| /* Loop autoparallelization. |
| Copyright (C) 2006-2015 Free Software Foundation, Inc. |
| Contributed by Sebastian Pop <pop@cri.ensmp.fr> |
| Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "hash-set.h" |
| #include "machmode.h" |
| #include "vec.h" |
| #include "double-int.h" |
| #include "input.h" |
| #include "alias.h" |
| #include "symtab.h" |
| #include "options.h" |
| #include "wide-int.h" |
| #include "inchash.h" |
| #include "tree.h" |
| #include "fold-const.h" |
| #include "predict.h" |
| #include "tm.h" |
| #include "hard-reg-set.h" |
| #include "input.h" |
| #include "function.h" |
| #include "dominance.h" |
| #include "cfg.h" |
| #include "basic-block.h" |
| #include "tree-ssa-alias.h" |
| #include "internal-fn.h" |
| #include "gimple-expr.h" |
| #include "is-a.h" |
| #include "gimple.h" |
| #include "gimplify.h" |
| #include "gimple-iterator.h" |
| #include "gimplify-me.h" |
| #include "gimple-walk.h" |
| #include "stor-layout.h" |
| #include "tree-nested.h" |
| #include "gimple-ssa.h" |
| #include "tree-cfg.h" |
| #include "tree-phinodes.h" |
| #include "ssa-iterators.h" |
| #include "stringpool.h" |
| #include "tree-ssanames.h" |
| #include "tree-ssa-loop-ivopts.h" |
| #include "tree-ssa-loop-manip.h" |
| #include "tree-ssa-loop-niter.h" |
| #include "tree-ssa-loop.h" |
| #include "tree-into-ssa.h" |
| #include "cfgloop.h" |
| #include "tree-data-ref.h" |
| #include "tree-scalar-evolution.h" |
| #include "gimple-pretty-print.h" |
| #include "tree-pass.h" |
| #include "langhooks.h" |
| #include "tree-vectorizer.h" |
| #include "tree-hasher.h" |
| #include "tree-parloops.h" |
| #include "omp-low.h" |
| #include "tree-nested.h" |
| #include "plugin-api.h" |
| #include "ipa-ref.h" |
| #include "cgraph.h" |
| |
| /* This pass tries to distribute iterations of loops into several threads. |
| The implementation is straightforward -- for each loop we test whether its |
| iterations are independent, and if it is the case (and some additional |
| conditions regarding profitability and correctness are satisfied), we |
| add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion |
| machinery do its job. |
| |
| The most of the complexity is in bringing the code into shape expected |
| by the omp expanders: |
| -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction |
| variable and that the exit test is at the start of the loop body |
| -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable |
| variables by accesses through pointers, and breaking up ssa chains |
| by storing the values incoming to the parallelized loop to a structure |
| passed to the new function as an argument (something similar is done |
| in omp gimplification, unfortunately only a small part of the code |
| can be shared). |
| |
| TODO: |
| -- if there are several parallelizable loops in a function, it may be |
| possible to generate the threads just once (using synchronization to |
| ensure that cross-loop dependences are obeyed). |
| -- handling of common reduction patterns for outer loops. |
| |
| More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */ |
| /* |
| Reduction handling: |
| currently we use vect_force_simple_reduction() to detect reduction patterns. |
| The code transformation will be introduced by an example. |
| |
| |
| parloop |
| { |
| int sum=1; |
| |
| for (i = 0; i < N; i++) |
| { |
| x[i] = i + 3; |
| sum+=x[i]; |
| } |
| } |
| |
| gimple-like code: |
| header_bb: |
| |
| # sum_29 = PHI <sum_11(5), 1(3)> |
| # i_28 = PHI <i_12(5), 0(3)> |
| D.1795_8 = i_28 + 3; |
| x[i_28] = D.1795_8; |
| sum_11 = D.1795_8 + sum_29; |
| i_12 = i_28 + 1; |
| if (N_6(D) > i_12) |
| goto header_bb; |
| |
| |
| exit_bb: |
| |
| # sum_21 = PHI <sum_11(4)> |
| printf (&"%d"[0], sum_21); |
| |
| |
| after reduction transformation (only relevant parts): |
| |
| parloop |
| { |
| |
| .... |
| |
| |
| # Storing the initial value given by the user. # |
| |
| .paral_data_store.32.sum.27 = 1; |
| |
| #pragma omp parallel num_threads(4) |
| |
| #pragma omp for schedule(static) |
| |
| # The neutral element corresponding to the particular |
| reduction's operation, e.g. 0 for PLUS_EXPR, |
| 1 for MULT_EXPR, etc. replaces the user's initial value. # |
| |
| # sum.27_29 = PHI <sum.27_11, 0> |
| |
| sum.27_11 = D.1827_8 + sum.27_29; |
| |
| GIMPLE_OMP_CONTINUE |
| |
| # Adding this reduction phi is done at create_phi_for_local_result() # |
| # sum.27_56 = PHI <sum.27_11, 0> |
| GIMPLE_OMP_RETURN |
| |
| # Creating the atomic operation is done at |
| create_call_for_reduction_1() # |
| |
| #pragma omp atomic_load |
| D.1839_59 = *&.paral_data_load.33_51->reduction.23; |
| D.1840_60 = sum.27_56 + D.1839_59; |
| #pragma omp atomic_store (D.1840_60); |
| |
| GIMPLE_OMP_RETURN |
| |
| # collecting the result after the join of the threads is done at |
| create_loads_for_reductions(). |
| The value computed by the threads is loaded from the |
| shared struct. # |
| |
| |
| .paral_data_load.33_52 = &.paral_data_store.32; |
| sum_37 = .paral_data_load.33_52->sum.27; |
| sum_43 = D.1795_41 + sum_37; |
| |
| exit bb: |
| # sum_21 = PHI <sum_43, sum_26> |
| printf (&"%d"[0], sum_21); |
| |
| ... |
| |
| } |
| |
| */ |
| |
| /* Minimal number of iterations of a loop that should be executed in each |
| thread. */ |
| #define MIN_PER_THREAD 100 |
| |
| /* Element of the hashtable, representing a |
| reduction in the current loop. */ |
| struct reduction_info |
| { |
| gimple reduc_stmt; /* reduction statement. */ |
| gimple reduc_phi; /* The phi node defining the reduction. */ |
| enum tree_code reduction_code;/* code for the reduction operation. */ |
| unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi |
| result. */ |
| gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value |
| of the reduction variable when existing the loop. */ |
| tree initial_value; /* The initial value of the reduction var before entering the loop. */ |
| tree field; /* the name of the field in the parloop data structure intended for reduction. */ |
| tree init; /* reduction initialization value. */ |
| gphi *new_phi; /* (helper field) Newly created phi node whose result |
| will be passed to the atomic operation. Represents |
| the local result each thread computed for the reduction |
| operation. */ |
| }; |
| |
| /* Reduction info hashtable helpers. */ |
| |
| struct reduction_hasher : typed_free_remove <reduction_info> |
| { |
| typedef reduction_info value_type; |
| typedef reduction_info compare_type; |
| static inline hashval_t hash (const value_type *); |
| static inline bool equal (const value_type *, const compare_type *); |
| }; |
| |
| /* Equality and hash functions for hashtab code. */ |
| |
| inline bool |
| reduction_hasher::equal (const value_type *a, const compare_type *b) |
| { |
| return (a->reduc_phi == b->reduc_phi); |
| } |
| |
| inline hashval_t |
| reduction_hasher::hash (const value_type *a) |
| { |
| return a->reduc_version; |
| } |
| |
| typedef hash_table<reduction_hasher> reduction_info_table_type; |
| |
| |
| static struct reduction_info * |
| reduction_phi (reduction_info_table_type *reduction_list, gimple phi) |
| { |
| struct reduction_info tmpred, *red; |
| |
| if (reduction_list->elements () == 0 || phi == NULL) |
| return NULL; |
| |
| tmpred.reduc_phi = phi; |
| tmpred.reduc_version = gimple_uid (phi); |
| red = reduction_list->find (&tmpred); |
| |
| return red; |
| } |
| |
| /* Element of hashtable of names to copy. */ |
| |
| struct name_to_copy_elt |
| { |
| unsigned version; /* The version of the name to copy. */ |
| tree new_name; /* The new name used in the copy. */ |
| tree field; /* The field of the structure used to pass the |
| value. */ |
| }; |
| |
| /* Name copies hashtable helpers. */ |
| |
| struct name_to_copy_hasher : typed_free_remove <name_to_copy_elt> |
| { |
| typedef name_to_copy_elt value_type; |
| typedef name_to_copy_elt compare_type; |
| static inline hashval_t hash (const value_type *); |
| static inline bool equal (const value_type *, const compare_type *); |
| }; |
| |
| /* Equality and hash functions for hashtab code. */ |
| |
| inline bool |
| name_to_copy_hasher::equal (const value_type *a, const compare_type *b) |
| { |
| return a->version == b->version; |
| } |
| |
| inline hashval_t |
| name_to_copy_hasher::hash (const value_type *a) |
| { |
| return (hashval_t) a->version; |
| } |
| |
| typedef hash_table<name_to_copy_hasher> name_to_copy_table_type; |
| |
| /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE |
| matrix. Rather than use floats, we simply keep a single DENOMINATOR that |
| represents the denominator for every element in the matrix. */ |
| typedef struct lambda_trans_matrix_s |
| { |
| lambda_matrix matrix; |
| int rowsize; |
| int colsize; |
| int denominator; |
