blob: 1f429410eb0e20e369941e14655db9a296b62aeb [file] [log] [blame]
<section xmlns="http://docbook.org/ns/docbook" version="5.0"
xml:id="std.util.memory.allocator" xreflabel="Allocator">
<?dbhtml filename="allocator.html"?>
<info><title>Allocators</title>
<keywordset>
<keyword>ISO C++</keyword>
<keyword>allocator</keyword>
</keywordset>
</info>
<para>
Memory management for Standard Library entities is encapsulated in a
class template called <classname>allocator</classname>. The
<classname>allocator</classname> abstraction is used throughout the
library in <classname>string</classname>, container classes,
algorithms, and parts of iostreams. This class, and base classes of
it, are the superset of available free store (<quote>heap</quote>)
management classes.
</para>
<section xml:id="allocator.req"><info><title>Requirements</title></info>
<para>
The C++ standard only gives a few directives in this area:
</para>
<itemizedlist>
<listitem>
<para>
When you add elements to a container, and the container must
allocate more memory to hold them, the container makes the
request via its <type>Allocator</type> template
parameter, which is usually aliased to
<type>allocator_type</type>. This includes adding chars
to the string class, which acts as a regular STL container in
this respect.
</para>
</listitem>
<listitem>
<para>
The default <type>Allocator</type> argument of every
container-of-T is <classname>allocator&lt;T&gt;</classname>.
</para>
</listitem>
<listitem>
<para>
The interface of the <classname>allocator&lt;T&gt;</classname> class is
extremely simple. It has about 20 public declarations (nested
typedefs, member functions, etc), but the two which concern us most
are:
</para>
<programlisting>
T* allocate (size_type n, const void* hint = 0);
void deallocate (T* p, size_type n);
</programlisting>
<para>
The <varname>n</varname> arguments in both those
functions is a <emphasis>count</emphasis> of the number of
<type>T</type>'s to allocate space for, <emphasis>not their
total size</emphasis>.
(This is a simplification; the real signatures use nested typedefs.)
</para>
</listitem>
<listitem>
<para>
The storage is obtained by calling <function>::operator
new</function>, but it is unspecified when or how
often this function is called. The use of the
<varname>hint</varname> is unspecified, but intended as an
aid to locality if an implementation so
desires. <constant>[20.4.1.1]/6</constant>
</para>
</listitem>
</itemizedlist>
<para>
Complete details can be found in the C++ standard, look in
<constant>[20.4 Memory]</constant>.
</para>
</section>
<section xml:id="allocator.design_issues"><info><title>Design Issues</title></info>
<para>
The easiest way of fulfilling the requirements is to call
<function>operator new</function> each time a container needs
memory, and to call <function>operator delete</function> each time
the container releases memory. This method may be <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/libstdc++/2001-05/msg00105.html">slower</link>
than caching the allocations and re-using previously-allocated
memory, but has the advantage of working correctly across a wide
variety of hardware and operating systems, including large
clusters. The <classname>__gnu_cxx::new_allocator</classname>
implements the simple operator new and operator delete semantics,
while <classname>__gnu_cxx::malloc_allocator</classname>
implements much the same thing, only with the C language functions
<function>std::malloc</function> and <function>std::free</function>.
</para>
<para>
Another approach is to use intelligence within the allocator
class to cache allocations. This extra machinery can take a variety
of forms: a bitmap index, an index into an exponentially increasing
power-of-two-sized buckets, or simpler fixed-size pooling cache.
The cache is shared among all the containers in the program: when
your program's <classname>std::vector&lt;int&gt;</classname> gets
cut in half and frees a bunch of its storage, that memory can be
reused by the private
<classname>std::list&lt;WonkyWidget&gt;</classname> brought in from
a KDE library that you linked against. And operators
<function>new</function> and <function>delete</function> are not
always called to pass the memory on, either, which is a speed
bonus. Examples of allocators that use these techniques are
<classname>__gnu_cxx::bitmap_allocator</classname>,
<classname>__gnu_cxx::pool_allocator</classname>, and
<classname>__gnu_cxx::__mt_alloc</classname>.
