| /* SSA Dominator optimizations for trees |
| Copyright (C) 2001-2015 Free Software Foundation, Inc. |
| Contributed by Diego Novillo <dnovillo@redhat.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "hash-table.h" |
| #include "tm.h" |
| #include "hash-set.h" |
| #include "machmode.h" |
| #include "vec.h" |
| #include "double-int.h" |
| #include "input.h" |
| #include "alias.h" |
| #include "symtab.h" |
| #include "wide-int.h" |
| #include "inchash.h" |
| #include "real.h" |
| #include "tree.h" |
| #include "fold-const.h" |
| #include "stor-layout.h" |
| #include "flags.h" |
| #include "tm_p.h" |
| #include "predict.h" |
| #include "hard-reg-set.h" |
| #include "input.h" |
| #include "function.h" |
| #include "dominance.h" |
| #include "cfg.h" |
| #include "cfganal.h" |
| #include "basic-block.h" |
| #include "cfgloop.h" |
| #include "inchash.h" |
| #include "gimple-pretty-print.h" |
| #include "tree-ssa-alias.h" |
| #include "internal-fn.h" |
| #include "gimple-fold.h" |
| #include "tree-eh.h" |
| #include "gimple-expr.h" |
| #include "is-a.h" |
| #include "gimple.h" |
| #include "gimple-iterator.h" |
| #include "gimple-ssa.h" |
| #include "tree-cfg.h" |
| #include "tree-phinodes.h" |
| #include "ssa-iterators.h" |
| #include "stringpool.h" |
| #include "tree-ssanames.h" |
| #include "tree-into-ssa.h" |
| #include "domwalk.h" |
| #include "tree-pass.h" |
| #include "tree-ssa-propagate.h" |
| #include "tree-ssa-threadupdate.h" |
| #include "langhooks.h" |
| #include "params.h" |
| #include "tree-ssa-threadedge.h" |
| #include "tree-ssa-dom.h" |
| #include "inchash.h" |
| #include "gimplify.h" |
| #include "tree-cfgcleanup.h" |
| |
| /* This file implements optimizations on the dominator tree. */ |
| |
| /* Representation of a "naked" right-hand-side expression, to be used |
| in recording available expressions in the expression hash table. */ |
| |
| enum expr_kind |
| { |
| EXPR_SINGLE, |
| EXPR_UNARY, |
| EXPR_BINARY, |
| EXPR_TERNARY, |
| EXPR_CALL, |
| EXPR_PHI |
| }; |
| |
| struct hashable_expr |
| { |
| tree type; |
| enum expr_kind kind; |
| union { |
| struct { tree rhs; } single; |
| struct { enum tree_code op; tree opnd; } unary; |
| struct { enum tree_code op; tree opnd0, opnd1; } binary; |
| struct { enum tree_code op; tree opnd0, opnd1, opnd2; } ternary; |
| struct { gcall *fn_from; bool pure; size_t nargs; tree *args; } call; |
| struct { size_t nargs; tree *args; } phi; |
| } ops; |
| }; |
| |
| /* Structure for recording known values of a conditional expression |
| at the exits from its block. */ |
| |
| typedef struct cond_equivalence_s |
| { |
| struct hashable_expr cond; |
| tree value; |
| } cond_equivalence; |
| |
| |
| /* Structure for recording edge equivalences as well as any pending |
| edge redirections during the dominator optimizer. |
| |
| Computing and storing the edge equivalences instead of creating |
| them on-demand can save significant amounts of time, particularly |
| for pathological cases involving switch statements. |
| |
| These structures live for a single iteration of the dominator |
| optimizer in the edge's AUX field. At the end of an iteration we |
| free each of these structures and update the AUX field to point |
| to any requested redirection target (the code for updating the |
| CFG and SSA graph for edge redirection expects redirection edge |
| targets to be in the AUX field for each edge. */ |
| |
| struct edge_info |
| { |
| /* If this edge creates a simple equivalence, the LHS and RHS of |
| the equivalence will be stored here. */ |
| tree lhs; |
| tree rhs; |
| |
| /* Traversing an edge may also indicate one or more particular conditions |
| are true or false. */ |
| vec<cond_equivalence> cond_equivalences; |
| }; |
| |
| /* Stack of available expressions in AVAIL_EXPRs. Each block pushes any |
| expressions it enters into the hash table along with a marker entry |
| (null). When we finish processing the block, we pop off entries and |
| remove the expressions from the global hash table until we hit the |
| marker. */ |
| typedef struct expr_hash_elt * expr_hash_elt_t; |
| |
| static vec<std::pair<expr_hash_elt_t, expr_hash_elt_t> > avail_exprs_stack; |
| |
| /* Structure for entries in the expression hash table. */ |
| |
| struct expr_hash_elt |
| { |
| /* The value (lhs) of this expression. */ |
| tree lhs; |
| |
| /* The expression (rhs) we want to record. */ |
| struct hashable_expr expr; |
| |
| /* The virtual operand associated with the nearest dominating stmt |
| loading from or storing to expr. */ |
| tree vop; |
| |
| /* The hash value for RHS. */ |
| hashval_t hash; |
| |
| /* A unique stamp, typically the address of the hash |
| element itself, used in removing entries from the table. */ |
| struct expr_hash_elt *stamp; |
| }; |
| |
| /* Hashtable helpers. */ |
| |
| static bool hashable_expr_equal_p (const struct hashable_expr *, |
| const struct hashable_expr *); |
| static void free_expr_hash_elt (void *); |
| |
| struct expr_elt_hasher |
| { |
| typedef expr_hash_elt *value_type; |
| typedef expr_hash_elt *compare_type; |
| typedef int store_values_directly; |
| static inline hashval_t hash (const value_type &); |
| static inline bool equal (const value_type &, const compare_type &); |
| static inline void remove (value_type &); |
| }; |
| |
| inline hashval_t |
| expr_elt_hasher::hash (const value_type &p) |
| { |
| return p->hash; |
| } |
| |
| inline bool |
| expr_elt_hasher::equal (const value_type &p1, const compare_type &p2) |
| { |
| const struct hashable_expr *expr1 = &p1->expr; |
| const struct expr_hash_elt *stamp1 = p1->stamp; |
| const struct hashable_expr *expr2 = &p2->expr; |
| const struct expr_hash_elt *stamp2 = p2->stamp; |
| |
| /* This case should apply only when removing entries from the table. */ |
| if (stamp1 == stamp2) |
| return true; |
| |
| if (p1->hash != p2->hash) |
| return false; |
| |
| /* In case of a collision, both RHS have to be identical and have the |
| same VUSE operands. */ |
| if (hashable_expr_equal_p (expr1, expr2) |
| && types_compatible_p (expr1->type, expr2->type)) |
| return true; |
| |
| return false; |
| } |
| |
| /* Delete an expr_hash_elt and reclaim its storage. */ |
| |
| inline void |
| expr_elt_hasher::remove (value_type &element) |
| { |
| free_expr_hash_elt (element); |
| } |
| |
| /* Hash table with expressions made available during the renaming process. |
| When an assignment of the form X_i = EXPR is found, the statement is |
| stored in this table. If the same expression EXPR is later found on the |
| RHS of another statement, it is replaced with X_i (thus performing |
| global redundancy elimination). Similarly as we pass through conditionals |
| we record the conditional itself as having either a true or false value |
| in this table. */ |
| static hash_table<expr_elt_hasher> *avail_exprs; |
| |
| /* Stack of dest,src pairs that need to be restored during finalization. |
| |
| A NULL entry is used to mark the end of pairs which need to be |
| restored during finalization of this block. */ |
| static vec<tree> const_and_copies_stack; |
| |
| /* Track whether or not we have changed the control flow graph. */ |
| static bool cfg_altered; |
| |
| /* Bitmap of blocks that have had EH statements cleaned. We should |
| remove their dead edges eventually. */ |
| static bitmap need_eh_cleanup; |
| static vec<gimple> need_noreturn_fixup; |
| |
| /* Statistics for dominator optimizations. */ |
| struct opt_stats_d |
| { |
| long num_stmts; |
| long num_exprs_considered; |
| long num_re; |
| long num_const_prop; |
| long num_copy_prop; |
| }; |
| |
| static struct opt_stats_d opt_stats; |
| |
| /* Local functions. */ |
| static void optimize_stmt (basic_block, gimple_stmt_iterator); |
| static tree lookup_avail_expr (gimple, bool, bool = true); |
| static hashval_t avail_expr_hash (const void *); |
| static void htab_statistics (FILE *, |
| const hash_table<expr_elt_hasher> &); |
| static void record_cond (cond_equivalence *); |
| static void record_const_or_copy (tree, tree); |
| static void record_equality (tree, tree); |
| static void record_equivalences_from_phis (basic_block); |
| static void record_equivalences_from_incoming_edge (basic_block); |
| static void eliminate_redundant_computations (gimple_stmt_iterator *); |
| static void record_equivalences_from_stmt (gimple, int); |
| static void remove_local_expressions_from_table (void); |
| static void restore_vars_to_original_value (void); |
| static edge single_incoming_edge_ignoring_loop_edges (basic_block); |
| |
| |
| /* Given a statement STMT, initialize the hash table element pointed to |
| by ELEMENT. */ |
| |
| static void |
| initialize_hash_element (gimple stmt, tree lhs, |
| struct expr_hash_elt *element) |
| { |
| enum gimple_code code = gimple_code (stmt); |
| struct hashable_expr *expr = &element->expr; |
| |
| if (code == GIMPLE_ASSIGN) |
| { |
| enum tree_code subcode = gimple_assign_rhs_code (stmt); |
| |
| switch (get_gimple_rhs_class (subcode)) |
| { |
| case GIMPLE_SINGLE_RHS: |
| expr->kind = EXPR_SINGLE; |
| expr->type = TREE_TYPE (gimple_assign_rhs1 (stmt)); |
| expr->ops.single.rhs = gimple_assign_rhs1 (stmt); |
| break; |
| case GIMPLE_UNARY_RHS: |
| expr->kind = EXPR_UNARY; |
| expr->type = TREE_TYPE (gimple_assign_lhs (stmt)); |
| if (CONVERT_EXPR_CODE_P (subcode)) |
| subcode = NOP_EXPR; |
| expr->ops.unary.op = subcode; |
| expr->ops.unary.opnd = gimple_assign_rhs1 (stmt); |
| break; |
| case GIMPLE_BINARY_RHS: |
| expr->kind = EXPR_BINARY; |
| expr->type = TREE_TYPE (gimple_assign_lhs (stmt)); |
| expr->ops.binary.op = subcode; |
| expr->ops.binary.opnd0 = gimple_assign_rhs1 (stmt); |
| expr->ops.binary.opnd1 = gimple_assign_rhs2 (stmt); |
| break; |
| case GIMPLE_TERNARY_RHS: |
| expr->kind = EXPR_TERNARY; |
| expr->type = TREE_TYPE (gimple_assign_lhs (stmt)); |
| expr->ops.ternary.op = subcode; |
| expr->ops.ternary.opnd0 = gimple_assign_rhs1 (stmt); |
| expr->ops.ternary.opnd1 = gimple_assign_rhs2 (stmt); |
| expr->ops.ternary.opnd2 = gimple_assign_rhs3 (stmt); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| else if (code == GIMPLE_COND) |
| { |
| expr->type = boolean_type_node; |
| expr->kind = EXPR_BINARY; |
| expr->ops.binary.op = gimple_cond_code (stmt); |
| expr->ops.binary.opnd0 = gimple_cond_lhs (stmt); |
| expr->ops.binary.opnd1 = gimple_cond_rhs (stmt); |
| } |
| else if (gcall *call_stmt = dyn_cast <gcall *> (stmt)) |
| { |
| size_t nargs = gimple_call_num_args (call_stmt); |
| size_t i; |
| |
| gcc_assert (gimple_call_lhs (call_stmt)); |
| |
| expr->type = TREE_TYPE (gimple_call_lhs (call_stmt)); |
| expr->kind = EXPR_CALL; |
| expr->ops.call.fn_from = call_stmt; |
| |
| if (gimple_call_flags (call_stmt) & (ECF_CONST | ECF_PURE)) |
| expr->ops.call.pure = true; |
| else |
| expr->ops.call.pure = false; |
| |
| expr->ops.call.nargs = nargs; |
| expr->ops.call.args = XCNEWVEC (tree, nargs); |
| for (i = 0; i < nargs; i++) |
| expr->ops.call.args[i] = gimple_call_arg (call_stmt, i); |
| } |
| else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt)) |
| { |
| expr->type = TREE_TYPE (gimple_switch_index (swtch_stmt)); |
| expr->kind = EXPR_SINGLE; |
| expr->ops.single.rhs = gimple_switch_index (swtch_stmt); |
| } |
| else if (code == GIMPLE_GOTO) |
| { |
| expr->type = TREE_TYPE (gimple_goto_dest (stmt)); |
| expr->kind = EXPR_SINGLE; |
| expr->ops.single.rhs = gimple_goto_dest (stmt); |
| } |
| else if (code == GIMPLE_PHI) |
| { |
| size_t nargs = gimple_phi_num_args (stmt); |
| size_t i; |
| |
| expr->type = TREE_TYPE (gimple_phi_result (stmt)); |
| expr->kind = EXPR_PHI; |
| expr->ops.phi.nargs = nargs; |
| expr->ops.phi.args = XCNEWVEC (tree, nargs); |
| |
| for (i = 0; i < nargs; i++) |
| expr->ops.phi.args[i] = gimple_phi_arg_def (stmt, i); |
| } |
| else |
| gcc_unreachable (); |
| |
| element->lhs = lhs; |
| element->vop = gimple_vuse (stmt); |
| element->hash = avail_expr_hash (element); |
| element->stamp = element; |
| } |
| |
| /* Given a conditional expression COND as a tree, initialize |
| a hashable_expr expression EXPR. The conditional must be a |
| comparison or logical negation. A constant or a variable is |
| not permitted. */ |
| |
| static void |
| initialize_expr_from_cond (tree cond, struct hashable_expr *expr) |
| { |
| expr->type = boolean_type_node; |
| |
| if (COMPARISON_CLASS_P (cond)) |
| { |
| expr->kind = EXPR_BINARY; |
