| /* If-conversion support. |
| Copyright (C) 2000-2015 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it |
| under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
| License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| |
| #include "rtl.h" |
| #include "regs.h" |
| #include "hashtab.h" |
| #include "hash-set.h" |
| #include "vec.h" |
| #include "machmode.h" |
| #include "hard-reg-set.h" |
| #include "input.h" |
| #include "function.h" |
| #include "flags.h" |
| #include "insn-config.h" |
| #include "recog.h" |
| #include "except.h" |
| #include "predict.h" |
| #include "dominance.h" |
| #include "cfg.h" |
| #include "cfgrtl.h" |
| #include "cfganal.h" |
| #include "cfgcleanup.h" |
| #include "basic-block.h" |
| #include "symtab.h" |
| #include "statistics.h" |
| #include "double-int.h" |
| #include "real.h" |
| #include "fixed-value.h" |
| #include "alias.h" |
| #include "wide-int.h" |
| #include "inchash.h" |
| #include "tree.h" |
| #include "expmed.h" |
| #include "dojump.h" |
| #include "explow.h" |
| #include "calls.h" |
| #include "emit-rtl.h" |
| #include "varasm.h" |
| #include "stmt.h" |
| #include "expr.h" |
| #include "output.h" |
| #include "insn-codes.h" |
| #include "optabs.h" |
| #include "diagnostic-core.h" |
| #include "tm_p.h" |
| #include "cfgloop.h" |
| #include "target.h" |
| #include "tree-pass.h" |
| #include "df.h" |
| #include "dbgcnt.h" |
| #include "shrink-wrap.h" |
| #include "ifcvt.h" |
| |
| #ifndef HAVE_conditional_move |
| #define HAVE_conditional_move 0 |
| #endif |
| #ifndef HAVE_incscc |
| #define HAVE_incscc 0 |
| #endif |
| #ifndef HAVE_decscc |
| #define HAVE_decscc 0 |
| #endif |
| #ifndef HAVE_trap |
| #define HAVE_trap 0 |
| #endif |
| |
| #ifndef MAX_CONDITIONAL_EXECUTE |
| #define MAX_CONDITIONAL_EXECUTE \ |
| (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \ |
| + 1) |
| #endif |
| |
| #ifndef HAVE_cbranchcc4 |
| #define HAVE_cbranchcc4 0 |
| #endif |
| |
| #define IFCVT_MULTIPLE_DUMPS 1 |
| |
| #define NULL_BLOCK ((basic_block) NULL) |
| |
| /* True if after combine pass. */ |
| static bool ifcvt_after_combine; |
| |
| /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */ |
| static int num_possible_if_blocks; |
| |
| /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional |
| execution. */ |
| static int num_updated_if_blocks; |
| |
| /* # of changes made. */ |
| static int num_true_changes; |
| |
| /* Whether conditional execution changes were made. */ |
| static int cond_exec_changed_p; |
| |
| /* Forward references. */ |
| static int count_bb_insns (const_basic_block); |
| static bool cheap_bb_rtx_cost_p (const_basic_block, int, int); |
| static rtx_insn *first_active_insn (basic_block); |
| static rtx_insn *last_active_insn (basic_block, int); |
| static rtx_insn *find_active_insn_before (basic_block, rtx_insn *); |
| static rtx_insn *find_active_insn_after (basic_block, rtx_insn *); |
| static basic_block block_fallthru (basic_block); |
| static int cond_exec_process_insns (ce_if_block *, rtx_insn *, rtx, rtx, int, |
| int); |
| static rtx cond_exec_get_condition (rtx_insn *); |
| static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool); |
| static int noce_operand_ok (const_rtx); |
| static void merge_if_block (ce_if_block *); |
| static int find_cond_trap (basic_block, edge, edge); |
| static basic_block find_if_header (basic_block, int); |
| static int block_jumps_and_fallthru_p (basic_block, basic_block); |
| static int noce_find_if_block (basic_block, edge, edge, int); |
| static int cond_exec_find_if_block (ce_if_block *); |
| static int find_if_case_1 (basic_block, edge, edge); |
| static int find_if_case_2 (basic_block, edge, edge); |
| static int dead_or_predicable (basic_block, basic_block, basic_block, |
| edge, int); |
| static void noce_emit_move_insn (rtx, rtx); |
| static rtx_insn *block_has_only_trap (basic_block); |
| |
| /* Count the number of non-jump active insns in BB. */ |
| |
| static int |
| count_bb_insns (const_basic_block bb) |
| { |
| int count = 0; |
| rtx_insn *insn = BB_HEAD (bb); |
| |
| while (1) |
| { |
| if (active_insn_p (insn) && !JUMP_P (insn)) |
| count++; |
| |
| if (insn == BB_END (bb)) |
| break; |
| insn = NEXT_INSN (insn); |
| } |
| |
| return count; |
| } |
| |
| /* Determine whether the total insn_rtx_cost on non-jump insns in |
| basic block BB is less than MAX_COST. This function returns |
| false if the cost of any instruction could not be estimated. |
| |
| The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE |
| as those insns are being speculated. MAX_COST is scaled with SCALE |
| plus a small fudge factor. */ |
| |
| static bool |
| cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost) |
| { |
| int count = 0; |
| rtx_insn *insn = BB_HEAD (bb); |
| bool speed = optimize_bb_for_speed_p (bb); |
| |
| /* Set scale to REG_BR_PROB_BASE to void the identical scaling |
| applied to insn_rtx_cost when optimizing for size. Only do |
| this after combine because if-conversion might interfere with |
| passes before combine. |
| |
| Use optimize_function_for_speed_p instead of the pre-defined |
| variable speed to make sure it is set to same value for all |
| basic blocks in one if-conversion transformation. */ |
| if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine) |
| scale = REG_BR_PROB_BASE; |
| /* Our branch probability/scaling factors are just estimates and don't |
| account for cases where we can get speculation for free and other |
| secondary benefits. So we fudge the scale factor to make speculating |
| appear a little more profitable when optimizing for performance. */ |
| else |
| scale += REG_BR_PROB_BASE / 8; |
| |
| |
| max_cost *= scale; |
| |
| while (1) |
| { |
| if (NONJUMP_INSN_P (insn)) |
| { |
| int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE; |
| if (cost == 0) |
| return false; |
| |
| /* If this instruction is the load or set of a "stack" register, |
| such as a floating point register on x87, then the cost of |
| speculatively executing this insn may need to include |
| the additional cost of popping its result off of the |
| register stack. Unfortunately, correctly recognizing and |
| accounting for this additional overhead is tricky, so for |
| now we simply prohibit such speculative execution. */ |
| #ifdef STACK_REGS |
| { |
| rtx set = single_set (insn); |
| if (set && STACK_REG_P (SET_DEST (set))) |
| return false; |
| } |
| #endif |
| |
| count += cost; |
| if (count >= max_cost) |
| return false; |
| } |
| else if (CALL_P (insn)) |
| return false; |
| |
| if (insn == BB_END (bb)) |
| break; |
| insn = NEXT_INSN (insn); |
| } |
| |
| return true; |
| } |
| |
| /* Return the first non-jump active insn in the basic block. */ |
| |
| static rtx_insn * |
| first_active_insn (basic_block bb) |
| { |
| rtx_insn *insn = BB_HEAD (bb); |
| |
| if (LABEL_P (insn)) |
| { |
| if (insn == BB_END (bb)) |
| return NULL; |
| insn = NEXT_INSN (insn); |
| } |
| |
| while (NOTE_P (insn) || DEBUG_INSN_P (insn)) |
| { |
| if (insn == BB_END (bb)) |
| return NULL; |
| insn = NEXT_INSN (insn); |
| } |
| |
| if (JUMP_P (insn)) |
| return NULL; |
| |
| return insn; |
| } |
| |
| /* Return the last non-jump active (non-jump) insn in the basic block. */ |
| |
| static rtx_insn * |
| last_active_insn (basic_block bb, int skip_use_p) |
| { |
| rtx_insn *insn = BB_END (bb); |
| rtx_insn *head = BB_HEAD (bb); |
| |
| while (NOTE_P (insn) |
| || JUMP_P (insn) |
| || DEBUG_INSN_P (insn) |
| || (skip_use_p |
| && NONJUMP_INSN_P (insn) |
| && GET_CODE (PATTERN (insn)) == USE)) |
| { |
| if (insn == head) |
| return NULL; |
| insn = PREV_INSN (insn); |
| } |
| |
| if (LABEL_P (insn)) |
| return NULL; |
| |
| return insn; |
| } |
| |
| /* Return the active insn before INSN inside basic block CURR_BB. */ |
| |
| static rtx_insn * |
| find_active_insn_before (basic_block curr_bb, rtx_insn *insn) |
| { |
| if (!insn || insn == BB_HEAD (curr_bb)) |
| return NULL; |
| |
| while ((insn = PREV_INSN (insn)) != NULL_RTX) |
| { |
| if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn)) |
| break; |
| |
| /* No other active insn all the way to the start of the basic block. */ |
| if (insn == BB_HEAD (curr_bb)) |
| return NULL; |
| } |
| |
| return insn; |
| } |
| |
| /* Return the active insn after INSN inside basic block CURR_BB. */ |
| |
| static rtx_insn * |
| find_active_insn_after (basic_block curr_bb, rtx_insn *insn) |
| { |
| if (!insn || insn == BB_END (curr_bb)) |
| return NULL; |
| |
| while ((insn = NEXT_INSN (insn)) != NULL_RTX) |
| { |
| if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn)) |
| break; |
| |
| /* No other active insn all the way to the end of the basic block. */ |
| if (insn == BB_END (curr_bb)) |
| return NULL; |
| } |
| |
| return insn; |
| } |
| |
| /* Return the basic block reached by falling though the basic block BB. */ |
| |
| static basic_block |
| block_fallthru (basic_block bb) |
| { |
| edge e = find_fallthru_edge (bb->succs); |
| |
| return (e) ? e->dest : NULL_BLOCK; |
| } |
| |
| /* Return true if RTXs A and B can be safely interchanged. */ |
| |
| static bool |
| rtx_interchangeable_p (const_rtx a, const_rtx b) |
| { |
| if (!rtx_equal_p (a, b)) |
| return false; |
| |
| if (GET_CODE (a) != MEM) |
| return true; |
| |
| /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory |
| reference is not. Interchanging a dead type-unsafe memory reference with |
| a live type-safe one creates a live type-unsafe memory reference, in other |
| words, it makes the program illegal. |
| We check here conservatively whether the two memory references have equal |
| memory attributes. */ |
| |
| return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b)); |
| } |
| |
| |
| /* Go through a bunch of insns, converting them to conditional |
| execution format if possible. Return TRUE if all of the non-note |
| insns were processed. */ |
| |
| static int |
| cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED, |
| /* if block information */rtx_insn *start, |
| /* first insn to look at */rtx end, |
| /* last insn to look at */rtx test, |
| /* conditional execution test */int prob_val, |
| /* probability of branch taken. */int mod_ok) |
| { |
| int must_be_last = FALSE; |
| rtx_insn *insn; |
| rtx xtest; |
| rtx pattern; |
| |
| if (!start || !end) |
| return FALSE; |
| |
| for (insn = start; ; insn = NEXT_INSN (insn)) |
| { |
| /* dwarf2out can't cope with conditional prologues. */ |
| if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END) |
| return FALSE; |
| |
| if (NOTE_P (insn) || DEBUG_INSN_P (insn)) |
| goto insn_done; |
| |
| gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn)); |
| |
| /* dwarf2out can't cope with conditional unwind info. */ |
| if (RTX_FRAME_RELATED_P (insn)) |
| return FALSE; |
| |
| /* Remove USE insns that get in the way. */ |
| if (reload_completed && GET_CODE (PATTERN (insn)) == USE) |
| { |
| /* ??? Ug. Actually unlinking the thing is problematic, |
| given what we'd have to coordinate with our callers. */ |
| SET_INSN_DELETED (insn); |
| goto insn_done; |
| } |
| |
| /* Last insn wasn't last? */ |
| if (must_be_last) |
| return FALSE; |
| |
| if (modified_in_p (test, insn)) |
| { |
| if (!mod_ok) |
| return FALSE; |
| must_be_last = TRUE; |
| } |
| |
| /* Now build the conditional form of the instruction. */ |
