
reg_names[REGNO (large_reg)],
reg_names[STACK_POINTER_REGNUM]);
}
else
{
base_reg_rtx = gen_rtx (REG, Pmode, MIPS_TEMP2_REGNUM);
base_offset = gp_offset;
if (file == (FILE *)0)
{
insn = emit_move_insn (base_reg_rtx, GEN_INT (gp_offset));
RTX_FRAME_RELATED_P (insn) = 1;
if (TARGET_LONG64)
insn = emit_insn (gen_adddi3 (base_reg_rtx, base_reg_rtx, stack_pointer_rtx));
else
insn = emit_insn (gen_addsi3 (base_reg_rtx, base_reg_rtx, stack_pointer_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
}
else
fprintf (file, "\tli\t%s,0x%.08lx\t# %ld\n\t%s\t%s,%s,%s\n",
reg_names[MIPS_TEMP2_REGNUM],
(long)base_offset,
(long)base_offset,
TARGET_LONG64 ? "daddu" : "addu",
reg_names[MIPS_TEMP2_REGNUM],
reg_names[MIPS_TEMP2_REGNUM],
reg_names[STACK_POINTER_REGNUM]);
}
for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
{
if (BITSET_P (mask, regno - GP_REG_FIRST))
{
if (file == (FILE *)0)
{
rtx reg_rtx = gen_rtx (REG, word_mode, regno);
rtx mem_rtx = gen_rtx (MEM, word_mode,
gen_rtx (PLUS, Pmode, base_reg_rtx,
GEN_INT (gp_offset - base_offset)));
if (store_p)
{
insn = emit_move_insn (mem_rtx, reg_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
}
else if (!TARGET_ABICALLS || mips_abi != ABI_32
|| regno != (PIC_OFFSET_TABLE_REGNUM - GP_REG_FIRST))
emit_move_insn (reg_rtx, mem_rtx);
}
else
{
if (store_p || !TARGET_ABICALLS || mips_abi != ABI_32
|| regno != (PIC_OFFSET_TABLE_REGNUM - GP_REG_FIRST))
fprintf (file, "\t%s\t%s,%ld(%s)\n",
(TARGET_64BIT
? (store_p) ? "sd" : "ld"
: (store_p) ? "sw" : "lw"),
reg_names[regno],
gp_offset - base_offset,
reg_names[REGNO(base_reg_rtx)]);
}
gp_offset -= UNITS_PER_WORD;
}
}
}
else
{
base_reg_rtx = (rtx)0; /* Make sure these are initialized */
base_offset = 0;
}
/* Save floating point registers if needed. */
if (fmask)
{
int fp_inc = (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT) ? 1 : 2;
int fp_size = fp_inc * UNITS_PER_FPREG;
/* Pick which pointer to use as a base register. */
fp_offset = current_frame_info.fp_sp_offset;
end_offset = fp_offset - (current_frame_info.fp_reg_size - fp_size);
if (fp_offset < 0 || end_offset < 0)
fatal ("fp_offset (%ld) or end_offset (%ld) is less than zero.",
fp_offset, end_offset);
else if (fp_offset < 32768)
{
base_reg_rtx = stack_pointer_rtx;
base_offset = 0;
}
else if (base_reg_rtx != (rtx)0
&& (((unsigned long)(base_offset - fp_offset)) < 32768)
&& (((unsigned long)(base_offset - end_offset)) < 32768))
{
; /* already set up for gp registers above */
}
else if (large_reg != (rtx)0
&& (((unsigned long)(large_offset - fp_offset)) < 32768)
&& (((unsigned long)(large_offset - end_offset)) < 32768))
{
base_reg_rtx = gen_rtx (REG, Pmode, MIPS_TEMP2_REGNUM);
base_offset = large_offset;
if (file == (FILE *)0)
{
if (TARGET_LONG64)
insn = emit_insn (gen_adddi3 (base_reg_rtx, large_reg, stack_pointer_rtx));
else
insn = emit_insn (gen_addsi3 (base_reg_rtx, large_reg, stack_pointer_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
