blob: c16a6acb9b35dae0eb9a8b13bc087217129b7359 [file] [log] [blame]
/* Generate code from machine description to compute values of attributes.
Copyright (C) 1991, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* This program handles insn attributes and the DEFINE_DELAY and
DEFINE_FUNCTION_UNIT definitions.
It produces a series of functions named `get_attr_...', one for each insn
attribute. Each of these is given the rtx for an insn and returns a member
of the enum for the attribute.
These subroutines have the form of a `switch' on the INSN_CODE (via
`recog_memoized'). Each case either returns a constant attribute value
or a value that depends on tests on other attributes, the form of
operands, or some random C expression (encoded with a SYMBOL_REF
expression).
If the attribute `alternative', or a random C expression is present,
`constrain_operands' is called. If either of these cases of a reference to
an operand is found, `insn_extract' is called.
The special attribute `length' is also recognized. For this operand,
expressions involving the address of an operand or the current insn,
(address (pc)), are valid. In this case, an initial pass is made to
set all lengths that do not depend on address. Those that do are set to
the maximum length. Then each insn that depends on an address is checked
and possibly has its length changed. The process repeats until no further
changed are made. The resulting lengths are saved for use by
`get_attr_length'.
A special form of DEFINE_ATTR, where the expression for default value is a
CONST expression, indicates an attribute that is constant for a given run
of the compiler. The subroutine generated for these attributes has no
parameters as it does not depend on any particular insn. Constant
attributes are typically used to specify which variety of processor is
used.
Internal attributes are defined to handle DEFINE_DELAY and
DEFINE_FUNCTION_UNIT. Special routines are output for these cases.
This program works by keeping a list of possible values for each attribute.
These include the basic attribute choices, default values for attribute, and
all derived quantities.
As the description file is read, the definition for each insn is saved in a
`struct insn_def'. When the file reading is complete, a `struct insn_ent'
is created for each insn and chained to the corresponding attribute value,
either that specified, or the default.
An optimization phase is then run. This simplifies expressions for each
insn. EQ_ATTR tests are resolved, whenever possible, to a test that
indicates when the attribute has the specified value for the insn. This
avoids recursive calls during compilation.
The strategy used when processing DEFINE_DELAY and DEFINE_FUNCTION_UNIT
definitions is to create arbitrarily complex expressions and have the
optimization simplify them.
Once optimization is complete, any required routines and definitions
will be written.
An optimization that is not yet implemented is to hoist the constant
expressions entirely out of the routines and definitions that are written.
A way to do this is to iterate over all possible combinations of values
for constant attributes and generate a set of functions for that given
combination. An initialization function would be written that evaluates
the attributes and installs the corresponding set of routines and
definitions (each would be accessed through a pointer).
We use the flags in an RTX as follows:
`unchanging' (RTX_UNCHANGING_P): This rtx is fully simplified
independent of the insn code.
`in_struct' (MEM_IN_STRUCT_P): This rtx is fully simplified
for the insn code currently being processed (see optimize_attrs).
`integrated' (RTX_INTEGRATED_P): This rtx is permanent and unique
(see attr_rtx).
`volatil' (MEM_VOLATILE_P): During simplify_by_exploding the value of an
EQ_ATTR rtx is true if !volatil and false if volatil. */
#include "hconfig.h"
/* varargs must always be included after *config.h. */
#ifdef __STDC__
#include <stdarg.h>
#else
#include <varargs.h>
#endif
#include <stdio.h>
#include "rtl.h"
#include "insn-config.h" /* For REGISTER_CONSTRAINTS */
#ifdef TIME_WITH_SYS_TIME
# include <sys/time.h>
# include <time.h>
#else
# if HAVE_SYS_TIME_H
# include <sys/time.h>
# else
# include <time.h>
#endif
#endif
#ifdef HAVE_SYS_RESOURCE_H
# include <sys/resource.h>
#endif
/* We must include obstack.h after <sys/time.h>, to avoid lossage with
/usr/include/sys/stdtypes.h on Sun OS 4.x. */
#include "obstack.h"
static struct obstack obstack, obstack1, obstack2;
struct obstack *rtl_obstack = &obstack;
struct obstack *hash_obstack = &obstack1;
struct obstack *temp_obstack = &obstack2;
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free
/* Define this so we can link with print-rtl.o to get debug_rtx function. */
char **insn_name_ptr = 0;
extern void free ();
extern rtx read_rtx ();
static void fatal ();
void fancy_abort ();
/* enough space to reserve for printing out ints */
#define MAX_DIGITS (HOST_BITS_PER_INT * 3 / 10 + 3)
/* Define structures used to record attributes and values. */
/* As each DEFINE_INSN, DEFINE_PEEPHOLE, or DEFINE_ASM_ATTRIBUTES is
encountered, we store all the relevant information into a
`struct insn_def'. This is done to allow attribute definitions to occur
anywhere in the file. */
struct insn_def
{
int insn_code; /* Instruction number. */
int insn_index; /* Expression numer in file, for errors. */
struct insn_def *next; /* Next insn in chain. */
rtx def; /* The DEFINE_... */
int num_alternatives; /* Number of alternatives. */
int vec_idx; /* Index of attribute vector in `def'. */
};
/* Once everything has been read in, we store in each attribute value a list
of insn codes that have that value. Here is the structure used for the
list. */
struct insn_ent
{
int insn_code; /* Instruction number. */
int insn_index; /* Index of definition in file */
struct insn_ent *next; /* Next in chain. */
};
/* Each value of an attribute (either constant or computed) is assigned a
structure which is used as the listhead of the insns that have that
value. */
struct attr_value
{
rtx value; /* Value of attribute. */
struct attr_value *next; /* Next attribute value in chain. */
struct insn_ent *first_insn; /* First insn with this value. */
int num_insns; /* Number of insns with this value. */
int has_asm_insn; /* True if this value used for `asm' insns */
};
/* Structure for each attribute. */
struct attr_desc
{
char *name; /* Name of attribute. */
struct attr_desc *next; /* Next attribute. */
int is_numeric; /* Values of this attribute are numeric. */
int negative_ok; /* Allow negative numeric values. */
int unsigned_p; /* Make the output function unsigned int. */
int is_const; /* Attribute value constant for each run. */
int is_special; /* Don't call `write_attr_set'. */
struct attr_value *first_value; /* First value of this attribute. */
struct attr_value *default_val; /* Default value for this attribute. */
};
#define NULL_ATTR (struct attr_desc *) NULL
/* A range of values. */
struct range
{
int min;
int max;
};
/* Structure for each DEFINE_DELAY. */
struct delay_desc
{
rtx def; /* DEFINE_DELAY expression. */
struct delay_desc *next; /* Next DEFINE_DELAY. */
int num; /* Number of DEFINE_DELAY, starting at 1. */
};
/* Record information about each DEFINE_FUNCTION_UNIT. */
struct function_unit_op
{
rtx condexp; /* Expression TRUE for applicable insn. */
struct function_unit_op *next; /* Next operation for this function unit. */
int num; /* Ordinal for this operation type in unit. */
int ready; /* Cost until data is ready. */
int issue_delay; /* Cost until unit can accept another insn. */
rtx conflict_exp; /* Expression TRUE for insns incurring issue delay. */
rtx issue_exp; /* Expression computing issue delay. */
};
/* Record information about each function unit mentioned in a
DEFINE_FUNCTION_UNIT. */
struct function_unit
{
char *name; /* Function unit name. */
struct function_unit *next; /* Next function unit. */
int num; /* Ordinal of this unit type. */
int multiplicity; /* Number of units of this type. */
int simultaneity; /* Maximum number of simultaneous insns
on this function unit or 0 if unlimited. */
rtx condexp; /* Expression TRUE for insn needing unit. */
int num_opclasses; /* Number of different operation types. */
struct function_unit_op *ops; /* Pointer to first operation type. */
int needs_conflict_function; /* Nonzero if a conflict function required. */
int needs_blockage_function; /* Nonzero if a blockage function required. */
int needs_range_function; /* Nonzero if blockage range function needed.*/
rtx default_cost; /* Conflict cost, if constant. */
struct range issue_delay; /* Range of issue delay values. */
int max_blockage; /* Maximum time an insn blocks the unit. */
};
/* Listheads of above structures. */
/* This one is indexed by the first character of the attribute name. */
#define MAX_ATTRS_INDEX 256
static struct attr_desc *attrs[MAX_ATTRS_INDEX];
static struct insn_def *defs;
static struct delay_desc *delays;
static struct function_unit *units;
/* An expression where all the unknown terms are EQ_ATTR tests can be
rearranged into a COND provided we can enumerate all possible
combinations of the unknown values. The set of combinations become the
tests of the COND; the value of the expression given that combination is
computed and becomes the corresponding value. To do this, we must be
able to enumerate all values for each attribute used in the expression
(currently, we give up if we find a numeric attribute).
If the set of EQ_ATTR tests used in an expression tests the value of N
different attributes, the list of all possible combinations can be made
by walking the N-dimensional attribute space defined by those
attributes. We record each of these as a struct dimension.
The algorithm relies on sharing EQ_ATTR nodes: if two nodes in an
expression are the same, the will also have the same address. We find
all the EQ_ATTR nodes by marking them MEM_VOLATILE_P. This bit later
represents the value of an EQ_ATTR node, so once all nodes are marked,
they are also given an initial value of FALSE.
We then separate the set of EQ_ATTR nodes into dimensions for each
attribute and put them on the VALUES list. Terms are added as needed by
`add_values_to_cover' so that all possible values of the attribute are
tested.
Each dimension also has a current value. This is the node that is
currently considered to be TRUE. If this is one of the nodes added by
`add_values_to_cover', all the EQ_ATTR tests in the original expression
will be FALSE. Otherwise, only the CURRENT_VALUE will be true.
NUM_VALUES is simply the length of the VALUES list and is there for
convenience.
Once the dimensions are created, the algorithm enumerates all possible
values and computes the current value of the given expression. */
struct dimension
{
struct attr_desc *attr; /* Attribute for this dimension. */
rtx values; /* List of attribute values used. */
rtx current_value; /* Position in the list for the TRUE value. */
int num_values; /* Length of the values list. */
};
/* Other variables. */
static int insn_code_number;
static int insn_index_number;
static int got_define_asm_attributes;
static int must_extract;
static int must_constrain;
static int address_used;
static int length_used;
static int num_delays;
static int have_annul_true, have_annul_false;
static int num_units;
static int num_insn_ents;
/* Used as operand to `operate_exp': */
enum operator {PLUS_OP, MINUS_OP, POS_MINUS_OP, EQ_OP, OR_OP, MAX_OP, MIN_OP, RANGE_OP};
/* Stores, for each insn code, the number of constraint alternatives. */
static int *insn_n_alternatives;
/* Stores, for each insn code, a bitmap that has bits on for each possible
alternative. */
static int *insn_alternatives;
/* If nonzero, assume that the `alternative' attr has this value.
This is the hashed, unique string for the numeral
whose value is chosen alternative. */
static char *current_alternative_string;
/* Used to simplify expressions. */
static rtx true_rtx, false_rtx;
/* Used to reduce calls to `strcmp' */
static char *alternative_name;
/* Simplify an expression. Only call the routine if there is something to
simplify. */
#define SIMPLIFY_TEST_EXP(EXP,INSN_CODE,INSN_INDEX) \
(RTX_UNCHANGING_P (EXP) || MEM_IN_STRUCT_P (EXP) ? (EXP) \
: simplify_test_exp (EXP, INSN_CODE, INSN_INDEX))
/* Simplify (eq_attr ("alternative") ...)
when we are working with a particular alternative. */
#define SIMPLIFY_ALTERNATIVE(EXP) \
if (current_alternative_string \
&& GET_CODE ((EXP)) == EQ_ATTR \
&& XSTR ((EXP), 0) == alternative_name) \
(EXP) = (XSTR ((EXP), 1) == current_alternative_string \
? true_rtx : false_rtx);
/* These are referenced by rtlanal.c and hence need to be defined somewhere.