| pattern = PATTERN (insn); |
| xtest = copy_rtx (test); |
| |
| /* If this is already a COND_EXEC, rewrite the test to be an AND of the |
| two conditions. */ |
| if (GET_CODE (pattern) == COND_EXEC) |
| { |
| if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern))) |
| return FALSE; |
| |
| xtest = gen_rtx_AND (GET_MODE (xtest), xtest, |
| COND_EXEC_TEST (pattern)); |
| pattern = COND_EXEC_CODE (pattern); |
| } |
| |
| pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern); |
| |
| /* If the machine needs to modify the insn being conditionally executed, |
| say for example to force a constant integer operand into a temp |
| register, do so here. */ |
| #ifdef IFCVT_MODIFY_INSN |
| IFCVT_MODIFY_INSN (ce_info, pattern, insn); |
| if (! pattern) |
| return FALSE; |
| #endif |
| |
| validate_change (insn, &PATTERN (insn), pattern, 1); |
| |
| if (CALL_P (insn) && prob_val >= 0) |
| validate_change (insn, ®_NOTES (insn), |
| gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB, |
| prob_val, REG_NOTES (insn)), 1); |
| |
| insn_done: |
| if (insn == end) |
| break; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Return the condition for a jump. Do not do any special processing. */ |
| |
| static rtx |
| cond_exec_get_condition (rtx_insn *jump) |
| { |
| rtx test_if, cond; |
| |
| if (any_condjump_p (jump)) |
| test_if = SET_SRC (pc_set (jump)); |
| else |
| return NULL_RTX; |
| cond = XEXP (test_if, 0); |
| |
| /* If this branches to JUMP_LABEL when the condition is false, |
| reverse the condition. */ |
| if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF |
| && LABEL_REF_LABEL (XEXP (test_if, 2)) == JUMP_LABEL (jump)) |
| { |
| enum rtx_code rev = reversed_comparison_code (cond, jump); |
| if (rev == UNKNOWN) |
| return NULL_RTX; |
| |
| cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0), |
| XEXP (cond, 1)); |
| } |
| |
| return cond; |
| } |
| |
| /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it |
| to conditional execution. Return TRUE if we were successful at |
| converting the block. */ |
| |
| static int |
| cond_exec_process_if_block (ce_if_block * ce_info, |
| /* if block information */int do_multiple_p) |
| { |
| basic_block test_bb = ce_info->test_bb; /* last test block */ |
| basic_block then_bb = ce_info->then_bb; /* THEN */ |
| basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */ |
| rtx test_expr; /* expression in IF_THEN_ELSE that is tested */ |
| rtx_insn *then_start; /* first insn in THEN block */ |
| rtx_insn *then_end; /* last insn + 1 in THEN block */ |
| rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */ |
| rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */ |
| int max; /* max # of insns to convert. */ |
| int then_mod_ok; /* whether conditional mods are ok in THEN */ |
| rtx true_expr; /* test for else block insns */ |
| rtx false_expr; /* test for then block insns */ |
| int true_prob_val; /* probability of else block */ |
| int false_prob_val; /* probability of then block */ |
| rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */ |
| rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */ |
| rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */ |
| rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */ |
| int then_n_insns, else_n_insns, n_insns; |
| enum rtx_code false_code; |
| rtx note; |
| |
| /* If test is comprised of && or || elements, and we've failed at handling |
| all of them together, just use the last test if it is the special case of |
| && elements without an ELSE block. */ |
| if (!do_multiple_p && ce_info->num_multiple_test_blocks) |
| { |
| if (else_bb || ! ce_info->and_and_p) |
| return FALSE; |
| |
| ce_info->test_bb = test_bb = ce_info->last_test_bb; |
| ce_info->num_multiple_test_blocks = 0; |
| ce_info->num_and_and_blocks = 0; |
| ce_info->num_or_or_blocks = 0; |
| } |
| |
| /* Find the conditional jump to the ELSE or JOIN part, and isolate |
| the test. */ |
| test_expr = cond_exec_get_condition (BB_END (test_bb)); |
| if (! test_expr) |
| return FALSE; |
| |
| /* If the conditional jump is more than just a conditional jump, |
| then we can not do conditional execution conversion on this block. */ |
| if (! onlyjump_p (BB_END (test_bb))) |
| return FALSE; |
| |
| /* Collect the bounds of where we're to search, skipping any labels, jumps |
| and notes at the beginning and end of the block. Then count the total |
| number of insns and see if it is small enough to convert. */ |
| then_start = first_active_insn (then_bb); |
| then_end = last_active_insn (then_bb, TRUE); |
| then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb); |
| n_insns = then_n_insns; |
| max = MAX_CONDITIONAL_EXECUTE; |
| |
| if (else_bb) |
| { |
| int n_matching; |
| |
| max *= 2; |
| else_start = first_active_insn (else_bb); |
| else_end = last_active_insn (else_bb, TRUE); |
| else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb); |
| n_insns += else_n_insns; |
| |
| /* Look for matching sequences at the head and tail of the two blocks, |
| and limit the range of insns to be converted if possible. */ |
| n_matching = flow_find_cross_jump (then_bb, else_bb, |
| &then_first_tail, &else_first_tail, |
| NULL); |
| if (then_first_tail == BB_HEAD (then_bb)) |
| then_start = then_end = NULL; |
| if (else_first_tail == BB_HEAD (else_bb)) |
| else_start = else_end = NULL; |
| |
| if (n_matching > 0) |
| { |
| if (then_end) |
| then_end = find_active_insn_before (then_bb, then_first_tail); |
| if (else_end) |
| else_end = find_active_insn_before (else_bb, else_first_tail); |
| n_insns -= 2 * n_matching; |
| } |
| |
| if (then_start |
| && else_start |
| && then_n_insns > n_matching |
| && else_n_insns > n_matching) |
| { |
| int longest_match = MIN (then_n_insns - n_matching, |
| else_n_insns - n_matching); |
| n_matching |
| = flow_find_head_matching_sequence (then_bb, else_bb, |
| &then_last_head, |
| &else_last_head, |
| longest_match); |
| |
| if (n_matching > 0) |
| { |
| rtx_insn *insn; |
| |
| /* We won't pass the insns in the head sequence to |
| cond_exec_process_insns, so we need to test them here |
| to make sure that they don't clobber the condition. */ |
| for (insn = BB_HEAD (then_bb); |
| insn != NEXT_INSN (then_last_head); |
| insn = NEXT_INSN (insn)) |
| if (!LABEL_P (insn) && !NOTE_P (insn) |
| && !DEBUG_INSN_P (insn) |
| && modified_in_p (test_expr, insn)) |
| return FALSE; |
| } |
| |
| if (then_last_head == then_end) |
| then_start = then_end = NULL; |
| if (else_last_head == else_end) |
| else_start = else_end = NULL; |
| |
| if (n_matching > 0) |
| { |
| if (then_start) |
| then_start = find_active_insn_after (then_bb, then_last_head); |
| if (else_start) |
| else_start = find_active_insn_after (else_bb, else_last_head); |
| n_insns -= 2 * n_matching; |
| } |
| } |
| } |
| |
| if (n_insns > max) |
| return FALSE; |
| |
| /* Map test_expr/test_jump into the appropriate MD tests to use on |
| the conditionally executed code. */ |
| |
| true_expr = test_expr; |
| |
| false_code = reversed_comparison_code (true_expr, BB_END (test_bb)); |
| if (false_code != UNKNOWN) |
| false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr), |
| XEXP (true_expr, 0), XEXP (true_expr, 1)); |
| else |
| false_expr = NULL_RTX; |
| |
| #ifdef IFCVT_MODIFY_TESTS |
| /* If the machine description needs to modify the tests, such as setting a |
| conditional execution register from a comparison, it can do so here. */ |
| IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr); |
| |
| /* See if the conversion failed. */ |
| if (!true_expr || !false_expr) |
| goto fail; |
| #endif |
| |
| note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX); |
| if (note) |
| { |
| true_prob_val = XINT (note, 0); |
| false_prob_val = REG_BR_PROB_BASE - true_prob_val; |
| } |
| else |
| { |
| true_prob_val = -1; |
| false_prob_val = -1; |
| } |
| |
| /* If we have && or || tests, do them here. These tests are in the adjacent |
| blocks after the first block containing the test. */ |
| if (ce_info->num_multiple_test_blocks > 0) |
| { |
| basic_block bb = test_bb; |
| basic_block last_test_bb = ce_info->last_test_bb; |
| |
| if (! false_expr) |
| goto fail; |
| |
| do |
| { |
| rtx_insn *start, *end; |
| rtx t, f; |
| enum rtx_code f_code; |
| |
| bb = block_fallthru (bb); |
| start = first_active_insn (bb); |
| end = last_active_insn (bb, TRUE); |
| if (start |
| && ! cond_exec_process_insns (ce_info, start, end, false_expr, |
| false_prob_val, FALSE)) |
| goto fail; |
| |
| /* If the conditional jump is more than just a conditional jump, then |
| we can not do conditional execution conversion on this block. */ |
| if (! onlyjump_p (BB_END (bb))) |
| goto fail; |
| |
| /* Find the conditional jump and isolate the test. */ |
| t = cond_exec_get_condition (BB_END (bb)); |
| if (! t) |
| goto fail; |
| |
| f_code = reversed_comparison_code (t, BB_END (bb)); |
| if (f_code == UNKNOWN) |
| goto fail; |
| |
| f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1)); |
| if (ce_info->and_and_p) |
| { |
| t = gen_rtx_AND (GET_MODE (t), true_expr, t); |
| f = gen_rtx_IOR (GET_MODE (t), false_expr, f); |
| } |
| else |
| { |
| t = gen_rtx_IOR (GET_MODE (t), true_expr, t); |
| f = gen_rtx_AND (GET_MODE (t), false_expr, f); |
| } |
| |
| /* If the machine description needs to modify the tests, such as |
| setting a conditional execution register from a comparison, it can |
| do so here. */ |
| #ifdef IFCVT_MODIFY_MULTIPLE_TESTS |
| IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f); |
| |
| /* See if the conversion failed. */ |
| if (!t || !f) |
| goto fail; |
| #endif |
| |
| true_expr = t; |
| false_expr = f; |
| } |
| while (bb != last_test_bb); |
| } |
| |
| /* For IF-THEN-ELSE blocks, we don't allow modifications of the test |
| on then THEN block. */ |
| then_mod_ok = (else_bb == NULL_BLOCK); |
| |
| /* Go through the THEN and ELSE blocks converting the insns if possible |
| to conditional execution. */ |
| |
| if (then_end |
| && (! false_expr |
| || ! cond_exec_process_insns (ce_info, then_start, then_end, |
| false_expr, false_prob_val, |
| then_mod_ok))) |
| goto fail; |
| |
| if (else_bb && else_end |
| && ! cond_exec_process_insns (ce_info, else_start, else_end, |
| true_expr, true_prob_val, TRUE)) |
| goto fail; |
| |
| /* If we cannot apply the changes, fail. Do not go through the normal fail |
| processing, since apply_change_group will call cancel_changes. */ |
| if (! apply_change_group ()) |
| { |
| #ifdef IFCVT_MODIFY_CANCEL |
| /* Cancel any machine dependent changes. */ |
| IFCVT_MODIFY_CANCEL (ce_info); |
| #endif |
| return FALSE; |
| } |
| |
| #ifdef IFCVT_MODIFY_FINAL |
| /* Do any machine dependent final modifications. */ |
| IFCVT_MODIFY_FINAL (ce_info); |
| #endif |
| |
| /* Conversion succeeded. */ |
| if (dump_file) |
| fprintf (dump_file, "%d insn%s converted to conditional execution.\n", |
| n_insns, (n_insns == 1) ? " was" : "s were"); |
| |
| /* Merge the blocks! If we had matching sequences, make sure to delete one |
| copy at the appropriate location first: delete the copy in the THEN branch |
| for a tail sequence so that the remaining one is executed last for both |
| branches, and delete the copy in the ELSE branch for a head sequence so |
| that the remaining one is executed first for both branches. */ |
