| /* Single entry single exit control flow regions. |
| Copyright (C) 2008-2015 Free Software Foundation, Inc. |
| Contributed by Jan Sjodin <jan.sjodin@amd.com> and |
| Sebastian Pop <sebastian.pop@amd.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #ifndef GCC_SESE_H |
| #define GCC_SESE_H |
| |
| /* A Single Entry, Single Exit region is a part of the CFG delimited |
| by two edges. */ |
| typedef struct sese_s |
| { |
| /* Single ENTRY and single EXIT from the SESE region. */ |
| edge entry, exit; |
| |
| /* Parameters used within the SCOP. */ |
| vec<tree> params; |
| |
| /* Loops completely contained in the SCOP. */ |
| bitmap loops; |
| vec<loop_p> loop_nest; |
| |
| /* Are we allowed to add more params? This is for debugging purpose. We |
| can only add new params before generating the bb domains, otherwise they |
| become invalid. */ |
| bool add_params; |
| } *sese; |
| |
| #define SESE_ENTRY(S) (S->entry) |
| #define SESE_ENTRY_BB(S) (S->entry->dest) |
| #define SESE_EXIT(S) (S->exit) |
| #define SESE_EXIT_BB(S) (S->exit->dest) |
| #define SESE_PARAMS(S) (S->params) |
| #define SESE_LOOPS(S) (S->loops) |
| #define SESE_LOOP_NEST(S) (S->loop_nest) |
| #define SESE_ADD_PARAMS(S) (S->add_params) |
| |
| extern sese new_sese (edge, edge); |
| extern void free_sese (sese); |
| extern void sese_insert_phis_for_liveouts (sese, basic_block, edge, edge); |
| extern void build_sese_loop_nests (sese); |
| extern edge copy_bb_and_scalar_dependences (basic_block, sese, edge, |
| vec<tree> , bool *); |
| extern struct loop *outermost_loop_in_sese (sese, basic_block); |
| extern tree scalar_evolution_in_region (sese, loop_p, tree); |
| |
| /* Check that SESE contains LOOP. */ |
| |
| static inline bool |
| sese_contains_loop (sese sese, struct loop *loop) |
| { |
| return bitmap_bit_p (SESE_LOOPS (sese), loop->num); |
| } |
| |
| /* The number of parameters in REGION. */ |
| |
| static inline unsigned |
| sese_nb_params (sese region) |
| { |
| return SESE_PARAMS (region).length (); |
| } |
| |
| /* Checks whether BB is contained in the region delimited by ENTRY and |
| EXIT blocks. */ |
| |
| static inline bool |
| bb_in_region (basic_block bb, basic_block entry, basic_block exit) |
| { |
| #ifdef ENABLE_CHECKING |
| { |
| edge e; |
| edge_iterator ei; |
| |
| /* Check that there are no edges coming in the region: all the |
| predecessors of EXIT are dominated by ENTRY. */ |
| FOR_EACH_EDGE (e, ei, exit->preds) |
| dominated_by_p (CDI_DOMINATORS, e->src, entry); |
| } |
| #endif |
| |
| return dominated_by_p (CDI_DOMINATORS, bb, entry) |
| && !(dominated_by_p (CDI_DOMINATORS, bb, exit) |
| && !dominated_by_p (CDI_DOMINATORS, entry, exit)); |
| } |
| |
| /* Checks whether BB is contained in the region delimited by ENTRY and |
| EXIT blocks. */ |
| |
| static inline bool |
| bb_in_sese_p (basic_block bb, sese region) |
| { |
| basic_block entry = SESE_ENTRY_BB (region); |
| basic_block exit = SESE_EXIT_BB (region); |
| |
| return bb_in_region (bb, entry, exit); |
| } |
| |
| /* Returns true when STMT is defined in REGION. */ |
| |
| static inline bool |
| stmt_in_sese_p (gimple stmt, sese region) |
| { |
| basic_block bb = gimple_bb (stmt); |
| return bb && bb_in_sese_p (bb, region); |
| } |
| |
| /* Returns true when NAME is defined in REGION. */ |
| |
| static inline bool |
| defined_in_sese_p (tree name, sese region) |
| { |
| gimple stmt = SSA_NAME_DEF_STMT (name); |
| return stmt_in_sese_p (stmt, region); |
| } |
| |
| /* Returns true when LOOP is in REGION. */ |
| |
| static inline bool |
| loop_in_sese_p (struct loop *loop, sese region) |
| { |
| return (bb_in_sese_p (loop->header, region) |
| && bb_in_sese_p (loop->latch, region)); |
| } |
| |
| /* Returns the loop depth of LOOP in REGION. The loop depth |
| is the same as the normal loop depth, but limited by a region. |
| |
| Example: |
| |
| loop_0 |
| loop_1 |
| { |
| S0 |
| <- region start |
| S1 |
| |
| loop_2 |
| S2 |
| |
| S3 |
| <- region end |
| } |
| |
| loop_0 does not exist in the region -> invalid |
| loop_1 exists, but is not completely contained in the region -> depth 0 |
| loop_2 is completely contained -> depth 1 */ |
| |
| static inline unsigned int |
| sese_loop_depth (sese region, loop_p loop) |
| { |
| unsigned int depth = 0; |
| |
| gcc_assert ((!loop_in_sese_p (loop, region) |
| && (SESE_ENTRY_BB (region)->loop_father == loop |
| || SESE_EXIT (region)->src->loop_father == loop)) |
| || loop_in_sese_p (loop, region)); |
| |
| while (loop_in_sese_p (loop, region)) |
| { |
| depth++; |
| loop = loop_outer (loop); |
| } |
| |
| return depth; |
| } |
| |
| /* Splits BB to make a single entry single exit region. */ |
| |
| static inline sese |
| split_region_for_bb (basic_block bb) |
| { |