| } *lambda_trans_matrix; |
| #define LTM_MATRIX(T) ((T)->matrix) |
| #define LTM_ROWSIZE(T) ((T)->rowsize) |
| #define LTM_COLSIZE(T) ((T)->colsize) |
| #define LTM_DENOMINATOR(T) ((T)->denominator) |
| |
| /* Allocate a new transformation matrix. */ |
| |
| static lambda_trans_matrix |
| lambda_trans_matrix_new (int colsize, int rowsize, |
| struct obstack * lambda_obstack) |
| { |
| lambda_trans_matrix ret; |
| |
| ret = (lambda_trans_matrix) |
| obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s)); |
| LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack); |
| LTM_ROWSIZE (ret) = rowsize; |
| LTM_COLSIZE (ret) = colsize; |
| LTM_DENOMINATOR (ret) = 1; |
| return ret; |
| } |
| |
| /* Multiply a vector VEC by a matrix MAT. |
| MAT is an M*N matrix, and VEC is a vector with length N. The result |
| is stored in DEST which must be a vector of length M. */ |
| |
| static void |
| lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n, |
| lambda_vector vec, lambda_vector dest) |
| { |
| int i, j; |
| |
| lambda_vector_clear (dest, m); |
| for (i = 0; i < m; i++) |
| for (j = 0; j < n; j++) |
| dest[i] += matrix[i][j] * vec[j]; |
| } |
| |
| /* Return true if TRANS is a legal transformation matrix that respects |
| the dependence vectors in DISTS and DIRS. The conservative answer |
| is false. |
| |
| "Wolfe proves that a unimodular transformation represented by the |
| matrix T is legal when applied to a loop nest with a set of |
| lexicographically non-negative distance vectors RDG if and only if |
| for each vector d in RDG, (T.d >= 0) is lexicographically positive. |
| i.e.: if and only if it transforms the lexicographically positive |
| distance vectors to lexicographically positive vectors. Note that |
| a unimodular matrix must transform the zero vector (and only it) to |
| the zero vector." S.Muchnick. */ |
| |
| static bool |
| lambda_transform_legal_p (lambda_trans_matrix trans, |
| int nb_loops, |
| vec<ddr_p> dependence_relations) |
| { |
| unsigned int i, j; |
| lambda_vector distres; |
| struct data_dependence_relation *ddr; |
| |
| gcc_assert (LTM_COLSIZE (trans) == nb_loops |
| && LTM_ROWSIZE (trans) == nb_loops); |
| |
| /* When there are no dependences, the transformation is correct. */ |
| if (dependence_relations.length () == 0) |
| return true; |
| |
| ddr = dependence_relations[0]; |
| if (ddr == NULL) |
| return true; |
| |
| /* When there is an unknown relation in the dependence_relations, we |
| know that it is no worth looking at this loop nest: give up. */ |
| if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) |
| return false; |
| |
| distres = lambda_vector_new (nb_loops); |
| |
| /* For each distance vector in the dependence graph. */ |
| FOR_EACH_VEC_ELT (dependence_relations, i, ddr) |
| { |
| /* Don't care about relations for which we know that there is no |
| dependence, nor about read-read (aka. output-dependences): |
| these data accesses can happen in any order. */ |
| if (DDR_ARE_DEPENDENT (ddr) == chrec_known |
| || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr)))) |
| continue; |
| |
| /* Conservatively answer: "this transformation is not valid". */ |
| if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) |
| return false; |
| |
| /* If the dependence could not be captured by a distance vector, |
| conservatively answer that the transform is not valid. */ |
| if (DDR_NUM_DIST_VECTS (ddr) == 0) |
| return false; |
| |
| /* Compute trans.dist_vect */ |
| for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++) |
| { |
| lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops, |
| DDR_DIST_VECT (ddr, j), distres); |
| |
| if (!lambda_vector_lexico_pos (distres, nb_loops)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* Data dependency analysis. Returns true if the iterations of LOOP |
| are independent on each other (that is, if we can execute them |
| in parallel). */ |
| |
| static bool |
| loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack) |
| { |
| vec<ddr_p> dependence_relations; |
| vec<data_reference_p> datarefs; |
| lambda_trans_matrix trans; |
| bool ret = false; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Considering loop %d\n", loop->num); |
| if (!loop->inner) |
| fprintf (dump_file, "loop is innermost\n"); |
| else |
| fprintf (dump_file, "loop NOT innermost\n"); |
| } |
| |
| /* Check for problems with dependences. If the loop can be reversed, |
| the iterations are independent. */ |
| auto_vec<loop_p, 3> loop_nest; |
| datarefs.create (10); |
| dependence_relations.create (100); |
| if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs, |
| &dependence_relations)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, " FAILED: cannot analyze data dependencies\n"); |
| ret = false; |
| goto end; |
| } |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| dump_data_dependence_relations (dump_file, dependence_relations); |
| |
| trans = lambda_trans_matrix_new (1, 1, parloop_obstack); |
| LTM_MATRIX (trans)[0][0] = -1; |
| |
| if (lambda_transform_legal_p (trans, 1, dependence_relations)) |
| { |
| ret = true; |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, " SUCCESS: may be parallelized\n"); |
| } |
| else if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| " FAILED: data dependencies exist across iterations\n"); |
| |
| end: |
| free_dependence_relations (dependence_relations); |
| free_data_refs (datarefs); |
| |
| return ret; |
| } |
| |
| /* Return true when LOOP contains basic blocks marked with the |
| BB_IRREDUCIBLE_LOOP flag. */ |
| |
| static inline bool |
| loop_has_blocks_with_irreducible_flag (struct loop *loop) |
| { |
| unsigned i; |
| basic_block *bbs = get_loop_body_in_dom_order (loop); |
| bool res = true; |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP) |
| goto end; |
| |
| res = false; |
| end: |
| free (bbs); |
| return res; |
| } |
| |
| /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name. |
| The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls |
| to their addresses that can be reused. The address of OBJ is known to |
| be invariant in the whole function. Other needed statements are placed |
| right before GSI. */ |
| |
| static tree |
| take_address_of (tree obj, tree type, edge entry, |
| int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi) |
| { |
| int uid; |
| tree *var_p, name, addr; |
| gassign *stmt; |
| gimple_seq stmts; |
| |
| /* Since the address of OBJ is invariant, the trees may be shared. |
| Avoid rewriting unrelated parts of the code. */ |
| obj = unshare_expr (obj); |
| for (var_p = &obj; |
| handled_component_p (*var_p); |
| var_p = &TREE_OPERAND (*var_p, 0)) |
| continue; |
| |
| /* Canonicalize the access to base on a MEM_REF. */ |
| if (DECL_P (*var_p)) |
| *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p)); |
| |
| /* Assign a canonical SSA name to the address of the base decl used |
| in the address and share it for all accesses and addresses based |
| on it. */ |
| uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0)); |
| int_tree_map elt; |
| elt.uid = uid; |
| int_tree_map *slot = decl_address->find_slot (elt, INSERT); |
| if (!slot->to) |
| { |
| if (gsi == NULL) |
| return NULL; |
| addr = TREE_OPERAND (*var_p, 0); |
| const char *obj_name |
| = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0)); |
| if (obj_name) |
| name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name); |
| else |
| name = make_ssa_name (TREE_TYPE (addr)); |
| stmt = gimple_build_assign (name, addr); |
| gsi_insert_on_edge_immediate (entry, stmt); |
| |
| slot->uid = uid; |
| slot->to = name; |
| } |
| else |
| name = slot->to; |
| |
| /* Express the address in terms of the canonical SSA name. */ |
| TREE_OPERAND (*var_p, 0) = name; |
| if (gsi == NULL) |
| return build_fold_addr_expr_with_type (obj, type); |
| |
| name = force_gimple_operand (build_addr (obj, current_function_decl), |
| &stmts, true, NULL_TREE); |
| if (!gimple_seq_empty_p (stmts)) |
| gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); |
| |
| if (!useless_type_conversion_p (type, TREE_TYPE (name))) |
| { |
| name = force_gimple_operand (fold_convert (type, name), &stmts, true, |
| NULL_TREE); |
| if (!gimple_seq_empty_p (stmts)) |
| gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); |
| } |
| |
| return name; |
| } |
| |
| /* Callback for htab_traverse. Create the initialization statement |
| for reduction described in SLOT, and place it at the preheader of |
| the loop described in DATA. */ |
| |
| int |
| initialize_reductions (reduction_info **slot, struct loop *loop) |
| { |
| tree init, c; |
| tree bvar, type, arg; |
| edge e; |
| |
| struct reduction_info *const reduc = *slot; |
| |
| /* Create initialization in preheader: |