They won't actually be used. */
rtx frame_pointer_rtx, hard_frame_pointer_rtx, stack_pointer_rtx;
rtx arg_pointer_rtx;
static rtx attr_rtx PVPROTO((enum rtx_code, ...));
#ifdef HAVE_VPRINTF
static char *attr_printf PVPROTO((int, char *, ...));
#else
static char *attr_printf ();
#endif
static char *attr_string PROTO((char *, int));
static rtx check_attr_test PROTO((rtx, int));
static rtx check_attr_value PROTO((rtx, struct attr_desc *));
static rtx convert_set_attr_alternative PROTO((rtx, int, int, int));
static rtx convert_set_attr PROTO((rtx, int, int, int));
static void check_defs PROTO((void));
static rtx convert_const_symbol_ref PROTO((rtx, struct attr_desc *));
static rtx make_canonical PROTO((struct attr_desc *, rtx));
static struct attr_value *get_attr_value PROTO((rtx, struct attr_desc *, int));
static rtx copy_rtx_unchanging PROTO((rtx));
static rtx copy_boolean PROTO((rtx));
static void expand_delays PROTO((void));
static rtx operate_exp PROTO((enum operator, rtx, rtx));
static void expand_units PROTO((void));
static rtx simplify_knowing PROTO((rtx, rtx));
static rtx encode_units_mask PROTO((rtx));
static void fill_attr PROTO((struct attr_desc *));
/* dpx2 compiler chokes if we specify the arg types of the args. */
static rtx substitute_address PROTO((rtx, rtx (*) (), rtx (*) ()));
static void make_length_attrs PROTO((void));
static rtx identity_fn PROTO((rtx));
static rtx zero_fn PROTO((rtx));
static rtx one_fn PROTO((rtx));
static rtx max_fn PROTO((rtx));
static rtx simplify_cond PROTO((rtx, int, int));
#if 0
static rtx simplify_by_alternatives PROTO((rtx, int, int));
#endif
static rtx simplify_by_exploding PROTO((rtx));
static int find_and_mark_used_attributes PROTO((rtx, rtx *, int *));
static void unmark_used_attributes PROTO((rtx, struct dimension *, int));
static int add_values_to_cover PROTO((struct dimension *));
static int increment_current_value PROTO((struct dimension *, int));
static rtx test_for_current_value PROTO((struct dimension *, int));
static rtx simplify_with_current_value PROTO((rtx, struct dimension *, int));
static rtx simplify_with_current_value_aux PROTO((rtx));
static void clear_struct_flag PROTO((rtx));
static int count_sub_rtxs PROTO((rtx, int));
static void remove_insn_ent PROTO((struct attr_value *, struct insn_ent *));
static void insert_insn_ent PROTO((struct attr_value *, struct insn_ent *));
static rtx insert_right_side PROTO((enum rtx_code, rtx, rtx, int, int));
static rtx make_alternative_compare PROTO((int));
static int compute_alternative_mask PROTO((rtx, enum rtx_code));
static rtx evaluate_eq_attr PROTO((rtx, rtx, int, int));
static rtx simplify_and_tree PROTO((rtx, rtx *, int, int));
static rtx simplify_or_tree PROTO((rtx, rtx *, int, int));
static rtx simplify_test_exp PROTO((rtx, int, int));
static void optimize_attrs PROTO((void));
static void gen_attr PROTO((rtx));
static int count_alternatives PROTO((rtx));
static int compares_alternatives_p PROTO((rtx));
static int contained_in_p PROTO((rtx, rtx));
static void gen_insn PROTO((rtx));
static void gen_delay PROTO((rtx));
static void gen_unit PROTO((rtx));
static void write_test_expr PROTO((rtx, int));
static int max_attr_value PROTO((rtx));
static void walk_attr_value PROTO((rtx));
static void write_attr_get PROTO((struct attr_desc *));
static rtx eliminate_known_true PROTO((rtx, rtx, int, int));
static void write_attr_set PROTO((struct attr_desc *, int, rtx, char *,
char *, rtx, int, int));
static void write_attr_case PROTO((struct attr_desc *, struct attr_value *,
int, char *, char *, int, rtx));
static void write_attr_valueq PROTO((struct attr_desc *, char *));
static void write_attr_value PROTO((struct attr_desc *, rtx));
static void write_upcase PROTO((char *));
static void write_indent PROTO((int));
static void write_eligible_delay PROTO((char *));
static void write_function_unit_info PROTO((void));
static void write_complex_function PROTO((struct function_unit *, char *,
char *));
static int n_comma_elts PROTO((char *));
static char *next_comma_elt PROTO((char **));
static struct attr_desc *find_attr PROTO((char *, int));
static void make_internal_attr PROTO((char *, rtx, int));
static struct attr_value *find_most_used PROTO((struct attr_desc *));
static rtx find_single_value PROTO((struct attr_desc *));
static rtx make_numeric_value PROTO((int));
static void extend_range PROTO((struct range *, int, int));
char *xrealloc PROTO((char *, unsigned));
char *xmalloc PROTO((unsigned));
#define oballoc(size) obstack_alloc (hash_obstack, size)
/* Hash table for sharing RTL and strings. */
/* Each hash table slot is a bucket containing a chain of these structures.
Strings are given negative hash codes; RTL expressions are given positive
hash codes. */
struct attr_hash
{
struct attr_hash *next; /* Next structure in the bucket. */
int hashcode; /* Hash code of this rtx or string. */
union
{
char *str; /* The string (negative hash codes) */
rtx rtl; /* or the RTL recorded here. */
} u;
};
/* Now here is the hash table. When recording an RTL, it is added to
the slot whose index is the hash code mod the table size. Note
that the hash table is used for several kinds of RTL (see attr_rtx)
and for strings. While all these live in the same table, they are
completely independent, and the hash code is computed differently
for each. */
#define RTL_HASH_SIZE 4093
struct attr_hash *attr_hash_table[RTL_HASH_SIZE];
/* Here is how primitive or already-shared RTL's hash
codes are made. */
#define RTL_HASH(RTL) ((HOST_WIDE_INT) (RTL) & 0777777)
rtx pc_rtx;
/* Add an entry to the hash table for RTL with hash code HASHCODE. */
static void
attr_hash_add_rtx (hashcode, rtl)
int hashcode;
rtx rtl;
{
register struct attr_hash *h;
h = (struct attr_hash *) obstack_alloc (hash_obstack,
sizeof (struct attr_hash));
h->hashcode = hashcode;
h->u.rtl = rtl;
h->next = attr_hash_table[hashcode % RTL_HASH_SIZE];
attr_hash_table[hashcode % RTL_HASH_SIZE] = h;
}
/* Add an entry to the hash table for STRING with hash code HASHCODE. */
static void
attr_hash_add_string (hashcode, str)
int hashcode;
char *str;
{
register struct attr_hash *h;
h = (struct attr_hash *) obstack_alloc (hash_obstack,
sizeof (struct attr_hash));
h->hashcode = -hashcode;
h->u.str = str;
h->next = attr_hash_table[hashcode % RTL_HASH_SIZE];
attr_hash_table[hashcode % RTL_HASH_SIZE] = h;
}
/* Generate an RTL expression, but avoid duplicates.
Set the RTX_INTEGRATED_P flag for these permanent objects.
In some cases we cannot uniquify; then we return an ordinary
impermanent rtx with RTX_INTEGRATED_P clear.
Args are like gen_rtx, but without the mode:
rtx attr_rtx (code, [element1, ..., elementn]) */
/*VARARGS1*/
static rtx
attr_rtx VPROTO((enum rtx_code code, ...))
{
#ifndef __STDC__
enum rtx_code code;
#endif
va_list p;
register int i; /* Array indices... */
register char *fmt; /* Current rtx's format... */
register rtx rt_val; /* RTX to return to caller... */
int hashcode;
register struct attr_hash *h;
struct obstack *old_obstack = rtl_obstack;
VA_START (p, code);
#ifndef __STDC__
code = va_arg (p, enum rtx_code);
#endif
/* For each of several cases, search the hash table for an existing entry.
Use that entry if one is found; otherwise create a new RTL and add it
to the table. */
if (GET_RTX_CLASS (code) == '1')
{
rtx arg0 = va_arg (p, rtx);
/* A permanent object cannot point to impermanent ones. */
if (! RTX_INTEGRATED_P (arg0))
{
rt_val = rtx_alloc (code);
XEXP (rt_val, 0) = arg0;
va_end (p);
return rt_val;
}
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0));
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
if (h->hashcode == hashcode
&& GET_CODE (h->u.rtl) == code
&& XEXP (h->u.rtl, 0) == arg0)
goto found;
if (h == 0)
{
rtl_obstack = hash_obstack;
rt_val = rtx_alloc (code);
XEXP (rt_val, 0) = arg0;
}
}
else if (GET_RTX_CLASS (code) == 'c'
|| GET_RTX_CLASS (code) == '2'
|| GET_RTX_CLASS (code) == '<')
{
rtx arg0 = va_arg (p, rtx);
rtx arg1 = va_arg (p, rtx);
/* A permanent object cannot point to impermanent ones. */
if (! RTX_INTEGRATED_P (arg0) || ! RTX_INTEGRATED_P (arg1))
{
rt_val = rtx_alloc (code);
XEXP (rt_val, 0) = arg0;
XEXP (rt_val, 1) = arg1;
va_end (p);
return rt_val;
}
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0) + RTL_HASH (arg1));
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
if (h->hashcode == hashcode
&& GET_CODE (h->u.rtl) == code
&& XEXP (h->u.rtl, 0) == arg0
&& XEXP (h->u.rtl, 1) == arg1)
goto found;
if (h == 0)
{
rtl_obstack = hash_obstack;
rt_val = rtx_alloc (code);
XEXP (rt_val, 0) = arg0;
XEXP (rt_val, 1) = arg1;
}
}
else if (GET_RTX_LENGTH (code) == 1
&& GET_RTX_FORMAT (code)[0] == 's')
{
char * arg0 = va_arg (p, char *);
if (code == SYMBOL_REF)
arg0 = attr_string (arg0, strlen (arg0));
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0));
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
if (h->hashcode == hashcode
&& GET_CODE (h->u.rtl) == code
&& XSTR (h->u.rtl, 0) == arg0)
goto found;
if (h == 0)
{
rtl_obstack = hash_obstack;
rt_val = rtx_alloc (code);
XSTR (rt_val, 0) = arg0;
}
}
else if (GET_RTX_LENGTH (code) == 2
&& GET_RTX_FORMAT (code)[0] == 's'
&& GET_RTX_FORMAT (code)[1] == 's')
{
char *arg0 = va_arg (p, char *);
char *arg1 = va_arg (p, char *);
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0) + RTL_HASH (arg1));
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
if (h->hashcode == hashcode
&& GET_CODE (h->u.rtl) == code
&& XSTR (h->u.rtl, 0) == arg0
&& XSTR (h->u.rtl, 1) == arg1)
goto found;
if (h == 0)
{
rtl_obstack = hash_obstack;
rt_val = rtx_alloc (code);
XSTR (rt_val, 0) = arg0;
XSTR (rt_val, 1) = arg1;
}
}
else if (code == CONST_INT)
{
HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
if (arg0 == 0)
return false_rtx;
if (arg0 == 1)
return true_rtx;
goto nohash;
}
else
{
nohash:
rt_val = rtx_alloc (code); /* Allocate the storage space. */
fmt = GET_RTX_FORMAT (code); /* Find the right format... */
for (i = 0; i < GET_RTX_LENGTH (code); i++)
{
switch (*fmt++)
{
case '0': /* Unused field. */
break;
case 'i': /* An integer? */
XINT (rt_val, i) = va_arg (p, int);
break;
case 'w': /* A wide integer? */
XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
break;
case 's': /* A string? */
XSTR (rt_val, i) = va_arg (p, char *);
break;
case 'e': /* An expression? */
case 'u': /* An insn? Same except when printing. */
XEXP (rt_val, i) = va_arg (p, rtx);
break;
case 'E': /* An RTX vector? */
XVEC (rt_val, i) = va_arg (p, rtvec);
break;
default:
abort();
}
}
va_end (p);
return rt_val;
}
rtl_obstack = old_obstack;
va_end (p);
attr_hash_add_rtx (hashcode, rt_val);
RTX_INTEGRATED_P (rt_val) = 1;
return rt_val;
found:
va_end (p);
return h->u.rtl;
}
/* Create a new string printed with the printf line arguments into a space
of at most LEN bytes:
rtx attr_printf (len, format, [arg1, ..., argn]) */
#ifdef HAVE_VPRINTF
/*VARARGS2*/
static char *
attr_printf VPROTO((register int len, char *fmt, ...))