| if (then_first_tail) |
| { |
| rtx_insn *from = then_first_tail; |
| if (!INSN_P (from)) |
| from = find_active_insn_after (then_bb, from); |
| delete_insn_chain (from, BB_END (then_bb), false); |
| } |
| if (else_last_head) |
| delete_insn_chain (first_active_insn (else_bb), else_last_head, false); |
| |
| merge_if_block (ce_info); |
| cond_exec_changed_p = TRUE; |
| return TRUE; |
| |
| fail: |
| #ifdef IFCVT_MODIFY_CANCEL |
| /* Cancel any machine dependent changes. */ |
| IFCVT_MODIFY_CANCEL (ce_info); |
| #endif |
| |
| cancel_changes (0); |
| return FALSE; |
| } |
| |
| /* Used by noce_process_if_block to communicate with its subroutines. |
| |
| The subroutines know that A and B may be evaluated freely. They |
| know that X is a register. They should insert new instructions |
| before cond_earliest. */ |
| |
| struct noce_if_info |
| { |
| /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */ |
| basic_block test_bb, then_bb, else_bb, join_bb; |
| |
| /* The jump that ends TEST_BB. */ |
| rtx_insn *jump; |
| |
| /* The jump condition. */ |
| rtx cond; |
| |
| /* New insns should be inserted before this one. */ |
| rtx_insn *cond_earliest; |
| |
| /* Insns in the THEN and ELSE block. There is always just this |
| one insns in those blocks. The insns are single_set insns. |
| If there was no ELSE block, INSN_B is the last insn before |
| COND_EARLIEST, or NULL_RTX. In the former case, the insn |
| operands are still valid, as if INSN_B was moved down below |
| the jump. */ |
| rtx_insn *insn_a, *insn_b; |
| |
| /* The SET_SRC of INSN_A and INSN_B. */ |
| rtx a, b; |
| |
| /* The SET_DEST of INSN_A. */ |
| rtx x; |
| |
| /* True if this if block is not canonical. In the canonical form of |
| if blocks, the THEN_BB is the block reached via the fallthru edge |
| from TEST_BB. For the noce transformations, we allow the symmetric |
| form as well. */ |
| bool then_else_reversed; |
| |
| /* Estimated cost of the particular branch instruction. */ |
| int branch_cost; |
| }; |
| |
| static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int); |
| static int noce_try_move (struct noce_if_info *); |
| static int noce_try_store_flag (struct noce_if_info *); |
| static int noce_try_addcc (struct noce_if_info *); |
| static int noce_try_store_flag_constants (struct noce_if_info *); |
| static int noce_try_store_flag_mask (struct noce_if_info *); |
| static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx, |
| rtx, rtx, rtx); |
| static int noce_try_cmove (struct noce_if_info *); |
| static int noce_try_cmove_arith (struct noce_if_info *); |
| static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **); |
| static int noce_try_minmax (struct noce_if_info *); |
| static int noce_try_abs (struct noce_if_info *); |
| static int noce_try_sign_mask (struct noce_if_info *); |
| |
| /* Helper function for noce_try_store_flag*. */ |
| |
| static rtx |
| noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep, |
| int normalize) |
| { |
| rtx cond = if_info->cond; |
| int cond_complex; |
| enum rtx_code code; |
| |
| cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode) |
| || ! general_operand (XEXP (cond, 1), VOIDmode)); |
| |
| /* If earliest == jump, or when the condition is complex, try to |
| build the store_flag insn directly. */ |
| |
| if (cond_complex) |
| { |
| rtx set = pc_set (if_info->jump); |
| cond = XEXP (SET_SRC (set), 0); |
| if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF |
| && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump)) |
| reversep = !reversep; |
| if (if_info->then_else_reversed) |
| reversep = !reversep; |
| } |
| |
| if (reversep) |
| code = reversed_comparison_code (cond, if_info->jump); |
| else |
| code = GET_CODE (cond); |
| |
| if ((if_info->cond_earliest == if_info->jump || cond_complex) |
| && (normalize == 0 || STORE_FLAG_VALUE == normalize)) |
| { |
| rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0), |
| XEXP (cond, 1)); |
| rtx set = gen_rtx_SET (VOIDmode, x, src); |
| |
| start_sequence (); |
| rtx_insn *insn = emit_insn (set); |
| |
| if (recog_memoized (insn) >= 0) |
| { |
| rtx_insn *seq = get_insns (); |
| end_sequence (); |
| emit_insn (seq); |
| |
| if_info->cond_earliest = if_info->jump; |
| |
| return x; |
| } |
| |
| end_sequence (); |
| } |
| |
| /* Don't even try if the comparison operands or the mode of X are weird. */ |
| if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x))) |
| return NULL_RTX; |
| |
| return emit_store_flag (x, code, XEXP (cond, 0), |
| XEXP (cond, 1), VOIDmode, |
| (code == LTU || code == LEU |
| || code == GEU || code == GTU), normalize); |
| } |
| |
| /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART. |
| X is the destination/target and Y is the value to copy. */ |
| |
| static void |
| noce_emit_move_insn (rtx x, rtx y) |
| { |
| machine_mode outmode; |
| rtx outer, inner; |
| int bitpos; |
| |
| if (GET_CODE (x) != STRICT_LOW_PART) |
| { |
| rtx_insn *seq, *insn; |
| rtx target; |
| optab ot; |
| |
| start_sequence (); |
| /* Check that the SET_SRC is reasonable before calling emit_move_insn, |
| otherwise construct a suitable SET pattern ourselves. */ |
| insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG) |
| ? emit_move_insn (x, y) |
| : emit_insn (gen_rtx_SET (VOIDmode, x, y)); |
| seq = get_insns (); |
| end_sequence (); |
| |
| if (recog_memoized (insn) <= 0) |
| { |
| if (GET_CODE (x) == ZERO_EXTRACT) |
| { |
| rtx op = XEXP (x, 0); |
| unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1)); |
| unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2)); |
| |
| /* store_bit_field expects START to be relative to |
| BYTES_BIG_ENDIAN and adjusts this value for machines with |
| BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to |
| invoke store_bit_field again it is necessary to have the START |
| value from the first call. */ |
| if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN) |
| { |
| if (MEM_P (op)) |
| start = BITS_PER_UNIT - start - size; |
| else |
| { |
| gcc_assert (REG_P (op)); |
| start = BITS_PER_WORD - start - size; |
| } |
| } |
| |
| gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD)); |
| store_bit_field (op, size, start, 0, 0, GET_MODE (x), y); |
| return; |
| } |
| |
| switch (GET_RTX_CLASS (GET_CODE (y))) |
| { |
| case RTX_UNARY: |
| ot = code_to_optab (GET_CODE (y)); |
| if (ot) |
| { |
| start_sequence (); |
| target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0); |
| if (target != NULL_RTX) |
| { |
| if (target != x) |
| emit_move_insn (x, target); |
| seq = get_insns (); |
| } |
| end_sequence (); |
| } |
| break; |
| |
| case RTX_BIN_ARITH: |
| case RTX_COMM_ARITH: |
| ot = code_to_optab (GET_CODE (y)); |
| if (ot) |
| { |
| start_sequence (); |
| target = expand_binop (GET_MODE (y), ot, |
| XEXP (y, 0), XEXP (y, 1), |
| x, 0, OPTAB_DIRECT); |
| if (target != NULL_RTX) |
| { |
| if (target != x) |
| emit_move_insn (x, target); |
| seq = get_insns (); |
| } |
| end_sequence (); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| emit_insn (seq); |
| return; |
| } |
| |
| outer = XEXP (x, 0); |
| inner = XEXP (outer, 0); |
| outmode = GET_MODE (outer); |
| bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT; |
| store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, |
| 0, 0, outmode, y); |
| } |
| |
| /* Return the CC reg if it is used in COND. */ |
| |
| static rtx |
| cc_in_cond (rtx cond) |
| { |
| if (HAVE_cbranchcc4 && cond |
| && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC) |
| return XEXP (cond, 0); |
| |
| return NULL_RTX; |
| } |
| |
| /* Return sequence of instructions generated by if conversion. This |
| function calls end_sequence() to end the current stream, ensures |
| that are instructions are unshared, recognizable non-jump insns. |
| On failure, this function returns a NULL_RTX. */ |
| |
| static rtx_insn * |
| end_ifcvt_sequence (struct noce_if_info *if_info) |
| { |
| rtx_insn *insn; |
| rtx_insn *seq = get_insns (); |
| rtx cc = cc_in_cond (if_info->cond); |
| |
| set_used_flags (if_info->x); |
| set_used_flags (if_info->cond); |
| set_used_flags (if_info->a); |
| set_used_flags (if_info->b); |
| unshare_all_rtl_in_chain (seq); |
| end_sequence (); |
| |
| /* Make sure that all of the instructions emitted are recognizable, |
| and that we haven't introduced a new jump instruction. |
| As an exercise for the reader, build a general mechanism that |
| allows proper placement of required clobbers. */ |
| for (insn = seq; insn; insn = NEXT_INSN (insn)) |
| if (JUMP_P (insn) |
| || recog_memoized (insn) == -1 |
| /* Make sure new generated code does not clobber CC. */ |
| || (cc && set_of (cc, insn))) |
| return NULL; |
| |
| return seq; |
| } |
| |
| /* Convert "if (a != b) x = a; else x = b" into "x = a" and |
| "if (a == b) x = a; else x = b" into "x = b". */ |
| |
| static int |
| noce_try_move (struct noce_if_info *if_info) |
| { |
| rtx cond = if_info->cond; |
| enum rtx_code code = GET_CODE (cond); |
| rtx y; |
| rtx_insn *seq; |
| |
| if (code != NE && code != EQ) |
| return FALSE; |
| |
| /* This optimization isn't valid if either A or B could be a NaN |
| or a signed zero. */ |
| if (HONOR_NANS (if_info->x) |
| || HONOR_SIGNED_ZEROS (if_info->x)) |
| return FALSE; |
| |
| /* Check whether the operands of the comparison are A and in |
| either order. */ |
| if ((rtx_equal_p (if_info->a, XEXP (cond, 0)) |
| && rtx_equal_p (if_info->b, XEXP (cond, 1))) |
| || (rtx_equal_p (if_info->a, XEXP (cond, 1)) |
| && rtx_equal_p (if_info->b, XEXP (cond, 0)))) |
| { |
| if (!rtx_interchangeable_p (if_info->a, if_info->b)) |
| return FALSE; |
| |
| y = (code == EQ) ? if_info->a : if_info->b; |
| |
| /* Avoid generating the move if the source is the destination. */ |
| if (! rtx_equal_p (if_info->x, y)) |
| { |
| start_sequence (); |
| noce_emit_move_insn (if_info->x, y); |
| seq = end_ifcvt_sequence (if_info); |
| if (!seq) |
| return FALSE; |
| |
| emit_insn_before_setloc (seq, if_info->jump, |
| INSN_LOCATION (if_info->insn_a)); |
| } |
| return TRUE; |
| } |
| return FALSE; |
| } |
| |
| /* Convert "if (test) x = 1; else x = 0". |
| |
| Only try 0 and STORE_FLAG_VALUE here. Other combinations will be |
| tried in noce_try_store_flag_constants after noce_try_cmove has had |
| a go at the conversion. */ |
| |
| static int |
| noce_try_store_flag (struct noce_if_info *if_info) |
| { |
| int reversep; |
| rtx target; |
| rtx_insn *seq; |
| |
| if (CONST_INT_P (if_info->b) |
| && INTVAL (if_info->b) == STORE_FLAG_VALUE |
| && if_info->a == const0_rtx) |
| reversep = 0; |
| else if (if_info->b == const0_rtx |
| && CONST_INT_P (if_info->a) |
| && INTVAL (if_info->a) == STORE_FLAG_VALUE |
| && (reversed_comparison_code (if_info->cond, if_info->jump) |
| != UNKNOWN)) |
| reversep = 1; |
| else |
| return FALSE; |
| |
| start_sequence (); |
| |
| target = noce_emit_store_flag (if_info, if_info->x, reversep, 0); |
| if (target) |
| { |
| if (target != if_info->x) |
| noce_emit_move_insn (if_info->x, target); |
| |
| seq = end_ifcvt_sequence (if_info); |
| if (! seq) |
| return FALSE; |
| |
| emit_insn_before_setloc (seq, if_info->jump, |
| INSN_LOCATION (if_info->insn_a)); |
| return TRUE; |
| } |
| else |
| { |
| end_sequence (); |
| return FALSE; |
| } |
| } |
| |