| reduction_variable = initialization value of reduction. */ |
| |
| /* In the phi node at the header, replace the argument coming |
| from the preheader with the reduction initialization value. */ |
| |
| /* Create a new variable to initialize the reduction. */ |
| type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi)); |
| bvar = create_tmp_var (type, "reduction"); |
| |
| c = build_omp_clause (gimple_location (reduc->reduc_stmt), |
| OMP_CLAUSE_REDUCTION); |
| OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code; |
| OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt)); |
| |
| init = omp_reduction_init (c, TREE_TYPE (bvar)); |
| reduc->init = init; |
| |
| /* Replace the argument representing the initialization value |
| with the initialization value for the reduction (neutral |
| element for the particular operation, e.g. 0 for PLUS_EXPR, |
| 1 for MULT_EXPR, etc). |
| Keep the old value in a new variable "reduction_initial", |
| that will be taken in consideration after the parallel |
| computing is done. */ |
| |
| e = loop_preheader_edge (loop); |
| arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e); |
| /* Create new variable to hold the initial value. */ |
| |
| SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE |
| (reduc->reduc_phi, loop_preheader_edge (loop)), init); |
| reduc->initial_value = arg; |
| return 1; |
| } |
| |
| struct elv_data |
| { |
| struct walk_stmt_info info; |
| edge entry; |
| int_tree_htab_type *decl_address; |
| gimple_stmt_iterator *gsi; |
| bool changed; |
| bool reset; |
| }; |
| |
| /* Eliminates references to local variables in *TP out of the single |
| entry single exit region starting at DTA->ENTRY. |
| DECL_ADDRESS contains addresses of the references that had their |
| address taken already. If the expression is changed, CHANGED is |
| set to true. Callback for walk_tree. */ |
| |
| static tree |
| eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data) |
| { |
| struct elv_data *const dta = (struct elv_data *) data; |
| tree t = *tp, var, addr, addr_type, type, obj; |
| |
| if (DECL_P (t)) |
| { |
| *walk_subtrees = 0; |
| |
| if (!SSA_VAR_P (t) || DECL_EXTERNAL (t)) |
| return NULL_TREE; |
| |
| type = TREE_TYPE (t); |
| addr_type = build_pointer_type (type); |
| addr = take_address_of (t, addr_type, dta->entry, dta->decl_address, |
| dta->gsi); |
| if (dta->gsi == NULL && addr == NULL_TREE) |
| { |
| dta->reset = true; |
| return NULL_TREE; |
| } |
| |
| *tp = build_simple_mem_ref (addr); |
| |
| dta->changed = true; |
| return NULL_TREE; |
| } |
| |
| if (TREE_CODE (t) == ADDR_EXPR) |
| { |
| /* ADDR_EXPR may appear in two contexts: |
| -- as a gimple operand, when the address taken is a function invariant |
| -- as gimple rhs, when the resulting address in not a function |
| invariant |
| We do not need to do anything special in the latter case (the base of |
| the memory reference whose address is taken may be replaced in the |
| DECL_P case). The former case is more complicated, as we need to |
| ensure that the new address is still a gimple operand. Thus, it |
| is not sufficient to replace just the base of the memory reference -- |
| we need to move the whole computation of the address out of the |
| loop. */ |
| if (!is_gimple_val (t)) |
| return NULL_TREE; |
| |
| *walk_subtrees = 0; |
| obj = TREE_OPERAND (t, 0); |
| var = get_base_address (obj); |
| if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var)) |
| return NULL_TREE; |
| |
| addr_type = TREE_TYPE (t); |
| addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address, |
| dta->gsi); |
| if (dta->gsi == NULL && addr == NULL_TREE) |
| { |
| dta->reset = true; |
| return NULL_TREE; |
| } |
| *tp = addr; |
| |
| dta->changed = true; |
| return NULL_TREE; |
| } |
| |
| if (!EXPR_P (t)) |
| *walk_subtrees = 0; |
| |
| return NULL_TREE; |
| } |
| |
| /* Moves the references to local variables in STMT at *GSI out of the single |
| entry single exit region starting at ENTRY. DECL_ADDRESS contains |
| addresses of the references that had their address taken |
| already. */ |
| |
| static void |
| eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi, |
| int_tree_htab_type *decl_address) |
| { |
| struct elv_data dta; |
| gimple stmt = gsi_stmt (*gsi); |
| |
| memset (&dta.info, '\0', sizeof (dta.info)); |
| dta.entry = entry; |
| dta.decl_address = decl_address; |
| dta.changed = false; |
| dta.reset = false; |
| |
| if (gimple_debug_bind_p (stmt)) |
| { |
| dta.gsi = NULL; |
| walk_tree (gimple_debug_bind_get_value_ptr (stmt), |
| eliminate_local_variables_1, &dta.info, NULL); |
| if (dta.reset) |
| { |
| gimple_debug_bind_reset_value (stmt); |
| dta.changed = true; |
| } |
| } |
| else if (gimple_clobber_p (stmt)) |
| { |
| unlink_stmt_vdef (stmt); |
| stmt = gimple_build_nop (); |
| gsi_replace (gsi, stmt, false); |
| dta.changed = true; |
| } |
| else |
| { |
| dta.gsi = gsi; |
| walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info); |
| } |
| |
| if (dta.changed) |
| update_stmt (stmt); |
| } |
| |
| /* Eliminates the references to local variables from the single entry |
| single exit region between the ENTRY and EXIT edges. |
| |
| This includes: |
| 1) Taking address of a local variable -- these are moved out of the |
| region (and temporary variable is created to hold the address if |
| necessary). |
| |
| 2) Dereferencing a local variable -- these are replaced with indirect |
| references. */ |
| |
| static void |
| eliminate_local_variables (edge entry, edge exit) |
| { |
| basic_block bb; |
| auto_vec<basic_block, 3> body; |
| unsigned i; |
| gimple_stmt_iterator gsi; |
| bool has_debug_stmt = false; |
| int_tree_htab_type decl_address (10); |
| basic_block entry_bb = entry->src; |
| basic_block exit_bb = exit->dest; |
| |
| gather_blocks_in_sese_region (entry_bb, exit_bb, &body); |
| |
| FOR_EACH_VEC_ELT (body, i, bb) |
| if (bb != entry_bb && bb != exit_bb) |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| if (is_gimple_debug (gsi_stmt (gsi))) |
| { |
| if (gimple_debug_bind_p (gsi_stmt (gsi))) |
| has_debug_stmt = true; |
| } |
| else |
| eliminate_local_variables_stmt (entry, &gsi, &decl_address); |
| |
| if (has_debug_stmt) |
| FOR_EACH_VEC_ELT (body, i, bb) |
| if (bb != entry_bb && bb != exit_bb) |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| if (gimple_debug_bind_p (gsi_stmt (gsi))) |
| eliminate_local_variables_stmt (entry, &gsi, &decl_address); |
| } |
| |
| /* Returns true if expression EXPR is not defined between ENTRY and |
| EXIT, i.e. if all its operands are defined outside of the region. */ |
| |
| static bool |
| expr_invariant_in_region_p (edge entry, edge exit, tree expr) |
| { |
| basic_block entry_bb = entry->src; |
| basic_block exit_bb = exit->dest; |
| basic_block def_bb; |
| |
| if (is_gimple_min_invariant (expr)) |
| return true; |
| |
| if (TREE_CODE (expr) == SSA_NAME) |
| { |
| def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr)); |
| if (def_bb |
| && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb) |
| && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb)) |
| return false; |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* If COPY_NAME_P is true, creates and returns a duplicate of NAME. |
| The copies are stored to NAME_COPIES, if NAME was already duplicated, |
| its duplicate stored in NAME_COPIES is returned. |
| |
| Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also |
| duplicated, storing the copies in DECL_COPIES. */ |
| |
| static tree |
| separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies, |
| int_tree_htab_type *decl_copies, |
| bool copy_name_p) |
| { |
| tree copy, var, var_copy; |
| unsigned idx, uid, nuid; |
| struct int_tree_map ielt; |
| struct name_to_copy_elt elt, *nelt; |
| name_to_copy_elt **slot; |
| int_tree_map *dslot; |
| |
| if (TREE_CODE (name) != SSA_NAME) |
| return name; |
| |
| idx = SSA_NAME_VERSION (name); |
| elt.version = idx; |
| slot = name_copies->find_slot_with_hash (&elt, idx, |
| copy_name_p ? INSERT : NO_INSERT); |
| if (slot && *slot) |
| return (*slot)->new_name; |
| |
| if (copy_name_p) |
| { |
| copy = duplicate_ssa_name (name, NULL); |
| nelt = XNEW (struct name_to_copy_elt); |
| nelt->version = idx; |
| nelt->new_name = copy; |
| nelt->field = NULL_TREE; |
| *slot = nelt; |
| } |
| else |
| { |
| gcc_assert (!slot); |
| copy = name; |
| } |
| |
| var = SSA_NAME_VAR (name); |
| if (!var) |
| return copy; |
| |
| uid = DECL_UID (var); |
| ielt.uid = uid; |
| dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT); |
| if (!dslot->to) |
| { |
| var_copy = create_tmp_var (TREE_TYPE (var), get_name (var)); |
| DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var); |
| dslot->uid = uid; |
| dslot->to = var_copy; |
| |