}
else
fprintf (file, "\t%s\t%s,%s,%s\n",
TARGET_LONG64 ? "daddu" : "addu",
reg_names[MIPS_TEMP2_REGNUM],
reg_names[REGNO (large_reg)],
reg_names[STACK_POINTER_REGNUM]);
}
else
{
base_reg_rtx = gen_rtx (REG, Pmode, MIPS_TEMP2_REGNUM);
base_offset = fp_offset;
if (file == (FILE *)0)
{
insn = emit_move_insn (base_reg_rtx, GEN_INT (fp_offset));
RTX_FRAME_RELATED_P (insn) = 1;
if (TARGET_LONG64)
insn = emit_insn (gen_adddi3 (base_reg_rtx, base_reg_rtx, stack_pointer_rtx));
else
insn = emit_insn (gen_addsi3 (base_reg_rtx, base_reg_rtx, stack_pointer_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
}
else
fprintf (file, "\tli\t%s,0x%.08lx\t# %ld\n\t%s\t%s,%s,%s\n",
reg_names[MIPS_TEMP2_REGNUM],
(long)base_offset,
(long)base_offset,
TARGET_LONG64 ? "daddu" : "addu",
reg_names[MIPS_TEMP2_REGNUM],
reg_names[MIPS_TEMP2_REGNUM],
reg_names[STACK_POINTER_REGNUM]);
}
for (regno = FP_REG_LAST-1; regno >= FP_REG_FIRST; regno -= fp_inc)
{
if (BITSET_P (fmask, regno - FP_REG_FIRST))
{
if (file == (FILE *)0)
{
enum machine_mode sz =
TARGET_SINGLE_FLOAT ? SFmode : DFmode;
rtx reg_rtx = gen_rtx (REG, sz, regno);
rtx mem_rtx = gen_rtx (MEM, sz,
gen_rtx (PLUS, Pmode, base_reg_rtx,
GEN_INT (fp_offset - base_offset)));
if (store_p)
{
insn = emit_move_insn (mem_rtx, reg_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
}
else
emit_move_insn (reg_rtx, mem_rtx);
}
else
fprintf (file, "\t%s\t%s,%ld(%s)\n",
(TARGET_SINGLE_FLOAT
? ((store_p) ? "s.s" : "l.s")
: ((store_p) ? "s.d" : "l.d")),
reg_names[regno],
fp_offset - base_offset,
reg_names[REGNO(base_reg_rtx)]);
fp_offset -= fp_size;
}
}
}
}
/* Set up the stack and frame (if desired) for the function. */
void
function_prologue (file, size)
FILE *file;
int size;
{
char *fnname;
long tsize = current_frame_info.total_size;
ASM_OUTPUT_SOURCE_FILENAME (file, DECL_SOURCE_FILE (current_function_decl));
#ifdef SDB_DEBUGGING_INFO
if (debug_info_level != DINFO_LEVEL_TERSE && write_symbols == SDB_DEBUG)
ASM_OUTPUT_SOURCE_LINE (file, DECL_SOURCE_LINE (current_function_decl));
#endif
inside_function = 1;
#ifndef FUNCTION_NAME_ALREADY_DECLARED
/* Get the function name the same way that toplev.c does before calling
assemble_start_function. This is needed so that the name used here
exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
fputs ("\t.ent\t", file);
assemble_name (file, fnname);
fputs ("\n", file);
assemble_name (file, fnname);
fputs (":\n", file);
#endif
fprintf (file, "\t.frame\t%s,%d,%s\t\t# vars= %d, regs= %d/%d, args= %d, extra= %d\n",
reg_names[ (frame_pointer_needed) ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM ],
tsize,
reg_names[31 + GP_REG_FIRST],
current_frame_info.var_size,
current_frame_info.num_gp,
current_frame_info.num_fp,
current_function_outgoing_args_size,
current_frame_info.extra_size);
fprintf (file, "\t.mask\t0x%08lx,%d\n\t.fmask\t0x%08lx,%d\n",
current_frame_info.mask,
current_frame_info.gp_save_offset,
current_frame_info.fmask,
