| /* Branch prediction routines for the GNU compiler. |
| Copyright (C) 2000-2015 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* References: |
| |
| [1] "Branch Prediction for Free" |
| Ball and Larus; PLDI '93. |
| [2] "Static Branch Frequency and Program Profile Analysis" |
| Wu and Larus; MICRO-27. |
| [3] "Corpus-based Static Branch Prediction" |
| Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */ |
| |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "hash-set.h" |
| #include "machmode.h" |
| #include "vec.h" |
| #include "double-int.h" |
| #include "input.h" |
| #include "alias.h" |
| #include "symtab.h" |
| #include "wide-int.h" |
| #include "inchash.h" |
| #include "tree.h" |
| #include "fold-const.h" |
| #include "calls.h" |
| #include "rtl.h" |
| #include "tm_p.h" |
| #include "hard-reg-set.h" |
| #include "predict.h" |
| #include "function.h" |
| #include "dominance.h" |
| #include "cfg.h" |
| #include "cfganal.h" |
| #include "basic-block.h" |
| #include "insn-config.h" |
| #include "regs.h" |
| #include "flags.h" |
| #include "profile.h" |
| #include "except.h" |
| #include "diagnostic-core.h" |
| #include "recog.h" |
| #include "hashtab.h" |
| #include "statistics.h" |
| #include "real.h" |
| #include "fixed-value.h" |
| #include "expmed.h" |
| #include "dojump.h" |
| #include "explow.h" |
| #include "emit-rtl.h" |
| #include "varasm.h" |
| #include "stmt.h" |
| #include "expr.h" |
| #include "coverage.h" |
| #include "sreal.h" |
| #include "params.h" |
| #include "target.h" |
| #include "cfgloop.h" |
| #include "hash-map.h" |
| #include "tree-ssa-alias.h" |
| #include "internal-fn.h" |
| #include "gimple-expr.h" |
| #include "is-a.h" |
| #include "gimple.h" |
| #include "gimple-iterator.h" |
| #include "gimple-ssa.h" |
| #include "plugin-api.h" |
| #include "ipa-ref.h" |
| #include "cgraph.h" |
| #include "tree-cfg.h" |
| #include "tree-phinodes.h" |
| #include "ssa-iterators.h" |
| #include "tree-ssa-loop-niter.h" |
| #include "tree-ssa-loop.h" |
| #include "tree-pass.h" |
| #include "tree-scalar-evolution.h" |
| |
| /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE, |
| 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */ |
| static sreal real_almost_one, real_br_prob_base, |
| real_inv_br_prob_base, real_one_half, real_bb_freq_max; |
| |
| static void combine_predictions_for_insn (rtx_insn *, basic_block); |
| static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int); |
| static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction); |
| static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction); |
| static bool can_predict_insn_p (const rtx_insn *); |
| |
| /* Information we hold about each branch predictor. |
| Filled using information from predict.def. */ |
| |
| struct predictor_info |
| { |
| const char *const name; /* Name used in the debugging dumps. */ |
| const int hitrate; /* Expected hitrate used by |
| predict_insn_def call. */ |
| const int flags; |
| }; |
| |
| /* Use given predictor without Dempster-Shaffer theory if it matches |
| using first_match heuristics. */ |
| #define PRED_FLAG_FIRST_MATCH 1 |
| |
| /* Recompute hitrate in percent to our representation. */ |
| |
| #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100) |
| |
| #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS}, |
| static const struct predictor_info predictor_info[]= { |
| #include "predict.def" |
| |
| /* Upper bound on predictors. */ |
| {NULL, 0, 0} |
| }; |
| #undef DEF_PREDICTOR |
| |
| /* Return TRUE if frequency FREQ is considered to be hot. */ |
| |
| static inline bool |
| maybe_hot_frequency_p (struct function *fun, int freq) |
| { |
| struct cgraph_node *node = cgraph_node::get (fun->decl); |
| if (!profile_info |
| || !opt_for_fn (fun->decl, flag_branch_probabilities)) |
| { |
| if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED) |
| return false; |
| if (node->frequency == NODE_FREQUENCY_HOT) |
| return true; |
| } |
| if (profile_status_for_fn (fun) == PROFILE_ABSENT) |
| return true; |
| if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE |
| && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3)) |
| return false; |
| if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0) |
| return false; |
| if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency |
| / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))) |
| return false; |
| return true; |
| } |
| |
| static gcov_type min_count = -1; |
| |
| /* Determine the threshold for hot BB counts. */ |
| |
| gcov_type |
| get_hot_bb_threshold () |
| { |
| gcov_working_set_t *ws; |
| if (min_count == -1) |
| { |
| ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE)); |
| gcc_assert (ws); |
| min_count = ws->min_counter; |
| } |
| return min_count; |
| } |
| |
| /* Set the threshold for hot BB counts. */ |
| |
| void |
| set_hot_bb_threshold (gcov_type min) |
| { |
| min_count = min; |
| } |
| |
| /* Return TRUE if frequency FREQ is considered to be hot. */ |
| |
| bool |
| maybe_hot_count_p (struct function *fun, gcov_type count) |
| { |
| if (fun && profile_status_for_fn (fun) != PROFILE_READ) |
| return true; |
| /* Code executed at most once is not hot. */ |
| if (profile_info->runs >= count) |
| return false; |
| return (count >= get_hot_bb_threshold ()); |
| } |
| |
| /* Return true in case BB can be CPU intensive and should be optimized |
| for maximal performance. */ |
| |
| bool |
| maybe_hot_bb_p (struct function *fun, const_basic_block bb) |
| { |
| gcc_checking_assert (fun); |
| if (profile_status_for_fn (fun) == PROFILE_READ) |
| return maybe_hot_count_p (fun, bb->count); |
| return maybe_hot_frequency_p (fun, bb->frequency); |
| } |
| |
| /* Return true in case BB can be CPU intensive and should be optimized |
| for maximal performance. */ |
| |
| bool |
| maybe_hot_edge_p (edge e) |
| { |
| if (profile_status_for_fn (cfun) == PROFILE_READ) |
| return maybe_hot_count_p (cfun, e->count); |
| return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e)); |
| } |
| |
| /* Return true if profile COUNT and FREQUENCY, or function FUN static |
| node frequency reflects never being executed. */ |
| |
| static bool |
| probably_never_executed (struct function *fun, |
| gcov_type count, int frequency) |
| { |
| gcc_checking_assert (fun); |
| if (profile_status_for_fn (fun) == PROFILE_READ) |
| { |
| int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION); |
| if (count * unlikely_count_fraction >= profile_info->runs) |
| return false; |
| if (!frequency) |
| return true; |
| if (!ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency) |
| return false; |
| if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count) |
| { |
| gcov_type computed_count; |
| /* Check for possibility of overflow, in which case entry bb count |
| is large enough to do the division first without losing much |
| precision. */ |
| if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count < REG_BR_PROB_BASE * |
| REG_BR_PROB_BASE) |
| { |
| gcov_type scaled_count |
| = frequency * ENTRY_BLOCK_PTR_FOR_FN (fun)->count * |
| unlikely_count_fraction; |
| computed_count = RDIV (scaled_count, |
| ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency); |
| } |
| else |
| { |
| computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (fun)->count, |
| ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency); |
| computed_count *= frequency * unlikely_count_fraction; |
| } |
| if (computed_count >= profile_info->runs) |
| return false; |
| } |
| return true; |
| } |
| if ((!profile_info || !(opt_for_fn (fun->decl, flag_branch_probabilities))) |
| && (cgraph_node::get (fun->decl)->frequency |
| == NODE_FREQUENCY_UNLIKELY_EXECUTED)) |
| return true; |
| return false; |
| } |
| |
| |
| /* Return true in case BB is probably never executed. */ |
| |
| bool |
| probably_never_executed_bb_p (struct function *fun, const_basic_block bb) |
| { |
| return probably_never_executed (fun, bb->count, bb->frequency); |
| } |
| |
| |
| /* Return true in case edge E is probably never executed. */ |
| |
| bool |
| probably_never_executed_edge_p (struct function *fun, edge e) |
| { |
| return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e)); |
| } |
| |
| /* Return true when current function should always be optimized for size. */ |
| |
| bool |
| optimize_function_for_size_p (struct function *fun) |
| { |
| if (!fun || !fun->decl) |
| return optimize_size; |
| cgraph_node *n = cgraph_node::get (fun->decl); |
| return n && n->optimize_for_size_p (); |
| } |
| |
| /* Return true when current function should always be optimized for speed. */ |
| |
| bool |
| optimize_function_for_speed_p (struct function *fun) |
| { |
| return !optimize_function_for_size_p (fun); |
| } |
| |
| /* Return TRUE when BB should be optimized for size. */ |
| |
| bool |
| optimize_bb_for_size_p (const_basic_block bb) |
| { |
| return (optimize_function_for_size_p (cfun) |
| || (bb && !maybe_hot_bb_p (cfun, bb))); |
| } |
| |
| /* Return TRUE when BB should be optimized for speed. */ |
| |
| bool |
| optimize_bb_for_speed_p (const_basic_block bb) |
| { |
| return !optimize_bb_for_size_p (bb); |
| } |
| |
| /* Return TRUE when BB should be optimized for size. */ |
| |
| bool |
| optimize_edge_for_size_p (edge e) |
| { |
| return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e); |
| } |
| |
| /* Return TRUE when BB should be optimized for speed. */ |
| |
| bool |
| optimize_edge_for_speed_p (edge e) |
| { |
| return !optimize_edge_for_size_p (e); |
| } |
| |
| /* Return TRUE when BB should be optimized for size. */ |
| |
| bool |
| optimize_insn_for_size_p (void) |
| { |
| return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p; |
| } |
| |
| /* Return TRUE when BB should be optimized for speed. */ |
| |
| bool |
| optimize_insn_for_speed_p (void) |
| { |
| return !optimize_insn_for_size_p (); |
| } |
| |
| /* Return TRUE when LOOP should be optimized for size. */ |
| |
| bool |
| optimize_loop_for_size_p (struct loop *loop) |
| { |
| return optimize_bb_for_size_p (loop->header); |
| } |
| |
| /* Return TRUE when LOOP should be optimized for speed. */ |
| |
| bool |
| optimize_loop_for_speed_p (struct loop *loop) |
| { |
| return optimize_bb_for_speed_p (loop->header); |
| } |
| |
| /* Return TRUE when LOOP nest should be optimized for speed. */ |
| |
| bool |
| optimize_loop_nest_for_speed_p (struct loop *loop) |
| { |
| struct loop *l = loop; |
| if (optimize_loop_for_speed_p (loop)) |
| return true; |
| l = loop->inner; |
| while (l && l != loop) |
| { |
| if (optimize_loop_for_speed_p (l)) |
| return true; |
| if (l->inner) |
| l = l->inner; |
| else if (l->next) |
| l = l->next; |
| else |
| { |
| while (l != loop && !l->next) |
| l = loop_outer (l); |
| if (l != loop) |
| l = l->next; |
| } |
| } |
| return false; |
| } |
| |
| /* Return TRUE when LOOP nest should be optimized for size. */ |
| |
| bool |
| optimize_loop_nest_for_size_p (struct loop *loop) |
| { |
| return !optimize_loop_nest_for_speed_p (loop); |
| } |
| |
| /* Return true when edge E is likely to be well predictable by branch |
| predictor. */ |
| |
| bool |
| predictable_edge_p (edge e) |
| { |
| if (profile_status_for_fn (cfun) == PROFILE_ABSENT) |
| return false; |
| if ((e->probability |
| <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100) |
| || (REG_BR_PROB_BASE - e->probability |
| <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)) |
| return true; |
| return false; |
| } |
| |
| |
| /* Set RTL expansion for BB profile. */ |
| |
| void |
| rtl_profile_for_bb (basic_block bb) |
| { |
| crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb); |
| } |
| |
| /* Set RTL expansion for edge profile. */ |
| |
| void |
| rtl_profile_for_edge (edge e) |
| { |
| crtl->maybe_hot_insn_p = maybe_hot_edge_p (e); |
| } |
| |
| /* Set RTL expansion to default mode (i.e. when profile info is not known). */ |
| void |
| default_rtl_profile (void) |
| { |
| crtl->maybe_hot_insn_p = true; |
| } |
| |
| /* Return true if the one of outgoing edges is already predicted by |
| PREDICTOR. */ |
| |
| bool |
| rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor) |
| { |
| rtx note; |
| if (!INSN_P (BB_END (bb))) |
| return false; |
| for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1)) |
| if (REG_NOTE_KIND (note) == REG_BR_PRED |
| && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor) |
| return true; |
| return false; |
| } |
| |
| /* Structure representing predictions in tree level. */ |
| |
| struct edge_prediction { |
| struct edge_prediction *ep_next; |
| edge ep_edge; |
| enum br_predictor ep_predictor; |
| int ep_probability; |
| }; |
| |
| /* This map contains for a basic block the list of predictions for the |
| outgoing edges. */ |
| |
| static hash_map<const_basic_block, edge_prediction *> *bb_predictions; |
| |
| /* Return true if the one of outgoing edges is already predicted by |
| PREDICTOR. */ |
| |
| bool |
| gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor) |
| { |
| struct edge_prediction *i; |
| edge_prediction **preds = bb_predictions->get (bb); |
| |
| if (!preds) |
| return false; |
| |
| for (i = *preds; i; i = i->ep_next) |
| if (i->ep_predictor == predictor) |
| return true; |
| return false; |
| } |
| |
| /* Return true when the probability of edge is reliable. |
| |
| The profile guessing code is good at predicting branch outcome (ie. |
| taken/not taken), that is predicted right slightly over 75% of time. |
| It is however notoriously poor on predicting the probability itself. |
| In general the profile appear a lot flatter (with probabilities closer |
| to 50%) than the reality so it is bad idea to use it to drive optimization |
| such as those disabling dynamic branch prediction for well predictable |
| branches. |
| |
| There are two exceptions - edges leading to noreturn edges and edges |
| predicted by number of iterations heuristics are predicted well. This macro |
| should be able to distinguish those, but at the moment it simply check for |
| noreturn heuristic that is only one giving probability over 99% or bellow |
| 1%. In future we might want to propagate reliability information across the |
| CFG if we find this information useful on multiple places. */ |
| static bool |
| probability_reliable_p (int prob) |
| { |
| return (profile_status_for_fn (cfun) == PROFILE_READ |
| || (profile_status_for_fn (cfun) == PROFILE_GUESSED |
| && (prob <= HITRATE (1) || prob >= HITRATE (99)))); |
| } |
| |
| /* Same predicate as above, working on edges. */ |
| bool |
| edge_probability_reliable_p (const_edge e) |
| { |
| return probability_reliable_p (e->probability); |
| } |
| |
| /* Same predicate as edge_probability_reliable_p, working on notes. */ |
| bool |
| br_prob_note_reliable_p (const_rtx note) |
| { |
| gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB); |
| return probability_reliable_p (XINT (note, 0)); |
| } |
| |
| static void |
| predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability) |
| { |
| gcc_assert (any_condjump_p (insn)); |
| if (!flag_guess_branch_prob) |
| return; |
| |
| add_reg_note (insn, REG_BR_PRED, |
| gen_rtx_CONCAT (VOIDmode, |
| GEN_INT ((int) predictor), |
| GEN_INT ((int) probability))); |
| } |
| |
| /* Predict insn by given predictor. */ |
| |
| void |
| predict_insn_def (rtx_insn *insn, enum br_predictor predictor, |
| enum prediction taken) |
| { |
| int probability = predictor_info[(int) predictor].hitrate; |
| |
| if (taken != TAKEN) |
| probability = REG_BR_PROB_BASE - probability; |
| |
| predict_insn (insn, predictor, probability); |
| } |
| |
| /* Predict edge E with given probability if possible. */ |
| |
| void |
| rtl_predict_edge (edge e, enum br_predictor predictor, int probability) |
| { |
| rtx_insn *last_insn; |
| last_insn = BB_END (e->src); |
| |
| /* We can store the branch prediction information only about |
| conditional jumps. */ |
| if (!any_condjump_p (last_insn)) |
| return; |
| |
| /* We always store probability of branching. */ |
| if (e->flags & EDGE_FALLTHRU) |
| probability = REG_BR_PROB_BASE - probability; |
| |
| predict_insn (last_insn, predictor, probability); |
| } |
| |
| /* Predict edge E with the given PROBABILITY. */ |
| void |
| gimple_predict_edge (edge e, enum br_predictor predictor, int probability) |
| { |
| gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED); |
| if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) > |
| 1) |
| && flag_guess_branch_prob && optimize) |
| { |
| struct edge_prediction *i = XNEW (struct edge_prediction); |
| edge_prediction *&preds = bb_predictions->get_or_insert (e->src); |
| |
| i->ep_next = preds; |
| preds = i; |
| i->ep_probability = probability; |
| i->ep_predictor = predictor; |
| i->ep_edge = e; |
| } |
| } |
| |
| /* Remove all predictions on given basic block that are attached |
| to edge E. */ |
| void |
| remove_predictions_associated_with_edge (edge e) |
| { |
| if (!bb_predictions) |
| return; |
| |
| edge_prediction **preds = bb_predictions->get (e->src); |
| |
| if (preds) |
| { |
| struct edge_prediction **prediction = preds; |
| struct edge_prediction *next; |
| |
| while (*prediction) |
| { |
| if ((*prediction)->ep_edge == e) |
| { |
| next = (*prediction)->ep_next; |
| free (*prediction); |
| *prediction = next; |
| } |
| else |
| prediction = &((*prediction)->ep_next); |
| } |
| } |
| } |
| |
| /* Clears the list of predictions stored for BB. */ |
| |
| static void |
| clear_bb_predictions (basic_block bb) |
| { |
| edge_prediction **preds = bb_predictions->get (bb); |
| struct edge_prediction *pred, *next; |
| |
| if (!preds) |
| return; |
| |
| for (pred = *preds; pred; pred = next) |
| { |
| next = pred->ep_next; |
| free (pred); |
| } |
| *preds = NULL; |
| } |
| |
| /* Return true when we can store prediction on insn INSN. |
| At the moment we represent predictions only on conditional |
| jumps, not at computed jump or other complicated cases. */ |
| static bool |
| can_predict_insn_p (const rtx_insn *insn) |
| { |
| return (JUMP_P (insn) |
| && any_condjump_p (insn) |
| && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2); |
| } |
| |
| /* Predict edge E by given predictor if possible. */ |
| |
| void |
| predict_edge_def (edge e, enum br_predictor predictor, |
| enum prediction taken) |
| { |
| int probability = predictor_info[(int) predictor].hitrate; |
| |
| if (taken != TAKEN) |
| probability = REG_BR_PROB_BASE - probability; |
| |
| predict_edge (e, predictor, probability); |
| } |
| |
| /* Invert all branch predictions or probability notes in the INSN. This needs |
| to be done each time we invert the condition used by the jump. */ |
| |
| void |
| invert_br_probabilities (rtx insn) |
| { |
| rtx note; |
| |
| for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) |
| if (REG_NOTE_KIND (note) == REG_BR_PROB) |
| XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0); |
| else if (REG_NOTE_KIND (note) == REG_BR_PRED) |
| XEXP (XEXP (note, 0), 1) |
| = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1))); |
| } |
| |
| /* Dump information about the branch prediction to the output file. */ |
| |
| static void |
| dump_prediction (FILE *file, enum br_predictor predictor, int probability, |
| basic_block bb, int used) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| if (!file) |
| return; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (! (e->flags & EDGE_FALLTHRU)) |
| break; |
| |
| fprintf (file, " %s heuristics%s: %.1f%%", |
| predictor_info[predictor].name, |
| used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE); |
| |
| if (bb->count) |
| { |
| fprintf (file, " exec %"PRId64, bb->count); |
| if (e) |
| { |
| fprintf (file, " hit %"PRId64, e->count); |
| fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count); |
| } |
| } |
| |
| fprintf (file, "\n"); |
| } |
| |
| /* We can not predict the probabilities of outgoing edges of bb. Set them |
| evenly and hope for the best. */ |
| static void |
| set_even_probabilities (basic_block bb) |
| { |
| int nedges = 0; |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (!(e->flags & (EDGE_EH | EDGE_FAKE))) |
| nedges ++; |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (!(e->flags & (EDGE_EH | EDGE_FAKE))) |
| e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges; |
| else |
| e->probability = 0; |
| } |
| |
| /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB |
| note if not already present. Remove now useless REG_BR_PRED notes. */ |
| |
| static void |
| combine_predictions_for_insn (rtx_insn *insn, basic_block bb) |
| { |
| rtx prob_note; |
| rtx *pnote; |
| rtx note; |
| int best_probability = PROB_EVEN; |
| enum br_predictor best_predictor = END_PREDICTORS; |
| int combined_probability = REG_BR_PROB_BASE / 2; |
| int d; |
| bool first_match = false; |
| bool found = false; |
| |
| if (!can_predict_insn_p (insn)) |
| { |
| set_even_probabilities (bb); |
| return; |
| } |
| |
| prob_note = find_reg_note (insn, REG_BR_PROB, 0); |
| pnote = ®_NOTES (insn); |
| if (dump_file) |
| fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn), |
| bb->index); |
| |
| /* We implement "first match" heuristics and use probability guessed |
| by predictor with smallest index. */ |
| for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) |
| if (REG_NOTE_KIND (note) == REG_BR_PRED) |
| { |
| enum br_predictor predictor = ((enum br_predictor) |
| INTVAL (XEXP (XEXP (note, 0), 0))); |
| int probability = INTVAL (XEXP (XEXP (note, 0), 1)); |
| |
| found = true; |
| if (best_predictor > predictor) |
| best_probability = probability, best_predictor = predictor; |
| |
| d = (combined_probability * probability |
| + (REG_BR_PROB_BASE - combined_probability) |
| * (REG_BR_PROB_BASE - probability)); |
| |
| /* Use FP math to avoid overflows of 32bit integers. */ |
| if (d == 0) |
| /* If one probability is 0% and one 100%, avoid division by zero. */ |
| combined_probability = REG_BR_PROB_BASE / 2; |
| else |
| combined_probability = (((double) combined_probability) * probability |
| * REG_BR_PROB_BASE / d + 0.5); |
| } |
| |
| /* Decide which heuristic to use. In case we didn't match anything, |
| use no_prediction heuristic, in case we did match, use either |
| first match or Dempster-Shaffer theory depending on the flags. */ |
| |
| if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH) |
| first_match = true; |
| |
| if (!found) |
| dump_prediction (dump_file, PRED_NO_PREDICTION, |
| combined_probability, bb, true); |
| else |
| { |
| dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, |
| bb, !first_match); |
| dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, |
| bb, first_match); |
| } |
| |
| if (first_match) |
| combined_probability = best_probability; |
| dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true); |
| |
| while (*pnote) |
| { |
| if (REG_NOTE_KIND (*pnote) == REG_BR_PRED) |
| { |
| enum br_predictor predictor = ((enum br_predictor) |
| INTVAL (XEXP (XEXP (*pnote, 0), 0))); |
| int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1)); |
| |
| dump_prediction (dump_file, predictor, probability, bb, |
| !first_match || best_predictor == predictor); |
| *pnote = XEXP (*pnote, 1); |