</para>
<para>
Depending on the implementation techniques used, the underlying
operating system, and compilation environment, scaling caching
allocators can be tricky. In particular, order-of-destruction and
order-of-creation for memory pools may be difficult to pin down
with certainty, which may create problems when used with plugins
or loading and unloading shared objects in memory. As such, using
caching allocators on systems that do not support
<function>abi::__cxa_atexit</function> is not recommended.
</para>
</section>
<section xml:id="allocator.impl"><info><title>Implementation</title></info>
<section xml:id="allocator.interface"><info><title>Interface Design</title></info>
<para>
The only allocator interface that
is supported is the standard C++ interface. As such, all STL
containers have been adjusted, and all external allocators have
been modified to support this change.
</para>
<para>
The class <classname>allocator</classname> just has typedef,
constructor, and rebind members. It inherits from one of the
high-speed extension allocators, covered below. Thus, all
allocation and deallocation depends on the base class.
</para>
<para>
The base class that <classname>allocator</classname> is derived from
may not be user-configurable.
</para>
</section>
<section xml:id="allocator.default"><info><title>Selecting Default Allocation Policy</title></info>
<para>
It's difficult to pick an allocation strategy that will provide
maximum utility, without excessively penalizing some behavior. In
fact, it's difficult just deciding which typical actions to measure
for speed.
</para>
<para>
Three synthetic benchmarks have been created that provide data
that is used to compare different C++ allocators. These tests are:
</para>
<orderedlist>
<listitem>
<para>
Insertion.
</para>
<para>
Over multiple iterations, various STL container
objects have elements inserted to some maximum amount. A variety
of allocators are tested.
Test source for <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/insert/sequence.cc?view=markup">sequence</link>
and <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/insert/associative.cc?view=markup">associative</link>
containers.
</para>
</listitem>
<listitem>
<para>
Insertion and erasure in a multi-threaded environment.
</para>
<para>
This test shows the ability of the allocator to reclaim memory
on a per-thread basis, as well as measuring thread contention
for memory resources.
Test source
<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/insert_erase/associative.cc?view=markup">here</link>.
</para>
</listitem>
<listitem>
<para>
A threaded producer/consumer model.
</para>
<para>
Test source for
<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc++-v3/testsuite/performance/23_containers/producer_consumer/sequence.cc?view=markup">sequence</link>
and
<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc++-v3/testsuite/performance/23_containers/producer_consumer/associative.cc?view=markup">associative</link>
containers.
</para>
</listitem>
</orderedlist>
<para>
The current default choice for
<classname>allocator</classname> is
<classname>__gnu_cxx::new_allocator</classname>.
</para>
</section>
<section xml:id="allocator.caching"><info><title>Disabling Memory Caching</title></info>
<para>
In use, <classname>allocator</classname> may allocate and
deallocate using implementation-specific strategies and
heuristics. Because of this, a given call to an allocator object's
<function>allocate</function> member function may not actually
call the global <code>operator new</code> and a given call to
to the <function>deallocate</function> member function may not
call <code>operator delete</code>.
</para>
<para>
This can be confusing.
</para>
<para>
In particular, this can make debugging memory errors more
difficult, especially when using third-party tools like valgrind or
debug versions of <function>new</function>.
</para>
<para>
There are various ways to solve this problem. One would be to use
a custom allocator that just called operators
<function>new</function> and <function>delete</function>
directly, for every allocation. (See the default allocator,
<filename>include/ext/new_allocator.h</filename>, for instance.)
However, that option may involve changing source code to use
a non-default allocator. Another option is to force the
default allocator to remove caching and pools, and to directly
allocate with every call of <function>allocate</function> and
directly deallocate with every call of
<function>deallocate</function>, regardless of efficiency. As it
turns out, this last option is also available.
