| /* Expand builtin functions. |
| Copyright (C) 1988-2015 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "machmode.h" |
| #include "rtl.h" |
| #include "hash-set.h" |
| #include "vec.h" |
| #include "double-int.h" |
| #include "input.h" |
| #include "alias.h" |
| #include "symtab.h" |
| #include "wide-int.h" |
| #include "inchash.h" |
| #include "tree.h" |
| #include "fold-const.h" |
| #include "stringpool.h" |
| #include "stor-layout.h" |
| #include "calls.h" |
| #include "varasm.h" |
| #include "tree-object-size.h" |
| #include "realmpfr.h" |
| #include "predict.h" |
| #include "hashtab.h" |
| #include "hard-reg-set.h" |
| #include "function.h" |
| #include "cfgrtl.h" |
| #include "basic-block.h" |
| #include "tree-ssa-alias.h" |
| #include "internal-fn.h" |
| #include "gimple-expr.h" |
| #include "is-a.h" |
| #include "gimple.h" |
| #include "flags.h" |
| #include "regs.h" |
| #include "except.h" |
| #include "insn-config.h" |
| #include "statistics.h" |
| #include "real.h" |
| #include "fixed-value.h" |
| #include "expmed.h" |
| #include "dojump.h" |
| #include "explow.h" |
| #include "emit-rtl.h" |
| #include "stmt.h" |
| #include "expr.h" |
| #include "insn-codes.h" |
| #include "optabs.h" |
| #include "libfuncs.h" |
| #include "recog.h" |
| #include "output.h" |
| #include "typeclass.h" |
| #include "tm_p.h" |
| #include "target.h" |
| #include "langhooks.h" |
| #include "tree-ssanames.h" |
| #include "tree-dfa.h" |
| #include "value-prof.h" |
| #include "diagnostic-core.h" |
| #include "builtins.h" |
| #include "asan.h" |
| #include "cilk.h" |
| #include "ipa-ref.h" |
| #include "lto-streamer.h" |
| #include "cgraph.h" |
| #include "tree-chkp.h" |
| #include "rtl-chkp.h" |
| #include "gomp-constants.h" |
| |
| |
| static tree do_mpc_arg1 (tree, tree, int (*)(mpc_ptr, mpc_srcptr, mpc_rnd_t)); |
| |
| struct target_builtins default_target_builtins; |
| #if SWITCHABLE_TARGET |
| struct target_builtins *this_target_builtins = &default_target_builtins; |
| #endif |
| |
| /* Define the names of the builtin function types and codes. */ |
| const char *const built_in_class_names[BUILT_IN_LAST] |
| = {"NOT_BUILT_IN", "BUILT_IN_FRONTEND", "BUILT_IN_MD", "BUILT_IN_NORMAL"}; |
| |
| #define DEF_BUILTIN(X, N, C, T, LT, B, F, NA, AT, IM, COND) #X, |
| const char * built_in_names[(int) END_BUILTINS] = |
| { |
| #include "builtins.def" |
| }; |
| #undef DEF_BUILTIN |
| |
| /* Setup an array of builtin_info_type, make sure each element decl is |
| initialized to NULL_TREE. */ |
| builtin_info_type builtin_info[(int)END_BUILTINS]; |
| |
| /* Non-zero if __builtin_constant_p should be folded right away. */ |
| bool force_folding_builtin_constant_p; |
| |
| static rtx c_readstr (const char *, machine_mode); |
| static int target_char_cast (tree, char *); |
| static rtx get_memory_rtx (tree, tree); |
| static int apply_args_size (void); |
| static int apply_result_size (void); |
| #if defined (HAVE_untyped_call) || defined (HAVE_untyped_return) |
| static rtx result_vector (int, rtx); |
| #endif |
| static void expand_builtin_update_setjmp_buf (rtx); |
| static void expand_builtin_prefetch (tree); |
| static rtx expand_builtin_apply_args (void); |
| static rtx expand_builtin_apply_args_1 (void); |
| static rtx expand_builtin_apply (rtx, rtx, rtx); |
| static void expand_builtin_return (rtx); |
| static enum type_class type_to_class (tree); |
| static rtx expand_builtin_classify_type (tree); |
| static void expand_errno_check (tree, rtx); |
| static rtx expand_builtin_mathfn (tree, rtx, rtx); |
| static rtx expand_builtin_mathfn_2 (tree, rtx, rtx); |
| static rtx expand_builtin_mathfn_3 (tree, rtx, rtx); |
| static rtx expand_builtin_mathfn_ternary (tree, rtx, rtx); |
| static rtx expand_builtin_interclass_mathfn (tree, rtx); |
| static rtx expand_builtin_sincos (tree); |
| static rtx expand_builtin_cexpi (tree, rtx); |
| static rtx expand_builtin_int_roundingfn (tree, rtx); |
| static rtx expand_builtin_int_roundingfn_2 (tree, rtx); |
| static rtx expand_builtin_next_arg (void); |
| static rtx expand_builtin_va_start (tree); |
| static rtx expand_builtin_va_end (tree); |
| static rtx expand_builtin_va_copy (tree); |
| static rtx expand_builtin_memcmp (tree, rtx, machine_mode); |
| static rtx expand_builtin_strcmp (tree, rtx); |
| static rtx expand_builtin_strncmp (tree, rtx, machine_mode); |
| static rtx builtin_memcpy_read_str (void *, HOST_WIDE_INT, machine_mode); |
| static rtx expand_builtin_memcpy (tree, rtx); |
| static rtx expand_builtin_memcpy_with_bounds (tree, rtx); |
| static rtx expand_builtin_memcpy_args (tree, tree, tree, rtx, tree); |
| static rtx expand_builtin_mempcpy (tree, rtx, machine_mode); |
| static rtx expand_builtin_mempcpy_with_bounds (tree, rtx, machine_mode); |
| static rtx expand_builtin_mempcpy_args (tree, tree, tree, rtx, |
| machine_mode, int, tree); |
| static rtx expand_builtin_strcpy (tree, rtx); |
| static rtx expand_builtin_strcpy_args (tree, tree, rtx); |
| static rtx expand_builtin_stpcpy (tree, rtx, machine_mode); |
| static rtx expand_builtin_strncpy (tree, rtx); |
| static rtx builtin_memset_gen_str (void *, HOST_WIDE_INT, machine_mode); |
| static rtx expand_builtin_memset (tree, rtx, machine_mode); |
| static rtx expand_builtin_memset_with_bounds (tree, rtx, machine_mode); |
| static rtx expand_builtin_memset_args (tree, tree, tree, rtx, machine_mode, tree); |
| static rtx expand_builtin_bzero (tree); |
| static rtx expand_builtin_strlen (tree, rtx, machine_mode); |
| static rtx expand_builtin_alloca (tree, bool); |
| static rtx expand_builtin_unop (machine_mode, tree, rtx, rtx, optab); |
| static rtx expand_builtin_frame_address (tree, tree); |
| static tree stabilize_va_list_loc (location_t, tree, int); |
| static rtx expand_builtin_expect (tree, rtx); |
| static tree fold_builtin_constant_p (tree); |
| static tree fold_builtin_classify_type (tree); |
| static tree fold_builtin_strlen (location_t, tree, tree); |
| static tree fold_builtin_inf (location_t, tree, int); |
| static tree fold_builtin_nan (tree, tree, int); |
| static tree rewrite_call_expr (location_t, tree, int, tree, int, ...); |
| static bool validate_arg (const_tree, enum tree_code code); |
| static bool integer_valued_real_p (tree); |
| static tree fold_trunc_transparent_mathfn (location_t, tree, tree); |
| static rtx expand_builtin_fabs (tree, rtx, rtx); |
| static rtx expand_builtin_signbit (tree, rtx); |
| static tree fold_builtin_sqrt (location_t, tree, tree); |
| static tree fold_builtin_cbrt (location_t, tree, tree); |
| static tree fold_builtin_pow (location_t, tree, tree, tree, tree); |
| static tree fold_builtin_powi (location_t, tree, tree, tree, tree); |
| static tree fold_builtin_cos (location_t, tree, tree, tree); |
| static tree fold_builtin_cosh (location_t, tree, tree, tree); |
| static tree fold_builtin_tan (tree, tree); |
| static tree fold_builtin_trunc (location_t, tree, tree); |
| static tree fold_builtin_floor (location_t, tree, tree); |
| static tree fold_builtin_ceil (location_t, tree, tree); |
| static tree fold_builtin_round (location_t, tree, tree); |
| static tree fold_builtin_int_roundingfn (location_t, tree, tree); |
| static tree fold_builtin_bitop (tree, tree); |
| static tree fold_builtin_strchr (location_t, tree, tree, tree); |
| static tree fold_builtin_memchr (location_t, tree, tree, tree, tree); |
| static tree fold_builtin_memcmp (location_t, tree, tree, tree); |
| static tree fold_builtin_strcmp (location_t, tree, tree); |
| static tree fold_builtin_strncmp (location_t, tree, tree, tree); |
| static tree fold_builtin_signbit (location_t, tree, tree); |
| static tree fold_builtin_copysign (location_t, tree, tree, tree, tree); |
| static tree fold_builtin_isascii (location_t, tree); |
| static tree fold_builtin_toascii (location_t, tree); |
| static tree fold_builtin_isdigit (location_t, tree); |
| static tree fold_builtin_fabs (location_t, tree, tree); |
| static tree fold_builtin_abs (location_t, tree, tree); |
| static tree fold_builtin_unordered_cmp (location_t, tree, tree, tree, enum tree_code, |
| enum tree_code); |
| static tree fold_builtin_0 (location_t, tree); |
| static tree fold_builtin_1 (location_t, tree, tree); |
| static tree fold_builtin_2 (location_t, tree, tree, tree); |
| static tree fold_builtin_3 (location_t, tree, tree, tree, tree); |
| static tree fold_builtin_varargs (location_t, tree, tree*, int); |
| |
| static tree fold_builtin_strpbrk (location_t, tree, tree, tree); |
| static tree fold_builtin_strstr (location_t, tree, tree, tree); |
| static tree fold_builtin_strrchr (location_t, tree, tree, tree); |
| static tree fold_builtin_strspn (location_t, tree, tree); |
| static tree fold_builtin_strcspn (location_t, tree, tree); |
| |
| static rtx expand_builtin_object_size (tree); |
| static rtx expand_builtin_memory_chk (tree, rtx, machine_mode, |
| enum built_in_function); |
| static void maybe_emit_chk_warning (tree, enum built_in_function); |
| static void maybe_emit_sprintf_chk_warning (tree, enum built_in_function); |
| static void maybe_emit_free_warning (tree); |
| static tree fold_builtin_object_size (tree, tree); |
| |
| unsigned HOST_WIDE_INT target_newline; |
| unsigned HOST_WIDE_INT target_percent; |
| static unsigned HOST_WIDE_INT target_c; |
| static unsigned HOST_WIDE_INT target_s; |
| char target_percent_c[3]; |
| char target_percent_s[3]; |
| char target_percent_s_newline[4]; |
| static tree do_mpfr_arg1 (tree, tree, int (*)(mpfr_ptr, mpfr_srcptr, mp_rnd_t), |
| const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, bool); |
| static tree do_mpfr_arg2 (tree, tree, tree, |
| int (*)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t)); |
| static tree do_mpfr_arg3 (tree, tree, tree, tree, |
| int (*)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t)); |
| static tree do_mpfr_sincos (tree, tree, tree); |
| static tree do_mpfr_bessel_n (tree, tree, tree, |
| int (*)(mpfr_ptr, long, mpfr_srcptr, mp_rnd_t), |
| const REAL_VALUE_TYPE *, bool); |
| static tree do_mpfr_remquo (tree, tree, tree); |
| static tree do_mpfr_lgamma_r (tree, tree, tree); |
| static void expand_builtin_sync_synchronize (void); |
| |
| /* Return true if NAME starts with __builtin_ or __sync_. */ |
| |
| static bool |
| is_builtin_name (const char *name) |
| { |
| if (strncmp (name, "__builtin_", 10) == 0) |
| return true; |
| if (strncmp (name, "__sync_", 7) == 0) |
| return true; |
| if (strncmp (name, "__atomic_", 9) == 0) |
| return true; |
| if (flag_cilkplus |
| && (!strcmp (name, "__cilkrts_detach") |
| || !strcmp (name, "__cilkrts_pop_frame"))) |
| return true; |
| return false; |
| } |
| |
| |
| /* Return true if DECL is a function symbol representing a built-in. */ |
| |
| bool |
| is_builtin_fn (tree decl) |
| { |
| return TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl); |
| } |
| |
| /* Return true if NODE should be considered for inline expansion regardless |
| of the optimization level. This means whenever a function is invoked with |
| its "internal" name, which normally contains the prefix "__builtin". */ |
| |
| static bool |
| called_as_built_in (tree node) |
| { |
| /* Note that we must use DECL_NAME, not DECL_ASSEMBLER_NAME_SET_P since |
| we want the name used to call the function, not the name it |
| will have. */ |
| const char *name = IDENTIFIER_POINTER (DECL_NAME (node)); |
| return is_builtin_name (name); |
| } |
| |
| /* Compute values M and N such that M divides (address of EXP - N) and such |
| that N < M. If these numbers can be determined, store M in alignp and N in |
| *BITPOSP and return true. Otherwise return false and store BITS_PER_UNIT to |
| *alignp and any bit-offset to *bitposp. |
| |
| Note that the address (and thus the alignment) computed here is based |
| on the address to which a symbol resolves, whereas DECL_ALIGN is based |
| on the address at which an object is actually located. These two |
| addresses are not always the same. For example, on ARM targets, |
| the address &foo of a Thumb function foo() has the lowest bit set, |
| whereas foo() itself starts on an even address. |
| |
| If ADDR_P is true we are taking the address of the memory reference EXP |
| and thus cannot rely on the access taking place. */ |
| |
| static bool |
| get_object_alignment_2 (tree exp, unsigned int *alignp, |
| unsigned HOST_WIDE_INT *bitposp, bool addr_p) |
| { |
| HOST_WIDE_INT bitsize, bitpos; |
| tree offset; |
| machine_mode mode; |
| int unsignedp, volatilep; |
| unsigned int align = BITS_PER_UNIT; |
| bool known_alignment = false; |
| |
| /* Get the innermost object and the constant (bitpos) and possibly |
| variable (offset) offset of the access. */ |
| exp = get_inner_reference (exp, &bitsize, &bitpos, &offset, |
| &mode, &unsignedp, &volatilep, true); |
| |
| /* Extract alignment information from the innermost object and |
| possibly adjust bitpos and offset. */ |
| if (TREE_CODE (exp) == FUNCTION_DECL) |
| { |
| /* Function addresses can encode extra information besides their |
| alignment. However, if TARGET_PTRMEMFUNC_VBIT_LOCATION |
| allows the low bit to be used as a virtual bit, we know |
| that the address itself must be at least 2-byte aligned. */ |
| if (TARGET_PTRMEMFUNC_VBIT_LOCATION == ptrmemfunc_vbit_in_pfn) |
