blob: 16209613881111eb3f87fa7ec390294302959967 [file] [log] [blame]
// Copyright (C) 2020-2023 Free Software Foundation, Inc.
// This file is part of GCC.
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
#ifndef RUST_AST_ITEM_H
#define RUST_AST_ITEM_H
#include "rust-ast.h"
#include "rust-path.h"
#include "rust-common.h"
#include "rust-expr.h"
namespace Rust {
namespace AST {
// forward decls
class TypePath;
// TODO: inline?
/*struct AbiName {
std::string abi_name;
// Technically is meant to be STRING_LITERAL
public:
// Returns whether abi name is empty, i.e. doesn't exist.
bool is_empty() const {
return abi_name.empty();
}
AbiName(std::string name) : abi_name(std::move(name)) {}
// Empty AbiName constructor
AbiName() {}
};*/
// A type generic parameter (as opposed to a lifetime generic parameter)
class TypeParam : public GenericParam
{
// bool has_outer_attribute;
// std::unique_ptr<Attribute> outer_attr;
Attribute outer_attr;
Identifier type_representation;
// bool has_type_param_bounds;
// TypeParamBounds type_param_bounds;
std::vector<std::unique_ptr<TypeParamBound>>
type_param_bounds; // inlined form
// bool has_type;
std::unique_ptr<Type> type;
Location locus;
public:
Identifier get_type_representation () const { return type_representation; }
// Returns whether the type of the type param has been specified.
bool has_type () const { return type != nullptr; }
// Returns whether the type param has type param bounds.
bool has_type_param_bounds () const { return !type_param_bounds.empty (); }
// Returns whether the type param has an outer attribute.
bool has_outer_attribute () const { return !outer_attr.is_empty (); }
TypeParam (Identifier type_representation, Location locus = Location (),
std::vector<std::unique_ptr<TypeParamBound>> type_param_bounds
= std::vector<std::unique_ptr<TypeParamBound>> (),
std::unique_ptr<Type> type = nullptr,
Attribute outer_attr = Attribute::create_empty ())
: GenericParam (Analysis::Mappings::get ()->get_next_node_id ()),
outer_attr (std::move (outer_attr)),
type_representation (std::move (type_representation)),
type_param_bounds (std::move (type_param_bounds)),
type (std::move (type)), locus (locus)
{}
// Copy constructor uses clone
TypeParam (TypeParam const &other)
: GenericParam (other.node_id), outer_attr (other.outer_attr),
type_representation (other.type_representation), locus (other.locus)
{
// guard to prevent null pointer dereference
if (other.type != nullptr)
type = other.type->clone_type ();
type_param_bounds.reserve (other.type_param_bounds.size ());
for (const auto &e : other.type_param_bounds)
type_param_bounds.push_back (e->clone_type_param_bound ());
}
// Overloaded assignment operator to clone
TypeParam &operator= (TypeParam const &other)
{
type_representation = other.type_representation;
outer_attr = other.outer_attr;
locus = other.locus;
node_id = other.node_id;
// guard to prevent null pointer dereference
if (other.type != nullptr)
type = other.type->clone_type ();
else
type = nullptr;
type_param_bounds.reserve (other.type_param_bounds.size ());
for (const auto &e : other.type_param_bounds)
type_param_bounds.push_back (e->clone_type_param_bound ());
return *this;
}
// move constructors
TypeParam (TypeParam &&other) = default;
TypeParam &operator= (TypeParam &&other) = default;
std::string as_string () const override;
Location get_locus () const override final { return locus; }
Kind get_kind () const override final { return Kind::Type; }
void accept_vis (ASTVisitor &vis) override;
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_type ()
{
rust_assert (type != nullptr);
return type;
}
// TODO: mutable getter seems kinda dodgy