| /* Ensure that when we meet this decl next time, we won't duplicate |
| it again. */ |
| nuid = DECL_UID (var_copy); |
| ielt.uid = nuid; |
| dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT); |
| gcc_assert (!dslot->to); |
| dslot->uid = nuid; |
| dslot->to = var_copy; |
| } |
| else |
| var_copy = dslot->to; |
| |
| replace_ssa_name_symbol (copy, var_copy); |
| return copy; |
| } |
| |
| /* Finds the ssa names used in STMT that are defined outside the |
| region between ENTRY and EXIT and replaces such ssa names with |
| their duplicates. The duplicates are stored to NAME_COPIES. Base |
| decls of all ssa names used in STMT (including those defined in |
| LOOP) are replaced with the new temporary variables; the |
| replacement decls are stored in DECL_COPIES. */ |
| |
| static void |
| separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt, |
| name_to_copy_table_type *name_copies, |
| int_tree_htab_type *decl_copies) |
| { |
| use_operand_p use; |
| def_operand_p def; |
| ssa_op_iter oi; |
| tree name, copy; |
| bool copy_name_p; |
| |
| FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF) |
| { |
| name = DEF_FROM_PTR (def); |
| gcc_assert (TREE_CODE (name) == SSA_NAME); |
| copy = separate_decls_in_region_name (name, name_copies, decl_copies, |
| false); |
| gcc_assert (copy == name); |
| } |
| |
| FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE) |
| { |
| name = USE_FROM_PTR (use); |
| if (TREE_CODE (name) != SSA_NAME) |
| continue; |
| |
| copy_name_p = expr_invariant_in_region_p (entry, exit, name); |
| copy = separate_decls_in_region_name (name, name_copies, decl_copies, |
| copy_name_p); |
| SET_USE (use, copy); |
| } |
| } |
| |
| /* Finds the ssa names used in STMT that are defined outside the |
| region between ENTRY and EXIT and replaces such ssa names with |
| their duplicates. The duplicates are stored to NAME_COPIES. Base |
| decls of all ssa names used in STMT (including those defined in |
| LOOP) are replaced with the new temporary variables; the |
| replacement decls are stored in DECL_COPIES. */ |
| |
| static bool |
| separate_decls_in_region_debug (gimple stmt, |
| name_to_copy_table_type *name_copies, |
| int_tree_htab_type *decl_copies) |
| { |
| use_operand_p use; |
| ssa_op_iter oi; |
| tree var, name; |
| struct int_tree_map ielt; |
| struct name_to_copy_elt elt; |
| name_to_copy_elt **slot; |
| int_tree_map *dslot; |
| |
| if (gimple_debug_bind_p (stmt)) |
| var = gimple_debug_bind_get_var (stmt); |
| else if (gimple_debug_source_bind_p (stmt)) |
| var = gimple_debug_source_bind_get_var (stmt); |
| else |
| return true; |
| if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL) |
| return true; |
| gcc_assert (DECL_P (var) && SSA_VAR_P (var)); |
| ielt.uid = DECL_UID (var); |
| dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT); |
| if (!dslot) |
| return true; |
| if (gimple_debug_bind_p (stmt)) |
| gimple_debug_bind_set_var (stmt, dslot->to); |
| else if (gimple_debug_source_bind_p (stmt)) |
| gimple_debug_source_bind_set_var (stmt, dslot->to); |
| |
| FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE) |
| { |
| name = USE_FROM_PTR (use); |
| if (TREE_CODE (name) != SSA_NAME) |
| continue; |
| |
| elt.version = SSA_NAME_VERSION (name); |
| slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT); |
| if (!slot) |
| { |
| gimple_debug_bind_reset_value (stmt); |
| update_stmt (stmt); |
| break; |
| } |
| |
| SET_USE (use, (*slot)->new_name); |
| } |
| |
| return false; |
| } |
| |
| /* Callback for htab_traverse. Adds a field corresponding to the reduction |
| specified in SLOT. The type is passed in DATA. */ |
| |
| int |
| add_field_for_reduction (reduction_info **slot, tree type) |
| { |
| |
| struct reduction_info *const red = *slot; |
| tree var = gimple_assign_lhs (red->reduc_stmt); |
| tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL, |
| SSA_NAME_IDENTIFIER (var), TREE_TYPE (var)); |
| |
| insert_field_into_struct (type, field); |
| |
| red->field = field; |
| |
| return 1; |
| } |
| |
| /* Callback for htab_traverse. Adds a field corresponding to a ssa name |
| described in SLOT. The type is passed in DATA. */ |
| |
| int |
| add_field_for_name (name_to_copy_elt **slot, tree type) |
| { |
| struct name_to_copy_elt *const elt = *slot; |
| tree name = ssa_name (elt->version); |
| tree field = build_decl (UNKNOWN_LOCATION, |
| FIELD_DECL, SSA_NAME_IDENTIFIER (name), |
| TREE_TYPE (name)); |
| |
| insert_field_into_struct (type, field); |
| elt->field = field; |
| |
| return 1; |
| } |
| |
| /* Callback for htab_traverse. A local result is the intermediate result |
| computed by a single |
| thread, or the initial value in case no iteration was executed. |
| This function creates a phi node reflecting these values. |
| The phi's result will be stored in NEW_PHI field of the |
| reduction's data structure. */ |
| |
| int |
| create_phi_for_local_result (reduction_info **slot, struct loop *loop) |
| { |
| struct reduction_info *const reduc = *slot; |
| edge e; |
| gphi *new_phi; |
| basic_block store_bb; |
| tree local_res; |
| source_location locus; |
| |
| /* STORE_BB is the block where the phi |
| should be stored. It is the destination of the loop exit. |
| (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */ |
| store_bb = FALLTHRU_EDGE (loop->latch)->dest; |
| |
| /* STORE_BB has two predecessors. One coming from the loop |
| (the reduction's result is computed at the loop), |
| and another coming from a block preceding the loop, |
| when no iterations |
| are executed (the initial value should be taken). */ |
| if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch)) |
| e = EDGE_PRED (store_bb, 1); |
| else |
| e = EDGE_PRED (store_bb, 0); |
| local_res = copy_ssa_name (gimple_assign_lhs (reduc->reduc_stmt)); |
| locus = gimple_location (reduc->reduc_stmt); |
| new_phi = create_phi_node (local_res, store_bb); |
| add_phi_arg (new_phi, reduc->init, e, locus); |
| add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt), |
| FALLTHRU_EDGE (loop->latch), locus); |
| reduc->new_phi = new_phi; |
| |
| return 1; |
| } |
| |
| struct clsn_data |
| { |
| tree store; |
| tree load; |
| |
| basic_block store_bb; |
| basic_block load_bb; |
| }; |
| |
| /* Callback for htab_traverse. Create an atomic instruction for the |
| reduction described in SLOT. |
| DATA annotates the place in memory the atomic operation relates to, |
| and the basic block it needs to be generated in. */ |
| |
| int |
| create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data) |
| { |
| struct reduction_info *const reduc = *slot; |
| gimple_stmt_iterator gsi; |
| tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi)); |
| tree load_struct; |
| basic_block bb; |
| basic_block new_bb; |
| edge e; |
| tree t, addr, ref, x; |
| tree tmp_load, name; |
| gimple load; |
| |
| load_struct = build_simple_mem_ref (clsn_data->load); |
| t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE); |
| |
| addr = build_addr (t, current_function_decl); |
| |
| /* Create phi node. */ |
| bb = clsn_data->load_bb; |
| |
| gsi = gsi_last_bb (bb); |
| e = split_block (bb, gsi_stmt (gsi)); |
| new_bb = e->dest; |
| |
| tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr))); |
| tmp_load = make_ssa_name (tmp_load); |
| load = gimple_build_omp_atomic_load (tmp_load, addr); |
| SSA_NAME_DEF_STMT (tmp_load) = load; |
| gsi = gsi_start_bb (new_bb); |
| gsi_insert_after (&gsi, load, GSI_NEW_STMT); |
| |
| e = split_block (new_bb, load); |
| new_bb = e->dest; |
| gsi = gsi_start_bb (new_bb); |
| ref = tmp_load; |
| x = fold_build2 (reduc->reduction_code, |
| TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref, |
| PHI_RESULT (reduc->new_phi)); |
| |
| name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true, |
| GSI_CONTINUE_LINKING); |
| |
| gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT); |
| return 1; |
| } |
| |
| /* Create the atomic operation at the join point of the threads. |
| REDUCTION_LIST describes the reductions in the LOOP. |
| LD_ST_DATA describes the shared data structure where |
| shared data is stored in and loaded from. */ |
| static void |
| create_call_for_reduction (struct loop *loop, |
| reduction_info_table_type *reduction_list, |
| struct clsn_data *ld_st_data) |
| { |
| reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop); |
| /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */ |
| ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest; |
| reduction_list |
| ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data); |
| } |
| |
| /* Callback for htab_traverse. Loads the final reduction value at the |
| join point of all threads, and inserts it in the right place. */ |
| |
| int |
