blob: ce5a0c8155e6716f1eda0b38d7e5405e6f10667a [file] [log] [blame]
/* Gimple ranger SSA cache implementation.
Copyright (C) 2017-2022 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "gimple-range.h"
#include "value-range-storage.h"
#include "tree-cfg.h"
#include "target.h"
#include "attribs.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "cfganal.h"
#define DEBUG_RANGE_CACHE (dump_file \
&& (param_ranger_debug & RANGER_DEBUG_CACHE))
// This class represents the API into a cache of ranges for an SSA_NAME.
// Routines must be implemented to set, get, and query if a value is set.
class ssa_block_ranges
{
public:
ssa_block_ranges (tree t) : m_type (t) { }
virtual bool set_bb_range (const_basic_block bb, const vrange &r) = 0;
virtual bool get_bb_range (vrange &r, const_basic_block bb) = 0;
virtual bool bb_range_p (const_basic_block bb) = 0;
void dump(FILE *f);
private:
tree m_type;
};
// Print the list of known ranges for file F in a nice format.
void
ssa_block_ranges::dump (FILE *f)
{
basic_block bb;
Value_Range r (m_type);
FOR_EACH_BB_FN (bb, cfun)
if (get_bb_range (r, bb))
{
fprintf (f, "BB%d -> ", bb->index);
r.dump (f);
fprintf (f, "\n");
}
}
// This class implements the range cache as a linear vector, indexed by BB.
// It caches a varying and undefined range which are used instead of
// allocating new ones each time.
class sbr_vector : public ssa_block_ranges
{
public:
sbr_vector (tree t, vrange_allocator *allocator);
virtual bool set_bb_range (const_basic_block bb, const vrange &r) override;
virtual bool get_bb_range (vrange &r, const_basic_block bb) override;
virtual bool bb_range_p (const_basic_block bb) override;
protected:
vrange **m_tab; // Non growing vector.
int m_tab_size;
vrange *m_varying;
vrange *m_undefined;
tree m_type;
vrange_allocator *m_range_allocator;
void grow ();
};
// Initialize a block cache for an ssa_name of type T.
sbr_vector::sbr_vector (tree t, vrange_allocator *allocator)
: ssa_block_ranges (t)
{
gcc_checking_assert (TYPE_P (t));
m_type = t;
m_range_allocator = allocator;
m_tab_size = last_basic_block_for_fn (cfun) + 1;
m_tab = static_cast <vrange **>
(allocator->alloc (m_tab_size * sizeof (vrange *)));
memset (m_tab, 0, m_tab_size * sizeof (vrange *));
// Create the cached type range.
m_varying = m_range_allocator->alloc_vrange (t);
m_undefined = m_range_allocator->alloc_vrange (t);
m_varying->set_varying (t);
m_undefined->set_undefined ();
}
// Grow the vector when the CFG has increased in size.
void
sbr_vector::grow ()
{
int curr_bb_size = last_basic_block_for_fn (cfun);
gcc_checking_assert (curr_bb_size > m_tab_size);
// Increase the max of a)128, b)needed increase * 2, c)10% of current_size.
int inc = MAX ((curr_bb_size - m_tab_size) * 2, 128);
inc = MAX (inc, curr_bb_size / 10);
int new_size = inc + curr_bb_size;
// Allocate new memory, copy the old vector and clear the new space.
vrange **t = static_cast <vrange **>
(m_range_allocator->alloc (new_size * sizeof (vrange *)));
memcpy (t, m_tab, m_tab_size * sizeof (vrange *));
memset (t + m_tab_size, 0, (new_size - m_tab_size) * sizeof (vrange *));
m_tab = t;
m_tab_size = new_size;
}
// Set the range for block BB to be R.
bool
sbr_vector::set_bb_range (const_basic_block bb, const vrange &r)
{
vrange *m;
if (bb->index >= m_tab_size)
grow ();
if (r.varying_p ())
m = m_varying;
else if (r.undefined_p ())
m = m_undefined;
else
m = m_range_allocator->clone (r);
m_tab[bb->index] = m;
return true;
}
// Return the range associated with block BB in R. Return false if
// there is no range.
bool
sbr_vector::get_bb_range (vrange &r, const_basic_block bb)
{
if (bb->index >= m_tab_size)
return false;
vrange *m = m_tab[bb->index];
if (m)
{
r = *m;
return true;
}
return false;
}
// Return true if a range is present.
bool
sbr_vector::bb_range_p (const_basic_block bb)
{
if (bb->index < m_tab_size)
return m_tab[bb->index] != NULL;
return false;
}
// This class implements the on entry cache via a sparse bitmap.
// It uses the quad bit routines to access 4 bits at a time.
// A value of 0 (the default) means there is no entry, and a value of
// 1 thru SBR_NUM represents an element in the m_range vector.
// Varying is given the first value (1) and pre-cached.
// SBR_NUM + 1 represents the value of UNDEFINED, and is never stored.
// SBR_NUM is the number of values that can be cached.
