| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS -- |
| -- -- |
| -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1992-2014, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNARL is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. -- |
| -- -- |
| -- As a special exception under Section 7 of GPL version 3, you are granted -- |
| -- additional permissions described in the GCC Runtime Library Exception, -- |
| -- version 3.1, as published by the Free Software Foundation. -- |
| -- -- |
| -- You should have received a copy of the GNU General Public License and -- |
| -- a copy of the GCC Runtime Library Exception along with this program; -- |
| -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- |
| -- <http://www.gnu.org/licenses/>. -- |
| -- -- |
| -- GNARL was developed by the GNARL team at Florida State University. -- |
| -- Extensive contributions were provided by Ada Core Technologies, Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| -- This is a NT (native) version of this package |
| |
| -- This package contains all the GNULL primitives that interface directly with |
| -- the underlying OS. |
| |
| pragma Polling (Off); |
| -- Turn off polling, we do not want ATC polling to take place during tasking |
| -- operations. It causes infinite loops and other problems. |
| |
| with Interfaces.C; |
| with Interfaces.C.Strings; |
| |
| with System.Float_Control; |
| with System.Interrupt_Management; |
| with System.Multiprocessors; |
| with System.OS_Primitives; |
| with System.Task_Info; |
| with System.Tasking.Debug; |
| with System.Win32.Ext; |
| |
| with System.Soft_Links; |
| -- We use System.Soft_Links instead of System.Tasking.Initialization because |
| -- the later is a higher level package that we shouldn't depend on. For |
| -- example when using the restricted run time, it is replaced by |
| -- System.Tasking.Restricted.Stages. |
| |
| package body System.Task_Primitives.Operations is |
| |
| package SSL renames System.Soft_Links; |
| |
| use Interfaces.C; |
| use Interfaces.C.Strings; |
| use System.OS_Interface; |
| use System.OS_Primitives; |
| use System.Parameters; |
| use System.Task_Info; |
| use System.Tasking; |
| use System.Tasking.Debug; |
| use System.Win32; |
| use System.Win32.Ext; |
| |
| pragma Link_With ("-Xlinker --stack=0x200000,0x1000"); |
| -- Change the default stack size (2 MB) for tasking programs on Windows. |
| -- This allows about 1000 tasks running at the same time. Note that |
| -- we set the stack size for non tasking programs on System unit. |
| -- Also note that under Windows XP, we use a Windows XP extension to |
| -- specify the stack size on a per task basis, as done under other OSes. |
| |
| --------------------- |
| -- Local Functions -- |
| --------------------- |
| |
| procedure InitializeCriticalSection (pCriticalSection : access RTS_Lock); |
| procedure InitializeCriticalSection |
| (pCriticalSection : access CRITICAL_SECTION); |
| pragma Import |
| (Stdcall, InitializeCriticalSection, "InitializeCriticalSection"); |
| |
| procedure EnterCriticalSection (pCriticalSection : access RTS_Lock); |
| procedure EnterCriticalSection |
| (pCriticalSection : access CRITICAL_SECTION); |
| pragma Import (Stdcall, EnterCriticalSection, "EnterCriticalSection"); |
| |
| procedure LeaveCriticalSection (pCriticalSection : access RTS_Lock); |
| procedure LeaveCriticalSection (pCriticalSection : access CRITICAL_SECTION); |
| pragma Import (Stdcall, LeaveCriticalSection, "LeaveCriticalSection"); |
| |
| procedure DeleteCriticalSection (pCriticalSection : access RTS_Lock); |
| procedure DeleteCriticalSection |
| (pCriticalSection : access CRITICAL_SECTION); |
| pragma Import (Stdcall, DeleteCriticalSection, "DeleteCriticalSection"); |
| |
| ---------------- |
| -- Local Data -- |
| ---------------- |
| |
| Environment_Task_Id : Task_Id; |
| -- A variable to hold Task_Id for the environment task |
| |
| Single_RTS_Lock : aliased RTS_Lock; |
| -- This is a lock to allow only one thread of control in the RTS at |
| -- a time; it is used to execute in mutual exclusion from all other tasks. |
| -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List |
| |
| Time_Slice_Val : Integer; |
| pragma Import (C, Time_Slice_Val, "__gl_time_slice_val"); |
| |
| Dispatching_Policy : Character; |
| pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy"); |
| |
| function Get_Policy (Prio : System.Any_Priority) return Character; |
| pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching"); |
| -- Get priority specific dispatching policy |
| |
| Foreign_Task_Elaborated : aliased Boolean := True; |
| -- Used to identified fake tasks (i.e., non-Ada Threads) |