| } |
| else |
| pnote = &XEXP (*pnote, 1); |
| } |
| |
| if (!prob_note) |
| { |
| add_int_reg_note (insn, REG_BR_PROB, combined_probability); |
| |
| /* Save the prediction into CFG in case we are seeing non-degenerated |
| conditional jump. */ |
| if (!single_succ_p (bb)) |
| { |
| BRANCH_EDGE (bb)->probability = combined_probability; |
| FALLTHRU_EDGE (bb)->probability |
| = REG_BR_PROB_BASE - combined_probability; |
| } |
| } |
| else if (!single_succ_p (bb)) |
| { |
| int prob = XINT (prob_note, 0); |
| |
| BRANCH_EDGE (bb)->probability = prob; |
| FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob; |
| } |
| else |
| single_succ_edge (bb)->probability = REG_BR_PROB_BASE; |
| } |
| |
| /* Combine predictions into single probability and store them into CFG. |
| Remove now useless prediction entries. */ |
| |
| static void |
| combine_predictions_for_bb (basic_block bb) |
| { |
| int best_probability = PROB_EVEN; |
| enum br_predictor best_predictor = END_PREDICTORS; |
| int combined_probability = REG_BR_PROB_BASE / 2; |
| int d; |
| bool first_match = false; |
| bool found = false; |
| struct edge_prediction *pred; |
| int nedges = 0; |
| edge e, first = NULL, second = NULL; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (!(e->flags & (EDGE_EH | EDGE_FAKE))) |
| { |
| nedges ++; |
| if (first && !second) |
| second = e; |
| if (!first) |
| first = e; |
| } |
| |
| /* When there is no successor or only one choice, prediction is easy. |
| |
| We are lazy for now and predict only basic blocks with two outgoing |
| edges. It is possible to predict generic case too, but we have to |
| ignore first match heuristics and do more involved combining. Implement |
| this later. */ |
| if (nedges != 2) |
| { |
| if (!bb->count) |
| set_even_probabilities (bb); |
| clear_bb_predictions (bb); |
| if (dump_file) |
| fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n", |
| nedges, bb->index); |
| return; |
| } |
| |
| if (dump_file) |
| fprintf (dump_file, "Predictions for bb %i\n", bb->index); |
| |
| edge_prediction **preds = bb_predictions->get (bb); |
| if (preds) |
| { |
| /* We implement "first match" heuristics and use probability guessed |
| by predictor with smallest index. */ |
| for (pred = *preds; pred; pred = pred->ep_next) |
| { |
| enum br_predictor predictor = pred->ep_predictor; |
| int probability = pred->ep_probability; |
| |
| if (pred->ep_edge != first) |
| probability = REG_BR_PROB_BASE - probability; |
| |
| found = true; |
| /* First match heuristics would be widly confused if we predicted |
| both directions. */ |
| if (best_predictor > predictor) |
| { |
| struct edge_prediction *pred2; |
| int prob = probability; |
| |
| for (pred2 = (struct edge_prediction *) *preds; |
| pred2; pred2 = pred2->ep_next) |
| if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor) |
| { |
| int probability2 = pred->ep_probability; |
| |
| if (pred2->ep_edge != first) |
| probability2 = REG_BR_PROB_BASE - probability2; |
| |
| if ((probability < REG_BR_PROB_BASE / 2) != |
| (probability2 < REG_BR_PROB_BASE / 2)) |
| break; |
| |
| /* If the same predictor later gave better result, go for it! */ |
| if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability)) |
| || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability))) |
| prob = probability2; |
| } |
| if (!pred2) |
| best_probability = prob, best_predictor = predictor; |
| } |
| |
| d = (combined_probability * probability |
| + (REG_BR_PROB_BASE - combined_probability) |
| * (REG_BR_PROB_BASE - probability)); |
| |
| /* Use FP math to avoid overflows of 32bit integers. */ |
| if (d == 0) |
| /* If one probability is 0% and one 100%, avoid division by zero. */ |
| combined_probability = REG_BR_PROB_BASE / 2; |
| else |
| combined_probability = (((double) combined_probability) |
| * probability |
| * REG_BR_PROB_BASE / d + 0.5); |
| } |
| } |
| |
| /* Decide which heuristic to use. In case we didn't match anything, |
| use no_prediction heuristic, in case we did match, use either |
| first match or Dempster-Shaffer theory depending on the flags. */ |
| |
| if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH) |
| first_match = true; |
| |
| if (!found) |
| dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true); |
| else |
| { |
| dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb, |
| !first_match); |
| dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb, |
| first_match); |
| } |
| |
| if (first_match) |
| combined_probability = best_probability; |
| dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true); |
| |
| if (preds) |
| { |
| for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next) |
| { |
| enum br_predictor predictor = pred->ep_predictor; |
| int probability = pred->ep_probability; |
| |
| if (pred->ep_edge != EDGE_SUCC (bb, 0)) |
| probability = REG_BR_PROB_BASE - probability; |
| dump_prediction (dump_file, predictor, probability, bb, |
| !first_match || best_predictor == predictor); |
| } |
| } |
| clear_bb_predictions (bb); |
| |
| if (!bb->count) |
| { |
| first->probability = combined_probability; |
| second->probability = REG_BR_PROB_BASE - combined_probability; |
| } |
| } |
| |
| /* Check if T1 and T2 satisfy the IV_COMPARE condition. |
| Return the SSA_NAME if the condition satisfies, NULL otherwise. |
| |
| T1 and T2 should be one of the following cases: |
| 1. T1 is SSA_NAME, T2 is NULL |
| 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4] |
| 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */ |
| |
| static tree |
| strips_small_constant (tree t1, tree t2) |
| { |
| tree ret = NULL; |
| int value = 0; |
| |
| if (!t1) |
| return NULL; |
| else if (TREE_CODE (t1) == SSA_NAME) |
| ret = t1; |
| else if (tree_fits_shwi_p (t1)) |
| value = tree_to_shwi (t1); |
| else |
| return NULL; |
| |
| if (!t2) |
| return ret; |
| else if (tree_fits_shwi_p (t2)) |
| value = tree_to_shwi (t2); |
| else if (TREE_CODE (t2) == SSA_NAME) |
| { |
| if (ret) |
| return NULL; |
| else |
| ret = t2; |
| } |
| |
| if (value <= 4 && value >= -4) |
| return ret; |
| else |
| return NULL; |
| } |
| |
| /* Return the SSA_NAME in T or T's operands. |
| Return NULL if SSA_NAME cannot be found. */ |
| |
| static tree |
| get_base_value (tree t) |
| { |
| if (TREE_CODE (t) == SSA_NAME) |
| return t; |
| |
| if (!BINARY_CLASS_P (t)) |
| return NULL; |
| |
| switch (TREE_OPERAND_LENGTH (t)) |
| { |
| case 1: |
| return strips_small_constant (TREE_OPERAND (t, 0), NULL); |
| case 2: |
| return strips_small_constant (TREE_OPERAND (t, 0), |
| TREE_OPERAND (t, 1)); |
| default: |
| return NULL; |
| } |
| } |
| |
| /* Check the compare STMT in LOOP. If it compares an induction |
| variable to a loop invariant, return true, and save |
| LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP. |
| Otherwise return false and set LOOP_INVAIANT to NULL. */ |
| |
| static bool |
| is_comparison_with_loop_invariant_p (gcond *stmt, struct loop *loop, |
| tree *loop_invariant, |
| enum tree_code *compare_code, |
| tree *loop_step, |
| tree *loop_iv_base) |
| { |
| tree op0, op1, bound, base; |
| affine_iv iv0, iv1; |
| enum tree_code code; |
| tree step; |
| |
| code = gimple_cond_code (stmt); |
| *loop_invariant = NULL; |
| |
| switch (code) |
| { |
| case GT_EXPR: |
| case GE_EXPR: |
| case NE_EXPR: |
| case LT_EXPR: |
| case LE_EXPR: |
| case EQ_EXPR: |
| break; |
| |
| default: |
| return false; |
| } |
| |
| op0 = gimple_cond_lhs (stmt); |
| op1 = gimple_cond_rhs (stmt); |
| |
| if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST) |
| || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST)) |
| return false; |
| if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true)) |
| return false; |
| if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true)) |
| return false; |
| if (TREE_CODE (iv0.step) != INTEGER_CST |
| || TREE_CODE (iv1.step) != INTEGER_CST) |
| return false; |
| if ((integer_zerop (iv0.step) && integer_zerop (iv1.step)) |
| || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step))) |
| return false; |
| |
| if (integer_zerop (iv0.step)) |
| { |
| if (code != NE_EXPR && code != EQ_EXPR) |
| code = invert_tree_comparison (code, false); |
| bound = iv0.base; |
| base = iv1.base; |
| if (tree_fits_shwi_p (iv1.step)) |
| step = iv1.step; |
| else |
| return false; |
| } |
| else |
| { |
| bound = iv1.base; |
| base = iv0.base; |
| if (tree_fits_shwi_p (iv0.step)) |
| step = iv0.step; |
| else |
| return false; |
| } |
| |
| if (TREE_CODE (bound) != INTEGER_CST) |
| bound = get_base_value (bound); |
| if (!bound) |
| return false; |
| if (TREE_CODE (base) != INTEGER_CST) |
| base = get_base_value (base); |
| if (!base) |
| return false; |
| |
| *loop_invariant = bound; |
| *compare_code = code; |
| *loop_step = step; |
| *loop_iv_base = base; |
| return true; |
| } |
| |
| /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */ |
| |
| static bool |
| expr_coherent_p (tree t1, tree t2) |
| { |
| gimple stmt; |
| tree ssa_name_1 = NULL; |
| tree ssa_name_2 = NULL; |
| |
| gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST); |
| gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST); |
| |
| if (t1 == t2) |
| return true; |
| |
| if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST) |
| return true; |
| if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST) |
| return false; |
| |
| /* Check to see if t1 is expressed/defined with t2. */ |
| stmt = SSA_NAME_DEF_STMT (t1); |
| gcc_assert (stmt != NULL); |
| if (is_gimple_assign (stmt)) |
| { |
| ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE); |
| if (ssa_name_1 && ssa_name_1 == t2) |
| return true; |
| } |
| |
| /* Check to see if t2 is expressed/defined with t1. */ |
| stmt = SSA_NAME_DEF_STMT (t2); |
| gcc_assert (stmt != NULL); |
| if (is_gimple_assign (stmt)) |
| { |
| ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE); |
| if (ssa_name_2 && ssa_name_2 == t1) |
| return true; |
| } |
| |
| /* Compare if t1 and t2's def_stmts are identical. */ |
| if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2) |
| return true; |
| else |
| return false; |
| } |
| |
| /* Predict branch probability of BB when BB contains a branch that compares |
| an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The |
| loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP. |
| |
| E.g. |
| for (int i = 0; i < bound; i++) { |
| if (i < bound - 2) |
| computation_1(); |
| else |
| computation_2(); |
| } |
| |
| In this loop, we will predict the branch inside the loop to be taken. */ |
| |
| static void |
| predict_iv_comparison (struct loop *loop, basic_block bb, |
| tree loop_bound_var, |
| tree loop_iv_base_var, |
| enum tree_code loop_bound_code, |
| int loop_bound_step) |
| { |
| gimple stmt; |
| tree compare_var, compare_base; |
| enum tree_code compare_code; |
| tree compare_step_var; |
| edge then_edge; |
| edge_iterator ei; |
| |
| if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED) |
| || predicted_by_p (bb, PRED_LOOP_ITERATIONS) |
| || predicted_by_p (bb, PRED_LOOP_EXIT)) |
| return; |
| |
| stmt = last_stmt (bb); |
| if (!stmt || gimple_code (stmt) != GIMPLE_COND) |
| return; |
| if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt), |
| loop, &compare_var, |
| &compare_code, |
| &compare_step_var, |
| &compare_base)) |
| return; |
| |
| /* Find the taken edge. */ |
| FOR_EACH_EDGE (then_edge, ei, bb->succs) |
| if (then_edge->flags & EDGE_TRUE_VALUE) |
| break; |
| |
| /* When comparing an IV to a loop invariant, NE is more likely to be |
| taken while EQ is more likely to be not-taken. */ |