</para>
<para>
To globally disable memory caching within the library for some of
the optional non-default allocators, merely set
<constant>GLIBCXX_FORCE_NEW</constant> (with any value) in the
system's environment before running the program. If your program
crashes with <constant>GLIBCXX_FORCE_NEW</constant> in the
environment, it likely means that you linked against objects
built against the older library (objects which might still using the
cached allocations...).
</para>
</section>
</section>
<section xml:id="allocator.using"><info><title>Using a Specific Allocator</title></info>
<para>
You can specify different memory management schemes on a
per-container basis, by overriding the default
<type>Allocator</type> template parameter. For example, an easy
(but non-portable) method of specifying that only <function>malloc</function> or <function>free</function>
should be used instead of the default node allocator is:
</para>
<programlisting>
std::list &lt;int, __gnu_cxx::malloc_allocator&lt;int&gt; &gt; malloc_list;</programlisting>
<para>
Likewise, a debugging form of whichever allocator is currently in use:
</para>
<programlisting>
std::deque &lt;int, __gnu_cxx::debug_allocator&lt;std::allocator&lt;int&gt; &gt; &gt; debug_deque;
</programlisting>
</section>
<section xml:id="allocator.custom"><info><title>Custom Allocators</title></info>
<para>
Writing a portable C++ allocator would dictate that the interface
would look much like the one specified for
<classname>allocator</classname>. Additional member functions, but
not subtractions, would be permissible.
</para>
<para>
Probably the best place to start would be to copy one of the
extension allocators: say a simple one like
<classname>new_allocator</classname>.
</para>
</section>
<section xml:id="allocator.ext"><info><title>Extension Allocators</title></info>
<para>
Several other allocators are provided as part of this
implementation. The location of the extension allocators and their
names have changed, but in all cases, functionality is
equivalent. Starting with gcc-3.4, all extension allocators are
standard style. Before this point, SGI style was the norm. Because of
this, the number of template arguments also changed.
<xref linkend="table.extension_allocators"/> tracks the changes.
</para>
<para>
More details on each of these extension allocators follows.
</para>
<orderedlist>
<listitem>
<para>
<classname>new_allocator</classname>
</para>
<para>
Simply wraps <function>::operator new</function>
and <function>::operator delete</function>.
</para>
</listitem>
<listitem>
<para>
<classname>malloc_allocator</classname>
</para>
<para>
Simply wraps <function>malloc</function> and
<function>free</function>. There is also a hook for an
out-of-memory handler (for
<function>new</function>/<function>delete</function> this is
taken care of elsewhere).
</para>
</listitem>
<listitem>
<para>
<classname>debug_allocator</classname>
</para>
<para>
A wrapper around an arbitrary allocator A. It passes on
slightly increased size requests to A, and uses the extra
memory to store size information. When a pointer is passed
to <function>deallocate()</function>, the stored size is
checked, and <function>assert()</function> is used to
guarantee they match.
</para>
</listitem>
<listitem>
<para>
<classname>throw_allocator</classname>
</para>
<para>
Includes memory tracking and marking abilities as well as hooks for
throwing exceptions at configurable intervals (including random,
all, none).
</para>
</listitem>
<listitem>
<para>
<classname>__pool_alloc</classname>
</para>
<para>
A high-performance, single pool allocator. The reusable
memory is shared among identical instantiations of this type.
It calls through <function>::operator new</function> to
obtain new memory when its lists run out. If a client
container requests a block larger than a certain threshold
size, then the pool is bypassed, and the allocate/deallocate
request is passed to <function>::operator new</function>
directly.
</para>
<para>
Older versions of this class take a boolean template
parameter, called <varname>thr</varname>, and an integer template
parameter, called <varname>inst</varname>.
</para>
<para>
The <varname>inst</varname> number is used to track additional memory
pools. The point of the number is to allow multiple
instantiations of the classes without changing the semantics at
all. All three of
</para>
<programlisting>
typedef __pool_alloc&lt;true,0&gt; normal;
typedef __pool_alloc&lt;true,1&gt; private;
typedef __pool_alloc&lt;true,42&gt; also_private;
</programlisting>
<para>
behave exactly the same way. However, the memory pool for each type
(and remember that different instantiations result in different types)
remains separate.