| expr->ops.binary.op = TREE_CODE (cond); |
| expr->ops.binary.opnd0 = TREE_OPERAND (cond, 0); |
| expr->ops.binary.opnd1 = TREE_OPERAND (cond, 1); |
| } |
| else if (TREE_CODE (cond) == TRUTH_NOT_EXPR) |
| { |
| expr->kind = EXPR_UNARY; |
| expr->ops.unary.op = TRUTH_NOT_EXPR; |
| expr->ops.unary.opnd = TREE_OPERAND (cond, 0); |
| } |
| else |
| gcc_unreachable (); |
| } |
| |
| /* Given a hashable_expr expression EXPR and an LHS, |
| initialize the hash table element pointed to by ELEMENT. */ |
| |
| static void |
| initialize_hash_element_from_expr (struct hashable_expr *expr, |
| tree lhs, |
| struct expr_hash_elt *element) |
| { |
| element->expr = *expr; |
| element->lhs = lhs; |
| element->vop = NULL_TREE; |
| element->hash = avail_expr_hash (element); |
| element->stamp = element; |
| } |
| |
| /* Compare two hashable_expr structures for equivalence. |
| They are considered equivalent when the the expressions |
| they denote must necessarily be equal. The logic is intended |
| to follow that of operand_equal_p in fold-const.c */ |
| |
| static bool |
| hashable_expr_equal_p (const struct hashable_expr *expr0, |
| const struct hashable_expr *expr1) |
| { |
| tree type0 = expr0->type; |
| tree type1 = expr1->type; |
| |
| /* If either type is NULL, there is nothing to check. */ |
| if ((type0 == NULL_TREE) ^ (type1 == NULL_TREE)) |
| return false; |
| |
| /* If both types don't have the same signedness, precision, and mode, |
| then we can't consider them equal. */ |
| if (type0 != type1 |
| && (TREE_CODE (type0) == ERROR_MARK |
| || TREE_CODE (type1) == ERROR_MARK |
| || TYPE_UNSIGNED (type0) != TYPE_UNSIGNED (type1) |
| || TYPE_PRECISION (type0) != TYPE_PRECISION (type1) |
| || TYPE_MODE (type0) != TYPE_MODE (type1))) |
| return false; |
| |
| if (expr0->kind != expr1->kind) |
| return false; |
| |
| switch (expr0->kind) |
| { |
| case EXPR_SINGLE: |
| return operand_equal_p (expr0->ops.single.rhs, |
| expr1->ops.single.rhs, 0); |
| |
| case EXPR_UNARY: |
| if (expr0->ops.unary.op != expr1->ops.unary.op) |
| return false; |
| |
| if ((CONVERT_EXPR_CODE_P (expr0->ops.unary.op) |
| || expr0->ops.unary.op == NON_LVALUE_EXPR) |
| && TYPE_UNSIGNED (expr0->type) != TYPE_UNSIGNED (expr1->type)) |
| return false; |
| |
| return operand_equal_p (expr0->ops.unary.opnd, |
| expr1->ops.unary.opnd, 0); |
| |
| case EXPR_BINARY: |
| if (expr0->ops.binary.op != expr1->ops.binary.op) |
| return false; |
| |
| if (operand_equal_p (expr0->ops.binary.opnd0, |
| expr1->ops.binary.opnd0, 0) |
| && operand_equal_p (expr0->ops.binary.opnd1, |
| expr1->ops.binary.opnd1, 0)) |
| return true; |
| |
| /* For commutative ops, allow the other order. */ |
| return (commutative_tree_code (expr0->ops.binary.op) |
| && operand_equal_p (expr0->ops.binary.opnd0, |
| expr1->ops.binary.opnd1, 0) |
| && operand_equal_p (expr0->ops.binary.opnd1, |
| expr1->ops.binary.opnd0, 0)); |
| |
| case EXPR_TERNARY: |
| if (expr0->ops.ternary.op != expr1->ops.ternary.op |
| || !operand_equal_p (expr0->ops.ternary.opnd2, |
| expr1->ops.ternary.opnd2, 0)) |
| return false; |
| |
| if (operand_equal_p (expr0->ops.ternary.opnd0, |
| expr1->ops.ternary.opnd0, 0) |
| && operand_equal_p (expr0->ops.ternary.opnd1, |
| expr1->ops.ternary.opnd1, 0)) |
| return true; |
| |
| /* For commutative ops, allow the other order. */ |
| return (commutative_ternary_tree_code (expr0->ops.ternary.op) |
| && operand_equal_p (expr0->ops.ternary.opnd0, |
| expr1->ops.ternary.opnd1, 0) |
| && operand_equal_p (expr0->ops.ternary.opnd1, |
| expr1->ops.ternary.opnd0, 0)); |
| |
| case EXPR_CALL: |
| { |
| size_t i; |
| |
| /* If the calls are to different functions, then they |
| clearly cannot be equal. */ |
| if (!gimple_call_same_target_p (expr0->ops.call.fn_from, |
| expr1->ops.call.fn_from)) |
| return false; |
| |
| if (! expr0->ops.call.pure) |
| return false; |
| |
| if (expr0->ops.call.nargs != expr1->ops.call.nargs) |
| return false; |
| |
| for (i = 0; i < expr0->ops.call.nargs; i++) |
| if (! operand_equal_p (expr0->ops.call.args[i], |
| expr1->ops.call.args[i], 0)) |
| return false; |
| |
| if (stmt_could_throw_p (expr0->ops.call.fn_from)) |
| { |
| int lp0 = lookup_stmt_eh_lp (expr0->ops.call.fn_from); |
| int lp1 = lookup_stmt_eh_lp (expr1->ops.call.fn_from); |
| if ((lp0 > 0 || lp1 > 0) && lp0 != lp1) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| case EXPR_PHI: |
| { |
| size_t i; |
| |
| if (expr0->ops.phi.nargs != expr1->ops.phi.nargs) |
| return false; |
| |
| for (i = 0; i < expr0->ops.phi.nargs; i++) |
| if (! operand_equal_p (expr0->ops.phi.args[i], |
| expr1->ops.phi.args[i], 0)) |
| return false; |
| |
| return true; |
| } |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Generate a hash value for a pair of expressions. This can be used |
| iteratively by passing a previous result in HSTATE. |
| |
| The same hash value is always returned for a given pair of expressions, |
| regardless of the order in which they are presented. This is useful in |
| hashing the operands of commutative functions. */ |
| |
| namespace inchash |
| { |
| |
| static void |
| add_expr_commutative (const_tree t1, const_tree t2, hash &hstate) |
| { |
| hash one, two; |
| |
| inchash::add_expr (t1, one); |
| inchash::add_expr (t2, two); |
| hstate.add_commutative (one, two); |
| } |
| |
| /* Compute a hash value for a hashable_expr value EXPR and a |
| previously accumulated hash value VAL. If two hashable_expr |
| values compare equal with hashable_expr_equal_p, they must |
| hash to the same value, given an identical value of VAL. |
| The logic is intended to follow inchash::add_expr in tree.c. */ |
| |
| static void |
| add_hashable_expr (const struct hashable_expr *expr, hash &hstate) |
| { |
| switch (expr->kind) |
| { |
| case EXPR_SINGLE: |
| inchash::add_expr (expr->ops.single.rhs, hstate); |
| break; |
| |
| case EXPR_UNARY: |
| hstate.add_object (expr->ops.unary.op); |
| |
| /* Make sure to include signedness in the hash computation. |
| Don't hash the type, that can lead to having nodes which |
| compare equal according to operand_equal_p, but which |
| have different hash codes. */ |
| if (CONVERT_EXPR_CODE_P (expr->ops.unary.op) |
| || expr->ops.unary.op == NON_LVALUE_EXPR) |
| hstate.add_int (TYPE_UNSIGNED (expr->type)); |
| |
| inchash::add_expr (expr->ops.unary.opnd, hstate); |
| break; |
| |
| case EXPR_BINARY: |
| hstate.add_object (expr->ops.binary.op); |
| if (commutative_tree_code (expr->ops.binary.op)) |
| inchash::add_expr_commutative (expr->ops.binary.opnd0, |
| expr->ops.binary.opnd1, hstate); |
| else |
| { |
| inchash::add_expr (expr->ops.binary.opnd0, hstate); |
| inchash::add_expr (expr->ops.binary.opnd1, hstate); |
| } |
| break; |
| |
| case EXPR_TERNARY: |
| hstate.add_object (expr->ops.ternary.op); |
| if (commutative_ternary_tree_code (expr->ops.ternary.op)) |
| inchash::add_expr_commutative (expr->ops.ternary.opnd0, |
| expr->ops.ternary.opnd1, hstate); |
| else |
| { |
| inchash::add_expr (expr->ops.ternary.opnd0, hstate); |
| inchash::add_expr (expr->ops.ternary.opnd1, hstate); |
| } |
| inchash::add_expr (expr->ops.ternary.opnd2, hstate); |
| break; |
| |
| case EXPR_CALL: |
| { |
| size_t i; |
| enum tree_code code = CALL_EXPR; |
| gcall *fn_from; |
| |
| hstate.add_object (code); |
| fn_from = expr->ops.call.fn_from; |
| if (gimple_call_internal_p (fn_from)) |
| hstate.merge_hash ((hashval_t) gimple_call_internal_fn (fn_from)); |
| else |
| inchash::add_expr (gimple_call_fn (fn_from), hstate); |
| for (i = 0; i < expr->ops.call.nargs; i++) |
| inchash::add_expr (expr->ops.call.args[i], hstate); |
| } |
| break; |
| |
| case EXPR_PHI: |
| { |
| size_t i; |
| |
| for (i = 0; i < expr->ops.phi.nargs; i++) |
| inchash::add_expr (expr->ops.phi.args[i], hstate); |
| } |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| } |
| |
| /* Print a diagnostic dump of an expression hash table entry. */ |
| |
| static void |
| print_expr_hash_elt (FILE * stream, const struct expr_hash_elt *element) |
| { |
| fprintf (stream, "STMT "); |
| |
| if (element->lhs) |
| { |
| print_generic_expr (stream, element->lhs, 0); |
| fprintf (stream, " = "); |
| } |
| |
| switch (element->expr.kind) |
| { |
| case EXPR_SINGLE: |
| print_generic_expr (stream, element->expr.ops.single.rhs, 0); |
| break; |
| |
| case EXPR_UNARY: |
| fprintf (stream, "%s ", get_tree_code_name (element->expr.ops.unary.op)); |
| print_generic_expr (stream, element->expr.ops.unary.opnd, 0); |
| break; |
| |
| case EXPR_BINARY: |
| print_generic_expr (stream, element->expr.ops.binary.opnd0, 0); |
| fprintf (stream, " %s ", get_tree_code_name (element->expr.ops.binary.op)); |
| print_generic_expr (stream, element->expr.ops.binary.opnd1, 0); |
| break; |
| |
| case EXPR_TERNARY: |
| fprintf (stream, " %s <", get_tree_code_name (element->expr.ops.ternary.op)); |
| print_generic_expr (stream, element->expr.ops.ternary.opnd0, 0); |
| fputs (", ", stream); |
| print_generic_expr (stream, element->expr.ops.ternary.opnd1, 0); |
| fputs (", ", stream); |
| print_generic_expr (stream, element->expr.ops.ternary.opnd2, 0); |
| fputs (">", stream); |
| break; |
| |
| case EXPR_CALL: |
| { |
| size_t i; |
| size_t nargs = element->expr.ops.call.nargs; |
| gcall *fn_from; |
| |
| fn_from = element->expr.ops.call.fn_from; |
| if (gimple_call_internal_p (fn_from)) |
| fputs (internal_fn_name (gimple_call_internal_fn (fn_from)), |
| stream); |
| else |
| print_generic_expr (stream, gimple_call_fn (fn_from), 0); |
| fprintf (stream, " ("); |
| for (i = 0; i < nargs; i++) |
| { |
| print_generic_expr (stream, element->expr.ops.call.args[i], 0); |
| if (i + 1 < nargs) |
| fprintf (stream, ", "); |
| } |
| fprintf (stream, ")"); |
| } |
| break; |
| |
| case EXPR_PHI: |
| { |
| size_t i; |
| size_t nargs = element->expr.ops.phi.nargs; |
| |
| fprintf (stream, "PHI <"); |
| for (i = 0; i < nargs; i++) |
| { |
| print_generic_expr (stream, element->expr.ops.phi.args[i], 0); |
| if (i + 1 < nargs) |
| fprintf (stream, ", "); |
| } |
| fprintf (stream, ">"); |
| } |
| break; |
| } |
| |
| if (element->vop) |
| { |
| fprintf (stream, " with "); |
| print_generic_expr (stream, element->vop, 0); |
| } |
| |
| fprintf (stream, "\n"); |
| } |
| |
| /* Delete variable sized pieces of the expr_hash_elt ELEMENT. */ |
| |
| static void |
| free_expr_hash_elt_contents (struct expr_hash_elt *element) |
| { |
| if (element->expr.kind == EXPR_CALL) |
| free (element->expr.ops.call.args); |
| else if (element->expr.kind == EXPR_PHI) |
| free (element->expr.ops.phi.args); |
| } |
| |
| /* Delete an expr_hash_elt and reclaim its storage. */ |
| |
| static void |
| free_expr_hash_elt (void *elt) |
| { |
| struct expr_hash_elt *element = ((struct expr_hash_elt *)elt); |
| free_expr_hash_elt_contents (element); |
| free (element); |
| } |
| |
| /* Allocate an EDGE_INFO for edge E and attach it to E. |
| Return the new EDGE_INFO structure. */ |
| |
| static struct edge_info * |
| allocate_edge_info (edge e) |
| { |
| struct edge_info *edge_info; |
| |
| edge_info = XCNEW (struct edge_info); |
| |
| e->aux = edge_info; |
| return edge_info; |
| } |
| |
| /* Free all EDGE_INFO structures associated with edges in the CFG. |
| If a particular edge can be threaded, copy the redirection |
| target from the EDGE_INFO structure into the edge's AUX field |
| as required by code to update the CFG and SSA graph for |
| jump threading. */ |
| |
| static void |
| free_all_edge_infos (void) |
| { |
| basic_block bb; |
| edge_iterator ei; |
| edge e; |
| |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| { |
| struct edge_info *edge_info = (struct edge_info *) e->aux; |
| |
| if (edge_info) |
| { |
| edge_info->cond_equivalences.release (); |
| free (edge_info); |
| e->aux = NULL; |
| } |
| } |
| } |
| } |
| |
| class dom_opt_dom_walker : public dom_walker |
| { |
| public: |
| dom_opt_dom_walker (cdi_direction direction) |
| : dom_walker (direction), m_dummy_cond (NULL) {} |
| |
| virtual void before_dom_children (basic_block); |
| virtual void after_dom_children (basic_block); |
| |
| private: |
| void thread_across_edge (edge); |
| |
| gcond *m_dummy_cond; |
| }; |
| |
| /* Jump threading, redundancy elimination and const/copy propagation. |
| |
| This pass may expose new symbols that need to be renamed into SSA. For |
| every new symbol exposed, its corresponding bit will be set in |
| VARS_TO_RENAME. */ |