| if (compare_code == NE_EXPR) |
| { |
| predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN); |
| return; |
| } |
| else if (compare_code == EQ_EXPR) |
| { |
| predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN); |
| return; |
| } |
| |
| if (!expr_coherent_p (loop_iv_base_var, compare_base)) |
| return; |
| |
| /* If loop bound, base and compare bound are all constants, we can |
| calculate the probability directly. */ |
| if (tree_fits_shwi_p (loop_bound_var) |
| && tree_fits_shwi_p (compare_var) |
| && tree_fits_shwi_p (compare_base)) |
| { |
| int probability; |
| bool overflow, overall_overflow = false; |
| widest_int compare_count, tem; |
| |
| /* (loop_bound - base) / compare_step */ |
| tem = wi::sub (wi::to_widest (loop_bound_var), |
| wi::to_widest (compare_base), SIGNED, &overflow); |
| overall_overflow |= overflow; |
| widest_int loop_count = wi::div_trunc (tem, |
| wi::to_widest (compare_step_var), |
| SIGNED, &overflow); |
| overall_overflow |= overflow; |
| |
| if (!wi::neg_p (wi::to_widest (compare_step_var)) |
| ^ (compare_code == LT_EXPR || compare_code == LE_EXPR)) |
| { |
| /* (loop_bound - compare_bound) / compare_step */ |
| tem = wi::sub (wi::to_widest (loop_bound_var), |
| wi::to_widest (compare_var), SIGNED, &overflow); |
| overall_overflow |= overflow; |
| compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var), |
| SIGNED, &overflow); |
| overall_overflow |= overflow; |
| } |
| else |
| { |
| /* (compare_bound - base) / compare_step */ |
| tem = wi::sub (wi::to_widest (compare_var), |
| wi::to_widest (compare_base), SIGNED, &overflow); |
| overall_overflow |= overflow; |
| compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var), |
| SIGNED, &overflow); |
| overall_overflow |= overflow; |
| } |
| if (compare_code == LE_EXPR || compare_code == GE_EXPR) |
| ++compare_count; |
| if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR) |
| ++loop_count; |
| if (wi::neg_p (compare_count)) |
| compare_count = 0; |
| if (wi::neg_p (loop_count)) |
| loop_count = 0; |
| if (loop_count == 0) |
| probability = 0; |
| else if (wi::cmps (compare_count, loop_count) == 1) |
| probability = REG_BR_PROB_BASE; |
| else |
| { |
| tem = compare_count * REG_BR_PROB_BASE; |
| tem = wi::udiv_trunc (tem, loop_count); |
| probability = tem.to_uhwi (); |
| } |
| |
| if (!overall_overflow) |
| predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability); |
| |
| return; |
| } |
| |
| if (expr_coherent_p (loop_bound_var, compare_var)) |
| { |
| if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR) |
| && (compare_code == LT_EXPR || compare_code == LE_EXPR)) |
| predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN); |
| else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR) |
| && (compare_code == GT_EXPR || compare_code == GE_EXPR)) |
| predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN); |
| else if (loop_bound_code == NE_EXPR) |
| { |
| /* If the loop backedge condition is "(i != bound)", we do |
| the comparison based on the step of IV: |
| * step < 0 : backedge condition is like (i > bound) |
| * step > 0 : backedge condition is like (i < bound) */ |
| gcc_assert (loop_bound_step != 0); |
| if (loop_bound_step > 0 |
| && (compare_code == LT_EXPR |
| || compare_code == LE_EXPR)) |
| predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN); |
| else if (loop_bound_step < 0 |
| && (compare_code == GT_EXPR |
| || compare_code == GE_EXPR)) |
| predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN); |
| else |
| predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN); |
| } |
| else |
| /* The branch is predicted not-taken if loop_bound_code is |
| opposite with compare_code. */ |
| predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN); |
| } |
| else if (expr_coherent_p (loop_iv_base_var, compare_var)) |
| { |
| /* For cases like: |
| for (i = s; i < h; i++) |
| if (i > s + 2) .... |
| The branch should be predicted taken. */ |
| if (loop_bound_step > 0 |
| && (compare_code == GT_EXPR || compare_code == GE_EXPR)) |
| predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN); |
| else if (loop_bound_step < 0 |
| && (compare_code == LT_EXPR || compare_code == LE_EXPR)) |
| predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN); |
| else |
| predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN); |
| } |
| } |
| |
| /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop |
| exits are resulted from short-circuit conditions that will generate an |
| if_tmp. E.g.: |
| |
| if (foo() || global > 10) |
| break; |
| |
| This will be translated into: |
| |
| BB3: |
| loop header... |
| BB4: |
| if foo() goto BB6 else goto BB5 |
| BB5: |
| if global > 10 goto BB6 else goto BB7 |
| BB6: |
| goto BB7 |
| BB7: |
| iftmp = (PHI 0(BB5), 1(BB6)) |
| if iftmp == 1 goto BB8 else goto BB3 |
| BB8: |
| outside of the loop... |
| |
| The edge BB7->BB8 is loop exit because BB8 is outside of the loop. |
| From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop |
| exits. This function takes BB7->BB8 as input, and finds out the extra loop |
| exits to predict them using PRED_LOOP_EXIT. */ |
| |
| static void |
| predict_extra_loop_exits (edge exit_edge) |
| { |
| unsigned i; |
| bool check_value_one; |
| gimple lhs_def_stmt; |
| gphi *phi_stmt; |
| tree cmp_rhs, cmp_lhs; |
| gimple last; |
| gcond *cmp_stmt; |
| |
| last = last_stmt (exit_edge->src); |
| if (!last) |
| return; |
| cmp_stmt = dyn_cast <gcond *> (last); |
| if (!cmp_stmt) |
| return; |
| |
| cmp_rhs = gimple_cond_rhs (cmp_stmt); |
| cmp_lhs = gimple_cond_lhs (cmp_stmt); |
| if (!TREE_CONSTANT (cmp_rhs) |
| || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs))) |
| return; |
| if (TREE_CODE (cmp_lhs) != SSA_NAME) |
| return; |
| |
| /* If check_value_one is true, only the phi_args with value '1' will lead |
| to loop exit. Otherwise, only the phi_args with value '0' will lead to |
| loop exit. */ |
| check_value_one = (((integer_onep (cmp_rhs)) |
| ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR)) |
| ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0)); |
| |
| lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs); |
| if (!lhs_def_stmt) |
| return; |
| |
| phi_stmt = dyn_cast <gphi *> (lhs_def_stmt); |
| if (!phi_stmt) |
| return; |
| |
| for (i = 0; i < gimple_phi_num_args (phi_stmt); i++) |
| { |
| edge e1; |
| edge_iterator ei; |
| tree val = gimple_phi_arg_def (phi_stmt, i); |
| edge e = gimple_phi_arg_edge (phi_stmt, i); |
| |
| if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val))) |
| continue; |
| if ((check_value_one ^ integer_onep (val)) == 1) |
| continue; |
| if (EDGE_COUNT (e->src->succs) != 1) |
| { |
| predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN); |
| continue; |
| } |
| |
| FOR_EACH_EDGE (e1, ei, e->src->preds) |
| predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN); |
| } |
| } |
| |
| /* Predict edge probabilities by exploiting loop structure. */ |
| |
| static void |
| predict_loops (void) |
| { |
| struct loop *loop; |
| |
| /* Try to predict out blocks in a loop that are not part of a |
| natural loop. */ |
| FOR_EACH_LOOP (loop, 0) |
| { |
| basic_block bb, *bbs; |
| unsigned j, n_exits; |
| vec<edge> exits; |
| struct tree_niter_desc niter_desc; |
| edge ex; |
| struct nb_iter_bound *nb_iter; |
| enum tree_code loop_bound_code = ERROR_MARK; |
| tree loop_bound_step = NULL; |
| tree loop_bound_var = NULL; |
| tree loop_iv_base = NULL; |
| gcond *stmt = NULL; |
| |
| exits = get_loop_exit_edges (loop); |
| n_exits = exits.length (); |
| if (!n_exits) |
| { |
| exits.release (); |
| continue; |
| } |
| |
| FOR_EACH_VEC_ELT (exits, j, ex) |
| { |
| tree niter = NULL; |
| HOST_WIDE_INT nitercst; |
| int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS); |
| int probability; |
| enum br_predictor predictor; |
| |
| predict_extra_loop_exits (ex); |
| |
| if (number_of_iterations_exit (loop, ex, &niter_desc, false, false)) |
| niter = niter_desc.niter; |
| if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST) |
| niter = loop_niter_by_eval (loop, ex); |
| |
| if (TREE_CODE (niter) == INTEGER_CST) |
| { |
| if (tree_fits_uhwi_p (niter) |
| && max |
| && compare_tree_int (niter, max - 1) == -1) |
| nitercst = tree_to_uhwi (niter) + 1; |
| else |
| nitercst = max; |
| predictor = PRED_LOOP_ITERATIONS; |
| } |
| /* If we have just one exit and we can derive some information about |
| the number of iterations of the loop from the statements inside |
| the loop, use it to predict this exit. */ |
| else if (n_exits == 1) |
| { |
| nitercst = estimated_stmt_executions_int (loop); |
| if (nitercst < 0) |
| continue; |
| if (nitercst > max) |
| nitercst = max; |
| |
| predictor = PRED_LOOP_ITERATIONS_GUESSED; |
| } |
| else |
| continue; |
| |
| /* If the prediction for number of iterations is zero, do not |
| predict the exit edges. */ |
| if (nitercst == 0) |
| continue; |
| |
| probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst); |
| predict_edge (ex, predictor, probability); |
| } |
| exits.release (); |
| |
| /* Find information about loop bound variables. */ |
| for (nb_iter = loop->bounds; nb_iter; |
| nb_iter = nb_iter->next) |
| if (nb_iter->stmt |
| && gimple_code (nb_iter->stmt) == GIMPLE_COND) |
| { |
| stmt = as_a <gcond *> (nb_iter->stmt); |
| break; |
| } |
| if (!stmt && last_stmt (loop->header) |
| && gimple_code (last_stmt (loop->header)) == GIMPLE_COND) |
| stmt = as_a <gcond *> (last_stmt (loop->header)); |
| if (stmt) |
| is_comparison_with_loop_invariant_p (stmt, loop, |
| &loop_bound_var, |
| &loop_bound_code, |
| &loop_bound_step, |
| &loop_iv_base); |
| |
| bbs = get_loop_body (loop); |
| |
| for (j = 0; j < loop->num_nodes; j++) |
| { |
| int header_found = 0; |
| edge e; |
| edge_iterator ei; |
| |
| bb = bbs[j]; |
| |
| /* Bypass loop heuristics on continue statement. These |
| statements construct loops via "non-loop" constructs |
| in the source language and are better to be handled |
| separately. */ |
| if (predicted_by_p (bb, PRED_CONTINUE)) |
| continue; |
| |
| /* Loop branch heuristics - predict an edge back to a |
| loop's head as taken. */ |
| if (bb == loop->latch) |
| { |
| e = find_edge (loop->latch, loop->header); |
| if (e) |
| { |
| header_found = 1; |
| predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN); |
| } |
| } |
| |
| /* Loop exit heuristics - predict an edge exiting the loop if the |
| conditional has no loop header successors as not taken. */ |
| if (!header_found |
| /* If we already used more reliable loop exit predictors, do not |
| bother with PRED_LOOP_EXIT. */ |
| && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED) |
| && !predicted_by_p (bb, PRED_LOOP_ITERATIONS)) |
| { |
| /* For loop with many exits we don't want to predict all exits |
| with the pretty large probability, because if all exits are |
| considered in row, the loop would be predicted to iterate |
| almost never. The code to divide probability by number of |
| exits is very rough. It should compute the number of exits |
| taken in each patch through function (not the overall number |
| of exits that might be a lot higher for loops with wide switch |
| statements in them) and compute n-th square root. |
| |
| We limit the minimal probability by 2% to avoid |
| EDGE_PROBABILITY_RELIABLE from trusting the branch prediction |
| as this was causing regression in perl benchmark containing such |
| a wide loop. */ |
| |
| int probability = ((REG_BR_PROB_BASE |
| - predictor_info [(int) PRED_LOOP_EXIT].hitrate) |
| / n_exits); |
| if (probability < HITRATE (2)) |