| create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data) |
| { |
| struct reduction_info *const red = *slot; |
| gimple stmt; |
| gimple_stmt_iterator gsi; |
| tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt)); |
| tree load_struct; |
| tree name; |
| tree x; |
| |
| gsi = gsi_after_labels (clsn_data->load_bb); |
| load_struct = build_simple_mem_ref (clsn_data->load); |
| load_struct = build3 (COMPONENT_REF, type, load_struct, red->field, |
| NULL_TREE); |
| |
| x = load_struct; |
| name = PHI_RESULT (red->keep_res); |
| stmt = gimple_build_assign (name, x); |
| |
| gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); |
| |
| for (gsi = gsi_start_phis (gimple_bb (red->keep_res)); |
| !gsi_end_p (gsi); gsi_next (&gsi)) |
| if (gsi_stmt (gsi) == red->keep_res) |
| { |
| remove_phi_node (&gsi, false); |
| return 1; |
| } |
| gcc_unreachable (); |
| } |
| |
| /* Load the reduction result that was stored in LD_ST_DATA. |
| REDUCTION_LIST describes the list of reductions that the |
| loads should be generated for. */ |
| static void |
| create_final_loads_for_reduction (reduction_info_table_type *reduction_list, |
| struct clsn_data *ld_st_data) |
| { |
| gimple_stmt_iterator gsi; |
| tree t; |
| gimple stmt; |
| |
| gsi = gsi_after_labels (ld_st_data->load_bb); |
| t = build_fold_addr_expr (ld_st_data->store); |
| stmt = gimple_build_assign (ld_st_data->load, t); |
| |
| gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); |
| |
| reduction_list |
| ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data); |
| |
| } |
| |
| /* Callback for htab_traverse. Store the neutral value for the |
| particular reduction's operation, e.g. 0 for PLUS_EXPR, |
| 1 for MULT_EXPR, etc. into the reduction field. |
| The reduction is specified in SLOT. The store information is |
| passed in DATA. */ |
| |
| int |
| create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data) |
| { |
| struct reduction_info *const red = *slot; |
| tree t; |
| gimple stmt; |
| gimple_stmt_iterator gsi; |
| tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt)); |
| |
| gsi = gsi_last_bb (clsn_data->store_bb); |
| t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE); |
| stmt = gimple_build_assign (t, red->initial_value); |
| gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); |
| |
| return 1; |
| } |
| |
| /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and |
| store to a field of STORE in STORE_BB for the ssa name and its duplicate |
| specified in SLOT. */ |
| |
| int |
| create_loads_and_stores_for_name (name_to_copy_elt **slot, |
| struct clsn_data *clsn_data) |
| { |
| struct name_to_copy_elt *const elt = *slot; |
| tree t; |
| gimple stmt; |
| gimple_stmt_iterator gsi; |
| tree type = TREE_TYPE (elt->new_name); |
| tree load_struct; |
| |
| gsi = gsi_last_bb (clsn_data->store_bb); |
| t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE); |
| stmt = gimple_build_assign (t, ssa_name (elt->version)); |
| gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); |
| |
| gsi = gsi_last_bb (clsn_data->load_bb); |
| load_struct = build_simple_mem_ref (clsn_data->load); |
| t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE); |
| stmt = gimple_build_assign (elt->new_name, t); |
| gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); |
| |
| return 1; |
| } |
| |
| /* Moves all the variables used in LOOP and defined outside of it (including |
| the initial values of loop phi nodes, and *PER_THREAD if it is a ssa |
| name) to a structure created for this purpose. The code |
| |
| while (1) |
| { |
| use (a); |
| use (b); |
| } |
| |
| is transformed this way: |
| |
| bb0: |
| old.a = a; |
| old.b = b; |
| |
| bb1: |
| a' = new->a; |
| b' = new->b; |
| while (1) |
| { |
| use (a'); |
| use (b'); |
| } |
| |
| `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The |
| pointer `new' is intentionally not initialized (the loop will be split to a |
| separate function later, and `new' will be initialized from its arguments). |
| LD_ST_DATA holds information about the shared data structure used to pass |
| information among the threads. It is initialized here, and |
| gen_parallel_loop will pass it to create_call_for_reduction that |
| needs this information. REDUCTION_LIST describes the reductions |
| in LOOP. */ |
| |
| static void |
| separate_decls_in_region (edge entry, edge exit, |
| reduction_info_table_type *reduction_list, |
| tree *arg_struct, tree *new_arg_struct, |
| struct clsn_data *ld_st_data) |
| |
| { |
| basic_block bb1 = split_edge (entry); |
| basic_block bb0 = single_pred (bb1); |
| name_to_copy_table_type name_copies (10); |
| int_tree_htab_type decl_copies (10); |
| unsigned i; |
| tree type, type_name, nvar; |
| gimple_stmt_iterator gsi; |
| struct clsn_data clsn_data; |
| auto_vec<basic_block, 3> body; |
| basic_block bb; |
| basic_block entry_bb = bb1; |
| basic_block exit_bb = exit->dest; |
| bool has_debug_stmt = false; |
| |
| entry = single_succ_edge (entry_bb); |
| gather_blocks_in_sese_region (entry_bb, exit_bb, &body); |
| |
| FOR_EACH_VEC_ELT (body, i, bb) |
| { |
| if (bb != entry_bb && bb != exit_bb) |
| { |
| for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi), |
| &name_copies, &decl_copies); |
| |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple stmt = gsi_stmt (gsi); |
| |
| if (is_gimple_debug (stmt)) |
| has_debug_stmt = true; |
| else |
| separate_decls_in_region_stmt (entry, exit, stmt, |
| &name_copies, &decl_copies); |
| } |
| } |
| } |
| |
| /* Now process debug bind stmts. We must not create decls while |
| processing debug stmts, so we defer their processing so as to |
| make sure we will have debug info for as many variables as |
| possible (all of those that were dealt with in the loop above), |
| and discard those for which we know there's nothing we can |
| do. */ |
| if (has_debug_stmt) |
| FOR_EACH_VEC_ELT (body, i, bb) |
| if (bb != entry_bb && bb != exit_bb) |
| { |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);) |
| { |
| gimple stmt = gsi_stmt (gsi); |
| |
| if (is_gimple_debug (stmt)) |
| { |
| if (separate_decls_in_region_debug (stmt, &name_copies, |
| &decl_copies)) |
| { |
| gsi_remove (&gsi, true); |
| continue; |
| } |
| } |
| |
| gsi_next (&gsi); |
| } |
| } |
| |
| if (name_copies.elements () == 0 && reduction_list->elements () == 0) |
| { |
| /* It may happen that there is nothing to copy (if there are only |
| loop carried and external variables in the loop). */ |
| *arg_struct = NULL; |
| *new_arg_struct = NULL; |
| } |
| else |
| { |
| /* Create the type for the structure to store the ssa names to. */ |
| type = lang_hooks.types.make_type (RECORD_TYPE); |
| type_name = build_decl (UNKNOWN_LOCATION, |
| TYPE_DECL, create_tmp_var_name (".paral_data"), |
| type); |
| TYPE_NAME (type) = type_name; |
| |
| name_copies.traverse <tree, add_field_for_name> (type); |
| if (reduction_list && reduction_list->elements () > 0) |
| { |
| /* Create the fields for reductions. */ |
| reduction_list->traverse <tree, add_field_for_reduction> (type); |
| } |
| layout_type (type); |
| |
| /* Create the loads and stores. */ |
| *arg_struct = create_tmp_var (type, ".paral_data_store"); |
| nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load"); |
| *new_arg_struct = make_ssa_name (nvar); |
| |
| ld_st_data->store = *arg_struct; |
| ld_st_data->load = *new_arg_struct; |
| ld_st_data->store_bb = bb0; |
| ld_st_data->load_bb = bb1; |
| |
| name_copies |
| .traverse <struct clsn_data *, create_loads_and_stores_for_name> |
| (ld_st_data); |
| |
| /* Load the calculation from memory (after the join of the threads). */ |
| |
| if (reduction_list && reduction_list->elements () > 0) |
| { |
| reduction_list |
| ->traverse <struct clsn_data *, create_stores_for_reduction> |
| (ld_st_data); |
| clsn_data.load = make_ssa_name (nvar); |
| clsn_data.load_bb = exit->dest; |
| clsn_data.store = ld_st_data->store; |
| create_final_loads_for_reduction (reduction_list, &clsn_data); |
| } |
| } |
| } |
| |
| /* Returns true if FN was created to run in parallel. */ |
| |
| bool |
| parallelized_function_p (tree fndecl) |
| { |
| cgraph_node *node = cgraph_node::get (fndecl); |
| gcc_assert (node != NULL); |
| return node->parallelized_function; |
| } |
| |
| /* Creates and returns an empty function that will receive the body of |
| a parallelized loop. */ |
| |
| static tree |
| create_loop_fn (location_t loc) |
| { |
| char buf[100]; |
| char *tname; |
| tree decl, type, name, t; |
| struct function *act_cfun = cfun; |
| static unsigned loopfn_num; |
| |
| loc = LOCATION_LOCUS (loc); |
| snprintf (buf, 100, "%s.$loopfn", current_function_name ()); |
| ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++); |
| clean_symbol_name (tname); |
| name = get_identifier (tname); |
