| /* Interchange heuristics and transform for loop interchange on |
| polyhedral representation. |
| |
| Copyright (C) 2009-2015 Free Software Foundation, Inc. |
| Contributed by Sebastian Pop <sebastian.pop@amd.com> and |
| Harsha Jagasia <harsha.jagasia@amd.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| |
| #ifdef HAVE_isl |
| #include <isl/constraint.h> |
| #include <isl/aff.h> |
| #include <isl/set.h> |
| #include <isl/map.h> |
| #include <isl/union_map.h> |
| #include <isl/ilp.h> |
| #include <isl/val.h> |
| |
| /* Since ISL-0.13, the extern is in val_gmp.h. */ |
| #if !defined(HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE) && defined(__cplusplus) |
| extern "C" { |
| #endif |
| #include <isl/val_gmp.h> |
| #if !defined(HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE) && defined(__cplusplus) |
| } |
| #endif |
| #endif |
| |
| #include "system.h" |
| #include "coretypes.h" |
| #include "hash-set.h" |
| #include "machmode.h" |
| #include "vec.h" |
| #include "double-int.h" |
| #include "input.h" |
| #include "alias.h" |
| #include "symtab.h" |
| #include "options.h" |
| #include "wide-int.h" |
| #include "inchash.h" |
| #include "tree.h" |
| #include "fold-const.h" |
| #include "predict.h" |
| #include "tm.h" |
| #include "hard-reg-set.h" |
| #include "input.h" |
| #include "function.h" |
| #include "dominance.h" |
| #include "cfg.h" |
| #include "basic-block.h" |
| #include "tree-ssa-alias.h" |
| #include "internal-fn.h" |
| #include "gimple-expr.h" |
| #include "is-a.h" |
| #include "gimple.h" |
| #include "gimple-iterator.h" |
| #include "tree-ssa-loop.h" |
| #include "dumpfile.h" |
| #include "cfgloop.h" |
| #include "tree-chrec.h" |
| #include "tree-data-ref.h" |
| #include "tree-scalar-evolution.h" |
| #include "sese.h" |
| |
| #ifdef HAVE_isl |
| #include "graphite-poly.h" |
| |
| /* XXX isl rewrite following comment */ |
| /* Builds a linear expression, of dimension DIM, representing PDR's |
| memory access: |
| |
| L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}. |
| |
| For an array A[10][20] with two subscript locations s0 and s1, the |
| linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0 |
| corresponds to a memory stride of 20. |
| |
| OFFSET is a number of dimensions to prepend before the |
| subscript dimensions: s_0, s_1, ..., s_n. |
| |
| Thus, the final linear expression has the following format: |
| 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n |
| where the expression itself is: |
| c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */ |
| |
| static isl_constraint * |
| build_linearized_memory_access (isl_map *map, poly_dr_p pdr) |
| { |
| isl_constraint *res; |
| isl_local_space *ls = isl_local_space_from_space (isl_map_get_space (map)); |
| unsigned offset, nsubs; |
| int i; |
| isl_ctx *ctx; |
| |
| isl_val *size, *subsize, *size1; |
| |
| res = isl_equality_alloc (ls); |
| ctx = isl_local_space_get_ctx (ls); |
| size = isl_val_int_from_ui (ctx, 1); |
| |
| nsubs = isl_set_dim (pdr->extent, isl_dim_set); |
| /* -1 for the already included L dimension. */ |
| offset = isl_map_dim (map, isl_dim_out) - 1 - nsubs; |
| res = isl_constraint_set_coefficient_si (res, isl_dim_out, offset + nsubs, -1); |
| /* Go through all subscripts from last to first. First dimension |
| is the alias set, ignore it. */ |
| for (i = nsubs - 1; i >= 1; i--) |
| { |
| isl_space *dc; |
| isl_aff *aff; |
| |
| size1 = isl_val_copy (size); |
| res = isl_constraint_set_coefficient_val (res, isl_dim_out, offset + i, size); |
| dc = isl_set_get_space (pdr->extent); |
| aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc)); |
| aff = isl_aff_set_coefficient_si (aff, isl_dim_in, i, 1); |
| subsize = isl_set_max_val (pdr->extent, aff); |
| isl_aff_free (aff); |
| size = isl_val_mul (size1, subsize); |
| } |
| |
| isl_val_free (size); |
| |
| return res; |
| } |
| |
| /* Set STRIDE to the stride of PDR in memory by advancing by one in |
| the loop at DEPTH. */ |
| |
| static void |
| pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr) |
