| /* Operations with long integers. |
| Copyright (C) 2006-2015 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it |
| under the terms of the GNU General Public License as published by the |
| Free Software Foundation; either version 3, or (at your option) any |
| later version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" /* For BITS_PER_UNIT and *_BIG_ENDIAN. */ |
| #include "hash-set.h" |
| #include "machmode.h" |
| #include "vec.h" |
| #include "double-int.h" |
| #include "input.h" |
| #include "alias.h" |
| #include "symtab.h" |
| #include "wide-int.h" |
| #include "inchash.h" |
| #include "real.h" |
| #include "tree.h" |
| |
| static int add_double_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT, |
| unsigned HOST_WIDE_INT, HOST_WIDE_INT, |
| unsigned HOST_WIDE_INT *, HOST_WIDE_INT *, |
| bool); |
| |
| #define add_double(l1,h1,l2,h2,lv,hv) \ |
| add_double_with_sign (l1, h1, l2, h2, lv, hv, false) |
| |
| static int neg_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT, |
| unsigned HOST_WIDE_INT *, HOST_WIDE_INT *); |
| |
| static int mul_double_wide_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT, |
| unsigned HOST_WIDE_INT, HOST_WIDE_INT, |
| unsigned HOST_WIDE_INT *, HOST_WIDE_INT *, |
| unsigned HOST_WIDE_INT *, HOST_WIDE_INT *, |
| bool); |
| |
| #define mul_double(l1,h1,l2,h2,lv,hv) \ |
| mul_double_wide_with_sign (l1, h1, l2, h2, lv, hv, NULL, NULL, false) |
| |
| static int div_and_round_double (unsigned, int, unsigned HOST_WIDE_INT, |
| HOST_WIDE_INT, unsigned HOST_WIDE_INT, |
| HOST_WIDE_INT, unsigned HOST_WIDE_INT *, |
| HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, |
| HOST_WIDE_INT *); |
| |
| /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring |
| overflow. Suppose A, B and SUM have the same respective signs as A1, B1, |
| and SUM1. Then this yields nonzero if overflow occurred during the |
| addition. |
| |
| Overflow occurs if A and B have the same sign, but A and SUM differ in |
| sign. Use `^' to test whether signs differ, and `< 0' to isolate the |
| sign. */ |
| #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0) |
| |
| /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic. |
| We do that by representing the two-word integer in 4 words, with only |
| HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive |
| number. The value of the word is LOWPART + HIGHPART * BASE. */ |
| |
| #define LOWPART(x) \ |
| ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1)) |
| #define HIGHPART(x) \ |
| ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2) |
| #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2) |
| |
| /* Unpack a two-word integer into 4 words. |
| LOW and HI are the integer, as two `HOST_WIDE_INT' pieces. |
| WORDS points to the array of HOST_WIDE_INTs. */ |
| |
| static void |
| encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi) |
| { |
| words[0] = LOWPART (low); |
| words[1] = HIGHPART (low); |
| words[2] = LOWPART (hi); |
| words[3] = HIGHPART (hi); |
| } |
| |
| /* Pack an array of 4 words into a two-word integer. |
| WORDS points to the array of words. |
| The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */ |
| |
| static void |
| decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low, |
| HOST_WIDE_INT *hi) |
| { |
| *low = words[0] + words[1] * BASE; |
| *hi = words[2] + words[3] * BASE; |
| } |
| |
| /* Add two doubleword integers with doubleword result. |
| Return nonzero if the operation overflows according to UNSIGNED_P. |
| Each argument is given as two `HOST_WIDE_INT' pieces. |
| One argument is L1 and H1; the other, L2 and H2. |
| The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */ |
| |
| static int |
| add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, |
| unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2, |
| unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, |
| bool unsigned_p) |
| { |
| unsigned HOST_WIDE_INT l; |
| HOST_WIDE_INT h; |
| |
| l = l1 + l2; |
| h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1 |
| + (unsigned HOST_WIDE_INT) h2 |
| + (l < l1)); |
| |
| *lv = l; |
| *hv = h; |
| |
| if (unsigned_p) |
| return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1 |
| || (h == h1 |
| && l < l1)); |
| else |
| return OVERFLOW_SUM_SIGN (h1, h2, h); |
| } |
| |
| /* Negate a doubleword integer with doubleword result. |
| Return nonzero if the operation overflows, assuming it's signed. |
| The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1. |
| The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */ |
| |
| static int |
| neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, |
| unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv) |
| { |
| if (l1 == 0) |
| { |
| *lv = 0; |
| *hv = - (unsigned HOST_WIDE_INT) h1; |
| return (*hv & h1) < 0; |
| } |
| else |
| { |
| *lv = -l1; |
| *hv = ~h1; |
| return 0; |
| } |
| } |
| |
| /* Multiply two doubleword integers with quadword result. |
| Return nonzero if the operation overflows according to UNSIGNED_P. |
| Each argument is given as two `HOST_WIDE_INT' pieces. |
| One argument is L1 and H1; the other, L2 and H2. |
| The value is stored as four `HOST_WIDE_INT' pieces in *LV and *HV, |
| *LW and *HW. |