| |
| Null_Thread_Id : constant Thread_Id := 0; |
| -- Constant to indicate that the thread identifier has not yet been |
| -- initialized. |
| |
| ------------------------------------ |
| -- The thread local storage index -- |
| ------------------------------------ |
| |
| TlsIndex : DWORD; |
| pragma Export (Ada, TlsIndex); |
| -- To ensure that this variable won't be local to this package, since |
| -- in some cases, inlining forces this variable to be global anyway. |
| |
| -------------------- |
| -- Local Packages -- |
| -------------------- |
| |
| package Specific is |
| |
| function Is_Valid_Task return Boolean; |
| pragma Inline (Is_Valid_Task); |
| -- Does executing thread have a TCB? |
| |
| procedure Set (Self_Id : Task_Id); |
| pragma Inline (Set); |
| -- Set the self id for the current task |
| |
| end Specific; |
| |
| package body Specific is |
| |
| function Is_Valid_Task return Boolean is |
| begin |
| return TlsGetValue (TlsIndex) /= System.Null_Address; |
| end Is_Valid_Task; |
| |
| procedure Set (Self_Id : Task_Id) is |
| Succeeded : BOOL; |
| begin |
| Succeeded := TlsSetValue (TlsIndex, To_Address (Self_Id)); |
| pragma Assert (Succeeded = Win32.TRUE); |
| end Set; |
| |
| end Specific; |
| |
| ---------------------------------- |
| -- ATCB allocation/deallocation -- |
| ---------------------------------- |
| |
| package body ATCB_Allocation is separate; |
| -- The body of this package is shared across several targets |
| |
| --------------------------------- |
| -- Support for foreign threads -- |
| --------------------------------- |
| |
| function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id; |
| -- Allocate and Initialize a new ATCB for the current Thread |
| |
| function Register_Foreign_Thread |
| (Thread : Thread_Id) return Task_Id is separate; |
| |
| ---------------------------------- |
| -- Condition Variable Functions -- |
| ---------------------------------- |
| |
| procedure Initialize_Cond (Cond : not null access Condition_Variable); |
| -- Initialize given condition variable Cond |
| |
| procedure Finalize_Cond (Cond : not null access Condition_Variable); |
| -- Finalize given condition variable Cond |
| |
| procedure Cond_Signal (Cond : not null access Condition_Variable); |
| -- Signal condition variable Cond |
| |
| procedure Cond_Wait |
| (Cond : not null access Condition_Variable; |
| L : not null access RTS_Lock); |
| -- Wait on conditional variable Cond, using lock L |
| |
| procedure Cond_Timed_Wait |
| (Cond : not null access Condition_Variable; |
| L : not null access RTS_Lock; |
| Rel_Time : Duration; |
| Timed_Out : out Boolean; |
| Status : out Integer); |
| -- Do timed wait on condition variable Cond using lock L. The duration |
| -- of the timed wait is given by Rel_Time. When the condition is |
| -- signalled, Timed_Out shows whether or not a time out occurred. |
| -- Status is only valid if Timed_Out is False, in which case it |
| -- shows whether Cond_Timed_Wait completed successfully. |
| |
| --------------------- |
| -- Initialize_Cond -- |
| --------------------- |
| |
| procedure Initialize_Cond (Cond : not null access Condition_Variable) is |
| hEvent : HANDLE; |
| begin |
| hEvent := CreateEvent (null, Win32.TRUE, Win32.FALSE, Null_Ptr); |
| pragma Assert (hEvent /= 0); |
| Cond.all := Condition_Variable (hEvent); |
| end Initialize_Cond; |
| |
| ------------------- |
| -- Finalize_Cond -- |
| ------------------- |
| |
| -- No such problem here, DosCloseEventSem has been derived. |
| -- What does such refer to in above comment??? |
| |
| procedure Finalize_Cond (Cond : not null access Condition_Variable) is |
| Result : BOOL; |
| begin |
| Result := CloseHandle (HANDLE (Cond.all)); |
| pragma Assert (Result = Win32.TRUE); |
| end Finalize_Cond; |
| |
| ----------------- |
| -- Cond_Signal -- |
| ----------------- |
| |
| procedure Cond_Signal (Cond : not null access Condition_Variable) is |
| Result : BOOL; |
| begin |
| Result := SetEvent (HANDLE (Cond.all)); |
| pragma Assert (Result = Win32.TRUE); |
| end Cond_Signal; |
| |
| --------------- |
| -- Cond_Wait -- |
| --------------- |
| |
| -- Pre-condition: Cond is posted |
| -- L is locked. |
| |
| -- Post-condition: Cond is posted |
| -- L is locked. |
| |
| procedure Cond_Wait |
| (Cond : not null access Condition_Variable; |
| L : not null access RTS_Lock) |
| is |
| Result : DWORD; |
| Result_Bool : BOOL; |
| |
| begin |
| -- Must reset Cond BEFORE L is unlocked |
| |
| Result_Bool := ResetEvent (HANDLE (Cond.all)); |
| pragma Assert (Result_Bool = Win32.TRUE); |
| Unlock (L, Global_Lock => True); |
| |
| -- No problem if we are interrupted here: if the condition is signaled, |