{
#ifndef __STDC__
register int len;
char *fmt;
#endif
va_list p;
register char *str;
VA_START (p, fmt);
#ifndef __STDC__
len = va_arg (p, int);
fmt = va_arg (p, char *);
#endif
/* Print the string into a temporary location. */
str = (char *) alloca (len);
vsprintf (str, fmt, p);
va_end (p);
return attr_string (str, strlen (str));
}
#else /* not HAVE_VPRINTF */
static char *
attr_printf (len, fmt, arg1, arg2, arg3)
int len;
char *fmt;
char *arg1, *arg2, *arg3; /* also int */
{
register char *str;
/* Print the string into a temporary location. */
str = (char *) alloca (len);
sprintf (str, fmt, arg1, arg2, arg3);
return attr_string (str, strlen (str));
}
#endif /* not HAVE_VPRINTF */
rtx
attr_eq (name, value)
char *name, *value;
{
return attr_rtx (EQ_ATTR, attr_string (name, strlen (name)),
attr_string (value, strlen (value)));
}
char *
attr_numeral (n)
int n;
{
return XSTR (make_numeric_value (n), 0);
}
/* Return a permanent (possibly shared) copy of a string STR (not assumed
to be null terminated) with LEN bytes. */
static char *
attr_string (str, len)
char *str;
int len;
{
register struct attr_hash *h;
int hashcode;
int i;
register char *new_str;
/* Compute the hash code. */
hashcode = (len + 1) * 613 + (unsigned)str[0];
for (i = 1; i <= len; i += 2)
hashcode = ((hashcode * 613) + (unsigned)str[i]);
if (hashcode < 0)
hashcode = -hashcode;
/* Search the table for the string. */
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
if (h->hashcode == -hashcode && h->u.str[0] == str[0]
&& !strncmp (h->u.str, str, len))
return h->u.str; /* <-- return if found. */
/* Not found; create a permanent copy and add it to the hash table. */
new_str = (char *) obstack_alloc (hash_obstack, len + 1);
bcopy (str, new_str, len);
new_str[len] = '\0';
attr_hash_add_string (hashcode, new_str);
return new_str; /* Return the new string. */
}
/* Check two rtx's for equality of contents,
taking advantage of the fact that if both are hashed
then they can't be equal unless they are the same object. */
int
attr_equal_p (x, y)
rtx x, y;
{
return (x == y || (! (RTX_INTEGRATED_P (x) && RTX_INTEGRATED_P (y))
&& rtx_equal_p (x, y)));
}
/* Copy an attribute value expression,
descending to all depths, but not copying any
permanent hashed subexpressions. */
rtx
attr_copy_rtx (orig)
register rtx orig;
{
register rtx copy;
register int i, j;
register RTX_CODE code;
register char *format_ptr;
/* No need to copy a permanent object. */
if (RTX_INTEGRATED_P (orig))
return orig;
code = GET_CODE (orig);
switch (code)
{
case REG:
case QUEUED:
case CONST_INT:
case CONST_DOUBLE:
case SYMBOL_REF:
case CODE_LABEL:
case PC:
case CC0:
return orig;
default:
break;
}
copy = rtx_alloc (code);
PUT_MODE (copy, GET_MODE (orig));
copy->in_struct = orig->in_struct;
copy->volatil = orig->volatil;
copy->unchanging = orig->unchanging;
copy->integrated = orig->integrated;
format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
{
switch (*format_ptr++)
{
case 'e':
XEXP (copy, i) = XEXP (orig, i);
if (XEXP (orig, i) != NULL)
XEXP (copy, i) = attr_copy_rtx (XEXP (orig, i));
break;
case 'E':
case 'V':
XVEC (copy, i) = XVEC (orig, i);
if (XVEC (orig, i) != NULL)
{
XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
for (j = 0; j < XVECLEN (copy, i); j++)
XVECEXP (copy, i, j) = attr_copy_rtx (XVECEXP (orig, i, j));
}
break;
case 'n':
case 'i':
XINT (copy, i) = XINT (orig, i);
break;
case 'w':
XWINT (copy, i) = XWINT (orig, i);
break;
case 's':
case 'S':
XSTR (copy, i) = XSTR (orig, i);
break;
default:
abort ();
}
}
return copy;
}
/* Given a test expression for an attribute, ensure it is validly formed.
IS_CONST indicates whether the expression is constant for each compiler
run (a constant expression may not test any particular insn).
Convert (eq_attr "att" "a1,a2") to (ior (eq_attr ... ) (eq_attrq ..))
and (eq_attr "att" "!a1") to (not (eq_attr "att" "a1")). Do the latter
test first so that (eq_attr "att" "!a1,a2,a3") works as expected.
Update the string address in EQ_ATTR expression to be the same used
in the attribute (or `alternative_name') to speed up subsequent
`find_attr' calls and eliminate most `strcmp' calls.
Return the new expression, if any. */
static rtx
check_attr_test (exp, is_const)
rtx exp;
int is_const;
{
struct attr_desc *attr;
struct attr_value *av;
char *name_ptr, *p;
rtx orexp, newexp;
switch (GET_CODE (exp))
{
case EQ_ATTR:
/* Handle negation test. */
if (XSTR (exp, 1)[0] == '!')
return check_attr_test (attr_rtx (NOT,
attr_eq (XSTR (exp, 0),
&XSTR (exp, 1)[1])),
is_const);
else if (n_comma_elts (XSTR (exp, 1)) == 1)
{
attr = find_attr (XSTR (exp, 0), 0);
if (attr == NULL)
{
if (! strcmp (XSTR (exp, 0), "alternative"))
{
XSTR (exp, 0) = alternative_name;
/* This can't be simplified any further. */
RTX_UNCHANGING_P (exp) = 1;
return exp;
}
else
fatal ("Unknown attribute `%s' in EQ_ATTR", XEXP (exp, 0));
}
if (is_const && ! attr->is_const)
fatal ("Constant expression uses insn attribute `%s' in EQ_ATTR",
XEXP (exp, 0));
/* Copy this just to make it permanent,
so expressions using it can be permanent too. */
exp = attr_eq (XSTR (exp, 0), XSTR (exp, 1));
/* It shouldn't be possible to simplify the value given to a
constant attribute, so don't expand this until it's time to
write the test expression. */
if (attr->is_const)
RTX_UNCHANGING_P (exp) = 1;
if (attr->is_numeric)
{
for (p = XSTR (exp, 1); *p; p++)
if (*p < '0' || *p > '9')
fatal ("Attribute `%s' takes only numeric values",
XEXP (exp, 0));
}
else
{
for (av = attr->first_value; av; av = av->next)
if (GET_CODE (av->value) == CONST_STRING
&& ! strcmp (XSTR (exp, 1), XSTR (av->value, 0)))
break;
if (av == NULL)
fatal ("Unknown value `%s' for `%s' attribute",
XEXP (exp, 1), XEXP (exp, 0));
}
}
else
{
/* Make an IOR tree of the possible values. */
orexp = false_rtx;
name_ptr = XSTR (exp, 1);
while ((p = next_comma_elt (&name_ptr)) != NULL)
{
newexp = attr_eq (XSTR (exp, 0), p);
orexp = insert_right_side (IOR, orexp, newexp, -2, -2);
}
return check_attr_test (orexp, is_const);
}
break;
case ATTR_FLAG:
break;
case CONST_INT:
/* Either TRUE or FALSE. */
if (XWINT (exp, 0))
return true_rtx;
else
return false_rtx;
case IOR:
case AND:
XEXP (exp, 0) = check_attr_test (XEXP (exp, 0), is_const);
XEXP (exp, 1) = check_attr_test (XEXP (exp, 1), is_const);
break;
case NOT:
XEXP (exp, 0) = check_attr_test (XEXP (exp, 0), is_const);
break;
case MATCH_OPERAND:
if (is_const)
fatal ("RTL operator \"%s\" not valid in constant attribute test",
GET_RTX_NAME (MATCH_OPERAND));
/* These cases can't be simplified. */
RTX_UNCHANGING_P (exp) = 1;
break;
case LE: case LT: case GT: case GE:
case LEU: case LTU: case GTU: case GEU:
case NE: case EQ:
if (GET_CODE (XEXP (exp, 0)) == SYMBOL_REF
&& GET_CODE (XEXP (exp, 1)) == SYMBOL_REF)
exp = attr_rtx (GET_CODE (exp),
attr_rtx (SYMBOL_REF, XSTR (XEXP (exp, 0), 0)),
attr_rtx (SYMBOL_REF, XSTR (XEXP (exp, 1), 0)));
/* These cases can't be simplified. */
RTX_UNCHANGING_P (exp) = 1;
break;
case SYMBOL_REF:
if (is_const)
{
/* These cases are valid for constant attributes, but can't be
simplified. */
exp = attr_rtx (SYMBOL_REF, XSTR (exp, 0));
RTX_UNCHANGING_P (exp) = 1;
break;
}
default:
fatal ("RTL operator \"%s\" not valid in attribute test",
GET_RTX_NAME (GET_CODE (exp)));
}
return exp;
}
/* Given an expression, ensure that it is validly formed and that all named
attribute values are valid for the given attribute. Issue a fatal error
if not. If no attribute is specified, assume a numeric attribute.