| probability = HITRATE (2); |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (e->dest->index < NUM_FIXED_BLOCKS |
| || !flow_bb_inside_loop_p (loop, e->dest)) |
| predict_edge (e, PRED_LOOP_EXIT, probability); |
| } |
| if (loop_bound_var) |
| predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base, |
| loop_bound_code, |
| tree_to_shwi (loop_bound_step)); |
| } |
| |
| /* Free basic blocks from get_loop_body. */ |
| free (bbs); |
| } |
| } |
| |
| /* Attempt to predict probabilities of BB outgoing edges using local |
| properties. */ |
| static void |
| bb_estimate_probability_locally (basic_block bb) |
| { |
| rtx_insn *last_insn = BB_END (bb); |
| rtx cond; |
| |
| if (! can_predict_insn_p (last_insn)) |
| return; |
| cond = get_condition (last_insn, NULL, false, false); |
| if (! cond) |
| return; |
| |
| /* Try "pointer heuristic." |
| A comparison ptr == 0 is predicted as false. |
| Similarly, a comparison ptr1 == ptr2 is predicted as false. */ |
| if (COMPARISON_P (cond) |
| && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0))) |
| || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1))))) |
| { |
| if (GET_CODE (cond) == EQ) |
| predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN); |
| else if (GET_CODE (cond) == NE) |
| predict_insn_def (last_insn, PRED_POINTER, TAKEN); |
| } |
| else |
| |
| /* Try "opcode heuristic." |
| EQ tests are usually false and NE tests are usually true. Also, |
| most quantities are positive, so we can make the appropriate guesses |
| about signed comparisons against zero. */ |
| switch (GET_CODE (cond)) |
| { |
| case CONST_INT: |
| /* Unconditional branch. */ |
| predict_insn_def (last_insn, PRED_UNCONDITIONAL, |
| cond == const0_rtx ? NOT_TAKEN : TAKEN); |
| break; |
| |
| case EQ: |
| case UNEQ: |
| /* Floating point comparisons appears to behave in a very |
| unpredictable way because of special role of = tests in |
| FP code. */ |
| if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0)))) |
| ; |
| /* Comparisons with 0 are often used for booleans and there is |
| nothing useful to predict about them. */ |
| else if (XEXP (cond, 1) == const0_rtx |
| || XEXP (cond, 0) == const0_rtx) |
| ; |
| else |
| predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN); |
| break; |
| |
| case NE: |
| case LTGT: |
| /* Floating point comparisons appears to behave in a very |
| unpredictable way because of special role of = tests in |
| FP code. */ |
| if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0)))) |
| ; |
| /* Comparisons with 0 are often used for booleans and there is |
| nothing useful to predict about them. */ |
| else if (XEXP (cond, 1) == const0_rtx |
| || XEXP (cond, 0) == const0_rtx) |
| ; |
| else |
| predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN); |
| break; |
| |
| case ORDERED: |
| predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN); |
| break; |
| |
| case UNORDERED: |
| predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN); |
| break; |
| |
| case LE: |
| case LT: |
| if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx |
| || XEXP (cond, 1) == constm1_rtx) |
| predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN); |
| break; |
| |
| case GE: |
| case GT: |
| if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx |
| || XEXP (cond, 1) == constm1_rtx) |
| predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Set edge->probability for each successor edge of BB. */ |
| void |
| guess_outgoing_edge_probabilities (basic_block bb) |
| { |
| bb_estimate_probability_locally (bb); |
| combine_predictions_for_insn (BB_END (bb), bb); |
| } |
| |
| static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor); |
| |
| /* Helper function for expr_expected_value. */ |
| |
| static tree |
| expr_expected_value_1 (tree type, tree op0, enum tree_code code, |
| tree op1, bitmap visited, enum br_predictor *predictor) |
| { |
| gimple def; |
| |
| if (predictor) |
| *predictor = PRED_UNCONDITIONAL; |
| |
| if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS) |
| { |
| if (TREE_CONSTANT (op0)) |
| return op0; |
| |
| if (code != SSA_NAME) |
| return NULL_TREE; |
| |
| def = SSA_NAME_DEF_STMT (op0); |
| |
| /* If we were already here, break the infinite cycle. */ |
| if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0))) |
| return NULL; |
| |
| if (gimple_code (def) == GIMPLE_PHI) |
| { |
| /* All the arguments of the PHI node must have the same constant |
| length. */ |
| int i, n = gimple_phi_num_args (def); |
| tree val = NULL, new_val; |
| |
| for (i = 0; i < n; i++) |
| { |
| tree arg = PHI_ARG_DEF (def, i); |
| enum br_predictor predictor2; |
| |
| /* If this PHI has itself as an argument, we cannot |
| determine the string length of this argument. However, |
| if we can find an expected constant value for the other |
| PHI args then we can still be sure that this is |
| likely a constant. So be optimistic and just |
| continue with the next argument. */ |
| if (arg == PHI_RESULT (def)) |
| continue; |
| |
| new_val = expr_expected_value (arg, visited, &predictor2); |
| |
| /* It is difficult to combine value predictors. Simply assume |
| that later predictor is weaker and take its prediction. */ |
| if (predictor && *predictor < predictor2) |
| *predictor = predictor2; |
| if (!new_val) |
| return NULL; |
| if (!val) |
| val = new_val; |
| else if (!operand_equal_p (val, new_val, false)) |
| return NULL; |
| } |
| return val; |
| } |
| if (is_gimple_assign (def)) |
| { |
| if (gimple_assign_lhs (def) != op0) |
| return NULL; |
| |
| return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)), |
| gimple_assign_rhs1 (def), |
| gimple_assign_rhs_code (def), |
| gimple_assign_rhs2 (def), |
| visited, predictor); |
| } |
| |
| if (is_gimple_call (def)) |
| { |
| tree decl = gimple_call_fndecl (def); |
| if (!decl) |
| { |
| if (gimple_call_internal_p (def) |
| && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT) |
| { |
| gcc_assert (gimple_call_num_args (def) == 3); |
| tree val = gimple_call_arg (def, 0); |
| if (TREE_CONSTANT (val)) |
| return val; |
| if (predictor) |
| { |
| tree val2 = gimple_call_arg (def, 2); |
| gcc_assert (TREE_CODE (val2) == INTEGER_CST |
| && tree_fits_uhwi_p (val2) |
| && tree_to_uhwi (val2) < END_PREDICTORS); |
| *predictor = (enum br_predictor) tree_to_uhwi (val2); |
| } |
| return gimple_call_arg (def, 1); |
| } |
| return NULL; |
| } |
| if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL) |
| switch (DECL_FUNCTION_CODE (decl)) |
| { |
| case BUILT_IN_EXPECT: |
| { |
| tree val; |
| if (gimple_call_num_args (def) != 2) |
| return NULL; |
| val = gimple_call_arg (def, 0); |
| if (TREE_CONSTANT (val)) |
| return val; |
| if (predictor) |
| *predictor = PRED_BUILTIN_EXPECT; |
| return gimple_call_arg (def, 1); |
| } |
| |
| case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N: |
| case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1: |
| case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2: |
| case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4: |
| case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8: |
| case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16: |
| case BUILT_IN_ATOMIC_COMPARE_EXCHANGE: |
| case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N: |
| case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1: |
| case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2: |
| case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4: |
| case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8: |
| case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16: |
| /* Assume that any given atomic operation has low contention, |
| and thus the compare-and-swap operation succeeds. */ |
| if (predictor) |
| *predictor = PRED_COMPARE_AND_SWAP; |
| return boolean_true_node; |
| default: |
| break; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS) |
| { |
| tree res; |
| enum br_predictor predictor2; |
| op0 = expr_expected_value (op0, visited, predictor); |
| if (!op0) |
| return NULL; |
| op1 = expr_expected_value (op1, visited, &predictor2); |
| if (predictor && *predictor < predictor2) |
| *predictor = predictor2; |
| if (!op1) |
| return NULL; |
| res = fold_build2 (code, type, op0, op1); |
| if (TREE_CONSTANT (res)) |
| return res; |
| return NULL; |
| } |
| if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS) |
| { |
| tree res; |
| op0 = expr_expected_value (op0, visited, predictor); |
| if (!op0) |
| return NULL; |
| res = fold_build1 (code, type, op0); |
| if (TREE_CONSTANT (res)) |
| return res; |
| return NULL; |
| } |
| return NULL; |
| } |
| |
| /* Return constant EXPR will likely have at execution time, NULL if unknown. |
| The function is used by builtin_expect branch predictor so the evidence |
| must come from this construct and additional possible constant folding. |
| |
| We may want to implement more involved value guess (such as value range |
| propagation based prediction), but such tricks shall go to new |
| implementation. */ |
| |
| static tree |
| expr_expected_value (tree expr, bitmap visited, |
| enum br_predictor *predictor) |
| { |
| enum tree_code code; |
| tree op0, op1; |
| |
| if (TREE_CONSTANT (expr)) |
| { |
| if (predictor) |
| *predictor = PRED_UNCONDITIONAL; |
| return expr; |
| } |
| |
| extract_ops_from_tree (expr, &code, &op0, &op1); |
| return expr_expected_value_1 (TREE_TYPE (expr), |
| op0, code, op1, visited, predictor); |
| } |
| |
| /* Predict using opcode of the last statement in basic block. */ |
| static void |
| tree_predict_by_opcode (basic_block bb) |
| { |
| gimple stmt = last_stmt (bb); |
| edge then_edge; |
| tree op0, op1; |
| tree type; |
| tree val; |
| enum tree_code cmp; |
| bitmap visited; |
| edge_iterator ei; |
| enum br_predictor predictor; |
| |
| if (!stmt || gimple_code (stmt) != GIMPLE_COND) |
| return; |
| FOR_EACH_EDGE (then_edge, ei, bb->succs) |
| if (then_edge->flags & EDGE_TRUE_VALUE) |
| break; |
| op0 = gimple_cond_lhs (stmt); |
| op1 = gimple_cond_rhs (stmt); |
| cmp = gimple_cond_code (stmt); |
| type = TREE_TYPE (op0); |
| visited = BITMAP_ALLOC (NULL); |
| val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited, |
| &predictor); |
| BITMAP_FREE (visited); |
| if (val && TREE_CODE (val) == INTEGER_CST) |
| { |
| if (predictor == PRED_BUILTIN_EXPECT) |
| { |
| int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY); |
| |
| gcc_assert (percent >= 0 && percent <= 100); |
| if (integer_zerop (val)) |
| percent = 100 - percent; |
| predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent)); |
| } |
| else |
| predict_edge (then_edge, predictor, |
| integer_zerop (val) ? NOT_TAKEN : TAKEN); |
| } |
| /* Try "pointer heuristic." |
| A comparison ptr == 0 is predicted as false. |
| Similarly, a comparison ptr1 == ptr2 is predicted as false. */ |
| if (POINTER_TYPE_P (type)) |
| { |
| if (cmp == EQ_EXPR) |
| predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN); |
| else if (cmp == NE_EXPR) |
| predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN); |
| } |
| else |
| |
| /* Try "opcode heuristic." |
| EQ tests are usually false and NE tests are usually true. Also, |
| most quantities are positive, so we can make the appropriate guesses |
| about signed comparisons against zero. */ |
| switch (cmp) |
| { |
| case EQ_EXPR: |
| case UNEQ_EXPR: |
| /* Floating point comparisons appears to behave in a very |
| unpredictable way because of special role of = tests in |
| FP code. */ |
| if (FLOAT_TYPE_P (type)) |
| ; |
| /* Comparisons with 0 are often used for booleans and there is |