| -- WaitForSingleObject will simply not block |
| |
| Result := WaitForSingleObject (HANDLE (Cond.all), Wait_Infinite); |
| pragma Assert (Result = 0); |
| |
| Write_Lock (L, Global_Lock => True); |
| end Cond_Wait; |
| |
| --------------------- |
| -- Cond_Timed_Wait -- |
| --------------------- |
| |
| -- Pre-condition: Cond is posted |
| -- L is locked. |
| |
| -- Post-condition: Cond is posted |
| -- L is locked. |
| |
| procedure Cond_Timed_Wait |
| (Cond : not null access Condition_Variable; |
| L : not null access RTS_Lock; |
| Rel_Time : Duration; |
| Timed_Out : out Boolean; |
| Status : out Integer) |
| is |
| Time_Out_Max : constant DWORD := 16#FFFF0000#; |
| -- NT 4 can't handle excessive timeout values (e.g. DWORD'Last - 1) |
| |
| Time_Out : DWORD; |
| Result : BOOL; |
| Wait_Result : DWORD; |
| |
| begin |
| -- Must reset Cond BEFORE L is unlocked |
| |
| Result := ResetEvent (HANDLE (Cond.all)); |
| pragma Assert (Result = Win32.TRUE); |
| Unlock (L, Global_Lock => True); |
| |
| -- No problem if we are interrupted here: if the condition is signaled, |
| -- WaitForSingleObject will simply not block. |
| |
| if Rel_Time <= 0.0 then |
| Timed_Out := True; |
| Wait_Result := 0; |
| |
| else |
| Time_Out := |
| (if Rel_Time >= Duration (Time_Out_Max) / 1000 |
| then Time_Out_Max |
| else DWORD (Rel_Time * 1000)); |
| |
| Wait_Result := WaitForSingleObject (HANDLE (Cond.all), Time_Out); |
| |
| if Wait_Result = WAIT_TIMEOUT then |
| Timed_Out := True; |
| Wait_Result := 0; |
| else |
| Timed_Out := False; |
| end if; |
| end if; |
| |
| Write_Lock (L, Global_Lock => True); |
| |
| -- Ensure post-condition |
| |
| if Timed_Out then |
| Result := SetEvent (HANDLE (Cond.all)); |
| pragma Assert (Result = Win32.TRUE); |
| end if; |
| |
| Status := Integer (Wait_Result); |
| end Cond_Timed_Wait; |
| |
| ------------------ |
| -- Stack_Guard -- |
| ------------------ |
| |
| -- The underlying thread system sets a guard page at the bottom of a thread |
| -- stack, so nothing is needed. |
| -- ??? Check the comment above |
| |
| procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is |
| pragma Unreferenced (T, On); |
| begin |
| null; |
| end Stack_Guard; |
| |
| -------------------- |
| -- Get_Thread_Id -- |
| -------------------- |
| |
| function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is |
| begin |
| return T.Common.LL.Thread; |
| end Get_Thread_Id; |
| |
| ---------- |
| -- Self -- |
| ---------- |
| |
| function Self return Task_Id is |
| Self_Id : constant Task_Id := To_Task_Id (TlsGetValue (TlsIndex)); |
| begin |
| if Self_Id = null then |
| return Register_Foreign_Thread (GetCurrentThread); |
| else |
| return Self_Id; |
| end if; |
| end Self; |
| |
| --------------------- |
| -- Initialize_Lock -- |
| --------------------- |
| |
| -- Note: mutexes and cond_variables needed per-task basis are initialized |
| -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such |
| -- as RTS_Lock, Memory_Lock...) used in the RTS is initialized before any |
| -- status change of RTS. Therefore raising Storage_Error in the following |
| -- routines should be able to be handled safely. |
| |
| procedure Initialize_Lock |
| (Prio : System.Any_Priority; |
| L : not null access Lock) |
| is |
| begin |
| InitializeCriticalSection (L.Mutex'Access); |
| L.Owner_Priority := 0; |
| L.Priority := Prio; |
| end Initialize_Lock; |
| |
| procedure Initialize_Lock |
| (L : not null access RTS_Lock; Level : Lock_Level) |
| is |
| pragma Unreferenced (Level); |
| begin |
| InitializeCriticalSection (L); |
| end Initialize_Lock; |
| |
| ------------------- |
| -- Finalize_Lock -- |
| ------------------- |
| |
| procedure Finalize_Lock (L : not null access Lock) is |
| begin |
| DeleteCriticalSection (L.Mutex'Access); |
| end Finalize_Lock; |
| |
| procedure Finalize_Lock (L : not null access RTS_Lock) is |
| begin |
| DeleteCriticalSection (L); |
| end Finalize_Lock; |
| |
| ---------------- |
| -- Write_Lock -- |
| ---------------- |
| |
| procedure Write_Lock |
| (L : not null access Lock; Ceiling_Violation : out Boolean) is |
| begin |
| L.Owner_Priority := Get_Priority (Self); |
| |
| if L.Priority < L.Owner_Priority then |
| Ceiling_Violation := True; |
| return; |
| end if; |
| |
| EnterCriticalSection (L.Mutex'Access); |
| |
| Ceiling_Violation := False; |
| end Write_Lock; |
| |
| procedure Write_Lock |
| (L : not null access RTS_Lock; |
| Global_Lock : Boolean := False) |
| is |
| begin |
| if not Single_Lock or else Global_Lock then |
| EnterCriticalSection (L); |
| end if; |
| end Write_Lock; |
| |
| procedure Write_Lock (T : Task_Id) is |
| begin |