| /* Convert "if (test) x = a; else x = b", for A and B constant. */ |
| |
| static int |
| noce_try_store_flag_constants (struct noce_if_info *if_info) |
| { |
| rtx target; |
| rtx_insn *seq; |
| int reversep; |
| HOST_WIDE_INT itrue, ifalse, diff, tmp; |
| int normalize, can_reverse; |
| machine_mode mode; |
| |
| if (CONST_INT_P (if_info->a) |
| && CONST_INT_P (if_info->b)) |
| { |
| mode = GET_MODE (if_info->x); |
| ifalse = INTVAL (if_info->a); |
| itrue = INTVAL (if_info->b); |
| |
| diff = (unsigned HOST_WIDE_INT) itrue - ifalse; |
| /* Make sure we can represent the difference between the two values. */ |
| if ((diff > 0) |
| != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue)) |
| return FALSE; |
| |
| diff = trunc_int_for_mode (diff, mode); |
| |
| can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump) |
| != UNKNOWN); |
| |
| reversep = 0; |
| if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE) |
| normalize = 0; |
| else if (ifalse == 0 && exact_log2 (itrue) >= 0 |
| && (STORE_FLAG_VALUE == 1 |
| || if_info->branch_cost >= 2)) |
| normalize = 1; |
| else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse |
| && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2)) |
| normalize = 1, reversep = 1; |
| else if (itrue == -1 |
| && (STORE_FLAG_VALUE == -1 |
| || if_info->branch_cost >= 2)) |
| normalize = -1; |
| else if (ifalse == -1 && can_reverse |
| && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2)) |
| normalize = -1, reversep = 1; |
| else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1) |
| || if_info->branch_cost >= 3) |
| normalize = -1; |
| else |
| return FALSE; |
| |
| if (reversep) |
| { |
| tmp = itrue; itrue = ifalse; ifalse = tmp; |
| diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode); |
| } |
| |
| start_sequence (); |
| target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize); |
| if (! target) |
| { |
| end_sequence (); |
| return FALSE; |
| } |
| |
| /* if (test) x = 3; else x = 4; |
| => x = 3 + (test == 0); */ |
| if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE) |
| { |
| target = expand_simple_binop (mode, |
| (diff == STORE_FLAG_VALUE |
| ? PLUS : MINUS), |
| gen_int_mode (ifalse, mode), target, |
| if_info->x, 0, OPTAB_WIDEN); |
| } |
| |
| /* if (test) x = 8; else x = 0; |
| => x = (test != 0) << 3; */ |
| else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0) |
| { |
| target = expand_simple_binop (mode, ASHIFT, |
| target, GEN_INT (tmp), if_info->x, 0, |
| OPTAB_WIDEN); |
| } |
| |
| /* if (test) x = -1; else x = b; |
| => x = -(test != 0) | b; */ |
| else if (itrue == -1) |
| { |
| target = expand_simple_binop (mode, IOR, |
| target, gen_int_mode (ifalse, mode), |
| if_info->x, 0, OPTAB_WIDEN); |
| } |
| |
| /* if (test) x = a; else x = b; |
| => x = (-(test != 0) & (b - a)) + a; */ |
| else |
| { |
| target = expand_simple_binop (mode, AND, |
| target, gen_int_mode (diff, mode), |
| if_info->x, 0, OPTAB_WIDEN); |
| if (target) |
| target = expand_simple_binop (mode, PLUS, |
| target, gen_int_mode (ifalse, mode), |
| if_info->x, 0, OPTAB_WIDEN); |
| } |
| |
| if (! target) |
| { |
| end_sequence (); |
| return FALSE; |
| } |
| |
| if (target != if_info->x) |
| noce_emit_move_insn (if_info->x, target); |
| |
| seq = end_ifcvt_sequence (if_info); |
| if (!seq) |
| return FALSE; |
| |
| emit_insn_before_setloc (seq, if_info->jump, |
| INSN_LOCATION (if_info->insn_a)); |
| return TRUE; |
| } |
| |
| return FALSE; |
| } |
| |
| /* Convert "if (test) foo++" into "foo += (test != 0)", and |
| similarly for "foo--". */ |
| |
| static int |
| noce_try_addcc (struct noce_if_info *if_info) |
| { |
| rtx target; |
| rtx_insn *seq; |
| int subtract, normalize; |
| |
| if (GET_CODE (if_info->a) == PLUS |
| && rtx_equal_p (XEXP (if_info->a, 0), if_info->b) |
| && (reversed_comparison_code (if_info->cond, if_info->jump) |
| != UNKNOWN)) |
| { |
| rtx cond = if_info->cond; |
| enum rtx_code code = reversed_comparison_code (cond, if_info->jump); |
| |
| /* First try to use addcc pattern. */ |
| if (general_operand (XEXP (cond, 0), VOIDmode) |
| && general_operand (XEXP (cond, 1), VOIDmode)) |
| { |
| start_sequence (); |
| target = emit_conditional_add (if_info->x, code, |
| XEXP (cond, 0), |
| XEXP (cond, 1), |
| VOIDmode, |
| if_info->b, |
| XEXP (if_info->a, 1), |
| GET_MODE (if_info->x), |
| (code == LTU || code == GEU |
| || code == LEU || code == GTU)); |
| if (target) |
| { |
| if (target != if_info->x) |
| noce_emit_move_insn (if_info->x, target); |
| |
| seq = end_ifcvt_sequence (if_info); |
| if (!seq) |
| return FALSE; |
| |
| emit_insn_before_setloc (seq, if_info->jump, |
| INSN_LOCATION (if_info->insn_a)); |
| return TRUE; |
| } |
| end_sequence (); |
| } |
| |
| /* If that fails, construct conditional increment or decrement using |
| setcc. */ |
| if (if_info->branch_cost >= 2 |
| && (XEXP (if_info->a, 1) == const1_rtx |
| || XEXP (if_info->a, 1) == constm1_rtx)) |
| { |
| start_sequence (); |
| if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1))) |
| subtract = 0, normalize = 0; |
| else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1))) |
| subtract = 1, normalize = 0; |
| else |
| subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1)); |
| |
| |
| target = noce_emit_store_flag (if_info, |
| gen_reg_rtx (GET_MODE (if_info->x)), |
| 1, normalize); |
| |
| if (target) |
| target = expand_simple_binop (GET_MODE (if_info->x), |
| subtract ? MINUS : PLUS, |
| if_info->b, target, if_info->x, |
| 0, OPTAB_WIDEN); |
| if (target) |
| { |
| if (target != if_info->x) |
| noce_emit_move_insn (if_info->x, target); |
| |
| seq = end_ifcvt_sequence (if_info); |
| if (!seq) |
| return FALSE; |
| |
| emit_insn_before_setloc (seq, if_info->jump, |
| INSN_LOCATION (if_info->insn_a)); |
| return TRUE; |
| } |
| end_sequence (); |
| } |
| } |
| |
| return FALSE; |
| } |
| |
| /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */ |
| |
| static int |
| noce_try_store_flag_mask (struct noce_if_info *if_info) |
| { |
| rtx target; |
| rtx_insn *seq; |
| int reversep; |
| |
| reversep = 0; |
| if ((if_info->branch_cost >= 2 |
| || STORE_FLAG_VALUE == -1) |
| && ((if_info->a == const0_rtx |
| && rtx_equal_p (if_info->b, if_info->x)) |
| || ((reversep = (reversed_comparison_code (if_info->cond, |
| if_info->jump) |
| != UNKNOWN)) |
| && if_info->b == const0_rtx |
| && rtx_equal_p (if_info->a, if_info->x)))) |
| { |
| start_sequence (); |
| target = noce_emit_store_flag (if_info, |
| gen_reg_rtx (GET_MODE (if_info->x)), |
| reversep, -1); |
| if (target) |
| target = expand_simple_binop (GET_MODE (if_info->x), AND, |
| if_info->x, |
| target, if_info->x, 0, |
| OPTAB_WIDEN); |
| |
| if (target) |
| { |
| int old_cost, new_cost, insn_cost; |
| int speed_p; |
| |
| if (target != if_info->x) |
| noce_emit_move_insn (if_info->x, target); |
| |
| seq = end_ifcvt_sequence (if_info); |
| if (!seq) |
| return FALSE; |
| |
| speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (if_info->insn_a)); |
| insn_cost = insn_rtx_cost (PATTERN (if_info->insn_a), speed_p); |
| old_cost = COSTS_N_INSNS (if_info->branch_cost) + insn_cost; |
| new_cost = seq_cost (seq, speed_p); |
| |
| if (new_cost > old_cost) |
| return FALSE; |
| |
| emit_insn_before_setloc (seq, if_info->jump, |
| INSN_LOCATION (if_info->insn_a)); |
| return TRUE; |
| } |
| |
| end_sequence (); |
| } |
| |
| return FALSE; |
| } |
| |
| /* Helper function for noce_try_cmove and noce_try_cmove_arith. */ |
| |
| static rtx |
| noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code, |
| rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue) |
| { |
| rtx target ATTRIBUTE_UNUSED; |
| int unsignedp ATTRIBUTE_UNUSED; |
| |
| /* If earliest == jump, try to build the cmove insn directly. |
| This is helpful when combine has created some complex condition |
| (like for alpha's cmovlbs) that we can't hope to regenerate |
| through the normal interface. */ |
| |
| if (if_info->cond_earliest == if_info->jump) |
| { |
| rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b); |
| rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x), |
| cond, vtrue, vfalse); |
| rtx set = gen_rtx_SET (VOIDmode, x, if_then_else); |
| |
| start_sequence (); |
| rtx_insn *insn = emit_insn (set); |
| |
| if (recog_memoized (insn) >= 0) |
| { |
| rtx_insn *seq = get_insns (); |
| end_sequence (); |
| emit_insn (seq); |
| |
| return x; |
| } |
| |
| end_sequence (); |
| } |
| |
| /* Don't even try if the comparison operands are weird |
| except that the target supports cbranchcc4. */ |
| if (! general_operand (cmp_a, GET_MODE (cmp_a)) |
| || ! general_operand (cmp_b, GET_MODE (cmp_b))) |
| { |
| if (!(HAVE_cbranchcc4) |
| || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC |
| || cmp_b != const0_rtx) |
| return NULL_RTX; |
| } |
| |
| #if HAVE_conditional_move |
| unsignedp = (code == LTU || code == GEU |
| || code == LEU || code == GTU); |
| |
| target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode, |
| vtrue, vfalse, GET_MODE (x), |
| unsignedp); |
| if (target) |
| return target; |
| |
| /* We might be faced with a situation like: |
| |
| x = (reg:M TARGET) |
| vtrue = (subreg:M (reg:N VTRUE) BYTE) |
| vfalse = (subreg:M (reg:N VFALSE) BYTE) |
| |
| We can't do a conditional move in mode M, but it's possible that we |
| could do a conditional move in mode N instead and take a subreg of |
| the result. |
| |
| If we can't create new pseudos, though, don't bother. */ |
| if (reload_completed) |
| return NULL_RTX; |
| |
| if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG) |
| { |
| rtx reg_vtrue = SUBREG_REG (vtrue); |
| rtx reg_vfalse = SUBREG_REG (vfalse); |
| unsigned int byte_vtrue = SUBREG_BYTE (vtrue); |
| unsigned int byte_vfalse = SUBREG_BYTE (vfalse); |
| rtx promoted_target; |
| |
| if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse) |
| || byte_vtrue != byte_vfalse |
| || (SUBREG_PROMOTED_VAR_P (vtrue) |
| != SUBREG_PROMOTED_VAR_P (vfalse)) |
| || (SUBREG_PROMOTED_GET (vtrue) |
| != SUBREG_PROMOTED_GET (vfalse))) |
| return NULL_RTX; |
| |
| promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue)); |
| |
| target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b, |
| VOIDmode, reg_vtrue, reg_vfalse, |
| GET_MODE (reg_vtrue), unsignedp); |
| /* Nope, couldn't do it in that mode either. */ |
| if (!target) |
| return NULL_RTX; |
| |
| target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue); |
| SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue); |
| SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue)); |
| emit_move_insn (x, target); |
| return x; |
| } |
| else |
| return NULL_RTX; |
| #else |
| /* We'll never get here, as noce_process_if_block doesn't call the |
| functions involved. Ifdef code, however, should be discouraged |
| because it leads to typos in the code not selected. However, |
| emit_conditional_move won't exist either. */ |
| return NULL_RTX; |
| #endif |
| } |
| |
| /* Try only simple constants and registers here. More complex cases |
| are handled in noce_try_cmove_arith after noce_try_store_flag_arith |
| has had a go at it. */ |
| |
| static int |
| noce_try_cmove (struct noce_if_info *if_info) |
| { |
| enum rtx_code code; |
| rtx target; |
| rtx_insn *seq; |
| |
| if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode)) |
| && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode))) |
| { |
| start_sequence (); |
| |
| code = GET_CODE (if_info->cond); |
| target = noce_emit_cmove (if_info, if_info->x, code, |
| XEXP (if_info->cond, 0), |
| XEXP (if_info->cond, 1), |
| if_info->a, if_info->b); |
| |
| if (target) |
| { |
| if (target != if_info->x) |
| noce_emit_move_insn (if_info->x, target); |
| |
| seq = end_ifcvt_sequence (if_info); |
| if (!seq) |
| return FALSE; |
| |
| emit_insn_before_setloc (seq, if_info->jump, |
| INSN_LOCATION (if_info->insn_a)); |
| return TRUE; |
| } |
| else |
| { |
| end_sequence (); |
| return FALSE; |
| } |
| } |
| |
| return FALSE; |
| } |
| |
| /* Try more complex cases involving conditional_move. */ |
| |
| static int |
| noce_try_cmove_arith (struct noce_if_info *if_info) |
| { |
| rtx a = if_info->a; |
| rtx b = if_info->b; |
| rtx x = if_info->x; |
| rtx orig_a, orig_b; |
| rtx_insn *insn_a, *insn_b; |
| rtx target; |
| int is_mem = 0; |
| int insn_cost; |
| enum rtx_code code; |
| rtx_insn *ifcvt_seq; |
| |
| /* A conditional move from two memory sources is equivalent to a |
| conditional on their addresses followed by a load. Don't do this |
| early because it'll screw alias analysis. Note that we've |
| already checked for no side effects. */ |
| /* ??? FIXME: Magic number 5. */ |
| if (cse_not_expected |
| && MEM_P (a) && MEM_P (b) |
| && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b) |
| && if_info->branch_cost >= 5) |
| { |
| machine_mode address_mode = get_address_mode (a); |
| |
| a = XEXP (a, 0); |
| b = XEXP (b, 0); |
| x = gen_reg_rtx (address_mode); |
| is_mem = 1; |
| } |
| |
| /* ??? We could handle this if we knew that a load from A or B could |
| not trap or fault. This is also true if we've already loaded |
| from the address along the path from ENTRY. */ |
| else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b)) |
| return FALSE; |
| |
| /* if (test) x = a + b; else x = c - d; |
| => y = a + b; |
| x = c - d; |
| if (test) |
| x = y; |
| */ |
| |
| code = GET_CODE (if_info->cond); |
| insn_a = if_info->insn_a; |
| insn_b = if_info->insn_b; |
| |
| /* Total insn_rtx_cost should be smaller than branch cost. Exit |
| if insn_rtx_cost can't be estimated. */ |
| if (insn_a) |
| { |
| insn_cost |
| = insn_rtx_cost (PATTERN (insn_a), |
| optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a))); |
| if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost)) |
| return FALSE; |
| } |
| else |
| insn_cost = 0; |
| |
| if (insn_b) |
| { |
| insn_cost |
| += insn_rtx_cost (PATTERN (insn_b), |
| optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b))); |
| if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost)) |
| return FALSE; |
| } |
| |
| /* Possibly rearrange operands to make things come out more natural. */ |
| if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN) |
| { |
| int reversep = 0; |
| if (rtx_equal_p (b, x)) |
| reversep = 1; |
| else if (general_operand (b, GET_MODE (b))) |
| reversep = 1; |
| |
| if (reversep) |
| { |
| rtx tmp; |
| rtx_insn *tmp_insn; |
| code = reversed_comparison_code (if_info->cond, if_info->jump); |
| tmp = a, a = b, b = tmp; |
| tmp_insn = insn_a, insn_a = insn_b, insn_b = tmp_insn; |
| } |
| } |
| |
| start_sequence (); |
| |
| orig_a = a; |
| orig_b = b; |
| |
| /* If either operand is complex, load it into a register first. |
| The best way to do this is to copy the original insn. In this |
| way we preserve any clobbers etc that the insn may have had. |
| This is of course not possible in the IS_MEM case. */ |
| if (! general_operand (a, GET_MODE (a))) |
| { |
| rtx_insn *insn; |
| |
| if (is_mem) |
| { |
| rtx reg = gen_reg_rtx (GET_MODE (a)); |
| insn = emit_insn (gen_rtx_SET (VOIDmode, reg, a)); |
| } |
| else if (! insn_a) |
| goto end_seq_and_fail; |
| else |
| { |
| a = gen_reg_rtx (GET_MODE (a)); |
| rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a)); |
| rtx set = single_set (copy_of_a); |
| SET_DEST (set) = a; |
| insn = emit_insn (PATTERN (copy_of_a)); |
| } |
| if (recog_memoized (insn) < 0) |
| goto end_seq_and_fail; |
| } |
| if (! general_operand (b, GET_MODE (b))) |
| { |
| rtx pat; |
| rtx_insn *last; |
| rtx_insn *new_insn; |
| |
| if (is_mem) |
| { |
| rtx reg = gen_reg_rtx (GET_MODE (b)); |
| pat = gen_rtx_SET (VOIDmode, reg, b); |
| } |
| else if (! insn_b) |
| goto end_seq_and_fail; |
| else |
| { |
| b = gen_reg_rtx (GET_MODE (b)); |
| rtx_insn *copy_of_insn_b = as_a <rtx_insn *> (copy_rtx (insn_b)); |
| rtx set = single_set (copy_of_insn_b); |
| SET_DEST (set) = b; |
| pat = PATTERN (copy_of_insn_b); |
| } |
| |
| /* If insn to set up A clobbers any registers B depends on, try to |
| swap insn that sets up A with the one that sets up B. If even |
| that doesn't help, punt. */ |
| last = get_last_insn (); |
| if (last && modified_in_p (orig_b, last)) |
| { |
| new_insn = emit_insn_before (pat, get_insns ()); |
| if (modified_in_p (orig_a, new_insn)) |
| goto end_seq_and_fail; |
| } |
| else |
| new_insn = emit_insn (pat); |
| |
| if (recog_memoized (new_insn) < 0) |
| goto end_seq_and_fail; |
| } |
| |
| target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0), |
| XEXP (if_info->cond, 1), a, b); |
| |
| if (! target) |
| goto end_seq_and_fail; |
| |
| /* If we're handling a memory for above, emit the load now. */ |
| if (is_mem) |
| { |
| rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target); |
| |
| /* Copy over flags as appropriate. */ |
| if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b)) |
| MEM_VOLATILE_P (mem) = 1; |
| if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b)) |
| set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a)); |
| set_mem_align (mem, |
| MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b))); |
| |
| gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b)); |
| set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a)); |
| |
| noce_emit_move_insn (if_info->x, mem); |
| } |
| else if (target != x) |
| noce_emit_move_insn (x, target); |
| |
| ifcvt_seq = end_ifcvt_sequence (if_info); |
| if (!ifcvt_seq) |
| return FALSE; |
| |
| emit_insn_before_setloc (ifcvt_seq, if_info->jump, |
| INSN_LOCATION (if_info->insn_a)); |
| return TRUE; |
| |
| end_seq_and_fail: |
| end_sequence (); |
| return FALSE; |
| } |
| |
| /* For most cases, the simplified condition we found is the best |
| choice, but this is not the case for the min/max/abs transforms. |
| For these we wish to know that it is A or B in the condition. */ |
| |
| static rtx |
| noce_get_alt_condition (struct noce_if_info *if_info, rtx target, |
| rtx_insn **earliest) |
| { |
| rtx cond, set; |
| rtx_insn *insn; |
| int reverse; |
| |
| /* If target is already mentioned in the known condition, return it. */ |
| if (reg_mentioned_p (target, if_info->cond)) |
| { |
| *earliest = if_info->cond_earliest; |
| return if_info->cond; |
| } |
| |
| set = pc_set (if_info->jump); |
| cond = XEXP (SET_SRC (set), 0); |
| reverse |
| = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF |
| && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump); |
| if (if_info->then_else_reversed) |
| reverse = !reverse; |
| |
| /* If we're looking for a constant, try to make the conditional |
| have that constant in it. There are two reasons why it may |
| not have the constant we want: |
| |
| 1. GCC may have needed to put the constant in a register, because |
| the target can't compare directly against that constant. For |
| this case, we look for a SET immediately before the comparison |
| that puts a constant in that register. |
| |
| 2. GCC may have canonicalized the conditional, for example |
| replacing "if x < 4" with "if x <= 3". We can undo that (or |
| make equivalent types of changes) to get the constants we need |
| if they're off by one in the right direction. */ |
| |
| if (CONST_INT_P (target)) |
| { |
| enum rtx_code code = GET_CODE (if_info->cond); |
| rtx op_a = XEXP (if_info->cond, 0); |
| rtx op_b = XEXP (if_info->cond, 1); |
| rtx prev_insn; |
| |
| /* First, look to see if we put a constant in a register. */ |
| prev_insn = prev_nonnote_insn (if_info->cond_earliest); |
| if (prev_insn |
| && BLOCK_FOR_INSN (prev_insn) |
| == BLOCK_FOR_INSN (if_info->cond_earliest) |
| && INSN_P (prev_insn) |
| && GET_CODE (PATTERN (prev_insn)) == SET) |
| { |
| rtx src = find_reg_equal_equiv_note (prev_insn); |
| if (!src) |
| src = SET_SRC (PATTERN (prev_insn)); |
| if (CONST_INT_P (src)) |
| { |
| if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn)))) |
| op_a = src; |
| else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn)))) |
| op_b = src; |
| |
| if (CONST_INT_P (op_a)) |
| { |
| rtx tmp = op_a; |
| op_a = op_b; |
| op_b = tmp; |
| code = swap_condition (code); |
| } |
| } |
| } |
| |
| /* Now, look to see if we can get the right constant by |
| adjusting the conditional. */ |
| if (CONST_INT_P (op_b)) |
| { |
| HOST_WIDE_INT desired_val = INTVAL (target); |
| HOST_WIDE_INT actual_val = INTVAL (op_b); |
| |
| switch (code) |
| { |
| case LT: |
| if (actual_val == desired_val + 1) |
| { |
| code = LE; |
| op_b = GEN_INT (desired_val); |
| } |
| break; |
| case LE: |
| if (actual_val == desired_val - 1) |
| { |
| code = LT; |
| op_b = GEN_INT (desired_val); |
| } |
| break; |
| case GT: |
| if (actual_val == desired_val - 1) |
| { |
| code = GE; |
| op_b = GEN_INT (desired_val); |
| } |
| break; |
| case GE: |
| if (actual_val == desired_val + 1) |
| { |
| code = GT; |
| op_b = GEN_INT (desired_val); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* If we made any changes, generate a new conditional that is |
| equivalent to what we started with, but has the right |
| constants in it. */ |
| if (code != GET_CODE (if_info->cond) |
| || op_a != XEXP (if_info->cond, 0) |
| || op_b != XEXP (if_info->cond, 1)) |
| { |
| cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b); |
| *earliest = if_info->cond_earliest; |
| return cond; |
| } |
| } |
| |
| cond = canonicalize_condition (if_info->jump, cond, reverse, |
| earliest, target, HAVE_cbranchcc4, true); |
| if (! cond || ! reg_mentioned_p (target, cond)) |
| return NULL; |
| |
| /* We almost certainly searched back to a different place. |
| Need to re-verify correct lifetimes. */ |
| |
| /* X may not be mentioned in the range (cond_earliest, jump]. */ |
| for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn)) |
| if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn))) |
| return NULL; |
| |
| /* A and B may not be modified in the range [cond_earliest, jump). */ |
| for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn)) |
| if (INSN_P (insn) |
| && (modified_in_p (if_info->a, insn) |
| || modified_in_p (if_info->b, insn))) |
| return NULL; |
| |
| return cond; |
| } |
| |
| /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */ |
| |
| static int |
| noce_try_minmax (struct noce_if_info *if_info) |
| { |
| rtx cond, target; |
| rtx_insn *earliest, *seq; |
| enum rtx_code code, op; |
| int unsignedp; |
| |
| /* ??? Reject modes with NaNs or signed zeros since we don't know how |
| they will be resolved with an SMIN/SMAX. It wouldn't be too hard |
| to get the target to tell us... */ |
| if (HONOR_SIGNED_ZEROS (if_info->x) |
| || HONOR_NANS (if_info->x)) |
| return FALSE; |
| |