| If lw is NULL then only the low part and no overflow is computed. */ |
| |
| static int |
| mul_double_wide_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, |
| unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2, |
| unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, |
| unsigned HOST_WIDE_INT *lw, HOST_WIDE_INT *hw, |
| bool unsigned_p) |
| { |
| HOST_WIDE_INT arg1[4]; |
| HOST_WIDE_INT arg2[4]; |
| HOST_WIDE_INT prod[4 * 2]; |
| unsigned HOST_WIDE_INT carry; |
| int i, j, k; |
| unsigned HOST_WIDE_INT neglow; |
| HOST_WIDE_INT neghigh; |
| |
| encode (arg1, l1, h1); |
| encode (arg2, l2, h2); |
| |
| memset (prod, 0, sizeof prod); |
| |
| for (i = 0; i < 4; i++) |
| { |
| carry = 0; |
| for (j = 0; j < 4; j++) |
| { |
| k = i + j; |
| /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */ |
| carry += (unsigned HOST_WIDE_INT) arg1[i] * arg2[j]; |
| /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */ |
| carry += prod[k]; |
| prod[k] = LOWPART (carry); |
| carry = HIGHPART (carry); |
| } |
| prod[i + 4] = carry; |
| } |
| |
| decode (prod, lv, hv); |
| |
| /* We are not interested in the wide part nor in overflow. */ |
| if (lw == NULL) |
| return 0; |
| |
| decode (prod + 4, lw, hw); |
| |
| /* Unsigned overflow is immediate. */ |
| if (unsigned_p) |
| return (*lw | *hw) != 0; |
| |
| /* Check for signed overflow by calculating the signed representation of the |
| top half of the result; it should agree with the low half's sign bit. */ |
| if (h1 < 0) |
| { |
| neg_double (l2, h2, &neglow, &neghigh); |
| add_double (neglow, neghigh, *lw, *hw, lw, hw); |
| } |
| if (h2 < 0) |
| { |
| neg_double (l1, h1, &neglow, &neghigh); |
| add_double (neglow, neghigh, *lw, *hw, lw, hw); |
| } |
| return (*hv < 0 ? ~(*lw & *hw) : *lw | *hw) != 0; |
| } |
| |
| /* Shift the doubleword integer in L1, H1 right by COUNT places |
| keeping only PREC bits of result. ARITH nonzero specifies |
| arithmetic shifting; otherwise use logical shift. |
| Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */ |
| |
| static void |
| rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, |
| unsigned HOST_WIDE_INT count, unsigned int prec, |
| unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, |
| bool arith) |
| { |
| unsigned HOST_WIDE_INT signmask; |
| |
| signmask = (arith |
| ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1)) |
| : 0); |
| |
| if (count >= HOST_BITS_PER_DOUBLE_INT) |
| { |
| /* Shifting by the host word size is undefined according to the |
| ANSI standard, so we must handle this as a special case. */ |
| *hv = 0; |
| *lv = 0; |
| } |
| else if (count >= HOST_BITS_PER_WIDE_INT) |
| { |
| *hv = 0; |
| *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT); |
| } |
| else |
| { |
| *hv = (unsigned HOST_WIDE_INT) h1 >> count; |
| *lv = ((l1 >> count) |
| | ((unsigned HOST_WIDE_INT) h1 |
| << (HOST_BITS_PER_WIDE_INT - count - 1) << 1)); |
| } |
| |
| /* Zero / sign extend all bits that are beyond the precision. */ |
| |
| if (count >= prec) |
| { |
| *hv = signmask; |
| *lv = signmask; |
| } |
| else if ((prec - count) >= HOST_BITS_PER_DOUBLE_INT) |
| ; |
| else if ((prec - count) >= HOST_BITS_PER_WIDE_INT) |
| { |
| *hv &= ~(HOST_WIDE_INT_M1U << (prec - count - HOST_BITS_PER_WIDE_INT)); |
| *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT); |
| } |
| else |
| { |
| *hv = signmask; |
| *lv &= ~(HOST_WIDE_INT_M1U << (prec - count)); |
| *lv |= signmask << (prec - count); |
| } |
| } |
| |
| /* Shift the doubleword integer in L1, H1 left by COUNT places |
| keeping only PREC bits of result. |
| Shift right if COUNT is negative. |
| ARITH nonzero specifies arithmetic shifting; otherwise use logical shift. |
| Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */ |
| |
| static void |
| lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, |
| unsigned HOST_WIDE_INT count, unsigned int prec, |
| unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv) |
| { |
| unsigned HOST_WIDE_INT signmask; |
| |
| if (count >= HOST_BITS_PER_DOUBLE_INT) |
| { |
| /* Shifting by the host word size is undefined according to the |
| ANSI standard, so we must handle this as a special case. */ |
| *hv = 0; |
| *lv = 0; |
| } |
| else if (count >= HOST_BITS_PER_WIDE_INT) |
| { |
| *hv = l1 << (count - HOST_BITS_PER_WIDE_INT); |
| *lv = 0; |
| } |
| else |
| { |
| *hv = (((unsigned HOST_WIDE_INT) h1 << count) |
| | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1)); |
| *lv = l1 << count; |
| } |
| |
| /* Sign extend all bits that are beyond the precision. */ |
| |
| signmask = -((prec > HOST_BITS_PER_WIDE_INT |
| ? ((unsigned HOST_WIDE_INT) *hv |
| >> (prec - HOST_BITS_PER_WIDE_INT - 1)) |
| : (*lv >> (prec - 1))) & 1); |
| |
| if (prec >= HOST_BITS_PER_DOUBLE_INT) |
| ; |
| else if (prec >= HOST_BITS_PER_WIDE_INT) |
| { |
| *hv &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT)); |
| *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT); |
| } |
| else |
| { |
| *hv = signmask; |
| *lv &= ~(HOST_WIDE_INT_M1U << prec); |
| *lv |= signmask << prec; |
| } |
| } |
| |
| /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN |
| for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM). |
| CODE is a tree code for a kind of division, one of |
| TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR |
| or EXACT_DIV_EXPR |
| It controls how the quotient is rounded to an integer. |
| Return nonzero if the operation overflows. |
| UNS nonzero says do unsigned division. */ |
| |
| static int |
| div_and_round_double (unsigned code, int uns, |
| /* num == numerator == dividend */ |
| unsigned HOST_WIDE_INT lnum_orig, |
| HOST_WIDE_INT hnum_orig, |
| /* den == denominator == divisor */ |
| unsigned HOST_WIDE_INT lden_orig, |
| HOST_WIDE_INT hden_orig, |
| unsigned HOST_WIDE_INT *lquo, |
| HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem, |
| HOST_WIDE_INT *hrem) |
| { |
| int quo_neg = 0; |
| HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */ |
| HOST_WIDE_INT den[4], quo[4]; |
| int i, j; |
| unsigned HOST_WIDE_INT work; |
| unsigned HOST_WIDE_INT carry = 0; |
| unsigned HOST_WIDE_INT lnum = lnum_orig; |
| HOST_WIDE_INT hnum = hnum_orig; |
| unsigned HOST_WIDE_INT lden = lden_orig; |
| HOST_WIDE_INT hden = hden_orig; |
| int overflow = 0; |
| |
| if (hden == 0 && lden == 0) |
| overflow = 1, lden = 1; |
| |
| /* Calculate quotient sign and convert operands to unsigned. */ |
| if (!uns) |
| { |
| if (hnum < 0) |
| { |
| quo_neg = ~ quo_neg; |
| /* (minimum integer) / (-1) is the only overflow case. */ |
| if (neg_double (lnum, hnum, &lnum, &hnum) |
| && ((HOST_WIDE_INT) lden & hden) == -1) |
| overflow = 1; |
| } |
| if (hden < 0) |
| { |
| quo_neg = ~ quo_neg; |
| neg_double (lden, hden, &lden, &hden); |
| } |
| } |
| |
| if (hnum == 0 && hden == 0) |
| { /* single precision */ |
| *hquo = *hrem = 0; |
| /* This unsigned division rounds toward zero. */ |
| *lquo = lnum / lden; |
| goto finish_up; |
| } |
| |
| if (hnum == 0) |
| { /* trivial case: dividend < divisor */ |
| /* hden != 0 already checked. */ |
| *hquo = *lquo = 0; |
| *hrem = hnum; |
| *lrem = lnum; |
| goto finish_up; |
| } |
| |
| memset (quo, 0, sizeof quo); |
| |
| memset (num, 0, sizeof num); /* to zero 9th element */ |
| memset (den, 0, sizeof den); |
| |
| encode (num, lnum, hnum); |
| encode (den, lden, hden); |
| |
| /* Special code for when the divisor < BASE. */ |
| if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE) |
| { |
| /* hnum != 0 already checked. */ |
| for (i = 4 - 1; i >= 0; i--) |
| { |
| work = num[i] + carry * BASE; |
| quo[i] = work / lden; |
| carry = work % lden; |
| } |
| } |
| else |
| { |
| /* Full double precision division, |
| with thanks to Don Knuth's "Seminumerical Algorithms". */ |
| int num_hi_sig, den_hi_sig; |
| unsigned HOST_WIDE_INT quo_est, scale; |
| |
| /* Find the highest nonzero divisor digit. */ |
| for (i = 4 - 1;; i--) |
| if (den[i] != 0) |
| { |
| den_hi_sig = i; |
| break; |
| } |
| |
| /* Insure that the first digit of the divisor is at least BASE/2. |
| This is required by the quotient digit estimation algorithm. */ |
| |
| scale = BASE / (den[den_hi_sig] + 1); |
| if (scale > 1) |
| { /* scale divisor and dividend */ |
| carry = 0; |
| for (i = 0; i <= 4 - 1; i++) |
| { |
| work = (num[i] * scale) + carry; |
| num[i] = LOWPART (work); |
| carry = HIGHPART (work); |
| } |
| |
| num[4] = carry; |
| carry = 0; |
| for (i = 0; i <= 4 - 1; i++) |
| { |
| work = (den[i] * scale) + carry; |
| den[i] = LOWPART (work); |
| carry = HIGHPART (work); |
| if (den[i] != 0) den_hi_sig = i; |
| } |
| } |
| |
| num_hi_sig = 4; |
| |
| /* Main loop */ |
| for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--) |
| { |
| /* Guess the next quotient digit, quo_est, by dividing the first |
| two remaining dividend digits by the high order quotient digit. |
| quo_est is never low and is at most 2 high. */ |
| unsigned HOST_WIDE_INT tmp; |
| |
| num_hi_sig = i + den_hi_sig + 1; |
| work = num[num_hi_sig] * BASE + num[num_hi_sig - 1]; |
| if (num[num_hi_sig] != den[den_hi_sig]) |
| quo_est = work / den[den_hi_sig]; |
| else |
| quo_est = BASE - 1; |
| |
| /* Refine quo_est so it's usually correct, and at most one high. */ |
| tmp = work - quo_est * den[den_hi_sig]; |
| if (tmp < BASE |
| && (den[den_hi_sig - 1] * quo_est |
| > (tmp * BASE + num[num_hi_sig - 2]))) |
| quo_est--; |
| |
| /* Try QUO_EST as the quotient digit, by multiplying the |
| divisor by QUO_EST and subtracting from the remaining dividend. |
| Keep in mind that QUO_EST is the I - 1st digit. */ |
| |
| carry = 0; |
| for (j = 0; j <= den_hi_sig; j++) |
| { |
| work = quo_est * den[j] + carry; |
| carry = HIGHPART (work); |
| work = num[i + j] - LOWPART (work); |
| num[i + j] = LOWPART (work); |
| carry += HIGHPART (work) != 0; |
| } |
| |
| /* If quo_est was high by one, then num[i] went negative and |
| we need to correct things. */ |
| if (num[num_hi_sig] < (HOST_WIDE_INT) carry) |
| { |
| quo_est--; |
| carry = 0; /* add divisor back in */ |
| for (j = 0; j <= den_hi_sig; j++) |
| { |
| work = num[i + j] + den[j] + carry; |
| carry = HIGHPART (work); |
| num[i + j] = LOWPART (work); |
| } |
| |
| num [num_hi_sig] += carry; |
| } |
| |
| /* Store the quotient digit. */ |
| quo[i] = quo_est; |
| } |
| } |
| |
| decode (quo, lquo, hquo); |
| |
| finish_up: |
| /* If result is negative, make it so. */ |
| if (quo_neg) |
| neg_double (*lquo, *hquo, lquo, hquo); |
| |
| /* Compute trial remainder: rem = num - (quo * den) */ |
| mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem); |
| neg_double (*lrem, *hrem, lrem, hrem); |
| add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem); |
| |
| switch (code) |
| { |
| case TRUNC_DIV_EXPR: |
| case TRUNC_MOD_EXPR: /* round toward zero */ |
| case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */ |
| return overflow; |
| |
| case FLOOR_DIV_EXPR: |
| case FLOOR_MOD_EXPR: /* round toward negative infinity */ |
| if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */ |
| { |
| /* quo = quo - 1; */ |
| add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, |
| lquo, hquo); |
| } |
| else |
| return overflow; |
| break; |
| |
| case CEIL_DIV_EXPR: |
| case CEIL_MOD_EXPR: /* round toward positive infinity */ |
| if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */ |
| { |
| add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0, |
| lquo, hquo); |
| } |
| else |
| return overflow; |
| break; |
| |
| case ROUND_DIV_EXPR: |
| case ROUND_MOD_EXPR: /* round to closest integer */ |
| { |
| unsigned HOST_WIDE_INT labs_rem = *lrem; |
| HOST_WIDE_INT habs_rem = *hrem; |
| unsigned HOST_WIDE_INT labs_den = lden, lnegabs_rem, ldiff; |
| HOST_WIDE_INT habs_den = hden, hnegabs_rem, hdiff; |
| |
| /* Get absolute values. */ |
| if (!uns && *hrem < 0) |
| neg_double (*lrem, *hrem, &labs_rem, &habs_rem); |
| if (!uns && hden < 0) |
| neg_double (lden, hden, &labs_den, &habs_den); |
| |
| /* If abs(rem) >= abs(den) - abs(rem), adjust the quotient. */ |
| neg_double (labs_rem, habs_rem, &lnegabs_rem, &hnegabs_rem); |
| add_double (labs_den, habs_den, lnegabs_rem, hnegabs_rem, |
| &ldiff, &hdiff); |
| |
| if (((unsigned HOST_WIDE_INT) habs_rem |
| > (unsigned HOST_WIDE_INT) hdiff) |
| || (habs_rem == hdiff && labs_rem >= ldiff)) |
| { |
| if (quo_neg) |
| /* quo = quo - 1; */ |
| add_double (*lquo, *hquo, |
| (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo); |
| else |
| /* quo = quo + 1; */ |
| add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0, |
| lquo, hquo); |
| } |
| else |
| return overflow; |
| } |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| /* Compute true remainder: rem = num - (quo * den) */ |
| mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem); |
| neg_double (*lrem, *hrem, lrem, hrem); |
| add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem); |
| return overflow; |
| } |
| |
| |
| /* Construct from a buffer of length LEN. BUFFER will be read according |
| to byte endianess and word endianess. Only the lower LEN bytes |
| of the result are set; the remaining high bytes are cleared. */ |
| |
| double_int |
| double_int::from_buffer (const unsigned char *buffer, int len) |
| { |
| double_int result = double_int_zero; |
| int words = len / UNITS_PER_WORD; |
| |
| gcc_assert (len * BITS_PER_UNIT <= HOST_BITS_PER_DOUBLE_INT); |
| |
| for (int byte = 0; byte < len; byte++) |
| { |
| int offset; |
| int bitpos = byte * BITS_PER_UNIT; |
| unsigned HOST_WIDE_INT value; |
| |
| if (len > UNITS_PER_WORD) |
| { |
| int word = byte / UNITS_PER_WORD; |
| |
| if (WORDS_BIG_ENDIAN) |
| word = (words - 1) - word; |
| |
| offset = word * UNITS_PER_WORD; |
| |
| if (BYTES_BIG_ENDIAN) |
| offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD); |
| else |
| offset += byte % UNITS_PER_WORD; |
| } |
| else |
| offset = BYTES_BIG_ENDIAN ? (len - 1) - byte : byte; |
| |
| value = (unsigned HOST_WIDE_INT) buffer[offset]; |
| |
| if (bitpos < HOST_BITS_PER_WIDE_INT) |
| result.low |= value << bitpos; |
| else |
| result.high |= value << (bitpos - HOST_BITS_PER_WIDE_INT); |
| } |
| |
| return result; |
| } |
| |
| |
| /* Returns mask for PREC bits. */ |
| |
| double_int |
| double_int::mask (unsigned prec) |
| { |
| unsigned HOST_WIDE_INT m; |
| double_int mask; |
| |
| if (prec > HOST_BITS_PER_WIDE_INT) |
| { |
| prec -= HOST_BITS_PER_WIDE_INT; |
| m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1; |
| mask.high = (HOST_WIDE_INT) m; |
| mask.low = ALL_ONES; |
| } |
| else |
| { |
| mask.high = 0; |
| mask.low = prec ? ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1 : 0; |
| } |
| |
| return mask; |
| } |
| |
| /* Returns a maximum value for signed or unsigned integer |
| of precision PREC. */ |
| |
| double_int |
| double_int::max_value (unsigned int prec, bool uns) |
| { |
| return double_int::mask (prec - (uns ? 0 : 1)); |
| } |
| |
| /* Returns a minimum value for signed or unsigned integer |
| of precision PREC. */ |
| |
| double_int |
| double_int::min_value (unsigned int prec, bool uns) |
| { |
| if (uns) |
| return double_int_zero; |
| return double_int_one.lshift (prec - 1, prec, false); |
| } |
| |
| /* Clears the bits of CST over the precision PREC. If UNS is false, the bits |
| outside of the precision are set to the sign bit (i.e., the PREC-th one), |
| otherwise they are set to zero. |
| |
| This corresponds to returning the value represented by PREC lowermost bits |
| of CST, with the given signedness. */ |
| |
| double_int |
| double_int::ext (unsigned prec, bool uns) const |
| { |
| if (uns) |
| return this->zext (prec); |
| else |
| return this->sext (prec); |
| } |
| |
| /* The same as double_int::ext with UNS = true. */ |
| |
| double_int |
| double_int::zext (unsigned prec) const |