// Indexes are 1..SBR_NUM and are stored locally at m_range[0..SBR_NUM-1]
#define SBR_NUM 14
#define SBR_UNDEF SBR_NUM + 1
#define SBR_VARYING 1
class sbr_sparse_bitmap : public ssa_block_ranges
{
public:
sbr_sparse_bitmap (tree t, vrange_allocator *allocator, bitmap_obstack *bm);
virtual bool set_bb_range (const_basic_block bb, const vrange &r) override;
virtual bool get_bb_range (vrange &r, const_basic_block bb) override;
virtual bool bb_range_p (const_basic_block bb) override;
private:
void bitmap_set_quad (bitmap head, int quad, int quad_value);
int bitmap_get_quad (const_bitmap head, int quad);
vrange_allocator *m_range_allocator;
vrange *m_range[SBR_NUM];
bitmap_head bitvec;
tree m_type;
};
// Initialize a block cache for an ssa_name of type T.
sbr_sparse_bitmap::sbr_sparse_bitmap (tree t, vrange_allocator *allocator,
bitmap_obstack *bm)
: ssa_block_ranges (t)
{
gcc_checking_assert (TYPE_P (t));
m_type = t;
bitmap_initialize (&bitvec, bm);
bitmap_tree_view (&bitvec);
m_range_allocator = allocator;
// Pre-cache varying.
m_range[0] = m_range_allocator->alloc_vrange (t);
m_range[0]->set_varying (t);
// Pre-cache zero and non-zero values for pointers.
if (POINTER_TYPE_P (t))
{
m_range[1] = m_range_allocator->alloc_vrange (t);
m_range[1]->set_nonzero (t);
m_range[2] = m_range_allocator->alloc_vrange (t);
m_range[2]->set_zero (t);
}
else
m_range[1] = m_range[2] = NULL;
// Clear SBR_NUM entries.
for (int x = 3; x < SBR_NUM; x++)
m_range[x] = 0;
}
// Set 4 bit values in a sparse bitmap. This allows a bitmap to
// function as a sparse array of 4 bit values.
// QUAD is the index, QUAD_VALUE is the 4 bit value to set.
inline void
sbr_sparse_bitmap::bitmap_set_quad (bitmap head, int quad, int quad_value)
{
bitmap_set_aligned_chunk (head, quad, 4, (BITMAP_WORD) quad_value);
}
// Get a 4 bit value from a sparse bitmap. This allows a bitmap to
// function as a sparse array of 4 bit values.
// QUAD is the index.
inline int
sbr_sparse_bitmap::bitmap_get_quad (const_bitmap head, int quad)
{
return (int) bitmap_get_aligned_chunk (head, quad, 4);
}
// Set the range on entry to basic block BB to R.
bool
sbr_sparse_bitmap::set_bb_range (const_basic_block bb, const vrange &r)
{
if (r.undefined_p ())
{
bitmap_set_quad (&bitvec, bb->index, SBR_UNDEF);
return true;
}
// Loop thru the values to see if R is already present.
for (int x = 0; x < SBR_NUM; x++)
if (!m_range[x] || r == *(m_range[x]))
{
if (!m_range[x])
m_range[x] = m_range_allocator->clone (r);
bitmap_set_quad (&bitvec, bb->index, x + 1);
return true;
}
// All values are taken, default to VARYING.
bitmap_set_quad (&bitvec, bb->index, SBR_VARYING);
return false;
}
// Return the range associated with block BB in R. Return false if
// there is no range.
bool
sbr_sparse_bitmap::get_bb_range (vrange &r, const_basic_block bb)
{
int value = bitmap_get_quad (&bitvec, bb->index);
if (!value)
return false;
gcc_checking_assert (value <= SBR_UNDEF);
if (value == SBR_UNDEF)
r.set_undefined ();
else
r = *(m_range[value - 1]);
return true;
}
// Return true if a range is present.
bool
sbr_sparse_bitmap::bb_range_p (const_basic_block bb)
{
return (bitmap_get_quad (&bitvec, bb->index) != 0);
}
// -------------------------------------------------------------------------
// Initialize the block cache.
block_range_cache::block_range_cache ()
{
bitmap_obstack_initialize (&m_bitmaps);
m_ssa_ranges.create (0);
m_ssa_ranges.safe_grow_cleared (num_ssa_names);
m_range_allocator = new obstack_vrange_allocator;
}
// Remove any m_block_caches which have been created.
block_range_cache::~block_range_cache ()
{
delete m_range_allocator;
// Release the vector itself.
m_ssa_ranges.release ();
bitmap_obstack_release (&m_bitmaps);
}
// Set the range for NAME on entry to block BB to R.
// If it has not been accessed yet, allocate it first.
bool
block_range_cache::set_bb_range (tree name, const_basic_block bb,
const vrange &r)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_ssa_ranges.length ())
m_ssa_ranges.safe_grow_cleared (num_ssa_names + 1);
if (!m_ssa_ranges[v])
{
// Use sparse representation if there are too many basic blocks.
if (last_basic_block_for_fn (cfun) > param_evrp_sparse_threshold)
{
void *r = m_range_allocator->alloc (sizeof (sbr_sparse_bitmap));
m_ssa_ranges[v] = new (r) sbr_sparse_bitmap (TREE_TYPE (name),
m_range_allocator,
&m_bitmaps);
}
else
{
// Otherwise use the default vector implemntation.
void *r = m_range_allocator->alloc (sizeof (sbr_vector));
m_ssa_ranges[v] = new (r) sbr_vector (TREE_TYPE (name),
m_range_allocator);
}
}
return m_ssa_ranges[v]->set_bb_range (bb, r);
}
// Return a pointer to the ssa_block_cache for NAME. If it has not been
// accessed yet, return NULL.