| align = 2 * BITS_PER_UNIT; |
| } |
| else if (TREE_CODE (exp) == LABEL_DECL) |
| ; |
| else if (TREE_CODE (exp) == CONST_DECL) |
| { |
| /* The alignment of a CONST_DECL is determined by its initializer. */ |
| exp = DECL_INITIAL (exp); |
| align = TYPE_ALIGN (TREE_TYPE (exp)); |
| #ifdef CONSTANT_ALIGNMENT |
| if (CONSTANT_CLASS_P (exp)) |
| align = (unsigned) CONSTANT_ALIGNMENT (exp, align); |
| #endif |
| known_alignment = true; |
| } |
| else if (DECL_P (exp)) |
| { |
| align = DECL_ALIGN (exp); |
| known_alignment = true; |
| } |
| else if (TREE_CODE (exp) == VIEW_CONVERT_EXPR) |
| { |
| align = TYPE_ALIGN (TREE_TYPE (exp)); |
| } |
| else if (TREE_CODE (exp) == INDIRECT_REF |
| || TREE_CODE (exp) == MEM_REF |
| || TREE_CODE (exp) == TARGET_MEM_REF) |
| { |
| tree addr = TREE_OPERAND (exp, 0); |
| unsigned ptr_align; |
| unsigned HOST_WIDE_INT ptr_bitpos; |
| unsigned HOST_WIDE_INT ptr_bitmask = ~0; |
| |
| /* If the address is explicitely aligned, handle that. */ |
| if (TREE_CODE (addr) == BIT_AND_EXPR |
| && TREE_CODE (TREE_OPERAND (addr, 1)) == INTEGER_CST) |
| { |
| ptr_bitmask = TREE_INT_CST_LOW (TREE_OPERAND (addr, 1)); |
| ptr_bitmask *= BITS_PER_UNIT; |
| align = ptr_bitmask & -ptr_bitmask; |
| addr = TREE_OPERAND (addr, 0); |
| } |
| |
| known_alignment |
| = get_pointer_alignment_1 (addr, &ptr_align, &ptr_bitpos); |
| align = MAX (ptr_align, align); |
| |
| /* Re-apply explicit alignment to the bitpos. */ |
| ptr_bitpos &= ptr_bitmask; |
| |
| /* The alignment of the pointer operand in a TARGET_MEM_REF |
| has to take the variable offset parts into account. */ |
| if (TREE_CODE (exp) == TARGET_MEM_REF) |
| { |
| if (TMR_INDEX (exp)) |
| { |
| unsigned HOST_WIDE_INT step = 1; |
| if (TMR_STEP (exp)) |
| step = TREE_INT_CST_LOW (TMR_STEP (exp)); |
| align = MIN (align, (step & -step) * BITS_PER_UNIT); |
| } |
| if (TMR_INDEX2 (exp)) |
| align = BITS_PER_UNIT; |
| known_alignment = false; |
| } |
| |
| /* When EXP is an actual memory reference then we can use |
| TYPE_ALIGN of a pointer indirection to derive alignment. |
| Do so only if get_pointer_alignment_1 did not reveal absolute |
| alignment knowledge and if using that alignment would |
| improve the situation. */ |
| if (!addr_p && !known_alignment |
| && TYPE_ALIGN (TREE_TYPE (exp)) > align) |
| align = TYPE_ALIGN (TREE_TYPE (exp)); |
| else |
| { |
| /* Else adjust bitpos accordingly. */ |
| bitpos += ptr_bitpos; |
| if (TREE_CODE (exp) == MEM_REF |
| || TREE_CODE (exp) == TARGET_MEM_REF) |
| bitpos += mem_ref_offset (exp).to_short_addr () * BITS_PER_UNIT; |
| } |
| } |
| else if (TREE_CODE (exp) == STRING_CST) |
| { |
| /* STRING_CST are the only constant objects we allow to be not |
| wrapped inside a CONST_DECL. */ |
| align = TYPE_ALIGN (TREE_TYPE (exp)); |
| #ifdef CONSTANT_ALIGNMENT |
| if (CONSTANT_CLASS_P (exp)) |
| align = (unsigned) CONSTANT_ALIGNMENT (exp, align); |
| #endif |
| known_alignment = true; |
| } |
| |
| /* If there is a non-constant offset part extract the maximum |
| alignment that can prevail. */ |
| if (offset) |
| { |
| unsigned int trailing_zeros = tree_ctz (offset); |
| if (trailing_zeros < HOST_BITS_PER_INT) |
| { |
| unsigned int inner = (1U << trailing_zeros) * BITS_PER_UNIT; |
| if (inner) |
| align = MIN (align, inner); |
| } |
| } |
| |
| *alignp = align; |
| *bitposp = bitpos & (*alignp - 1); |
| return known_alignment; |
| } |
| |
| /* For a memory reference expression EXP compute values M and N such that M |
| divides (&EXP - N) and such that N < M. If these numbers can be determined, |
| store M in alignp and N in *BITPOSP and return true. Otherwise return false |
| and store BITS_PER_UNIT to *alignp and any bit-offset to *bitposp. */ |
| |
| bool |
| get_object_alignment_1 (tree exp, unsigned int *alignp, |
| unsigned HOST_WIDE_INT *bitposp) |
| { |
| return get_object_alignment_2 (exp, alignp, bitposp, false); |
| } |
| |
| /* Return the alignment in bits of EXP, an object. */ |
| |
| unsigned int |
| get_object_alignment (tree exp) |
| { |
| unsigned HOST_WIDE_INT bitpos = 0; |
| unsigned int align; |
| |
| get_object_alignment_1 (exp, &align, &bitpos); |
| |
| /* align and bitpos now specify known low bits of the pointer. |
| ptr & (align - 1) == bitpos. */ |
| |
| if (bitpos != 0) |
| align = (bitpos & -bitpos); |
| return align; |
| } |
| |
| /* For a pointer valued expression EXP compute values M and N such that M |
| divides (EXP - N) and such that N < M. If these numbers can be determined, |
| store M in alignp and N in *BITPOSP and return true. Return false if |
| the results are just a conservative approximation. |
| |
| If EXP is not a pointer, false is returned too. */ |
| |
| bool |
| get_pointer_alignment_1 (tree exp, unsigned int *alignp, |
| unsigned HOST_WIDE_INT *bitposp) |
| { |
| STRIP_NOPS (exp); |
| |
| if (TREE_CODE (exp) == ADDR_EXPR) |
| return get_object_alignment_2 (TREE_OPERAND (exp, 0), |
| alignp, bitposp, true); |
| else if (TREE_CODE (exp) == SSA_NAME |
| && POINTER_TYPE_P (TREE_TYPE (exp))) |
| { |
| unsigned int ptr_align, ptr_misalign; |
| struct ptr_info_def *pi = SSA_NAME_PTR_INFO (exp); |
| |
| if (pi && get_ptr_info_alignment (pi, &ptr_align, &ptr_misalign)) |
| { |
| *bitposp = ptr_misalign * BITS_PER_UNIT; |
| *alignp = ptr_align * BITS_PER_UNIT; |
| /* Make sure to return a sensible alignment when the multiplication |
| by BITS_PER_UNIT overflowed. */ |
| if (*alignp == 0) |
| *alignp = 1u << (HOST_BITS_PER_INT - 1); |
| /* We cannot really tell whether this result is an approximation. */ |
| return false; |
| } |
| else |
| { |
| *bitposp = 0; |
| *alignp = BITS_PER_UNIT; |
| return false; |
| } |
| } |
| else if (TREE_CODE (exp) == INTEGER_CST) |
| { |
| *alignp = BIGGEST_ALIGNMENT; |
| *bitposp = ((TREE_INT_CST_LOW (exp) * BITS_PER_UNIT) |
| & (BIGGEST_ALIGNMENT - 1)); |
| return true; |
| } |
| |
| *bitposp = 0; |
| *alignp = BITS_PER_UNIT; |
| return false; |
| } |
| |
| /* Return the alignment in bits of EXP, a pointer valued expression. |
| The alignment returned is, by default, the alignment of the thing that |
| EXP points to. If it is not a POINTER_TYPE, 0 is returned. |
| |
| Otherwise, look at the expression to see if we can do better, i.e., if the |
| expression is actually pointing at an object whose alignment is tighter. */ |
| |
| unsigned int |
| get_pointer_alignment (tree exp) |
| { |
| unsigned HOST_WIDE_INT bitpos = 0; |
| unsigned int align; |
| |
| get_pointer_alignment_1 (exp, &align, &bitpos); |
| |
| /* align and bitpos now specify known low bits of the pointer. |
| ptr & (align - 1) == bitpos. */ |
| |
| if (bitpos != 0) |
| align = (bitpos & -bitpos); |
| |
| return align; |
| } |
| |
| /* Compute the length of a C string. TREE_STRING_LENGTH is not the right |
| way, because it could contain a zero byte in the middle. |
| TREE_STRING_LENGTH is the size of the character array, not the string. |
| |
| ONLY_VALUE should be nonzero if the result is not going to be emitted |
| into the instruction stream and zero if it is going to be expanded. |
| E.g. with i++ ? "foo" : "bar", if ONLY_VALUE is nonzero, constant 3 |
| is returned, otherwise NULL, since |
| len = c_strlen (src, 1); if (len) expand_expr (len, ...); would not |
| evaluate the side-effects. |
| |
| If ONLY_VALUE is two then we do not emit warnings about out-of-bound |
| accesses. Note that this implies the result is not going to be emitted |
| into the instruction stream. |
| |
| The value returned is of type `ssizetype'. |
| |
| Unfortunately, string_constant can't access the values of const char |
| arrays with initializers, so neither can we do so here. */ |
| |
| tree |
| c_strlen (tree src, int only_value) |
| { |
| tree offset_node; |
| HOST_WIDE_INT offset; |
| int max; |
| const char *ptr; |
| location_t loc; |
| |
| STRIP_NOPS (src); |
| if (TREE_CODE (src) == COND_EXPR |
| && (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0)))) |
| { |
| tree len1, len2; |
| |
| len1 = c_strlen (TREE_OPERAND (src, 1), only_value); |
| len2 = c_strlen (TREE_OPERAND (src, 2), only_value); |
| if (tree_int_cst_equal (len1, len2)) |
| return len1; |
| } |
| |
| if (TREE_CODE (src) == COMPOUND_EXPR |
| && (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0)))) |
| return c_strlen (TREE_OPERAND (src, 1), only_value); |
| |
| loc = EXPR_LOC_OR_LOC (src, input_location); |
| |
| src = string_constant (src, &offset_node); |
| if (src == 0) |
| return NULL_TREE; |
| |
| max = TREE_STRING_LENGTH (src) - 1; |
| ptr = TREE_STRING_POINTER (src); |
| |
| if (offset_node && TREE_CODE (offset_node) != INTEGER_CST) |
| { |
| /* If the string has an internal zero byte (e.g., "foo\0bar"), we can't |
| compute the offset to the following null if we don't know where to |
| start searching for it. */ |
| int i; |
| |
| for (i = 0; i < max; i++) |
| if (ptr[i] == 0) |
| return NULL_TREE; |
| |
| /* We don't know the starting offset, but we do know that the string |
| has no internal zero bytes. We can assume that the offset falls |
| within the bounds of the string; otherwise, the programmer deserves |
| what he gets. Subtract the offset from the length of the string, |
| and return that. This would perhaps not be valid if we were dealing |
| with named arrays in addition to literal string constants. */ |
| |
| return size_diffop_loc (loc, size_int (max), offset_node); |
| } |
| |
| /* We have a known offset into the string. Start searching there for |
| a null character if we can represent it as a single HOST_WIDE_INT. */ |
| if (offset_node == 0) |
| offset = 0; |
| else if (! tree_fits_shwi_p (offset_node)) |
| offset = -1; |
| else |
| offset = tree_to_shwi (offset_node); |
| |
| /* If the offset is known to be out of bounds, warn, and call strlen at |
| runtime. */ |
| if (offset < 0 || offset > max) |
| { |
| /* Suppress multiple warnings for propagated constant strings. */ |
| if (only_value != 2 |
| && !TREE_NO_WARNING (src)) |
| { |
| warning_at (loc, 0, "offset outside bounds of constant string"); |
| TREE_NO_WARNING (src) = 1; |
| } |
| return NULL_TREE; |
| } |
| |
| /* Use strlen to search for the first zero byte. Since any strings |
| constructed with build_string will have nulls appended, we win even |
| if we get handed something like (char[4])"abcd". |
| |
| Since OFFSET is our starting index into the string, no further |
| calculation is needed. */ |
| return ssize_int (strlen (ptr + offset)); |
| } |
| |
| /* Return a char pointer for a C string if it is a string constant |
| or sum of string constant and integer constant. */ |
| |
| const char * |
| c_getstr (tree src) |
| { |
| tree offset_node; |
| |
| src = string_constant (src, &offset_node); |
| if (src == 0) |
| return 0; |
| |
| if (offset_node == 0) |
| return TREE_STRING_POINTER (src); |
| else if (!tree_fits_uhwi_p (offset_node) |
| || compare_tree_int (offset_node, TREE_STRING_LENGTH (src) - 1) > 0) |
| return 0; |
| |
| return TREE_STRING_POINTER (src) + tree_to_uhwi (offset_node); |
| } |
| |
| /* Return a constant integer corresponding to target reading |
| GET_MODE_BITSIZE (MODE) bits from string constant STR. */ |
| |
| static rtx |
| c_readstr (const char *str, machine_mode mode) |
| { |
| HOST_WIDE_INT ch; |
| unsigned int i, j; |
| HOST_WIDE_INT tmp[MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_WIDE_INT]; |
| |
| gcc_assert (GET_MODE_CLASS (mode) == MODE_INT); |
| unsigned int len = (GET_MODE_PRECISION (mode) + HOST_BITS_PER_WIDE_INT - 1) |
| / HOST_BITS_PER_WIDE_INT; |
| |
| gcc_assert (len <= MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_WIDE_INT); |
| for (i = 0; i < len; i++) |
| tmp[i] = 0; |
| |
| ch = 1; |
| for (i = 0; i < GET_MODE_SIZE (mode); i++) |
| { |
| j = i; |
| if (WORDS_BIG_ENDIAN) |
| j = GET_MODE_SIZE (mode) - i - 1; |
| if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN |
| && GET_MODE_SIZE (mode) >= UNITS_PER_WORD) |
| j = j + UNITS_PER_WORD - 2 * (j % UNITS_PER_WORD) - 1; |
| j *= BITS_PER_UNIT; |
| |
| if (ch) |
| ch = (unsigned char) str[i]; |
| tmp[j / HOST_BITS_PER_WIDE_INT] |= ch << (j % HOST_BITS_PER_WIDE_INT); |
| } |
| |
| wide_int c = wide_int::from_array (tmp, len, GET_MODE_PRECISION (mode)); |
| return immed_wide_int_const (c, mode); |
| } |
| |
| /* Cast a target constant CST to target CHAR and if that value fits into |
| host char type, return zero and put that value into variable pointed to by |
| P. */ |
| |
| static int |
| target_char_cast (tree cst, char *p) |
| { |
| unsigned HOST_WIDE_INT val, hostval; |
| |
| if (TREE_CODE (cst) != INTEGER_CST |
| || CHAR_TYPE_SIZE > HOST_BITS_PER_WIDE_INT) |
| return 1; |
| |
| /* Do not care if it fits or not right here. */ |
| val = TREE_INT_CST_LOW (cst); |
| |
| if (CHAR_TYPE_SIZE < HOST_BITS_PER_WIDE_INT) |
| val &= (((unsigned HOST_WIDE_INT) 1) << CHAR_TYPE_SIZE) - 1; |
| |
| hostval = val; |
| if (HOST_BITS_PER_CHAR < HOST_BITS_PER_WIDE_INT) |
| hostval &= (((unsigned HOST_WIDE_INT) 1) << HOST_BITS_PER_CHAR) - 1; |
| |
| if (val != hostval) |
| return 1; |
| |
| *p = hostval; |
| return 0; |
| } |
| |
| /* Similar to save_expr, but assumes that arbitrary code is not executed |
| in between the multiple evaluations. In particular, we assume that a |