| |
| namespace { |
| |
| const pass_data pass_data_dominator = |
| { |
| GIMPLE_PASS, /* type */ |
| "dom", /* name */ |
| OPTGROUP_NONE, /* optinfo_flags */ |
| TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */ |
| ( PROP_cfg | PROP_ssa ), /* properties_required */ |
| 0, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */ |
| }; |
| |
| class pass_dominator : public gimple_opt_pass |
| { |
| public: |
| pass_dominator (gcc::context *ctxt) |
| : gimple_opt_pass (pass_data_dominator, ctxt) |
| {} |
| |
| /* opt_pass methods: */ |
| opt_pass * clone () { return new pass_dominator (m_ctxt); } |
| virtual bool gate (function *) { return flag_tree_dom != 0; } |
| virtual unsigned int execute (function *); |
| |
| }; // class pass_dominator |
| |
| unsigned int |
| pass_dominator::execute (function *fun) |
| { |
| memset (&opt_stats, 0, sizeof (opt_stats)); |
| |
| /* Create our hash tables. */ |
| avail_exprs = new hash_table<expr_elt_hasher> (1024); |
| avail_exprs_stack.create (20); |
| const_and_copies_stack.create (20); |
| need_eh_cleanup = BITMAP_ALLOC (NULL); |
| need_noreturn_fixup.create (0); |
| |
| calculate_dominance_info (CDI_DOMINATORS); |
| cfg_altered = false; |
| |
| /* We need to know loop structures in order to avoid destroying them |
| in jump threading. Note that we still can e.g. thread through loop |
| headers to an exit edge, or through loop header to the loop body, assuming |
| that we update the loop info. |
| |
| TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due |
| to several overly conservative bail-outs in jump threading, case |
| gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is |
| missing. We should improve jump threading in future then |
| LOOPS_HAVE_PREHEADERS won't be needed here. */ |
| loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES); |
| |
| /* Initialize the value-handle array. */ |
| threadedge_initialize_values (); |
| |
| /* We need accurate information regarding back edges in the CFG |
| for jump threading; this may include back edges that are not part of |
| a single loop. */ |
| mark_dfs_back_edges (); |
| |
| /* Recursively walk the dominator tree optimizing statements. */ |
| dom_opt_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr); |
| |
| { |
| gimple_stmt_iterator gsi; |
| basic_block bb; |
| FOR_EACH_BB_FN (bb, fun) |
| { |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| update_stmt_if_modified (gsi_stmt (gsi)); |
| } |
| } |
| |
| /* If we exposed any new variables, go ahead and put them into |
| SSA form now, before we handle jump threading. This simplifies |
| interactions between rewriting of _DECL nodes into SSA form |
| and rewriting SSA_NAME nodes into SSA form after block |
| duplication and CFG manipulation. */ |
| update_ssa (TODO_update_ssa); |
| |
| free_all_edge_infos (); |
| |
| /* Thread jumps, creating duplicate blocks as needed. */ |
| cfg_altered |= thread_through_all_blocks (first_pass_instance); |
| |
| if (cfg_altered) |
| free_dominance_info (CDI_DOMINATORS); |
| |
| /* Removal of statements may make some EH edges dead. Purge |
| such edges from the CFG as needed. */ |
| if (!bitmap_empty_p (need_eh_cleanup)) |
| { |
| unsigned i; |
| bitmap_iterator bi; |
| |
| /* Jump threading may have created forwarder blocks from blocks |
| needing EH cleanup; the new successor of these blocks, which |
| has inherited from the original block, needs the cleanup. |
| Don't clear bits in the bitmap, as that can break the bitmap |
| iterator. */ |
| EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi) |
| { |
| basic_block bb = BASIC_BLOCK_FOR_FN (fun, i); |
| if (bb == NULL) |
| continue; |
| while (single_succ_p (bb) |
| && (single_succ_edge (bb)->flags & EDGE_EH) == 0) |
| bb = single_succ (bb); |
| if (bb == EXIT_BLOCK_PTR_FOR_FN (fun)) |
| continue; |
| if ((unsigned) bb->index != i) |
| bitmap_set_bit (need_eh_cleanup, bb->index); |
| } |
| |
| gimple_purge_all_dead_eh_edges (need_eh_cleanup); |
| bitmap_clear (need_eh_cleanup); |
| } |
| |
| /* Fixup stmts that became noreturn calls. This may require splitting |
| blocks and thus isn't possible during the dominator walk or before |
| jump threading finished. Do this in reverse order so we don't |
| inadvertedly remove a stmt we want to fixup by visiting a dominating |
| now noreturn call first. */ |
| while (!need_noreturn_fixup.is_empty ()) |
| { |
| gimple stmt = need_noreturn_fixup.pop (); |
| if (dump_file && dump_flags & TDF_DETAILS) |
| { |
| fprintf (dump_file, "Fixing up noreturn call "); |
| print_gimple_stmt (dump_file, stmt, 0, 0); |
| fprintf (dump_file, "\n"); |
| } |
| fixup_noreturn_call (stmt); |
| } |
| |
| statistics_counter_event (fun, "Redundant expressions eliminated", |
| opt_stats.num_re); |
| statistics_counter_event (fun, "Constants propagated", |
| opt_stats.num_const_prop); |
| statistics_counter_event (fun, "Copies propagated", |
| opt_stats.num_copy_prop); |
| |
| /* Debugging dumps. */ |
| if (dump_file && (dump_flags & TDF_STATS)) |
| dump_dominator_optimization_stats (dump_file); |
| |
| loop_optimizer_finalize (); |
| |
| /* Delete our main hashtable. */ |
| delete avail_exprs; |
| avail_exprs = NULL; |
| |
| /* Free asserted bitmaps and stacks. */ |
| BITMAP_FREE (need_eh_cleanup); |
| need_noreturn_fixup.release (); |
| avail_exprs_stack.release (); |
| const_and_copies_stack.release (); |
| |
| /* Free the value-handle array. */ |
| threadedge_finalize_values (); |
| |
| return 0; |
| } |
| |
| } // anon namespace |
| |
| gimple_opt_pass * |
| make_pass_dominator (gcc::context *ctxt) |
| { |
| return new pass_dominator (ctxt); |
| } |
| |
| |
| /* Given a conditional statement CONDSTMT, convert the |
| condition to a canonical form. */ |
| |
| static void |
| canonicalize_comparison (gcond *condstmt) |
| { |
| tree op0; |
| tree op1; |
| enum tree_code code; |
| |
| gcc_assert (gimple_code (condstmt) == GIMPLE_COND); |
| |
| op0 = gimple_cond_lhs (condstmt); |
| op1 = gimple_cond_rhs (condstmt); |
| |
| code = gimple_cond_code (condstmt); |
| |
| /* If it would be profitable to swap the operands, then do so to |
| canonicalize the statement, enabling better optimization. |
| |
| By placing canonicalization of such expressions here we |
| transparently keep statements in canonical form, even |
| when the statement is modified. */ |
| if (tree_swap_operands_p (op0, op1, false)) |
| { |
| /* For relationals we need to swap the operands |
| and change the code. */ |
| if (code == LT_EXPR |
| || code == GT_EXPR |
| || code == LE_EXPR |
| || code == GE_EXPR) |
| { |
| code = swap_tree_comparison (code); |
| |
| gimple_cond_set_code (condstmt, code); |
| gimple_cond_set_lhs (condstmt, op1); |
| gimple_cond_set_rhs (condstmt, op0); |
| |
| update_stmt (condstmt); |
| } |
| } |
| } |
| |
| /* Initialize local stacks for this optimizer and record equivalences |
| upon entry to BB. Equivalences can come from the edge traversed to |
| reach BB or they may come from PHI nodes at the start of BB. */ |
| |
| /* Remove all the expressions in LOCALS from TABLE, stopping when there are |
| LIMIT entries left in LOCALs. */ |
| |
| static void |
| remove_local_expressions_from_table (void) |
| { |
| /* Remove all the expressions made available in this block. */ |
| while (avail_exprs_stack.length () > 0) |
| { |
| std::pair<expr_hash_elt_t, expr_hash_elt_t> victim |
| = avail_exprs_stack.pop (); |
| expr_hash_elt **slot; |
| |
| if (victim.first == NULL) |
| break; |
| |
| /* This must precede the actual removal from the hash table, |
| as ELEMENT and the table entry may share a call argument |
| vector which will be freed during removal. */ |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "<<<< "); |
| print_expr_hash_elt (dump_file, victim.first); |
| } |
| |
| slot = avail_exprs->find_slot (victim.first, NO_INSERT); |
| gcc_assert (slot && *slot == victim.first); |
| if (victim.second != NULL) |
| { |
| free_expr_hash_elt (*slot); |
| *slot = victim.second; |
| } |
| else |
| avail_exprs->clear_slot (slot); |
| } |
| } |
| |
| /* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore |
| CONST_AND_COPIES to its original state, stopping when we hit a |
| NULL marker. */ |
| |
| static void |
| restore_vars_to_original_value (void) |
| { |
| while (const_and_copies_stack.length () > 0) |
| { |
| tree prev_value, dest; |
| |
| dest = const_and_copies_stack.pop (); |
| |
| if (dest == NULL) |
| break; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "<<<< COPY "); |
| print_generic_expr (dump_file, dest, 0); |
| fprintf (dump_file, " = "); |
| print_generic_expr (dump_file, SSA_NAME_VALUE (dest), 0); |
| fprintf (dump_file, "\n"); |
| } |
| |
| prev_value = const_and_copies_stack.pop (); |
| set_ssa_name_value (dest, prev_value); |
| } |
| } |
| |
| /* A trivial wrapper so that we can present the generic jump |
| threading code with a simple API for simplifying statements. */ |
| static tree |
| simplify_stmt_for_jump_threading (gimple stmt, |
| gimple within_stmt ATTRIBUTE_UNUSED) |
| { |
| return lookup_avail_expr (stmt, false); |
| } |
| |
| /* Record into the equivalence tables any equivalences implied by |
| traversing edge E (which are cached in E->aux). |
| |
| Callers are responsible for managing the unwinding markers. */ |
| static void |
| record_temporary_equivalences (edge e) |
| { |
| int i; |
| struct edge_info *edge_info = (struct edge_info *) e->aux; |
| |
| /* If we have info associated with this edge, record it into |
| our equivalence tables. */ |
| if (edge_info) |
| { |
| cond_equivalence *eq; |
| tree lhs = edge_info->lhs; |
| tree rhs = edge_info->rhs; |
| |
| /* If we have a simple NAME = VALUE equivalence, record it. */ |
| if (lhs && TREE_CODE (lhs) == SSA_NAME) |
| record_const_or_copy (lhs, rhs); |
| |
| /* If we have 0 = COND or 1 = COND equivalences, record them |
| into our expression hash tables. */ |
| for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i) |
| record_cond (eq); |
| } |
| } |
| |
| /* Wrapper for common code to attempt to thread an edge. For example, |
| it handles lazily building the dummy condition and the bookkeeping |
| when jump threading is successful. */ |
| |
| void |
| dom_opt_dom_walker::thread_across_edge (edge e) |
| { |
| if (! m_dummy_cond) |
| m_dummy_cond = |
| gimple_build_cond (NE_EXPR, |
| integer_zero_node, integer_zero_node, |
| NULL, NULL); |
| |
| /* Push a marker on both stacks so we can unwind the tables back to their |
| current state. */ |
| avail_exprs_stack.safe_push |
| (std::pair<expr_hash_elt_t, expr_hash_elt_t> (NULL, NULL)); |
| const_and_copies_stack.safe_push (NULL_TREE); |
| |
| /* Traversing E may result in equivalences we can utilize. */ |
| record_temporary_equivalences (e); |
| |
| /* With all the edge equivalences in the tables, go ahead and attempt |
| to thread through E->dest. */ |
| ::thread_across_edge (m_dummy_cond, e, false, |
| &const_and_copies_stack, |
| simplify_stmt_for_jump_threading); |
| |
| /* And restore the various tables to their state before |
| we threaded this edge. |
| |
| XXX The code in tree-ssa-threadedge.c will restore the state of |
| the const_and_copies table. We we just have to restore the expression |
| table. */ |
| remove_local_expressions_from_table (); |
| } |
| |
| /* PHI nodes can create equivalences too. |
| |
| Ignoring any alternatives which are the same as the result, if |
| all the alternatives are equal, then the PHI node creates an |
| equivalence. */ |
| |
| static void |
| record_equivalences_from_phis (basic_block bb) |
| { |
| gphi_iterator gsi; |
| |
| for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gphi *phi = gsi.phi (); |
| |
| tree lhs = gimple_phi_result (phi); |
| tree rhs = NULL; |
| size_t i; |
| |
| for (i = 0; i < gimple_phi_num_args (phi); i++) |
| { |
| tree t = gimple_phi_arg_def (phi, i); |
| |
| /* Ignore alternatives which are the same as our LHS. Since |
| LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we |
| can simply compare pointers. */ |
| if (lhs == t) |
| continue; |
| |
| /* If we have not processed an alternative yet, then set |
| RHS to this alternative. */ |
| if (rhs == NULL) |
| rhs = t; |
| /* If we have processed an alternative (stored in RHS), then |
| see if it is equal to this one. If it isn't, then stop |
| the search. */ |
| else if (! operand_equal_for_phi_arg_p (rhs, t)) |
| break; |
| } |
| |