| nothing useful to predict about them. */ |
| else if (integer_zerop (op0) || integer_zerop (op1)) |
| ; |
| else |
| predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN); |
| break; |
| |
| case NE_EXPR: |
| case LTGT_EXPR: |
| /* Floating point comparisons appears to behave in a very |
| unpredictable way because of special role of = tests in |
| FP code. */ |
| if (FLOAT_TYPE_P (type)) |
| ; |
| /* Comparisons with 0 are often used for booleans and there is |
| nothing useful to predict about them. */ |
| else if (integer_zerop (op0) |
| || integer_zerop (op1)) |
| ; |
| else |
| predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN); |
| break; |
| |
| case ORDERED_EXPR: |
| predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN); |
| break; |
| |
| case UNORDERED_EXPR: |
| predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN); |
| break; |
| |
| case LE_EXPR: |
| case LT_EXPR: |
| if (integer_zerop (op1) |
| || integer_onep (op1) |
| || integer_all_onesp (op1) |
| || real_zerop (op1) |
| || real_onep (op1) |
| || real_minus_onep (op1)) |
| predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN); |
| break; |
| |
| case GE_EXPR: |
| case GT_EXPR: |
| if (integer_zerop (op1) |
| || integer_onep (op1) |
| || integer_all_onesp (op1) |
| || real_zerop (op1) |
| || real_onep (op1) |
| || real_minus_onep (op1)) |
| predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Try to guess whether the value of return means error code. */ |
| |
| static enum br_predictor |
| return_prediction (tree val, enum prediction *prediction) |
| { |
| /* VOID. */ |
| if (!val) |
| return PRED_NO_PREDICTION; |
| /* Different heuristics for pointers and scalars. */ |
| if (POINTER_TYPE_P (TREE_TYPE (val))) |
| { |
| /* NULL is usually not returned. */ |
| if (integer_zerop (val)) |
| { |
| *prediction = NOT_TAKEN; |
| return PRED_NULL_RETURN; |
| } |
| } |
| else if (INTEGRAL_TYPE_P (TREE_TYPE (val))) |
| { |
| /* Negative return values are often used to indicate |
| errors. */ |
| if (TREE_CODE (val) == INTEGER_CST |
| && tree_int_cst_sgn (val) < 0) |
| { |
| *prediction = NOT_TAKEN; |
| return PRED_NEGATIVE_RETURN; |
| } |
| /* Constant return values seems to be commonly taken. |
| Zero/one often represent booleans so exclude them from the |
| heuristics. */ |
| if (TREE_CONSTANT (val) |
| && (!integer_zerop (val) && !integer_onep (val))) |
| { |
| *prediction = TAKEN; |
| return PRED_CONST_RETURN; |
| } |
| } |
| return PRED_NO_PREDICTION; |
| } |
| |
| /* Find the basic block with return expression and look up for possible |
| return value trying to apply RETURN_PREDICTION heuristics. */ |
| static void |
| apply_return_prediction (void) |
| { |
| greturn *return_stmt = NULL; |
| tree return_val; |
| edge e; |
| gphi *phi; |
| int phi_num_args, i; |
| enum br_predictor pred; |
| enum prediction direction; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) |
| { |
| gimple last = last_stmt (e->src); |
| if (last |
| && gimple_code (last) == GIMPLE_RETURN) |
| { |
| return_stmt = as_a <greturn *> (last); |
| break; |
| } |
| } |
| if (!e) |
| return; |
| return_val = gimple_return_retval (return_stmt); |
| if (!return_val) |
| return; |
| if (TREE_CODE (return_val) != SSA_NAME |
| || !SSA_NAME_DEF_STMT (return_val) |
| || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI) |
| return; |
| phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val)); |
| phi_num_args = gimple_phi_num_args (phi); |
| pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction); |
| |
| /* Avoid the degenerate case where all return values form the function |
| belongs to same category (ie they are all positive constants) |
| so we can hardly say something about them. */ |
| for (i = 1; i < phi_num_args; i++) |
| if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction)) |
| break; |
| if (i != phi_num_args) |
| for (i = 0; i < phi_num_args; i++) |
| { |
| pred = return_prediction (PHI_ARG_DEF (phi, i), &direction); |
| if (pred != PRED_NO_PREDICTION) |
| predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred, |
| direction); |
| } |
| } |
| |
| /* Look for basic block that contains unlikely to happen events |
| (such as noreturn calls) and mark all paths leading to execution |
| of this basic blocks as unlikely. */ |
| |
| static void |
| tree_bb_level_predictions (void) |
| { |
| basic_block bb; |
| bool has_return_edges = false; |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) |
| if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH))) |
| { |
| has_return_edges = true; |
| break; |
| } |
| |
| apply_return_prediction (); |
| |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| gimple_stmt_iterator gsi; |
| |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple stmt = gsi_stmt (gsi); |
| tree decl; |
| |
| if (is_gimple_call (stmt)) |
| { |
| if ((gimple_call_flags (stmt) & ECF_NORETURN) |
| && has_return_edges) |
| predict_paths_leading_to (bb, PRED_NORETURN, |
| NOT_TAKEN); |
| decl = gimple_call_fndecl (stmt); |
| if (decl |
| && lookup_attribute ("cold", |
| DECL_ATTRIBUTES (decl))) |
| predict_paths_leading_to (bb, PRED_COLD_FUNCTION, |
| NOT_TAKEN); |
| } |
| else if (gimple_code (stmt) == GIMPLE_PREDICT) |
| { |
| predict_paths_leading_to (bb, gimple_predict_predictor (stmt), |
| gimple_predict_outcome (stmt)); |
| /* Keep GIMPLE_PREDICT around so early inlining will propagate |
| hints to callers. */ |
| } |
| } |
| } |
| } |
| |
| #ifdef ENABLE_CHECKING |
| |
| /* Callback for hash_map::traverse, asserts that the pointer map is |
| empty. */ |
| |
| bool |
| assert_is_empty (const_basic_block const &, edge_prediction *const &value, |
| void *) |
| { |
| gcc_assert (!value); |
| return false; |
| } |
| #endif |
| |
| /* Predict branch probabilities and estimate profile for basic block BB. */ |
| |
| static void |
| tree_estimate_probability_bb (basic_block bb) |
| { |
| edge e; |
| edge_iterator ei; |
| gimple last; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| /* Predict edges to user labels with attributes. */ |
| if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) |
| { |
| gimple_stmt_iterator gi; |
| for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi)) |
| { |
| glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gi)); |
| tree decl; |
| |
| if (!label_stmt) |
| break; |
| decl = gimple_label_label (label_stmt); |
| if (DECL_ARTIFICIAL (decl)) |
| continue; |
| |
| /* Finally, we have a user-defined label. */ |
| if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl))) |
| predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN); |
| else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl))) |
| predict_edge_def (e, PRED_HOT_LABEL, TAKEN); |
| } |
| } |
| |
| /* Predict early returns to be probable, as we've already taken |
| care for error returns and other cases are often used for |
| fast paths through function. |
| |
| Since we've already removed the return statements, we are |
| looking for CFG like: |
| |
| if (conditional) |
| { |
| .. |
| goto return_block |
| } |
| some other blocks |
| return_block: |
| return_stmt. */ |
| if (e->dest != bb->next_bb |
| && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) |
| && single_succ_p (e->dest) |
| && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun) |
| && (last = last_stmt (e->dest)) != NULL |
| && gimple_code (last) == GIMPLE_RETURN) |
| { |
| edge e1; |
| edge_iterator ei1; |
| |
| if (single_succ_p (bb)) |
| { |
| FOR_EACH_EDGE (e1, ei1, bb->preds) |
| if (!predicted_by_p (e1->src, PRED_NULL_RETURN) |
| && !predicted_by_p (e1->src, PRED_CONST_RETURN) |
| && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)) |
| predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN); |
| } |
| else |
| if (!predicted_by_p (e->src, PRED_NULL_RETURN) |
| && !predicted_by_p (e->src, PRED_CONST_RETURN) |
| && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN)) |
| predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN); |
| } |
| |
| /* Look for block we are guarding (ie we dominate it, |
| but it doesn't postdominate us). */ |
| if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb |
| && dominated_by_p (CDI_DOMINATORS, e->dest, e->src) |
| && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest)) |
| { |
| gimple_stmt_iterator bi; |
| |
| /* The call heuristic claims that a guarded function call |
| is improbable. This is because such calls are often used |
| to signal exceptional situations such as printing error |
| messages. */ |
| for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi); |
| gsi_next (&bi)) |
| { |
| gimple stmt = gsi_stmt (bi); |
| if (is_gimple_call (stmt) |
| /* Constant and pure calls are hardly used to signalize |
| something exceptional. */ |
| && gimple_has_side_effects (stmt)) |
| { |
| predict_edge_def (e, PRED_CALL, NOT_TAKEN); |
| break; |
| } |
| } |
| } |
| } |
| tree_predict_by_opcode (bb); |
| } |
| |
| /* Predict branch probabilities and estimate profile of the tree CFG. |
| This function can be called from the loop optimizers to recompute |
| the profile information. */ |
| |
| void |
| tree_estimate_probability (void) |
| { |
| basic_block bb; |
| |
| add_noreturn_fake_exit_edges (); |
| connect_infinite_loops_to_exit (); |
| /* We use loop_niter_by_eval, which requires that the loops have |
| preheaders. */ |
| create_preheaders (CP_SIMPLE_PREHEADERS); |
| calculate_dominance_info (CDI_POST_DOMINATORS); |
| |
| bb_predictions = new hash_map<const_basic_block, edge_prediction *>; |
| tree_bb_level_predictions (); |
| record_loop_exits (); |
| |
| if (number_of_loops (cfun) > 1) |
| predict_loops (); |
| |
| FOR_EACH_BB_FN (bb, cfun) |
| tree_estimate_probability_bb (bb); |
| |
| FOR_EACH_BB_FN (bb, cfun) |
| combine_predictions_for_bb (bb); |
| |
| #ifdef ENABLE_CHECKING |
| bb_predictions->traverse<void *, assert_is_empty> (NULL); |
| #endif |
| delete bb_predictions; |
| bb_predictions = NULL; |
| |
| estimate_bb_frequencies (false); |
| free_dominance_info (CDI_POST_DOMINATORS); |
| remove_fake_exit_edges (); |
| } |
| |
| /* Predict edges to successors of CUR whose sources are not postdominated by |
| BB by PRED and recurse to all postdominators. */ |
| |
| static void |
| predict_paths_for_bb (basic_block cur, basic_block bb, |
| enum br_predictor pred, |
| enum prediction taken, |
| bitmap visited) |
| { |
| edge e; |
| edge_iterator ei; |
| basic_block son; |
| |
| /* We are looking for all edges forming edge cut induced by |
| set of all blocks postdominated by BB. */ |
| FOR_EACH_EDGE (e, ei, cur->preds) |
| if (e->src->index >= NUM_FIXED_BLOCKS |
| && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb)) |
| { |
| edge e2; |
| edge_iterator ei2; |
| bool found = false; |
| |
| /* Ignore fake edges and eh, we predict them as not taken anyway. */ |
| if (e->flags & (EDGE_EH | EDGE_FAKE)) |
| continue; |
| gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb)); |
| |
| /* See if there is an edge from e->src that is not abnormal |
| and does not lead to BB. */ |
| FOR_EACH_EDGE (e2, ei2, e->src->succs) |
| if (e2 != e |
| && !(e2->flags & (EDGE_EH | EDGE_FAKE)) |
| && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb)) |
| { |
| found = true; |
| break; |
| } |
| |
| /* If there is non-abnormal path leaving e->src, predict edge |
| using predictor. Otherwise we need to look for paths |
| leading to e->src. |
| |
| The second may lead to infinite loop in the case we are predicitng |
| regions that are only reachable by abnormal edges. We simply |
| prevent visiting given BB twice. */ |
| if (found) |