| non-addressable local variable will not be modified. */ |
| |
| static tree |
| builtin_save_expr (tree exp) |
| { |
| if (TREE_CODE (exp) == SSA_NAME |
| || (TREE_ADDRESSABLE (exp) == 0 |
| && (TREE_CODE (exp) == PARM_DECL |
| || (TREE_CODE (exp) == VAR_DECL && !TREE_STATIC (exp))))) |
| return exp; |
| |
| return save_expr (exp); |
| } |
| |
| /* Given TEM, a pointer to a stack frame, follow the dynamic chain COUNT |
| times to get the address of either a higher stack frame, or a return |
| address located within it (depending on FNDECL_CODE). */ |
| |
| static rtx |
| expand_builtin_return_addr (enum built_in_function fndecl_code, int count) |
| { |
| int i; |
| |
| #ifdef INITIAL_FRAME_ADDRESS_RTX |
| rtx tem = INITIAL_FRAME_ADDRESS_RTX; |
| #else |
| rtx tem; |
| |
| /* For a zero count with __builtin_return_address, we don't care what |
| frame address we return, because target-specific definitions will |
| override us. Therefore frame pointer elimination is OK, and using |
| the soft frame pointer is OK. |
| |
| For a nonzero count, or a zero count with __builtin_frame_address, |
| we require a stable offset from the current frame pointer to the |
| previous one, so we must use the hard frame pointer, and |
| we must disable frame pointer elimination. */ |
| if (count == 0 && fndecl_code == BUILT_IN_RETURN_ADDRESS) |
| tem = frame_pointer_rtx; |
| else |
| { |
| tem = hard_frame_pointer_rtx; |
| |
| /* Tell reload not to eliminate the frame pointer. */ |
| crtl->accesses_prior_frames = 1; |
| } |
| #endif |
| |
| /* Some machines need special handling before we can access |
| arbitrary frames. For example, on the SPARC, we must first flush |
| all register windows to the stack. */ |
| #ifdef SETUP_FRAME_ADDRESSES |
| if (count > 0) |
| SETUP_FRAME_ADDRESSES (); |
| #endif |
| |
| /* On the SPARC, the return address is not in the frame, it is in a |
| register. There is no way to access it off of the current frame |
| pointer, but it can be accessed off the previous frame pointer by |
| reading the value from the register window save area. */ |
| if (RETURN_ADDR_IN_PREVIOUS_FRAME && fndecl_code == BUILT_IN_RETURN_ADDRESS) |
| count--; |
| |
| /* Scan back COUNT frames to the specified frame. */ |
| for (i = 0; i < count; i++) |
| { |
| /* Assume the dynamic chain pointer is in the word that the |
| frame address points to, unless otherwise specified. */ |
| #ifdef DYNAMIC_CHAIN_ADDRESS |
| tem = DYNAMIC_CHAIN_ADDRESS (tem); |
| #endif |
| tem = memory_address (Pmode, tem); |
| tem = gen_frame_mem (Pmode, tem); |
| tem = copy_to_reg (tem); |
| } |
| |
| /* For __builtin_frame_address, return what we've got. But, on |
| the SPARC for example, we may have to add a bias. */ |
| if (fndecl_code == BUILT_IN_FRAME_ADDRESS) |
| #ifdef FRAME_ADDR_RTX |
| return FRAME_ADDR_RTX (tem); |
| #else |
| return tem; |
| #endif |
| |
| /* For __builtin_return_address, get the return address from that frame. */ |
| #ifdef RETURN_ADDR_RTX |
| tem = RETURN_ADDR_RTX (count, tem); |
| #else |
| tem = memory_address (Pmode, |
| plus_constant (Pmode, tem, GET_MODE_SIZE (Pmode))); |
| tem = gen_frame_mem (Pmode, tem); |
| #endif |
| return tem; |
| } |
| |
| /* Alias set used for setjmp buffer. */ |
| static alias_set_type setjmp_alias_set = -1; |
| |
| /* Construct the leading half of a __builtin_setjmp call. Control will |
| return to RECEIVER_LABEL. This is also called directly by the SJLJ |
| exception handling code. */ |
| |
| void |
| expand_builtin_setjmp_setup (rtx buf_addr, rtx receiver_label) |
| { |
| machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL); |
| rtx stack_save; |
| rtx mem; |
| |
| if (setjmp_alias_set == -1) |
| setjmp_alias_set = new_alias_set (); |
| |
| buf_addr = convert_memory_address (Pmode, buf_addr); |
| |
| buf_addr = force_reg (Pmode, force_operand (buf_addr, NULL_RTX)); |
| |
| /* We store the frame pointer and the address of receiver_label in |
| the buffer and use the rest of it for the stack save area, which |
| is machine-dependent. */ |
| |
| mem = gen_rtx_MEM (Pmode, buf_addr); |
| set_mem_alias_set (mem, setjmp_alias_set); |
| emit_move_insn (mem, targetm.builtin_setjmp_frame_value ()); |
| |
| mem = gen_rtx_MEM (Pmode, plus_constant (Pmode, buf_addr, |
| GET_MODE_SIZE (Pmode))), |
| set_mem_alias_set (mem, setjmp_alias_set); |
| |
| emit_move_insn (validize_mem (mem), |
| force_reg (Pmode, gen_rtx_LABEL_REF (Pmode, receiver_label))); |
| |
| stack_save = gen_rtx_MEM (sa_mode, |
| plus_constant (Pmode, buf_addr, |
| 2 * GET_MODE_SIZE (Pmode))); |
| set_mem_alias_set (stack_save, setjmp_alias_set); |
| emit_stack_save (SAVE_NONLOCAL, &stack_save); |
| |
| /* If there is further processing to do, do it. */ |
| #ifdef HAVE_builtin_setjmp_setup |
| if (HAVE_builtin_setjmp_setup) |
| emit_insn (gen_builtin_setjmp_setup (buf_addr)); |
| #endif |
| |
| /* We have a nonlocal label. */ |
| cfun->has_nonlocal_label = 1; |
| } |
| |
| /* Construct the trailing part of a __builtin_setjmp call. This is |
| also called directly by the SJLJ exception handling code. |
| If RECEIVER_LABEL is NULL, instead contruct a nonlocal goto handler. */ |
| |
| void |
| expand_builtin_setjmp_receiver (rtx receiver_label ATTRIBUTE_UNUSED) |
| { |
| rtx chain; |
| |
| /* Mark the FP as used when we get here, so we have to make sure it's |
| marked as used by this function. */ |
| emit_use (hard_frame_pointer_rtx); |
| |
| /* Mark the static chain as clobbered here so life information |
| doesn't get messed up for it. */ |
| chain = targetm.calls.static_chain (current_function_decl, true); |
| if (chain && REG_P (chain)) |
| emit_clobber (chain); |
| |
| /* Now put in the code to restore the frame pointer, and argument |
| pointer, if needed. */ |
| #ifdef HAVE_nonlocal_goto |
| if (! HAVE_nonlocal_goto) |
| #endif |
| { |
| /* First adjust our frame pointer to its actual value. It was |
| previously set to the start of the virtual area corresponding to |
| the stacked variables when we branched here and now needs to be |
| adjusted to the actual hardware fp value. |
| |
| Assignments to virtual registers are converted by |
| instantiate_virtual_regs into the corresponding assignment |
| to the underlying register (fp in this case) that makes |
| the original assignment true. |
| So the following insn will actually be decrementing fp by |
| STARTING_FRAME_OFFSET. */ |
| emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx); |
| |
| /* Restoring the frame pointer also modifies the hard frame pointer. |
| Mark it used (so that the previous assignment remains live once |
| the frame pointer is eliminated) and clobbered (to represent the |
| implicit update from the assignment). */ |
| emit_use (hard_frame_pointer_rtx); |
| emit_clobber (hard_frame_pointer_rtx); |
| } |
| |
| #if !HARD_FRAME_POINTER_IS_ARG_POINTER |
| if (fixed_regs[ARG_POINTER_REGNUM]) |
| { |
| #ifdef ELIMINABLE_REGS |
| /* If the argument pointer can be eliminated in favor of the |
| frame pointer, we don't need to restore it. We assume here |
| that if such an elimination is present, it can always be used. |
| This is the case on all known machines; if we don't make this |
| assumption, we do unnecessary saving on many machines. */ |
| size_t i; |
| static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS; |
| |
| for (i = 0; i < ARRAY_SIZE (elim_regs); i++) |
| if (elim_regs[i].from == ARG_POINTER_REGNUM |
| && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM) |
| break; |
| |
| if (i == ARRAY_SIZE (elim_regs)) |
| #endif |
| { |
| /* Now restore our arg pointer from the address at which it |
| was saved in our stack frame. */ |
| emit_move_insn (crtl->args.internal_arg_pointer, |
| copy_to_reg (get_arg_pointer_save_area ())); |
| } |
| } |
| #endif |
| |
| #ifdef HAVE_builtin_setjmp_receiver |
| if (receiver_label != NULL && HAVE_builtin_setjmp_receiver) |
| emit_insn (gen_builtin_setjmp_receiver (receiver_label)); |
| else |
| #endif |
| #ifdef HAVE_nonlocal_goto_receiver |
| if (HAVE_nonlocal_goto_receiver) |
| emit_insn (gen_nonlocal_goto_receiver ()); |
| else |
| #endif |
| { /* Nothing */ } |
| |
| /* We must not allow the code we just generated to be reordered by |
| scheduling. Specifically, the update of the frame pointer must |
| happen immediately, not later. */ |
| emit_insn (gen_blockage ()); |
| } |
| |
| /* __builtin_longjmp is passed a pointer to an array of five words (not |
| all will be used on all machines). It operates similarly to the C |
| library function of the same name, but is more efficient. Much of |
| the code below is copied from the handling of non-local gotos. */ |
| |
| static void |
| expand_builtin_longjmp (rtx buf_addr, rtx value) |
| { |
| rtx fp, lab, stack; |
| rtx_insn *insn, *last; |
| machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL); |
| |
| /* DRAP is needed for stack realign if longjmp is expanded to current |
| function */ |
| if (SUPPORTS_STACK_ALIGNMENT) |
| crtl->need_drap = true; |
| |
| if (setjmp_alias_set == -1) |
| setjmp_alias_set = new_alias_set (); |
| |
| buf_addr = convert_memory_address (Pmode, buf_addr); |
| |
| buf_addr = force_reg (Pmode, buf_addr); |
| |
| /* We require that the user must pass a second argument of 1, because |
| that is what builtin_setjmp will return. */ |
| gcc_assert (value == const1_rtx); |
| |
| last = get_last_insn (); |
| #ifdef HAVE_builtin_longjmp |
| if (HAVE_builtin_longjmp) |
| emit_insn (gen_builtin_longjmp (buf_addr)); |
| else |
| #endif |
| { |
| fp = gen_rtx_MEM (Pmode, buf_addr); |
| lab = gen_rtx_MEM (Pmode, plus_constant (Pmode, buf_addr, |
| GET_MODE_SIZE (Pmode))); |
| |
| stack = gen_rtx_MEM (sa_mode, plus_constant (Pmode, buf_addr, |
| 2 * GET_MODE_SIZE (Pmode))); |
| set_mem_alias_set (fp, setjmp_alias_set); |
| set_mem_alias_set (lab, setjmp_alias_set); |
| set_mem_alias_set (stack, setjmp_alias_set); |
| |
| /* Pick up FP, label, and SP from the block and jump. This code is |
| from expand_goto in stmt.c; see there for detailed comments. */ |
| #ifdef HAVE_nonlocal_goto |
| if (HAVE_nonlocal_goto) |
| /* We have to pass a value to the nonlocal_goto pattern that will |
| get copied into the static_chain pointer, but it does not matter |
| what that value is, because builtin_setjmp does not use it. */ |
| emit_insn (gen_nonlocal_goto (value, lab, stack, fp)); |
| else |
| #endif |
| { |
| lab = copy_to_reg (lab); |
| |
| emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))); |
| emit_clobber (gen_rtx_MEM (BLKmode, hard_frame_pointer_rtx)); |
| |
| emit_move_insn (hard_frame_pointer_rtx, fp); |
| emit_stack_restore (SAVE_NONLOCAL, stack); |
| |
| emit_use (hard_frame_pointer_rtx); |
| emit_use (stack_pointer_rtx); |
| emit_indirect_jump (lab); |
| } |
| } |
| |
| /* Search backwards and mark the jump insn as a non-local goto. |
| Note that this precludes the use of __builtin_longjmp to a |
| __builtin_setjmp target in the same function. However, we've |
| already cautioned the user that these functions are for |
| internal exception handling use only. */ |
| for (insn = get_last_insn (); insn; insn = PREV_INSN (insn)) |
| { |
| gcc_assert (insn != last); |
| |
| if (JUMP_P (insn)) |
| { |
| add_reg_note (insn, REG_NON_LOCAL_GOTO, const0_rtx); |
| break; |
| } |
| else if (CALL_P (insn)) |
| break; |
| } |
| } |
| |
| static inline bool |
| more_const_call_expr_args_p (const const_call_expr_arg_iterator *iter) |
| { |
| return (iter->i < iter->n); |
| } |
| |
| /* This function validates the types of a function call argument list |
| against a specified list of tree_codes. If the last specifier is a 0, |
| that represents an ellipses, otherwise the last specifier must be a |
| VOID_TYPE. */ |
| |
| static bool |
| validate_arglist (const_tree callexpr, ...) |
| { |
| enum tree_code code; |
| bool res = 0; |
| va_list ap; |
| const_call_expr_arg_iterator iter; |
| const_tree arg; |
| |
| va_start (ap, callexpr); |
| init_const_call_expr_arg_iterator (callexpr, &iter); |
| |
| do |
| { |
| code = (enum tree_code) va_arg (ap, int); |
| switch (code) |
| { |
| case 0: |
| /* This signifies an ellipses, any further arguments are all ok. */ |
| res = true; |
| goto end; |
| case VOID_TYPE: |
| /* This signifies an endlink, if no arguments remain, return |
| true, otherwise return false. */ |
| res = !more_const_call_expr_args_p (&iter); |
| goto end; |
| default: |
| /* If no parameters remain or the parameter's code does not |
| match the specified code, return false. Otherwise continue |
| checking any remaining arguments. */ |
| arg = next_const_call_expr_arg (&iter); |
| if (!validate_arg (arg, code)) |
| goto end; |
| break; |
| } |
| } |
| while (1); |
| |
| /* We need gotos here since we can only have one VA_CLOSE in a |
| function. */ |
| end: ; |
| va_end (ap); |
| |
| return res; |
| } |
| |
| /* Expand a call to __builtin_nonlocal_goto. We're passed the target label |
| and the address of the save area. */ |
| |
| static rtx |
| expand_builtin_nonlocal_goto (tree exp) |
| { |
| tree t_label, t_save_area; |
| rtx r_label, r_save_area, r_fp, r_sp; |
| rtx_insn *insn; |
| |
| if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)) |
| return NULL_RTX; |
| |
| t_label = CALL_EXPR_ARG (exp, 0); |
| t_save_area = CALL_EXPR_ARG (exp, 1); |