| cond = noce_get_alt_condition (if_info, if_info->a, &earliest); |
| if (!cond) |
| return FALSE; |
| |
| /* Verify the condition is of the form we expect, and canonicalize |
| the comparison code. */ |
| code = GET_CODE (cond); |
| if (rtx_equal_p (XEXP (cond, 0), if_info->a)) |
| { |
| if (! rtx_equal_p (XEXP (cond, 1), if_info->b)) |
| return FALSE; |
| } |
| else if (rtx_equal_p (XEXP (cond, 1), if_info->a)) |
| { |
| if (! rtx_equal_p (XEXP (cond, 0), if_info->b)) |
| return FALSE; |
| code = swap_condition (code); |
| } |
| else |
| return FALSE; |
| |
| /* Determine what sort of operation this is. Note that the code is for |
| a taken branch, so the code->operation mapping appears backwards. */ |
| switch (code) |
| { |
| case LT: |
| case LE: |
| case UNLT: |
| case UNLE: |
| op = SMAX; |
| unsignedp = 0; |
| break; |
| case GT: |
| case GE: |
| case UNGT: |
| case UNGE: |
| op = SMIN; |
| unsignedp = 0; |
| break; |
| case LTU: |
| case LEU: |
| op = UMAX; |
| unsignedp = 1; |
| break; |
| case GTU: |
| case GEU: |
| op = UMIN; |
| unsignedp = 1; |
| break; |
| default: |
| return FALSE; |
| } |
| |
| start_sequence (); |
| |
| target = expand_simple_binop (GET_MODE (if_info->x), op, |
| if_info->a, if_info->b, |
| if_info->x, unsignedp, OPTAB_WIDEN); |
| if (! target) |
| { |
| end_sequence (); |
| return FALSE; |
| } |
| if (target != if_info->x) |
| noce_emit_move_insn (if_info->x, target); |
| |
| seq = end_ifcvt_sequence (if_info); |
| if (!seq) |
| return FALSE; |
| |
| emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a)); |
| if_info->cond = cond; |
| if_info->cond_earliest = earliest; |
| |
| return TRUE; |
| } |
| |
| /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", |
| "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);", |
| etc. */ |
| |
| static int |
| noce_try_abs (struct noce_if_info *if_info) |
| { |
| rtx cond, target, a, b, c; |
| rtx_insn *earliest, *seq; |
| int negate; |
| bool one_cmpl = false; |
| |
| /* Reject modes with signed zeros. */ |
| if (HONOR_SIGNED_ZEROS (if_info->x)) |
| return FALSE; |
| |
| /* Recognize A and B as constituting an ABS or NABS. The canonical |
| form is a branch around the negation, taken when the object is the |
| first operand of a comparison against 0 that evaluates to true. */ |
| a = if_info->a; |
| b = if_info->b; |
| if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b)) |
| negate = 0; |
| else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a)) |
| { |
| c = a; a = b; b = c; |
| negate = 1; |
| } |
| else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b)) |
| { |
| negate = 0; |
| one_cmpl = true; |
| } |
| else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a)) |
| { |
| c = a; a = b; b = c; |
| negate = 1; |
| one_cmpl = true; |
| } |
| else |
| return FALSE; |
| |
| cond = noce_get_alt_condition (if_info, b, &earliest); |
| if (!cond) |
| return FALSE; |
| |
| /* Verify the condition is of the form we expect. */ |
| if (rtx_equal_p (XEXP (cond, 0), b)) |
| c = XEXP (cond, 1); |
| else if (rtx_equal_p (XEXP (cond, 1), b)) |
| { |
| c = XEXP (cond, 0); |
| negate = !negate; |
| } |
| else |
| return FALSE; |
| |
| /* Verify that C is zero. Search one step backward for a |
| REG_EQUAL note or a simple source if necessary. */ |
| if (REG_P (c)) |
| { |
| rtx set; |
| rtx_insn *insn = prev_nonnote_insn (earliest); |
| if (insn |
| && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest) |
| && (set = single_set (insn)) |
| && rtx_equal_p (SET_DEST (set), c)) |
| { |
| rtx note = find_reg_equal_equiv_note (insn); |
| if (note) |
| c = XEXP (note, 0); |
| else |
| c = SET_SRC (set); |
| } |
| else |
| return FALSE; |
| } |
| if (MEM_P (c) |
| && GET_CODE (XEXP (c, 0)) == SYMBOL_REF |
| && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0))) |
| c = get_pool_constant (XEXP (c, 0)); |
| |
| /* Work around funny ideas get_condition has wrt canonicalization. |
| Note that these rtx constants are known to be CONST_INT, and |
| therefore imply integer comparisons. |
| The one_cmpl case is more complicated, as we want to handle |
| only x < 0 ? ~x : x or x >= 0 ? x : ~x to one_cmpl_abs (x) |
| and x < 0 ? x : ~x or x >= 0 ? ~x : x to ~one_cmpl_abs (x), |
| but not other cases (x > -1 is equivalent of x >= 0). */ |
| if (c == constm1_rtx && GET_CODE (cond) == GT) |
| ; |
| else if (c == const1_rtx && GET_CODE (cond) == LT) |
| { |
| if (one_cmpl) |
| return FALSE; |
| } |
| else if (c == CONST0_RTX (GET_MODE (b))) |
| { |
| if (one_cmpl |
| && GET_CODE (cond) != GE |
| && GET_CODE (cond) != LT) |
| return FALSE; |
| } |
| else |
| return FALSE; |
| |
| /* Determine what sort of operation this is. */ |
| switch (GET_CODE (cond)) |
| { |
| case LT: |
| case LE: |
| case UNLT: |
| case UNLE: |
| negate = !negate; |
| break; |
| case GT: |
| case GE: |
| case UNGT: |
| case UNGE: |
| break; |
| default: |
| return FALSE; |
| } |
| |
| start_sequence (); |
| if (one_cmpl) |
| target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b, |
| if_info->x); |
| else |
| target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1); |
| |
| /* ??? It's a quandary whether cmove would be better here, especially |
| for integers. Perhaps combine will clean things up. */ |
| if (target && negate) |
| { |
| if (one_cmpl) |
| target = expand_simple_unop (GET_MODE (target), NOT, target, |
| if_info->x, 0); |
| else |
| target = expand_simple_unop (GET_MODE (target), NEG, target, |
| if_info->x, 0); |
| } |
| |
| if (! target) |
| { |
| end_sequence (); |
| return FALSE; |
| } |
| |
| if (target != if_info->x) |
| noce_emit_move_insn (if_info->x, target); |
| |
| seq = end_ifcvt_sequence (if_info); |
| if (!seq) |
| return FALSE; |
| |
| emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a)); |
| if_info->cond = cond; |
| if_info->cond_earliest = earliest; |
| |
| return TRUE; |
| } |
| |
| /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */ |
| |
| static int |
| noce_try_sign_mask (struct noce_if_info *if_info) |
| { |
| rtx cond, t, m, c; |
| rtx_insn *seq; |
| machine_mode mode; |
| enum rtx_code code; |
| bool t_unconditional; |
| |
| cond = if_info->cond; |
| code = GET_CODE (cond); |
| m = XEXP (cond, 0); |
| c = XEXP (cond, 1); |
| |
| t = NULL_RTX; |
| if (if_info->a == const0_rtx) |
| { |
| if ((code == LT && c == const0_rtx) |
| || (code == LE && c == constm1_rtx)) |
| t = if_info->b; |
| } |
| else if (if_info->b == const0_rtx) |
| { |
| if ((code == GE && c == const0_rtx) |
| || (code == GT && c == constm1_rtx)) |
| t = if_info->a; |
| } |
| |
| if (! t || side_effects_p (t)) |
| return FALSE; |
| |
| /* We currently don't handle different modes. */ |
| mode = GET_MODE (t); |
| if (GET_MODE (m) != mode) |
| return FALSE; |
| |
| /* This is only profitable if T is unconditionally executed/evaluated in the |
| original insn sequence or T is cheap. The former happens if B is the |
| non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no |
| INSN_B which can happen for e.g. conditional stores to memory. For the |
| cost computation use the block TEST_BB where the evaluation will end up |
| after the transformation. */ |
| t_unconditional = |
| (t == if_info->b |
| && (if_info->insn_b == NULL_RTX |
| || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb)); |
| if (!(t_unconditional |
| || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb)) |
| < COSTS_N_INSNS (2)))) |
| return FALSE; |
| |
| start_sequence (); |
| /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding |
| "(signed) m >> 31" directly. This benefits targets with specialized |
| insns to obtain the signmask, but still uses ashr_optab otherwise. */ |
| m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1); |
| t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT) |
| : NULL_RTX; |
| |
| if (!t) |
| { |
| end_sequence (); |
| return FALSE; |
| } |
| |
| noce_emit_move_insn (if_info->x, t); |
| |
| seq = end_ifcvt_sequence (if_info); |
| if (!seq) |
| return FALSE; |
| |
| emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a)); |
| return TRUE; |
| } |
| |
| |
| /* Optimize away "if (x & C) x |= C" and similar bit manipulation |
| transformations. */ |
| |
| static int |
| noce_try_bitop (struct noce_if_info *if_info) |
| { |
| rtx cond, x, a, result; |
| rtx_insn *seq; |
| machine_mode mode; |
| enum rtx_code code; |
| int bitnum; |
| |
| x = if_info->x; |
| cond = if_info->cond; |
| code = GET_CODE (cond); |
| |
| /* Check for no else condition. */ |
| if (! rtx_equal_p (x, if_info->b)) |
| return FALSE; |
| |
| /* Check for a suitable condition. */ |
| if (code != NE && code != EQ) |
| return FALSE; |
| if (XEXP (cond, 1) != const0_rtx) |
| return FALSE; |
| cond = XEXP (cond, 0); |
| |
| /* ??? We could also handle AND here. */ |
| if (GET_CODE (cond) == ZERO_EXTRACT) |
| { |
| if (XEXP (cond, 1) != const1_rtx |
| || !CONST_INT_P (XEXP (cond, 2)) |
| || ! rtx_equal_p (x, XEXP (cond, 0))) |
| return FALSE; |
| bitnum = INTVAL (XEXP (cond, 2)); |
| mode = GET_MODE (x); |
| if (BITS_BIG_ENDIAN) |
| bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum; |
| if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT) |
| return FALSE; |
| } |
| else |
| return FALSE; |
| |
| a = if_info->a; |
| if (GET_CODE (a) == IOR || GET_CODE (a) == XOR) |
| { |
| /* Check for "if (X & C) x = x op C". */ |
| if (! rtx_equal_p (x, XEXP (a, 0)) |
| || !CONST_INT_P (XEXP (a, 1)) |
| || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode)) |
| != (unsigned HOST_WIDE_INT) 1 << bitnum) |
| return FALSE; |
| |
| /* if ((x & C) == 0) x |= C; is transformed to x |= C. */ |
| /* if ((x & C) != 0) x |= C; is transformed to nothing. */ |
| if (GET_CODE (a) == IOR) |
| result = (code == NE) ? a : NULL_RTX; |
| else if (code == NE) |
| { |
| /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */ |
| result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode); |
| result = simplify_gen_binary (IOR, mode, x, result); |
| } |
| else |
| { |
| /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */ |
| result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode); |
| result = simplify_gen_binary (AND, mode, x, result); |
| } |
| } |
| else if (GET_CODE (a) == AND) |
| { |
| /* Check for "if (X & C) x &= ~C". */ |
| if (! rtx_equal_p (x, XEXP (a, 0)) |
| || !CONST_INT_P (XEXP (a, 1)) |
| || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode)) |
| != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode))) |
| return FALSE; |
| |
| /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */ |
| /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */ |
| result = (code == EQ) ? a : NULL_RTX; |
| } |
| else |
| return FALSE; |
| |
| if (result) |
| { |
| start_sequence (); |
| noce_emit_move_insn (x, result); |
| seq = end_ifcvt_sequence (if_info); |
| if (!seq) |
| return FALSE; |
| |
| emit_insn_before_setloc (seq, if_info->jump, |
| INSN_LOCATION (if_info->insn_a)); |
| } |
| return TRUE; |
| } |
| |
| |
| /* Similar to get_condition, only the resulting condition must be |
| valid at JUMP, instead of at EARLIEST. |
| |
| If THEN_ELSE_REVERSED is true, the fallthrough does not go to the |
| THEN block of the caller, and we have to reverse the condition. */ |
| |
| static rtx |
| noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed) |