| { |
| const double_int &cst = *this; |
| double_int mask = double_int::mask (prec); |
| double_int r; |
| |
| r.low = cst.low & mask.low; |
| r.high = cst.high & mask.high; |
| |
| return r; |
| } |
| |
| /* The same as double_int::ext with UNS = false. */ |
| |
| double_int |
| double_int::sext (unsigned prec) const |
| { |
| const double_int &cst = *this; |
| double_int mask = double_int::mask (prec); |
| double_int r; |
| unsigned HOST_WIDE_INT snum; |
| |
| if (prec <= HOST_BITS_PER_WIDE_INT) |
| snum = cst.low; |
| else |
| { |
| prec -= HOST_BITS_PER_WIDE_INT; |
| snum = (unsigned HOST_WIDE_INT) cst.high; |
| } |
| if (((snum >> (prec - 1)) & 1) == 1) |
| { |
| r.low = cst.low | ~mask.low; |
| r.high = cst.high | ~mask.high; |
| } |
| else |
| { |
| r.low = cst.low & mask.low; |
| r.high = cst.high & mask.high; |
| } |
| |
| return r; |
| } |
| |
| /* Returns true if CST fits in signed HOST_WIDE_INT. */ |
| |
| bool |
| double_int::fits_shwi () const |
| { |
| const double_int &cst = *this; |
| if (cst.high == 0) |
| return (HOST_WIDE_INT) cst.low >= 0; |
| else if (cst.high == -1) |
| return (HOST_WIDE_INT) cst.low < 0; |
| else |
| return false; |
| } |
| |
| /* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in |
| unsigned HOST_WIDE_INT if UNS is true. */ |
| |
| bool |
| double_int::fits_hwi (bool uns) const |
| { |
| if (uns) |
| return this->fits_uhwi (); |
| else |
| return this->fits_shwi (); |
| } |
| |
| /* Returns A * B. */ |
| |
| double_int |
| double_int::operator * (double_int b) const |
| { |
| const double_int &a = *this; |
| double_int ret; |
| mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high); |
| return ret; |
| } |
| |
| /* Multiplies *this with B and returns a reference to *this. */ |
| |
| double_int & |
| double_int::operator *= (double_int b) |
| { |
| mul_double (low, high, b.low, b.high, &low, &high); |
| return *this; |
| } |
| |
| /* Returns A * B. If the operation overflows according to UNSIGNED_P, |
| *OVERFLOW is set to nonzero. */ |
| |
| double_int |
| double_int::mul_with_sign (double_int b, bool unsigned_p, bool *overflow) const |
| { |
| const double_int &a = *this; |
| double_int ret, tem; |
| *overflow = mul_double_wide_with_sign (a.low, a.high, b.low, b.high, |
| &ret.low, &ret.high, |
| &tem.low, &tem.high, unsigned_p); |
| return ret; |
| } |
| |
| double_int |
| double_int::wide_mul_with_sign (double_int b, bool unsigned_p, |
| double_int *higher, bool *overflow) const |
| |
| { |
| double_int lower; |
| *overflow = mul_double_wide_with_sign (low, high, b.low, b.high, |
| &lower.low, &lower.high, |
| &higher->low, &higher->high, |
| unsigned_p); |
| return lower; |
| } |
| |
| /* Returns A + B. */ |
| |
| double_int |
| double_int::operator + (double_int b) const |
| { |
| const double_int &a = *this; |
| double_int ret; |
| add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high); |
| return ret; |
| } |
| |
| /* Adds B to *this and returns a reference to *this. */ |
| |
| double_int & |
| double_int::operator += (double_int b) |
| { |
| add_double (low, high, b.low, b.high, &low, &high); |
| return *this; |
| } |
| |
| |
| /* Returns A + B. If the operation overflows according to UNSIGNED_P, |
| *OVERFLOW is set to nonzero. */ |
| |
| double_int |
| double_int::add_with_sign (double_int b, bool unsigned_p, bool *overflow) const |
| { |
| const double_int &a = *this; |
| double_int ret; |
| *overflow = add_double_with_sign (a.low, a.high, b.low, b.high, |
| &ret.low, &ret.high, unsigned_p); |
| return ret; |
| } |
| |
| /* Returns A - B. */ |
| |
| double_int |
| double_int::operator - (double_int b) const |
| { |
| const double_int &a = *this; |
| double_int ret; |
| neg_double (b.low, b.high, &b.low, &b.high); |
| add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high); |
| return ret; |
| } |
| |
| /* Subtracts B from *this and returns a reference to *this. */ |
| |
| double_int & |
| double_int::operator -= (double_int b) |
| { |
| neg_double (b.low, b.high, &b.low, &b.high); |
| add_double (low, high, b.low, b.high, &low, &high); |
| return *this; |
| } |
| |
| |
| /* Returns A - B. If the operation overflows via inconsistent sign bits, |
| *OVERFLOW is set to nonzero. */ |
| |
| double_int |
| double_int::sub_with_overflow (double_int b, bool *overflow) const |
| { |
| double_int ret; |
| neg_double (b.low, b.high, &ret.low, &ret.high); |
| add_double (low, high, ret.low, ret.high, &ret.low, &ret.high); |
| *overflow = OVERFLOW_SUM_SIGN (ret.high, b.high, high); |
| return ret; |
| } |
| |
| /* Returns -A. */ |
| |
| double_int |
| double_int::operator - () const |
| { |
| const double_int &a = *this; |
| double_int ret; |
| neg_double (a.low, a.high, &ret.low, &ret.high); |
| return ret; |
| } |
| |
| double_int |
| double_int::neg_with_overflow (bool *overflow) const |
| { |
| double_int ret; |
| *overflow = neg_double (low, high, &ret.low, &ret.high); |
| return ret; |
| } |
| |
| /* Returns A / B (computed as unsigned depending on UNS, and rounded as |
| specified by CODE). CODE is enum tree_code in fact, but double_int.h |
| must be included before tree.h. The remainder after the division is |
| stored to MOD. */ |
| |
| double_int |
| double_int::divmod_with_overflow (double_int b, bool uns, unsigned code, |