| |
| r_label = expand_normal (t_label); |
| r_label = convert_memory_address (Pmode, r_label); |
| r_save_area = expand_normal (t_save_area); |
| r_save_area = convert_memory_address (Pmode, r_save_area); |
| /* Copy the address of the save location to a register just in case it was |
| based on the frame pointer. */ |
| r_save_area = copy_to_reg (r_save_area); |
| r_fp = gen_rtx_MEM (Pmode, r_save_area); |
| r_sp = gen_rtx_MEM (STACK_SAVEAREA_MODE (SAVE_NONLOCAL), |
| plus_constant (Pmode, r_save_area, |
| GET_MODE_SIZE (Pmode))); |
| |
| crtl->has_nonlocal_goto = 1; |
| |
| #ifdef HAVE_nonlocal_goto |
| /* ??? We no longer need to pass the static chain value, afaik. */ |
| if (HAVE_nonlocal_goto) |
| emit_insn (gen_nonlocal_goto (const0_rtx, r_label, r_sp, r_fp)); |
| else |
| #endif |
| { |
| r_label = copy_to_reg (r_label); |
| |
| emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))); |
| emit_clobber (gen_rtx_MEM (BLKmode, hard_frame_pointer_rtx)); |
| |
| /* Restore frame pointer for containing function. */ |
| emit_move_insn (hard_frame_pointer_rtx, r_fp); |
| emit_stack_restore (SAVE_NONLOCAL, r_sp); |
| |
| /* USE of hard_frame_pointer_rtx added for consistency; |
| not clear if really needed. */ |
| emit_use (hard_frame_pointer_rtx); |
| emit_use (stack_pointer_rtx); |
| |
| /* If the architecture is using a GP register, we must |
| conservatively assume that the target function makes use of it. |
| The prologue of functions with nonlocal gotos must therefore |
| initialize the GP register to the appropriate value, and we |
| must then make sure that this value is live at the point |
| of the jump. (Note that this doesn't necessarily apply |
| to targets with a nonlocal_goto pattern; they are free |
| to implement it in their own way. Note also that this is |
| a no-op if the GP register is a global invariant.) */ |
| if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM |
| && fixed_regs[PIC_OFFSET_TABLE_REGNUM]) |
| emit_use (pic_offset_table_rtx); |
| |
| emit_indirect_jump (r_label); |
| } |
| |
| /* Search backwards to the jump insn and mark it as a |
| non-local goto. */ |
| for (insn = get_last_insn (); insn; insn = PREV_INSN (insn)) |
| { |
| if (JUMP_P (insn)) |
| { |
| add_reg_note (insn, REG_NON_LOCAL_GOTO, const0_rtx); |
| break; |
| } |
| else if (CALL_P (insn)) |
| break; |
| } |
| |
| return const0_rtx; |
| } |
| |
| /* __builtin_update_setjmp_buf is passed a pointer to an array of five words |
| (not all will be used on all machines) that was passed to __builtin_setjmp. |
| It updates the stack pointer in that block to correspond to the current |
| stack pointer. */ |
| |
| static void |
| expand_builtin_update_setjmp_buf (rtx buf_addr) |
| { |
| machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL); |
| rtx stack_save |
| = gen_rtx_MEM (sa_mode, |
| memory_address |
| (sa_mode, |
| plus_constant (Pmode, buf_addr, |
| 2 * GET_MODE_SIZE (Pmode)))); |
| |
| emit_stack_save (SAVE_NONLOCAL, &stack_save); |
| } |
| |
| /* Expand a call to __builtin_prefetch. For a target that does not support |
| data prefetch, evaluate the memory address argument in case it has side |
| effects. */ |
| |
| static void |
| expand_builtin_prefetch (tree exp) |
| { |
| tree arg0, arg1, arg2; |
| int nargs; |
| rtx op0, op1, op2; |
| |
| if (!validate_arglist (exp, POINTER_TYPE, 0)) |
| return; |
| |
| arg0 = CALL_EXPR_ARG (exp, 0); |
| |
| /* Arguments 1 and 2 are optional; argument 1 (read/write) defaults to |
| zero (read) and argument 2 (locality) defaults to 3 (high degree of |
| locality). */ |
| nargs = call_expr_nargs (exp); |
| if (nargs > 1) |
| arg1 = CALL_EXPR_ARG (exp, 1); |
| else |
| arg1 = integer_zero_node; |
| if (nargs > 2) |
| arg2 = CALL_EXPR_ARG (exp, 2); |
| else |
| arg2 = integer_three_node; |
| |
| /* Argument 0 is an address. */ |
| op0 = expand_expr (arg0, NULL_RTX, Pmode, EXPAND_NORMAL); |
| |
| /* Argument 1 (read/write flag) must be a compile-time constant int. */ |
| if (TREE_CODE (arg1) != INTEGER_CST) |
| { |
| error ("second argument to %<__builtin_prefetch%> must be a constant"); |
| arg1 = integer_zero_node; |
| } |
| op1 = expand_normal (arg1); |
| /* Argument 1 must be either zero or one. */ |
| if (INTVAL (op1) != 0 && INTVAL (op1) != 1) |
| { |
| warning (0, "invalid second argument to %<__builtin_prefetch%>;" |
| " using zero"); |
| op1 = const0_rtx; |
| } |
| |
| /* Argument 2 (locality) must be a compile-time constant int. */ |
| if (TREE_CODE (arg2) != INTEGER_CST) |
| { |
| error ("third argument to %<__builtin_prefetch%> must be a constant"); |
| arg2 = integer_zero_node; |
| } |
| op2 = expand_normal (arg2); |
| /* Argument 2 must be 0, 1, 2, or 3. */ |
| if (INTVAL (op2) < 0 || INTVAL (op2) > 3) |
| { |
| warning (0, "invalid third argument to %<__builtin_prefetch%>; using zero"); |
| op2 = const0_rtx; |
| } |
| |
| #ifdef HAVE_prefetch |
| if (HAVE_prefetch) |
| { |
| struct expand_operand ops[3]; |
| |
| create_address_operand (&ops[0], op0); |
| create_integer_operand (&ops[1], INTVAL (op1)); |
| create_integer_operand (&ops[2], INTVAL (op2)); |
| if (maybe_expand_insn (CODE_FOR_prefetch, 3, ops)) |
| return; |
| } |
| #endif |
| |
| /* Don't do anything with direct references to volatile memory, but |
| generate code to handle other side effects. */ |
| if (!MEM_P (op0) && side_effects_p (op0)) |
| emit_insn (op0); |
| } |
| |
| /* Get a MEM rtx for expression EXP which is the address of an operand |
| to be used in a string instruction (cmpstrsi, movmemsi, ..). LEN is |
| the maximum length of the block of memory that might be accessed or |
| NULL if unknown. */ |
| |
| static rtx |
| get_memory_rtx (tree exp, tree len) |
| { |
| tree orig_exp = exp; |
| rtx addr, mem; |
| |
| /* When EXP is not resolved SAVE_EXPR, MEM_ATTRS can be still derived |
| from its expression, for expr->a.b only <variable>.a.b is recorded. */ |
| if (TREE_CODE (exp) == SAVE_EXPR && !SAVE_EXPR_RESOLVED_P (exp)) |
| exp = TREE_OPERAND (exp, 0); |
| |
| addr = expand_expr (orig_exp, NULL_RTX, ptr_mode, EXPAND_NORMAL); |
| mem = gen_rtx_MEM (BLKmode, memory_address (BLKmode, addr)); |
| |
| /* Get an expression we can use to find the attributes to assign to MEM. |
| First remove any nops. */ |
| while (CONVERT_EXPR_P (exp) |
| && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (exp, 0)))) |
| exp = TREE_OPERAND (exp, 0); |
| |
| /* Build a MEM_REF representing the whole accessed area as a byte blob, |
| (as builtin stringops may alias with anything). */ |
| exp = fold_build2 (MEM_REF, |
| build_array_type (char_type_node, |
| build_range_type (sizetype, |
| size_one_node, len)), |
| exp, build_int_cst (ptr_type_node, 0)); |
| |
| /* If the MEM_REF has no acceptable address, try to get the base object |
| from the original address we got, and build an all-aliasing |
| unknown-sized access to that one. */ |
| if (is_gimple_mem_ref_addr (TREE_OPERAND (exp, 0))) |
| set_mem_attributes (mem, exp, 0); |
| else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR |
| && (exp = get_base_address (TREE_OPERAND (TREE_OPERAND (exp, 0), |
| 0)))) |
| { |
| exp = build_fold_addr_expr (exp); |
| exp = fold_build2 (MEM_REF, |
| build_array_type (char_type_node, |
| build_range_type (sizetype, |
| size_zero_node, |
| NULL)), |
| exp, build_int_cst (ptr_type_node, 0)); |
| set_mem_attributes (mem, exp, 0); |
| } |
| set_mem_alias_set (mem, 0); |
| return mem; |
| } |
| |
| /* Built-in functions to perform an untyped call and return. */ |
| |
| #define apply_args_mode \ |
| (this_target_builtins->x_apply_args_mode) |
| #define apply_result_mode \ |
| (this_target_builtins->x_apply_result_mode) |
| |
| /* Return the size required for the block returned by __builtin_apply_args, |
| and initialize apply_args_mode. */ |
| |
| static int |
| apply_args_size (void) |
| { |
| static int size = -1; |
| int align; |
| unsigned int regno; |
| machine_mode mode; |
| |
| /* The values computed by this function never change. */ |
| if (size < 0) |
| { |
| /* The first value is the incoming arg-pointer. */ |
| size = GET_MODE_SIZE (Pmode); |
| |
| /* The second value is the structure value address unless this is |
| passed as an "invisible" first argument. */ |
| if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0)) |
| size += GET_MODE_SIZE (Pmode); |
| |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| if (FUNCTION_ARG_REGNO_P (regno)) |
| { |
| mode = targetm.calls.get_raw_arg_mode (regno); |
| |
| gcc_assert (mode != VOIDmode); |
| |
| align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; |
| if (size % align != 0) |
| size = CEIL (size, align) * align; |
| size += GET_MODE_SIZE (mode); |
| apply_args_mode[regno] = mode; |
| } |
| else |
| { |
| apply_args_mode[regno] = VOIDmode; |
| } |
| } |
| return size; |
| } |
| |
| /* Return the size required for the block returned by __builtin_apply, |
| and initialize apply_result_mode. */ |
| |
| static int |
| apply_result_size (void) |
| { |
| static int size = -1; |
| int align, regno; |
| machine_mode mode; |
| |
| /* The values computed by this function never change. */ |
| if (size < 0) |
| { |
| size = 0; |
| |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| if (targetm.calls.function_value_regno_p (regno)) |
| { |
| mode = targetm.calls.get_raw_result_mode (regno); |
| |
| gcc_assert (mode != VOIDmode); |
| |
| align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; |
| if (size % align != 0) |
| size = CEIL (size, align) * align; |
| size += GET_MODE_SIZE (mode); |
| apply_result_mode[regno] = mode; |
| } |
| else |
| apply_result_mode[regno] = VOIDmode; |
| |
| /* Allow targets that use untyped_call and untyped_return to override |
| the size so that machine-specific information can be stored here. */ |
| #ifdef APPLY_RESULT_SIZE |
| size = APPLY_RESULT_SIZE; |
| #endif |
| } |
| return size; |
| } |
| |
| #if defined (HAVE_untyped_call) || defined (HAVE_untyped_return) |
| /* Create a vector describing the result block RESULT. If SAVEP is true, |
| the result block is used to save the values; otherwise it is used to |
| restore the values. */ |
| |
| static rtx |
| result_vector (int savep, rtx result) |
| { |
| int regno, size, align, nelts; |
| machine_mode mode; |
| rtx reg, mem; |
| rtx *savevec = XALLOCAVEC (rtx, FIRST_PSEUDO_REGISTER); |
| |
| size = nelts = 0; |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| if ((mode = apply_result_mode[regno]) != VOIDmode) |
| { |
| align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; |
| if (size % align != 0) |
| size = CEIL (size, align) * align; |
| reg = gen_rtx_REG (mode, savep ? regno : INCOMING_REGNO (regno)); |
| mem = adjust_address (result, mode, size); |
| savevec[nelts++] = (savep |
| ? gen_rtx_SET (VOIDmode, mem, reg) |
| : gen_rtx_SET (VOIDmode, reg, mem)); |
| size += GET_MODE_SIZE (mode); |
| } |
| return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelts, savevec)); |
| } |
| #endif /* HAVE_untyped_call or HAVE_untyped_return */ |
| |
| /* Save the state required to perform an untyped call with the same |
| arguments as were passed to the current function. */ |
| |
| static rtx |
| expand_builtin_apply_args_1 (void) |
| { |
| rtx registers, tem; |
| int size, align, regno; |
| machine_mode mode; |
| rtx struct_incoming_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 1); |
| |
| /* Create a block where the arg-pointer, structure value address, |
| and argument registers can be saved. */ |
| registers = assign_stack_local (BLKmode, apply_args_size (), -1); |
| |
| /* Walk past the arg-pointer and structure value address. */ |
| size = GET_MODE_SIZE (Pmode); |
| if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0)) |
| size += GET_MODE_SIZE (Pmode); |
| |
| /* Save each register used in calling a function to the block. */ |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| if ((mode = apply_args_mode[regno]) != VOIDmode) |
| { |
| align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; |
| if (size % align != 0) |
| size = CEIL (size, align) * align; |
| |
| tem = gen_rtx_REG (mode, INCOMING_REGNO (regno)); |
| |
| emit_move_insn (adjust_address (registers, mode, size), tem); |
| size += GET_MODE_SIZE (mode); |
| } |
| |
| /* Save the arg pointer to the block. */ |
| tem = copy_to_reg (crtl->args.internal_arg_pointer); |
| #ifdef STACK_GROWS_DOWNWARD |
| /* We need the pointer as the caller actually passed them to us, not |
| as we might have pretended they were passed. Make sure it's a valid |
| operand, as emit_move_insn isn't expected to handle a PLUS. */ |
| tem |
| = force_operand (plus_constant (Pmode, tem, crtl->args.pretend_args_size), |
| NULL_RTX); |
| #endif |
| emit_move_insn (adjust_address (registers, Pmode, 0), tem); |
| |
| size = GET_MODE_SIZE (Pmode); |
| |
| /* Save the structure value address unless this is passed as an |
| "invisible" first argument. */ |
| if (struct_incoming_value) |
| { |
| emit_move_insn (adjust_address (registers, Pmode, size), |
| copy_to_reg (struct_incoming_value)); |
| size += GET_MODE_SIZE (Pmode); |
| } |
| |
| /* Return the address of the block. */ |
| return copy_addr_to_reg (XEXP (registers, 0)); |
| } |
| |
| /* __builtin_apply_args returns block of memory allocated on |