| /* If we had no interesting alternatives, then all the RHS alternatives |
| must have been the same as LHS. */ |
| if (!rhs) |
| rhs = lhs; |
| |
| /* If we managed to iterate through each PHI alternative without |
| breaking out of the loop, then we have a PHI which may create |
| a useful equivalence. We do not need to record unwind data for |
| this, since this is a true assignment and not an equivalence |
| inferred from a comparison. All uses of this ssa name are dominated |
| by this assignment, so unwinding just costs time and space. */ |
| if (i == gimple_phi_num_args (phi) |
| && may_propagate_copy (lhs, rhs)) |
| set_ssa_name_value (lhs, rhs); |
| } |
| } |
| |
| /* Ignoring loop backedges, if BB has precisely one incoming edge then |
| return that edge. Otherwise return NULL. */ |
| static edge |
| single_incoming_edge_ignoring_loop_edges (basic_block bb) |
| { |
| edge retval = NULL; |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| { |
| /* A loop back edge can be identified by the destination of |
| the edge dominating the source of the edge. */ |
| if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest)) |
| continue; |
| |
| /* If we have already seen a non-loop edge, then we must have |
| multiple incoming non-loop edges and thus we return NULL. */ |
| if (retval) |
| return NULL; |
| |
| /* This is the first non-loop incoming edge we have found. Record |
| it. */ |
| retval = e; |
| } |
| |
| return retval; |
| } |
| |
| /* Record any equivalences created by the incoming edge to BB. If BB |
| has more than one incoming edge, then no equivalence is created. */ |
| |
| static void |
| record_equivalences_from_incoming_edge (basic_block bb) |
| { |
| edge e; |
| basic_block parent; |
| struct edge_info *edge_info; |
| |
| /* If our parent block ended with a control statement, then we may be |
| able to record some equivalences based on which outgoing edge from |
| the parent was followed. */ |
| parent = get_immediate_dominator (CDI_DOMINATORS, bb); |
| |
| e = single_incoming_edge_ignoring_loop_edges (bb); |
| |
| /* If we had a single incoming edge from our parent block, then enter |
| any data associated with the edge into our tables. */ |
| if (e && e->src == parent) |
| { |
| unsigned int i; |
| |
| edge_info = (struct edge_info *) e->aux; |
| |
| if (edge_info) |
| { |
| tree lhs = edge_info->lhs; |
| tree rhs = edge_info->rhs; |
| cond_equivalence *eq; |
| |
| if (lhs) |
| record_equality (lhs, rhs); |
| |
| /* If LHS is an SSA_NAME and RHS is a constant integer and LHS was |
| set via a widening type conversion, then we may be able to record |
| additional equivalences. */ |
| if (lhs |
| && TREE_CODE (lhs) == SSA_NAME |
| && is_gimple_constant (rhs) |
| && TREE_CODE (rhs) == INTEGER_CST) |
| { |
| gimple defstmt = SSA_NAME_DEF_STMT (lhs); |
| |
| if (defstmt |
| && is_gimple_assign (defstmt) |
| && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (defstmt))) |
| { |
| tree old_rhs = gimple_assign_rhs1 (defstmt); |
| |
| /* If the conversion widens the original value and |
| the constant is in the range of the type of OLD_RHS, |
| then convert the constant and record the equivalence. |
| |
| Note that int_fits_type_p does not check the precision |
| if the upper and lower bounds are OK. */ |
| if (INTEGRAL_TYPE_P (TREE_TYPE (old_rhs)) |
| && (TYPE_PRECISION (TREE_TYPE (lhs)) |
| > TYPE_PRECISION (TREE_TYPE (old_rhs))) |
| && int_fits_type_p (rhs, TREE_TYPE (old_rhs))) |
| { |
| tree newval = fold_convert (TREE_TYPE (old_rhs), rhs); |
| record_equality (old_rhs, newval); |
| } |
| } |
| } |
| |
| for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i) |
| record_cond (eq); |
| } |
| } |
| } |
| |
| /* Dump SSA statistics on FILE. */ |
| |
| void |
| dump_dominator_optimization_stats (FILE *file) |
| { |
| fprintf (file, "Total number of statements: %6ld\n\n", |
| opt_stats.num_stmts); |
| fprintf (file, "Exprs considered for dominator optimizations: %6ld\n", |
| opt_stats.num_exprs_considered); |
| |
| fprintf (file, "\nHash table statistics:\n"); |
| |
| fprintf (file, " avail_exprs: "); |
| htab_statistics (file, *avail_exprs); |
| } |
| |
| |
| /* Dump SSA statistics on stderr. */ |
| |
| DEBUG_FUNCTION void |
| debug_dominator_optimization_stats (void) |
| { |
| dump_dominator_optimization_stats (stderr); |
| } |
| |
| |
| /* Dump statistics for the hash table HTAB. */ |
| |
| static void |
| htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab) |
| { |
| fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n", |
| (long) htab.size (), |
| (long) htab.elements (), |
| htab.collisions ()); |
| } |
| |
| |
| /* Enter condition equivalence into the expression hash table. |
| This indicates that a conditional expression has a known |
| boolean value. */ |
| |
| static void |
| record_cond (cond_equivalence *p) |
| { |
| struct expr_hash_elt *element = XCNEW (struct expr_hash_elt); |
| expr_hash_elt **slot; |
| |
| initialize_hash_element_from_expr (&p->cond, p->value, element); |
| |
| slot = avail_exprs->find_slot_with_hash (element, element->hash, INSERT); |
| if (*slot == NULL) |
| { |
| *slot = element; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "1>>> "); |
| print_expr_hash_elt (dump_file, element); |
| } |
| |
| avail_exprs_stack.safe_push |
| (std::pair<expr_hash_elt_t, expr_hash_elt_t> (element, NULL)); |
| } |
| else |
| free_expr_hash_elt (element); |
| } |
| |
| /* Build a cond_equivalence record indicating that the comparison |
| CODE holds between operands OP0 and OP1 and push it to **P. */ |
| |
| static void |
| build_and_record_new_cond (enum tree_code code, |
| tree op0, tree op1, |
| vec<cond_equivalence> *p) |
| { |
| cond_equivalence c; |
| struct hashable_expr *cond = &c.cond; |
| |
| gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison); |
| |
| cond->type = boolean_type_node; |
| cond->kind = EXPR_BINARY; |
| cond->ops.binary.op = code; |
| cond->ops.binary.opnd0 = op0; |
| cond->ops.binary.opnd1 = op1; |
| |
| c.value = boolean_true_node; |
| p->safe_push (c); |
| } |
| |
| /* Record that COND is true and INVERTED is false into the edge information |
| structure. Also record that any conditions dominated by COND are true |
| as well. |
| |
| For example, if a < b is true, then a <= b must also be true. */ |
| |
| static void |
| record_conditions (struct edge_info *edge_info, tree cond, tree inverted) |
| { |
| tree op0, op1; |
| cond_equivalence c; |
| |
| if (!COMPARISON_CLASS_P (cond)) |
| return; |
| |
| op0 = TREE_OPERAND (cond, 0); |
| op1 = TREE_OPERAND (cond, 1); |
| |
| switch (TREE_CODE (cond)) |
| { |
| case LT_EXPR: |
| case GT_EXPR: |
| if (FLOAT_TYPE_P (TREE_TYPE (op0))) |
| { |
| build_and_record_new_cond (ORDERED_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| build_and_record_new_cond (LTGT_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| } |
| |
| build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR |
| ? LE_EXPR : GE_EXPR), |
| op0, op1, &edge_info->cond_equivalences); |
| build_and_record_new_cond (NE_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| break; |
| |
| case GE_EXPR: |
| case LE_EXPR: |
| if (FLOAT_TYPE_P (TREE_TYPE (op0))) |
| { |
| build_and_record_new_cond (ORDERED_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| } |
| break; |
| |
| case EQ_EXPR: |
| if (FLOAT_TYPE_P (TREE_TYPE (op0))) |
| { |
| build_and_record_new_cond (ORDERED_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| } |
| build_and_record_new_cond (LE_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| build_and_record_new_cond (GE_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| break; |
| |
| case UNORDERED_EXPR: |
| build_and_record_new_cond (NE_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| build_and_record_new_cond (UNLE_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| build_and_record_new_cond (UNGE_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| build_and_record_new_cond (UNEQ_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| build_and_record_new_cond (UNLT_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| build_and_record_new_cond (UNGT_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| break; |
| |
| case UNLT_EXPR: |
| case UNGT_EXPR: |
| build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR |
| ? UNLE_EXPR : UNGE_EXPR), |
| op0, op1, &edge_info->cond_equivalences); |
| build_and_record_new_cond (NE_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| break; |
| |
| case UNEQ_EXPR: |
| build_and_record_new_cond (UNLE_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| build_and_record_new_cond (UNGE_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| break; |
| |
| case LTGT_EXPR: |
| build_and_record_new_cond (NE_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| build_and_record_new_cond (ORDERED_EXPR, op0, op1, |
| &edge_info->cond_equivalences); |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Now store the original true and false conditions into the first |
| two slots. */ |
| initialize_expr_from_cond (cond, &c.cond); |
| c.value = boolean_true_node; |
| edge_info->cond_equivalences.safe_push (c); |
| |
| /* It is possible for INVERTED to be the negation of a comparison, |
| and not a valid RHS or GIMPLE_COND condition. This happens because |
| invert_truthvalue may return such an expression when asked to invert |
| a floating-point comparison. These comparisons are not assumed to |
| obey the trichotomy law. */ |
| initialize_expr_from_cond (inverted, &c.cond); |
| c.value = boolean_false_node; |
| edge_info->cond_equivalences.safe_push (c); |
| } |
| |
| /* A helper function for record_const_or_copy and record_equality. |
| Do the work of recording the value and undo info. */ |
| |
| static void |
| record_const_or_copy_1 (tree x, tree y, tree prev_x) |
| { |
| set_ssa_name_value (x, y); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "0>>> COPY "); |
| print_generic_expr (dump_file, x, 0); |
| fprintf (dump_file, " = "); |
| print_generic_expr (dump_file, y, 0); |
| fprintf (dump_file, "\n"); |
| } |
| |
| const_and_copies_stack.reserve (2); |
| const_and_copies_stack.quick_push (prev_x); |
| const_and_copies_stack.quick_push (x); |
| } |
| |
| /* Record that X is equal to Y in const_and_copies. Record undo |
| information in the block-local vector. */ |
| |
| static void |
| record_const_or_copy (tree x, tree y) |
| { |
| tree prev_x = SSA_NAME_VALUE (x); |
| |
| gcc_assert (TREE_CODE (x) == SSA_NAME); |
| |
| if (TREE_CODE (y) == SSA_NAME) |
| { |
| tree tmp = SSA_NAME_VALUE (y); |
| if (tmp) |
| y = tmp; |
| } |
| |
| record_const_or_copy_1 (x, y, prev_x); |
| } |
| |
| /* Return the loop depth of the basic block of the defining statement of X. |
| This number should not be treated as absolutely correct because the loop |
| information may not be completely up-to-date when dom runs. However, it |
| will be relatively correct, and as more passes are taught to keep loop info |
| up to date, the result will become more and more accurate. */ |
| |
| static int |
| loop_depth_of_name (tree x) |
| { |
| gimple defstmt; |
| basic_block defbb; |
| |
| /* If it's not an SSA_NAME, we have no clue where the definition is. */ |
| if (TREE_CODE (x) != SSA_NAME) |
| return 0; |
| |
| /* Otherwise return the loop depth of the defining statement's bb. |
| Note that there may not actually be a bb for this statement, if the |
| ssa_name is live on entry. */ |
| defstmt = SSA_NAME_DEF_STMT (x); |
| defbb = gimple_bb (defstmt); |
| if (!defbb) |
| return 0; |
| |
| return bb_loop_depth (defbb); |
| } |
| |
| /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR. |
| This constrains the cases in which we may treat this as assignment. */ |
| |
| static void |
| record_equality (tree x, tree y) |
| { |
| tree prev_x = NULL, prev_y = NULL; |
| |
| if (TREE_CODE (x) == SSA_NAME) |
| prev_x = SSA_NAME_VALUE (x); |
| if (TREE_CODE (y) == SSA_NAME) |
| prev_y = SSA_NAME_VALUE (y); |
| |
| /* If one of the previous values is invariant, or invariant in more loops |
| (by depth), then use that. |
| Otherwise it doesn't matter which value we choose, just so |
| long as we canonicalize on one value. */ |
| if (is_gimple_min_invariant (y)) |
| ; |
| else if (is_gimple_min_invariant (x) |
| /* ??? When threading over backedges the following is important |
| for correctness. See PR61757. */ |