| double_int *mod, bool *overflow) const |
| { |
| const double_int &a = *this; |
| double_int ret; |
| |
| *overflow = div_and_round_double (code, uns, a.low, a.high, |
| b.low, b.high, &ret.low, &ret.high, |
| &mod->low, &mod->high); |
| return ret; |
| } |
| |
| double_int |
| double_int::divmod (double_int b, bool uns, unsigned code, |
| double_int *mod) const |
| { |
| const double_int &a = *this; |
| double_int ret; |
| |
| div_and_round_double (code, uns, a.low, a.high, |
| b.low, b.high, &ret.low, &ret.high, |
| &mod->low, &mod->high); |
| return ret; |
| } |
| |
| /* The same as double_int::divmod with UNS = false. */ |
| |
| double_int |
| double_int::sdivmod (double_int b, unsigned code, double_int *mod) const |
| { |
| return this->divmod (b, false, code, mod); |
| } |
| |
| /* The same as double_int::divmod with UNS = true. */ |
| |
| double_int |
| double_int::udivmod (double_int b, unsigned code, double_int *mod) const |
| { |
| return this->divmod (b, true, code, mod); |
| } |
| |
| /* Returns A / B (computed as unsigned depending on UNS, and rounded as |
| specified by CODE). CODE is enum tree_code in fact, but double_int.h |
| must be included before tree.h. */ |
| |
| double_int |
| double_int::div (double_int b, bool uns, unsigned code) const |
| { |
| double_int mod; |
| |
| return this->divmod (b, uns, code, &mod); |
| } |
| |
| /* The same as double_int::div with UNS = false. */ |
| |
| double_int |
| double_int::sdiv (double_int b, unsigned code) const |
| { |
| return this->div (b, false, code); |
| } |
| |
| /* The same as double_int::div with UNS = true. */ |
| |
| double_int |
| double_int::udiv (double_int b, unsigned code) const |
| { |
| return this->div (b, true, code); |
| } |
| |
| /* Returns A % B (computed as unsigned depending on UNS, and rounded as |
| specified by CODE). CODE is enum tree_code in fact, but double_int.h |
| must be included before tree.h. */ |
| |
| double_int |
| double_int::mod (double_int b, bool uns, unsigned code) const |
| { |
| double_int mod; |
| |
| this->divmod (b, uns, code, &mod); |
| return mod; |
| } |
| |
| /* The same as double_int::mod with UNS = false. */ |
| |
| double_int |
| double_int::smod (double_int b, unsigned code) const |
| { |
| return this->mod (b, false, code); |
| } |
| |
| /* The same as double_int::mod with UNS = true. */ |
| |
| double_int |
| double_int::umod (double_int b, unsigned code) const |
| { |
| return this->mod (b, true, code); |
| } |
| |
| /* Return TRUE iff PRODUCT is an integral multiple of FACTOR, and return |
| the multiple in *MULTIPLE. Otherwise return FALSE and leave *MULTIPLE |
| unchanged. */ |
| |
| bool |
| double_int::multiple_of (double_int factor, |
| bool unsigned_p, double_int *multiple) const |
| { |
| double_int remainder; |
| double_int quotient = this->divmod (factor, unsigned_p, |
| TRUNC_DIV_EXPR, &remainder); |
| if (remainder.is_zero ()) |
| { |
| *multiple = quotient; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Set BITPOS bit in A. */ |
| double_int |
| double_int::set_bit (unsigned bitpos) const |
| { |
| double_int a = *this; |
| if (bitpos < HOST_BITS_PER_WIDE_INT) |
| a.low |= (unsigned HOST_WIDE_INT) 1 << bitpos; |
| else |
| a.high |= (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT); |
| |
| return a; |
| } |
| |
| /* Count trailing zeros in A. */ |
| int |
| double_int::trailing_zeros () const |
| { |
| const double_int &a = *this; |
| unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high; |
| unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT; |
| if (!w) |
| return HOST_BITS_PER_DOUBLE_INT; |
| bits += ctz_hwi (w); |
| return bits; |
| } |
| |
| /* Shift A left by COUNT places. */ |
| |
| double_int |
| double_int::lshift (HOST_WIDE_INT count) const |
| { |
| double_int ret; |
| |
| gcc_checking_assert (count >= 0); |
| |
| if (count >= HOST_BITS_PER_DOUBLE_INT) |
| { |
| /* Shifting by the host word size is undefined according to the |
| ANSI standard, so we must handle this as a special case. */ |
| ret.high = 0; |
| ret.low = 0; |
| } |
| else if (count >= HOST_BITS_PER_WIDE_INT) |
| { |
| ret.high = low << (count - HOST_BITS_PER_WIDE_INT); |
| ret.low = 0; |
| } |
| else |
| { |
| ret.high = (((unsigned HOST_WIDE_INT) high << count) |
| | (low >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1)); |
| ret.low = low << count; |
| } |
| |
| return ret; |
| } |
| |
| /* Shift A right by COUNT places. */ |
| |
| double_int |
| double_int::rshift (HOST_WIDE_INT count) const |
| { |
| double_int ret; |
| |
| gcc_checking_assert (count >= 0); |
| |
| if (count >= HOST_BITS_PER_DOUBLE_INT) |
| { |
| /* Shifting by the host word size is undefined according to the |
| ANSI standard, so we must handle this as a special case. */ |
| ret.high = 0; |
| ret.low = 0; |
| } |
| else if (count >= HOST_BITS_PER_WIDE_INT) |
| { |
| ret.high = 0; |
| ret.low |
| = (unsigned HOST_WIDE_INT) (high >> (count - HOST_BITS_PER_WIDE_INT)); |
| } |
| else |
| { |
| ret.high = high >> count; |
| ret.low = ((low >> count) |
| | ((unsigned HOST_WIDE_INT) high |
| << (HOST_BITS_PER_WIDE_INT - count - 1) << 1)); |
| } |
| |
| return ret; |
| } |
| |
| /* Shift A left by COUNT places keeping only PREC bits of result. Shift |