| { |
| rtx cond, set, tmp; |
| bool reverse; |
| |
| if (! any_condjump_p (jump)) |
| return NULL_RTX; |
| |
| set = pc_set (jump); |
| |
| /* If this branches to JUMP_LABEL when the condition is false, |
| reverse the condition. */ |
| reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF |
| && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump)); |
| |
| /* We may have to reverse because the caller's if block is not canonical, |
| i.e. the THEN block isn't the fallthrough block for the TEST block |
| (see find_if_header). */ |
| if (then_else_reversed) |
| reverse = !reverse; |
| |
| /* If the condition variable is a register and is MODE_INT, accept it. */ |
| |
| cond = XEXP (SET_SRC (set), 0); |
| tmp = XEXP (cond, 0); |
| if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT |
| && (GET_MODE (tmp) != BImode |
| || !targetm.small_register_classes_for_mode_p (BImode))) |
| { |
| *earliest = jump; |
| |
| if (reverse) |
| cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)), |
| GET_MODE (cond), tmp, XEXP (cond, 1)); |
| return cond; |
| } |
| |
| /* Otherwise, fall back on canonicalize_condition to do the dirty |
| work of manipulating MODE_CC values and COMPARE rtx codes. */ |
| tmp = canonicalize_condition (jump, cond, reverse, earliest, |
| NULL_RTX, HAVE_cbranchcc4, true); |
| |
| /* We don't handle side-effects in the condition, like handling |
| REG_INC notes and making sure no duplicate conditions are emitted. */ |
| if (tmp != NULL_RTX && side_effects_p (tmp)) |
| return NULL_RTX; |
| |
| return tmp; |
| } |
| |
| /* Return true if OP is ok for if-then-else processing. */ |
| |
| static int |
| noce_operand_ok (const_rtx op) |
| { |
| if (side_effects_p (op)) |
| return FALSE; |
| |
| /* We special-case memories, so handle any of them with |
| no address side effects. */ |
| if (MEM_P (op)) |
| return ! side_effects_p (XEXP (op, 0)); |
| |
| return ! may_trap_p (op); |
| } |
| |
| /* Return true if a write into MEM may trap or fault. */ |
| |
| static bool |
| noce_mem_write_may_trap_or_fault_p (const_rtx mem) |
| { |
| rtx addr; |
| |
| if (MEM_READONLY_P (mem)) |
| return true; |
| |
| if (may_trap_or_fault_p (mem)) |
| return true; |
| |
| addr = XEXP (mem, 0); |
| |
| /* Call target hook to avoid the effects of -fpic etc.... */ |
| addr = targetm.delegitimize_address (addr); |
| |
| while (addr) |
| switch (GET_CODE (addr)) |
| { |
| case CONST: |
| case PRE_DEC: |
| case PRE_INC: |
| case POST_DEC: |
| case POST_INC: |
| case POST_MODIFY: |
| addr = XEXP (addr, 0); |
| break; |
| case LO_SUM: |
| case PRE_MODIFY: |
| addr = XEXP (addr, 1); |
| break; |
| case PLUS: |
| if (CONST_INT_P (XEXP (addr, 1))) |
| addr = XEXP (addr, 0); |
| else |
| return false; |
| break; |
| case LABEL_REF: |
| return true; |
| case SYMBOL_REF: |
| if (SYMBOL_REF_DECL (addr) |
| && decl_readonly_section (SYMBOL_REF_DECL (addr), 0)) |
| return true; |
| return false; |
| default: |
| return false; |
| } |
| |
| return false; |
| } |
| |
| /* Return whether we can use store speculation for MEM. TOP_BB is the |
| basic block above the conditional block where we are considering |
| doing the speculative store. We look for whether MEM is set |
| unconditionally later in the function. */ |
| |
| static bool |
| noce_can_store_speculate_p (basic_block top_bb, const_rtx mem) |
| { |
| basic_block dominator; |
| |
| for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb); |
| dominator != NULL; |
| dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator)) |
| { |
| rtx_insn *insn; |
| |
| FOR_BB_INSNS (dominator, insn) |
| { |
| /* If we see something that might be a memory barrier, we |
| have to stop looking. Even if the MEM is set later in |
| the function, we still don't want to set it |
| unconditionally before the barrier. */ |
| if (INSN_P (insn) |
| && (volatile_insn_p (PATTERN (insn)) |
| || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn))))) |
| return false; |
| |
| if (memory_must_be_modified_in_insn_p (mem, insn)) |
| return true; |
| if (modified_in_p (XEXP (mem, 0), insn)) |
| return false; |
| |
| } |
| } |
| |
| return false; |
| } |
| |
| /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert |
| it without using conditional execution. Return TRUE if we were successful |
| at converting the block. */ |
| |
| static int |
| noce_process_if_block (struct noce_if_info *if_info) |
| { |
| basic_block test_bb = if_info->test_bb; /* test block */ |
| basic_block then_bb = if_info->then_bb; /* THEN */ |
| basic_block else_bb = if_info->else_bb; /* ELSE or NULL */ |
| basic_block join_bb = if_info->join_bb; /* JOIN */ |
| rtx_insn *jump = if_info->jump; |
| rtx cond = if_info->cond; |
| rtx_insn *insn_a, *insn_b; |
| rtx set_a, set_b; |
| rtx orig_x, x, a, b; |
| rtx cc; |
| |
| /* We're looking for patterns of the form |
| |
| (1) if (...) x = a; else x = b; |
| (2) x = b; if (...) x = a; |
| (3) if (...) x = a; // as if with an initial x = x. |
| |
| The later patterns require jumps to be more expensive. |
| |
| ??? For future expansion, look for multiple X in such patterns. */ |
| |
| /* Look for one of the potential sets. */ |
| insn_a = first_active_insn (then_bb); |
| if (! insn_a |
| || insn_a != last_active_insn (then_bb, FALSE) |
| || (set_a = single_set (insn_a)) == NULL_RTX) |
| return FALSE; |
| |
| x = SET_DEST (set_a); |
| a = SET_SRC (set_a); |
| |
| /* Look for the other potential set. Make sure we've got equivalent |
| destinations. */ |
| /* ??? This is overconservative. Storing to two different mems is |
| as easy as conditionally computing the address. Storing to a |
| single mem merely requires a scratch memory to use as one of the |
| destination addresses; often the memory immediately below the |
| stack pointer is available for this. */ |
| set_b = NULL_RTX; |
| if (else_bb) |
| { |
| insn_b = first_active_insn (else_bb); |
| if (! insn_b |
| || insn_b != last_active_insn (else_bb, FALSE) |
| || (set_b = single_set (insn_b)) == NULL_RTX |
| || ! rtx_interchangeable_p (x, SET_DEST (set_b))) |
| return FALSE; |
| } |
| else |
| { |
| insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest); |
| /* We're going to be moving the evaluation of B down from above |
| COND_EARLIEST to JUMP. Make sure the relevant data is still |
| intact. */ |
| if (! insn_b |
| || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest) |
| || !NONJUMP_INSN_P (insn_b) |
| || (set_b = single_set (insn_b)) == NULL_RTX |
| || ! rtx_interchangeable_p (x, SET_DEST (set_b)) |
| || ! noce_operand_ok (SET_SRC (set_b)) |
| || reg_overlap_mentioned_p (x, SET_SRC (set_b)) |
| || modified_between_p (SET_SRC (set_b), insn_b, jump) |
| /* Avoid extending the lifetime of hard registers on small |
| register class machines. */ |
| || (REG_P (SET_SRC (set_b)) |
| && HARD_REGISTER_P (SET_SRC (set_b)) |
| && targetm.small_register_classes_for_mode_p |
| (GET_MODE (SET_SRC (set_b)))) |
| /* Likewise with X. In particular this can happen when |
| noce_get_condition looks farther back in the instruction |
| stream than one might expect. */ |
| || reg_overlap_mentioned_p (x, cond) |
| || reg_overlap_mentioned_p (x, a) |
| || modified_between_p (x, insn_b, jump)) |
| { |
| insn_b = NULL; |
| set_b = NULL_RTX; |
| } |
| } |
| |
| /* If x has side effects then only the if-then-else form is safe to |
| convert. But even in that case we would need to restore any notes |
| (such as REG_INC) at then end. That can be tricky if |
| noce_emit_move_insn expands to more than one insn, so disable the |
| optimization entirely for now if there are side effects. */ |
| if (side_effects_p (x)) |
| return FALSE; |
| |
| b = (set_b ? SET_SRC (set_b) : x); |
| |
| /* Only operate on register destinations, and even then avoid extending |
| the lifetime of hard registers on small register class machines. */ |
| orig_x = x; |
| if (!REG_P (x) |
| || (HARD_REGISTER_P (x) |
| && targetm.small_register_classes_for_mode_p (GET_MODE (x)))) |
| { |
| if (GET_MODE (x) == BLKmode) |
| return FALSE; |
| |
| if (GET_CODE (x) == ZERO_EXTRACT |
| && (!CONST_INT_P (XEXP (x, 1)) |
| || !CONST_INT_P (XEXP (x, 2)))) |
| return FALSE; |
| |
| x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART |
| ? XEXP (x, 0) : x)); |
| } |
| |
| /* Don't operate on sources that may trap or are volatile. */ |
| if (! noce_operand_ok (a) || ! noce_operand_ok (b)) |
| return FALSE; |
| |
| retry: |
| /* Set up the info block for our subroutines. */ |
| if_info->insn_a = insn_a; |
| if_info->insn_b = insn_b; |
| if_info->x = x; |
| if_info->a = a; |
| if_info->b = b; |
| |
| /* Skip it if the instruction to be moved might clobber CC. */ |
| cc = cc_in_cond (cond); |
| if (cc |
| && (set_of (cc, insn_a) |
| || (insn_b && set_of (cc, insn_b)))) |
| return FALSE; |
| |
| /* Try optimizations in some approximation of a useful order. */ |
| /* ??? Should first look to see if X is live incoming at all. If it |
| isn't, we don't need anything but an unconditional set. */ |
| |
| /* Look and see if A and B are really the same. Avoid creating silly |
| cmove constructs that no one will fix up later. */ |
| if (rtx_interchangeable_p (a, b)) |
| { |
| /* If we have an INSN_B, we don't have to create any new rtl. Just |
| move the instruction that we already have. If we don't have an |
| INSN_B, that means that A == X, and we've got a noop move. In |
| that case don't do anything and let the code below delete INSN_A. */ |
| if (insn_b && else_bb) |
| { |
| rtx note; |
| |
| if (else_bb && insn_b == BB_END (else_bb)) |
| BB_END (else_bb) = PREV_INSN (insn_b); |
| reorder_insns (insn_b, insn_b, PREV_INSN (jump)); |
| |
| /* If there was a REG_EQUAL note, delete it since it may have been |
| true due to this insn being after a jump. */ |
| if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0) |
| remove_note (insn_b, note); |
| |
| insn_b = NULL; |
| } |
| /* If we have "x = b; if (...) x = a;", and x has side-effects, then |
| x must be executed twice. */ |
| else if (insn_b && side_effects_p (orig_x)) |
| return FALSE; |
| |
| x = orig_x; |
| goto success; |
| } |
| |
| if (!set_b && MEM_P (orig_x)) |
| { |
| /* Disallow the "if (...) x = a;" form (implicit "else x = x;") |
| for optimizations if writing to x may trap or fault, |
| i.e. it's a memory other than a static var or a stack slot, |
| is misaligned on strict aligned machines or is read-only. If |
| x is a read-only memory, then the program is valid only if we |
| avoid the store into it. If there are stores on both the |
| THEN and ELSE arms, then we can go ahead with the conversion; |
| either the program is broken, or the condition is always |
| false such that the other memory is selected. */ |
| if (noce_mem_write_may_trap_or_fault_p (orig_x)) |
| return FALSE; |
| |
| /* Avoid store speculation: given "if (...) x = a" where x is a |
| MEM, we only want to do the store if x is always set |
| somewhere in the function. This avoids cases like |
| if (pthread_mutex_trylock(mutex)) |
| ++global_variable; |
| where we only want global_variable to be changed if the mutex |
| is held. FIXME: This should ideally be expressed directly in |
| RTL somehow. */ |
| if (!noce_can_store_speculate_p (test_bb, orig_x)) |
| return FALSE; |
| } |
| |
| if (noce_try_move (if_info)) |
| goto success; |