current_frame_info.fp_save_offset);
if (TARGET_ABICALLS && mips_abi == ABI_32)
{
char *sp_str = reg_names[STACK_POINTER_REGNUM];
fprintf (file, "\t.set\tnoreorder\n\t.cpload\t%s\n\t.set\treorder\n",
reg_names[PIC_FUNCTION_ADDR_REGNUM]);
if (tsize > 0)
{
fprintf (file, "\t%s\t%s,%s,%d\n",
(TARGET_LONG64 ? "dsubu" : "subu"),
sp_str, sp_str, tsize);
fprintf (file, "\t.cprestore %d\n", current_frame_info.args_size);
}
}
}
/* Expand the prologue into a bunch of separate insns. */
void
mips_expand_prologue ()
{
int regno;
long tsize;
rtx tmp_rtx = (rtx)0;
char *arg_name = (char *)0;
tree fndecl = current_function_decl;
tree fntype = TREE_TYPE (fndecl);
tree fnargs = DECL_ARGUMENTS (fndecl);
rtx next_arg_reg;
int i;
tree next_arg;
tree cur_arg;
CUMULATIVE_ARGS args_so_far;
/* If struct value address is treated as the first argument, make it so. */
if (aggregate_value_p (DECL_RESULT (fndecl))
&& ! current_function_returns_pcc_struct
&& struct_value_incoming_rtx == 0)
{
tree type = build_pointer_type (fntype);
tree function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
DECL_ARG_TYPE (function_result_decl) = type;
TREE_CHAIN (function_result_decl) = fnargs;
fnargs = function_result_decl;
}
/* Determine the last argument, and get its name. */
INIT_CUMULATIVE_ARGS (args_so_far, fntype, (rtx)0, 0);
regno = GP_ARG_FIRST;
for (cur_arg = fnargs; cur_arg != (tree)0; cur_arg = next_arg)
{
tree passed_type = DECL_ARG_TYPE (cur_arg);
enum machine_mode passed_mode = TYPE_MODE (passed_type);
rtx entry_parm;
if (TREE_ADDRESSABLE (passed_type))
{
passed_type = build_pointer_type (passed_type);
passed_mode = Pmode;
}
entry_parm = FUNCTION_ARG (args_so_far, passed_mode, passed_type, 1);
if (entry_parm)
{
int words;
/* passed in a register, so will get homed automatically */
if (GET_MODE (entry_parm) == BLKmode)
words = (int_size_in_bytes (passed_type) + 3) / 4;
else
words = (GET_MODE_SIZE (GET_MODE (entry_parm)) + 3) / 4;
regno = REGNO (entry_parm) + words - 1;
}
else
{
regno = GP_ARG_LAST+1;
break;
}
FUNCTION_ARG_ADVANCE (args_so_far, passed_mode, passed_type, 1);
next_arg = TREE_CHAIN (cur_arg);
if (next_arg == (tree)0)
{
if (DECL_NAME (cur_arg))
arg_name = IDENTIFIER_POINTER (DECL_NAME (cur_arg));
break;
}
}
/* In order to pass small structures by value in registers
compatibly with the MIPS compiler, we need to shift the value
into the high part of the register. Function_arg has encoded a
PARALLEL rtx, holding a vector of adjustments to be made as the
next_arg_reg variable, so we split up the insns, and emit them
separately. */
next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1);
if (next_arg_reg != (rtx)0 && GET_CODE (next_arg_reg) == PARALLEL)
{
rtvec adjust = XVEC (next_arg_reg, 0);
int num = GET_NUM_ELEM (adjust);
for (i = 0; i < num; i++)
{
rtx pattern = RTVEC_ELT (adjust, i);
if (GET_CODE (pattern) != SET
|| GET_CODE (SET_SRC (pattern)) != ASHIFT)
abort_with_insn (pattern, "Insn is not a shift");