inline ssa_block_ranges *
block_range_cache::query_block_ranges (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_ssa_ranges.length () || !m_ssa_ranges[v])
return NULL;
return m_ssa_ranges[v];
}
// Return the range for NAME on entry to BB in R. Return true if there
// is one.
bool
block_range_cache::get_bb_range (vrange &r, tree name, const_basic_block bb)
{
ssa_block_ranges *ptr = query_block_ranges (name);
if (ptr)
return ptr->get_bb_range (r, bb);
return false;
}
// Return true if NAME has a range set in block BB.
bool
block_range_cache::bb_range_p (tree name, const_basic_block bb)
{
ssa_block_ranges *ptr = query_block_ranges (name);
if (ptr)
return ptr->bb_range_p (bb);
return false;
}
// Print all known block caches to file F.
void
block_range_cache::dump (FILE *f)
{
unsigned x;
for (x = 0; x < m_ssa_ranges.length (); ++x)
{
if (m_ssa_ranges[x])
{
fprintf (f, " Ranges for ");
print_generic_expr (f, ssa_name (x), TDF_NONE);
fprintf (f, ":\n");
m_ssa_ranges[x]->dump (f);
fprintf (f, "\n");
}
}
}
// Print all known ranges on entry to blobk BB to file F.
void
block_range_cache::dump (FILE *f, basic_block bb, bool print_varying)
{
unsigned x;
bool summarize_varying = false;
for (x = 1; x < m_ssa_ranges.length (); ++x)
{
if (!gimple_range_ssa_p (ssa_name (x)))
continue;
Value_Range r (TREE_TYPE (ssa_name (x)));
if (m_ssa_ranges[x] && m_ssa_ranges[x]->get_bb_range (r, bb))
{
if (!print_varying && r.varying_p ())
{
summarize_varying = true;
continue;
}
print_generic_expr (f, ssa_name (x), TDF_NONE);
fprintf (f, "\t");
r.dump(f);
fprintf (f, "\n");
}
}
// If there were any varying entries, lump them all together.
if (summarize_varying)
{
fprintf (f, "VARYING_P on entry : ");
for (x = 1; x < num_ssa_names; ++x)
{
if (!gimple_range_ssa_p (ssa_name (x)))
continue;
Value_Range r (TREE_TYPE (ssa_name (x)));
if (m_ssa_ranges[x] && m_ssa_ranges[x]->get_bb_range (r, bb))
{
if (r.varying_p ())
{
print_generic_expr (f, ssa_name (x), TDF_NONE);
fprintf (f, " ");
}
}
}
fprintf (f, "\n");
}
}
// -------------------------------------------------------------------------
// Initialize a global cache.
ssa_global_cache::ssa_global_cache ()
{
m_tab.create (0);
m_range_allocator = new obstack_vrange_allocator;
}
// Deconstruct a global cache.
ssa_global_cache::~ssa_global_cache ()
{
m_tab.release ();
delete m_range_allocator;
}
// Retrieve the global range of NAME from cache memory if it exists.
// Return the value in R.
bool
ssa_global_cache::get_global_range (vrange &r, tree name) const
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_tab.length ())
return false;
vrange *stow = m_tab[v];
if (!stow)
return false;
r = *stow;
return true;
}
// Set the range for NAME to R in the global cache.
// Return TRUE if there was already a range set, otherwise false.
bool
ssa_global_cache::set_global_range (tree name, const vrange &r)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_tab.length ())
m_tab.safe_grow_cleared (num_ssa_names + 1);
vrange *m = m_tab[v];
if (m && m->fits_p (r))
*m = r;
else
m_tab[v] = m_range_allocator->clone (r);
return m != NULL;
}
// Set the range for NAME to R in the glonbal cache.
void
ssa_global_cache::clear_global_range (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_tab.length ())
m_tab.safe_grow_cleared (num_ssa_names + 1);
m_tab[v] = NULL;
}
// Clear the global cache.
void
ssa_global_cache::clear ()
{
if (m_tab.address ())
memset (m_tab.address(), 0, m_tab.length () * sizeof (vrange *));
}
// Dump the contents of the global cache to F.
void
ssa_global_cache::dump (FILE *f)
{
/* Cleared after the table header has been printed. */
bool print_header = true;
for (unsigned x = 1; x < num_ssa_names; x++)
{
if (!gimple_range_ssa_p (ssa_name (x)))
continue;
Value_Range r (TREE_TYPE (ssa_name (x)));
if (get_global_range (r, ssa_name (x)) && !r.varying_p ())
{
if (print_header)
{
/* Print the header only when there's something else
to print below. */
fprintf (f, "Non-varying global ranges:\n");
fprintf (f, "=========================:\n");
print_header = false;
}
print_generic_expr (f, ssa_name (x), TDF_NONE);
fprintf (f, " : ");
r.dump (f);
fprintf (f, "\n");
}
}
if (!print_header)
fputc ('\n', f);
}
// --------------------------------------------------------------------------
// This class will manage the timestamps for each ssa_name.
// When a value is calculated, the timestamp is set to the current time.
// Current time is then incremented. Any dependencies will already have
// been calculated, and will thus have older timestamps.