| right if COUNT is negative. ARITH true specifies arithmetic shifting; |
| otherwise use logical shift. */ |
| |
| double_int |
| double_int::lshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const |
| { |
| double_int ret; |
| if (count > 0) |
| lshift_double (low, high, count, prec, &ret.low, &ret.high); |
| else |
| rshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high, arith); |
| return ret; |
| } |
| |
| /* Shift A right by COUNT places keeping only PREC bits of result. Shift |
| left if COUNT is negative. ARITH true specifies arithmetic shifting; |
| otherwise use logical shift. */ |
| |
| double_int |
| double_int::rshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const |
| { |
| double_int ret; |
| if (count > 0) |
| rshift_double (low, high, count, prec, &ret.low, &ret.high, arith); |
| else |
| lshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high); |
| return ret; |
| } |
| |
| /* Arithmetic shift A left by COUNT places keeping only PREC bits of result. |
| Shift right if COUNT is negative. */ |
| |
| double_int |
| double_int::alshift (HOST_WIDE_INT count, unsigned int prec) const |
| { |
| double_int r; |
| if (count > 0) |
| lshift_double (low, high, count, prec, &r.low, &r.high); |
| else |
| rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, true); |
| return r; |
| } |
| |
| /* Arithmetic shift A right by COUNT places keeping only PREC bits of result. |
| Shift left if COUNT is negative. */ |
| |
| double_int |
| double_int::arshift (HOST_WIDE_INT count, unsigned int prec) const |
| { |
| double_int r; |
| if (count > 0) |
| rshift_double (low, high, count, prec, &r.low, &r.high, true); |
| else |
| lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high); |
| return r; |
| } |
| |
| /* Logical shift A left by COUNT places keeping only PREC bits of result. |
| Shift right if COUNT is negative. */ |
| |
| double_int |
| double_int::llshift (HOST_WIDE_INT count, unsigned int prec) const |
| { |
| double_int r; |
| if (count > 0) |
| lshift_double (low, high, count, prec, &r.low, &r.high); |
| else |
| rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, false); |
| return r; |
| } |
| |
| /* Logical shift A right by COUNT places keeping only PREC bits of result. |
| Shift left if COUNT is negative. */ |
| |
| double_int |
| double_int::lrshift (HOST_WIDE_INT count, unsigned int prec) const |
| { |
| double_int r; |
| if (count > 0) |
| rshift_double (low, high, count, prec, &r.low, &r.high, false); |
| else |
| lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high); |
| return r; |
| } |
| |
| /* Rotate A left by COUNT places keeping only PREC bits of result. |
| Rotate right if COUNT is negative. */ |
| |
| double_int |
| double_int::lrotate (HOST_WIDE_INT count, unsigned int prec) const |
| { |
| double_int t1, t2; |
| |
| count %= prec; |
| if (count < 0) |
| count += prec; |
| |
| t1 = this->llshift (count, prec); |
| t2 = this->lrshift (prec - count, prec); |
| |
| return t1 | t2; |
| } |
| |
| /* Rotate A rigth by COUNT places keeping only PREC bits of result. |
| Rotate right if COUNT is negative. */ |
| |
| double_int |
| double_int::rrotate (HOST_WIDE_INT count, unsigned int prec) const |
| { |
| double_int t1, t2; |
| |
| count %= prec; |
| if (count < 0) |
| count += prec; |
| |
| t1 = this->lrshift (count, prec); |
| t2 = this->llshift (prec - count, prec); |
| |
| return t1 | t2; |
| } |
| |
| /* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the |
| comparison is given by UNS. */ |
| |
| int |
| double_int::cmp (double_int b, bool uns) const |
| { |
| if (uns) |
| return this->ucmp (b); |
| else |
| return this->scmp (b); |
| } |
| |
| /* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B, |
| and 1 if A > B. */ |
| |
| int |
| double_int::ucmp (double_int b) const |
| { |
| const double_int &a = *this; |
| if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high) |
| return -1; |
| if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high) |
| return 1; |
| if (a.low < b.low) |
| return -1; |
| if (a.low > b.low) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B, |
| and 1 if A > B. */ |
| |
| int |
| double_int::scmp (double_int b) const |
| { |
| const double_int &a = *this; |
| if (a.high < b.high) |
| return -1; |
| if (a.high > b.high) |
| return 1; |
| if (a.low < b.low) |
| return -1; |
| if (a.low > b.low) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Compares two unsigned values A and B for less-than. */ |
| |
| bool |
| double_int::ult (double_int b) const |
| { |
| if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high) |
| return true; |
| if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high) |
| return false; |
| if (low < b.low) |
| return true; |
| return false; |
| } |
| |
| /* Compares two unsigned values A and B for less-than or equal-to. */ |
| |
| bool |
| double_int::ule (double_int b) const |
| { |
| if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high) |
| return true; |
| if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high) |
| return false; |
| if (low <= b.low) |
| return true; |
| return false; |
| } |
| |
| /* Compares two unsigned values A and B for greater-than. */ |
| |
| bool |