| type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); |
| |
| decl = build_decl (loc, FUNCTION_DECL, name, type); |
| TREE_STATIC (decl) = 1; |
| TREE_USED (decl) = 1; |
| DECL_ARTIFICIAL (decl) = 1; |
| DECL_IGNORED_P (decl) = 0; |
| TREE_PUBLIC (decl) = 0; |
| DECL_UNINLINABLE (decl) = 1; |
| DECL_EXTERNAL (decl) = 0; |
| DECL_CONTEXT (decl) = NULL_TREE; |
| DECL_INITIAL (decl) = make_node (BLOCK); |
| |
| t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node); |
| DECL_ARTIFICIAL (t) = 1; |
| DECL_IGNORED_P (t) = 1; |
| DECL_RESULT (decl) = t; |
| |
| t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"), |
| ptr_type_node); |
| DECL_ARTIFICIAL (t) = 1; |
| DECL_ARG_TYPE (t) = ptr_type_node; |
| DECL_CONTEXT (t) = decl; |
| TREE_USED (t) = 1; |
| DECL_ARGUMENTS (decl) = t; |
| |
| allocate_struct_function (decl, false); |
| |
| /* The call to allocate_struct_function clobbers CFUN, so we need to restore |
| it. */ |
| set_cfun (act_cfun); |
| |
| return decl; |
| } |
| |
| /* Moves the exit condition of LOOP to the beginning of its header, and |
| duplicates the part of the last iteration that gets disabled to the |
| exit of the loop. NIT is the number of iterations of the loop |
| (used to initialize the variables in the duplicated part). |
| |
| TODO: the common case is that latch of the loop is empty and immediately |
| follows the loop exit. In this case, it would be better not to copy the |
| body of the loop, but only move the entry of the loop directly before the |
| exit check and increase the number of iterations of the loop by one. |
| This may need some additional preconditioning in case NIT = ~0. |
| REDUCTION_LIST describes the reductions in LOOP. */ |
| |
| static void |
| transform_to_exit_first_loop (struct loop *loop, |
| reduction_info_table_type *reduction_list, |
| tree nit) |
| { |
| basic_block *bbs, *nbbs, ex_bb, orig_header; |
| unsigned n; |
| bool ok; |
| edge exit = single_dom_exit (loop), hpred; |
| tree control, control_name, res, t; |
| gphi *phi, *nphi; |
| gassign *stmt; |
| gcond *cond_stmt, *cond_nit; |
| tree nit_1; |
| |
| split_block_after_labels (loop->header); |
| orig_header = single_succ (loop->header); |
| hpred = single_succ_edge (loop->header); |
| |
| cond_stmt = as_a <gcond *> (last_stmt (exit->src)); |
| control = gimple_cond_lhs (cond_stmt); |
| gcc_assert (gimple_cond_rhs (cond_stmt) == nit); |
| |
| /* Make sure that we have phi nodes on exit for all loop header phis |
| (create_parallel_loop requires that). */ |
| for (gphi_iterator gsi = gsi_start_phis (loop->header); |
| !gsi_end_p (gsi); |
| gsi_next (&gsi)) |
| { |
| phi = gsi.phi (); |
| res = PHI_RESULT (phi); |
| t = copy_ssa_name (res, phi); |
| SET_PHI_RESULT (phi, t); |
| nphi = create_phi_node (res, orig_header); |
| add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION); |
| |
| if (res == control) |
| { |
| gimple_cond_set_lhs (cond_stmt, t); |
| update_stmt (cond_stmt); |
| control = t; |
| } |
| } |
| |
| bbs = get_loop_body_in_dom_order (loop); |
| |
| for (n = 0; bbs[n] != exit->src; n++) |
| continue; |
| nbbs = XNEWVEC (basic_block, n); |
| ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit, |
| bbs + 1, n, nbbs); |
| gcc_assert (ok); |
| free (bbs); |
| ex_bb = nbbs[0]; |
| free (nbbs); |
| |
| /* Other than reductions, the only gimple reg that should be copied |
| out of the loop is the control variable. */ |
| exit = single_dom_exit (loop); |
| control_name = NULL_TREE; |
| for (gphi_iterator gsi = gsi_start_phis (ex_bb); |
| !gsi_end_p (gsi); ) |
| { |
| phi = gsi.phi (); |
| res = PHI_RESULT (phi); |
| if (virtual_operand_p (res)) |
| { |
| gsi_next (&gsi); |
| continue; |
| } |
| |
| /* Check if it is a part of reduction. If it is, |
| keep the phi at the reduction's keep_res field. The |
| PHI_RESULT of this phi is the resulting value of the reduction |
| variable when exiting the loop. */ |
| |
| if (reduction_list->elements () > 0) |
| { |
| struct reduction_info *red; |
| |
| tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit); |
| red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val)); |
| if (red) |
| { |
| red->keep_res = phi; |
| gsi_next (&gsi); |
| continue; |
| } |
| } |
| gcc_assert (control_name == NULL_TREE |
| && SSA_NAME_VAR (res) == SSA_NAME_VAR (control)); |
| control_name = res; |
| remove_phi_node (&gsi, false); |
| } |
| gcc_assert (control_name != NULL_TREE); |
| |
| /* Initialize the control variable to number of iterations |
| according to the rhs of the exit condition. */ |
| gimple_stmt_iterator gsi = gsi_after_labels (ex_bb); |
| cond_nit = as_a <gcond *> (last_stmt (exit->src)); |
| nit_1 = gimple_cond_rhs (cond_nit); |
| nit_1 = force_gimple_operand_gsi (&gsi, |
| fold_convert (TREE_TYPE (control_name), nit_1), |
| false, NULL_TREE, false, GSI_SAME_STMT); |
| stmt = gimple_build_assign (control_name, nit_1); |
| gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); |
| } |
| |
| /* Create the parallel constructs for LOOP as described in gen_parallel_loop. |
| LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL. |
| NEW_DATA is the variable that should be initialized from the argument |
| of LOOP_FN. N_THREADS is the requested number of threads. Returns the |
| basic block containing GIMPLE_OMP_PARALLEL tree. */ |
| |
| static basic_block |
| create_parallel_loop (struct loop *loop, tree loop_fn, tree data, |
| tree new_data, unsigned n_threads, location_t loc) |
| { |
| gimple_stmt_iterator gsi; |
| basic_block bb, paral_bb, for_bb, ex_bb; |
| tree t, param; |
| gomp_parallel *omp_par_stmt; |
| gimple omp_return_stmt1, omp_return_stmt2; |
| gimple phi; |
| gcond *cond_stmt; |
| gomp_for *for_stmt; |
| gomp_continue *omp_cont_stmt; |
| tree cvar, cvar_init, initvar, cvar_next, cvar_base, type; |
| edge exit, nexit, guard, end, e; |
| |
| /* Prepare the GIMPLE_OMP_PARALLEL statement. */ |
| bb = loop_preheader_edge (loop)->src; |
| paral_bb = single_pred (bb); |
| gsi = gsi_last_bb (paral_bb); |
| |
| t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS); |
| OMP_CLAUSE_NUM_THREADS_EXPR (t) |
| = build_int_cst (integer_type_node, n_threads); |
| omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data); |
| gimple_set_location (omp_par_stmt, loc); |
| |
| gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT); |
| |
| /* Initialize NEW_DATA. */ |
| if (data) |
| { |
| gassign *assign_stmt; |
| |
| gsi = gsi_after_labels (bb); |
| |
| param = make_ssa_name (DECL_ARGUMENTS (loop_fn)); |
| assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data)); |
| gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT); |
| |
| assign_stmt = gimple_build_assign (new_data, |
| fold_convert (TREE_TYPE (new_data), param)); |
| gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT); |
| } |
| |
| /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */ |
| bb = split_loop_exit_edge (single_dom_exit (loop)); |
| gsi = gsi_last_bb (bb); |
| omp_return_stmt1 = gimple_build_omp_return (false); |
| gimple_set_location (omp_return_stmt1, loc); |
| gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT); |
| |
| /* Extract data for GIMPLE_OMP_FOR. */ |
| gcc_assert (loop->header == single_dom_exit (loop)->src); |
| cond_stmt = as_a <gcond *> (last_stmt (loop->header)); |
| |
| cvar = gimple_cond_lhs (cond_stmt); |
| cvar_base = SSA_NAME_VAR (cvar); |
| phi = SSA_NAME_DEF_STMT (cvar); |
| cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop)); |
| initvar = copy_ssa_name (cvar); |
| SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)), |
| initvar); |
| cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop)); |
| |
| gsi = gsi_last_nondebug_bb (loop->latch); |
| gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next)); |
| gsi_remove (&gsi, true); |
| |
| /* Prepare cfg. */ |
| for_bb = split_edge (loop_preheader_edge (loop)); |
| ex_bb = split_loop_exit_edge (single_dom_exit (loop)); |
| extract_true_false_edges_from_block (loop->header, &nexit, &exit); |
| gcc_assert (exit == single_dom_exit (loop)); |
| |
| guard = make_edge (for_bb, ex_bb, 0); |
| single_succ_edge (loop->latch)->flags = 0; |
| end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU); |
| for (gphi_iterator gpi = gsi_start_phis (ex_bb); |
| !gsi_end_p (gpi); gsi_next (&gpi)) |
| { |
| source_location locus; |
| tree def; |
| gphi *phi = gpi.phi (); |
| gphi *stmt; |
| |
| stmt = as_a <gphi *> ( |
| SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit))); |
| |
| def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop)); |
| locus = gimple_phi_arg_location_from_edge (stmt, |
| loop_preheader_edge (loop)); |
| add_phi_arg (phi, def, guard, locus); |
| |
| def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop)); |
| locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop)); |
| add_phi_arg (phi, def, end, locus); |
| } |
| e = redirect_edge_and_branch (exit, nexit->dest); |
| PENDING_STMT (e) = NULL; |
| |
| /* Emit GIMPLE_OMP_FOR. */ |
| gimple_cond_set_lhs (cond_stmt, cvar_base); |
| type = TREE_TYPE (cvar); |
| t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE); |
| OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC; |
| |
| for_stmt = gimple_build_omp_for (NULL, GF_OMP_FOR_KIND_FOR, t, 1, NULL); |
| gimple_set_location (for_stmt, loc); |
| gimple_omp_for_set_index (for_stmt, 0, initvar); |
| gimple_omp_for_set_initial (for_stmt, 0, cvar_init); |
| gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt)); |
| gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt)); |
| gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type, |
| cvar_base, |
| build_int_cst (type, 1))); |
| |
| gsi = gsi_last_bb (for_bb); |
| gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT); |
| SSA_NAME_DEF_STMT (initvar) = for_stmt; |
| |
| /* Emit GIMPLE_OMP_CONTINUE. */ |
| gsi = gsi_last_bb (loop->latch); |
| omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar); |
| gimple_set_location (omp_cont_stmt, loc); |
| gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT); |
| SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt; |
| |
| /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */ |
| gsi = gsi_last_bb (ex_bb); |
| omp_return_stmt2 = gimple_build_omp_return (true); |
| gimple_set_location (omp_return_stmt2, loc); |
| gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT); |
| |
| /* After the above dom info is hosed. Re-compute it. */ |
| free_dominance_info (CDI_DOMINATORS); |
| calculate_dominance_info (CDI_DOMINATORS); |
| |
| return paral_bb; |
| } |
| |
| /* Generates code to execute the iterations of LOOP in N_THREADS |
| threads in parallel. |
| |
| NITER describes number of iterations of LOOP. |
| REDUCTION_LIST describes the reductions existent in the LOOP. */ |
| |
| static void |
| gen_parallel_loop (struct loop *loop, |
| reduction_info_table_type *reduction_list, |
| unsigned n_threads, struct tree_niter_desc *niter) |
| { |
| tree many_iterations_cond, type, nit; |
| tree arg_struct, new_arg_struct; |
| gimple_seq stmts; |
| edge entry, exit; |
| struct clsn_data clsn_data; |
| unsigned prob; |
| location_t loc; |
| gimple cond_stmt; |
| unsigned int m_p_thread=2; |
| |
| /* From |
| |
| --------------------------------------------------------------------- |
| loop |
| { |
| IV = phi (INIT, IV + STEP) |
| BODY1; |
| if (COND) |
| break; |
| BODY2; |
| } |
| --------------------------------------------------------------------- |
| |
| with # of iterations NITER (possibly with MAY_BE_ZERO assumption), |
| we generate the following code: |
| |
| --------------------------------------------------------------------- |
| |
| if (MAY_BE_ZERO |
| || NITER < MIN_PER_THREAD * N_THREADS) |
| goto original; |
| |
| BODY1; |
| store all local loop-invariant variables used in body of the loop to DATA. |
| GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA); |
| load the variables from DATA. |
| GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static)) |
| BODY2; |
| BODY1; |
| GIMPLE_OMP_CONTINUE; |
| GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR |
| GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL |
| goto end; |
| |
| original: |
| loop |
| { |
| IV = phi (INIT, IV + STEP) |
| BODY1; |
| if (COND) |
| break; |
| BODY2; |
| } |
| |
| end: |
| |
| */ |
| |
| /* Create two versions of the loop -- in the old one, we know that the |
| number of iterations is large enough, and we will transform it into the |
| loop that will be split to loop_fn, the new one will be used for the |
| remaining iterations. */ |
| |
| /* We should compute a better number-of-iterations value for outer loops. |
| That is, if we have |
| |
| for (i = 0; i < n; ++i) |
| for (j = 0; j < m; ++j) |
| ... |
| |
| we should compute nit = n * m, not nit = n. |
| Also may_be_zero handling would need to be adjusted. */ |
| |
| type = TREE_TYPE (niter->niter); |
| nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true, |
| NULL_TREE); |
| if (stmts) |
| gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); |
| |
| if (loop->inner) |
| m_p_thread=2; |
| else |
| m_p_thread=MIN_PER_THREAD; |
| |
| many_iterations_cond = |
| fold_build2 (GE_EXPR, boolean_type_node, |
| nit, build_int_cst (type, m_p_thread * n_threads)); |
| |
| many_iterations_cond |
| = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, |
| invert_truthvalue (unshare_expr (niter->may_be_zero)), |
| many_iterations_cond); |
| many_iterations_cond |
| = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE); |
| if (stmts) |
| gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); |
| if (!is_gimple_condexpr (many_iterations_cond)) |
| { |
| many_iterations_cond |
| = force_gimple_operand (many_iterations_cond, &stmts, |
| true, NULL_TREE); |
| if (stmts) |
| gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); |
| } |
| |
| initialize_original_copy_tables (); |
| |
| /* We assume that the loop usually iterates a lot. */ |
| prob = 4 * REG_BR_PROB_BASE / 5; |
| loop_version (loop, many_iterations_cond, NULL, |
| prob, prob, REG_BR_PROB_BASE - prob, true); |
| update_ssa (TODO_update_ssa); |
| free_original_copy_tables (); |
| |
| /* Base all the induction variables in LOOP on a single control one. */ |
| canonicalize_loop_ivs (loop, &nit, true); |
| |
| /* Ensure that the exit condition is the first statement in the loop. */ |
| transform_to_exit_first_loop (loop, reduction_list, nit); |
| |
| /* Generate initializations for reductions. */ |
| if (reduction_list->elements () > 0) |
| reduction_list->traverse <struct loop *, initialize_reductions> (loop); |
| |
| /* Eliminate the references to local variables from the loop. */ |
| gcc_assert (single_exit (loop)); |
| entry = loop_preheader_edge (loop); |
| exit = single_dom_exit (loop); |
| |
| eliminate_local_variables (entry, exit); |
| /* In the old loop, move all variables non-local to the loop to a structure |
| and back, and create separate decls for the variables used in loop. */ |
| separate_decls_in_region (entry, exit, reduction_list, &arg_struct, |
| &new_arg_struct, &clsn_data); |
| |
| /* Create the parallel constructs. */ |
| loc = UNKNOWN_LOCATION; |
| cond_stmt = last_stmt (loop->header); |
| if (cond_stmt) |
| loc = gimple_location (cond_stmt); |
| create_parallel_loop (loop, create_loop_fn (loc), arg_struct, |
| new_arg_struct, n_threads, loc); |
| if (reduction_list->elements () > 0) |
| create_call_for_reduction (loop, reduction_list, &clsn_data); |
| |
| scev_reset (); |
| |
| /* Cancel the loop (it is simpler to do it here rather than to teach the |
| expander to do it). */ |
| cancel_loop_tree (loop); |
| |
| /* Free loop bound estimations that could contain references to |
| removed statements. */ |
| FOR_EACH_LOOP (loop, 0) |
| free_numbers_of_iterations_estimates_loop (loop); |
| } |
| |
| /* Returns true when LOOP contains vector phi nodes. */ |
| |
| static bool |
| loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED) |
| { |
| unsigned i; |
| basic_block *bbs = get_loop_body_in_dom_order (loop); |
| gphi_iterator gsi; |
| bool res = true; |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi)) |
| if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE) |
| goto end; |
| |
| res = false; |
| end: |
| free (bbs); |
| return res; |
| } |
| |
| /* Create a reduction_info struct, initialize it with REDUC_STMT |
| and PHI, insert it to the REDUCTION_LIST. */ |
| |
| static void |
| build_new_reduction (reduction_info_table_type *reduction_list, |
| gimple reduc_stmt, gphi *phi) |
| { |
| reduction_info **slot; |
| struct reduction_info *new_reduction; |
| |
| gcc_assert (reduc_stmt); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "Detected reduction. reduction stmt is: \n"); |
| print_gimple_stmt (dump_file, reduc_stmt, 0, 0); |
| fprintf (dump_file, "\n"); |
| } |
| |
| new_reduction = XCNEW (struct reduction_info); |
| |
| new_reduction->reduc_stmt = reduc_stmt; |
| new_reduction->reduc_phi = phi; |
| new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi)); |
| new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt); |
| slot = reduction_list->find_slot (new_reduction, INSERT); |
| *slot = new_reduction; |
| } |
| |
| /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */ |
| |
| int |
| set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED) |
| { |
| struct reduction_info *const red = *slot; |
| gimple_set_uid (red->reduc_phi, red->reduc_version); |
| return 1; |
| } |
| |
| /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */ |
| |