// If one of those values is ever calculated again, it will get a newer
// timestamp, and the "current_p" check will fail.
class temporal_cache
{
public:
temporal_cache ();
~temporal_cache ();
bool current_p (tree name, tree dep1, tree dep2) const;
void set_timestamp (tree name);
void set_always_current (tree name);
private:
unsigned temporal_value (unsigned ssa) const;
unsigned m_current_time;
vec <unsigned> m_timestamp;
};
inline
temporal_cache::temporal_cache ()
{
m_current_time = 1;
m_timestamp.create (0);
m_timestamp.safe_grow_cleared (num_ssa_names);
}
inline
temporal_cache::~temporal_cache ()
{
m_timestamp.release ();
}
// Return the timestamp value for SSA, or 0 if there isnt one.
inline unsigned
temporal_cache::temporal_value (unsigned ssa) const
{
if (ssa >= m_timestamp.length ())
return 0;
return m_timestamp[ssa];
}
// Return TRUE if the timestampe for NAME is newer than any of its dependents.
// Up to 2 dependencies can be checked.
bool
temporal_cache::current_p (tree name, tree dep1, tree dep2) const
{
unsigned ts = temporal_value (SSA_NAME_VERSION (name));
if (ts == 0)
return true;
// Any non-registered dependencies will have a value of 0 and thus be older.
// Return true if time is newer than either dependent.
if (dep1 && ts < temporal_value (SSA_NAME_VERSION (dep1)))
return false;
if (dep2 && ts < temporal_value (SSA_NAME_VERSION (dep2)))
return false;
return true;
}
// This increments the global timer and sets the timestamp for NAME.
inline void
temporal_cache::set_timestamp (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_timestamp.length ())
m_timestamp.safe_grow_cleared (num_ssa_names + 20);
m_timestamp[v] = ++m_current_time;
}
// Set the timestamp to 0, marking it as "always up to date".
inline void
temporal_cache::set_always_current (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_timestamp.length ())
m_timestamp.safe_grow_cleared (num_ssa_names + 20);
m_timestamp[v] = 0;
}
// --------------------------------------------------------------------------
// This class provides an abstraction of a list of blocks to be updated
// by the cache. It is currently a stack but could be changed. It also
// maintains a list of blocks which have failed propagation, and does not
// enter any of those blocks into the list.
// A vector over the BBs is maintained, and an entry of 0 means it is not in
// a list. Otherwise, the entry is the next block in the list. -1 terminates
// the list. m_head points to the top of the list, -1 if the list is empty.
class update_list
{
public:
update_list ();
~update_list ();
void add (basic_block bb);
basic_block pop ();
inline bool empty_p () { return m_update_head == -1; }
inline void clear_failures () { bitmap_clear (m_propfail); }
inline void propagation_failed (basic_block bb)
{ bitmap_set_bit (m_propfail, bb->index); }
private:
vec<int> m_update_list;
int m_update_head;
bitmap m_propfail;
};
// Create an update list.
update_list::update_list ()
{
m_update_list.create (0);
m_update_list.safe_grow_cleared (last_basic_block_for_fn (cfun) + 64);
m_update_head = -1;
m_propfail = BITMAP_ALLOC (NULL);
}
// Destroy an update list.
update_list::~update_list ()
{
m_update_list.release ();
BITMAP_FREE (m_propfail);
}
// Add BB to the list of blocks to update, unless it's already in the list.
void
update_list::add (basic_block bb)
{
int i = bb->index;
// If propagation has failed for BB, or its already in the list, don't
// add it again.
if ((unsigned)i >= m_update_list.length ())
m_update_list.safe_grow_cleared (i + 64);
if (!m_update_list[i] && !bitmap_bit_p (m_propfail, i))
{
if (empty_p ())
{
m_update_head = i;
m_update_list[i] = -1;
}
else
{
gcc_checking_assert (m_update_head > 0);
m_update_list[i] = m_update_head;
m_update_head = i;
}
}
}
// Remove a block from the list.
basic_block
update_list::pop ()
{
gcc_checking_assert (!empty_p ());
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, m_update_head);
int pop = m_update_head;
m_update_head = m_update_list[pop];
m_update_list[pop] = 0;
return bb;
}
// --------------------------------------------------------------------------
ranger_cache::ranger_cache (int not_executable_flag, bool use_imm_uses)
: m_gori (not_executable_flag),
m_exit (use_imm_uses)
{
m_workback.create (0);
m_workback.safe_grow_cleared (last_basic_block_for_fn (cfun));
m_workback.truncate (0);
m_temporal = new temporal_cache;
// If DOM info is available, spawn an oracle as well.
if (dom_info_available_p (CDI_DOMINATORS))
m_oracle = new dom_oracle ();
else
m_oracle = NULL;
unsigned x, lim = last_basic_block_for_fn (cfun);
// Calculate outgoing range info upfront. This will fully populate the
// m_maybe_variant bitmap which will help eliminate processing of names
// which never have their ranges adjusted.
for (x = 0; x < lim ; x++)
{
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, x);
if (bb)
m_gori.exports (bb);
}
m_update = new update_list ();
}
ranger_cache::~ranger_cache ()
{
delete m_update;
if (m_oracle)
delete m_oracle;
delete m_temporal;
m_workback.release ();
}
// Dump the global caches to file F. if GORI_DUMP is true, dump the
// gori map as well.
void
ranger_cache::dump (FILE *f)
{
m_globals.dump (f);
fprintf (f, "\n");
}
// Dump the caches for basic block BB to file F.
void
ranger_cache::dump_bb (FILE *f, basic_block bb)
{
m_gori.gori_map::dump (f, bb, false);
m_on_entry.dump (f, bb);
if (m_oracle)
m_oracle->dump (f, bb);
}
// Get the global range for NAME, and return in R. Return false if the
// global range is not set, and return the legacy global value in R.
bool
ranger_cache::get_global_range (vrange &r, tree name) const
{
if (m_globals.get_global_range (r, name))
return true;
gimple_range_global (r, name);
return false;
}
// Get the global range for NAME, and return in R. Return false if the
// global range is not set, and R will contain the legacy global value.