| || (loop_depth_of_name (x) <= loop_depth_of_name (y))) |
| prev_x = x, x = y, y = prev_x, prev_x = prev_y; |
| else if (prev_x && is_gimple_min_invariant (prev_x)) |
| x = y, y = prev_x, prev_x = prev_y; |
| else if (prev_y) |
| y = prev_y; |
| |
| /* After the swapping, we must have one SSA_NAME. */ |
| if (TREE_CODE (x) != SSA_NAME) |
| return; |
| |
| /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a |
| variable compared against zero. If we're honoring signed zeros, |
| then we cannot record this value unless we know that the value is |
| nonzero. */ |
| if (HONOR_SIGNED_ZEROS (x) |
| && (TREE_CODE (y) != REAL_CST |
| || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y)))) |
| return; |
| |
| record_const_or_copy_1 (x, y, prev_x); |
| } |
| |
| /* Returns true when STMT is a simple iv increment. It detects the |
| following situation: |
| |
| i_1 = phi (..., i_2) |
| i_2 = i_1 +/- ... */ |
| |
| bool |
| simple_iv_increment_p (gimple stmt) |
| { |
| enum tree_code code; |
| tree lhs, preinc; |
| gimple phi; |
| size_t i; |
| |
| if (gimple_code (stmt) != GIMPLE_ASSIGN) |
| return false; |
| |
| lhs = gimple_assign_lhs (stmt); |
| if (TREE_CODE (lhs) != SSA_NAME) |
| return false; |
| |
| code = gimple_assign_rhs_code (stmt); |
| if (code != PLUS_EXPR |
| && code != MINUS_EXPR |
| && code != POINTER_PLUS_EXPR) |
| return false; |
| |
| preinc = gimple_assign_rhs1 (stmt); |
| if (TREE_CODE (preinc) != SSA_NAME) |
| return false; |
| |
| phi = SSA_NAME_DEF_STMT (preinc); |
| if (gimple_code (phi) != GIMPLE_PHI) |
| return false; |
| |
| for (i = 0; i < gimple_phi_num_args (phi); i++) |
| if (gimple_phi_arg_def (phi, i) == lhs) |
| return true; |
| |
| return false; |
| } |
| |
| /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current |
| known value for that SSA_NAME (or NULL if no value is known). |
| |
| Propagate values from CONST_AND_COPIES into the PHI nodes of the |
| successors of BB. */ |
| |
| static void |
| cprop_into_successor_phis (basic_block bb) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| int indx; |
| gphi_iterator gsi; |
| |
| /* If this is an abnormal edge, then we do not want to copy propagate |
| into the PHI alternative associated with this edge. */ |
| if (e->flags & EDGE_ABNORMAL) |
| continue; |
| |
| gsi = gsi_start_phis (e->dest); |
| if (gsi_end_p (gsi)) |
| continue; |
| |
| /* We may have an equivalence associated with this edge. While |
| we can not propagate it into non-dominated blocks, we can |
| propagate them into PHIs in non-dominated blocks. */ |
| |
| /* Push the unwind marker so we can reset the const and copies |
| table back to its original state after processing this edge. */ |
| const_and_copies_stack.safe_push (NULL_TREE); |
| |
| /* Extract and record any simple NAME = VALUE equivalences. |
| |
| Don't bother with [01] = COND equivalences, they're not useful |
| here. */ |
| struct edge_info *edge_info = (struct edge_info *) e->aux; |
| if (edge_info) |
| { |
| tree lhs = edge_info->lhs; |
| tree rhs = edge_info->rhs; |
| |
| if (lhs && TREE_CODE (lhs) == SSA_NAME) |
| record_const_or_copy (lhs, rhs); |
| } |
| |
| indx = e->dest_idx; |
| for ( ; !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| tree new_val; |
| use_operand_p orig_p; |
| tree orig_val; |
| gphi *phi = gsi.phi (); |
| |
| /* The alternative may be associated with a constant, so verify |
| it is an SSA_NAME before doing anything with it. */ |
| orig_p = gimple_phi_arg_imm_use_ptr (phi, indx); |
| orig_val = get_use_from_ptr (orig_p); |
| if (TREE_CODE (orig_val) != SSA_NAME) |
| continue; |
| |
| /* If we have *ORIG_P in our constant/copy table, then replace |
| ORIG_P with its value in our constant/copy table. */ |
| new_val = SSA_NAME_VALUE (orig_val); |
| if (new_val |
| && new_val != orig_val |
| && (TREE_CODE (new_val) == SSA_NAME |
| || is_gimple_min_invariant (new_val)) |
| && may_propagate_copy (orig_val, new_val)) |
| propagate_value (orig_p, new_val); |
| } |
| |
| restore_vars_to_original_value (); |
| } |
| } |
| |
| /* We have finished optimizing BB, record any information implied by |
| taking a specific outgoing edge from BB. */ |
| |
| static void |
| record_edge_info (basic_block bb) |
| { |
| gimple_stmt_iterator gsi = gsi_last_bb (bb); |
| struct edge_info *edge_info; |
| |
| if (! gsi_end_p (gsi)) |
| { |
| gimple stmt = gsi_stmt (gsi); |
| location_t loc = gimple_location (stmt); |
| |
| if (gimple_code (stmt) == GIMPLE_SWITCH) |
| { |
| gswitch *switch_stmt = as_a <gswitch *> (stmt); |
| tree index = gimple_switch_index (switch_stmt); |
| |
| if (TREE_CODE (index) == SSA_NAME) |
| { |
| int i; |
| int n_labels = gimple_switch_num_labels (switch_stmt); |
| tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun)); |
| edge e; |
| edge_iterator ei; |
| |
| for (i = 0; i < n_labels; i++) |
| { |
| tree label = gimple_switch_label (switch_stmt, i); |
| basic_block target_bb = label_to_block (CASE_LABEL (label)); |
| if (CASE_HIGH (label) |
| || !CASE_LOW (label) |
| || info[target_bb->index]) |
| info[target_bb->index] = error_mark_node; |
| else |
| info[target_bb->index] = label; |
| } |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| basic_block target_bb = e->dest; |
| tree label = info[target_bb->index]; |
| |
| if (label != NULL && label != error_mark_node) |
| { |
| tree x = fold_convert_loc (loc, TREE_TYPE (index), |
| CASE_LOW (label)); |
| edge_info = allocate_edge_info (e); |
| edge_info->lhs = index; |
| edge_info->rhs = x; |
| } |
| } |
| free (info); |
| } |
| } |
| |
| /* A COND_EXPR may create equivalences too. */ |
| if (gimple_code (stmt) == GIMPLE_COND) |
| { |
| edge true_edge; |
| edge false_edge; |
| |
| tree op0 = gimple_cond_lhs (stmt); |
| tree op1 = gimple_cond_rhs (stmt); |
| enum tree_code code = gimple_cond_code (stmt); |
| |
| extract_true_false_edges_from_block (bb, &true_edge, &false_edge); |
| |
| /* Special case comparing booleans against a constant as we |
| know the value of OP0 on both arms of the branch. i.e., we |
| can record an equivalence for OP0 rather than COND. */ |
| if ((code == EQ_EXPR || code == NE_EXPR) |
| && TREE_CODE (op0) == SSA_NAME |
| && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE |
| && is_gimple_min_invariant (op1)) |
| { |
| if (code == EQ_EXPR) |
| { |
| edge_info = allocate_edge_info (true_edge); |
| edge_info->lhs = op0; |
| edge_info->rhs = (integer_zerop (op1) |
| ? boolean_false_node |
| : boolean_true_node); |
| |
| edge_info = allocate_edge_info (false_edge); |
| edge_info->lhs = op0; |
| edge_info->rhs = (integer_zerop (op1) |
| ? boolean_true_node |
| : boolean_false_node); |
| } |
| else |
| { |
| edge_info = allocate_edge_info (true_edge); |
| edge_info->lhs = op0; |
| edge_info->rhs = (integer_zerop (op1) |
| ? boolean_true_node |
| : boolean_false_node); |
| |
| edge_info = allocate_edge_info (false_edge); |
| edge_info->lhs = op0; |
| edge_info->rhs = (integer_zerop (op1) |
| ? boolean_false_node |
| : boolean_true_node); |
| } |
| } |
| else if (is_gimple_min_invariant (op0) |
| && (TREE_CODE (op1) == SSA_NAME |
| || is_gimple_min_invariant (op1))) |
| { |
| tree cond = build2 (code, boolean_type_node, op0, op1); |
| tree inverted = invert_truthvalue_loc (loc, cond); |
| bool can_infer_simple_equiv |
| = !(HONOR_SIGNED_ZEROS (op0) |
| && real_zerop (op0)); |
| struct edge_info *edge_info; |
| |
| edge_info = allocate_edge_info (true_edge); |
| record_conditions (edge_info, cond, inverted); |
| |
| if (can_infer_simple_equiv && code == EQ_EXPR) |
| { |
| edge_info->lhs = op1; |
| edge_info->rhs = op0; |
| } |
| |
| edge_info = allocate_edge_info (false_edge); |
| record_conditions (edge_info, inverted, cond); |
| |
| if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR) |
| { |
| edge_info->lhs = op1; |
| edge_info->rhs = op0; |
| } |
| } |
| |
| else if (TREE_CODE (op0) == SSA_NAME |
| && (TREE_CODE (op1) == SSA_NAME |
| || is_gimple_min_invariant (op1))) |
| { |
| tree cond = build2 (code, boolean_type_node, op0, op1); |
| tree inverted = invert_truthvalue_loc (loc, cond); |
| bool can_infer_simple_equiv |
| = !(HONOR_SIGNED_ZEROS (op1) |
| && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1))); |
| struct edge_info *edge_info; |
| |
| edge_info = allocate_edge_info (true_edge); |
| record_conditions (edge_info, cond, inverted); |
| |
| if (can_infer_simple_equiv && code == EQ_EXPR) |
| { |
| edge_info->lhs = op0; |
| edge_info->rhs = op1; |
| } |
| |
| edge_info = allocate_edge_info (false_edge); |
| record_conditions (edge_info, inverted, cond); |
| |
| if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR) |
| { |
| edge_info->lhs = op0; |
| edge_info->rhs = op1; |
| } |
| } |
| } |
| |
| /* ??? TRUTH_NOT_EXPR can create an equivalence too. */ |
| } |
| } |
| |
| void |
| dom_opt_dom_walker::before_dom_children (basic_block bb) |
| { |
| gimple_stmt_iterator gsi; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index); |
| |
| /* Push a marker on the stacks of local information so that we know how |
| far to unwind when we finalize this block. */ |
| avail_exprs_stack.safe_push |
| (std::pair<expr_hash_elt_t, expr_hash_elt_t> (NULL, NULL)); |
| const_and_copies_stack.safe_push (NULL_TREE); |
| |
| record_equivalences_from_incoming_edge (bb); |
| |
| /* PHI nodes can create equivalences too. */ |
| record_equivalences_from_phis (bb); |
| |
| /* Create equivalences from redundant PHIs. PHIs are only truly |
| redundant when they exist in the same block, so push another |
| marker and unwind right afterwards. */ |
| avail_exprs_stack.safe_push |
| (std::pair<expr_hash_elt_t, expr_hash_elt_t> (NULL, NULL)); |
| for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| eliminate_redundant_computations (&gsi); |
| remove_local_expressions_from_table (); |
| |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| optimize_stmt (bb, gsi); |
| |
| /* Now prepare to process dominated blocks. */ |
| record_edge_info (bb); |
| cprop_into_successor_phis (bb); |
| } |
| |
| /* We have finished processing the dominator children of BB, perform |
| any finalization actions in preparation for leaving this node in |
| the dominator tree. */ |
| |
| void |
| dom_opt_dom_walker::after_dom_children (basic_block bb) |
| { |
| gimple last; |
| |
| /* If we have an outgoing edge to a block with multiple incoming and |
| outgoing edges, then we may be able to thread the edge, i.e., we |
| may be able to statically determine which of the outgoing edges |
| will be traversed when the incoming edge from BB is traversed. */ |
| if (single_succ_p (bb) |
| && (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0 |
| && potentially_threadable_block (single_succ (bb))) |
| { |
| thread_across_edge (single_succ_edge (bb)); |
| } |
| else if ((last = last_stmt (bb)) |
| && gimple_code (last) == GIMPLE_COND |
| && EDGE_COUNT (bb->succs) == 2 |
| && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0 |
| && (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0) |
| { |
| edge true_edge, false_edge; |
| |
| extract_true_false_edges_from_block (bb, &true_edge, &false_edge); |
| |
| /* Only try to thread the edge if it reaches a target block with |
| more than one predecessor and more than one successor. */ |
| if (potentially_threadable_block (true_edge->dest)) |
| thread_across_edge (true_edge); |
| |
| /* Similarly for the ELSE arm. */ |
| if (potentially_threadable_block (false_edge->dest)) |
| thread_across_edge (false_edge); |
| |
| } |
| |
| /* These remove expressions local to BB from the tables. */ |
| remove_local_expressions_from_table (); |
| restore_vars_to_original_value (); |
| } |
| |
| /* Search for redundant computations in STMT. If any are found, then |
| replace them with the variable holding the result of the computation. |
| |
| If safe, record this expression into the available expression hash |
| table. */ |
| |
| static void |
| eliminate_redundant_computations (gimple_stmt_iterator* gsi) |
| { |
| tree expr_type; |
| tree cached_lhs; |
| tree def; |
| bool insert = true; |
| bool assigns_var_p = false; |
| |
| gimple stmt = gsi_stmt (*gsi); |
| |
| if (gimple_code (stmt) == GIMPLE_PHI) |
| def = gimple_phi_result (stmt); |
| else |
| def = gimple_get_lhs (stmt); |
| |
| /* Certain expressions on the RHS can be optimized away, but can not |
| themselves be entered into the hash tables. */ |
| if (! def |
| || TREE_CODE (def) != SSA_NAME |
| || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def) |
| || gimple_vdef (stmt) |
| /* Do not record equivalences for increments of ivs. This would create |
| overlapping live ranges for a very questionable gain. */ |
| || simple_iv_increment_p (stmt)) |
| insert = false; |
| |
| /* Check if the expression has been computed before. */ |
| cached_lhs = lookup_avail_expr (stmt, insert); |
| |
| opt_stats.num_exprs_considered++; |
| |
| /* Get the type of the expression we are trying to optimize. */ |
| if (is_gimple_assign (stmt)) |
| { |
| expr_type = TREE_TYPE (gimple_assign_lhs (stmt)); |
| assigns_var_p = true; |
| } |
| else if (gimple_code (stmt) == GIMPLE_COND) |
| expr_type = boolean_type_node; |
| else if (is_gimple_call (stmt)) |
| { |
| gcc_assert (gimple_call_lhs (stmt)); |
| expr_type = TREE_TYPE (gimple_call_lhs (stmt)); |
| assigns_var_p = true; |
| } |
| else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt)) |
| expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt)); |
| else if (gimple_code (stmt) == GIMPLE_PHI) |
| /* We can't propagate into a phi, so the logic below doesn't apply. |
| Instead record an equivalence between the cached LHS and the |
| PHI result of this statement, provided they are in the same block. |
| This should be sufficient to kill the redundant phi. */ |
| { |
| if (def && cached_lhs) |
| record_const_or_copy (def, cached_lhs); |
| return; |
| } |
| else |
| gcc_unreachable (); |
| |
| if (!cached_lhs) |
| return; |
| |
| /* It is safe to ignore types here since we have already done |
| type checking in the hashing and equality routines. In fact |
| type checking here merely gets in the way of constant |
| propagation. Also, make sure that it is safe to propagate |
| CACHED_LHS into the expression in STMT. */ |
| if ((TREE_CODE (cached_lhs) != SSA_NAME |
| && (assigns_var_p |
| || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))) |
| || may_propagate_copy_into_stmt (stmt, cached_lhs)) |
| { |
| gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME |
| || is_gimple_min_invariant (cached_lhs)); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " Replaced redundant expr '"); |
| print_gimple_expr (dump_file, stmt, 0, dump_flags); |
| fprintf (dump_file, "' with '"); |
| print_generic_expr (dump_file, cached_lhs, dump_flags); |
| fprintf (dump_file, "'\n"); |
| } |
| |
| opt_stats.num_re++; |
| |
| if (assigns_var_p |
| && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))) |
| cached_lhs = fold_convert (expr_type, cached_lhs); |
| |
| propagate_tree_value_into_stmt (gsi, cached_lhs); |
| |
| /* Since it is always necessary to mark the result as modified, |
| perhaps we should move this into propagate_tree_value_into_stmt |
| itself. */ |
| gimple_set_modified (gsi_stmt (*gsi), true); |
| } |
| } |
| |
| /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either |
| the available expressions table or the const_and_copies table. |
| Detect and record those equivalences. */ |
| /* We handle only very simple copy equivalences here. The heavy |
| lifing is done by eliminate_redundant_computations. */ |
| |
| static void |
| record_equivalences_from_stmt (gimple stmt, int may_optimize_p) |
| { |
| tree lhs; |
| enum tree_code lhs_code; |
| |
| gcc_assert (is_gimple_assign (stmt)); |
| |
| lhs = gimple_assign_lhs (stmt); |
| lhs_code = TREE_CODE (lhs); |
| |
| if (lhs_code == SSA_NAME |
| && gimple_assign_single_p (stmt)) |
| { |
| tree rhs = gimple_assign_rhs1 (stmt); |
| |
| /* If the RHS of the assignment is a constant or another variable that |
| may be propagated, register it in the CONST_AND_COPIES table. We |
| do not need to record unwind data for this, since this is a true |
| assignment and not an equivalence inferred from a comparison. All |
| uses of this ssa name are dominated by this assignment, so unwinding |
| just costs time and space. */ |
| if (may_optimize_p |
| && (TREE_CODE (rhs) == SSA_NAME |
| || is_gimple_min_invariant (rhs))) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "==== ASGN "); |
| print_generic_expr (dump_file, lhs, 0); |
| fprintf (dump_file, " = "); |
| print_generic_expr (dump_file, rhs, 0); |
| fprintf (dump_file, "\n"); |
| } |
| |
| set_ssa_name_value (lhs, rhs); |
| } |
| } |
| |
| /* Make sure we can propagate &x + CST. */ |
| if (lhs_code == SSA_NAME |
| && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR |
| && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR |
| && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST) |
| { |
| tree op0 = gimple_assign_rhs1 (stmt); |
| tree op1 = gimple_assign_rhs2 (stmt); |
| tree new_rhs |
| = build_fold_addr_expr (fold_build2 (MEM_REF, |
| TREE_TYPE (TREE_TYPE (op0)), |
| unshare_expr (op0), |
| fold_convert (ptr_type_node, |
| op1))); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "==== ASGN "); |
| print_generic_expr (dump_file, lhs, 0); |
| fprintf (dump_file, " = "); |
| print_generic_expr (dump_file, new_rhs, 0); |
| fprintf (dump_file, "\n"); |
| } |
| |
| set_ssa_name_value (lhs, new_rhs); |
| } |
| |
| /* A memory store, even an aliased store, creates a useful |
| equivalence. By exchanging the LHS and RHS, creating suitable |
| vops and recording the result in the available expression table, |
| we may be able to expose more redundant loads. */ |
| if (!gimple_has_volatile_ops (stmt) |
| && gimple_references_memory_p (stmt) |
| && gimple_assign_single_p (stmt) |
| && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME |
| || is_gimple_min_invariant (gimple_assign_rhs1 (stmt))) |
| && !is_gimple_reg (lhs)) |
| { |
| tree rhs = gimple_assign_rhs1 (stmt); |
| gassign *new_stmt; |
| |
| /* Build a new statement with the RHS and LHS exchanged. */ |
| if (TREE_CODE (rhs) == SSA_NAME) |
| { |
| /* NOTE tuples. The call to gimple_build_assign below replaced |
| a call to build_gimple_modify_stmt, which did not set the |
| SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so |
| may cause an SSA validation failure, as the LHS may be a |
| default-initialized name and should have no definition. I'm |
| a bit dubious of this, as the artificial statement that we |
| generate here may in fact be ill-formed, but it is simply |
| used as an internal device in this pass, and never becomes |
| part of the CFG. */ |
| gimple defstmt = SSA_NAME_DEF_STMT (rhs); |
| new_stmt = gimple_build_assign (rhs, lhs); |
| SSA_NAME_DEF_STMT (rhs) = defstmt; |
| } |
| else |
| new_stmt = gimple_build_assign (rhs, lhs); |
| |
| gimple_set_vuse (new_stmt, gimple_vdef (stmt)); |
| |
| /* Finally enter the statement into the available expression |
| table. */ |
| lookup_avail_expr (new_stmt, true); |
| } |
| } |
| |
| /* Replace *OP_P in STMT with any known equivalent value for *OP_P from |
| CONST_AND_COPIES. */ |
| |
| static void |
| cprop_operand (gimple stmt, use_operand_p op_p) |
| { |
| tree val; |
| tree op = USE_FROM_PTR (op_p); |
| |
| /* If the operand has a known constant value or it is known to be a |
| copy of some other variable, use the value or copy stored in |
| CONST_AND_COPIES. */ |
| val = SSA_NAME_VALUE (op); |
| if (val && val != op) |
| { |
| /* Do not replace hard register operands in asm statements. */ |
| if (gimple_code (stmt) == GIMPLE_ASM |
| && !may_propagate_copy_into_asm (op)) |
| return; |
| |
| /* Certain operands are not allowed to be copy propagated due |
| to their interaction with exception handling and some GCC |
| extensions. */ |
| if (!may_propagate_copy (op, val)) |
| return; |
| |
| /* Do not propagate copies into BIVs. |
| See PR23821 and PR62217 for how this can disturb IV and |
| number of iteration analysis. */ |
| if (TREE_CODE (val) != INTEGER_CST) |
| { |
| gimple def = SSA_NAME_DEF_STMT (op); |
| if (gimple_code (def) == GIMPLE_PHI |
| && gimple_bb (def)->loop_father->header == gimple_bb (def)) |
| return; |
| } |
| |
| /* Dump details. */ |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " Replaced '"); |
| print_generic_expr (dump_file, op, dump_flags); |
| fprintf (dump_file, "' with %s '", |
| (TREE_CODE (val) != SSA_NAME ? "constant" : "variable")); |
| print_generic_expr (dump_file, val, dump_flags); |
| fprintf (dump_file, "'\n"); |
| } |
| |
| if (TREE_CODE (val) != SSA_NAME) |
| opt_stats.num_const_prop++; |
| else |
| opt_stats.num_copy_prop++; |
| |
| propagate_value (op_p, val); |
| |
| /* And note that we modified this statement. This is now |
| safe, even if we changed virtual operands since we will |
| rescan the statement and rewrite its operands again. */ |
| gimple_set_modified (stmt, true); |
| } |
| } |
| |
| /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current |
| known value for that SSA_NAME (or NULL if no value is known). |
| |
| Propagate values from CONST_AND_COPIES into the uses, vuses and |
| vdef_ops of STMT. */ |
| |
| static void |
| cprop_into_stmt (gimple stmt) |
| { |
| use_operand_p op_p; |
| ssa_op_iter iter; |
| |
| FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE) |
| cprop_operand (stmt, op_p); |
| } |
| |
| /* Optimize the statement pointed to by iterator SI. |
| |
| We try to perform some simplistic global redundancy elimination and |
| constant propagation: |
| |
| 1- To detect global redundancy, we keep track of expressions that have |
| been computed in this block and its dominators. If we find that the |
| same expression is computed more than once, we eliminate repeated |
| computations by using the target of the first one. |
| |
| 2- Constant values and copy assignments. This is used to do very |
| simplistic constant and copy propagation. When a constant or copy |
| assignment is found, we map the value on the RHS of the assignment to |
| the variable in the LHS in the CONST_AND_COPIES table. */ |
| |
| static void |
| optimize_stmt (basic_block bb, gimple_stmt_iterator si) |
| { |
| gimple stmt, old_stmt; |
| bool may_optimize_p; |
| bool modified_p = false; |
| bool was_noreturn; |
| |
| old_stmt = stmt = gsi_stmt (si); |
| was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Optimizing statement "); |
| print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); |
| } |
| |
| if (gimple_code (stmt) == GIMPLE_COND) |
| canonicalize_comparison (as_a <gcond *> (stmt)); |
| |
| update_stmt_if_modified (stmt); |
| opt_stats.num_stmts++; |
| |
| /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */ |
| cprop_into_stmt (stmt); |
| |
| /* If the statement has been modified with constant replacements, |
| fold its RHS before checking for redundant computations. */ |
| if (gimple_modified_p (stmt)) |
| { |
| tree rhs = NULL; |
| |
| /* Try to fold the statement making sure that STMT is kept |
| up to date. */ |
| if (fold_stmt (&si)) |
| { |
| stmt = gsi_stmt (si); |
| gimple_set_modified (stmt, true); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " Folded to: "); |
| print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); |
| } |
| } |
| |
| /* We only need to consider cases that can yield a gimple operand. */ |
| if (gimple_assign_single_p (stmt)) |
| rhs = gimple_assign_rhs1 (stmt); |
| else if (gimple_code (stmt) == GIMPLE_GOTO) |
| rhs = gimple_goto_dest (stmt); |
| else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt)) |
| /* This should never be an ADDR_EXPR. */ |
| rhs = gimple_switch_index (swtch_stmt); |
| |
| if (rhs && TREE_CODE (rhs) == ADDR_EXPR) |
| recompute_tree_invariant_for_addr_expr (rhs); |
| |
| /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called, |
| even if fold_stmt updated the stmt already and thus cleared |
| gimple_modified_p flag on it. */ |
| modified_p = true; |
| } |
| |
| /* Check for redundant computations. Do this optimization only |
| for assignments that have no volatile ops and conditionals. */ |
| may_optimize_p = (!gimple_has_side_effects (stmt) |
| && (is_gimple_assign (stmt) |
| || (is_gimple_call (stmt) |
| && gimple_call_lhs (stmt) != NULL_TREE) |
| || gimple_code (stmt) == GIMPLE_COND |
| || gimple_code (stmt) == GIMPLE_SWITCH)); |
| |
| if (may_optimize_p) |
| { |
| if (gimple_code (stmt) == GIMPLE_CALL) |
| { |
| /* Resolve __builtin_constant_p. If it hasn't been |
| folded to integer_one_node by now, it's fairly |
| certain that the value simply isn't constant. */ |
| tree callee = gimple_call_fndecl (stmt); |
| if (callee |
| && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL |
| && DECL_FUNCTION_CODE (callee) == BUILT_IN_CONSTANT_P) |