</para>
<para>
The library uses <emphasis>0</emphasis> in all its instantiations. If you
wish to keep separate free lists for a particular purpose, use a
different number.
</para>
<para>The <varname>thr</varname> boolean determines whether the
pool should be manipulated atomically or not. When
<varname>thr</varname> = <constant>true</constant>, the allocator
is thread-safe, while <varname>thr</varname> =
<constant>false</constant>, is slightly faster but unsafe for
multiple threads.
</para>
<para>
For thread-enabled configurations, the pool is locked with a
single big lock. In some situations, this implementation detail
may result in severe performance degradation.
</para>
<para>
(Note that the GCC thread abstraction layer allows us to provide
safe zero-overhead stubs for the threading routines, if threads
were disabled at configuration time.)
</para>
</listitem>
<listitem>
<para>
<classname>__mt_alloc</classname>
</para>
<para>
A high-performance fixed-size allocator with
exponentially-increasing allocations. It has its own
<link linkend="manual.ext.allocator.mt">chapter</link>
in the documentation.
</para>
</listitem>
<listitem>
<para>
<classname>bitmap_allocator</classname>
</para>
<para>
A high-performance allocator that uses a bit-map to keep track
of the used and unused memory locations. It has its own
<link linkend="manual.ext.allocator.bitmap">chapter</link>
in the documentation.
</para>
</listitem>
</orderedlist>
</section>
<bibliography xml:id="allocator.biblio"><info><title>Bibliography</title></info>
<biblioentry>
<citetitle>
ISO/IEC 14882:1998 Programming languages - C++
</citetitle>
<abbrev>
isoc++_1998
</abbrev>
<pagenums>20.4 Memory</pagenums>
</biblioentry>
<biblioentry>
<title>
<link xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="https://web.archive.org/web/20190622154249/http://www.drdobbs.com/the-standard-librarian-what-are-allocato/184403759">
The Standard Librarian: What Are Allocators Good For?
</link>
</title>
<author><personname><firstname>Matt</firstname><surname>Austern</surname></personname></author>
<publisher>
<publishername>
C/C++ Users Journal
</publishername>
</publisher>
<pubdate>2000-12</pubdate>
</biblioentry>
<biblioentry>
<title>
<link xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="http://hoard.org">
The Hoard Memory Allocator
</link>
</title>
<author><personname><firstname>Emery</firstname><surname>Berger</surname></personname></author>
</biblioentry>
<biblioentry>
<title>
<link xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="https://people.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf">
Reconsidering Custom Memory Allocation
</link>
</title>
<author><personname><firstname>Emery</firstname><surname>Berger</surname></personname></author>
<author><personname><firstname>Ben</firstname><surname>Zorn</surname></personname></author>
<author><personname><firstname>Kathryn</firstname><surname>McKinley</surname></personname></author>
<copyright>
<year>2002</year>
<holder>OOPSLA</holder>
</copyright>
</biblioentry>
<biblioentry>
<title>
<link xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="http://www.angelikalanger.com/Articles/C++Report/Allocators/Allocators.html">
Allocator Types
</link>
</title>
<author><personname><firstname>Klaus</firstname><surname>Kreft</surname></personname></author>
<author><personname><firstname>Angelika</firstname><surname>Langer</surname></personname></author>
<publisher>
<publishername>
C/C++ Users Journal
</publishername>
</publisher>
</biblioentry>
<biblioentry>
<citetitle>The C++ Programming Language</citetitle>
<author><personname><firstname>Bjarne</firstname><surname>Stroustrup</surname></personname></author>
<copyright>
<year>2000</year>
<holder/>
</copyright>
<pagenums>19.4 Allocators</pagenums>
<publisher>
<publishername>
Addison Wesley
</publishername>
</publisher>
</biblioentry>
<biblioentry>
<citetitle>Yalloc: A Recycling C++ Allocator</citetitle>
<author><personname><firstname>Felix</firstname><surname>Yen</surname></personname></author>
</biblioentry>
</bibliography>
</section>