// CURRENT_P is set to true if the value was in cache and not stale.
// Otherwise, set CURRENT_P to false and mark as it always current.
// If the global cache did not have a value, initialize it as well.
// After this call, the global cache will have a value.
bool
ranger_cache::get_global_range (vrange &r, tree name, bool &current_p)
{
bool had_global = get_global_range (r, name);
// If there was a global value, set current flag, otherwise set a value.
current_p = false;
if (had_global)
current_p = r.singleton_p ()
|| m_temporal->current_p (name, m_gori.depend1 (name),
m_gori.depend2 (name));
else
m_globals.set_global_range (name, r);
// If the existing value was not current, mark it as always current.
if (!current_p)
m_temporal->set_always_current (name);
return had_global;
}
// Set the global range of NAME to R and give it a timestamp.
void
ranger_cache::set_global_range (tree name, const vrange &r)
{
if (m_globals.set_global_range (name, r))
{
// If there was already a range set, propagate the new value.
basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (name));
if (!bb)
bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, " GLOBAL :");
propagate_updated_value (name, bb);
}
// Constants no longer need to tracked. Any further refinement has to be
// undefined. Propagation works better with constants. PR 100512.
// Pointers which resolve to non-zero also do not need
// tracking in the cache as they will never change. See PR 98866.
// Timestamp must always be updated, or dependent calculations may
// not include this latest value. PR 100774.
if (r.singleton_p ()
|| (POINTER_TYPE_P (TREE_TYPE (name)) && r.nonzero_p ()))
m_gori.set_range_invariant (name);
m_temporal->set_timestamp (name);
}
// Provide lookup for the gori-computes class to access the best known range
// of an ssa_name in any given basic block. Note, this does no additonal
// lookups, just accesses the data that is already known.
// Get the range of NAME when the def occurs in block BB. If BB is NULL
// get the best global value available.
void
ranger_cache::range_of_def (vrange &r, tree name, basic_block bb)
{
gcc_checking_assert (gimple_range_ssa_p (name));
gcc_checking_assert (!bb || bb == gimple_bb (SSA_NAME_DEF_STMT (name)));
// Pick up the best global range available.
if (!m_globals.get_global_range (r, name))
{
// If that fails, try to calculate the range using just global values.
gimple *s = SSA_NAME_DEF_STMT (name);
if (gimple_get_lhs (s) == name)
fold_range (r, s, get_global_range_query ());
else
gimple_range_global (r, name);
}
}
// Get the range of NAME as it occurs on entry to block BB. Use MODE for
// lookups.
void
ranger_cache::entry_range (vrange &r, tree name, basic_block bb,
enum rfd_mode mode)
{
if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
{
gimple_range_global (r, name);
return;
}
// Look for the on-entry value of name in BB from the cache.
// Otherwise pick up the best available global value.
if (!m_on_entry.get_bb_range (r, name, bb))
if (!range_from_dom (r, name, bb, mode))
range_of_def (r, name);
}
// Get the range of NAME as it occurs on exit from block BB. Use MODE for
// lookups.
void
ranger_cache::exit_range (vrange &r, tree name, basic_block bb,
enum rfd_mode mode)
{
if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
{
gimple_range_global (r, name);
return;
}
gimple *s = SSA_NAME_DEF_STMT (name);
basic_block def_bb = gimple_bb (s);
if (def_bb == bb)
range_of_def (r, name, bb);
else
entry_range (r, name, bb, mode);
}
// Get the range of NAME on edge E using MODE, return the result in R.
// Always returns a range and true.
bool
ranger_cache::edge_range (vrange &r, edge e, tree name, enum rfd_mode mode)
{
exit_range (r, name, e->src, mode);
// If this is not an abnormal edge, check for inferred ranges on exit.
if ((e->flags & (EDGE_EH | EDGE_ABNORMAL)) == 0)
m_exit.maybe_adjust_range (r, name, e->src);
Value_Range er (TREE_TYPE (name));
if (m_gori.outgoing_edge_range_p (er, e, name, *this))
r.intersect (er);
return true;
}
// Implement range_of_expr.
bool
ranger_cache::range_of_expr (vrange &r, tree name, gimple *stmt)
{
if (!gimple_range_ssa_p (name))
{
get_tree_range (r, name, stmt);
return true;
}
basic_block bb = gimple_bb (stmt);
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
basic_block def_bb = gimple_bb (def_stmt);
if (bb == def_bb)
range_of_def (r, name, bb);
else
entry_range (r, name, bb, RFD_NONE);
return true;
}
// Implement range_on_edge. Always return the best available range using
// the current cache values.