| { |
| propagate_tree_value_into_stmt (&si, integer_zero_node); |
| stmt = gsi_stmt (si); |
| } |
| } |
| |
| update_stmt_if_modified (stmt); |
| eliminate_redundant_computations (&si); |
| stmt = gsi_stmt (si); |
| |
| /* Perform simple redundant store elimination. */ |
| if (gimple_assign_single_p (stmt) |
| && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME) |
| { |
| tree lhs = gimple_assign_lhs (stmt); |
| tree rhs = gimple_assign_rhs1 (stmt); |
| tree cached_lhs; |
| gassign *new_stmt; |
| if (TREE_CODE (rhs) == SSA_NAME) |
| { |
| tree tem = SSA_NAME_VALUE (rhs); |
| if (tem) |
| rhs = tem; |
| } |
| /* Build a new statement with the RHS and LHS exchanged. */ |
| if (TREE_CODE (rhs) == SSA_NAME) |
| { |
| gimple defstmt = SSA_NAME_DEF_STMT (rhs); |
| new_stmt = gimple_build_assign (rhs, lhs); |
| SSA_NAME_DEF_STMT (rhs) = defstmt; |
| } |
| else |
| new_stmt = gimple_build_assign (rhs, lhs); |
| gimple_set_vuse (new_stmt, gimple_vuse (stmt)); |
| cached_lhs = lookup_avail_expr (new_stmt, false, false); |
| if (cached_lhs |
| && rhs == cached_lhs) |
| { |
| basic_block bb = gimple_bb (stmt); |
| unlink_stmt_vdef (stmt); |
| if (gsi_remove (&si, true)) |
| { |
| bitmap_set_bit (need_eh_cleanup, bb->index); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, " Flagged to clear EH edges.\n"); |
| } |
| release_defs (stmt); |
| return; |
| } |
| } |
| } |
| |
| /* Record any additional equivalences created by this statement. */ |
| if (is_gimple_assign (stmt)) |
| record_equivalences_from_stmt (stmt, may_optimize_p); |
| |
| /* If STMT is a COND_EXPR and it was modified, then we may know |
| where it goes. If that is the case, then mark the CFG as altered. |
| |
| This will cause us to later call remove_unreachable_blocks and |
| cleanup_tree_cfg when it is safe to do so. It is not safe to |
| clean things up here since removal of edges and such can trigger |
| the removal of PHI nodes, which in turn can release SSA_NAMEs to |
| the manager. |
| |
| That's all fine and good, except that once SSA_NAMEs are released |
| to the manager, we must not call create_ssa_name until all references |
| to released SSA_NAMEs have been eliminated. |
| |
| All references to the deleted SSA_NAMEs can not be eliminated until |
| we remove unreachable blocks. |
| |
| We can not remove unreachable blocks until after we have completed |
| any queued jump threading. |
| |
| We can not complete any queued jump threads until we have taken |
| appropriate variables out of SSA form. Taking variables out of |
| SSA form can call create_ssa_name and thus we lose. |
| |
| Ultimately I suspect we're going to need to change the interface |
| into the SSA_NAME manager. */ |
| if (gimple_modified_p (stmt) || modified_p) |
| { |
| tree val = NULL; |
| |
| update_stmt_if_modified (stmt); |
| |
| if (gimple_code (stmt) == GIMPLE_COND) |
| val = fold_binary_loc (gimple_location (stmt), |
| gimple_cond_code (stmt), boolean_type_node, |
| gimple_cond_lhs (stmt), gimple_cond_rhs (stmt)); |
| else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt)) |
| val = gimple_switch_index (swtch_stmt); |
| |
| if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val)) |
| cfg_altered = true; |
| |
| /* If we simplified a statement in such a way as to be shown that it |
| cannot trap, update the eh information and the cfg to match. */ |
| if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) |
| { |
| bitmap_set_bit (need_eh_cleanup, bb->index); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, " Flagged to clear EH edges.\n"); |
| } |
| |
| if (!was_noreturn |
| && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt)) |
| need_noreturn_fixup.safe_push (stmt); |
| } |
| } |
| |
| /* Helper for walk_non_aliased_vuses. Determine if we arrived at |
| the desired memory state. */ |
| |
| static void * |
| vuse_eq (ao_ref *, tree vuse1, unsigned int cnt, void *data) |
| { |
| tree vuse2 = (tree) data; |
| if (vuse1 == vuse2) |
| return data; |
| |
| /* This bounds the stmt walks we perform on reference lookups |
| to O(1) instead of O(N) where N is the number of dominating |
| stores leading to a candidate. We re-use the SCCVN param |
| for this as it is basically the same complexity. */ |
| if (cnt > (unsigned) PARAM_VALUE (PARAM_SCCVN_MAX_ALIAS_QUERIES_PER_ACCESS)) |
| return (void *)-1; |
| |
| return NULL; |
| } |
| |
| /* Search for an existing instance of STMT in the AVAIL_EXPRS table. |
| If found, return its LHS. Otherwise insert STMT in the table and |
| return NULL_TREE. |
| |
| Also, when an expression is first inserted in the table, it is also |
| is also added to AVAIL_EXPRS_STACK, so that it can be removed when |
| we finish processing this block and its children. */ |
| |
| static tree |
| lookup_avail_expr (gimple stmt, bool insert, bool tbaa_p) |
| { |
| expr_hash_elt **slot; |
| tree lhs; |
| tree temp; |
| struct expr_hash_elt element; |
| |
| /* Get LHS of phi, assignment, or call; else NULL_TREE. */ |
| if (gimple_code (stmt) == GIMPLE_PHI) |
| lhs = gimple_phi_result (stmt); |
| else |
| lhs = gimple_get_lhs (stmt); |
| |
| initialize_hash_element (stmt, lhs, &element); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "LKUP "); |
| print_expr_hash_elt (dump_file, &element); |
| } |
| |
| /* Don't bother remembering constant assignments and copy operations. |
| Constants and copy operations are handled by the constant/copy propagator |
| in optimize_stmt. */ |
| if (element.expr.kind == EXPR_SINGLE |
| && (TREE_CODE (element.expr.ops.single.rhs) == SSA_NAME |
| || is_gimple_min_invariant (element.expr.ops.single.rhs))) |
| return NULL_TREE; |
| |
| /* Finally try to find the expression in the main expression hash table. */ |
| slot = avail_exprs->find_slot (&element, (insert ? INSERT : NO_INSERT)); |
| if (slot == NULL) |
| { |
| free_expr_hash_elt_contents (&element); |
| return NULL_TREE; |
| } |
| else if (*slot == NULL) |
| { |
| struct expr_hash_elt *element2 = XNEW (struct expr_hash_elt); |
| *element2 = element; |
| element2->stamp = element2; |
| *slot = element2; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "2>>> "); |
| print_expr_hash_elt (dump_file, element2); |
| } |
| |
| avail_exprs_stack.safe_push |
| (std::pair<expr_hash_elt_t, expr_hash_elt_t> (element2, NULL)); |
| return NULL_TREE; |
| } |
| |
| /* If we found a redundant memory operation do an alias walk to |
| check if we can re-use it. */ |
| if (gimple_vuse (stmt) != (*slot)->vop) |
| { |
| tree vuse1 = (*slot)->vop; |
| tree vuse2 = gimple_vuse (stmt); |
| /* If we have a load of a register and a candidate in the |
| hash with vuse1 then try to reach its stmt by walking |
| up the virtual use-def chain using walk_non_aliased_vuses. |
| But don't do this when removing expressions from the hash. */ |
| ao_ref ref; |
| if (!(vuse1 && vuse2 |
| && gimple_assign_single_p (stmt) |
| && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME |
| && (ao_ref_init (&ref, gimple_assign_rhs1 (stmt)), |
| ref.base_alias_set = ref.ref_alias_set = tbaa_p ? -1 : 0, true) |
| && walk_non_aliased_vuses (&ref, vuse2, |
| vuse_eq, NULL, NULL, vuse1) != NULL)) |
| { |
| if (insert) |
| { |
| struct expr_hash_elt *element2 = XNEW (struct expr_hash_elt); |
| *element2 = element; |
| element2->stamp = element2; |
| |
| /* Insert the expr into the hash by replacing the current |
| entry and recording the value to restore in the |
| avail_exprs_stack. */ |
| avail_exprs_stack.safe_push (std::make_pair (element2, *slot)); |
| *slot = element2; |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "2>>> "); |
| print_expr_hash_elt (dump_file, *slot); |
| } |
| } |
| return NULL_TREE; |
| } |
| } |
| |
| free_expr_hash_elt_contents (&element); |
| |
| /* Extract the LHS of the assignment so that it can be used as the current |
| definition of another variable. */ |
| lhs = (*slot)->lhs; |
| |
| /* See if the LHS appears in the CONST_AND_COPIES table. If it does, then |
| use the value from the const_and_copies table. */ |
| if (TREE_CODE (lhs) == SSA_NAME) |
| { |
| temp = SSA_NAME_VALUE (lhs); |
| if (temp) |
| lhs = temp; |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "FIND: "); |
| print_generic_expr (dump_file, lhs, 0); |
| fprintf (dump_file, "\n"); |
| } |
| |
| return lhs; |
| } |
| |
| /* Hashing and equality functions for AVAIL_EXPRS. We compute a value number |
| for expressions using the code of the expression and the SSA numbers of |
| its operands. */ |
| |
| static hashval_t |
| avail_expr_hash (const void *p) |
| { |
| const struct hashable_expr *expr = &((const struct expr_hash_elt *)p)->expr; |
| inchash::hash hstate; |
| |
| inchash::add_hashable_expr (expr, hstate); |
| |
| return hstate.end (); |
| } |
| |
| /* PHI-ONLY copy and constant propagation. This pass is meant to clean |
| up degenerate PHIs created by or exposed by jump threading. */ |
| |
| /* Given a statement STMT, which is either a PHI node or an assignment, |
| remove it from the IL. */ |
| |
| static void |
| remove_stmt_or_phi (gimple stmt) |
| { |
| gimple_stmt_iterator gsi = gsi_for_stmt (stmt); |
| |
| if (gimple_code (stmt) == GIMPLE_PHI) |
| remove_phi_node (&gsi, true); |
| else |
| { |
| gsi_remove (&gsi, true); |
| release_defs (stmt); |
| } |
| } |
| |
| /* Given a statement STMT, which is either a PHI node or an assignment, |
| return the "rhs" of the node, in the case of a non-degenerate |
| phi, NULL is returned. */ |
| |
| static tree |
| get_rhs_or_phi_arg (gimple stmt) |
| { |
| if (gimple_code (stmt) == GIMPLE_PHI) |
| return degenerate_phi_result (as_a <gphi *> (stmt)); |
| else if (gimple_assign_single_p (stmt)) |
| return gimple_assign_rhs1 (stmt); |
| else |
| gcc_unreachable (); |
| } |
| |
| |
| /* Given a statement STMT, which is either a PHI node or an assignment, |
| return the "lhs" of the node. */ |
| |
| static tree |
| get_lhs_or_phi_result (gimple stmt) |
| { |
| if (gimple_code (stmt) == GIMPLE_PHI) |
| return gimple_phi_result (stmt); |
| else if (is_gimple_assign (stmt)) |
| return gimple_assign_lhs (stmt); |
| else |
| gcc_unreachable (); |
| } |
| |
| /* Propagate RHS into all uses of LHS (when possible). |
| |
| RHS and LHS are derived from STMT, which is passed in solely so |
| that we can remove it if propagation is successful. |
| |
| When propagating into a PHI node or into a statement which turns |
| into a trivial copy or constant initialization, set the |
| appropriate bit in INTERESTING_NAMEs so that we will visit those |
| nodes as well in an effort to pick up secondary optimization |
| opportunities. */ |
| |
| static void |
| propagate_rhs_into_lhs (gimple stmt, tree lhs, tree rhs, bitmap interesting_names) |
| { |
| /* First verify that propagation is valid. */ |
| if (may_propagate_copy (lhs, rhs)) |
| { |
| use_operand_p use_p; |
| imm_use_iterator iter; |
| gimple use_stmt; |
| bool all = true; |
| |
| /* Dump details. */ |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " Replacing '"); |
| print_generic_expr (dump_file, lhs, dump_flags); |
| fprintf (dump_file, "' with %s '", |
| (TREE_CODE (rhs) != SSA_NAME ? "constant" : "variable")); |
| print_generic_expr (dump_file, rhs, dump_flags); |
| fprintf (dump_file, "'\n"); |
| } |
| |
| /* Walk over every use of LHS and try to replace the use with RHS. |
| At this point the only reason why such a propagation would not |
| be successful would be if the use occurs in an ASM_EXPR. */ |
| FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs) |
| { |
| /* Leave debug stmts alone. If we succeed in propagating |
| all non-debug uses, we'll drop the DEF, and propagation |
| into debug stmts will occur then. */ |
| if (gimple_debug_bind_p (use_stmt)) |
| continue; |
| |
| /* It's not always safe to propagate into an ASM_EXPR. */ |
| if (gimple_code (use_stmt) == GIMPLE_ASM |
| && ! may_propagate_copy_into_asm (lhs)) |
| { |
| all = false; |
| continue; |
| } |
| |
| /* It's not ok to propagate into the definition stmt of RHS. |
| <bb 9>: |
| # prephitmp.12_36 = PHI <g_67.1_6(9)> |
| g_67.1_6 = prephitmp.12_36; |
| goto <bb 9>; |
| While this is strictly all dead code we do not want to |
| deal with this here. */ |
| if (TREE_CODE (rhs) == SSA_NAME |
| && SSA_NAME_DEF_STMT (rhs) == use_stmt) |
| { |
| all = false; |
| continue; |
| } |
| |
| /* Dump details. */ |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " Original statement:"); |