| { |
| poly_bb_p pbb = PDR_PBB (pdr); |
| isl_map *map; |
| isl_set *set; |
| isl_aff *aff; |
| isl_space *dc; |
| isl_constraint *lma, *c; |
| isl_val *islstride; |
| graphite_dim_t time_depth; |
| unsigned offset, nt; |
| unsigned i; |
| /* XXX isl rewrite following comments. */ |
| /* Builds a partial difference equations and inserts them |
| into pointset powerset polyhedron P. Polyhedron is assumed |
| to have the format: T|I|T'|I'|G|S|S'|l1|l2. |
| |
| TIME_DEPTH is the time dimension w.r.t. which we are |
| differentiating. |
| OFFSET represents the number of dimensions between |
| columns t_{time_depth} and t'_{time_depth}. |
| DIM_SCTR is the number of scattering dimensions. It is |
| essentially the dimensionality of the T vector. |
| |
| The following equations are inserted into the polyhedron P: |
| | t_1 = t_1' |
| | ... |
| | t_{time_depth-1} = t'_{time_depth-1} |
| | t_{time_depth} = t'_{time_depth} + 1 |
| | t_{time_depth+1} = t'_{time_depth + 1} |
| | ... |
| | t_{dim_sctr} = t'_{dim_sctr}. */ |
| |
| /* Add the equality: t_{time_depth} = t'_{time_depth} + 1. |
| This is the core part of this alogrithm, since this |
| constraint asks for the memory access stride (difference) |
| between two consecutive points in time dimensions. */ |
| |
| /* Add equalities: |
| | t1 = t1' |
| | ... |
| | t_{time_depth-1} = t'_{time_depth-1} |
| | t_{time_depth+1} = t'_{time_depth+1} |
| | ... |
| | t_{dim_sctr} = t'_{dim_sctr} |
| |
| This means that all the time dimensions are equal except for |
| time_depth, where the constraint is t_{depth} = t'_{depth} + 1 |
| step. More to this: we should be careful not to add equalities |
| to the 'coupled' dimensions, which happens when the one dimension |
| is stripmined dimension, and the other dimension corresponds |
| to the point loop inside stripmined dimension. */ |
| |
| /* pdr->accesses: [P1..nb_param,I1..nb_domain]->[a,S1..nb_subscript] |
| ??? [P] not used for PDRs? |
| pdr->extent: [a,S1..nb_subscript] |
| pbb->domain: [P1..nb_param,I1..nb_domain] |
| pbb->transformed: [P1..nb_param,I1..nb_domain]->[T1..Tnb_sctr] |
| [T] includes local vars (currently unused) |
| |
| First we create [P,I] -> [T,a,S]. */ |
| |
| map = isl_map_flat_range_product (isl_map_copy (pbb->transformed), |
| isl_map_copy (pdr->accesses)); |
| /* Add a dimension for L: [P,I] -> [T,a,S,L].*/ |
| map = isl_map_add_dims (map, isl_dim_out, 1); |
| /* Build a constraint for "lma[S] - L == 0", effectively calculating |
| L in terms of subscripts. */ |
| lma = build_linearized_memory_access (map, pdr); |
| /* And add it to the map, so we now have: |
| [P,I] -> [T,a,S,L] : lma([S]) == L. */ |
| map = isl_map_add_constraint (map, lma); |
| |
| /* Then we create [P,I,P',I'] -> [T,a,S,L,T',a',S',L']. */ |
| map = isl_map_flat_product (map, isl_map_copy (map)); |
| |
| /* Now add the equality T[time_depth] == T'[time_depth]+1. This will |
| force L' to be the linear address at T[time_depth] + 1. */ |
| time_depth = psct_dynamic_dim (pbb, depth); |
| /* Length of [a,S] plus [L] ... */ |
| offset = 1 + isl_map_dim (pdr->accesses, isl_dim_out); |
| /* ... plus [T]. */ |
| offset += isl_map_dim (pbb->transformed, isl_dim_out); |
| |
| c = isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (map))); |
| c = isl_constraint_set_coefficient_si (c, isl_dim_out, time_depth, 1); |
| c = isl_constraint_set_coefficient_si (c, isl_dim_out, |
| offset + time_depth, -1); |
| c = isl_constraint_set_constant_si (c, 1); |
| map = isl_map_add_constraint (map, c); |
| |
| /* Now we equate most of the T/T' elements (making PITaSL nearly |
| the same is (PITaSL)', except for one dimension, namely for 'depth' |
| (an index into [I]), after translating to index into [T]. Take care |
| to not produce an empty map, which indicates we wanted to equate |
| two dimensions that are already coupled via the above time_depth |
| dimension. Happens with strip mining where several scatter dimension |
| are interdependend. */ |
| /* Length of [T]. */ |