bool
ranger_cache::range_on_edge (vrange &r, edge e, tree expr)
{
if (gimple_range_ssa_p (expr))
return edge_range (r, e, expr, RFD_NONE);
return get_tree_range (r, expr, NULL);
}
// Return a static range for NAME on entry to basic block BB in R. If
// calc is true, fill any cache entries required between BB and the
// def block for NAME. Otherwise, return false if the cache is empty.
bool
ranger_cache::block_range (vrange &r, basic_block bb, tree name, bool calc)
{
gcc_checking_assert (gimple_range_ssa_p (name));
// If there are no range calculations anywhere in the IL, global range
// applies everywhere, so don't bother caching it.
if (!m_gori.has_edge_range_p (name))
return false;
if (calc)
{
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
basic_block def_bb = NULL;
if (def_stmt)
def_bb = gimple_bb (def_stmt);;
if (!def_bb)
{
// If we get to the entry block, this better be a default def
// or range_on_entry was called for a block not dominated by
// the def.
gcc_checking_assert (SSA_NAME_IS_DEFAULT_DEF (name));
def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
}
// There is no range on entry for the definition block.
if (def_bb == bb)
return false;
// Otherwise, go figure out what is known in predecessor blocks.
fill_block_cache (name, bb, def_bb);
gcc_checking_assert (m_on_entry.bb_range_p (name, bb));
}
return m_on_entry.get_bb_range (r, name, bb);
}
// If there is anything in the propagation update_list, continue
// processing NAME until the list of blocks is empty.
void
ranger_cache::propagate_cache (tree name)
{
basic_block bb;
edge_iterator ei;
edge e;
tree type = TREE_TYPE (name);
Value_Range new_range (type);
Value_Range current_range (type);
Value_Range e_range (type);
// Process each block by seeing if its calculated range on entry is
// the same as its cached value. If there is a difference, update
// the cache to reflect the new value, and check to see if any
// successors have cache entries which may need to be checked for
// updates.
while (!m_update->empty_p ())
{
bb = m_update->pop ();
gcc_checking_assert (m_on_entry.bb_range_p (name, bb));
m_on_entry.get_bb_range (current_range, name, bb);
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "FWD visiting block %d for ", bb->index);
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " starting range : ");
current_range.dump (dump_file);
fprintf (dump_file, "\n");
}
// Calculate the "new" range on entry by unioning the pred edges.
new_range.set_undefined ();
FOR_EACH_EDGE (e, ei, bb->preds)
{
range_on_edge (e_range, e, name);
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, " edge %d->%d :", e->src->index, bb->index);
e_range.dump (dump_file);
fprintf (dump_file, "\n");
}
new_range.union_ (e_range);
if (new_range.varying_p ())
break;
}
// If the range on entry has changed, update it.
if (new_range != current_range)
{
bool ok_p = m_on_entry.set_bb_range (name, bb, new_range);
// If the cache couldn't set the value, mark it as failed.
if (!ok_p)
m_update->propagation_failed (bb);
if (DEBUG_RANGE_CACHE)
{
if (!ok_p)
{
fprintf (dump_file, " Cache failure to store value:");
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " ");
}
else
{
fprintf (dump_file, " Updating range to ");
new_range.dump (dump_file);
}
fprintf (dump_file, "\n Updating blocks :");
}
// Mark each successor that has a range to re-check its range
FOR_EACH_EDGE (e, ei, bb->succs)
if (m_on_entry.bb_range_p (name, e->dest))
{
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, " bb%d",e->dest->index);
m_update->add (e->dest);
}
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, "\n");
}
}
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "DONE visiting blocks for ");
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, "\n");
}
m_update->clear_failures ();
}
// Check to see if an update to the value for NAME in BB has any effect
// on values already in the on-entry cache for successor blocks.
// If it does, update them. Don't visit any blocks which dont have a cache
// entry.
void
ranger_cache::propagate_updated_value (tree name, basic_block bb)
{
edge e;
edge_iterator ei;
// The update work list should be empty at this point.
gcc_checking_assert (m_update->empty_p ());
gcc_checking_assert (bb);
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, " UPDATE cache for ");
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " in BB %d : successors : ", bb->index);
}
FOR_EACH_EDGE (e, ei, bb->succs)
{
// Only update active cache entries.
if (m_on_entry.bb_range_p (name, e->dest))
{
m_update->add (e->dest);
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, " UPDATE: bb%d", e->dest->index);
}
}
if (!m_update->empty_p ())
{
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, "\n");
propagate_cache (name);
}
else
{
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, " : No updates!\n");
}
}
// Make sure that the range-on-entry cache for NAME is set for block BB.
// Work back through the CFG to DEF_BB ensuring the range is calculated
// on the block/edges leading back to that point.
void
ranger_cache::fill_block_cache (tree name, basic_block bb, basic_block def_bb)
{
edge_iterator ei;
edge e;
tree type = TREE_TYPE (name);
Value_Range block_result (type);
Value_Range undefined (type);
// At this point we shouldn't be looking at the def, entry block.
gcc_checking_assert (bb != def_bb && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun));
gcc_checking_assert (m_workback.length () == 0);
// If the block cache is set, then we've already visited this block.
if (m_on_entry.bb_range_p (name, bb))
return;
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "\n");
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " : ");
}
// Check if a dominators can supply the range.
if (range_from_dom (block_result, name, bb, RFD_FILL))
{
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "Filled from dominator! : ");
block_result.dump (dump_file);
fprintf (dump_file, "\n");
}
// See if any equivalences can refine it.