| the stack into which is stored the arg pointer, structure |
| value address, static chain, and all the registers that might |
| possibly be used in performing a function call. The code is |
| moved to the start of the function so the incoming values are |
| saved. */ |
| |
| static rtx |
| expand_builtin_apply_args (void) |
| { |
| /* Don't do __builtin_apply_args more than once in a function. |
| Save the result of the first call and reuse it. */ |
| if (apply_args_value != 0) |
| return apply_args_value; |
| { |
| /* When this function is called, it means that registers must be |
| saved on entry to this function. So we migrate the |
| call to the first insn of this function. */ |
| rtx temp; |
| rtx seq; |
| |
| start_sequence (); |
| temp = expand_builtin_apply_args_1 (); |
| seq = get_insns (); |
| end_sequence (); |
| |
| apply_args_value = temp; |
| |
| /* Put the insns after the NOTE that starts the function. |
| If this is inside a start_sequence, make the outer-level insn |
| chain current, so the code is placed at the start of the |
| function. If internal_arg_pointer is a non-virtual pseudo, |
| it needs to be placed after the function that initializes |
| that pseudo. */ |
| push_topmost_sequence (); |
| if (REG_P (crtl->args.internal_arg_pointer) |
| && REGNO (crtl->args.internal_arg_pointer) > LAST_VIRTUAL_REGISTER) |
| emit_insn_before (seq, parm_birth_insn); |
| else |
| emit_insn_before (seq, NEXT_INSN (entry_of_function ())); |
| pop_topmost_sequence (); |
| return temp; |
| } |
| } |
| |
| /* Perform an untyped call and save the state required to perform an |
| untyped return of whatever value was returned by the given function. */ |
| |
| static rtx |
| expand_builtin_apply (rtx function, rtx arguments, rtx argsize) |
| { |
| int size, align, regno; |
| machine_mode mode; |
| rtx incoming_args, result, reg, dest, src; |
| rtx_call_insn *call_insn; |
| rtx old_stack_level = 0; |
| rtx call_fusage = 0; |
| rtx struct_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0); |
| |
| arguments = convert_memory_address (Pmode, arguments); |
| |
| /* Create a block where the return registers can be saved. */ |
| result = assign_stack_local (BLKmode, apply_result_size (), -1); |
| |
| /* Fetch the arg pointer from the ARGUMENTS block. */ |
| incoming_args = gen_reg_rtx (Pmode); |
| emit_move_insn (incoming_args, gen_rtx_MEM (Pmode, arguments)); |
| #ifndef STACK_GROWS_DOWNWARD |
| incoming_args = expand_simple_binop (Pmode, MINUS, incoming_args, argsize, |
| incoming_args, 0, OPTAB_LIB_WIDEN); |
| #endif |
| |
| /* Push a new argument block and copy the arguments. Do not allow |
| the (potential) memcpy call below to interfere with our stack |
| manipulations. */ |
| do_pending_stack_adjust (); |
| NO_DEFER_POP; |
| |
| /* Save the stack with nonlocal if available. */ |
| #ifdef HAVE_save_stack_nonlocal |
| if (HAVE_save_stack_nonlocal) |
| emit_stack_save (SAVE_NONLOCAL, &old_stack_level); |
| else |
| #endif |
| emit_stack_save (SAVE_BLOCK, &old_stack_level); |
| |
| /* Allocate a block of memory onto the stack and copy the memory |
| arguments to the outgoing arguments address. We can pass TRUE |
| as the 4th argument because we just saved the stack pointer |
| and will restore it right after the call. */ |
| allocate_dynamic_stack_space (argsize, 0, BIGGEST_ALIGNMENT, true); |
| |
| /* Set DRAP flag to true, even though allocate_dynamic_stack_space |
| may have already set current_function_calls_alloca to true. |
| current_function_calls_alloca won't be set if argsize is zero, |
| so we have to guarantee need_drap is true here. */ |
| if (SUPPORTS_STACK_ALIGNMENT) |
| crtl->need_drap = true; |
| |
| dest = virtual_outgoing_args_rtx; |
| #ifndef STACK_GROWS_DOWNWARD |
| if (CONST_INT_P (argsize)) |
| dest = plus_constant (Pmode, dest, -INTVAL (argsize)); |
| else |
| dest = gen_rtx_PLUS (Pmode, dest, negate_rtx (Pmode, argsize)); |
| #endif |
| dest = gen_rtx_MEM (BLKmode, dest); |
| set_mem_align (dest, PARM_BOUNDARY); |
| src = gen_rtx_MEM (BLKmode, incoming_args); |
| set_mem_align (src, PARM_BOUNDARY); |
| emit_block_move (dest, src, argsize, BLOCK_OP_NORMAL); |
| |
| /* Refer to the argument block. */ |
| apply_args_size (); |
| arguments = gen_rtx_MEM (BLKmode, arguments); |
| set_mem_align (arguments, PARM_BOUNDARY); |
| |
| /* Walk past the arg-pointer and structure value address. */ |
| size = GET_MODE_SIZE (Pmode); |
| if (struct_value) |
| size += GET_MODE_SIZE (Pmode); |
| |
| /* Restore each of the registers previously saved. Make USE insns |
| for each of these registers for use in making the call. */ |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| if ((mode = apply_args_mode[regno]) != VOIDmode) |
| { |
| align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; |
| if (size % align != 0) |
| size = CEIL (size, align) * align; |
| reg = gen_rtx_REG (mode, regno); |
| emit_move_insn (reg, adjust_address (arguments, mode, size)); |
| use_reg (&call_fusage, reg); |
| size += GET_MODE_SIZE (mode); |
| } |
| |
| /* Restore the structure value address unless this is passed as an |
| "invisible" first argument. */ |
| size = GET_MODE_SIZE (Pmode); |
| if (struct_value) |
| { |
| rtx value = gen_reg_rtx (Pmode); |
| emit_move_insn (value, adjust_address (arguments, Pmode, size)); |
| emit_move_insn (struct_value, value); |
| if (REG_P (struct_value)) |
| use_reg (&call_fusage, struct_value); |
| size += GET_MODE_SIZE (Pmode); |
| } |
| |
| /* All arguments and registers used for the call are set up by now! */ |
| function = prepare_call_address (NULL, function, NULL, &call_fusage, 0, 0); |
| |
| /* Ensure address is valid. SYMBOL_REF is already valid, so no need, |
| and we don't want to load it into a register as an optimization, |
| because prepare_call_address already did it if it should be done. */ |
| if (GET_CODE (function) != SYMBOL_REF) |
| function = memory_address (FUNCTION_MODE, function); |
| |
| /* Generate the actual call instruction and save the return value. */ |
| #ifdef HAVE_untyped_call |
| if (HAVE_untyped_call) |
| emit_call_insn (gen_untyped_call (gen_rtx_MEM (FUNCTION_MODE, function), |
| result, result_vector (1, result))); |
| else |
| #endif |
| #ifdef HAVE_call_value |
| if (HAVE_call_value) |
| { |
| rtx valreg = 0; |
| |
| /* Locate the unique return register. It is not possible to |
| express a call that sets more than one return register using |
| call_value; use untyped_call for that. In fact, untyped_call |
| only needs to save the return registers in the given block. */ |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| if ((mode = apply_result_mode[regno]) != VOIDmode) |
| { |
| gcc_assert (!valreg); /* HAVE_untyped_call required. */ |
| |
| valreg = gen_rtx_REG (mode, regno); |
| } |
| |
| emit_call_insn (GEN_CALL_VALUE (valreg, |
| gen_rtx_MEM (FUNCTION_MODE, function), |
| const0_rtx, NULL_RTX, const0_rtx)); |
| |
| emit_move_insn (adjust_address (result, GET_MODE (valreg), 0), valreg); |
| } |
| else |
| #endif |
| gcc_unreachable (); |
| |
| /* Find the CALL insn we just emitted, and attach the register usage |
| information. */ |
| call_insn = last_call_insn (); |
| add_function_usage_to (call_insn, call_fusage); |
| |
| /* Restore the stack. */ |
| #ifdef HAVE_save_stack_nonlocal |
| if (HAVE_save_stack_nonlocal) |
| emit_stack_restore (SAVE_NONLOCAL, old_stack_level); |
| else |
| #endif |
| emit_stack_restore (SAVE_BLOCK, old_stack_level); |
| fixup_args_size_notes (call_insn, get_last_insn (), 0); |
| |
| OK_DEFER_POP; |
| |
| /* Return the address of the result block. */ |
| result = copy_addr_to_reg (XEXP (result, 0)); |
| return convert_memory_address (ptr_mode, result); |
| } |
| |
| /* Perform an untyped return. */ |
| |
| static void |
| expand_builtin_return (rtx result) |
| { |
| int size, align, regno; |
| machine_mode mode; |
| rtx reg; |
| rtx_insn *call_fusage = 0; |
| |
| result = convert_memory_address (Pmode, result); |
| |
| apply_result_size (); |
| result = gen_rtx_MEM (BLKmode, result); |
| |
| #ifdef HAVE_untyped_return |
| if (HAVE_untyped_return) |
| { |
| emit_jump_insn (gen_untyped_return (result, result_vector (0, result))); |
| emit_barrier (); |
| return; |
| } |
| #endif |
| |
| /* Restore the return value and note that each value is used. */ |
| size = 0; |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| if ((mode = apply_result_mode[regno]) != VOIDmode) |
| { |
| align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; |
| if (size % align != 0) |
| size = CEIL (size, align) * align; |
| reg = gen_rtx_REG (mode, INCOMING_REGNO (regno)); |
| emit_move_insn (reg, adjust_address (result, mode, size)); |
| |
| push_to_sequence (call_fusage); |
| emit_use (reg); |
| call_fusage = get_insns (); |
| end_sequence (); |
| size += GET_MODE_SIZE (mode); |
| } |
| |
| /* Put the USE insns before the return. */ |
| emit_insn (call_fusage); |
| |
| /* Return whatever values was restored by jumping directly to the end |
| of the function. */ |
| expand_naked_return (); |
| } |
| |
| /* Used by expand_builtin_classify_type and fold_builtin_classify_type. */ |
| |
| static enum type_class |
| type_to_class (tree type) |
| { |
| switch (TREE_CODE (type)) |
| { |
| case VOID_TYPE: return void_type_class; |
| case INTEGER_TYPE: return integer_type_class; |
| case ENUMERAL_TYPE: return enumeral_type_class; |
| case BOOLEAN_TYPE: return boolean_type_class; |
| case POINTER_TYPE: return pointer_type_class; |
| case REFERENCE_TYPE: return reference_type_class; |
| case OFFSET_TYPE: return offset_type_class; |
| case REAL_TYPE: return real_type_class; |
| case COMPLEX_TYPE: return complex_type_class; |
| case FUNCTION_TYPE: return function_type_class; |
| case METHOD_TYPE: return method_type_class; |
| case RECORD_TYPE: return record_type_class; |
| case UNION_TYPE: |
| case QUAL_UNION_TYPE: return union_type_class; |
| case ARRAY_TYPE: return (TYPE_STRING_FLAG (type) |
| ? string_type_class : array_type_class); |
| case LANG_TYPE: return lang_type_class; |
| default: return no_type_class; |
| } |
| } |
| |
| /* Expand a call EXP to __builtin_classify_type. */ |
| |
| static rtx |
| expand_builtin_classify_type (tree exp) |
| { |
| if (call_expr_nargs (exp)) |
| return GEN_INT (type_to_class (TREE_TYPE (CALL_EXPR_ARG (exp, 0)))); |
| return GEN_INT (no_type_class); |
| } |
| |
| /* This helper macro, meant to be used in mathfn_built_in below, |
| determines which among a set of three builtin math functions is |
| appropriate for a given type mode. The `F' and `L' cases are |
| automatically generated from the `double' case. */ |
| #define CASE_MATHFN(BUILT_IN_MATHFN) \ |
| case BUILT_IN_MATHFN: case BUILT_IN_MATHFN##F: case BUILT_IN_MATHFN##L: \ |
| fcode = BUILT_IN_MATHFN; fcodef = BUILT_IN_MATHFN##F ; \ |
| fcodel = BUILT_IN_MATHFN##L ; break; |
| /* Similar to above, but appends _R after any F/L suffix. */ |
| #define CASE_MATHFN_REENT(BUILT_IN_MATHFN) \ |
| case BUILT_IN_MATHFN##_R: case BUILT_IN_MATHFN##F_R: case BUILT_IN_MATHFN##L_R: \ |
| fcode = BUILT_IN_MATHFN##_R; fcodef = BUILT_IN_MATHFN##F_R ; \ |
| fcodel = BUILT_IN_MATHFN##L_R ; break; |
| |
| /* Return mathematic function equivalent to FN but operating directly on TYPE, |
| if available. If IMPLICIT is true use the implicit builtin declaration, |
| otherwise use the explicit declaration. If we can't do the conversion, |
| return zero. */ |
| |
| static tree |
| mathfn_built_in_1 (tree type, enum built_in_function fn, bool implicit_p) |
| { |
| enum built_in_function fcode, fcodef, fcodel, fcode2; |
| |
| switch (fn) |
| { |
| CASE_MATHFN (BUILT_IN_ACOS) |
| CASE_MATHFN (BUILT_IN_ACOSH) |
| CASE_MATHFN (BUILT_IN_ASIN) |
| CASE_MATHFN (BUILT_IN_ASINH) |
| CASE_MATHFN (BUILT_IN_ATAN) |
| CASE_MATHFN (BUILT_IN_ATAN2) |
| CASE_MATHFN (BUILT_IN_ATANH) |
| CASE_MATHFN (BUILT_IN_CBRT) |
| CASE_MATHFN (BUILT_IN_CEIL) |
| CASE_MATHFN (BUILT_IN_CEXPI) |
| CASE_MATHFN (BUILT_IN_COPYSIGN) |
| CASE_MATHFN (BUILT_IN_COS) |
| CASE_MATHFN (BUILT_IN_COSH) |
| CASE_MATHFN (BUILT_IN_DREM) |
| CASE_MATHFN (BUILT_IN_ERF) |
| CASE_MATHFN (BUILT_IN_ERFC) |
| CASE_MATHFN (BUILT_IN_EXP) |
| CASE_MATHFN (BUILT_IN_EXP10) |
| CASE_MATHFN (BUILT_IN_EXP2) |
| CASE_MATHFN (BUILT_IN_EXPM1) |
| CASE_MATHFN (BUILT_IN_FABS) |
| CASE_MATHFN (BUILT_IN_FDIM) |
| CASE_MATHFN (BUILT_IN_FLOOR) |
| CASE_MATHFN (BUILT_IN_FMA) |
| CASE_MATHFN (BUILT_IN_FMAX) |
| CASE_MATHFN (BUILT_IN_FMIN) |
| CASE_MATHFN (BUILT_IN_FMOD) |
| CASE_MATHFN (BUILT_IN_FREXP) |
| CASE_MATHFN (BUILT_IN_GAMMA) |
| CASE_MATHFN_REENT (BUILT_IN_GAMMA) /* GAMMA_R */ |
| CASE_MATHFN (BUILT_IN_HUGE_VAL) |
| CASE_MATHFN (BUILT_IN_HYPOT) |
| CASE_MATHFN (BUILT_IN_ILOGB) |
| CASE_MATHFN (BUILT_IN_ICEIL) |
| CASE_MATHFN (BUILT_IN_IFLOOR) |
| CASE_MATHFN (BUILT_IN_INF) |
| CASE_MATHFN (BUILT_IN_IRINT) |
| CASE_MATHFN (BUILT_IN_IROUND) |
| CASE_MATHFN (BUILT_IN_ISINF) |
| CASE_MATHFN (BUILT_IN_J0) |
| CASE_MATHFN (BUILT_IN_J1) |
| CASE_MATHFN (BUILT_IN_JN) |
| CASE_MATHFN (BUILT_IN_LCEIL) |
| CASE_MATHFN (BUILT_IN_LDEXP) |
| CASE_MATHFN (BUILT_IN_LFLOOR) |
| CASE_MATHFN (BUILT_IN_LGAMMA) |
| CASE_MATHFN_REENT (BUILT_IN_LGAMMA) /* LGAMMA_R */ |
| CASE_MATHFN (BUILT_IN_LLCEIL) |
| CASE_MATHFN (BUILT_IN_LLFLOOR) |