| predict_edge_def (e, pred, taken); |
| else if (bitmap_set_bit (visited, e->src->index)) |
| predict_paths_for_bb (e->src, e->src, pred, taken, visited); |
| } |
| for (son = first_dom_son (CDI_POST_DOMINATORS, cur); |
| son; |
| son = next_dom_son (CDI_POST_DOMINATORS, son)) |
| predict_paths_for_bb (son, bb, pred, taken, visited); |
| } |
| |
| /* Sets branch probabilities according to PREDiction and |
| FLAGS. */ |
| |
| static void |
| predict_paths_leading_to (basic_block bb, enum br_predictor pred, |
| enum prediction taken) |
| { |
| bitmap visited = BITMAP_ALLOC (NULL); |
| predict_paths_for_bb (bb, bb, pred, taken, visited); |
| BITMAP_FREE (visited); |
| } |
| |
| /* Like predict_paths_leading_to but take edge instead of basic block. */ |
| |
| static void |
| predict_paths_leading_to_edge (edge e, enum br_predictor pred, |
| enum prediction taken) |
| { |
| bool has_nonloop_edge = false; |
| edge_iterator ei; |
| edge e2; |
| |
| basic_block bb = e->src; |
| FOR_EACH_EDGE (e2, ei, bb->succs) |
| if (e2->dest != e->src && e2->dest != e->dest |
| && !(e->flags & (EDGE_EH | EDGE_FAKE)) |
| && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest)) |
| { |
| has_nonloop_edge = true; |
| break; |
| } |
| if (!has_nonloop_edge) |
| { |
| bitmap visited = BITMAP_ALLOC (NULL); |
| predict_paths_for_bb (bb, bb, pred, taken, visited); |
| BITMAP_FREE (visited); |
| } |
| else |
| predict_edge_def (e, pred, taken); |
| } |
| |
| /* This is used to carry information about basic blocks. It is |
| attached to the AUX field of the standard CFG block. */ |
| |
| struct block_info |
| { |
| /* Estimated frequency of execution of basic_block. */ |
| sreal frequency; |
| |
| /* To keep queue of basic blocks to process. */ |
| basic_block next; |
| |
| /* Number of predecessors we need to visit first. */ |
| int npredecessors; |
| }; |
| |
| /* Similar information for edges. */ |
| struct edge_prob_info |
| { |
| /* In case edge is a loopback edge, the probability edge will be reached |
| in case header is. Estimated number of iterations of the loop can be |
| then computed as 1 / (1 - back_edge_prob). */ |
| sreal back_edge_prob; |
| /* True if the edge is a loopback edge in the natural loop. */ |
| unsigned int back_edge:1; |
| }; |
| |
| #define BLOCK_INFO(B) ((block_info *) (B)->aux) |
| #undef EDGE_INFO |
| #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux) |
| |
| /* Helper function for estimate_bb_frequencies. |
| Propagate the frequencies in blocks marked in |
| TOVISIT, starting in HEAD. */ |
| |
| static void |
| propagate_freq (basic_block head, bitmap tovisit) |
| { |
| basic_block bb; |
| basic_block last; |
| unsigned i; |
| edge e; |
| basic_block nextbb; |
| bitmap_iterator bi; |
| |
| /* For each basic block we need to visit count number of his predecessors |
| we need to visit first. */ |
| EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi) |
| { |
| edge_iterator ei; |
| int count = 0; |
| |
| bb = BASIC_BLOCK_FOR_FN (cfun, i); |
| |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| { |
| bool visit = bitmap_bit_p (tovisit, e->src->index); |
| |
| if (visit && !(e->flags & EDGE_DFS_BACK)) |
| count++; |
| else if (visit && dump_file && !EDGE_INFO (e)->back_edge) |
| fprintf (dump_file, |
| "Irreducible region hit, ignoring edge to %i->%i\n", |
| e->src->index, bb->index); |
| } |
| BLOCK_INFO (bb)->npredecessors = count; |
| /* When function never returns, we will never process exit block. */ |
| if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun)) |
| bb->count = bb->frequency = 0; |
| } |
| |
| BLOCK_INFO (head)->frequency = 1; |
| last = head; |
| for (bb = head; bb; bb = nextbb) |
| { |
| edge_iterator ei; |
| sreal cyclic_probability = 0; |
| sreal frequency = 0; |
| |
| nextbb = BLOCK_INFO (bb)->next; |
| BLOCK_INFO (bb)->next = NULL; |
| |
| /* Compute frequency of basic block. */ |
| if (bb != head) |
| { |
| #ifdef ENABLE_CHECKING |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| gcc_assert (!bitmap_bit_p (tovisit, e->src->index) |
| || (e->flags & EDGE_DFS_BACK)); |
| #endif |
| |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| if (EDGE_INFO (e)->back_edge) |
| { |
| cyclic_probability += EDGE_INFO (e)->back_edge_prob; |
| } |
| else if (!(e->flags & EDGE_DFS_BACK)) |
| { |
| /* frequency += (e->probability |
| * BLOCK_INFO (e->src)->frequency / |
| REG_BR_PROB_BASE); */ |
| |
| sreal tmp = e->probability; |
| tmp *= BLOCK_INFO (e->src)->frequency; |
| tmp *= real_inv_br_prob_base; |
| frequency += tmp; |
| } |
| |
| if (cyclic_probability == 0) |
| { |
| BLOCK_INFO (bb)->frequency = frequency; |
| } |
| else |
| { |
| if (cyclic_probability > real_almost_one) |
| cyclic_probability = real_almost_one; |
| |
| /* BLOCK_INFO (bb)->frequency = frequency |
| / (1 - cyclic_probability) */ |
| |
| cyclic_probability = sreal (1) - cyclic_probability; |
| BLOCK_INFO (bb)->frequency = frequency / cyclic_probability; |
| } |
| } |
| |
| bitmap_clear_bit (tovisit, bb->index); |
| |
| e = find_edge (bb, head); |
| if (e) |
| { |
| /* EDGE_INFO (e)->back_edge_prob |
| = ((e->probability * BLOCK_INFO (bb)->frequency) |
| / REG_BR_PROB_BASE); */ |
| |
| sreal tmp = e->probability; |
| tmp *= BLOCK_INFO (bb)->frequency; |
| EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base; |
| } |
| |
| /* Propagate to successor blocks. */ |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (!(e->flags & EDGE_DFS_BACK) |
| && BLOCK_INFO (e->dest)->npredecessors) |
| { |
| BLOCK_INFO (e->dest)->npredecessors--; |
| if (!BLOCK_INFO (e->dest)->npredecessors) |
| { |
| if (!nextbb) |
| nextbb = e->dest; |
| else |
| BLOCK_INFO (last)->next = e->dest; |
| |
| last = e->dest; |
| } |
| } |
| } |
| } |
| |
| /* Estimate frequencies in loops at same nest level. */ |
| |
| static void |
| estimate_loops_at_level (struct loop *first_loop) |
| { |
| struct loop *loop; |
| |
| for (loop = first_loop; loop; loop = loop->next) |
| { |
| edge e; |
| basic_block *bbs; |
| unsigned i; |
| bitmap tovisit = BITMAP_ALLOC (NULL); |
| |
| estimate_loops_at_level (loop->inner); |
| |
| /* Find current loop back edge and mark it. */ |
| e = loop_latch_edge (loop); |
| EDGE_INFO (e)->back_edge = 1; |
| |
| bbs = get_loop_body (loop); |
| for (i = 0; i < loop->num_nodes; i++) |
| bitmap_set_bit (tovisit, bbs[i]->index); |
| free (bbs); |
| propagate_freq (loop->header, tovisit); |
| BITMAP_FREE (tovisit); |
| } |
| } |
| |
| /* Propagates frequencies through structure of loops. */ |
| |
| static void |
| estimate_loops (void) |
| { |
| bitmap tovisit = BITMAP_ALLOC (NULL); |
| basic_block bb; |
| |
| /* Start by estimating the frequencies in the loops. */ |
| if (number_of_loops (cfun) > 1) |
| estimate_loops_at_level (current_loops->tree_root->inner); |
| |
| /* Now propagate the frequencies through all the blocks. */ |
| FOR_ALL_BB_FN (bb, cfun) |
| { |
| bitmap_set_bit (tovisit, bb->index); |
| } |
| propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit); |
| BITMAP_FREE (tovisit); |
| } |
| |
| /* Drop the profile for NODE to guessed, and update its frequency based on |
| whether it is expected to be hot given the CALL_COUNT. */ |
| |
| static void |
| drop_profile (struct cgraph_node *node, gcov_type call_count) |
| { |
| struct function *fn = DECL_STRUCT_FUNCTION (node->decl); |
| /* In the case where this was called by another function with a |
| dropped profile, call_count will be 0. Since there are no |
| non-zero call counts to this function, we don't know for sure |
| whether it is hot, and therefore it will be marked normal below. */ |
| bool hot = maybe_hot_count_p (NULL, call_count); |
| |
| if (dump_file) |
| fprintf (dump_file, |
| "Dropping 0 profile for %s/%i. %s based on calls.\n", |
| node->name (), node->order, |
| hot ? "Function is hot" : "Function is normal"); |
| /* We only expect to miss profiles for functions that are reached |
| via non-zero call edges in cases where the function may have |
| been linked from another module or library (COMDATs and extern |
| templates). See the comments below for handle_missing_profiles. |
| Also, only warn in cases where the missing counts exceed the |
| number of training runs. In certain cases with an execv followed |
| by a no-return call the profile for the no-return call is not |
| dumped and there can be a mismatch. */ |
| if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl) |
| && call_count > profile_info->runs) |
| { |
| if (flag_profile_correction) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "Missing counts for called function %s/%i\n", |
| node->name (), node->order); |
| } |
| else |
| warning (0, "Missing counts for called function %s/%i", |
| node->name (), node->order); |
| } |
| |
| profile_status_for_fn (fn) |
| = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT); |
| node->frequency |
| = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL; |
| } |
| |
| /* In the case of COMDAT routines, multiple object files will contain the same |
| function and the linker will select one for the binary. In that case |
| all the other copies from the profile instrument binary will be missing |
| profile counts. Look for cases where this happened, due to non-zero |
| call counts going to 0-count functions, and drop the profile to guessed |
| so that we can use the estimated probabilities and avoid optimizing only |
| for size. |
| |
| The other case where the profile may be missing is when the routine |
| is not going to be emitted to the object file, e.g. for "extern template" |
| class methods. Those will be marked DECL_EXTERNAL. Emit a warning in |
| all other cases of non-zero calls to 0-count functions. */ |
| |
| void |
| handle_missing_profiles (void) |
| { |
| struct cgraph_node *node; |
| int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION); |
| vec<struct cgraph_node *> worklist; |
| worklist.create (64); |
| |
| /* See if 0 count function has non-0 count callers. In this case we |
| lost some profile. Drop its function profile to PROFILE_GUESSED. */ |
| FOR_EACH_DEFINED_FUNCTION (node) |
| { |
| struct cgraph_edge *e; |
| gcov_type call_count = 0; |
| gcov_type max_tp_first_run = 0; |
| struct function *fn = DECL_STRUCT_FUNCTION (node->decl); |
| |
| if (node->count) |
| continue; |
| for (e = node->callers; e; e = e->next_caller) |
| { |
| call_count += e->count; |
| |
| if (e->caller->tp_first_run > max_tp_first_run) |
| max_tp_first_run = e->caller->tp_first_run; |
| } |
| |
| /* If time profile is missing, let assign the maximum that comes from |
| caller functions. */ |
| if (!node->tp_first_run && max_tp_first_run) |
| node->tp_first_run = max_tp_first_run + 1; |
| |
| if (call_count |
| && fn && fn->cfg |
| && (call_count * unlikely_count_fraction >= profile_info->runs)) |
| { |
| drop_profile (node, call_count); |
| worklist.safe_push (node); |
| } |
| } |
| |
| /* Propagate the profile dropping to other 0-count COMDATs that are |
| potentially called by COMDATs we already dropped the profile on. */ |
| while (worklist.length () > 0) |
| { |
| struct cgraph_edge *e; |
| |
| node = worklist.pop (); |
| for (e = node->callees; e; e = e->next_caller) |
| { |
| struct cgraph_node *callee = e->callee; |
| struct function *fn = DECL_STRUCT_FUNCTION (callee->decl); |
| |
| if (callee->count > 0) |
| continue; |
| if (DECL_COMDAT (callee->decl) && fn && fn->cfg |
| && profile_status_for_fn (fn) == PROFILE_READ) |
| { |
| drop_profile (node, 0); |
| worklist.safe_push (callee); |
| } |
| } |
| } |
| worklist.release (); |
| } |
| |
| /* Convert counts measured by profile driven feedback to frequencies. |