| if not Single_Lock then |
| EnterCriticalSection (T.Common.LL.L'Access); |
| end if; |
| end Write_Lock; |
| |
| --------------- |
| -- Read_Lock -- |
| --------------- |
| |
| procedure Read_Lock |
| (L : not null access Lock; Ceiling_Violation : out Boolean) is |
| begin |
| Write_Lock (L, Ceiling_Violation); |
| end Read_Lock; |
| |
| ------------ |
| -- Unlock -- |
| ------------ |
| |
| procedure Unlock (L : not null access Lock) is |
| begin |
| LeaveCriticalSection (L.Mutex'Access); |
| end Unlock; |
| |
| procedure Unlock |
| (L : not null access RTS_Lock; Global_Lock : Boolean := False) is |
| begin |
| if not Single_Lock or else Global_Lock then |
| LeaveCriticalSection (L); |
| end if; |
| end Unlock; |
| |
| procedure Unlock (T : Task_Id) is |
| begin |
| if not Single_Lock then |
| LeaveCriticalSection (T.Common.LL.L'Access); |
| end if; |
| end Unlock; |
| |
| ----------------- |
| -- Set_Ceiling -- |
| ----------------- |
| |
| -- Dynamic priority ceilings are not supported by the underlying system |
| |
| procedure Set_Ceiling |
| (L : not null access Lock; |
| Prio : System.Any_Priority) |
| is |
| pragma Unreferenced (L, Prio); |
| begin |
| null; |
| end Set_Ceiling; |
| |
| ----------- |
| -- Sleep -- |
| ----------- |
| |
| procedure Sleep |
| (Self_ID : Task_Id; |
| Reason : System.Tasking.Task_States) |
| is |
| pragma Unreferenced (Reason); |
| |
| begin |
| pragma Assert (Self_ID = Self); |
| |
| if Single_Lock then |
| Cond_Wait (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access); |
| else |
| Cond_Wait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access); |
| end if; |
| |
| if Self_ID.Deferral_Level = 0 |
| and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level |
| then |
| Unlock (Self_ID); |
| raise Standard'Abort_Signal; |
| end if; |
| end Sleep; |
| |
| ----------------- |
| -- Timed_Sleep -- |
| ----------------- |
| |
| -- This is for use within the run-time system, so abort is assumed to be |
| -- already deferred, and the caller should be holding its own ATCB lock. |
| |
| procedure Timed_Sleep |
| (Self_ID : Task_Id; |
| Time : Duration; |
| Mode : ST.Delay_Modes; |
| Reason : System.Tasking.Task_States; |
| Timedout : out Boolean; |
| Yielded : out Boolean) |
| is |
| pragma Unreferenced (Reason); |
| Check_Time : Duration := Monotonic_Clock; |
| Rel_Time : Duration; |
| Abs_Time : Duration; |
| |
| Result : Integer; |
| pragma Unreferenced (Result); |
| |
| Local_Timedout : Boolean; |
| |
| begin |
| Timedout := True; |
| Yielded := False; |
| |
| if Mode = Relative then |
| Rel_Time := Time; |
| Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time; |
| else |
| Rel_Time := Time - Check_Time; |
| Abs_Time := Time; |
| end if; |
| |
| if Rel_Time > 0.0 then |
| loop |
| exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level; |
| |
| if Single_Lock then |
| Cond_Timed_Wait |
| (Self_ID.Common.LL.CV'Access, |
| Single_RTS_Lock'Access, |
| Rel_Time, Local_Timedout, Result); |
| else |
| Cond_Timed_Wait |
| (Self_ID.Common.LL.CV'Access, |
| Self_ID.Common.LL.L'Access, |
| Rel_Time, Local_Timedout, Result); |
| end if; |
| |
| Check_Time := Monotonic_Clock; |
| exit when Abs_Time <= Check_Time; |
| |
| if not Local_Timedout then |
| |
| -- Somebody may have called Wakeup for us |
| |
| Timedout := False; |
| exit; |
| end if; |
| |
| Rel_Time := Abs_Time - Check_Time; |
| end loop; |
| end if; |
| end Timed_Sleep; |
| |
| ----------------- |
| -- Timed_Delay -- |
| ----------------- |
| |
| procedure Timed_Delay |
| (Self_ID : Task_Id; |
| Time : Duration; |
| Mode : ST.Delay_Modes) |
| is |
| Check_Time : Duration := Monotonic_Clock; |
| Rel_Time : Duration; |
| Abs_Time : Duration; |
| |
| Timedout : Boolean; |
| Result : Integer; |
| pragma Unreferenced (Timedout, Result); |
| |
| begin |
| if Single_Lock then |
| Lock_RTS; |
| end if; |
| |
| Write_Lock (Self_ID); |
| |
| if Mode = Relative then |
| Rel_Time := Time; |
| Abs_Time := Time + Check_Time; |
| else |
| Rel_Time := Time - Check_Time; |
| Abs_Time := Time; |
| end if; |
| |
| if Rel_Time > 0.0 then |
| Self_ID.Common.State := Delay_Sleep; |
| |
| loop |
| exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level; |
| |
| if Single_Lock then |
| Cond_Timed_Wait |
| (Self_ID.Common.LL.CV'Access, |
| Single_RTS_Lock'Access, |
| Rel_Time, Timedout, Result); |
| else |
| Cond_Timed_Wait |
| (Self_ID.Common.LL.CV'Access, |
| Self_ID.Common.LL.L'Access, |
| Rel_Time, Timedout, Result); |
| end if; |
| |
| Check_Time := Monotonic_Clock; |
| exit when Abs_Time <= Check_Time; |
| |
| Rel_Time := Abs_Time - Check_Time; |
| end loop; |
| |
| Self_ID.Common.State := Runnable; |