| CASE_MATHFN (BUILT_IN_LLRINT) |
| CASE_MATHFN (BUILT_IN_LLROUND) |
| CASE_MATHFN (BUILT_IN_LOG) |
| CASE_MATHFN (BUILT_IN_LOG10) |
| CASE_MATHFN (BUILT_IN_LOG1P) |
| CASE_MATHFN (BUILT_IN_LOG2) |
| CASE_MATHFN (BUILT_IN_LOGB) |
| CASE_MATHFN (BUILT_IN_LRINT) |
| CASE_MATHFN (BUILT_IN_LROUND) |
| CASE_MATHFN (BUILT_IN_MODF) |
| CASE_MATHFN (BUILT_IN_NAN) |
| CASE_MATHFN (BUILT_IN_NANS) |
| CASE_MATHFN (BUILT_IN_NEARBYINT) |
| CASE_MATHFN (BUILT_IN_NEXTAFTER) |
| CASE_MATHFN (BUILT_IN_NEXTTOWARD) |
| CASE_MATHFN (BUILT_IN_POW) |
| CASE_MATHFN (BUILT_IN_POWI) |
| CASE_MATHFN (BUILT_IN_POW10) |
| CASE_MATHFN (BUILT_IN_REMAINDER) |
| CASE_MATHFN (BUILT_IN_REMQUO) |
| CASE_MATHFN (BUILT_IN_RINT) |
| CASE_MATHFN (BUILT_IN_ROUND) |
| CASE_MATHFN (BUILT_IN_SCALB) |
| CASE_MATHFN (BUILT_IN_SCALBLN) |
| CASE_MATHFN (BUILT_IN_SCALBN) |
| CASE_MATHFN (BUILT_IN_SIGNBIT) |
| CASE_MATHFN (BUILT_IN_SIGNIFICAND) |
| CASE_MATHFN (BUILT_IN_SIN) |
| CASE_MATHFN (BUILT_IN_SINCOS) |
| CASE_MATHFN (BUILT_IN_SINH) |
| CASE_MATHFN (BUILT_IN_SQRT) |
| CASE_MATHFN (BUILT_IN_TAN) |
| CASE_MATHFN (BUILT_IN_TANH) |
| CASE_MATHFN (BUILT_IN_TGAMMA) |
| CASE_MATHFN (BUILT_IN_TRUNC) |
| CASE_MATHFN (BUILT_IN_Y0) |
| CASE_MATHFN (BUILT_IN_Y1) |
| CASE_MATHFN (BUILT_IN_YN) |
| |
| default: |
| return NULL_TREE; |
| } |
| |
| if (TYPE_MAIN_VARIANT (type) == double_type_node) |
| fcode2 = fcode; |
| else if (TYPE_MAIN_VARIANT (type) == float_type_node) |
| fcode2 = fcodef; |
| else if (TYPE_MAIN_VARIANT (type) == long_double_type_node) |
| fcode2 = fcodel; |
| else |
| return NULL_TREE; |
| |
| if (implicit_p && !builtin_decl_implicit_p (fcode2)) |
| return NULL_TREE; |
| |
| return builtin_decl_explicit (fcode2); |
| } |
| |
| /* Like mathfn_built_in_1(), but always use the implicit array. */ |
| |
| tree |
| mathfn_built_in (tree type, enum built_in_function fn) |
| { |
| return mathfn_built_in_1 (type, fn, /*implicit=*/ 1); |
| } |
| |
| /* If errno must be maintained, expand the RTL to check if the result, |
| TARGET, of a built-in function call, EXP, is NaN, and if so set |
| errno to EDOM. */ |
| |
| static void |
| expand_errno_check (tree exp, rtx target) |
| { |
| rtx_code_label *lab = gen_label_rtx (); |
| |
| /* Test the result; if it is NaN, set errno=EDOM because |
| the argument was not in the domain. */ |
| do_compare_rtx_and_jump (target, target, EQ, 0, GET_MODE (target), |
| NULL_RTX, NULL_RTX, lab, |
| /* The jump is very likely. */ |
| REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1)); |
| |
| #ifdef TARGET_EDOM |
| /* If this built-in doesn't throw an exception, set errno directly. */ |
| if (TREE_NOTHROW (TREE_OPERAND (CALL_EXPR_FN (exp), 0))) |
| { |
| #ifdef GEN_ERRNO_RTX |
| rtx errno_rtx = GEN_ERRNO_RTX; |
| #else |
| rtx errno_rtx |
| = gen_rtx_MEM (word_mode, gen_rtx_SYMBOL_REF (Pmode, "errno")); |
| #endif |
| emit_move_insn (errno_rtx, |
| gen_int_mode (TARGET_EDOM, GET_MODE (errno_rtx))); |
| emit_label (lab); |
| return; |
| } |
| #endif |
| |
| /* Make sure the library call isn't expanded as a tail call. */ |
| CALL_EXPR_TAILCALL (exp) = 0; |
| |
| /* We can't set errno=EDOM directly; let the library call do it. |
| Pop the arguments right away in case the call gets deleted. */ |
| NO_DEFER_POP; |
| expand_call (exp, target, 0); |
| OK_DEFER_POP; |
| emit_label (lab); |
| } |
| |
| /* Expand a call to one of the builtin math functions (sqrt, exp, or log). |
| Return NULL_RTX if a normal call should be emitted rather than expanding |
| the function in-line. EXP is the expression that is a call to the builtin |
| function; if convenient, the result should be placed in TARGET. |
| SUBTARGET may be used as the target for computing one of EXP's operands. */ |
| |
| static rtx |
| expand_builtin_mathfn (tree exp, rtx target, rtx subtarget) |
| { |
| optab builtin_optab; |
| rtx op0; |
| rtx_insn *insns; |
| tree fndecl = get_callee_fndecl (exp); |
| machine_mode mode; |
| bool errno_set = false; |
| bool try_widening = false; |
| tree arg; |
| |
| if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE)) |
| return NULL_RTX; |
| |
| arg = CALL_EXPR_ARG (exp, 0); |
| |
| switch (DECL_FUNCTION_CODE (fndecl)) |
| { |
| CASE_FLT_FN (BUILT_IN_SQRT): |
| errno_set = ! tree_expr_nonnegative_p (arg); |
| try_widening = true; |
| builtin_optab = sqrt_optab; |
| break; |
| CASE_FLT_FN (BUILT_IN_EXP): |
| errno_set = true; builtin_optab = exp_optab; break; |
| CASE_FLT_FN (BUILT_IN_EXP10): |
| CASE_FLT_FN (BUILT_IN_POW10): |
| errno_set = true; builtin_optab = exp10_optab; break; |
| CASE_FLT_FN (BUILT_IN_EXP2): |
| errno_set = true; builtin_optab = exp2_optab; break; |
| CASE_FLT_FN (BUILT_IN_EXPM1): |
| errno_set = true; builtin_optab = expm1_optab; break; |
| CASE_FLT_FN (BUILT_IN_LOGB): |
| errno_set = true; builtin_optab = logb_optab; break; |
| CASE_FLT_FN (BUILT_IN_LOG): |
| errno_set = true; builtin_optab = log_optab; break; |
| CASE_FLT_FN (BUILT_IN_LOG10): |
| errno_set = true; builtin_optab = log10_optab; break; |
| CASE_FLT_FN (BUILT_IN_LOG2): |
| errno_set = true; builtin_optab = log2_optab; break; |
| CASE_FLT_FN (BUILT_IN_LOG1P): |
| errno_set = true; builtin_optab = log1p_optab; break; |
| CASE_FLT_FN (BUILT_IN_ASIN): |
| builtin_optab = asin_optab; break; |
| CASE_FLT_FN (BUILT_IN_ACOS): |
| builtin_optab = acos_optab; break; |
| CASE_FLT_FN (BUILT_IN_TAN): |
| builtin_optab = tan_optab; break; |
| CASE_FLT_FN (BUILT_IN_ATAN): |
| builtin_optab = atan_optab; break; |
| CASE_FLT_FN (BUILT_IN_FLOOR): |
| builtin_optab = floor_optab; break; |
| CASE_FLT_FN (BUILT_IN_CEIL): |
| builtin_optab = ceil_optab; break; |
| CASE_FLT_FN (BUILT_IN_TRUNC): |
| builtin_optab = btrunc_optab; break; |
| CASE_FLT_FN (BUILT_IN_ROUND): |
| builtin_optab = round_optab; break; |
| CASE_FLT_FN (BUILT_IN_NEARBYINT): |
| builtin_optab = nearbyint_optab; |
| if (flag_trapping_math) |
| break; |
| /* Else fallthrough and expand as rint. */ |
| CASE_FLT_FN (BUILT_IN_RINT): |
| builtin_optab = rint_optab; break; |
| CASE_FLT_FN (BUILT_IN_SIGNIFICAND): |
| builtin_optab = significand_optab; break; |
| default: |
| gcc_unreachable (); |
| } |
| |
| /* Make a suitable register to place result in. */ |
| mode = TYPE_MODE (TREE_TYPE (exp)); |
| |
| if (! flag_errno_math || ! HONOR_NANS (mode)) |
| errno_set = false; |
| |
| /* Before working hard, check whether the instruction is available, but try |
| to widen the mode for specific operations. */ |
| if ((optab_handler (builtin_optab, mode) != CODE_FOR_nothing |
| || (try_widening && !excess_precision_type (TREE_TYPE (exp)))) |
| && (!errno_set || !optimize_insn_for_size_p ())) |
| { |
| rtx result = gen_reg_rtx (mode); |
| |
| /* Wrap the computation of the argument in a SAVE_EXPR, as we may |
| need to expand the argument again. This way, we will not perform |
| side-effects more the once. */ |
| CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg); |
| |
| op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL); |
| |
| start_sequence (); |
| |
| /* Compute into RESULT. |
| Set RESULT to wherever the result comes back. */ |
| result = expand_unop (mode, builtin_optab, op0, result, 0); |
| |
| if (result != 0) |
| { |
| if (errno_set) |
| expand_errno_check (exp, result); |
| |
| /* Output the entire sequence. */ |
| insns = get_insns (); |
| end_sequence (); |
| emit_insn (insns); |
| return result; |
| } |
| |
| /* If we were unable to expand via the builtin, stop the sequence |
| (without outputting the insns) and call to the library function |
| with the stabilized argument list. */ |
| end_sequence (); |
| } |
| |
| return expand_call (exp, target, target == const0_rtx); |
| } |
| |
| /* Expand a call to the builtin binary math functions (pow and atan2). |
| Return NULL_RTX if a normal call should be emitted rather than expanding the |
| function in-line. EXP is the expression that is a call to the builtin |
| function; if convenient, the result should be placed in TARGET. |
| SUBTARGET may be used as the target for computing one of EXP's |
| operands. */ |
| |
| static rtx |
| expand_builtin_mathfn_2 (tree exp, rtx target, rtx subtarget) |
| { |
| optab builtin_optab; |
| rtx op0, op1, result; |
| rtx_insn *insns; |
| int op1_type = REAL_TYPE; |
| tree fndecl = get_callee_fndecl (exp); |
| tree arg0, arg1; |
| machine_mode mode; |
| bool errno_set = true; |
| |
| switch (DECL_FUNCTION_CODE (fndecl)) |
| { |
| CASE_FLT_FN (BUILT_IN_SCALBN): |
| CASE_FLT_FN (BUILT_IN_SCALBLN): |
| CASE_FLT_FN (BUILT_IN_LDEXP): |
| op1_type = INTEGER_TYPE; |
| default: |
| break; |
| } |
| |
| if (!validate_arglist (exp, REAL_TYPE, op1_type, VOID_TYPE)) |
| return NULL_RTX; |
| |
| arg0 = CALL_EXPR_ARG (exp, 0); |
| arg1 = CALL_EXPR_ARG (exp, 1); |
| |
| switch (DECL_FUNCTION_CODE (fndecl)) |
| { |
| CASE_FLT_FN (BUILT_IN_POW): |
| builtin_optab = pow_optab; break; |
| CASE_FLT_FN (BUILT_IN_ATAN2): |
| builtin_optab = atan2_optab; break; |
| CASE_FLT_FN (BUILT_IN_SCALB): |
| if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (exp)))->b != 2) |
| return 0; |
| builtin_optab = scalb_optab; break; |
| CASE_FLT_FN (BUILT_IN_SCALBN): |
| CASE_FLT_FN (BUILT_IN_SCALBLN): |
| if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (exp)))->b != 2) |
| return 0; |
| /* Fall through... */ |
| CASE_FLT_FN (BUILT_IN_LDEXP): |
| builtin_optab = ldexp_optab; break; |
| CASE_FLT_FN (BUILT_IN_FMOD): |
| builtin_optab = fmod_optab; break; |
| CASE_FLT_FN (BUILT_IN_REMAINDER): |
| CASE_FLT_FN (BUILT_IN_DREM): |
| builtin_optab = remainder_optab; break; |
| default: |
| gcc_unreachable (); |
| } |
| |
| /* Make a suitable register to place result in. */ |
| mode = TYPE_MODE (TREE_TYPE (exp)); |
| |
| /* Before working hard, check whether the instruction is available. */ |
| if (optab_handler (builtin_optab, mode) == CODE_FOR_nothing) |
| return NULL_RTX; |
| |
| result = gen_reg_rtx (mode); |
| |
| if (! flag_errno_math || ! HONOR_NANS (mode)) |
| errno_set = false; |
| |
| if (errno_set && optimize_insn_for_size_p ()) |
| return 0; |
| |
| /* Always stabilize the argument list. */ |
| CALL_EXPR_ARG (exp, 0) = arg0 = builtin_save_expr (arg0); |
| CALL_EXPR_ARG (exp, 1) = arg1 = builtin_save_expr (arg1); |
| |
| op0 = expand_expr (arg0, subtarget, VOIDmode, EXPAND_NORMAL); |
| op1 = expand_normal (arg1); |
| |
| start_sequence (); |
| |
| /* Compute into RESULT. |
| Set RESULT to wherever the result comes back. */ |
| result = expand_binop (mode, builtin_optab, op0, op1, |
| result, 0, OPTAB_DIRECT); |
| |
| /* If we were unable to expand via the builtin, stop the sequence |
| (without outputting the insns) and call to the library function |
| with the stabilized argument list. */ |
| if (result == 0) |
| { |
| end_sequence (); |
| return expand_call (exp, target, target == const0_rtx); |
| } |
| |
| if (errno_set) |
| expand_errno_check (exp, result); |
| |
| /* Output the entire sequence. */ |
| insns = get_insns (); |
| end_sequence (); |
| emit_insn (insns); |
| |
| return result; |
| } |
| |
| /* Expand a call to the builtin trinary math functions (fma). |
| Return NULL_RTX if a normal call should be emitted rather than expanding the |
| function in-line. EXP is the expression that is a call to the builtin |
| function; if convenient, the result should be placed in TARGET. |
| SUBTARGET may be used as the target for computing one of EXP's |
| operands. */ |
| |
| static rtx |
| expand_builtin_mathfn_ternary (tree exp, rtx target, rtx subtarget) |
| { |
| optab builtin_optab; |
| rtx op0, op1, op2, result; |
| rtx_insn *insns; |
| tree fndecl = get_callee_fndecl (exp); |
| tree arg0, arg1, arg2; |
| machine_mode mode; |
| |
| if (!validate_arglist (exp, REAL_TYPE, REAL_TYPE, REAL_TYPE, VOID_TYPE)) |
| return NULL_RTX; |
| |
| arg0 = CALL_EXPR_ARG (exp, 0); |
| arg1 = CALL_EXPR_ARG (exp, 1); |
| arg2 = CALL_EXPR_ARG (exp, 2); |
| |
| switch (DECL_FUNCTION_CODE (fndecl)) |
| { |
| CASE_FLT_FN (BUILT_IN_FMA): |
| builtin_optab = fma_optab; break; |
| default: |
| gcc_unreachable (); |
| } |
| |
| /* Make a suitable register to place result in. */ |
| mode = TYPE_MODE (TREE_TYPE (exp)); |
| |
| /* Before working hard, check whether the instruction is available. */ |
| if (optab_handler (builtin_optab, mode) == CODE_FOR_nothing) |
| return NULL_RTX; |
| |
| result = gen_reg_rtx (mode); |
| |
| /* Always stabilize the argument list. */ |
| CALL_EXPR_ARG (exp, 0) = arg0 = builtin_save_expr (arg0); |
| CALL_EXPR_ARG (exp, 1) = arg1 = builtin_save_expr (arg1); |
| CALL_EXPR_ARG (exp, 2) = arg2 = builtin_save_expr (arg2); |
| |
| op0 = expand_expr (arg0, subtarget, VOIDmode, EXPAND_NORMAL); |
| op1 = expand_normal (arg1); |
| op2 = expand_normal (arg2); |
| |
| start_sequence (); |
| |
| /* Compute into RESULT. |
| Set RESULT to wherever the result comes back. */ |
| result = expand_ternary_op (mode, builtin_optab, op0, op1, op2, |
| result, 0); |
| |
| /* If we were unable to expand via the builtin, stop the sequence |
| (without outputting the insns) and call to the library function |
| with the stabilized argument list. */ |
| if (result == 0) |
| { |
| end_sequence (); |
| return expand_call (exp, target, target == const0_rtx); |
| } |
| |
| /* Output the entire sequence. */ |
| insns = get_insns (); |
| end_sequence (); |