| print_gimple_stmt (dump_file, use_stmt, 0, dump_flags); |
| } |
| |
| /* Propagate the RHS into this use of the LHS. */ |
| FOR_EACH_IMM_USE_ON_STMT (use_p, iter) |
| propagate_value (use_p, rhs); |
| |
| /* Special cases to avoid useless calls into the folding |
| routines, operand scanning, etc. |
| |
| Propagation into a PHI may cause the PHI to become |
| a degenerate, so mark the PHI as interesting. No other |
| actions are necessary. */ |
| if (gimple_code (use_stmt) == GIMPLE_PHI) |
| { |
| tree result; |
| |
| /* Dump details. */ |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " Updated statement:"); |
| print_gimple_stmt (dump_file, use_stmt, 0, dump_flags); |
| } |
| |
| result = get_lhs_or_phi_result (use_stmt); |
| bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result)); |
| continue; |
| } |
| |
| /* From this point onward we are propagating into a |
| real statement. Folding may (or may not) be possible, |
| we may expose new operands, expose dead EH edges, |
| etc. */ |
| /* NOTE tuples. In the tuples world, fold_stmt_inplace |
| cannot fold a call that simplifies to a constant, |
| because the GIMPLE_CALL must be replaced by a |
| GIMPLE_ASSIGN, and there is no way to effect such a |
| transformation in-place. We might want to consider |
| using the more general fold_stmt here. */ |
| { |
| gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt); |
| fold_stmt_inplace (&gsi); |
| } |
| |
| /* Sometimes propagation can expose new operands to the |
| renamer. */ |
| update_stmt (use_stmt); |
| |
| /* Dump details. */ |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " Updated statement:"); |
| print_gimple_stmt (dump_file, use_stmt, 0, dump_flags); |
| } |
| |
| /* If we replaced a variable index with a constant, then |
| we would need to update the invariant flag for ADDR_EXPRs. */ |
| if (gimple_assign_single_p (use_stmt) |
| && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ADDR_EXPR) |
| recompute_tree_invariant_for_addr_expr |
| (gimple_assign_rhs1 (use_stmt)); |
| |
| /* If we cleaned up EH information from the statement, |
| mark its containing block as needing EH cleanups. */ |
| if (maybe_clean_or_replace_eh_stmt (use_stmt, use_stmt)) |
| { |
| bitmap_set_bit (need_eh_cleanup, gimple_bb (use_stmt)->index); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, " Flagged to clear EH edges.\n"); |
| } |
| |
| /* Propagation may expose new trivial copy/constant propagation |
| opportunities. */ |
| if (gimple_assign_single_p (use_stmt) |
| && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME |
| && (TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME |
| || is_gimple_min_invariant (gimple_assign_rhs1 (use_stmt)))) |
| { |
| tree result = get_lhs_or_phi_result (use_stmt); |
| bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result)); |
| } |
| |
| /* Propagation into these nodes may make certain edges in |
| the CFG unexecutable. We want to identify them as PHI nodes |
| at the destination of those unexecutable edges may become |
| degenerates. */ |
| else if (gimple_code (use_stmt) == GIMPLE_COND |
| || gimple_code (use_stmt) == GIMPLE_SWITCH |
| || gimple_code (use_stmt) == GIMPLE_GOTO) |
| { |
| tree val; |
| |
| if (gimple_code (use_stmt) == GIMPLE_COND) |
| val = fold_binary_loc (gimple_location (use_stmt), |
| gimple_cond_code (use_stmt), |
| boolean_type_node, |
| gimple_cond_lhs (use_stmt), |
| gimple_cond_rhs (use_stmt)); |
| else if (gimple_code (use_stmt) == GIMPLE_SWITCH) |
| val = gimple_switch_index (as_a <gswitch *> (use_stmt)); |
| else |
| val = gimple_goto_dest (use_stmt); |
| |
| if (val && is_gimple_min_invariant (val)) |
| { |
| basic_block bb = gimple_bb (use_stmt); |
| edge te = find_taken_edge (bb, val); |
| if (!te) |
| continue; |
| |
| edge_iterator ei; |
| edge e; |
| gimple_stmt_iterator gsi; |
| gphi_iterator psi; |
| |
| /* Remove all outgoing edges except TE. */ |
| for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei));) |
| { |
| if (e != te) |
| { |
| /* Mark all the PHI nodes at the destination of |
| the unexecutable edge as interesting. */ |
| for (psi = gsi_start_phis (e->dest); |
| !gsi_end_p (psi); |
| gsi_next (&psi)) |
| { |
| gphi *phi = psi.phi (); |
| |
| tree result = gimple_phi_result (phi); |
| int version = SSA_NAME_VERSION (result); |
| |
| bitmap_set_bit (interesting_names, version); |
| } |
| |
| te->probability += e->probability; |
| |
| te->count += e->count; |
| remove_edge (e); |
| cfg_altered = true; |
| } |
| else |
| ei_next (&ei); |
| } |
| |
| gsi = gsi_last_bb (gimple_bb (use_stmt)); |
| gsi_remove (&gsi, true); |
| |
| /* And fixup the flags on the single remaining edge. */ |
| te->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); |
| te->flags &= ~EDGE_ABNORMAL; |
| te->flags |= EDGE_FALLTHRU; |
| if (te->probability > REG_BR_PROB_BASE) |
| te->probability = REG_BR_PROB_BASE; |
| } |
| } |
| } |
| |
| /* Ensure there is nothing else to do. */ |
| gcc_assert (!all || has_zero_uses (lhs)); |
| |
| /* If we were able to propagate away all uses of LHS, then |
| we can remove STMT. */ |
| if (all) |
| remove_stmt_or_phi (stmt); |
| } |
| } |
| |
| /* STMT is either a PHI node (potentially a degenerate PHI node) or |
| a statement that is a trivial copy or constant initialization. |
| |
| Attempt to eliminate T by propagating its RHS into all uses of |
| its LHS. This may in turn set new bits in INTERESTING_NAMES |
| for nodes we want to revisit later. |
| |
| All exit paths should clear INTERESTING_NAMES for the result |
| of STMT. */ |
| |
| static void |
| eliminate_const_or_copy (gimple stmt, bitmap interesting_names) |
| { |
| tree lhs = get_lhs_or_phi_result (stmt); |
| tree rhs; |
| int version = SSA_NAME_VERSION (lhs); |
| |
| /* If the LHS of this statement or PHI has no uses, then we can |
| just eliminate it. This can occur if, for example, the PHI |
| was created by block duplication due to threading and its only |
| use was in the conditional at the end of the block which was |
| deleted. */ |
| if (has_zero_uses (lhs)) |
| { |
| bitmap_clear_bit (interesting_names, version); |
| remove_stmt_or_phi (stmt); |
| return; |
| } |
| |
| /* Get the RHS of the assignment or PHI node if the PHI is a |
| degenerate. */ |
| rhs = get_rhs_or_phi_arg (stmt); |
| if (!rhs) |
| { |
| bitmap_clear_bit (interesting_names, version); |
| return; |
| } |
| |
| if (!virtual_operand_p (lhs)) |
| propagate_rhs_into_lhs (stmt, lhs, rhs, interesting_names); |
| else |
| { |
| gimple use_stmt; |
| imm_use_iterator iter; |
| use_operand_p use_p; |
| /* For virtual operands we have to propagate into all uses as |
| otherwise we will create overlapping life-ranges. */ |
| FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs) |
| FOR_EACH_IMM_USE_ON_STMT (use_p, iter) |
| SET_USE (use_p, rhs); |
| if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) |
| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1; |
| remove_stmt_or_phi (stmt); |
| } |
| |
| /* Note that STMT may well have been deleted by now, so do |
| not access it, instead use the saved version # to clear |
| T's entry in the worklist. */ |
| bitmap_clear_bit (interesting_names, version); |
| } |
| |
| /* The first phase in degenerate PHI elimination. |
| |
| Eliminate the degenerate PHIs in BB, then recurse on the |
| dominator children of BB. */ |
| |
| static void |
| eliminate_degenerate_phis_1 (basic_block bb, bitmap interesting_names) |
| { |
| gphi_iterator gsi; |
| basic_block son; |
| |
| for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gphi *phi = gsi.phi (); |
| |
| eliminate_const_or_copy (phi, interesting_names); |
| } |
| |
| /* Recurse into the dominator children of BB. */ |
| for (son = first_dom_son (CDI_DOMINATORS, bb); |
| son; |
| son = next_dom_son (CDI_DOMINATORS, son)) |
| eliminate_degenerate_phis_1 (son, interesting_names); |
| } |
| |
| |
| /* A very simple pass to eliminate degenerate PHI nodes from the |
| IL. This is meant to be fast enough to be able to be run several |
| times in the optimization pipeline. |
| |
| Certain optimizations, particularly those which duplicate blocks |
| or remove edges from the CFG can create or expose PHIs which are |
| trivial copies or constant initializations. |
| |
| While we could pick up these optimizations in DOM or with the |
| combination of copy-prop and CCP, those solutions are far too |
| heavy-weight for our needs. |
| |
| This implementation has two phases so that we can efficiently |
| eliminate the first order degenerate PHIs and second order |
| degenerate PHIs. |
| |
| The first phase performs a dominator walk to identify and eliminate |
| the vast majority of the degenerate PHIs. When a degenerate PHI |
| is identified and eliminated any affected statements or PHIs |
| are put on a worklist. |
| |
| The second phase eliminates degenerate PHIs and trivial copies |
| or constant initializations using the worklist. This is how we |
| pick up the secondary optimization opportunities with minimal |
| cost. */ |
| |
| namespace { |
| |
| const pass_data pass_data_phi_only_cprop = |
| { |
| GIMPLE_PASS, /* type */ |
| "phicprop", /* name */ |
| OPTGROUP_NONE, /* optinfo_flags */ |
| TV_TREE_PHI_CPROP, /* tv_id */ |
| ( PROP_cfg | PROP_ssa ), /* properties_required */ |
| 0, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */ |
| }; |
| |
| class pass_phi_only_cprop : public gimple_opt_pass |
| { |
| public: |
| pass_phi_only_cprop (gcc::context *ctxt) |
| : gimple_opt_pass (pass_data_phi_only_cprop, ctxt) |
| {} |
| |
| /* opt_pass methods: */ |
| opt_pass * clone () { return new pass_phi_only_cprop (m_ctxt); } |
| virtual bool gate (function *) { return flag_tree_dom != 0; } |
| virtual unsigned int execute (function *); |
| |
| }; // class pass_phi_only_cprop |
| |
| unsigned int |
| pass_phi_only_cprop::execute (function *fun) |
| { |
| bitmap interesting_names; |
| bitmap interesting_names1; |
| |
| /* Bitmap of blocks which need EH information updated. We can not |
| update it on-the-fly as doing so invalidates the dominator tree. */ |
| need_eh_cleanup = BITMAP_ALLOC (NULL); |
| |
| /* INTERESTING_NAMES is effectively our worklist, indexed by |
| SSA_NAME_VERSION. |
| |
| A set bit indicates that the statement or PHI node which |
| defines the SSA_NAME should be (re)examined to determine if |
| it has become a degenerate PHI or trivial const/copy propagation |
| opportunity. |
| |
| Experiments have show we generally get better compilation |
| time behavior with bitmaps rather than sbitmaps. */ |
| interesting_names = BITMAP_ALLOC (NULL); |
| interesting_names1 = BITMAP_ALLOC (NULL); |
| |
| calculate_dominance_info (CDI_DOMINATORS); |
| cfg_altered = false; |
| |
| /* First phase. Eliminate degenerate PHIs via a dominator |
| walk of the CFG. |
| |
| Experiments have indicated that we generally get better |
| compile-time behavior by visiting blocks in the first |
| phase in dominator order. Presumably this is because walking |
| in dominator order leaves fewer PHIs for later examination |
| by the worklist phase. */ |
| eliminate_degenerate_phis_1 (ENTRY_BLOCK_PTR_FOR_FN (fun), |
| interesting_names); |
| |
| /* Second phase. Eliminate second order degenerate PHIs as well |
| as trivial copies or constant initializations identified by |
| the first phase or this phase. Basically we keep iterating |
| until our set of INTERESTING_NAMEs is empty. */ |
| while (!bitmap_empty_p (interesting_names)) |
| { |
| unsigned int i; |
| bitmap_iterator bi; |
| |
| /* EXECUTE_IF_SET_IN_BITMAP does not like its bitmap |
| changed during the loop. Copy it to another bitmap and |
| use that. */ |
| bitmap_copy (interesting_names1, interesting_names); |
| |
| EXECUTE_IF_SET_IN_BITMAP (interesting_names1, 0, i, bi) |
| { |
| tree name = ssa_name (i); |
| |
| /* Ignore SSA_NAMEs that have been released because |
| their defining statement was deleted (unreachable). */ |
| if (name) |
| eliminate_const_or_copy (SSA_NAME_DEF_STMT (ssa_name (i)), |
| interesting_names); |
| } |
| } |
| |
| if (cfg_altered) |
| { |
| free_dominance_info (CDI_DOMINATORS); |
| /* If we changed the CFG schedule loops for fixup by cfgcleanup. */ |
| loops_state_set (LOOPS_NEED_FIXUP); |
| } |
| |
| /* Propagation of const and copies may make some EH edges dead. Purge |
| such edges from the CFG as needed. */ |
| if (!bitmap_empty_p (need_eh_cleanup)) |
| { |
| |