PUT_CODE (SET_SRC (pattern), ASHIFTRT);
emit_insn (pattern);
}
}
tsize = compute_frame_size (get_frame_size ());
/* If this function is a varargs function, store any registers that
would normally hold arguments ($4 - $7) on the stack. */
if (mips_abi == ABI_32
&& ((TYPE_ARG_TYPES (fntype) != 0
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) != void_type_node))
|| (arg_name != (char *)0
&& ((arg_name[0] == '_' && strcmp (arg_name, "__builtin_va_alist") == 0)
|| (arg_name[0] == 'v' && strcmp (arg_name, "va_alist") == 0)))))
{
int offset = (regno - GP_ARG_FIRST) * UNITS_PER_WORD;
rtx ptr = stack_pointer_rtx;
/* If we are doing svr4-abi, sp has already been decremented by tsize. */
if (TARGET_ABICALLS)
offset += tsize;
for (; regno <= GP_ARG_LAST; regno++)
{
if (offset != 0)
ptr = gen_rtx (PLUS, Pmode, stack_pointer_rtx, GEN_INT (offset));
emit_move_insn (gen_rtx (MEM, word_mode, ptr),
gen_rtx (REG, word_mode, regno));
offset += UNITS_PER_WORD;
}
}
if (tsize > 0)
{
rtx tsize_rtx = GEN_INT (tsize);
/* If we are doing svr4-abi, sp move is done by function_prologue. */
if (!TARGET_ABICALLS || mips_abi != ABI_32)
{
rtx insn;
if (tsize > 32767)
{
tmp_rtx = gen_rtx (REG, Pmode, MIPS_TEMP1_REGNUM);
/* Instruction splitting doesn't preserve the RTX_FRAME_RELATED_P
bit, so make sure that we don't emit anything that can be
split. */
/* ??? There is no DImode ori immediate pattern, so we can only
do this for 32 bit code. */
if (large_int (tsize_rtx) && GET_MODE (tmp_rtx) == SImode)
{
insn = emit_move_insn (tmp_rtx,
GEN_INT (tsize & 0xffff0000));
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_insn (gen_iorsi3 (tmp_rtx, tmp_rtx,
GEN_INT (tsize & 0x0000ffff)));
RTX_FRAME_RELATED_P (insn) = 1;
}
else
{
insn = emit_move_insn (tmp_rtx, tsize_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
}
tsize_rtx = tmp_rtx;
}
if (TARGET_LONG64)
insn = emit_insn (gen_subdi3 (stack_pointer_rtx, stack_pointer_rtx,
tsize_rtx));
else
insn = emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx,
tsize_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
}
save_restore_insns (TRUE, tmp_rtx, tsize, (FILE *)0);
if (frame_pointer_needed)
{
rtx insn;
if (TARGET_64BIT)
insn= emit_insn (gen_movdi (frame_pointer_rtx, stack_pointer_rtx));
else
insn= emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
}
if (TARGET_ABICALLS && mips_abi != ABI_32)
emit_insn (gen_loadgp (XEXP (DECL_RTL (current_function_decl), 0)));
}
/* If we are profiling, make sure no instructions are scheduled before
the call to mcount. */
if (profile_flag || profile_block_flag)
emit_insn (gen_blockage ());
}
/* Do any necessary cleanup after a function to restore stack, frame, and regs. */
#define RA_MASK ((long) 0x80000000) /* 1 << 31 */
#define PIC_OFFSET_TABLE_MASK (1 << (PIC_OFFSET_TABLE_REGNUM - GP_REG_FIRST))
void
function_epilogue (file, size)
FILE *file;
int size;
{
char *fnname;
#ifndef FUNCTION_NAME_ALREADY_DECLARED