| if (noce_try_store_flag (if_info)) |
| goto success; |
| if (noce_try_bitop (if_info)) |
| goto success; |
| if (noce_try_minmax (if_info)) |
| goto success; |
| if (noce_try_abs (if_info)) |
| goto success; |
| if (HAVE_conditional_move |
| && noce_try_cmove (if_info)) |
| goto success; |
| if (! targetm.have_conditional_execution ()) |
| { |
| if (noce_try_store_flag_constants (if_info)) |
| goto success; |
| if (noce_try_addcc (if_info)) |
| goto success; |
| if (noce_try_store_flag_mask (if_info)) |
| goto success; |
| if (HAVE_conditional_move |
| && noce_try_cmove_arith (if_info)) |
| goto success; |
| if (noce_try_sign_mask (if_info)) |
| goto success; |
| } |
| |
| if (!else_bb && set_b) |
| { |
| insn_b = NULL; |
| set_b = NULL_RTX; |
| b = orig_x; |
| goto retry; |
| } |
| |
| return FALSE; |
| |
| success: |
| |
| /* If we used a temporary, fix it up now. */ |
| if (orig_x != x) |
| { |
| rtx_insn *seq; |
| |
| start_sequence (); |
| noce_emit_move_insn (orig_x, x); |
| seq = get_insns (); |
| set_used_flags (orig_x); |
| unshare_all_rtl_in_chain (seq); |
| end_sequence (); |
| |
| emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a)); |
| } |
| |
| /* The original THEN and ELSE blocks may now be removed. The test block |
| must now jump to the join block. If the test block and the join block |
| can be merged, do so. */ |
| if (else_bb) |
| { |
| delete_basic_block (else_bb); |
| num_true_changes++; |
| } |
| else |
| remove_edge (find_edge (test_bb, join_bb)); |
| |
| remove_edge (find_edge (then_bb, join_bb)); |
| redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb); |
| delete_basic_block (then_bb); |
| num_true_changes++; |
| |
| if (can_merge_blocks_p (test_bb, join_bb)) |
| { |
| merge_blocks (test_bb, join_bb); |
| num_true_changes++; |
| } |
| |
| num_updated_if_blocks++; |
| return TRUE; |
| } |
| |
| /* Check whether a block is suitable for conditional move conversion. |
| Every insn must be a simple set of a register to a constant or a |
| register. For each assignment, store the value in the pointer map |
| VALS, keyed indexed by register pointer, then store the register |
| pointer in REGS. COND is the condition we will test. */ |
| |
| static int |
| check_cond_move_block (basic_block bb, |
| hash_map<rtx, rtx> *vals, |
| vec<rtx> *regs, |
| rtx cond) |
| { |
| rtx_insn *insn; |
| rtx cc = cc_in_cond (cond); |
| |
| /* We can only handle simple jumps at the end of the basic block. |
| It is almost impossible to update the CFG otherwise. */ |
| insn = BB_END (bb); |
| if (JUMP_P (insn) && !onlyjump_p (insn)) |
| return FALSE; |
| |
| FOR_BB_INSNS (bb, insn) |
| { |
| rtx set, dest, src; |
| |
| if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn)) |
| continue; |
| set = single_set (insn); |
| if (!set) |
| return FALSE; |
| |
| dest = SET_DEST (set); |
| src = SET_SRC (set); |
| if (!REG_P (dest) |
| || (HARD_REGISTER_P (dest) |
| && targetm.small_register_classes_for_mode_p (GET_MODE (dest)))) |
| return FALSE; |
| |
| if (!CONSTANT_P (src) && !register_operand (src, VOIDmode)) |
| return FALSE; |
| |
| if (side_effects_p (src) || side_effects_p (dest)) |
| return FALSE; |
| |
| if (may_trap_p (src) || may_trap_p (dest)) |
| return FALSE; |
| |
| /* Don't try to handle this if the source register was |
| modified earlier in the block. */ |
| if ((REG_P (src) |
| && vals->get (src)) |
| || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src)) |
| && vals->get (SUBREG_REG (src)))) |
| return FALSE; |
| |
| /* Don't try to handle this if the destination register was |
| modified earlier in the block. */ |
| if (vals->get (dest)) |
| return FALSE; |
| |
| /* Don't try to handle this if the condition uses the |
| destination register. */ |
| if (reg_overlap_mentioned_p (dest, cond)) |
| return FALSE; |
| |
| /* Don't try to handle this if the source register is modified |
| later in the block. */ |
| if (!CONSTANT_P (src) |
| && modified_between_p (src, insn, NEXT_INSN (BB_END (bb)))) |
| return FALSE; |
| |
| /* Skip it if the instruction to be moved might clobber CC. */ |
| if (cc && set_of (cc, insn)) |
| return FALSE; |
| |
| vals->put (dest, src); |
| |
| regs->safe_push (dest); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Given a basic block BB suitable for conditional move conversion, |
| a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing |
| the register values depending on COND, emit the insns in the block as |
| conditional moves. If ELSE_BLOCK is true, THEN_BB was already |
| processed. The caller has started a sequence for the conversion. |
| Return true if successful, false if something goes wrong. */ |
| |
| static bool |
| cond_move_convert_if_block (struct noce_if_info *if_infop, |
| basic_block bb, rtx cond, |
| hash_map<rtx, rtx> *then_vals, |
| hash_map<rtx, rtx> *else_vals, |
| bool else_block_p) |
| { |
| enum rtx_code code; |
| rtx_insn *insn; |
| rtx cond_arg0, cond_arg1; |
| |
| code = GET_CODE (cond); |
| cond_arg0 = XEXP (cond, 0); |
| cond_arg1 = XEXP (cond, 1); |
| |
| FOR_BB_INSNS (bb, insn) |
| { |
| rtx set, target, dest, t, e; |
| |
| /* ??? Maybe emit conditional debug insn? */ |
| if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn)) |
| continue; |
| set = single_set (insn); |
| gcc_assert (set && REG_P (SET_DEST (set))); |
| |
| dest = SET_DEST (set); |
| |
| rtx *then_slot = then_vals->get (dest); |
| rtx *else_slot = else_vals->get (dest); |
| t = then_slot ? *then_slot : NULL_RTX; |
| e = else_slot ? *else_slot : NULL_RTX; |
| |
| if (else_block_p) |
| { |
| /* If this register was set in the then block, we already |
| handled this case there. */ |
| if (t) |
| continue; |
| t = dest; |
| gcc_assert (e); |
| } |
| else |
| { |
| gcc_assert (t); |
| if (!e) |
| e = dest; |
| } |
| |
| target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1, |
| t, e); |
| if (!target) |
| return false; |
| |
| if (target != dest) |
| noce_emit_move_insn (dest, target); |
| } |
| |
| return true; |
| } |
| |
| /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert |
| it using only conditional moves. Return TRUE if we were successful at |
| converting the block. */ |
| |
| static int |
| cond_move_process_if_block (struct noce_if_info *if_info) |
| { |
| basic_block test_bb = if_info->test_bb; |
| basic_block then_bb = if_info->then_bb; |
| basic_block else_bb = if_info->else_bb; |
| basic_block join_bb = if_info->join_bb; |
| rtx_insn *jump = if_info->jump; |
| rtx cond = if_info->cond; |
| rtx_insn *seq, *loc_insn; |
| rtx reg; |
| int c; |
| vec<rtx> then_regs = vNULL; |
| vec<rtx> else_regs = vNULL; |
| unsigned int i; |
| int success_p = FALSE; |
| |
| /* Build a mapping for each block to the value used for each |
| register. */ |
| hash_map<rtx, rtx> then_vals; |
| hash_map<rtx, rtx> else_vals; |
| |
| /* Make sure the blocks are suitable. */ |
| if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond) |
| || (else_bb |
| && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond))) |
| goto done; |
| |
| /* Make sure the blocks can be used together. If the same register |
| is set in both blocks, and is not set to a constant in both |
| cases, then both blocks must set it to the same register. We |
| have already verified that if it is set to a register, that the |
| source register does not change after the assignment. Also count |
| the number of registers set in only one of the blocks. */ |
| c = 0; |
| FOR_EACH_VEC_ELT (then_regs, i, reg) |
| { |
| rtx *then_slot = then_vals.get (reg); |
| rtx *else_slot = else_vals.get (reg); |
| |
| gcc_checking_assert (then_slot); |
| if (!else_slot) |
| ++c; |
| else |
| { |
| rtx then_val = *then_slot; |
| rtx else_val = *else_slot; |
| if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val) |
| && !rtx_equal_p (then_val, else_val)) |
| goto done; |
| } |
| } |
| |
| /* Finish off c for MAX_CONDITIONAL_EXECUTE. */ |
| FOR_EACH_VEC_ELT (else_regs, i, reg) |
| { |
| gcc_checking_assert (else_vals.get (reg)); |
| if (!then_vals.get (reg)) |
| ++c; |
| } |
| |
| /* Make sure it is reasonable to convert this block. What matters |
| is the number of assignments currently made in only one of the |
| branches, since if we convert we are going to always execute |
| them. */ |
| if (c > MAX_CONDITIONAL_EXECUTE) |
| goto done; |
| |
| /* Try to emit the conditional moves. First do the then block, |
| then do anything left in the else blocks. */ |
| start_sequence (); |
| if (!cond_move_convert_if_block (if_info, then_bb, cond, |
| &then_vals, &else_vals, false) |
| || (else_bb |
| && !cond_move_convert_if_block (if_info, else_bb, cond, |
| &then_vals, &else_vals, true))) |
| { |
| end_sequence (); |
| goto done; |
| } |
| seq = end_ifcvt_sequence (if_info); |
| if (!seq) |
| goto done; |
| |
| loc_insn = first_active_insn (then_bb); |
| if (!loc_insn) |
| { |
| loc_insn = first_active_insn (else_bb); |
| gcc_assert (loc_insn); |
| } |
| emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn)); |
| |
| if (else_bb) |
| { |
| delete_basic_block (else_bb); |
| num_true_changes++; |
| } |
| else |
| remove_edge (find_edge (test_bb, join_bb)); |
| |
| remove_edge (find_edge (then_bb, join_bb)); |
| redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb); |
| delete_basic_block (then_bb); |
| num_true_changes++; |
| |
| if (can_merge_blocks_p (test_bb, join_bb)) |
| { |
| merge_blocks (test_bb, join_bb); |
| num_true_changes++; |
| } |
| |
| num_updated_if_blocks++; |
| |
| success_p = TRUE; |
| |
| done: |
| then_regs.release (); |
| else_regs.release (); |
| return success_p; |
| } |
| |
| |
| /* Determine if a given basic block heads a simple IF-THEN-JOIN or an |
| IF-THEN-ELSE-JOIN block. |
| |
| If so, we'll try to convert the insns to not require the branch, |
| using only transformations that do not require conditional execution. |
| |
| Return TRUE if we were successful at converting the block. */ |
| |
| static int |
| noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge, |
| int pass) |
| { |
| basic_block then_bb, else_bb, join_bb; |
| bool then_else_reversed = false; |
| rtx_insn *jump; |
| rtx cond; |
| rtx_insn *cond_earliest; |
| struct noce_if_info if_info; |
| |
| /* We only ever should get here before reload. */ |
| gcc_assert (!reload_completed); |
| |
| /* Recognize an IF-THEN-ELSE-JOIN block. */ |
| if (single_pred_p (then_edge->dest) |
| && single_succ_p (then_edge->dest) |
| && single_pred_p (else_edge->dest) |
| && single_succ_p (else_edge->dest) |
| && single_succ (then_edge->dest) == single_succ (else_edge->dest)) |
| { |
| then_bb = then_edge->dest; |
| else_bb = else_edge->dest; |
| join_bb = single_succ (then_bb); |
| } |
| /* Recognize an IF-THEN-JOIN block. */ |
| else if (single_pred_p (then_edge->dest) |
| && single_succ_p (then_edge->dest) |
| && single_succ (then_edge->dest) == else_edge->dest) |
| { |
| then_bb = then_edge->dest; |
| else_bb = NULL_BLOCK; |
| join_bb = else_edge->dest; |
| } |
| /* Recognize an IF-ELSE-JOIN block. We can have those because the order |
| of basic blocks in cfglayout mode does not matter, so the fallthrough |
| edge can go to any basic block (and not just to bb->next_bb, like in |
| cfgrtl mode). */ |
| else if (single_pred_p (else_edge->dest) |
| && single_succ_p (else_edge->dest) |
| && single_succ (else_edge->dest<
|