| emit_insn (insns); |
| |
| return result; |
| } |
| |
| /* Expand a call to the builtin sin and cos math functions. |
| Return NULL_RTX if a normal call should be emitted rather than expanding the |
| function in-line. EXP is the expression that is a call to the builtin |
| function; if convenient, the result should be placed in TARGET. |
| SUBTARGET may be used as the target for computing one of EXP's |
| operands. */ |
| |
| static rtx |
| expand_builtin_mathfn_3 (tree exp, rtx target, rtx subtarget) |
| { |
| optab builtin_optab; |
| rtx op0; |
| rtx_insn *insns; |
| tree fndecl = get_callee_fndecl (exp); |
| machine_mode mode; |
| tree arg; |
| |
| if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE)) |
| return NULL_RTX; |
| |
| arg = CALL_EXPR_ARG (exp, 0); |
| |
| switch (DECL_FUNCTION_CODE (fndecl)) |
| { |
| CASE_FLT_FN (BUILT_IN_SIN): |
| CASE_FLT_FN (BUILT_IN_COS): |
| builtin_optab = sincos_optab; break; |
| default: |
| gcc_unreachable (); |
| } |
| |
| /* Make a suitable register to place result in. */ |
| mode = TYPE_MODE (TREE_TYPE (exp)); |
| |
| /* Check if sincos insn is available, otherwise fallback |
| to sin or cos insn. */ |
| if (optab_handler (builtin_optab, mode) == CODE_FOR_nothing) |
| switch (DECL_FUNCTION_CODE (fndecl)) |
| { |
| CASE_FLT_FN (BUILT_IN_SIN): |
| builtin_optab = sin_optab; break; |
| CASE_FLT_FN (BUILT_IN_COS): |
| builtin_optab = cos_optab; break; |
| default: |
| gcc_unreachable (); |
| } |
| |
| /* Before working hard, check whether the instruction is available. */ |
| if (optab_handler (builtin_optab, mode) != CODE_FOR_nothing) |
| { |
| rtx result = gen_reg_rtx (mode); |
| |
| /* Wrap the computation of the argument in a SAVE_EXPR, as we may |
| need to expand the argument again. This way, we will not perform |
| side-effects more the once. */ |
| CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg); |
| |
| op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL); |
| |
| start_sequence (); |
| |
| /* Compute into RESULT. |
| Set RESULT to wherever the result comes back. */ |
| if (builtin_optab == sincos_optab) |
| { |
| int ok; |
| |
| switch (DECL_FUNCTION_CODE (fndecl)) |
| { |
| CASE_FLT_FN (BUILT_IN_SIN): |
| ok = expand_twoval_unop (builtin_optab, op0, 0, result, 0); |
| break; |
| CASE_FLT_FN (BUILT_IN_COS): |
| ok = expand_twoval_unop (builtin_optab, op0, result, 0, 0); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| gcc_assert (ok); |
| } |
| else |
| result = expand_unop (mode, builtin_optab, op0, result, 0); |
| |
| if (result != 0) |
| { |
| /* Output the entire sequence. */ |
| insns = get_insns (); |
| end_sequence (); |
| emit_insn (insns); |
| return result; |
| } |
| |
| /* If we were unable to expand via the builtin, stop the sequence |
| (without outputting the insns) and call to the library function |
| with the stabilized argument list. */ |
| end_sequence (); |
| } |
| |
| return expand_call (exp, target, target == const0_rtx); |
| } |
| |
| /* Given an interclass math builtin decl FNDECL and it's argument ARG |
| return an RTL instruction code that implements the functionality. |
| If that isn't possible or available return CODE_FOR_nothing. */ |
| |
| static enum insn_code |
| interclass_mathfn_icode (tree arg, tree fndecl) |
| { |
| bool errno_set = false; |
| optab builtin_optab = unknown_optab; |
| machine_mode mode; |
| |
| switch (DECL_FUNCTION_CODE (fndecl)) |
| { |
| CASE_FLT_FN (BUILT_IN_ILOGB): |
| errno_set = true; builtin_optab = ilogb_optab; break; |
| CASE_FLT_FN (BUILT_IN_ISINF): |
| builtin_optab = isinf_optab; break; |
| case BUILT_IN_ISNORMAL: |
| case BUILT_IN_ISFINITE: |
| CASE_FLT_FN (BUILT_IN_FINITE): |
| case BUILT_IN_FINITED32: |
| case BUILT_IN_FINITED64: |
| case BUILT_IN_FINITED128: |
| case BUILT_IN_ISINFD32: |
| case BUILT_IN_ISINFD64: |
| case BUILT_IN_ISINFD128: |
| /* These builtins have no optabs (yet). */ |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| |
| /* There's no easy way to detect the case we need to set EDOM. */ |
| if (flag_errno_math && errno_set) |
| return CODE_FOR_nothing; |
| |
| /* Optab mode depends on the mode of the input argument. */ |
| mode = TYPE_MODE (TREE_TYPE (arg)); |
| |
| if (builtin_optab) |
| return optab_handler (builtin_optab, mode); |
| return CODE_FOR_nothing; |
| } |
| |
| /* Expand a call to one of the builtin math functions that operate on |
| floating point argument and output an integer result (ilogb, isinf, |
| isnan, etc). |
| Return 0 if a normal call should be emitted rather than expanding the |
| function in-line. EXP is the expression that is a call to the builtin |
| function; if convenient, the result should be placed in TARGET. */ |
| |
| static rtx |
| expand_builtin_interclass_mathfn (tree exp, rtx target) |
| { |
| enum insn_code icode = CODE_FOR_nothing; |
| rtx op0; |
| tree fndecl = get_callee_fndecl (exp); |
| machine_mode mode; |
| tree arg; |
| |
| if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE)) |
| return NULL_RTX; |
| |
| arg = CALL_EXPR_ARG (exp, 0); |
| icode = interclass_mathfn_icode (arg, fndecl); |
| mode = TYPE_MODE (TREE_TYPE (arg)); |
| |
| if (icode != CODE_FOR_nothing) |
| { |
| struct expand_operand ops[1]; |
| rtx_insn *last = get_last_insn (); |
| tree orig_arg = arg; |
| |
| /* Wrap the computation of the argument in a SAVE_EXPR, as we may |
| need to expand the argument again. This way, we will not perform |
| side-effects more the once. */ |
| CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg); |
| |
| op0 = expand_expr (arg, NULL_RTX, VOIDmode, EXPAND_NORMAL); |
| |
| if (mode != GET_MODE (op0)) |
| op0 = convert_to_mode (mode, op0, 0); |
| |
| create_output_operand (&ops[0], target, TYPE_MODE (TREE_TYPE (exp))); |
| if (maybe_legitimize_operands (icode, 0, 1, ops) |
| && maybe_emit_unop_insn (icode, ops[0].value, op0, UNKNOWN)) |
| return ops[0].value; |
| |
| delete_insns_since (last); |
| CALL_EXPR_ARG (exp, 0) = orig_arg; |
| } |
| |
| return NULL_RTX; |
| } |
| |
| /* Expand a call to the builtin sincos math function. |
| Return NULL_RTX if a normal call should be emitted rather than expanding the |
| function in-line. EXP is the expression that is a call to the builtin |
| function. */ |
| |
| static rtx |
| expand_builtin_sincos (tree exp) |
| { |
| rtx op0, op1, op2, target1, target2; |
| machine_mode mode; |
| tree arg, sinp, cosp; |
| int result; |
| location_t loc = EXPR_LOCATION (exp); |
| tree alias_type, alias_off; |
| |
| if (!validate_arglist (exp, REAL_TYPE, |
| POINTER_TYPE, POINTER_TYPE, VOID_TYPE)) |
| return NULL_RTX; |
| |
| arg = CALL_EXPR_ARG (exp, 0); |
| sinp = CALL_EXPR_ARG (exp, 1); |
| cosp = CALL_EXPR_ARG (exp, 2); |
| |
| /* Make a suitable register to place result in. */ |
| mode = TYPE_MODE (TREE_TYPE (arg)); |
| |
| /* Check if sincos insn is available, otherwise emit the call. */ |
| if (optab_handler (sincos_optab, mode) == CODE_FOR_nothing) |
| return NULL_RTX; |
| |
| target1 = gen_reg_rtx (mode); |
| target2 = gen_reg_rtx (mode); |
| |
| op0 = expand_normal (arg); |
| alias_type = build_pointer_type_for_mode (TREE_TYPE (arg), ptr_mode, true); |
| alias_off = build_int_cst (alias_type, 0); |
| op1 = expand_normal (fold_build2_loc (loc, MEM_REF, TREE_TYPE (arg), |
| sinp, alias_off)); |
| op2 = expand_normal (fold_build2_loc (loc, MEM_REF, TREE_TYPE (arg), |
| cosp, alias_off)); |
| |
| /* Compute into target1 and target2. |
| Set TARGET to wherever the result comes back. */ |
| result = expand_twoval_unop (sincos_optab, op0, target2, target1, 0); |
| gcc_assert (result); |
| |
| /* Move target1 and target2 to the memory locations indicated |
| by op1 and op2. */ |
| emit_move_insn (op1, target1); |
| emit_move_insn (op2, target2); |
| |
| return const0_rtx; |
| } |
| |
| /* Expand a call to the internal cexpi builtin to the sincos math function. |
| EXP is the expression that is a call to the builtin function; if convenient, |
| the result should be placed in TARGET. */ |
| |
| static rtx |
| expand_builtin_cexpi (tree exp, rtx target) |
| { |
| tree fndecl = get_callee_fndecl (exp); |
| tree arg, type; |
| machine_mode mode; |
| rtx op0, op1, op2; |
| location_t loc = EXPR_LOCATION (exp); |
| |
| if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE)) |
| return NULL_RTX; |
| |
| arg = CALL_EXPR_ARG (exp, 0); |
| type = TREE_TYPE (arg); |
| mode = TYPE_MODE (TREE_TYPE (arg)); |
| |
| /* Try expanding via a sincos optab, fall back to emitting a libcall |
| to sincos or cexp. We are sure we have sincos or cexp because cexpi |
| is only generated from sincos, cexp or if we have either of them. */ |
| if (optab_handler (sincos_optab, mode) != CODE_FOR_nothing) |
| { |
| op1 = gen_reg_rtx (mode); |
| op2 = gen_reg_rtx (mode); |
| |
| op0 = expand_expr (arg, NULL_RTX, VOIDmode, EXPAND_NORMAL); |
| |
| /* Compute into op1 and op2. */ |
| expand_twoval_unop (sincos_optab, op0, op2, op1, 0); |
| } |
| else if (targetm.libc_has_function (function_sincos)) |
| { |
| tree call, fn = NULL_TREE; |
| tree top1, top2; |
| rtx op1a, op2a; |
| |
| if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF) |
| fn = builtin_decl_explicit (BUILT_IN_SINCOSF); |
| else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI) |
| fn = builtin_decl_explicit (BUILT_IN_SINCOS); |
| else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL) |
| fn = builtin_decl_explicit (BUILT_IN_SINCOSL); |
| else |
| gcc_unreachable (); |
| |
| op1 = assign_temp (TREE_TYPE (arg), 1, 1); |
| op2 = assign_temp (TREE_TYPE (arg), 1, 1); |
| op1a = copy_addr_to_reg (XEXP (op1, 0)); |
| op2a = copy_addr_to_reg (XEXP (op2, 0)); |
| top1 = make_tree (build_pointer_type (TREE_TYPE (arg)), op1a); |
| top2 = make_tree (build_pointer_type (TREE_TYPE (arg)), op2a); |
| |
| /* Make sure not to fold the sincos call again. */ |
| call = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn); |
| expand_normal (build_call_nary (TREE_TYPE (TREE_TYPE (fn)), |
| call, 3, arg, top1, top2)); |
| } |
| else |
| { |
| tree call, fn = NULL_TREE, narg; |
| tree ctype = build_complex_type (type); |
| |
| if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF) |
| fn = builtin_decl_explicit (BUILT_IN_CEXPF); |
| else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI) |
| fn = builtin_decl_explicit (BUILT_IN_CEXP); |
| else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL) |
| fn = builtin_decl_explicit (BUILT_IN_CEXPL); |
| else |
| gcc_unreachable (); |
| |
| /* If we don't have a decl for cexp create one. This is the |
| friendliest fallback if the user calls __builtin_cexpi |
| without full target C99 function support. */ |
| if (fn == NULL_TREE) |
| { |
| tree fntype; |
| const char *name = NULL; |
| |
| if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF) |
| name = "cexpf"; |
| else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI) |
| name = "cexp"; |
| else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL) |
| name = "cexpl"; |
| |
| fntype = build_function_type_list (ctype, ctype, NULL_TREE); |
| fn = build_fn_decl (name, fntype); |
| } |
| |
| narg = fold_build2_loc (loc, COMPLEX_EXPR, ctype, |
| build_real (type, dconst0), arg); |
| |
| /* Make sure not to fold the cexp call again. */ |
| call = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn); |
| return expand_expr (build_call_nary (ctype, call, 1, narg), |
| target, VOIDmode, EXPAND_NORMAL); |
| } |
| |
| /* Now build the proper return type. */ |
| return expand_expr (build2 (COMPLEX_EXPR, build_complex_type (type), |
| make_tree (TREE_TYPE (arg), op2), |
| make_tree (TREE_TYPE (arg), op1)), |
| target, VOIDmode, EXPAND_NORMAL); |
| } |
| |
| /* Conveniently construct a function call expression. FNDECL names the |
| function to be called, N is the number of arguments, and the "..." |
| parameters are the argument expressions. Unlike build_call_exr |
| this doesn't fold the call, hence it will always return a CALL_EXPR. */ |
| |
| static tree |
| build_call_nofold_loc (location_t loc, tree fndecl, int n, ...) |
| { |
| va_list ap; |
| tree fntype = TREE_TYPE (fndecl); |
| tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl); |
| |
| va_start (ap, n); |
| fn = build_call_valist (TREE_TYPE (fntype), fn, n, ap); |
| va_end (ap); |
| SET_EXPR_LOCATION (fn, loc); |
| return fn; |
| } |
| |
| /* Expand a call to one of the builtin rounding functions gcc defines |
| as an extension (lfloor and lceil). As these are gcc extensions we |
| do not need to worry about setting errno to EDOM. |
| If expanding via optab fails, lower expression to (int)(floor(x)). |
| EXP is the expression that is a call to the builtin function; |
| if convenient, the result should be placed in TARGET. */ |
| |
| static rtx |
| expand_builtin_int_roundingfn (tree exp, rtx target) |
| { |
| convert_optab builtin_optab; |
| rtx op0, tmp; |
| rtx_insn *insns; |
| tree fndecl = get_callee_fndecl (exp); |
| enum built_in_function fallback_fn; |
| tree fallback_fndecl; |
| machine_mode mode; |
| tree arg; |
| |
| if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE)) |
| gcc_unreachable (); |
| |
| arg = CALL_EXPR_ARG (exp, 0); |
| |
| switch (DECL_FUNCTION_CODE (fndecl)) |
| { |
| CASE_FLT_FN (BUILT_IN_ICEIL): |
| CASE_FLT_FN (BUILT_IN_LCEIL): |