| end if; |
| |
| Unlock (Self_ID); |
| |
| if Single_Lock then |
| Unlock_RTS; |
| end if; |
| |
| Yield; |
| end Timed_Delay; |
| |
| ------------ |
| -- Wakeup -- |
| ------------ |
| |
| procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is |
| pragma Unreferenced (Reason); |
| begin |
| Cond_Signal (T.Common.LL.CV'Access); |
| end Wakeup; |
| |
| ----------- |
| -- Yield -- |
| ----------- |
| |
| procedure Yield (Do_Yield : Boolean := True) is |
| begin |
| -- Note: in a previous implementation if Do_Yield was False, then we |
| -- introduced a delay of 1 millisecond in an attempt to get closer to |
| -- annex D semantics, and in particular to make ACATS CXD8002 pass. But |
| -- this change introduced a huge performance regression evaluating the |
| -- Count attribute. So we decided to remove this processing. |
| |
| -- Moreover, CXD8002 appears to pass on Windows (although we do not |
| -- guarantee full Annex D compliance on Windows in any case). |
| |
| if Do_Yield then |
| SwitchToThread; |
| end if; |
| end Yield; |
| |
| ------------------ |
| -- Set_Priority -- |
| ------------------ |
| |
| procedure Set_Priority |
| (T : Task_Id; |
| Prio : System.Any_Priority; |
| Loss_Of_Inheritance : Boolean := False) |
| is |
| Res : BOOL; |
| pragma Unreferenced (Loss_Of_Inheritance); |
| |
| begin |
| Res := |
| SetThreadPriority |
| (T.Common.LL.Thread, |
| Interfaces.C.int (Underlying_Priorities (Prio))); |
| pragma Assert (Res = Win32.TRUE); |
| |
| -- Note: Annex D (RM D.2.3(5/2)) requires the task to be placed at the |
| -- head of its priority queue when decreasing its priority as a result |
| -- of a loss of inherited priority. This is not the case, but we |
| -- consider it an acceptable variation (RM 1.1.3(6)), given this is |
| -- the built-in behavior offered by the Windows operating system. |
| |
| -- In older versions we attempted to better approximate the Annex D |
| -- required behavior, but this simulation was not entirely accurate, |
| -- and it seems better to live with the standard Windows semantics. |
| |
| T.Common.Current_Priority := Prio; |
| end Set_Priority; |
| |
| ------------------ |
| -- Get_Priority -- |
| ------------------ |
| |
| function Get_Priority (T : Task_Id) return System.Any_Priority is |
| begin |
| return T.Common.Current_Priority; |
| end Get_Priority; |
| |
| ---------------- |
| -- Enter_Task -- |
| ---------------- |
| |
| -- There were two paths were we needed to call Enter_Task : |
| -- 1) from System.Task_Primitives.Operations.Initialize |
| -- 2) from System.Tasking.Stages.Task_Wrapper |
| |
| -- The thread initialisation has to be done only for the first case |
| |
| -- This is because the GetCurrentThread NT call does not return the real |
| -- thread handler but only a "pseudo" one. It is not possible to release |
| -- the thread handle and free the system resources from this "pseudo" |
| -- handle. So we really want to keep the real thread handle set in |
| -- System.Task_Primitives.Operations.Create_Task during thread creation. |
| |
| procedure Enter_Task (Self_ID : Task_Id) is |
| procedure Get_Stack_Bounds (Base : Address; Limit : Address); |
| pragma Import (C, Get_Stack_Bounds, "__gnat_get_stack_bounds"); |
| -- Get stack boundaries |
| begin |
| Specific.Set (Self_ID); |
| |
| -- Properly initializes the FPU for x86 systems |
| |
| System.Float_Control.Reset; |
| |
| if Self_ID.Common.Task_Info /= null |
| and then |
| Self_ID.Common.Task_Info.CPU >= CPU_Number (Number_Of_Processors) |
| then |
| raise Invalid_CPU_Number; |
| end if; |
| |
| Self_ID.Common.LL.Thread_Id := GetCurrentThreadId; |
| |
| Get_Stack_Bounds |
| (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Base'Address, |
| Self_ID.Common.Compiler_Data.Pri_Stack_Info.Limit'Address); |
| end Enter_Task; |
| |
| ------------------- |
| -- Is_Valid_Task -- |
| ------------------- |
| |
| function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task; |
| |
| ----------------------------- |
| -- Register_Foreign_Thread -- |
| ----------------------------- |
| |
| function Register_Foreign_Thread return Task_Id is |
| begin |
| if Is_Valid_Task then |
| return Self; |
| else |
| return Register_Foreign_Thread (GetCurrentThread); |
| end if; |
| end Register_Foreign_Thread; |
| |
| -------------------- |
| -- Initialize_TCB -- |
| -------------------- |
| |
| procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is |
| begin |
| -- Initialize thread ID to 0, this is needed to detect threads that |
| -- are not yet activated. |
| |
| Self_ID.Common.LL.Thread := Null_Thread_Id; |
| |
| Initialize_Cond (Self_ID.Common.LL.CV'Access); |
| |
| if not Single_Lock then |
| Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level); |
| end if; |
| |
| Succeeded := True; |
| end Initialize_TCB; |
| |
| ----------------- |
| -- Create_Task -- |
| ----------------- |
| |
| procedure Create_Task |
| (T : Task_Id; |
| Wrapper : System.Address; |
| Stack_Size : System.Parameters.Size_Type; |
| Priority : System.Any_Priority; |
| Succeeded : out Boolean) |
| is |
| Initial_Stack_Size : constant := 1024; |
| -- We set the initial stack size to 1024. On Windows version prior to XP |
| -- there is no way to fix a task stack size. Only the initial stack size |
| -- can be set, the operating system will raise the task stack size if |
| -- needed. |
| |
| function Is_Windows_XP return Integer; |
| pragma Import (C, Is_Windows_XP, "__gnat_is_windows_xp"); |
| -- Returns 1 if running on Windows XP |
| |
| hTask : HANDLE; |
| TaskId : aliased DWORD; |
| pTaskParameter : Win32.PVOID; |
| Result : DWORD; |
| Entry_Point : PTHREAD_START_ROUTINE; |
| |
| use type System.Multiprocessors.CPU_Range; |
| |
| begin |
| -- Check whether both Dispatching_Domain and CPU are specified for the |
| -- task, and the CPU value is not contained within the range of |
| -- processors for the domain. |
| |
| if T.Common.Domain /= null |
| and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU |
| and then |
| (T.Common.Base_CPU not in T.Common.Domain'Range |
| or else not T.Common.Domain (T.Common.Base_CPU)) |
| then |
| Succeeded := False; |
| return; |
| end if; |
| |
| pTaskParameter := To_Address (T); |
| |
| Entry_Point := To_PTHREAD_START_ROUTINE (Wrapper); |
| |
| if Is_Windows_XP = 1 then |
| hTask := CreateThread |
| (null, |
| DWORD (Stack_Size), |
| Entry_Point, |
| pTaskParameter, |
| DWORD (Create_Suspended) or |
| DWORD (Stack_Size_Param_Is_A_Reservation), |
| TaskId'Unchecked_Access); |
| else |
| hTask := CreateThread |
| (null, |
| Initial_Stack_Size, |
| Entry_Point, |
| pTaskParameter, |
| DWORD (Create_Suspended), |
| TaskId'Unchecked_Access); |
| end if; |
| |
| -- Step 1: Create the thread in blocked mode |
| |
| if hTask = 0 then |
| Succeeded := False; |
| return; |
| end if; |
| |
| -- Step 2: set its TCB |
| |
| T.Common.LL.Thread := hTask; |
| |
| -- Note: it would be useful to initialize Thread_Id right away to avoid |
| -- a race condition in gdb where Thread_ID may not have the right value |
| -- yet, but GetThreadId is a Vista specific API, not available under XP: |
| -- T.Common.LL.Thread_Id := GetThreadId (hTask); so instead we set the |
| -- field to 0 to avoid having a random value. Thread_Id is initialized |
| -- in Enter_Task anyway. |
| |
| T.Common.LL.Thread_Id := 0; |
| |
| -- Step 3: set its priority (child has inherited priority from parent) |
| |
| Set_Priority (T, Priority); |
| |
| if Time_Slice_Val = 0 |
| or else Dispatching_Policy = 'F' |
| or else Get_Policy (Priority) = 'F' |
| then |
| -- Here we need Annex D semantics so we disable the NT priority |
| -- boost. A priority boost is temporarily given by the system to |
| -- a thread when it is taken out of a wait state. |
| |
| SetThreadPriorityBoost (hTask, DisablePriorityBoost => Win32.TRUE); |
| end if; |
| |
| -- Step 4: Handle pragma CPU and Task_Info |
| |
| Set_Task_Affinity (T); |
| |
| -- Step 5: Now, start it for good |
| |
| Result := ResumeThread (hTask); |
| pragma Assert (Result = 1); |
| |
| Succeeded := Result = 1; |
| end Create_Task; |
| |
| ------------------ |
| -- Finalize_TCB -- |
| ------------------ |
| |
| procedure Finalize_TCB (T : Task_Id) is |
| Succeeded : BOOL; |
| |
| begin |
| if not Single_Lock then |
| Finalize_Lock (T.Common.LL.L'Access); |
| end if; |
| |
| Finalize_Cond (T.Common.LL.CV'Access); |
| |
| if T.Known_Tasks_Index /= -1 then |
| Known_Tasks (T.Known_Tasks_Index) := null; |
| end if; |
| |
| if T.Common.LL.Thread /= 0 then |
| |
| -- This task has been activated. Close the thread handle. This |
| -- is needed to release system resources. |
| |
| Succeeded := CloseHandle (T.Common.LL.Thread); |
| pragma Assert (Succeeded = Win32.TRUE); |
| end if; |
| |
| ATCB_Allocation.Free_ATCB (T); |
| end Finalize_TCB; |
| |
| --------------- |
| -- Exit_Task -- |
| --------------- |
| |
| procedure Exit_Task is |
| begin |
| Specific.Set (null); |
| end Exit_Task; |
| |
| ---------------- |
| -- Abort_Task -- |
| ---------------- |
| |
| procedure Abort_Task (T : Task_Id) is |
| pragma Unreferenced (T); |
| begin |
| null; |
| end Abort_Task; |
| |
| ---------------------- |
| -- Environment_Task -- |
| ---------------------- |
| |
| function Environment_Task return Task_Id is |
| begin |
| return Environment_Task_Id; |
| end Environment_Task; |
| |