Return a perhaps modified replacement expression for the value. */
static rtx
check_attr_value (exp, attr)
rtx exp;
struct attr_desc *attr;
{
struct attr_value *av;
char *p;
int i;
switch (GET_CODE (exp))
{
case CONST_INT:
if (attr && ! attr->is_numeric)
fatal ("CONST_INT not valid for non-numeric `%s' attribute",
attr->name);
if (INTVAL (exp) < 0)
fatal ("Negative numeric value specified for `%s' attribute",
attr->name);
break;
case CONST_STRING:
if (! strcmp (XSTR (exp, 0), "*"))
break;
if (attr == 0 || attr->is_numeric)
{
p = XSTR (exp, 0);
if (attr && attr->negative_ok && *p == '-')
p++;
for (; *p; p++)
if (*p > '9' || *p < '0')
fatal ("Non-numeric value for numeric `%s' attribute",
attr ? attr->name : "internal");
break;
}
for (av = attr->first_value; av; av = av->next)
if (GET_CODE (av->value) == CONST_STRING
&& ! strcmp (XSTR (av->value, 0), XSTR (exp, 0)))
break;
if (av == NULL)
fatal ("Unknown value `%s' for `%s' attribute",
XSTR (exp, 0), attr ? attr->name : "internal");
break;
case IF_THEN_ELSE:
XEXP (exp, 0) = check_attr_test (XEXP (exp, 0),
attr ? attr->is_const : 0);
XEXP (exp, 1) = check_attr_value (XEXP (exp, 1), attr);
XEXP (exp, 2) = check_attr_value (XEXP (exp, 2), attr);
break;
case COND:
if (XVECLEN (exp, 0) % 2 != 0)
fatal ("First operand of COND must have even length");
for (i = 0; i < XVECLEN (exp, 0); i += 2)
{
XVECEXP (exp, 0, i) = check_attr_test (XVECEXP (exp, 0, i),
attr ? attr->is_const : 0);
XVECEXP (exp, 0, i + 1)
= check_attr_value (XVECEXP (exp, 0, i + 1), attr);
}
XEXP (exp, 1) = check_attr_value (XEXP (exp, 1), attr);
break;
case SYMBOL_REF:
if (attr && attr->is_const)
/* A constant SYMBOL_REF is valid as a constant attribute test and
is expanded later by make_canonical into a COND. */
return attr_rtx (SYMBOL_REF, XSTR (exp, 0));
/* Otherwise, fall through... */
default:
fatal ("Invalid operation `%s' for attribute value",
GET_RTX_NAME (GET_CODE (exp)));
}
return exp;
}
/* Given an SET_ATTR_ALTERNATIVE expression, convert to the canonical SET.
It becomes a COND with each test being (eq_attr "alternative "n") */
static rtx
convert_set_attr_alternative (exp, num_alt, insn_code, insn_index)
rtx exp;
int num_alt;
int insn_code, insn_index;
{
rtx condexp;
int i;
if (XVECLEN (exp, 1) != num_alt)
fatal ("Bad number of entries in SET_ATTR_ALTERNATIVE for insn %d",
insn_index);
/* Make a COND with all tests but the last. Select the last value via the
default. */
condexp = rtx_alloc (COND);
XVEC (condexp, 0) = rtvec_alloc ((num_alt - 1) * 2);
for (i = 0; i < num_alt - 1; i++)
{
char *p;
p = attr_numeral (i);
XVECEXP (condexp, 0, 2 * i) = attr_eq (alternative_name, p);
#if 0
/* Sharing this EQ_ATTR rtl causes trouble. */
XVECEXP (condexp, 0, 2 * i) = rtx_alloc (EQ_ATTR);
XSTR (XVECEXP (condexp, 0, 2 * i), 0) = alternative_name;
XSTR (XVECEXP (condexp, 0, 2 * i), 1) = p;
#endif
XVECEXP (condexp, 0, 2 * i + 1) = XVECEXP (exp, 1, i);
}
XEXP (condexp, 1) = XVECEXP (exp, 1, i);
return attr_rtx (SET, attr_rtx (ATTR, XSTR (exp, 0)), condexp);
}
/* Given a SET_ATTR, convert to the appropriate SET. If a comma-separated
list of values is given, convert to SET_ATTR_ALTERNATIVE first. */
static rtx
convert_set_attr (exp, num_alt, insn_code, insn_index)
rtx exp;
int num_alt;
int insn_code, insn_index;
{
rtx newexp;
char *name_ptr;
char *p;
int n;
/* See how many alternative specified. */
n = n_comma_elts (XSTR (exp, 1));
if (n == 1)
return attr_rtx (SET,
attr_rtx (ATTR, XSTR (exp, 0)),
attr_rtx (CONST_STRING, XSTR (exp, 1)));
newexp = rtx_alloc (SET_ATTR_ALTERNATIVE);
XSTR (newexp, 0) = XSTR (exp, 0);
XVEC (newexp, 1) = rtvec_alloc (n);
/* Process each comma-separated name. */
name_ptr = XSTR (exp, 1);
n = 0;
while ((p = next_comma_elt (&name_ptr)) != NULL)
XVECEXP (newexp, 1, n++) = attr_rtx (CONST_STRING, p);
return convert_set_attr_alternative (newexp, num_alt, insn_code, insn_index);
}
/* Scan all definitions, checking for validity. Also, convert any SET_ATTR
and SET_ATTR_ALTERNATIVE expressions to the corresponding SET
expressions. */
static void
check_defs ()
{
struct insn_def *id;
struct attr_desc *attr;
int i;
rtx value;
for (id = defs; id; id = id->next)
{
if (XVEC (id->def, id->vec_idx) == NULL)
continue;
for (i = 0; i < XVECLEN (id->def, id->vec_idx); i++)
{
value = XVECEXP (id->def, id->vec_idx, i);
switch (GET_CODE (value))
{
case SET:
if (GET_CODE (XEXP (value, 0)) != ATTR)
fatal ("Bad attribute set in pattern %d", id->insn_index);
break;
case SET_ATTR_ALTERNATIVE:
value = convert_set_attr_alternative (value,
id->num_alternatives,
id->insn_code,
id->insn_index);
break;
case SET_ATTR:
value = convert_set_attr (value, id->num_alternatives,
id->insn_code, id->insn_index);
break;
default:
fatal ("Invalid attribute code `%s' for pattern %d",
GET_RTX_NAME (GET_CODE (value)), id->insn_index);
}
if ((attr = find_attr (XSTR (XEXP (value, 0), 0), 0)) == NULL)
fatal ("Unknown attribute `%s' for pattern number %d",
XSTR (XEXP (value, 0), 0), id->insn_index);
XVECEXP (id->def, id->vec_idx, i) = value;
XEXP (value, 1) = check_attr_value (XEXP (value, 1), attr);
}
}
}
/* Given a constant SYMBOL_REF expression, convert to a COND that
explicitly tests each enumerated value. */
static rtx
convert_const_symbol_ref (exp, attr)
rtx exp;
struct attr_desc *attr;
{
rtx condexp;
struct attr_value *av;
int i;
int num_alt = 0;
for (av = attr->first_value; av; av = av->next)
num_alt++;
/* Make a COND with all tests but the last, and in the original order.
Select the last value via the default. Note that the attr values
are constructed in reverse order. */
condexp = rtx_alloc (COND);
XVEC (condexp, 0) = rtvec_alloc ((num_alt - 1) * 2);
av = attr->first_value;
XEXP (condexp, 1) = av->value;
for (i = num_alt - 2; av = av->next, i >= 0; i--)
{
char *p, *string;
rtx value;
string = p = (char *) oballoc (2
+ strlen (attr->name)
+ strlen (XSTR (av->value, 0)));
strcpy (p, attr->name);
strcat (p, "_");
strcat (p, XSTR (av->value, 0));
for (; *p != '\0'; p++)
if (*p >= 'a' && *p <= 'z')
*p -= 'a' - 'A';
value = attr_rtx (SYMBOL_REF, string);
RTX_UNCHANGING_P (value) = 1;
XVECEXP (condexp, 0, 2 * i) = attr_rtx (EQ, exp, value);
XVECEXP (condexp, 0, 2 * i + 1) = av->value;
}
return condexp;
}
/* Given a valid expression for an attribute value, remove any IF_THEN_ELSE
expressions by converting them into a COND. This removes cases from this
program. Also, replace an attribute value of "*" with the default attribute
value. */
static rtx
make_canonical (attr, exp)
struct attr_desc *attr;
rtx exp;
{
int i;
rtx newexp;
switch (GET_CODE (exp))
{
case CONST_INT:
exp = make_numeric_value (INTVAL (exp));
break;
case CONST_STRING:
if (! strcmp (XSTR (exp, 0), "*"))
{
if (attr == 0 || attr->default_val == 0)
fatal ("(attr_value \"*\") used in invalid context.");
exp = attr->default_val->value;
}
break;
case SYMBOL_REF:
if (!attr->is_const || RTX_UNCHANGING_P (exp))
break;
/* The SYMBOL_REF is constant for a given run, so mark it as unchanging.
This makes the COND something that won't be considered an arbitrary
expression by walk_attr_value. */
RTX_UNCHANGING_P (exp) = 1;
exp = convert_const_symbol_ref (exp, attr);
RTX_UNCHANGING_P (exp) = 1;
exp = check_attr_value (exp, attr);
/* Goto COND case since this is now a COND. Note that while the
new expression is rescanned, all symbol_ref notes are marked as
unchanging. */
goto cond;
case IF_THEN_ELSE:
newexp = rtx_alloc (COND);
XVEC (newexp, 0) = rtvec_alloc (2);
XVECEXP (newexp, 0, 0) = XEXP (exp, 0);
XVECEXP (newexp, 0, 1) = XEXP (exp, 1);
XEXP (newexp, 1) = XEXP (exp, 2);
exp = newexp;
/* Fall through to COND case since this is now a COND. */
case COND:
cond:
{
int allsame = 1;
rtx defval;
/* First, check for degenerate COND. */
if (XVECLEN (exp, 0) == 0)
return make_canonical (attr, XEXP (exp, 1));
defval = XEXP (exp, 1) = make_canonical (attr, XEXP (exp, 1));
for (i = 0; i < XVECLEN (exp, 0); i += 2)
{
XVECEXP (exp, 0, i) = copy_boolean (XVECEXP (exp, 0, i));
XVECEXP (exp, 0, i + 1)
= make_canonical (attr, XVECEXP (exp, 0, i + 1));
if (! rtx_equal_p (XVECEXP (exp, 0, i + 1), defval))
allsame = 0;
}
if (allsame)
return defval;
}
break;
default:
break;
}
return exp;
}
static rtx
copy_boolean (exp)
rtx exp;
{
if (GET_CODE (exp) == AND || GET_CODE (exp) == IOR)
return attr_rtx (GET_CODE (exp), copy_boolean (XEXP (exp, 0)),
copy_boolean (XEXP (exp, 1)));
return exp;
}
/* Given a value and an attribute description, return a `struct attr_value *'
that represents that value. This is either an existing structure, if the
value has been previously encountered, or a newly-created structure.
`insn_code' is the code of an insn whose attribute has the specified
value (-2 if not processing an insn). We ensure that all insns for
a given value have the same number of alternatives if the value checks
alternatives. */
static struct attr_value *
get_attr_value (value, attr, insn_code)
rtx value;
struct attr_desc *attr;
int insn_code;
{
struct attr_value *av;
int num_alt = 0;
value = make_canonical (attr, value);
if (compares_alternatives_p (value))
{
if (insn_code < 0 || insn_alternatives == NULL)
fatal ("(eq_attr \"alternatives\" ...) used in non-insn context");
else
num_alt = insn_alternatives[insn_code];
}
for (av = attr->first_value; av; av = av->next)
if (rtx_equal_p (value, av->value)
&& (num_alt == 0 || av->first_insn == NULL
|| insn_alternatives[av->first_insn->insn_code]))
return av;
av = (struct attr_value *) oballoc (sizeof (struct attr_value));
av->value = value;
av->next = attr->first_value;
attr->first_value = av;
av->first_insn = NULL;
av->num_insns = 0;
av->has_asm_insn = 0;
return av;
}
/* After all DEFINE_DELAYs have been read in, create internal attributes
to generate the required routines.