| double_int::ugt (double_int b) const |
| { |
| if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high) |
| return true; |
| if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high) |
| return false; |
| if (low > b.low) |
| return true; |
| return false; |
| } |
| |
| /* Compares two signed values A and B for less-than. */ |
| |
| bool |
| double_int::slt (double_int b) const |
| { |
| if (high < b.high) |
| return true; |
| if (high > b.high) |
| return false; |
| if (low < b.low) |
| return true; |
| return false; |
| } |
| |
| /* Compares two signed values A and B for less-than or equal-to. */ |
| |
| bool |
| double_int::sle (double_int b) const |
| { |
| if (high < b.high) |
| return true; |
| if (high > b.high) |
| return false; |
| if (low <= b.low) |
| return true; |
| return false; |
| } |
| |
| /* Compares two signed values A and B for greater-than. */ |
| |
| bool |
| double_int::sgt (double_int b) const |
| { |
| if (high > b.high) |
| return true; |
| if (high < b.high) |
| return false; |
| if (low > b.low) |
| return true; |
| return false; |
| } |
| |
| |
| /* Compares two values A and B. Returns max value. Signedness of the |
| comparison is given by UNS. */ |
| |
| double_int |
| double_int::max (double_int b, bool uns) |
| { |
| return (this->cmp (b, uns) == 1) ? *this : b; |
| } |
| |
| /* Compares two signed values A and B. Returns max value. */ |
| |
| double_int |
| double_int::smax (double_int b) |
| { |
| return (this->scmp (b) == 1) ? *this : b; |
| } |
| |
| /* Compares two unsigned values A and B. Returns max value. */ |
| |
| double_int |
| double_int::umax (double_int b) |
| { |
| return (this->ucmp (b) == 1) ? *this : b; |
| } |
| |
| /* Compares two values A and B. Returns mix value. Signedness of the |
| comparison is given by UNS. */ |
| |
| double_int |
| double_int::min (double_int b, bool uns) |
| { |
| return (this->cmp (b, uns) == -1) ? *this : b; |
| } |
| |
| /* Compares two signed values A and B. Returns min value. */ |
| |
| double_int |
| double_int::smin (double_int b) |
| { |
| return (this->scmp (b) == -1) ? *this : b; |
| } |
| |
| /* Compares two unsigned values A and B. Returns min value. */ |
| |
| double_int |
| double_int::umin (double_int b) |
| { |
| return (this->ucmp (b) == -1) ? *this : b; |
| } |
| |
| /* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */ |
| |
| static unsigned |
| double_int_split_digit (double_int *cst, unsigned base) |
| { |
| unsigned HOST_WIDE_INT resl, reml; |
| HOST_WIDE_INT resh, remh; |
| |
| div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0, |
| &resl, &resh, &reml, &remh); |
| cst->high = resh; |
| cst->low = resl; |
| |
| return reml; |
| } |
| |
| /* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned, |
| otherwise it is signed. */ |
| |
| void |
| dump_double_int (FILE *file, double_int cst, bool uns) |
| { |
| unsigned digits[100], n; |
| int i; |
| |
| if (cst.is_zero ()) |
| { |
| fprintf (file, "0"); |
| return; |
| } |
| |
| if (!uns && cst.is_negative ()) |
| { |
| fprintf (file, "-"); |
| cst = -cst; |
| } |
| |
| for (n = 0; !cst.is_zero (); n++) |
| digits[n] = double_int_split_digit (&cst, 10); |
| for (i = n - 1; i >= 0; i--) |
| fprintf (file, "%u", digits[i]); |
| } |
| |
| |
| /* Sets RESULT to VAL, taken unsigned if UNS is true and as signed |
| otherwise. */ |
| |
| void |
| mpz_set_double_int (mpz_t result, double_int val, bool uns) |
| { |
| bool negate = false; |
| unsigned HOST_WIDE_INT vp[2]; |
| |
| if (!uns && val.is_negative ()) |
| { |
| negate = true; |
| val = -val; |
| } |
| |
| vp[0] = val.low; |
| vp[1] = (unsigned HOST_WIDE_INT) val.high; |
| mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp); |
| |
| if (negate) |
| mpz_neg (result, result); |
| } |
| |
| /* Returns VAL converted to TYPE. If WRAP is true, then out-of-range |
| values of VAL will be wrapped; otherwise, they will be set to the |
| appropriate minimum or maximum TYPE bound. */ |
| |
| double_int |
| mpz_get_double_int (const_tree type, mpz_t val, bool wrap) |
| { |
| unsigned HOST_WIDE_INT *vp; |
| size_t count, numb; |
| double_int res; |
| |
| if (!wrap) |
| { |
| mpz_t min, max; |
| |
| mpz_init (min); |
| mpz_init (max); |
| get_type_static_bounds (type, min, max); |
| |
| if (mpz_cmp (val, min) < 0) |
| mpz_set (val, min); |
| else if (mpz_cmp (val, max) > 0) |
| mpz_set (val, max); |
| |
| mpz_clear (min); |
| mpz_clear (max); |
| } |
| |
| /* Determine the number of unsigned HOST_WIDE_INT that are required |
| for representing the value. The code to calculate count is |
| extracted from the GMP manual, section "Integer Import and Export": |
| http://gmplib.org/manual/Integer-Import-and-Export.html */ |
| numb = 8 * sizeof (HOST_WIDE_INT); |
| count = (mpz_sizeinbase (val, 2) + numb-1) / numb; |
| if (count < 2) |
| count = 2; |
| vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof (HOST_WIDE_INT)); |
| |
| vp[0] = 0; |
| vp[1] = 0; |
| mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val); |
| |
| gcc_assert (wrap || count <= 2); |
| |
| res.low = vp[0]; |
| res.high = (HOST_WIDE_INT) vp[1]; |
| |
| res = res.ext (TYPE_PRECISION (type), TYPE_UNSIGNED (type)); |
| if (mpz_sgn (val) < 0) |
| res = -res; |
| |
| return res; |
| } |