| -------------- |
| -- Lock_RTS -- |
| -------------- |
| |
| procedure Lock_RTS is |
| begin |
| Write_Lock (Single_RTS_Lock'Access, Global_Lock => True); |
| end Lock_RTS; |
| |
| ---------------- |
| -- Unlock_RTS -- |
| ---------------- |
| |
| procedure Unlock_RTS is |
| begin |
| Unlock (Single_RTS_Lock'Access, Global_Lock => True); |
| end Unlock_RTS; |
| |
| ---------------- |
| -- Initialize -- |
| ---------------- |
| |
| procedure Initialize (Environment_Task : Task_Id) is |
| Discard : BOOL; |
| |
| begin |
| Environment_Task_Id := Environment_Task; |
| OS_Primitives.Initialize; |
| Interrupt_Management.Initialize; |
| |
| if Time_Slice_Val = 0 or else Dispatching_Policy = 'F' then |
| -- Here we need Annex D semantics, switch the current process to the |
| -- Realtime_Priority_Class. |
| |
| Discard := OS_Interface.SetPriorityClass |
| (GetCurrentProcess, Realtime_Priority_Class); |
| end if; |
| |
| TlsIndex := TlsAlloc; |
| |
| -- Initialize the lock used to synchronize chain of all ATCBs |
| |
| Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level); |
| |
| Environment_Task.Common.LL.Thread := GetCurrentThread; |
| |
| -- Make environment task known here because it doesn't go through |
| -- Activate_Tasks, which does it for all other tasks. |
| |
| Known_Tasks (Known_Tasks'First) := Environment_Task; |
| Environment_Task.Known_Tasks_Index := Known_Tasks'First; |
| |
| Enter_Task (Environment_Task); |
| |
| -- pragma CPU and dispatching domains for the environment task |
| |
| Set_Task_Affinity (Environment_Task); |
| end Initialize; |
| |
| --------------------- |
| -- Monotonic_Clock -- |
| --------------------- |
| |
| function Monotonic_Clock return Duration |
| renames System.OS_Primitives.Monotonic_Clock; |
| |
| ------------------- |
| -- RT_Resolution -- |
| ------------------- |
| |
| function RT_Resolution return Duration is |
| Ticks_Per_Second : aliased LARGE_INTEGER; |
| begin |
| QueryPerformanceFrequency (Ticks_Per_Second'Access); |
| return Duration (1.0 / Ticks_Per_Second); |
| end RT_Resolution; |
| |
| ---------------- |
| -- Initialize -- |
| ---------------- |
| |
| procedure Initialize (S : in out Suspension_Object) is |
| begin |
| -- Initialize internal state. It is always initialized to False (ARM |
| -- D.10 par. 6). |
| |
| S.State := False; |
| S.Waiting := False; |
| |
| -- Initialize internal mutex |
| |
| InitializeCriticalSection (S.L'Access); |
| |
| -- Initialize internal condition variable |
| |
| S.CV := CreateEvent (null, Win32.TRUE, Win32.FALSE, Null_Ptr); |
| pragma Assert (S.CV /= 0); |
| end Initialize; |
| |
| -------------- |
| -- Finalize -- |
| -------------- |
| |
| procedure Finalize (S : in out Suspension_Object) is |
| Result : BOOL; |
| |
| begin |
| -- Destroy internal mutex |
| |
| DeleteCriticalSection (S.L'Access); |
| |
| -- Destroy internal condition variable |
| |
| Result := CloseHandle (S.CV); |
| pragma Assert (Result = Win32.TRUE); |
| end Finalize; |
| |
| ------------------- |
| -- Current_State -- |
| ------------------- |
| |
| function Current_State (S : Suspension_Object) return Boolean is |
| begin |
| -- We do not want to use lock on this read operation. State is marked |
| -- as Atomic so that we ensure that the value retrieved is correct. |
| |
| return S.State; |
| end Current_State; |
| |
| --------------- |
| -- Set_False -- |
| --------------- |
| |
| procedure Set_False (S : in out Suspension_Object) is |
| begin |
| SSL.Abort_Defer.all; |
| |
| EnterCriticalSection (S.L'Access); |
| |
| S.State := False; |
| |
| LeaveCriticalSection (S.L'Access); |
| |
| SSL.Abort_Undefer.all; |
| end Set_False; |
| |
| -------------- |
| -- Set_True -- |
| -------------- |
| |
| procedure Set_True (S : in out Suspension_Object) is |
| Result : BOOL; |
| |
| begin |
| SSL.Abort_Defer.all; |
| |
| EnterCriticalSection (S.L'Access); |
| |
| -- If there is already a task waiting on this suspension object then |
| -- we resume it, leaving the state of the suspension object to False, |
| -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves |
| -- the state to True. |
| |
| if S.Waiting then |
| S.Waiting := False; |
| S.State := False; |
| |
| Result := SetEvent (S.CV); |
| pragma Assert (Result = Win32.TRUE); |
| |
| else |
| S.State := True; |
| end if; |
| |
| LeaveCriticalSection (S.L'Access); |
| |
| SSL.Abort_Undefer.all; |
| end Set_True; |
| |
| ------------------------ |
| -- Suspend_Until_True -- |
| ------------------------ |
| |
| procedure Suspend_Until_True (S : in out Suspension_Object) is |
| Result : DWORD; |
| Result_Bool : BOOL; |
| |
| begin |
| SSL.Abort_Defer.all; |
| |
| EnterCriticalSection (S.L'Access); |