First, we compute the number of delay slots for each insn (as a COND of
each of the test expressions in DEFINE_DELAYs). Then, if more than one
delay type is specified, we compute a similar function giving the
DEFINE_DELAY ordinal for each insn.
Finally, for each [DEFINE_DELAY, slot #] pair, we compute an attribute that
tells whether a given insn can be in that delay slot.
Normal attribute filling and optimization expands these to contain the
information needed to handle delay slots. */
static void
expand_delays ()
{
struct delay_desc *delay;
rtx condexp;
rtx newexp;
int i;
char *p;
/* First, generate data for `num_delay_slots' function. */
condexp = rtx_alloc (COND);
XVEC (condexp, 0) = rtvec_alloc (num_delays * 2);
XEXP (condexp, 1) = make_numeric_value (0);
for (i = 0, delay = delays; delay; i += 2, delay = delay->next)
{
XVECEXP (condexp, 0, i) = XEXP (delay->def, 0);
XVECEXP (condexp, 0, i + 1)
= make_numeric_value (XVECLEN (delay->def, 1) / 3);
}
make_internal_attr ("*num_delay_slots", condexp, 0);
/* If more than one delay type, do the same for computing the delay type. */
if (num_delays > 1)
{
condexp = rtx_alloc (COND);
XVEC (condexp, 0) = rtvec_alloc (num_delays * 2);
XEXP (condexp, 1) = make_numeric_value (0);
for (i = 0, delay = delays; delay; i += 2, delay = delay->next)
{
XVECEXP (condexp, 0, i) = XEXP (delay->def, 0);
XVECEXP (condexp, 0, i + 1) = make_numeric_value (delay->num);
}
make_internal_attr ("*delay_type", condexp, 1);
}
/* For each delay possibility and delay slot, compute an eligibility
attribute for non-annulled insns and for each type of annulled (annul
if true and annul if false). */
for (delay = delays; delay; delay = delay->next)
{
for (i = 0; i < XVECLEN (delay->def, 1); i += 3)
{
condexp = XVECEXP (delay->def, 1, i);
if (condexp == 0) condexp = false_rtx;
newexp = attr_rtx (IF_THEN_ELSE, condexp,
make_numeric_value (1), make_numeric_value (0));
p = attr_printf (sizeof ("*delay__") + MAX_DIGITS*2, "*delay_%d_%d",
delay->num, i / 3);
make_internal_attr (p, newexp, 1);
if (have_annul_true)
{
condexp = XVECEXP (delay->def, 1, i + 1);
if (condexp == 0) condexp = false_rtx;
newexp = attr_rtx (IF_THEN_ELSE, condexp,
make_numeric_value (1),
make_numeric_value (0));
p = attr_printf (sizeof ("*annul_true__") + MAX_DIGITS*2,
"*annul_true_%d_%d", delay->num, i / 3);
make_internal_attr (p, newexp, 1);
}
if (have_annul_false)
{
condexp = XVECEXP (delay->def, 1, i + 2);
if (condexp == 0) condexp = false_rtx;
newexp = attr_rtx (IF_THEN_ELSE, condexp,
make_numeric_value (1),
make_numeric_value (0));
p = attr_printf (sizeof ("*annul_false__") + MAX_DIGITS*2,
"*annul_false_%d_%d", delay->num, i / 3);
make_internal_attr (p, newexp, 1);
}
}
}
}
/* This function is given a left and right side expression and an operator.
Each side is a conditional expression, each alternative of which has a
numerical value. The function returns another conditional expression
which, for every possible set of condition values, returns a value that is
the operator applied to the values of the two sides.
Since this is called early, it must also support IF_THEN_ELSE. */
static rtx
operate_exp (op, left, right)
enum operator op;
rtx left, right;
{
int left_value, right_value;
rtx newexp;
int i;
/* If left is a string, apply operator to it and the right side. */
if (GET_CODE (left) == CONST_STRING)
{
/* If right is also a string, just perform the operation. */
if (GET_CODE (right) == CONST_STRING)
{
left_value = atoi (XSTR (left, 0));
right_value = atoi (XSTR (right, 0));
switch (op)
{
case PLUS_OP:
i = left_value + right_value;
break;
case MINUS_OP:
i = left_value - right_value;
break;
case POS_MINUS_OP: /* The positive part of LEFT - RIGHT. */
if (left_value > right_value)
i = left_value - right_value;
else
i = 0;
break;
case OR_OP:
i = left_value | right_value;
break;
case EQ_OP:
i = left_value == right_value;
break;
case RANGE_OP:
i = (left_value << (HOST_BITS_PER_INT / 2)) | right_value;
break;
case MAX_OP:
if (left_value > right_value)
i = left_value;
else
i = right_value;
break;
case MIN_OP:
if (left_value < right_value)
i = left_value;
else
i = right_value;
break;
default:
abort ();
}
return make_numeric_value (i);
}
else if (GET_CODE (right) == IF_THEN_ELSE)
{
/* Apply recursively to all values within. */
rtx newleft = operate_exp (op, left, XEXP (right, 1));
rtx newright = operate_exp (op, left, XEXP (right, 2));
if (rtx_equal_p (newleft, newright))
return newleft;
return attr_rtx (IF_THEN_ELSE, XEXP (right, 0), newleft, newright);
}
else if (GET_CODE (right) == COND)
{
int allsame = 1;
rtx defval;
newexp = rtx_alloc (COND);
XVEC (newexp, 0) = rtvec_alloc (XVECLEN (right, 0));
defval = XEXP (newexp, 1) = operate_exp (op, left, XEXP (right, 1));
for (i = 0; i < XVECLEN (right, 0); i += 2)
{
XVECEXP (newexp, 0, i) = XVECEXP (right, 0, i);
XVECEXP (newexp, 0, i + 1)
= operate_exp (op, left, XVECEXP (right, 0, i + 1));
if (! rtx_equal_p (XVECEXP (newexp, 0, i + 1),
defval))
allsame = 0;
}
/* If the resulting cond is trivial (all alternatives
give the same value), optimize it away. */
if (allsame)
{
obstack_free (rtl_obstack, newexp);
return operate_exp (op, left, XEXP (right, 1));
}
/* If the result is the same as the RIGHT operand,
just use that. */
if (rtx_equal_p (newexp, right))
{
obstack_free (rtl_obstack, newexp);
return right;
}
return newexp;
}
else
fatal ("Badly formed attribute value");
}
/* Otherwise, do recursion the other way. */
else if (GET_CODE (left) == IF_THEN_ELSE)
{
rtx newleft = operate_exp (op, XEXP (left, 1), right);
rtx newright = operate_exp (op, XEXP (left, 2), right);
if (rtx_equal_p (newleft, newright))
return newleft;
return attr_rtx (IF_THEN_ELSE, XEXP (left, 0), newleft, newright);
}
else if (GET_CODE (left) == COND)
{
int allsame = 1;
rtx defval;
newexp = rtx_alloc (COND);
XVEC (newexp, 0) = rtvec_alloc (XVECLEN (left, 0));
defval = XEXP (newexp, 1) = operate_exp (op, XEXP (left, 1), right);
for (i = 0; i < XVECLEN (left, 0); i += 2)
{
XVECEXP (newexp, 0, i) = XVECEXP (left, 0, i);
XVECEXP (newexp, 0, i + 1)
= operate_exp (op, XVECEXP (left, 0, i + 1), right);
if (! rtx_equal_p (XVECEXP (newexp, 0, i + 1),
defval))
allsame = 0;
}
/* If the cond is trivial (all alternatives give the same value),
optimize it away. */
if (allsame)
{
obstack_free (rtl_obstack, newexp);
return operate_exp (op, XEXP (left, 1), right);
}
/* If the result is the same as the LEFT operand,
just use that. */
if (rtx_equal_p (newexp, left))
{
obstack_free (rtl_obstack, newexp);
return left;
}
return newexp;
}
else
fatal ("Badly formed attribute value.");
/* NOTREACHED */
return NULL;
}
/* Once all attributes and DEFINE_FUNCTION_UNITs have been read, we
construct a number of attributes.
The first produces a function `function_units_used' which is given an
insn and produces an encoding showing which function units are required
for the execution of that insn. If the value is non-negative, the insn
uses that unit; otherwise, the value is a one's compliment mask of units
used.
The second produces a function `result_ready_cost' which is used to
determine the time that the result of an insn will be ready and hence
a worst-case schedule.
Both of these produce quite complex expressions which are then set as the
default value of internal attributes. Normal attribute simplification
should produce reasonable expressions.
For each unit, a `<name>_unit_ready_cost' function will take an
insn and give the delay until that unit will be ready with the result
and a `<name>_unit_conflict_cost' function is given an insn already
executing on the unit and a candidate to execute and will give the
cost from the time the executing insn started until the candidate
can start (ignore limitations on the number of simultaneous insns).
For each unit, a `<name>_unit_blockage' function is given an insn
already executing on the unit and a candidate to execute and will
give the delay incurred due to function unit conflicts. The range of
blockage cost values for a given executing insn is given by the
`<name>_unit_blockage_range' function. These values are encoded in
an int where the upper half gives the minimum value and the lower
half gives the maximum value. */
static void
expand_units ()
{
struct function_unit *unit, **unit_num;
struct function_unit_op *op, **op_array, ***unit_ops;
rtx unitsmask;
rtx readycost;
rtx newexp;
char *str;
int i, j, u, num, nvalues;
/* Rebuild the condition for the unit to share the RTL expressions.