| edge entry, exit; |
| |
| if (single_pred_p (bb)) |
| entry = single_pred_edge (bb); |
| else |
| { |
| entry = split_block_after_labels (bb); |
| bb = single_succ (bb); |
| } |
| |
| if (single_succ_p (bb)) |
| exit = single_succ_edge (bb); |
| else |
| { |
| gimple_stmt_iterator gsi = gsi_last_bb (bb); |
| gsi_prev (&gsi); |
| exit = split_block (bb, gsi_stmt (gsi)); |
| } |
| |
| return new_sese (entry, exit); |
| } |
| |
| /* Returns the block preceding the entry of a SESE. */ |
| |
| static inline basic_block |
| block_before_sese (sese sese) |
| { |
| return SESE_ENTRY (sese)->src; |
| } |
| |
| |
| |
| /* A single entry single exit specialized for conditions. */ |
| |
| typedef struct ifsese_s { |
| sese region; |
| sese true_region; |
| sese false_region; |
| } *ifsese; |
| |
| extern void if_region_set_false_region (ifsese, sese); |
| extern ifsese move_sese_in_condition (sese); |
| extern edge get_true_edge_from_guard_bb (basic_block); |
| extern edge get_false_edge_from_guard_bb (basic_block); |
| extern void set_ifsese_condition (ifsese, tree); |
| |
| static inline edge |
| if_region_entry (ifsese if_region) |
| { |
| return SESE_ENTRY (if_region->region); |
| } |
| |
| static inline edge |
| if_region_exit (ifsese if_region) |
| { |
| return SESE_EXIT (if_region->region); |
| } |
| |
| static inline basic_block |
| if_region_get_condition_block (ifsese if_region) |
| { |
| return if_region_entry (if_region)->dest; |
| } |
| |
| /* Free and compute again all the dominators information. */ |
| |
| static inline void |
| recompute_all_dominators (void) |
| { |
| mark_irreducible_loops (); |
| free_dominance_info (CDI_DOMINATORS); |
| calculate_dominance_info (CDI_DOMINATORS); |
| } |
| |
| typedef struct gimple_bb |
| { |
| basic_block bb; |
| struct poly_bb *pbb; |
| |
| /* Lists containing the restrictions of the conditional statements |
| dominating this bb. This bb can only be executed, if all conditions |
| are true. |
| |
| Example: |
| |
| for (i = 0; i <= 20; i++) |
| { |
| A |
| |
| if (2i <= 8) |
| B |
| } |
| |
| So for B there is an additional condition (2i <= 8). |
| |
| List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the |
| corresponding element in CONDITION_CASES is not NULL_TREE. For a |
| SWITCH_EXPR the corresponding element in CONDITION_CASES is a |
| CASE_LABEL_EXPR. */ |
| vec<gimple> conditions; |
| vec<gimple> condition_cases; |
| vec<data_reference_p> data_refs; |
| } *gimple_bb_p; |
| |
| #define GBB_BB(GBB) (GBB)->bb |
| #define GBB_PBB(GBB) (GBB)->pbb |
| #define GBB_DATA_REFS(GBB) (GBB)->data_refs |
| #define GBB_CONDITIONS(GBB) (GBB)->conditions |
| #define GBB_CONDITION_CASES(GBB) (GBB)->condition_cases |
| |
| /* Return the innermost loop that contains the basic block GBB. */ |
| |
| static inline struct loop * |
| gbb_loop (struct gimple_bb *gbb) |
| { |
| return GBB_BB (gbb)->loop_father; |
| } |
| |
| /* Returns the gimple loop, that corresponds to the loop_iterator_INDEX. |
| If there is no corresponding gimple loop, we return NULL. */ |
| |
| static inline loop_p |
| gbb_loop_at_index (gimple_bb_p gbb, sese region, int index) |
| { |
| loop_p loop = gbb_loop (gbb); |
| int depth = sese_loop_depth (region, loop); |
| |
| while (--depth > index) |
| loop = loop_outer (loop); |
| |
| gcc_assert (sese_contains_loop (region, loop)); |
| |
| return loop; |
| } |
| |
| /* The number of common loops in REGION for GBB1 and GBB2. */ |
| |
| static inline int |
| nb_common_loops (sese region, gimple_bb_p gbb1, gimple_bb_p gbb2) |
| { |
| loop_p l1 = gbb_loop (gbb1); |
| loop_p l2 = gbb_loop (gbb2); |
| loop_p common = find_common_loop (l1, l2); |
| |
| return sese_loop_depth (region, common); |
| } |
| |
| /* Return true when DEF can be analyzed in REGION by the scalar |
| evolution analyzer. */ |
| |
| static inline bool |
| scev_analyzable_p (tree def, sese region) |
| { |
| loop_p loop; |
| tree scev; |
| tree type = TREE_TYPE (def); |
| |
| /* When Graphite generates code for a scev, the code generator |
| expresses the scev in function of a single induction variable. |
| This is unsafe for floating point computations, as it may replace |
| a floating point sum reduction with a multiplication. The |
| following test returns false for non integer types to avoid such |
| problems. */ |
| if (!INTEGRAL_TYPE_P (type) |
| && !POINTER_TYPE_P (type)) |
| return false; |
| |
| loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def)); |
| scev = scalar_evolution_in_region (region, loop, def); |
| |
| return !chrec_contains_undetermined (scev) |
| && (TREE_CODE (scev) != SSA_NAME |
| || !defined_in_sese_p (scev, region)) |
| && (tree_does_not_contain_chrecs (scev) |
| || evolution_function_is_affine_p (scev)); |
| } |
| |
| #endif |