/* Get the function name the same way that toplev.c does before calling
assemble_start_function. This is needed so that the name used here
exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
fputs ("\t.end\t", file);
assemble_name (file, fnname);
fputs ("\n", file);
#endif
if (TARGET_STATS)
{
int num_gp_regs = current_frame_info.gp_reg_size / 4;
int num_fp_regs = current_frame_info.fp_reg_size / 8;
int num_regs = num_gp_regs + num_fp_regs;
char *name = fnname;
if (name[0] == '*')
name++;
dslots_load_total += num_regs;
fprintf (stderr,
"%-20s fp=%c leaf=%c alloca=%c setjmp=%c stack=%4ld arg=%3ld reg=%2d/%d delay=%3d/%3dL %3d/%3dJ refs=%3d/%3d/%3d",
name,
(frame_pointer_needed) ? 'y' : 'n',
((current_frame_info.mask & RA_MASK) != 0) ? 'n' : 'y',
(current_function_calls_alloca) ? 'y' : 'n',
(current_function_calls_setjmp) ? 'y' : 'n',
(long)current_frame_info.total_size,
(long)current_function_outgoing_args_size,
num_gp_regs, num_fp_regs,
dslots_load_total, dslots_load_filled,
dslots_jump_total, dslots_jump_filled,
num_refs[0], num_refs[1], num_refs[2]);
if (HALF_PIC_NUMBER_PTRS > prev_half_pic_ptrs)
{
fprintf (stderr, " half-pic=%3d", HALF_PIC_NUMBER_PTRS - prev_half_pic_ptrs);
prev_half_pic_ptrs = HALF_PIC_NUMBER_PTRS;
}
if (HALF_PIC_NUMBER_REFS > prev_half_pic_refs)
{
fprintf (stderr, " pic-ref=%3d", HALF_PIC_NUMBER_REFS - prev_half_pic_refs);
prev_half_pic_refs = HALF_PIC_NUMBER_REFS;
}
fputc ('\n', stderr);
}
/* Reset state info for each function. */
inside_function = FALSE;
ignore_line_number = FALSE;
dslots_load_total = 0;
dslots_jump_total = 0;
dslots_load_filled = 0;
dslots_jump_filled = 0;
num_refs[0] = 0;
num_refs[1] = 0;
num_refs[2] = 0;
mips_load_reg = (rtx)0;
mips_load_reg2 = (rtx)0;
current_frame_info = zero_frame_info;
/* Restore the output file if optimizing the GP (optimizing the GP causes
the text to be diverted to a tempfile, so that data decls come before
references to the data). */
if (TARGET_GP_OPT)
asm_out_file = asm_out_data_file;
}
/* Expand the epilogue into a bunch of separate insns. */
void
mips_expand_epilogue ()
{
long tsize = current_frame_info.total_size;
rtx tsize_rtx = GEN_INT (tsize);
rtx tmp_rtx = (rtx)0;
if (mips_can_use_return_insn ())
{
emit_insn (gen_return ());
return;
}
if (tsize > 32767)
{
tmp_rtx = gen_rtx (REG, Pmode, MIPS_TEMP1_REGNUM);
emit_move_insn (tmp_rtx, tsize_rtx);
tsize_rtx = tmp_rtx;
}
if (tsize > 0)
{
if (frame_pointer_needed)
{
emit_insn (gen_blockage ());
if (TARGET_LONG64)
emit_insn (gen_movdi (stack_pointer_rtx, frame_pointer_rtx));
else
emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx));
}
save_restore_insns (FALSE, tmp_rtx, tsize, (FILE *)0);
emit_insn (gen_blockage ());
if (TARGET_LONG64)
emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
tsize_rtx));
else
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
tsize_rtx));
}
emit_jump_insn (gen_return_internal ());
}
/* Return true if this function is known to have a null epilogue.