if (m_oracle)
{
tree equiv_name;
relation_kind rel;
int prec = TYPE_PRECISION (type);
FOR_EACH_PARTIAL_AND_FULL_EQUIV (m_oracle, bb, name, equiv_name, rel)
{
basic_block equiv_bb = gimple_bb (SSA_NAME_DEF_STMT (equiv_name));
// Ignore partial equivs that are smaller than this object.
if (rel != VREL_EQ && prec > pe_to_bits (rel))
continue;
// Check if the equiv has any ranges calculated.
if (!m_gori.has_edge_range_p (equiv_name))
continue;
// Check if the equiv definition dominates this block
if (equiv_bb == bb ||
(equiv_bb && !dominated_by_p (CDI_DOMINATORS, bb, equiv_bb)))
continue;
if (DEBUG_RANGE_CACHE)
{
if (rel == VREL_EQ)
fprintf (dump_file, "Checking Equivalence (");
else
fprintf (dump_file, "Checking Partial equiv (");
print_relation (dump_file, rel);
fprintf (dump_file, ") ");
print_generic_expr (dump_file, equiv_name, TDF_SLIM);
fprintf (dump_file, "\n");
}
Value_Range equiv_range (TREE_TYPE (equiv_name));
if (range_from_dom (equiv_range, equiv_name, bb, RFD_READ_ONLY))
{
if (rel != VREL_EQ)
range_cast (equiv_range, type);
if (block_result.intersect (equiv_range))
{
if (DEBUG_RANGE_CACHE)
{
if (rel == VREL_EQ)
fprintf (dump_file, "Equivalence update! : ");
else
fprintf (dump_file, "Partial equiv update! : ");
print_generic_expr (dump_file, equiv_name, TDF_SLIM);
fprintf (dump_file, " has range : ");
equiv_range.dump (dump_file);
fprintf (dump_file, " refining range to :");
block_result.dump (dump_file);
fprintf (dump_file, "\n");
}
}
}
}
}
m_on_entry.set_bb_range (name, bb, block_result);
gcc_checking_assert (m_workback.length () == 0);
return;
}
// Visit each block back to the DEF. Initialize each one to UNDEFINED.
// m_visited at the end will contain all the blocks that we needed to set
// the range_on_entry cache for.
m_workback.quick_push (bb);
undefined.set_undefined ();
m_on_entry.set_bb_range (name, bb, undefined);
gcc_checking_assert (m_update->empty_p ());
while (m_workback.length () > 0)
{
basic_block node = m_workback.pop ();
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "BACK visiting block %d for ", node->index);
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, "\n");
}
FOR_EACH_EDGE (e, ei, node->preds)
{
basic_block pred = e->src;
Value_Range r (TREE_TYPE (name));
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, " %d->%d ",e->src->index, e->dest->index);
// If the pred block is the def block add this BB to update list.
if (pred == def_bb)
{
m_update->add (node);
continue;
}
// If the pred is entry but NOT def, then it is used before
// defined, it'll get set to [] and no need to update it.
if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
{
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, "entry: bail.");
continue;
}
// Regardless of whether we have visited pred or not, if the
// pred has inferred ranges, revisit this block.
// Don't search the DOM tree.
if (m_exit.has_range_p (name, pred))
{
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, "Inferred range: update ");
m_update->add (node);
}
// If the pred block already has a range, or if it can contribute
// something new. Ie, the edge generates a range of some sort.
if (m_on_entry.get_bb_range (r, name, pred))
{
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "has cache, ");
r.dump (dump_file);
fprintf (dump_file, ", ");
}
if (!r.undefined_p () || m_gori.has_edge_range_p (name, e))
{
m_update->add (node);
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, "update. ");
}
continue;
}
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, "pushing undefined pred block.\n");
// If the pred hasn't been visited (has no range), add it to
// the list.
gcc_checking_assert (!m_on_entry.bb_range_p (name, pred));
m_on_entry.set_bb_range (name, pred, undefined);
m_workback.quick_push (pred);
}
}
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, "\n");
// Now fill in the marked blocks with values.
propagate_cache (name);
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, " Propagation update done.\n");
}
// Resolve the range of BB if the dominators range is R by calculating incoming
// edges to this block. All lead back to the dominator so should be cheap.
// The range for BB is set and returned in R.
void
ranger_cache::resolve_dom (vrange &r, tree name, basic_block bb)
{
basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name));
basic_block dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
// if it doesn't already have a value, store the incoming range.
if (!m_on_entry.bb_range_p (name, dom_bb) && def_bb != dom_bb)
{
// If the range can't be store, don't try to accumulate
// the range in PREV_BB due to excessive recalculations.
if (!m_on_entry.set_bb_range (name, dom_bb, r))
return;
}
// With the dominator set, we should be able to cheaply query
// each incoming edge now and accumulate the results.
r.set_undefined ();
edge e;
edge_iterator ei;
Value_Range er (TREE_TYPE (name));
FOR_EACH_EDGE (e, ei, bb->preds)
{
edge_range (er, e, name, RFD_READ_ONLY);
r.union_ (er);
}
// Set the cache in PREV_BB so it is not calculated again.
m_on_entry.set_bb_range (name, bb, r);
}
// Get the range of NAME from dominators of BB and return it in R. Search the
// dominator tree based on MODE.
bool
ranger_cache::range_from_dom (vrange &r, tree name, basic_block start_bb,
enum rfd_mode mode)
{
if (mode == RFD_NONE || !dom_info_available_p (CDI_DOMINATORS))
return false;
// Search back to the definition block or entry block.
basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name));
if (def_bb == NULL)
def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
basic_block bb;
basic_block prev_bb = start_bb;
// Track any inferred ranges seen.