| |
| if S.Waiting then |
| |
| -- Program_Error must be raised upon calling Suspend_Until_True |
| -- if another task is already waiting on that suspension object |
| -- (ARM D.10 par. 10). |
| |
| LeaveCriticalSection (S.L'Access); |
| |
| SSL.Abort_Undefer.all; |
| |
| raise Program_Error; |
| |
| else |
| -- Suspend the task if the state is False. Otherwise, the task |
| -- continues its execution, and the state of the suspension object |
| -- is set to False (ARM D.10 par. 9). |
| |
| if S.State then |
| S.State := False; |
| |
| LeaveCriticalSection (S.L'Access); |
| |
| SSL.Abort_Undefer.all; |
| |
| else |
| S.Waiting := True; |
| |
| -- Must reset CV BEFORE L is unlocked |
| |
| Result_Bool := ResetEvent (S.CV); |
| pragma Assert (Result_Bool = Win32.TRUE); |
| |
| LeaveCriticalSection (S.L'Access); |
| |
| SSL.Abort_Undefer.all; |
| |
| Result := WaitForSingleObject (S.CV, Wait_Infinite); |
| pragma Assert (Result = 0); |
| end if; |
| end if; |
| end Suspend_Until_True; |
| |
| ---------------- |
| -- Check_Exit -- |
| ---------------- |
| |
| -- Dummy versions, currently this only works for solaris (native) |
| |
| function Check_Exit (Self_ID : ST.Task_Id) return Boolean is |
| pragma Unreferenced (Self_ID); |
| begin |
| return True; |
| end Check_Exit; |
| |
| -------------------- |
| -- Check_No_Locks -- |
| -------------------- |
| |
| function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is |
| pragma Unreferenced (Self_ID); |
| begin |
| return True; |
| end Check_No_Locks; |
| |
| ------------------ |
| -- Suspend_Task -- |
| ------------------ |
| |
| function Suspend_Task |
| (T : ST.Task_Id; |
| Thread_Self : Thread_Id) return Boolean |
| is |
| begin |
| if T.Common.LL.Thread /= Thread_Self then |
| return SuspendThread (T.Common.LL.Thread) = NO_ERROR; |
| else |
| return True; |
| end if; |
| end Suspend_Task; |
| |
| ----------------- |
| -- Resume_Task -- |
| ----------------- |
| |
| function Resume_Task |
| (T : ST.Task_Id; |
| Thread_Self : Thread_Id) return Boolean |
| is |
| begin |
| if T.Common.LL.Thread /= Thread_Self then |
| return ResumeThread (T.Common.LL.Thread) = NO_ERROR; |
| else |
| return True; |
| end if; |
| end Resume_Task; |
| |
| -------------------- |
| -- Stop_All_Tasks -- |
| -------------------- |
| |
| procedure Stop_All_Tasks is |
| begin |
| null; |
| end Stop_All_Tasks; |
| |
| --------------- |
| -- Stop_Task -- |
| --------------- |
| |
| function Stop_Task (T : ST.Task_Id) return Boolean is |
| pragma Unreferenced (T); |
| begin |
| return False; |
| end Stop_Task; |
| |
| ------------------- |
| -- Continue_Task -- |
| ------------------- |
| |
| function Continue_Task (T : ST.Task_Id) return Boolean is |
| pragma Unreferenced (T); |
| begin |
| return False; |
| end Continue_Task; |
| |
| ----------------------- |
| -- Set_Task_Affinity -- |
| ----------------------- |
| |
| procedure Set_Task_Affinity (T : ST.Task_Id) is |
| Result : DWORD; |
| |
| use type System.Multiprocessors.CPU_Range; |
| |
| begin |
| -- Do nothing if the underlying thread has not yet been created. If the |
| -- thread has not yet been created then the proper affinity will be set |
| -- during its creation. |
| |
| if T.Common.LL.Thread = Null_Thread_Id then |
| null; |
| |
| -- pragma CPU |
| |
| elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then |
| |
| -- The CPU numbering in pragma CPU starts at 1 while the subprogram |
| -- to set the affinity starts at 0, therefore we must substract 1. |
| |
| Result := |
| SetThreadIdealProcessor |
| (T.Common.LL.Thread, ProcessorId (T.Common.Base_CPU) - 1); |
| pragma Assert (Result = 1); |
| |
| -- Task_Info |
| |
| elsif T.Common.Task_Info /= null then |
| if T.Common.Task_Info.CPU /= Task_Info.Any_CPU then |
| Result := |
| SetThreadIdealProcessor |
| (T.Common.LL.Thread, T.Common.Task_Info.CPU); |
| pragma Assert (Result = 1); |
| end if; |
| |
| -- Dispatching domains |
| |
| elsif T.Common.Domain /= null |
| and then (T.Common.Domain /= ST.System_Domain |
| or else |
| T.Common.Domain.all /= |
| (Multiprocessors.CPU'First .. |
| Multiprocessors.Number_Of_CPUs => True)) |
| then |
| declare |
| CPU_Set : DWORD := 0; |
| |
| begin |
| for Proc in T.Common.Domain'Range loop |
| if T.Common.Domain (Proc) then |
| |
| -- The thread affinity mask is a bit vector in which each |
| -- bit represents a logical processor. |
| |
| CPU_Set := CPU_Set + 2 ** (Integer (Proc) - 1); |
| end if; |
| end loop; |
| |
| Result := SetThreadAffinityMask (T.Common.LL.Thread, CPU_Set); |
| pragma Assert (Result = 1); |
| end; |
| end if; |
| end Set_Task_Affinity; |
| |
| end System.Task_Primitives.Operations; |