Sharing is required by simplify_by_exploding. Build the issue delay
expressions. Validate the expressions we were given for the conditions
and conflict vector. Then make attributes for use in the conflict
function. */
for (unit = units; unit; unit = unit->next)
{
unit->condexp = check_attr_test (unit->condexp, 0);
for (op = unit->ops; op; op = op->next)
{
rtx issue_delay = make_numeric_value (op->issue_delay);
rtx issue_exp = issue_delay;
/* Build, validate, and simplify the issue delay expression. */
if (op->conflict_exp != true_rtx)
issue_exp = attr_rtx (IF_THEN_ELSE, op->conflict_exp,
issue_exp, make_numeric_value (0));
issue_exp = check_attr_value (make_canonical (NULL_ATTR,
issue_exp),
NULL_ATTR);
issue_exp = simplify_knowing (issue_exp, unit->condexp);
op->issue_exp = issue_exp;
/* Make an attribute for use in the conflict function if needed. */
unit->needs_conflict_function = (unit->issue_delay.min
!= unit->issue_delay.max);
if (unit->needs_conflict_function)
{
str = attr_printf (strlen (unit->name) + sizeof ("*_cost_") + MAX_DIGITS,
"*%s_cost_%d", unit->name, op->num);
make_internal_attr (str, issue_exp, 1);
}
/* Validate the condition. */
op->condexp = check_attr_test (op->condexp, 0);
}
}
/* Compute the mask of function units used. Initially, the unitsmask is
zero. Set up a conditional to compute each unit's contribution. */
unitsmask = make_numeric_value (0);
newexp = rtx_alloc (IF_THEN_ELSE);
XEXP (newexp, 2) = make_numeric_value (0);
/* Merge each function unit into the unit mask attributes. */
for (unit = units; unit; unit = unit->next)
{
XEXP (newexp, 0) = unit->condexp;
XEXP (newexp, 1) = make_numeric_value (1 << unit->num);
unitsmask = operate_exp (OR_OP, unitsmask, newexp);
}
/* Simplify the unit mask expression, encode it, and make an attribute
for the function_units_used function. */
unitsmask = simplify_by_exploding (unitsmask);
unitsmask = encode_units_mask (unitsmask);
make_internal_attr ("*function_units_used", unitsmask, 2);
/* Create an array of ops for each unit. Add an extra unit for the
result_ready_cost function that has the ops of all other units. */
unit_ops = (struct function_unit_op ***)
alloca ((num_units + 1) * sizeof (struct function_unit_op **));
unit_num = (struct function_unit **)
alloca ((num_units + 1) * sizeof (struct function_unit *));
unit_num[num_units] = unit = (struct function_unit *)
alloca (sizeof (struct function_unit));
unit->num = num_units;
unit->num_opclasses = 0;
for (unit = units; unit; unit = unit->next)
{
unit_num[num_units]->num_opclasses += unit->num_opclasses;
unit_num[unit->num] = unit;
unit_ops[unit->num] = op_array = (struct function_unit_op **)
alloca (unit->num_opclasses * sizeof (struct function_unit_op *));
for (op = unit->ops; op; op = op->next)
op_array[op->num] = op;
}
/* Compose the array of ops for the extra unit. */
unit_ops[num_units] = op_array = (struct function_unit_op **)
alloca (unit_num[num_units]->num_opclasses
* sizeof (struct function_unit_op *));
for (unit = units, i = 0; unit; i += unit->num_opclasses, unit = unit->next)
bcopy ((char *) unit_ops[unit->num], (char *) &op_array[i],
unit->num_opclasses * sizeof (struct function_unit_op *));
/* Compute the ready cost function for each unit by computing the
condition for each non-default value. */
for (u = 0; u <= num_units; u++)
{
rtx orexp;
int value;
unit = unit_num[u];
op_array = unit_ops[unit->num];
num = unit->num_opclasses;
/* Sort the array of ops into increasing ready cost order. */
for (i = 0; i < num; i++)
for (j = num - 1; j > i; j--)
if (op_array[j-1]->ready < op_array[j]->ready)
{
op = op_array[j];
op_array[j] = op_array[j-1];
op_array[j-1] = op;
}
/* Determine how many distinct non-default ready cost values there
are. We use a default ready cost value of 1. */
nvalues = 0; value = 1;
for (i = num - 1; i >= 0; i--)
if (op_array[i]->ready > value)
{
value = op_array[i]->ready;
nvalues++;
}
if (nvalues == 0)
readycost = make_numeric_value (1);
else
{
/* Construct the ready cost expression as a COND of each value from
the largest to the smallest. */
readycost = rtx_alloc (COND);
XVEC (readycost, 0) = rtvec_alloc (nvalues * 2);
XEXP (readycost, 1) = make_numeric_value (1);
nvalues = 0; orexp = false_rtx; value = op_array[0]->ready;
for (i = 0; i < num; i++)
{
op = op_array[i];
if (op->ready <= 1)
break;
else if (op->ready == value)
orexp = insert_right_side (IOR, orexp, op->condexp, -2, -2);
else
{
XVECEXP (readycost, 0, nvalues * 2) = orexp;
XVECEXP (readycost, 0, nvalues * 2 + 1)
= make_numeric_value (value);
nvalues++;
value = op->ready;
orexp = op->condexp;
}
}
XVECEXP (readycost, 0, nvalues * 2) = orexp;
XVECEXP (readycost, 0, nvalues * 2 + 1) = make_numeric_value (value);
}
if (u < num_units)
{
rtx max_blockage = 0, min_blockage = 0;
/* Simplify the readycost expression by only considering insns
that use the unit. */
readycost = simplify_knowing (readycost, unit->condexp);
/* Determine the blockage cost the executing insn (E) given
the candidate insn (C). This is the maximum of the issue
delay, the pipeline delay, and the simultaneity constraint.
Each function_unit_op represents the characteristics of the
candidate insn, so in the expressions below, C is a known
term and E is an unknown term.
We compute the blockage cost for each E for every possible C.
Thus OP represents E, and READYCOST is a list of values for
every possible C.
The issue delay function for C is op->issue_exp and is used to
write the `<name>_unit_conflict_cost' function. Symbolicly
this is "ISSUE-DELAY (E,C)".
The pipeline delay results form the FIFO constraint on the
function unit and is "READY-COST (E) + 1 - READY-COST (C)".
The simultaneity constraint is based on how long it takes to
fill the unit given the minimum issue delay. FILL-TIME is the
constant "MIN (ISSUE-DELAY (*,*)) * (SIMULTANEITY - 1)", and
the simultaneity constraint is "READY-COST (E) - FILL-TIME"
if SIMULTANEITY is non-zero and zero otherwise.
Thus, BLOCKAGE (E,C) when SIMULTANEITY is zero is
MAX (ISSUE-DELAY (E,C),
READY-COST (E) - (READY-COST (C) - 1))
and otherwise
MAX (ISSUE-DELAY (E,C),
READY-COST (E) - (READY-COST (C) - 1),
READY-COST (E) - FILL-TIME)
The `<name>_unit_blockage' function is computed by determining
this value for each candidate insn. As these values are
computed, we also compute the upper and lower bounds for
BLOCKAGE (E,*). These are combined to form the function
`<name>_unit_blockage_range'. Finally, the maximum blockage
cost, MAX (BLOCKAGE (*,*)), is computed. */
for (op = unit->ops; op; op = op->next)
{
rtx blockage = operate_exp (POS_MINUS_OP, readycost,
make_numeric_value (1));
if (unit->simultaneity != 0)
{
rtx filltime = make_numeric_value ((unit->simultaneity - 1)
* unit->issue_delay.min);
blockage = operate_exp (MIN_OP, blockage, filltime);
}
blockage = operate_exp (POS_MINUS_OP,
make_numeric_value (op->ready),
blockage);
blockage = operate_exp (MAX_OP, blockage, op->issue_exp);
blockage = simplify_knowing (blockage, unit->condexp);
/* Add this op's contribution to MAX (BLOCKAGE (E,*)) and
MIN (BLOCKAGE (E,*)). */
if (max_blockage == 0)
max_blockage = min_blockage = blockage;
else
{
max_blockage
= simplify_knowing (operate_exp (MAX_OP, max_blockage,
blockage),
unit->condexp);
min_blockage
= simplify_knowing (operate_exp (MIN_OP, min_blockage,
blockage),
unit->condexp);
}
/* Make an attribute for use in the blockage function. */
str = attr_printf (strlen (unit->name) + sizeof ("*_block_") + MAX_DIGITS,
"*%s_block_%d", unit->name, op->num);
make_internal_attr (str, blockage, 1);
}
/* Record MAX (BLOCKAGE (*,*)). */
unit->max_blockage = max_attr_value (max_blockage);
/* See if the upper and lower bounds of BLOCKAGE (E,*) are the
same. If so, the blockage function carries no additional
information and is not written. */
newexp = operate_exp (EQ_OP, max_blockage, min_blockage);
newexp = simplify_knowing (newexp, unit->condexp);
unit->needs_blockage_function
= (GET_CODE (newexp) != CONST_STRING
|| atoi (XSTR (newexp, 0)) != 1);
/* If the all values of BLOCKAGE (E,C) have the same value,
neither blockage function is written. */
unit->needs_range_function
= (unit->needs_blockage_function
|| GET_CODE (max_blockage) != CONST_STRING);
if (unit->needs_range_function)
{
/* Compute the blockage range function and make an attribute
for writing it's value. */
newexp = operate_exp (RANGE_OP, min_blockage, max_blockage);
newexp = simplify_knowing (newexp, unit->condexp);
str = attr_printf (strlen (unit->name) + sizeof ("*_unit_blockage_range"),
"*%s_unit_blockage_range", unit->name);
make_internal_attr (str, newexp, 4);
}
str = attr_printf (strlen (unit->name) + sizeof ("*_unit_ready_cost"),
"*%s_unit_ready_cost", unit->name);
}
else
str = "*result_ready_cost";
/* Make an attribute for the ready_cost function. Simplifying
further with simplify_by_exploding doesn't win. */
make_internal_attr (str, readycost, 0);
}
/* For each unit that requires a conflict cost function, make an attribute
that maps insns to the operation number. */
for (unit = units; unit; unit = unit->next)
{
rtx caseexp;
if (! unit->needs_conflict_function
&& ! unit->needs_blockage_function)
continue;
caseexp = rtx_alloc (COND);
XVEC (caseexp, 0) = rtvec_alloc ((unit->num_opclasses - 1) * 2);
for (op = unit->ops; op; op = op->next)
{
/* Make our adjustment to the COND being computed. If we are the
last operation class, place our values into the default of the
COND. */
if (op->num == unit->num_opclasses - 1)
{
XEXP (caseexp, 1) = make_numeric_value (op->num);
}
else
{
XVECEXP (caseexp, 0, op->num * 2) = op->condexp;
XVECEXP (caseexp, 0, op->num * 2 + 1)
= make_numeric_value (op->num);
}
}
/* Simplifying caseexp with simplify_by_exploding doesn't win. */
str = attr_printf (strlen (unit->name) + sizeof ("*_cases"),
"*%s_cases", unit->name);
make_internal_attr (str, caseexp, 1);
}
}
/* Simplify EXP given KNOWN_TRUE. */
static rtx
simplify_knowing (exp, known_true)
rtx exp, known_true;
{
if (GET_CODE (exp) != CONST_STRING)
{
exp = attr_rtx (IF_THEN_ELSE, known_true, exp,
make_numeric_value (max_attr_value (exp)));
exp = simplify_by_exploding (exp);
}
return exp;
}
/* Translate the CONST_STRING expressions in X to change the encoding of
value. On input, the value is a bitmask with a one bit for each unit
used; on output, the value is the unit number (zero based) if one
and only one unit is used or the one's compliment of the bitmask. */
static rtx
encode_units_mask (x)
rtx x;
{
register int i;
register int j;
register enum rtx_code code;
register char *fmt;
code = GET_CODE (x);
switch (code)
{
case CONST_STRING:
i = atoi (XSTR (x, 0));
if (i < 0)
abort (); /* The sign bit encodes a one's compliment mask. */
else if (i != 0 && i == (i & -i))
/* Only one bit is set, so yield that unit number. */
for (j = 0; (i >>= 1) != 0; j++)
;
else
j = ~i;
return attr_rtx (CONST_STRING, attr_printf (MAX_DIGITS, "%d", j));
case REG:
case QUEUED:
case CONST_INT:
case CONST_DOUBLE:
case SYMBOL_REF:
case CODE_LABEL:
case PC:
case CC0:
case EQ_ATTR:
return x;
default:
break;
}
/* Compare the elements. If any pair of corresponding elements
fail to match, return 0 for the whole things. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
switch (fmt[i])
{
case 'V':
case 'E':
for (j = 0; j < XVECLEN (x, i); j++)
XVECEXP (x, i, j) = encode_units_mask (XVECEXP (x, i, j));
break;
case 'e':
XEXP (x, i) = encode_units_mask (XEXP (x, i));
break;
}
}
return x;
}
/* Once all attributes and insns have been read and checked, we construct for
each attribute value a list of all the insns that have that value for
the attribute. */
static void
fill_attr (attr)
struct attr_desc *attr;
{
struct attr_value *av;
struct insn_ent *ie;
struct insn_def *id;
int i;
rtx value;
/* Don't fill constant attributes. The value is independent of
any particular insn. */
if (attr->is_const)
return;
for (id = defs; id; id = id->next)
{
/* If no value is specified for this insn for this attribute, use the
default. */
value = NULL;
if (XVEC (id->def, id->vec_idx))
for (i = 0; i < XVECLEN (id->def, id->vec_idx); i++)
if (! strcmp (XSTR (XEXP (XVECEXP (id->def, id->vec_idx, i), 0), 0),
attr->name))
value = XEXP (XVECEXP (id->def, id->vec_idx, i), 1);
if (value == NULL)
av = attr->default_val;
else
av = get_attr_value (value, attr, id->insn_code);
ie = (struct insn_ent *) oballoc (sizeof (struct insn_ent));
ie->insn_code = id->insn_code;
ie->insn_index = id->insn_code;
insert_insn_ent (av, ie);
}
}
/* Given an expression EXP, see if it is a COND or IF_THEN_ELSE that has a
test that checks relative positions of insns (uses MATCH_DUP or PC).