| Return nonzero iff there was any nonzero execution count. */ |
| |
| int |
| counts_to_freqs (void) |
| { |
| gcov_type count_max, true_count_max = 0; |
| basic_block bb; |
| |
| /* Don't overwrite the estimated frequencies when the profile for |
| the function is missing. We may drop this function PROFILE_GUESSED |
| later in drop_profile (). */ |
| if (!flag_auto_profile && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count) |
| return 0; |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) |
| true_count_max = MAX (bb->count, true_count_max); |
| |
| count_max = MAX (true_count_max, 1); |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) |
| bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max; |
| |
| return true_count_max; |
| } |
| |
| /* Return true if function is likely to be expensive, so there is no point to |
| optimize performance of prologue, epilogue or do inlining at the expense |
| of code size growth. THRESHOLD is the limit of number of instructions |
| function can execute at average to be still considered not expensive. */ |
| |
| bool |
| expensive_function_p (int threshold) |
| { |
| unsigned int sum = 0; |
| basic_block bb; |
| unsigned int limit; |
| |
| /* We can not compute accurately for large thresholds due to scaled |
| frequencies. */ |
| gcc_assert (threshold <= BB_FREQ_MAX); |
| |
| /* Frequencies are out of range. This either means that function contains |
| internal loop executing more than BB_FREQ_MAX times or profile feedback |
| is available and function has not been executed at all. */ |
| if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0) |
| return true; |
| |
| /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */ |
| limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold; |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| rtx_insn *insn; |
| |
| FOR_BB_INSNS (bb, insn) |
| if (active_insn_p (insn)) |
| { |
| sum += bb->frequency; |
| if (sum > limit) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /* Estimate and propagate basic block frequencies using the given branch |
| probabilities. If FORCE is true, the frequencies are used to estimate |
| the counts even when there are already non-zero profile counts. */ |
| |
| void |
| estimate_bb_frequencies (bool force) |
| { |
| basic_block bb; |
| sreal freq_max; |
| |
| if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ()) |
| { |
| static int real_values_initialized = 0; |
| |
| if (!real_values_initialized) |
| { |
| real_values_initialized = 1; |
| real_br_prob_base = REG_BR_PROB_BASE; |
| real_bb_freq_max = BB_FREQ_MAX; |
| real_one_half = sreal (1, -1); |
| real_inv_br_prob_base = sreal (1) / real_br_prob_base; |
| real_almost_one = sreal (1) - real_inv_br_prob_base; |
| } |
| |
| mark_dfs_back_edges (); |
| |
| single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability = |
| REG_BR_PROB_BASE; |
| |
| /* Set up block info for each basic block. */ |
| alloc_aux_for_blocks (sizeof (block_info)); |
| alloc_aux_for_edges (sizeof (edge_prob_info)); |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| EDGE_INFO (e)->back_edge_prob = e->probability; |
| EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base; |
| } |
| } |
| |
| /* First compute frequencies locally for each loop from innermost |
| to outermost to examine frequencies for back edges. */ |
| estimate_loops (); |
| |
| freq_max = 0; |
| FOR_EACH_BB_FN (bb, cfun) |
| if (freq_max < BLOCK_INFO (bb)->frequency) |
| freq_max = BLOCK_INFO (bb)->frequency; |
| |
| freq_max = real_bb_freq_max / freq_max; |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) |
| { |
| sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half; |
| bb->frequency = tmp.to_int (); |
| } |
| |
| free_aux_for_blocks (); |
| free_aux_for_edges (); |
| } |
| compute_function_frequency (); |
| } |
| |
| /* Decide whether function is hot, cold or unlikely executed. */ |
| void |
| compute_function_frequency (void) |
| { |
| basic_block bb; |
| struct cgraph_node *node = cgraph_node::get (current_function_decl); |
| |
| if (DECL_STATIC_CONSTRUCTOR (current_function_decl) |
| || MAIN_NAME_P (DECL_NAME (current_function_decl))) |
| node->only_called_at_startup = true; |
| if (DECL_STATIC_DESTRUCTOR (current_function_decl)) |
| node->only_called_at_exit = true; |
| |
| if (profile_status_for_fn (cfun) != PROFILE_READ) |
| { |
| int flags = flags_from_decl_or_type (current_function_decl); |
| if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)) |
| != NULL) |
| node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED; |
| else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl)) |
| != NULL) |
| node->frequency = NODE_FREQUENCY_HOT; |
| else if (flags & ECF_NORETURN) |
| node->frequency = NODE_FREQUENCY_EXECUTED_ONCE; |
| else if (MAIN_NAME_P (DECL_NAME (current_function_decl))) |
| node->frequency = NODE_FREQUENCY_EXECUTED_ONCE; |
| else if (DECL_STATIC_CONSTRUCTOR (current_function_decl) |
| || DECL_STATIC_DESTRUCTOR (current_function_decl)) |
| node->frequency = NODE_FREQUENCY_EXECUTED_ONCE; |
| return; |
| } |
| |
| /* Only first time try to drop function into unlikely executed. |
| After inlining the roundoff errors may confuse us. |
| Ipa-profile pass will drop functions only called from unlikely |
| functions to unlikely and that is most of what we care about. */ |
| if (!cfun->after_inlining) |
| node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED; |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| if (maybe_hot_bb_p (cfun, bb)) |
| { |
| node->frequency = NODE_FREQUENCY_HOT; |
| return; |
| } |
| if (!probably_never_executed_bb_p (cfun, bb)) |
| node->frequency = NODE_FREQUENCY_NORMAL; |
| } |
| } |
| |
| /* Build PREDICT_EXPR. */ |
| tree |
| build_predict_expr (enum br_predictor predictor, enum prediction taken) |
| { |
| tree t = build1 (PREDICT_EXPR, void_type_node, |
| build_int_cst (integer_type_node, predictor)); |
| SET_PREDICT_EXPR_OUTCOME (t, taken); |
| return t; |
| } |
| |
| const char * |
| predictor_name (enum br_predictor predictor) |
| { |
| return predictor_info[predictor].name; |
| } |
| |
| /* Predict branch probabilities and estimate profile of the tree CFG. */ |
| |
| namespace { |
| |
| const pass_data pass_data_profile = |
| { |
| GIMPLE_PASS, /* type */ |
| "profile_estimate", /* name */ |
| OPTGROUP_NONE, /* optinfo_flags */ |
| TV_BRANCH_PROB, /* tv_id */ |
| PROP_cfg, /* properties_required */ |
| 0, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| 0, /* todo_flags_finish */ |
| }; |
| |
| class pass_profile : public gimple_opt_pass |
| { |
| public: |
| pass_profile (gcc::context *ctxt) |
| : gimple_opt_pass (pass_data_profile, ctxt) |
| {} |
| |
| /* opt_pass methods: */ |
| virtual bool gate (function *) { return flag_guess_branch_prob; } |
| virtual unsigned int execute (function *); |
| |
| }; // class pass_profile |
| |
| unsigned int |
| pass_profile::execute (function *fun) |
| { |
| unsigned nb_loops; |
| |
| if (profile_status_for_fn (cfun) == PROFILE_GUESSED) |
| return 0; |
| |
| loop_optimizer_init (LOOPS_NORMAL); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| flow_loops_dump (dump_file, NULL, 0); |
| |
| mark_irreducible_loops (); |
| |
| nb_loops = number_of_loops (fun); |
| if (nb_loops > 1) |
| scev_initialize (); |
| |
| tree_estimate_probability (); |
| |
| if (nb_loops > 1) |
| scev_finalize (); |
| |
| loop_optimizer_finalize (); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| gimple_dump_cfg (dump_file, dump_flags); |
| if (profile_status_for_fn (fun) == PROFILE_ABSENT) |
| profile_status_for_fn (fun) = PROFILE_GUESSED; |
| return 0; |
| } |
| |
| } // anon namespace |
| |
| gimple_opt_pass * |
| make_pass_profile (gcc::context *ctxt) |
| { |
| return new pass_profile (ctxt); |
| } |
| |
| namespace { |
| |
| const pass_data pass_data_strip_predict_hints = |
| { |
| GIMPLE_PASS, /* type */ |
| "*strip_predict_hints", /* name */ |
| OPTGROUP_NONE, /* optinfo_flags */ |
| TV_BRANCH_PROB, /* tv_id */ |
| PROP_cfg, /* properties_required */ |
| 0, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| 0, /* todo_flags_finish */ |
| }; |
| |
| class pass_strip_predict_hints : public gimple_opt_pass |
| { |
| public: |
| pass_strip_predict_hints (gcc::context *ctxt) |
| : gimple_opt_pass (pass_data_strip_predict_hints, ctxt) |
| {} |
| |
| /* opt_pass methods: */ |
| opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); } |
| virtual unsigned int execute (function *); |
| |
| }; // class pass_strip_predict_hints |
| |
| /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements |
| we no longer need. */ |
| unsigned int |
| pass_strip_predict_hints::execute (function *fun) |
| { |
| basic_block bb; |
| gimple ass_stmt; |
| tree var; |
| |
| FOR_EACH_BB_FN (bb, fun) |
| { |
| gimple_stmt_iterator bi; |
| for (bi = gsi_start_bb (bb); !gsi_end_p (bi);) |
| { |
| gimple stmt = gsi_stmt (bi); |
| |
| if (gimple_code (stmt) == GIMPLE_PREDICT) |
| { |
| gsi_remove (&bi, true); |
| continue; |
| } |
| else if (is_gimple_call (stmt)) |
| { |
| tree fndecl = gimple_call_fndecl (stmt); |
| |
| if ((fndecl |
| && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL |
| && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT |
| && gimple_call_num_args (stmt) == 2) |
| || (gimple_call_internal_p (stmt) |
| && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT)) |
| { |
| var = gimple_call_lhs (stmt); |
| if (var) |
| { |
| ass_stmt |
| = gimple_build_assign (var, gimple_call_arg (stmt, 0)); |
| gsi_replace (&bi, ass_stmt, true); |
| } |
| else |
| { |
| gsi_remove (&bi, true); |
| continue; |
| } |
| } |
| } |
| gsi_next (&bi); |
| } |
| } |
| return 0; |
| } |
| |
| } // anon namespace |
| |
| gimple_opt_pass * |
| make_pass_strip_predict_hints (gcc::context *ctxt) |
| { |
| return new pass_strip_predict_hints (ctxt); |
| } |
| |
| /* Rebuild function frequencies. Passes are in general expected to |
| maintain profile by hand, however in some cases this is not possible: |
| for example when inlining several functions with loops freuqencies might run |
| out of scale and thus needs to be recomputed. */ |
| |
| void |
| rebuild_frequencies (void) |
| { |
| timevar_push (TV_REBUILD_FREQUENCIES); |
| |
| /* When the max bb count in the function is small, there is a higher |
| chance that there were truncation errors in the integer scaling |
| of counts by inlining and other optimizations. This could lead |
| to incorrect classification of code as being cold when it isn't. |
| In that case, force the estimation of bb counts/frequencies from the |
| branch probabilities, rather than computing frequencies from counts, |
| which may also lead to frequencies incorrectly reduced to 0. There |
| is less precision in the probabilities, so we only do this for small |
| max counts. */ |
| gcov_type count_max = 0; |
| basic_block bb; |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) |
| count_max = MAX (bb->count, count_max); |
| |
| if (profile_status_for_fn (cfun) == PROFILE_GUESSED |
| || (!flag_auto_profile && profile_status_for_fn (cfun) == PROFILE_READ |
| && count_max < REG_BR_PROB_BASE/10)) |
| { |
| loop_optimizer_init (0); |
| add_noreturn_fake_exit_edges (); |
| mark_irreducible_loops (); |
| connect_infinite_loops_to_exit (); |
| estimate_bb_frequencies (true); |
| remove_fake_exit_edges (); |
| loop_optimizer_finalize (); |
| } |
| else if (profile_status_for_fn (cfun) == PROFILE_READ) |
| counts_to_freqs (); |
| else |
| gcc_unreachable (); |
| timevar_pop (TV_REBUILD_FREQUENCIES); |
| } |