| nt = pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb); |
| for (i = 0; i < nt; i++) |
| if (i != time_depth) |
| { |
| isl_map *temp = isl_map_equate (isl_map_copy (map), |
| isl_dim_out, i, |
| isl_dim_out, offset + i); |
| if (isl_map_is_empty (temp)) |
| isl_map_free (temp); |
| else |
| { |
| isl_map_free (map); |
| map = temp; |
| } |
| } |
| |
| /* Now maximize the expression L' - L. */ |
| set = isl_map_range (map); |
| dc = isl_set_get_space (set); |
| aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc)); |
| aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset - 1, -1); |
| aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset + offset - 1, 1); |
| islstride = isl_set_max_val (set, aff); |
| isl_val_get_num_gmp (islstride, stride); |
| isl_val_free (islstride); |
| isl_aff_free (aff); |
| isl_set_free (set); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| gmp_fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d: %Zd ", |
| pbb_index (pbb), PDR_ID (pdr), (int) depth, stride); |
| } |
| } |
| |
| /* Sets STRIDES to the sum of all the strides of the data references |
| accessed in LOOP at DEPTH. */ |
| |
| static void |
| memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides) |
| { |
| int i, j; |
| lst_p l; |
| poly_dr_p pdr; |
| mpz_t s, n; |
| |
| mpz_init (s); |
| mpz_init (n); |
| |
| FOR_EACH_VEC_ELT (LST_SEQ (loop), j, l) |
| if (LST_LOOP_P (l)) |
| memory_strides_in_loop_1 (l, depth, strides); |
| else |
| FOR_EACH_VEC_ELT (PBB_DRS (LST_PBB (l)), i, pdr) |
| { |
| pdr_stride_in_loop (s, depth, pdr); |
| mpz_set_si (n, PDR_NB_REFS (pdr)); |
| mpz_mul (s, s, n); |
| mpz_add (strides, strides, s); |
| } |
| |
| mpz_clear (s); |
| mpz_clear (n); |
| } |
| |
| /* Sets STRIDES to the sum of all the strides of the data references |
| accessed in LOOP at DEPTH. */ |
| |
| static void |
| memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides) |
| { |
| if (mpz_cmp_si (loop->memory_strides, -1) == 0) |
| { |
| mpz_set_si (strides, 0); |
| memory_strides_in_loop_1 (loop, depth, strides); |
| } |
| else |
| mpz_set (strides, loop->memory_strides); |
| } |
| |
| /* Return true when the interchange of loops LOOP1 and LOOP2 is |
| profitable. |
| |
| Example: |
| |
| | int a[100][100]; |
| | |
| | int |
| | foo (int N) |
| | { |
| | int j; |
| | int i; |
| | |
| | for (i = 0; i < N; i++) |
| | for (j = 0; j < N; j++) |
| | a[j][2 * i] += 1; |
| | |
| | return a[N][12]; |
| | } |
| |
| The data access A[j][i] is described like this: |
| |
| | i j N a s0 s1 1 |
| | 0 0 0 1 0 0 -5 = 0 |
| | 0 -1 0 0 1 0 0 = 0 |
| |-2 0 0 0 0 1 0 = 0 |
| | 0 0 0 0 1 0 0 >= 0 |
| | 0 0 0 0 0 1 0 >= 0 |
| | 0 0 0 0 -1 0 100 >= 0 |
| | 0 0 0 0 0 -1 100 >= 0 |
| |
| The linearized memory access L to A[100][100] is: |
| |
| | i j N a s0 s1 1 |
| | 0 0 0 0 100 1 0 |
| |
| TODO: the shown format is not valid as it does not show the fact |
| that the iteration domain "i j" is transformed using the scattering. |
| |
| Next, to measure the impact of iterating once in loop "i", we build |
| a maximization problem: first, we add to DR accesses the dimensions |
| k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1. |
| L1 and L2 are the linearized memory access functions. |
| |
| | i j N a s0 s1 k s2 s3 L1 L2 D1 1 |
| | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5 |
| | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j |
| |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i |
| | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0 |
| | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0 |
| | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0 |
| | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0 |
| | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1 |
| |
| Then, we generate the polyhedron P2 by interchanging the dimensions |
| (s0, s2), (s1, s3), (L1, L2), (k, i) |
| |
| | i j N a s0 s1 k s2 s3 L1 L2 D1 1 |
| | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5 |
| | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j |
| | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k |
| | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0 |
| | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0 |
| | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0 |
| | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0 |
| | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3 |
| |
| then we add to P2 the equality k = i + 1: |
| |
| |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1 |
| |
| and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)". |
| |
| Similarly, to determine the impact of one iteration on loop "j", we |
| interchange (k, j), we add "k = j + 1", and we compute D2 the |
| maximal value of the difference. |
| |
| Finally, the profitability test is D1 < D2: if in the outer loop |
| the strides are smaller than in the inner loop, then it is |
| profitable to interchange the loops at DEPTH1 and DEPTH2. */ |
| |
| static bool |
| lst_interchange_profitable_p (lst_p nest, int depth1, int depth2) |
| { |
| mpz_t d1, d2; |
| bool res; |
| |
| gcc_assert (depth1 < depth2); |
| |
| mpz_init (d1); |
| mpz_init (d2); |
| |
| memory_strides_in_loop (nest, depth1, d1); |
| memory_strides_in_loop (nest, depth2, d2); |
| |
| res = mpz_cmp (d1, d2) < 0; |
| |
| mpz_clear (d1); |
| mpz_clear (d2); |
| |
| return res; |
| } |
| |
| /* Interchanges the loops at DEPTH1 and DEPTH2 of the original |
| scattering and assigns the resulting polyhedron to the transformed |
| scattering. */ |
| |
| static void |
| pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2, |
| poly_bb_p pbb) |
| { |
| unsigned i; |
| unsigned dim1 = psct_dynamic_dim (pbb, depth1); |
| unsigned dim2 = psct_dynamic_dim (pbb, depth2); |
| isl_space *d = isl_map_get_space (pbb->transformed); |
| isl_space *d1 = isl_space_range (d); |
| unsigned n = isl_space_dim (d1, isl_dim_out); |
| isl_space *d2 = isl_space_add_dims (d1, isl_dim_in, n); |
| isl_map *x = isl_map_universe (d2); |
| |
| x = isl_map_equate (x, isl_dim_in, dim1, isl_dim_out, dim2); |
| x = isl_map_equate (x, isl_dim_in, dim2, isl_dim_out, dim1); |
| |
| for (i = 0; i < n; i++) |
| if (i != dim1 && i != dim2) |
| x = isl_map_equate (x, isl_dim_in, i, isl_dim_out, i); |
| |
| pbb->transformed = isl_map_apply_range (pbb->transformed, x); |
| } |
| |
| /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all |
| the statements below LST. */ |
| |
| static void |
| lst_apply_interchange (lst_p lst, int depth1, int depth2) |
| { |
| if (!lst) |
| return; |
| |
| if (LST_LOOP_P (lst)) |
| { |
| int i; |
| lst_p l; |
| |
| FOR_EACH_VEC_ELT (LST_SEQ (lst), i, l) |
| lst_apply_interchange (l, depth1, depth2); |
| } |
| else |
| pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst)); |
| } |
| |
| /* Return true when the nest starting at LOOP1 and ending on LOOP2 is |
| perfect: i.e. there are no sequence of statements. */ |
| |
| static bool |
| lst_perfectly_nested_p (lst_p loop1, lst_p loop2) |
| { |
| if (loop1 == loop2) |
| return true; |
| |
| if (!LST_LOOP_P (loop1)) |
| return false; |
| |
| return LST_SEQ (loop1).length () == 1 |
| && lst_perfectly_nested_p (LST_SEQ (loop1)[0], loop2); |
| } |
| |
| /* Transform the loop nest between LOOP1 and LOOP2 into a perfect |
| nest. To continue the naming tradition, this function is called |
| after perfect_nestify. NEST is set to the perfectly nested loop |
| that is created. BEFORE/AFTER are set to the loops distributed |
| before/after the loop NEST. */ |
| |
| static void |
| lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before, |
| lst_p *nest, lst_p *after) |
| { |
| poly_bb_p first, last; |
| |
| gcc_assert (loop1 && loop2 |
| && loop1 != loop2 |
| && LST_LOOP_P (loop1) && LST_LOOP_P (loop2)); |
| |
| first = LST_PBB (lst_find_first_pbb (loop2)); |
| last = LST_PBB (lst_find_last_pbb (loop2)); |
| |
| *before = copy_lst (loop1); |
| *nest = copy_lst (loop1); |
| *after = copy_lst (loop1); |
| |
| lst_remove_all_before_including_pbb (*before, first, false); |
| lst_remove_all_before_including_pbb (*after, last, true); |