| CASE_FLT_FN (BUILT_IN_LLCEIL): |
| builtin_optab = lceil_optab; |
| fallback_fn = BUILT_IN_CEIL; |
| break; |
| |
| CASE_FLT_FN (BUILT_IN_IFLOOR): |
| CASE_FLT_FN (BUILT_IN_LFLOOR): |
| CASE_FLT_FN (BUILT_IN_LLFLOOR): |
| builtin_optab = lfloor_optab; |
| fallback_fn = BUILT_IN_FLOOR; |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| /* Make a suitable register to place result in. */ |
| mode = TYPE_MODE (TREE_TYPE (exp)); |
| |
| target = gen_reg_rtx (mode); |
| |
| /* Wrap the computation of the argument in a SAVE_EXPR, as we may |
| need to expand the argument again. This way, we will not perform |
| side-effects more the once. */ |
| CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg); |
| |
| op0 = expand_expr (arg, NULL, VOIDmode, EXPAND_NORMAL); |
| |
| start_sequence (); |
| |
| /* Compute into TARGET. */ |
| if (expand_sfix_optab (target, op0, builtin_optab)) |
| { |
| /* Output the entire sequence. */ |
| insns = get_insns (); |
| end_sequence (); |
| emit_insn (insns); |
| return target; |
| } |
| |
| /* If we were unable to expand via the builtin, stop the sequence |
| (without outputting the insns). */ |
| end_sequence (); |
| |
| /* Fall back to floating point rounding optab. */ |
| fallback_fndecl = mathfn_built_in (TREE_TYPE (arg), fallback_fn); |
| |
| /* For non-C99 targets we may end up without a fallback fndecl here |
| if the user called __builtin_lfloor directly. In this case emit |
| a call to the floor/ceil variants nevertheless. This should result |
| in the best user experience for not full C99 targets. */ |
| if (fallback_fndecl == NULL_TREE) |
| { |
| tree fntype; |
| const char *name = NULL; |
| |
| switch (DECL_FUNCTION_CODE (fndecl)) |
| { |
| case BUILT_IN_ICEIL: |
| case BUILT_IN_LCEIL: |
| case BUILT_IN_LLCEIL: |
| name = "ceil"; |
| break; |
| case BUILT_IN_ICEILF: |
| case BUILT_IN_LCEILF: |
| case BUILT_IN_LLCEILF: |
| name = "ceilf"; |
| break; |
| case BUILT_IN_ICEILL: |
| case BUILT_IN_LCEILL: |
| case BUILT_IN_LLCEILL: |
| name = "ceill"; |
| break; |
| case BUILT_IN_IFLOOR: |
| case BUILT_IN_LFLOOR: |
| case BUILT_IN_LLFLOOR: |
| name = "floor"; |
| break; |
| case BUILT_IN_IFLOORF: |
| case BUILT_IN_LFLOORF: |
| case BUILT_IN_LLFLOORF: |
| name = "floorf"; |
| break; |
| case BUILT_IN_IFLOORL: |
| case BUILT_IN_LFLOORL: |
| case BUILT_IN_LLFLOORL: |
| name = "floorl"; |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| |
| fntype = build_function_type_list (TREE_TYPE (arg), |
| TREE_TYPE (arg), NULL_TREE); |
| fallback_fndecl = build_fn_decl (name, fntype); |
| } |
| |
| exp = build_call_nofold_loc (EXPR_LOCATION (exp), fallback_fndecl, 1, arg); |
| |
| tmp = expand_normal (exp); |
| tmp = maybe_emit_group_store (tmp, TREE_TYPE (exp)); |
| |
| /* Truncate the result of floating point optab to integer |
| via expand_fix (). */ |
| target = gen_reg_rtx (mode); |
| expand_fix (target, tmp, 0); |
| |
| return target; |
| } |
| |
| /* Expand a call to one of the builtin math functions doing integer |
| conversion (lrint). |
| Return 0 if a normal call should be emitted rather than expanding the |
| function in-line. EXP is the expression that is a call to the builtin |
| function; if convenient, the result should be placed in TARGET. */ |
| |
| static rtx |
| expand_builtin_int_roundingfn_2 (tree exp, rtx target) |
| { |
| convert_optab builtin_optab; |
| rtx op0; |
| rtx_insn *insns; |
| tree fndecl = get_callee_fndecl (exp); |
| tree arg; |
| machine_mode mode; |
| enum built_in_function fallback_fn = BUILT_IN_NONE; |
| |
| if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE)) |
| gcc_unreachable (); |
| |
| arg = CALL_EXPR_ARG (exp, 0); |
| |
| switch (DECL_FUNCTION_CODE (fndecl)) |
| { |
| CASE_FLT_FN (BUILT_IN_IRINT): |
| fallback_fn = BUILT_IN_LRINT; |
| /* FALLTHRU */ |
| CASE_FLT_FN (BUILT_IN_LRINT): |
| CASE_FLT_FN (BUILT_IN_LLRINT): |
| builtin_optab = lrint_optab; |
| break; |
| |
| CASE_FLT_FN (BUILT_IN_IROUND): |
| fallback_fn = BUILT_IN_LROUND; |
| /* FALLTHRU */ |
| CASE_FLT_FN (BUILT_IN_LROUND): |
| CASE_FLT_FN (BUILT_IN_LLROUND): |
| builtin_optab = lround_optab; |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| /* There's no easy way to detect the case we need to set EDOM. */ |
| if (flag_errno_math && fallback_fn == BUILT_IN_NONE) |
| return NULL_RTX; |
| |
| /* Make a suitable register to place result in. */ |
| mode = TYPE_MODE (TREE_TYPE (exp)); |
| |
| /* There's no easy way to detect the case we need to set EDOM. */ |
| if (!flag_errno_math) |
| { |
| rtx result = gen_reg_rtx (mode); |
| |
| /* Wrap the computation of the argument in a SAVE_EXPR, as we may |
| need to expand the argument again. This way, we will not perform |
| side-effects more the once. */ |
| CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg); |
| |
| op0 = expand_expr (arg, NULL, VOIDmode, EXPAND_NORMAL); |
| |
| start_sequence (); |
| |
| if (expand_sfix_optab (result, op0, builtin_optab)) |
| { |
| /* Output the entire sequence. */ |
| insns = get_insns (); |
| end_sequence (); |
| emit_insn (insns); |
| return result; |
| } |
| |
| /* If we were unable to expand via the builtin, stop the sequence |
| (without outputting the insns) and call to the library function |
| with the stabilized argument list. */ |
| end_sequence (); |
| } |
| |
| if (fallback_fn != BUILT_IN_NONE) |
| { |
| /* Fall back to rounding to long int. Use implicit_p 0 - for non-C99 |
| targets, (int) round (x) should never be transformed into |
| BUILT_IN_IROUND and if __builtin_iround is called directly, emit |
| a call to lround in the hope that the target provides at least some |
| C99 functions. This should result in the best user experience for |
| not full C99 targets. */ |
| tree fallback_fndecl = mathfn_built_in_1 (TREE_TYPE (arg), |
| fallback_fn, 0); |
| |
| exp = build_call_nofold_loc (EXPR_LOCATION (exp), |
| fallback_fndecl, 1, arg); |
| |
| target = expand_call (exp, NULL_RTX, target == const0_rtx); |
| target = maybe_emit_group_store (target, TREE_TYPE (exp)); |
| return convert_to_mode (mode, target, 0); |
| } |
| |
| return expand_call (exp, target, target == const0_rtx); |
| } |
| |
| /* Expand a call to the powi built-in mathematical function. Return NULL_RTX if |
| a normal call should be emitted rather than expanding the function |
| in-line. EXP is the expression that is a call to the builtin |
| function; if convenient, the result should be placed in TARGET. */ |
| |
| static rtx |
| expand_builtin_powi (tree exp, rtx target) |
| { |
| tree arg0, arg1; |
| rtx op0, op1; |
| machine_mode mode; |
| machine_mode mode2; |
| |
| if (! validate_arglist (exp, REAL_TYPE, INTEGER_TYPE, VOID_TYPE)) |
| return NULL_RTX; |
| |
| arg0 = CALL_EXPR_ARG (exp, 0); |
| arg1 = CALL_EXPR_ARG (exp, 1); |
| mode = TYPE_MODE (TREE_TYPE (exp)); |
| |
| /* Emit a libcall to libgcc. */ |
| |
| /* Mode of the 2nd argument must match that of an int. */ |
| mode2 = mode_for_size (INT_TYPE_SIZE, MODE_INT, 0); |
| |
| if (target == NULL_RTX) |
| target = gen_reg_rtx (mode); |
| |
| op0 = expand_expr (arg0, NULL_RTX, mode, EXPAND_NORMAL); |
| if (GET_MODE (op0) != mode) |
| op0 = convert_to_mode (mode, op0, 0); |
| op1 = expand_expr (arg1, NULL_RTX, mode2, EXPAND_NORMAL); |
| if (GET_MODE (op1) != mode2) |
| op1 = convert_to_mode (mode2, op1, 0); |
| |
| target = emit_library_call_value (optab_libfunc (powi_optab, mode), |
| target, LCT_CONST, mode, 2, |
| op0, mode, op1, mode2); |
| |
| return target; |
| } |
| |
| /* Expand expression EXP which is a call to the strlen builtin. Return |
| NULL_RTX if we failed the caller should emit a normal call, otherwise |
| try to get the result in TARGET, if convenient. */ |
| |
| static rtx |
| expand_builtin_strlen (tree exp, rtx target, |
| machine_mode target_mode) |
| { |
| if (!validate_arglist (exp, POINTER_TYPE, VOID_TYPE)) |
| return NULL_RTX; |
| else |
| { |
| struct expand_operand ops[4]; |
| rtx pat; |
| tree len; |
| tree src = CALL_EXPR_ARG (exp, 0); |
| rtx src_reg; |
| rtx_insn *before_strlen; |
| machine_mode insn_mode = target_mode; |
| enum insn_code icode = CODE_FOR_nothing; |
| unsigned int align; |
| |
| /* If the length can be computed at compile-time, return it. */ |
| len = c_strlen (src, 0); |
| if (len) |
| return expand_expr (len, target, target_mode, EXPAND_NORMAL); |
| |
| /* If the length can be computed at compile-time and is constant |
| integer, but there are side-effects in src, evaluate |
| src for side-effects, then return len. |
| E.g. x = strlen (i++ ? "xfoo" + 1 : "bar"); |
| can be optimized into: i++; x = 3; */ |
| len = c_strlen (src, 1); |
| if (len && TREE_CODE (len) == INTEGER_CST) |
| { |
| expand_expr (src, const0_rtx, VOIDmode, EXPAND_NORMAL); |
| return expand_expr (len, target, target_mode, EXPAND_NORMAL); |
| } |
| |
| align = get_pointer_alignment (src) / BITS_PER_UNIT; |
| |
| /* If SRC is not a pointer type, don't do this operation inline. */ |
| if (align == 0) |
| return NULL_RTX; |
| |
| /* Bail out if we can't compute strlen in the right mode. */ |
| while (insn_mode != VOIDmode) |
| { |
| icode = optab_handler (strlen_optab, insn_mode); |
| if (icode != CODE_FOR_nothing) |
| break; |
| |
| insn_mode = GET_MODE_WIDER_MODE (insn_mode); |
| } |
| if (insn_mode == VOIDmode) |
| return NULL_RTX; |
| |
| /* Make a place to hold the source address. We will not expand |
| the actual source until we are sure that the expansion will |
| not fail -- there are trees that cannot be expanded twice. */ |
| src_reg = gen_reg_rtx (Pmode); |
| |
| /* Mark the beginning of the strlen sequence so we can emit the |
| source operand later. */ |
| before_strlen = get_last_insn (); |
| |
| create_output_operand (&ops[0], target, insn_mode); |
| create_fixed_operand (&ops[1], gen_rtx_MEM (BLKmode, src_reg)); |
| create_integer_operand (&ops[2], 0); |
| create_integer_operand (&ops[3], align); |
| if (!maybe_expand_insn (icode, 4, ops)) |
| return NULL_RTX; |
| |
| /* Now that we are assured of success, expand the source. */ |
| start_sequence (); |
| pat = expand_expr (src, src_reg, Pmode, EXPAND_NORMAL); |
| if (pat != src_reg) |
| { |
| #ifdef POINTERS_EXTEND_UNSIGNED |
| if (GET_MODE (pat) != Pmode) |
| pat = convert_to_mode (Pmode, pat, |
| POINTERS_EXTEND_UNSIGNED); |
| #endif |
| emit_move_insn (src_reg, pat); |
| } |
| pat = get_insns (); |
| end_sequence (); |
| |
| if (before_strlen) |
| emit_insn_after (pat, before_strlen); |
| else |
| emit_insn_before (pat, get_insns ()); |
| |
| /* Return the value in the proper mode for this function. */ |
| if (GET_MODE (ops[0].value) == target_mode) |
| target = ops[0].value; |
| else if (target != 0) |
| convert_move (target, ops[0].value, 0); |
| else |
| target = convert_to_mode (target_mode, ops[0].value, 0); |
| |
| return target; |
| } |
| } |
| |
| /* Callback routine for store_by_pieces. Read GET_MODE_BITSIZE (MODE) |
| bytes from constant string DATA + OFFSET and return it as target |
| constant. */ |
| |
| static rtx |
| builtin_memcpy_read_str (void *data, HOST_WIDE_INT offset, |
| machine_mode mode) |
| { |
| const char *str = (const char *) data; |
| |
| gcc_assert (offset >= 0 |
| && ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode) |
| <= strlen (str) + 1)); |
| |
| return c_readstr (str + offset, mode); |
| } |
| |
| /* LEN specify length of the block of memcpy/memset operation. |
| Figure out its range and put it into MIN_SIZE/MAX_SIZE. |
| In some cases we can make very likely guess on max size, then we |
| set it into PROBABLE_MAX_SIZE. */ |
| |
| static void |
| determine_block_size (tree len, rtx len_rtx, |
| unsigned HOST_WIDE_INT *min_size, |
| unsigned HOST_WIDE_INT *max_size, |
| unsigned HOST_WIDE_INT *probable_max_size) |
| { |
| if (CONST_INT_P (len_rtx)) |
| { |
| *min_size = *max_size = *probable_max_size = UINTVAL (len_rtx); |
| return; |
| } |
| else |
| { |
| wide_int min, max; |
| enum value_range_type range_type = VR_UNDEFINED; |
| |
| /* Determine bounds from the type. */ |
| if (tree_fits_uhwi_p (TYPE_MIN_VALUE (TREE_TYPE (len)))) |
| *min_size = tree_to_uhwi (TYPE_MIN_VALUE (TREE_TYPE (len))); |
| else |
| *min_size = 0; |
| if (tree_fits_uhwi_p (TYPE_MAX_VALUE (TREE_TYPE (len)))) |
| *probable_max_size = *max_size |
| = tree_to_uhwi (TYPE_MAX_VALUE (TREE_TYPE (len))); |
| else |
| *probable_max_size = *max_size = GET_MODE_MASK (GET_MODE (len_rtx)); |
| |
| if (TREE_CODE (len) == SSA_NAME) |
| range_type = get_range_info (len, &min, &max); |
| if (range_type == VR_RANGE) |
| { |
| if (wi::fits_uhwi_p (min) && *min_size < min.to_uhwi ()) |
| *min_size = min.to_uhwi (); |
| if (wi::fits_uhwi_p (max) && *max_size > max.to_uhwi ()) |
| *probable_max_size = *max_size = max.to_uhwi (); |
| } |
| else if (range_type == VR_ANTI_RANGE) |
| { |
| /* Anti range 0...N lets us to determine minimal size to N+1. */ |
| if (min == 0) |
| { |
| if (wi::fits_uhwi_p (max) && max.to_uhwi () + 1 != 0) |
| *min_size = max.to_uhwi () + 1; |
| } |
| /* Code like |
| |
| int n; |
| if (n < 100) |
| memcpy (a, b, n) |
| |
| Produce anti range allowing negative values of N. We still |
| can use the information and make a guess that N is not negative. |
| */ |
| else if (!wi::leu_p (max, 1 << 30) && wi::fits_uhwi_p (min)) |
| *probable_max_size = |