Value_Range infer (TREE_TYPE (name));
infer.set_varying (TREE_TYPE (name));
// Range on entry to the DEF block should not be queried.
gcc_checking_assert (start_bb != def_bb);
unsigned start_limit = m_workback.length ();
// Default value is global range.
get_global_range (r, name);
// The dominator of EXIT_BLOCK doesn't seem to be set, so at least handle
// the common single exit cases.
if (start_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) && single_pred_p (start_bb))
bb = single_pred_edge (start_bb)->src;
else
bb = get_immediate_dominator (CDI_DOMINATORS, start_bb);
// Search until a value is found, pushing blocks which may need calculating.
for ( ; bb; prev_bb = bb, bb = get_immediate_dominator (CDI_DOMINATORS, bb))
{
// Accumulate any block exit inferred ranges.
m_exit.maybe_adjust_range (infer, name, bb);
// This block has an outgoing range.
if (m_gori.has_edge_range_p (name, bb))
m_workback.quick_push (prev_bb);
else
{
// Normally join blocks don't carry any new range information on
// incoming edges. If the first incoming edge to this block does
// generate a range, calculate the ranges if all incoming edges
// are also dominated by the dominator. (Avoids backedges which
// will break the rule of moving only upward in the domniator tree).
// If the first pred does not generate a range, then we will be
// using the dominator range anyway, so thats all the check needed.
if (EDGE_COUNT (prev_bb->preds) > 1
&& m_gori.has_edge_range_p (name, EDGE_PRED (prev_bb, 0)->src))
{
edge e;
edge_iterator ei;
bool all_dom = true;
FOR_EACH_EDGE (e, ei, prev_bb->preds)
if (e->src != bb
&& !dominated_by_p (CDI_DOMINATORS, e->src, bb))
{
all_dom = false;
break;
}
if (all_dom)
m_workback.quick_push (prev_bb);
}
}
if (def_bb == bb)
break;
if (m_on_entry.get_bb_range (r, name, bb))
break;
}
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "CACHE: BB %d DOM query for ", start_bb->index);
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, ", found ");
r.dump (dump_file);
if (bb)
fprintf (dump_file, " at BB%d\n", bb->index);
else
fprintf (dump_file, " at function top\n");
}
// Now process any blocks wit incoming edges that nay have adjustemnts.
while (m_workback.length () > start_limit)
{
Value_Range er (TREE_TYPE (name));
prev_bb = m_workback.pop ();
if (!single_pred_p (prev_bb))
{
// Non single pred means we need to cache a vsalue in the dominator
// so we can cheaply calculate incoming edges to this block, and
// then store the resulting value. If processing mode is not
// RFD_FILL, then the cache cant be stored to, so don't try.
// Otherwise this becomes a quadratic timed calculation.
if (mode == RFD_FILL)
resolve_dom (r, name, prev_bb);
continue;
}
edge e = single_pred_edge (prev_bb);
bb = e->src;
if (m_gori.outgoing_edge_range_p (er, e, name, *this))
{
r.intersect (er);
// If this is a normal edge, apply any inferred ranges.
if ((e->flags & (EDGE_EH | EDGE_ABNORMAL)) == 0)
m_exit.maybe_adjust_range (r, name, bb);
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "CACHE: Adjusted edge range for %d->%d : ",
bb->index, prev_bb->index);
r.dump (dump_file);
fprintf (dump_file, "\n");
}
}
}
// Apply non-null if appropriate.
if (!has_abnormal_call_or_eh_pred_edge_p (start_bb))
r.intersect (infer);
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "CACHE: Range for DOM returns : ");
r.dump (dump_file);
fprintf (dump_file, "\n");
}
return true;
}
// This routine will register an inferred value in block BB, and possibly
// update the on-entry cache if appropriate.
void
ranger_cache::register_inferred_value (const vrange &ir, tree name,
basic_block bb)
{
Value_Range r (TREE_TYPE (name));
if (!m_on_entry.get_bb_range (r, name, bb))
exit_range (r, name, bb, RFD_READ_ONLY);
if (r.intersect (ir))
{
m_on_entry.set_bb_range (name, bb, r);
// If this range was invariant before, remove invariance.
if (!m_gori.has_edge_range_p (name))
m_gori.set_range_invariant (name, false);
}
}
// This routine is used during a block walk to adjust any inferred ranges
// of operands on stmt S.
void
ranger_cache::apply_inferred_ranges (gimple *s)
{
bool update = true;
basic_block bb = gimple_bb (s);
gimple_infer_range infer(s);
if (infer.num () == 0)
return;
// Do not update the on-entry cache for block ending stmts.
if (stmt_ends_bb_p (s))
{
edge_iterator ei;
edge e;
FOR_EACH_EDGE (e, ei, gimple_bb (s)->succs)
if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
break;
if (e == NULL)
update = false;
}
for (unsigned x = 0; x < infer.num (); x++)
{
tree name = infer.name (x);
m_exit.add_range (name, bb, infer.range (x));
if (update)
register_inferred_value (infer.range (x), name, bb);
}
}