| |
| lst_remove_all_before_excluding_pbb (*nest, first, true); |
| lst_remove_all_before_excluding_pbb (*nest, last, false); |
| |
| if (lst_empty_p (*before)) |
| { |
| free_lst (*before); |
| *before = NULL; |
| } |
| if (lst_empty_p (*after)) |
| { |
| free_lst (*after); |
| *after = NULL; |
| } |
| if (lst_empty_p (*nest)) |
| { |
| free_lst (*nest); |
| *nest = NULL; |
| } |
| } |
| |
| /* Try to interchange LOOP1 with LOOP2 for all the statements of the |
| body of LOOP2. LOOP1 contains LOOP2. Return true if it did the |
| interchange. */ |
| |
| static bool |
| lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2) |
| { |
| int depth1 = lst_depth (loop1); |
| int depth2 = lst_depth (loop2); |
| lst_p transformed; |
| |
| lst_p before = NULL, nest = NULL, after = NULL; |
| |
| if (!lst_perfectly_nested_p (loop1, loop2)) |
| lst_perfect_nestify (loop1, loop2, &before, &nest, &after); |
| |
| if (!lst_interchange_profitable_p (loop2, depth1, depth2)) |
| return false; |
| |
| lst_apply_interchange (loop2, depth1, depth2); |
| |
| /* Sync the transformed LST information and the PBB scatterings |
| before using the scatterings in the data dependence analysis. */ |
| if (before || nest || after) |
| { |
| transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1, |
| before, nest, after); |
| lst_update_scattering (transformed); |
| free_lst (transformed); |
| } |
| |
| if (graphite_legal_transform (scop)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| "Loops at depths %d and %d will be interchanged.\n", |
| depth1, depth2); |
| |
| /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */ |
| lst_insert_in_sequence (before, loop1, true); |
| lst_insert_in_sequence (after, loop1, false); |
| |
| if (nest) |
| { |
| lst_replace (loop1, nest); |
| free_lst (loop1); |
| } |
| |
| return true; |
| } |
| |
| /* Undo the transform. */ |
| free_lst (before); |
| free_lst (nest); |
| free_lst (after); |
| lst_apply_interchange (loop2, depth2, depth1); |
| return false; |
| } |
| |
| /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged |
| with the loop OUTER in LST_SEQ (OUTER_FATHER). */ |
| |
| static bool |
| lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer, |
| lst_p inner_father) |
| { |
| int inner; |
| lst_p loop1, loop2; |
| |
| gcc_assert (outer_father |
| && LST_LOOP_P (outer_father) |
| && LST_LOOP_P (LST_SEQ (outer_father)[outer]) |
| && inner_father |
| && LST_LOOP_P (inner_father)); |
| |
| loop1 = LST_SEQ (outer_father)[outer]; |
| |
| FOR_EACH_VEC_ELT (LST_SEQ (inner_father), inner, loop2) |
| if (LST_LOOP_P (loop2) |
| && (lst_try_interchange_loops (scop, loop1, loop2) |
| || lst_interchange_select_inner (scop, outer_father, outer, loop2))) |
| return true; |
| |
| return false; |
| } |
| |
| /* Interchanges all the loops of LOOP and the loops of its body that |
| are considered profitable to interchange. Return the number of |
| interchanged loops. OUTER is the index in LST_SEQ (LOOP) that |
| points to the next outer loop to be considered for interchange. */ |
| |
| static int |
| lst_interchange_select_outer (scop_p scop, lst_p loop, int outer) |
| { |
| lst_p l; |
| int res = 0; |
| int i = 0; |
| lst_p father; |
| |
| if (!loop || !LST_LOOP_P (loop)) |
| return 0; |
| |
| father = LST_LOOP_FATHER (loop); |
| if (father) |
| { |
| while (lst_interchange_select_inner (scop, father, outer, loop)) |
| { |
| res++; |
| loop = LST_SEQ (father)[outer]; |
| } |
| } |
| |
| if (LST_LOOP_P (loop)) |
| FOR_EACH_VEC_ELT (LST_SEQ (loop), i, l) |
| if (LST_LOOP_P (l)) |
| res += lst_interchange_select_outer (scop, l, i); |
| |
| return res; |
| } |
| |
| /* Interchanges all the loop depths that are considered profitable for |
| SCOP. Return the number of interchanged loops. */ |
| |
| int |
| scop_do_interchange (scop_p scop) |
| { |
| int res = lst_interchange_select_outer |
| (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0); |
| |
| lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop)); |
| |
| return res; |
| } |
| |
| |
| #endif |
| |