| static void |
| gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list) |
| { |
| gphi_iterator gsi; |
| loop_vec_info simple_loop_info; |
| |
| simple_loop_info = vect_analyze_loop_form (loop); |
| |
| for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gphi *phi = gsi.phi (); |
| affine_iv iv; |
| tree res = PHI_RESULT (phi); |
| bool double_reduc; |
| |
| if (virtual_operand_p (res)) |
| continue; |
| |
| if (!simple_iv (loop, loop, res, &iv, true) |
| && simple_loop_info) |
| { |
| gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info, |
| phi, true, |
| &double_reduc); |
| if (reduc_stmt && !double_reduc) |
| build_new_reduction (reduction_list, reduc_stmt, phi); |
| } |
| } |
| destroy_loop_vec_info (simple_loop_info, true); |
| |
| /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form |
| and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts |
| only now. */ |
| reduction_list->traverse <void *, set_reduc_phi_uids> (NULL); |
| } |
| |
| /* Try to initialize NITER for code generation part. */ |
| |
| static bool |
| try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter) |
| { |
| edge exit = single_dom_exit (loop); |
| |
| gcc_assert (exit); |
| |
| /* We need to know # of iterations, and there should be no uses of values |
| defined inside loop outside of it, unless the values are invariants of |
| the loop. */ |
| if (!number_of_iterations_exit (loop, exit, niter, false)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, " FAILED: number of iterations not known\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Try to initialize REDUCTION_LIST for code generation part. |
| REDUCTION_LIST describes the reductions. */ |
| |
| static bool |
| try_create_reduction_list (loop_p loop, |
| reduction_info_table_type *reduction_list) |
| { |
| edge exit = single_dom_exit (loop); |
| gphi_iterator gsi; |
| |
| gcc_assert (exit); |
| |
| gather_scalar_reductions (loop, reduction_list); |
| |
| |
| for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gphi *phi = gsi.phi (); |
| struct reduction_info *red; |
| imm_use_iterator imm_iter; |
| use_operand_p use_p; |
| gimple reduc_phi; |
| tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit); |
| |
| if (!virtual_operand_p (val)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "phi is "); |
| print_gimple_stmt (dump_file, phi, 0, 0); |
| fprintf (dump_file, "arg of phi to exit: value "); |
| print_generic_expr (dump_file, val, 0); |
| fprintf (dump_file, " used outside loop\n"); |
| fprintf (dump_file, |
| " checking if it a part of reduction pattern: \n"); |
| } |
| if (reduction_list->elements () == 0) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| " FAILED: it is not a part of reduction.\n"); |
| return false; |
| } |
| reduc_phi = NULL; |
| FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val) |
| { |
| if (!gimple_debug_bind_p (USE_STMT (use_p)) |
| && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))) |
| { |
| reduc_phi = USE_STMT (use_p); |
| break; |
| } |
| } |
| red = reduction_phi (reduction_list, reduc_phi); |
| if (red == NULL) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| " FAILED: it is not a part of reduction.\n"); |
| return false; |
| } |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "reduction phi is "); |
| print_gimple_stmt (dump_file, red->reduc_phi, 0, 0); |
| fprintf (dump_file, "reduction stmt is "); |
| print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0); |
| } |
| } |
| } |
| |
| /* The iterations of the loop may communicate only through bivs whose |
| iteration space can be distributed efficiently. */ |
| for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gphi *phi = gsi.phi (); |
| tree def = PHI_RESULT (phi); |
| affine_iv iv; |
| |
| if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true)) |
| { |
| struct reduction_info *red; |
| |
| red = reduction_phi (reduction_list, phi); |
| if (red == NULL) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| " FAILED: scalar dependency between iterations\n"); |
| return false; |
| } |
| } |
| } |
| |
| |
| return true; |
| } |
| |
| /* Detect parallel loops and generate parallel code using libgomp |
| primitives. Returns true if some loop was parallelized, false |
| otherwise. */ |
| |
| static bool |
| parallelize_loops (void) |
| { |
| unsigned n_threads = flag_tree_parallelize_loops; |
| bool changed = false; |
| struct loop *loop; |
| struct tree_niter_desc niter_desc; |
| struct obstack parloop_obstack; |
| HOST_WIDE_INT estimated; |
| source_location loop_loc; |
| |
| /* Do not parallelize loops in the functions created by parallelization. */ |
| if (parallelized_function_p (cfun->decl)) |
| return false; |
| if (cfun->has_nonlocal_label) |
| return false; |
| |
| gcc_obstack_init (&parloop_obstack); |
| reduction_info_table_type reduction_list (10); |
| init_stmt_vec_info_vec (); |
| |
| FOR_EACH_LOOP (loop, 0) |
| { |
| reduction_list.empty (); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Trying loop %d as candidate\n",loop->num); |
| if (loop->inner) |
| fprintf (dump_file, "loop %d is not innermost\n",loop->num); |
| else |
| fprintf (dump_file, "loop %d is innermost\n",loop->num); |
| } |
| |
| /* If we use autopar in graphite pass, we use its marked dependency |
| checking results. */ |
| if (flag_loop_parallelize_all && !loop->can_be_parallel) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "loop is not parallel according to graphite\n"); |
| continue; |
| } |
| |
| if (!single_dom_exit (loop)) |
| { |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "loop is !single_dom_exit\n"); |
| |
| continue; |
| } |
| |
| if (/* And of course, the loop must be parallelizable. */ |
| !can_duplicate_loop_p (loop) |
| || loop_has_blocks_with_irreducible_flag (loop) |
| || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP) |
| /* FIXME: the check for vector phi nodes could be removed. */ |
| || loop_has_vector_phi_nodes (loop)) |
| continue; |
| |
| estimated = estimated_stmt_executions_int (loop); |
| if (estimated == -1) |
| estimated = max_stmt_executions_int (loop); |
| /* FIXME: Bypass this check as graphite doesn't update the |
| count and frequency correctly now. */ |
| if (!flag_loop_parallelize_all |
| && ((estimated != -1 |
| && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD) |
| /* Do not bother with loops in cold areas. */ |
| || optimize_loop_nest_for_size_p (loop))) |
| continue; |
| |
| if (!try_get_loop_niter (loop, &niter_desc)) |
| continue; |
| |
| if (!try_create_reduction_list (loop, &reduction_list)) |
| continue; |
| |
| if (!flag_loop_parallelize_all |
| && !loop_parallel_p (loop, &parloop_obstack)) |
| continue; |
| |
| changed = true; |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| if (loop->inner) |
| fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index); |
| else |
| fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index); |
| loop_loc = find_loop_location (loop); |
| if (loop_loc != UNKNOWN_LOCATION) |
| fprintf (dump_file, "\nloop at %s:%d: ", |
| LOCATION_FILE (loop_loc), LOCATION_LINE (loop_loc)); |
| } |
| gen_parallel_loop (loop, &reduction_list, |
| n_threads, &niter_desc); |
| } |
| |
| free_stmt_vec_info_vec (); |
| obstack_free (&parloop_obstack, NULL); |
| |
| /* Parallelization will cause new function calls to be inserted through |
| which local variables will escape. Reset the points-to solution |
| for ESCAPED. */ |
| if (changed) |
| pt_solution_reset (&cfun->gimple_df->escaped); |
| |
| return changed; |
| } |
| |
| /* Parallelization. */ |
| |
| namespace { |
| |
| const pass_data pass_data_parallelize_loops = |
| { |
| GIMPLE_PASS, /* type */ |
| "parloops", /* name */ |
| OPTGROUP_LOOP, /* optinfo_flags */ |
| TV_TREE_PARALLELIZE_LOOPS, /* tv_id */ |
| ( PROP_cfg | PROP_ssa ), /* properties_required */ |
| 0, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| 0, /* todo_flags_finish */ |
| }; |
| |
| class pass_parallelize_loops : public gimple_opt_pass |
| { |
| public: |
| pass_parallelize_loops (gcc::context *ctxt) |
| : gimple_opt_pass (pass_data_parallelize_loops, ctxt) |
| {} |
| |
| /* opt_pass methods: */ |
| virtual bool gate (function *) { return flag_tree_parallelize_loops > 1; } |
| virtual unsigned int execute (function *); |
| |
| }; // class pass_parallelize_loops |
| |
| unsigned |
| pass_parallelize_loops::execute (function *fun) |
| { |
| if (number_of_loops (fun) <= 1) |
| return 0; |
| |
| if (parallelize_loops ()) |
| { |
| fun->curr_properties &= ~(PROP_gimple_eomp); |
| return TODO_update_ssa; |
| } |
| |
| return 0; |
| } |
| |
| } // anon namespace |
| |
| gimple_opt_pass * |
| make_pass_parallelize_loops (gcc::context *ctxt) |
| { |
| return new pass_parallelize_loops (ctxt); |
| } |