If so, replace it with what is obtained by passing the expression to
ADDRESS_FN. If not but it is a COND or IF_THEN_ELSE, call this routine
recursively on each value (including the default value). Otherwise,
return the value returned by NO_ADDRESS_FN applied to EXP. */
static rtx
substitute_address (exp, no_address_fn, address_fn)
rtx exp;
rtx (*no_address_fn) ();
rtx (*address_fn) ();
{
int i;
rtx newexp;
if (GET_CODE (exp) == COND)
{
/* See if any tests use addresses. */
address_used = 0;
for (i = 0; i < XVECLEN (exp, 0); i += 2)
walk_attr_value (XVECEXP (exp, 0, i));
if (address_used)
return (*address_fn) (exp);
/* Make a new copy of this COND, replacing each element. */
newexp = rtx_alloc (COND);
XVEC (newexp, 0) = rtvec_alloc (XVECLEN (exp, 0));
for (i = 0; i < XVECLEN (exp, 0); i += 2)
{
XVECEXP (newexp, 0, i) = XVECEXP (exp, 0, i);
XVECEXP (newexp, 0, i + 1)
= substitute_address (XVECEXP (exp, 0, i + 1),
no_address_fn, address_fn);
}
XEXP (newexp, 1) = substitute_address (XEXP (exp, 1),
no_address_fn, address_fn);
return newexp;
}
else if (GET_CODE (exp) == IF_THEN_ELSE)
{
address_used = 0;
walk_attr_value (XEXP (exp, 0));
if (address_used)
return (*address_fn) (exp);
return attr_rtx (IF_THEN_ELSE,
substitute_address (XEXP (exp, 0),
no_address_fn, address_fn),
substitute_address (XEXP (exp, 1),
no_address_fn, address_fn),
substitute_address (XEXP (exp, 2),
no_address_fn, address_fn));
}
return (*no_address_fn) (exp);
}
/* Make new attributes from the `length' attribute. The following are made,
each corresponding to a function called from `shorten_branches' or
`get_attr_length':
*insn_default_length This is the length of the insn to be returned
by `get_attr_length' before `shorten_branches'
has been called. In each case where the length
depends on relative addresses, the largest
possible is used. This routine is also used
to compute the initial size of the insn.
*insn_variable_length_p This returns 1 if the insn's length depends
on relative addresses, zero otherwise.
*insn_current_length This is only called when it is known that the
insn has a variable length and returns the
current length, based on relative addresses.
*/
static void
make_length_attrs ()
{
static char *new_names[] = {"*insn_default_length",
"*insn_variable_length_p",
"*insn_current_length"};
static rtx (*no_address_fn[]) PROTO((rtx)) = {identity_fn, zero_fn, zero_fn};
static rtx (*address_fn[]) PROTO((rtx)) = {max_fn, one_fn, identity_fn};
int i;
struct attr_desc *length_attr, *new_attr;
struct attr_value *av, *new_av;
struct insn_ent *ie, *new_ie;
/* See if length attribute is defined. If so, it must be numeric. Make
it special so we don't output anything for it. */
length_attr = find_attr ("length", 0);
if (length_attr == 0)
return;
if (! length_attr->is_numeric)
fatal ("length attribute must be numeric.");
length_attr->is_const = 0;
length_attr->is_special = 1;
/* Make each new attribute, in turn. */
for (i = 0; i < sizeof new_names / sizeof new_names[0]; i++)
{
make_internal_attr (new_names[i],
substitute_address (length_attr->default_val->value,
no_address_fn[i], address_fn[i]),
0);
new_attr = find_attr (new_names[i], 0);
for (av = length_attr->first_value; av; av = av->next)
for (ie = av->first_insn; ie; ie = ie->next)
{
new_av = get_attr_value (substitute_address (av->value,
no_address_fn[i],
address_fn[i]),
new_attr, ie->insn_code);
new_ie = (struct insn_ent *) oballoc (sizeof (struct insn_ent));
new_ie->insn_code = ie->insn_code;
new_ie->insn_index = ie->insn_index;
insert_insn_ent (new_av, new_ie);
}
}
}
/* Utility functions called from above routine. */
static rtx
identity_fn (exp)
rtx exp;
{
return exp;
}
static rtx
zero_fn (exp)
rtx exp;
{
return make_numeric_value (0);
}
static rtx
one_fn (exp)
rtx exp;
{
return make_numeric_value (1);
}
static rtx
max_fn (exp)
rtx exp;
{
return make_numeric_value (max_attr_value (exp));
}
/* Take a COND expression and see if any of the conditions in it can be
simplified. If any are known true or known false for the particular insn
code, the COND can be further simplified.
Also call ourselves on any COND operations that are values of this COND.
We do not modify EXP; rather, we make and return a new rtx. */
static rtx
simplify_cond (exp, insn_code, insn_index)
rtx exp;
int insn_code, insn_index;
{
int i, j;
/* We store the desired contents here,
then build a new expression if they don't match EXP. */
rtx defval = XEXP (exp, 1);
rtx new_defval = XEXP (exp, 1);
int len = XVECLEN (exp, 0);
rtunion *tests = (rtunion *) alloca (len * sizeof (rtunion));
int allsame = 1;
char *first_spacer;
/* This lets us free all storage allocated below, if appropriate. */
first_spacer = (char *) obstack_finish (rtl_obstack);
bcopy ((char *) XVEC (exp, 0)->elem, (char *) tests, len * sizeof (rtunion));
/* See if default value needs simplification. */
if (GET_CODE (defval) == COND)
new_defval = simplify_cond (defval, insn_code, insn_index);
/* Simplify the subexpressions, and see what tests we can get rid of. */
for (i = 0; i < len; i += 2)
{
rtx newtest, newval;
/* Simplify this test. */
newtest = SIMPLIFY_TEST_EXP (tests[i].rtx, insn_code, insn_index);
tests[i].rtx = newtest;
newval = tests[i + 1].rtx;
/* See if this value may need simplification. */
if (GET_CODE (newval) == COND)
newval = simplify_cond (newval, insn_code, insn_index);
/* Look for ways to delete or combine this test. */
if (newtest == true_rtx)
{
/* If test is true, make this value the default
and discard this + any following tests. */
len = i;
defval = tests[i + 1].rtx;
new_defval = newval;
}
else if (newtest == false_rtx)
{
/* If test is false, discard it and its value. */
for (j = i; j < len - 2; j++)
tests[j].rtx = tests[j + 2].rtx;
len -= 2;
}
else if (i > 0 && attr_equal_p (newval, tests[i - 1].rtx))
{
/* If this value and the value for the prev test are the same,
merge the tests. */
tests[i - 2].rtx
= insert_right_side (IOR, tests[i - 2].rtx, newtest,
insn_code, insn_index);
/* Delete this test/value. */
for (j = i; j < len - 2; j++)
tests[j].rtx = tests[j + 2].rtx;
len -= 2;
}
else
tests[i + 1].rtx = newval;
}
/* If the last test in a COND has the same value
as the default value, that test isn't needed. */
while (len > 0 && attr_equal_p (tests[len - 1].rtx, new_defval))
len -= 2;
/* See if we changed anything. */
if (len != XVECLEN (exp, 0) || new_defval != XEXP (exp, 1))
allsame = 0;
else
for (i = 0; i < len; i++)
if (! attr_equal_p (tests[i].rtx, XVECEXP (exp, 0, i)))
{
allsame = 0;
break;
}
if (len == 0)
{
obstack_free (rtl_obstack, first_spacer);
if (GET_CODE (defval) == COND)
return simplify_cond (defval, insn_code, insn_index);
return defval;
}
else if (allsame)
{
obstack_free (rtl_obstack, first_spacer);
return exp;
}
else
{
rtx newexp = rtx_alloc (COND);
XVEC (newexp, 0) = rtvec_alloc (len);
bcopy ((char *) tests, (char *) XVEC (newexp, 0)->elem,
len * sizeof (rtunion));
XEXP (newexp, 1) = new_defval;
return newexp;
}
}
/* Remove an insn entry from an attribute value. */
static void
remove_insn_ent (av, ie)
struct attr_value *av;
struct insn_ent *ie;
{
struct insn_ent *previe;
if (av->first_insn == ie)
av->first_insn = ie->next;
else
{
for (previe = av->first_insn; previe->next != ie; previe = previe->next)
;
previe->next = ie->next;
}
av->num_insns--;
if (ie->insn_code == -1)
av->has_asm_insn = 0;
num_insn_ents--;
}
/* Insert an insn entry in an attribute value list. */
static void
insert_insn_ent (av, ie)
struct attr_value *av;
struct insn_ent *ie;
{
ie->next = av->first_insn;
av->first_insn = ie;
av->num_insns++;
if (ie->insn_code == -1)
av->has_asm_insn = 1;
num_insn_ents++;
}
/* This is a utility routine to take an expression that is a tree of either
AND or IOR expressions and insert a new term. The new term will be
inserted at the right side of the first node whose code does not match
the root. A new node will be created with the root's code. Its left
side will be the old right side and its right side will be the new
term.
If the `term' is itself a tree, all its leaves will be inserted. */
static rtx
insert_right_side (code, exp, term, insn_code, insn_index)
enum rtx_code code;
rtx exp;
rtx term;
int insn_code, insn_index;
{
rtx newexp;
/* Avoid consing in some special cases. */
if (code == AND && term == true_rtx)
return exp;
if (code == AND && term == false_rtx)
return false_rtx;
if (code == AND && exp == true_rtx)
return term;
if (code == AND && exp == false_rtx)
return false_rtx;
if (code == IOR && term == true_rtx)
return true_rtx;
if (code == IOR && term == false_rtx)
return exp;
if (code == IOR && exp == true_rtx)
return true_rtx;
if (code == IOR && exp == false_rtx)
return term;
if (attr_equal_p (exp, term))
return exp;
if (GET_CODE (term) == code)
{
exp = insert_right_side (code, exp, XEXP (term, 0),
insn_code, insn_index);
exp = insert_right_side (code, exp, XEXP (term, 1),
insn_code, insn_index);
return exp;
}
if (GET_CODE (exp) == code)
{
rtx new = insert_right_side (code, XEXP (exp, 1),
term, insn_code, insn_index);
if (new != XEXP (exp, 1))
/* Make a copy of this expression and call recursively. */
newexp = attr_rtx (code, XEXP (exp, 0), new);
else
newexp = exp;
}
else
{
/* Insert the new term. */
newexp = attr_rtx (code, exp, term);
}
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
}
/* If we have an expression which AND's a bunch of
(not (eq_attrq "alternative" "n"))
terms, we may have covered all or all but one of the possible alternatives.