This allows the optimizer to omit jumps to jumps if no stack
was created. */
int
mips_can_use_return_insn ()
{
if (!reload_completed)
return 0;
if (regs_ever_live[31] || profile_flag)
return 0;
if (current_frame_info.initialized)
return current_frame_info.total_size == 0;
return (compute_frame_size (get_frame_size ())) == 0;
}
/* Choose the section to use for the constant rtx expression X that has
mode MODE. */
mips_select_rtx_section (mode, x)
enum machine_mode mode;
rtx x;
{
if (TARGET_EMBEDDED_DATA)
{
/* For embedded applications, always put constants in read-only data,
in order to reduce RAM usage. */
READONLY_DATA_SECTION ();
}
else
{
/* For hosted applications, always put constants in small data if
possible, as this gives the best performance. */
if (GET_MODE_SIZE (mode) <= mips_section_threshold
&& mips_section_threshold > 0)
SMALL_DATA_SECTION ();
else
READONLY_DATA_SECTION ();
}
}
/* Choose the section to use for DECL. RELOC is true if its value contains
any relocatable expression. */
mips_select_section (decl, reloc)
tree decl;
int reloc;
{
int size = int_size_in_bytes (TREE_TYPE (decl));
if (TARGET_EMBEDDED_PIC
&& TREE_CODE (decl) == STRING_CST
&& !flag_writable_strings)
{
/* For embedded position independent code, put constant strings
in the text section, because the data section is limited to
64K in size. */
text_section ();
}
else if (TARGET_EMBEDDED_DATA)
{
/* For embedded applications, always put an object in read-only data
if possible, in order to reduce RAM usage. */
if (((TREE_CODE (decl) == VAR_DECL
&& TREE_READONLY (decl) && !TREE_SIDE_EFFECTS (decl)
&& DECL_INITIAL (decl)
&& (DECL_INITIAL (decl) == error_mark_node
|| TREE_CONSTANT (DECL_INITIAL (decl))))
/* Deal with calls from output_constant_def_contents. */
|| (TREE_CODE (decl) != VAR_DECL
&& (TREE_CODE (decl) != STRING_CST
|| !flag_writable_strings)))
&& ! (flag_pic && reloc))
READONLY_DATA_SECTION ();
else if (size > 0 && size <= mips_section_threshold)
SMALL_DATA_SECTION ();
else
data_section ();
}
else
{
/* For hosted applications, always put an object in small data if
possible, as this gives the best performance. */
if (size > 0 && size <= mips_section_threshold)
SMALL_DATA_SECTION ();
else if (((TREE_CODE (decl) == VAR_DECL
&& TREE_READONLY (decl) && !TREE_SIDE_EFFECTS (decl)
&& DECL_INITIAL (decl)
&& (DECL_INITIAL (decl) == error_mark_node
|| TREE_CONSTANT (DECL_INITIAL (decl))))
/* Deal with calls from output_constant_def_contents. */
|| (TREE_CODE (decl) != VAR_DECL
&& (TREE_CODE (decl) != STRING_CST
|| !flag_writable_strings)))
&& ! (flag_pic && reloc))
READONLY_DATA_SECTION ();
else
data_section ();
}
}
#ifdef MIPS_ABI_DEFAULT
/* Support functions for the 64 bit ABI. */
/* Return register to use for a function return value with VALTYPE for function
FUNC. */
rtx
mips_function_value (valtype, func)
tree valtype;
tree func;
{
int reg = GP_RETURN;
enum machine_mode mode = TYPE_MODE (valtype);
enum mode_class mclass = GET_MODE_CLASS (mode);
/* ??? How should we return complex float? */
if (mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT)
{
if (TARGET_SINGLE_FLOAT
&& (mclass == MODE_FLOAT
? GET_MODE_SIZE (mode) > 4
: GET_MODE_SIZE (mode) / 2 > 4))
reg = GP_RETURN;
else
reg = FP_RETURN;
}
else if (TREE_CODE (valtype) == RECORD_TYPE
&& mips_abi != ABI_32 && mips_abi != ABI_EABI)
{
/* A struct with only one or two floating point fields is returned in
the floating point registers. */
tree field, fields[2];
int i;
for (i = 0, field = TYPE_FIELDS (valtype); field;
field = TREE_CHAIN (field))
{
if (TREE_CODE (field) != FIELD_DECL)
continue;
if (TREE_CODE (TREE_TYPE (field)) != REAL_TYPE || i >= 2)
break;
fields[i++] = field;
}