If so, we can optimize. Similarly for IOR's of EQ_ATTR.
This routine is passed an expression and either AND or IOR. It returns a
bitmask indicating which alternatives are mentioned within EXP. */
static int
compute_alternative_mask (exp, code)
rtx exp;
enum rtx_code code;
{
char *string;
if (GET_CODE (exp) == code)
return compute_alternative_mask (XEXP (exp, 0), code)
| compute_alternative_mask (XEXP (exp, 1), code);
else if (code == AND && GET_CODE (exp) == NOT
&& GET_CODE (XEXP (exp, 0)) == EQ_ATTR
&& XSTR (XEXP (exp, 0), 0) == alternative_name)
string = XSTR (XEXP (exp, 0), 1);
else if (code == IOR && GET_CODE (exp) == EQ_ATTR
&& XSTR (exp, 0) == alternative_name)
string = XSTR (exp, 1);
else
return 0;
if (string[1] == 0)
return 1 << (string[0] - '0');
return 1 << atoi (string);
}
/* Given I, a single-bit mask, return RTX to compare the `alternative'
attribute with the value represented by that bit. */
static rtx
make_alternative_compare (mask)
int mask;
{
rtx newexp;
int i;
/* Find the bit. */
for (i = 0; (mask & (1 << i)) == 0; i++)
;
newexp = attr_rtx (EQ_ATTR, alternative_name, attr_numeral (i));
RTX_UNCHANGING_P (newexp) = 1;
return newexp;
}
/* If we are processing an (eq_attr "attr" "value") test, we find the value
of "attr" for this insn code. From that value, we can compute a test
showing when the EQ_ATTR will be true. This routine performs that
computation. If a test condition involves an address, we leave the EQ_ATTR
intact because addresses are only valid for the `length' attribute.
EXP is the EQ_ATTR expression and VALUE is the value of that attribute
for the insn corresponding to INSN_CODE and INSN_INDEX. */
static rtx
evaluate_eq_attr (exp, value, insn_code, insn_index)
rtx exp;
rtx value;
int insn_code, insn_index;
{
rtx orexp, andexp;
rtx right;
rtx newexp;
int i;
if (GET_CODE (value) == CONST_STRING)
{
if (! strcmp (XSTR (value, 0), XSTR (exp, 1)))
newexp = true_rtx;
else
newexp = false_rtx;
}
else if (GET_CODE (value) == COND)
{
/* We construct an IOR of all the cases for which the requested attribute
value is present. Since we start with FALSE, if it is not present,
FALSE will be returned.
Each case is the AND of the NOT's of the previous conditions with the
current condition; in the default case the current condition is TRUE.
For each possible COND value, call ourselves recursively.
The extra TRUE and FALSE expressions will be eliminated by another
call to the simplification routine. */
orexp = false_rtx;
andexp = true_rtx;
if (current_alternative_string)
clear_struct_flag (value);
for (i = 0; i < XVECLEN (value, 0); i += 2)
{
rtx this = SIMPLIFY_TEST_EXP (XVECEXP (value, 0, i),
insn_code, insn_index);
SIMPLIFY_ALTERNATIVE (this);
right = insert_right_side (AND, andexp, this,
insn_code, insn_index);
right = insert_right_side (AND, right,
evaluate_eq_attr (exp,
XVECEXP (value, 0,
i + 1),
insn_code, insn_index),
insn_code, insn_index);
orexp = insert_right_side (IOR, orexp, right,
insn_code, insn_index);
/* Add this condition into the AND expression. */
newexp = attr_rtx (NOT, this);
andexp = insert_right_side (AND, andexp, newexp,
insn_code, insn_index);
}
/* Handle the default case. */
right = insert_right_side (AND, andexp,
evaluate_eq_attr (exp, XEXP (value, 1),
insn_code, insn_index),
insn_code, insn_index);
newexp = insert_right_side (IOR, orexp, right, insn_code, insn_index);
}
else
abort ();
/* If uses an address, must return original expression. But set the
RTX_UNCHANGING_P bit so we don't try to simplify it again. */
address_used = 0;
walk_attr_value (newexp);
if (address_used)
{
/* This had `&& current_alternative_string', which seems to be wrong. */
if (! RTX_UNCHANGING_P (exp))
return copy_rtx_unchanging (exp);
return exp;
}
else
return newexp;
}
/* This routine is called when an AND of a term with a tree of AND's is
encountered. If the term or its complement is present in the tree, it
can be replaced with TRUE or FALSE, respectively.
Note that (eq_attr "att" "v1") and (eq_attr "att" "v2") cannot both
be true and hence are complementary.
There is one special case: If we see
(and (not (eq_attr "att" "v1"))
(eq_attr "att" "v2"))
this can be replaced by (eq_attr "att" "v2"). To do this we need to
replace the term, not anything in the AND tree. So we pass a pointer to
the term. */
static rtx
simplify_and_tree (exp, pterm, insn_code, insn_index)
rtx exp;
rtx *pterm;
int insn_code, insn_index;
{
rtx left, right;
rtx newexp;
rtx temp;
int left_eliminates_term, right_eliminates_term;
if (GET_CODE (exp) == AND)
{
left = simplify_and_tree (XEXP (exp, 0), pterm, insn_code, insn_index);
right = simplify_and_tree (XEXP (exp, 1), pterm, insn_code, insn_index);
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
{
newexp = attr_rtx (GET_CODE (exp), left, right);
exp = SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
}
}
else if (GET_CODE (exp) == IOR)
{
/* For the IOR case, we do the same as above, except that we can
only eliminate `term' if both sides of the IOR would do so. */
temp = *pterm;
left = simplify_and_tree (XEXP (exp, 0), &temp, insn_code, insn_index);
left_eliminates_term = (temp == true_rtx);
temp = *pterm;
right = simplify_and_tree (XEXP (exp, 1), &temp, insn_code, insn_index);
right_eliminates_term = (temp == true_rtx);
if (left_eliminates_term && right_eliminates_term)
*pterm = true_rtx;
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
{
newexp = attr_rtx (GET_CODE (exp), left, right);
exp = SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
}
}
/* Check for simplifications. Do some extra checking here since this
routine is called so many times. */
if (exp == *pterm)
return true_rtx;
else if (GET_CODE (exp) == NOT && XEXP (exp, 0) == *pterm)
return false_rtx;
else if (GET_CODE (*pterm) == NOT && exp == XEXP (*pterm, 0))
return false_rtx;
else if (GET_CODE (exp) == EQ_ATTR && GET_CODE (*pterm) == EQ_ATTR)
{
if (XSTR (exp, 0) != XSTR (*pterm, 0))
return exp;
if (! strcmp (XSTR (exp, 1), XSTR (*pterm, 1)))
return true_rtx;
else
return false_rtx;
}
else if (GET_CODE (*pterm) == EQ_ATTR && GET_CODE (exp) == NOT
&& GET_CODE (XEXP (exp, 0)) == EQ_ATTR)
{
if (XSTR (*pterm, 0) != XSTR (XEXP (exp, 0), 0))
return exp;
if (! strcmp (XSTR (*pterm, 1), XSTR (XEXP (exp, 0), 1)))
return false_rtx;
else
return true_rtx;
}
else if (GET_CODE (exp) == EQ_ATTR && GET_CODE (*pterm) == NOT
&& GET_CODE (XEXP (*pterm, 0)) == EQ_ATTR)
{
if (XSTR (exp, 0) != XSTR (XEXP (*pterm, 0), 0))
return exp;
if (! strcmp (XSTR (exp, 1), XSTR (XEXP (*pterm, 0), 1)))
return false_rtx;
else
*pterm = true_rtx;
}
else if (GET_CODE (exp) == NOT && GET_CODE (*pterm) == NOT)
{
if (attr_equal_p (XEXP (exp, 0), XEXP (*pterm, 0)))
return true_rtx;
}
else if (GET_CODE (exp) == NOT)
{
if (attr_equal_p (XEXP (exp, 0), *pterm))
return false_rtx;
}
else if (GET_CODE (*pterm) == NOT)
{
if (attr_equal_p (XEXP (*pterm, 0), exp))
return false_rtx;
}
else if (attr_equal_p (exp, *pterm))
return true_rtx;
return exp;
}
/* Similar to `simplify_and_tree', but for IOR trees. */
static rtx
simplify_or_tree (exp, pterm, insn_code, insn_index)
rtx exp;
rtx *pterm;
int insn_code, insn_index;
{
rtx left, right;
rtx newexp;
rtx temp;
int left_eliminates_term, right_eliminates_term;
if (GET_CODE (exp) == IOR)
{
left = simplify_or_tree (XEXP (exp, 0), pterm, insn_code, insn_index);
right = simplify_or_tree (XEXP (exp, 1), pterm, insn_code, insn_index);
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
{
newexp = attr_rtx (GET_CODE (exp), left, right);
exp = SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
}
}
else if (GET_CODE (exp) == AND)
{
/* For the AND case, we do the same as above, except that we can
only eliminate `term' if both sides of the AND would do so. */
temp = *pterm;
left = simplify_or_tree (XEXP (exp, 0), &temp, insn_code, insn_index);
left_eliminates_term = (temp == false_rtx);
temp = *pterm;
right = simplify_or_tree (XEXP (exp, 1), &temp, insn_code, insn_index);
right_eliminates_term = (temp == false_rtx);
if (left_eliminates_term && right_eliminates_term)
*pterm = false_rtx;
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
{
newexp = attr_rtx (GET_CODE (exp), left, right);
exp = SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
}
}
if (attr_equal_p (exp, *pterm))
return false_rtx;
else if (GET_CODE (exp) == NOT && attr_equal_p (XEXP (exp, 0), *pterm))
return true_rtx;
else if (GET_CODE (*pterm) == NOT && attr_equal_p (XEXP (*pterm, 0), exp))
return true_rtx;
else if (GET_CODE (*pterm) == EQ_ATTR && GET_CODE (exp) == NOT
&& GET_CODE (XEXP (exp, 0)) == EQ_ATTR
&& XSTR (*pterm, 0) == XSTR (XEXP (exp, 0), 0))
*pterm = false_rtx;
else if (GET_CODE (exp) == EQ_ATTR && GET_CODE (*pterm) == NOT
&& GET_CODE (XEXP (*pterm, 0)) == EQ_ATTR
&& XSTR (exp, 0) == XSTR (XEXP (*pterm, 0), 0))
return false_rtx;
return exp;
}
/* Given an expression, see if it can be simplified for a particular insn
code based on the values of other attributes being tested. This can
eliminate nested get_attr_... calls.
Note that if an endless recursion is specified in the patterns, the
optimization will loop. However, it will do so in precisely the cases where
an infinite recursion loop could occur during compilation. It's better that
it occurs here! */
static rtx
simplify_test_exp (exp, insn_code, insn_index)
rtx exp;
int insn_code, insn_index;
{
rtx left, right;
struct attr_desc *attr;
struct attr_value *av;
struct insn_ent *ie;
int i;
rtx newexp = exp;
char *spacer = (char *) obstack_finish (rtl_obstack);
/* Don't re-simplify something we already simplified. */
if (RTX_UNCHANGING_P (exp) || MEM_IN_STRUCT_P (exp))