/* Must check i, so that we reject structures with no elements. */
if (! field)
{
if (i == 1)
{
/* The structure has DImode, but we don't allow DImode values
in FP registers, so we use a PARALLEL even though it isn't
strictly necessary. */
enum machine_mode field_mode = TYPE_MODE (TREE_TYPE (fields[0]));
return gen_rtx (PARALLEL, mode,
gen_rtvec (1,
gen_rtx (EXPR_LIST, VOIDmode,
gen_rtx (REG, field_mode, FP_RETURN),
const0_rtx)));
}
else if (i == 2)
{
enum machine_mode first_mode
= TYPE_MODE (TREE_TYPE (fields[0]));
enum machine_mode second_mode
= TYPE_MODE (TREE_TYPE (fields[1]));
int first_offset
= TREE_INT_CST_LOW (DECL_FIELD_BITPOS (fields[0]));
int second_offset
= TREE_INT_CST_LOW (DECL_FIELD_BITPOS (fields[1]));
return gen_rtx (PARALLEL, mode,
gen_rtvec (2,
gen_rtx (EXPR_LIST, VOIDmode,
gen_rtx (REG, first_mode, FP_RETURN),
GEN_INT (first_offset / BITS_PER_UNIT)),
gen_rtx (EXPR_LIST, VOIDmode,
gen_rtx (REG, second_mode, FP_RETURN + 2),
GEN_INT (second_offset / BITS_PER_UNIT))));
}
}
}
return gen_rtx (REG, mode, reg);
}
/* The implementation of FUNCTION_ARG_PASS_BY_REFERENCE. Return
nonzero when an argument must be passed by reference. */
int
function_arg_pass_by_reference (cum, mode, type, named)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int named;
{
int size;
if (mips_abi != ABI_EABI)
return 0;
/* ??? How should SCmode be handled? */
if (type == NULL_TREE || mode == DImode || mode == DFmode)
return 0;
size = int_size_in_bytes (type);
return size == -1 || size > UNITS_PER_WORD;
}
#endif
/* This function returns the register class required for a secondary
register when copying between one of the registers in CLASS, and X,
using MODE. If IN_P is nonzero, the copy is going from X to the
register, otherwise the register is the source. A return value of
NO_REGS means that no secondary register is required. */
enum reg_class
mips_secondary_reload_class (class, mode, x, in_p)
enum reg_class class;
enum machine_mode mode;
rtx x;
int in_p;
{
int regno = -1;
if (GET_CODE (x) == SIGN_EXTEND)
{
int off = 0;
x = XEXP (x, 0);
/* We may be called with reg_renumber NULL from regclass.
??? This is probably a bug. */
if (reg_renumber)
regno = true_regnum (x);
else
{
while (GET_CODE (x) == SUBREG)
{
off += SUBREG_WORD (x);
x = SUBREG_REG (x);
}
if (GET_CODE (x) == REG)
regno = REGNO (x) + off;
}
}
else if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
regno = true_regnum (x);
/* We always require a general register when copying anything to
HILO_REGNUM, except when copying an SImode value from HILO_REGNUM
to a general register, or when copying from register 0. */
if (class == HILO_REG && regno != GP_REG_FIRST + 0)
{
if (! in_p
&& GP_REG_P (regno)
&& GET_MODE_SIZE (mode) <= GET_MODE_SIZE (SImode))
return NO_REGS;
return GR_REGS;
}
if (regno == HILO_REGNUM)
{
if (in_p
&& class == GR_REGS
&& GET_MODE_SIZE (mode) <= GET_MODE_SIZE (SImode))
return NO_REGS;
return GR_REGS;
}
/* Copying from HI or LO to anywhere other than a general register
requires a general register. */
if (class == HI_REG || class == LO_REG || class == MD_REGS)
{
if (GP_REG_P (regno))
return NO_REGS;
return GR_REGS;
}
if (MD_REG_P (regno))
{
if (class == GR_REGS)
return NO_REGS;
return GR_REGS;
}
/* We can only copy a value to a condition code register from a
floating point register, and even then we require a scratch
floating point register. We can only copy a value out of a
condition code register into a general register. */
if (class == ST_REGS)
{
if (in_p)
return FP_REGS;
if (GP_REG_P (regno))
return NO_REGS;
return GR_REGS;
}
if (ST_REG_P (regno))
{
if (! in_p)
return FP_REGS;
if (class == GR_REGS)
return NO_REGS;
return GR_REGS;
}
return NO_REGS;
}