std::vector<std::unique_ptr<TypeParamBound>> &get_type_param_bounds ()
{
return type_param_bounds;
}
const std::vector<std::unique_ptr<TypeParamBound>> &
get_type_param_bounds () const
{
return type_param_bounds;
}
protected:
// Clone function implementation as virtual method
TypeParam *clone_generic_param_impl () const override
{
return new TypeParam (*this);
}
};
/* "where" clause item base. Abstract - use LifetimeWhereClauseItem,
* TypeBoundWhereClauseItem */
class WhereClauseItem
{
public:
virtual ~WhereClauseItem () {}
// Unique pointer custom clone function
std::unique_ptr<WhereClauseItem> clone_where_clause_item () const
{
return std::unique_ptr<WhereClauseItem> (clone_where_clause_item_impl ());
}
virtual std::string as_string () const = 0;
virtual void accept_vis (ASTVisitor &vis) = 0;
virtual NodeId get_node_id () const = 0;
protected:
// Clone function implementation as pure virtual method
virtual WhereClauseItem *clone_where_clause_item_impl () const = 0;
};
// A lifetime where clause item
class LifetimeWhereClauseItem : public WhereClauseItem
{
Lifetime lifetime;
std::vector<Lifetime> lifetime_bounds;
Location locus;
NodeId node_id;
public:
LifetimeWhereClauseItem (Lifetime lifetime,
std::vector<Lifetime> lifetime_bounds,
Location locus)
: lifetime (std::move (lifetime)),
lifetime_bounds (std::move (lifetime_bounds)), locus (locus),
node_id (Analysis::Mappings::get ()->get_next_node_id ())
{}
std::string as_string () const override;
void accept_vis (ASTVisitor &vis) override;
NodeId get_node_id () const override final { return node_id; }
Lifetime &get_lifetime () { return lifetime; }
std::vector<Lifetime> &get_lifetime_bounds () { return lifetime_bounds; }
Location get_locus () const { return locus; }
protected:
// Clone function implementation as (not pure) virtual method
LifetimeWhereClauseItem *clone_where_clause_item_impl () const override
{
return new LifetimeWhereClauseItem (*this);
}
};
// A type bound where clause item
class TypeBoundWhereClauseItem : public WhereClauseItem
{
std::vector<LifetimeParam> for_lifetimes;
std::unique_ptr<Type> bound_type;
std::vector<std::unique_ptr<TypeParamBound>> type_param_bounds;
NodeId node_id;
Location locus;
public:
// Returns whether the item has ForLifetimes
bool has_for_lifetimes () const { return !for_lifetimes.empty (); }
std::vector<LifetimeParam> &get_for_lifetimes () { return for_lifetimes; }
// Returns whether the item has type param bounds
bool has_type_param_bounds () const { return !type_param_bounds.empty (); }
TypeBoundWhereClauseItem (
std::vector<LifetimeParam> for_lifetimes, std::unique_ptr<Type> bound_type,
std::vector<std::unique_ptr<TypeParamBound>> type_param_bounds,
Location locus)
: for_lifetimes (std::move (for_lifetimes)),
bound_type (std::move (bound_type)),
type_param_bounds (std::move (type_param_bounds)),
node_id (Analysis::Mappings::get ()->get_next_node_id ()), locus (locus)
{}
// Copy constructor requires clone
TypeBoundWhereClauseItem (TypeBoundWhereClauseItem const &other)
: for_lifetimes (other.for_lifetimes),
bound_type (other.bound_type->clone_type ())
{
node_id = other.node_id;
type_param_bounds.reserve (other.type_param_bounds.size ());
for (const auto &e : other.type_param_bounds)
type_param_bounds.push_back (e->clone_type_param_bound ());
}
// Overload assignment operator to clone
TypeBoundWhereClauseItem &operator= (TypeBoundWhereClauseItem const &other)
{
node_id = other.node_id;
for_lifetimes = other.for_lifetimes;
bound_type = other.bound_type->clone_type ();
type_param_bounds.reserve (other.type_param_bounds.size ());
for (const auto &e : other.type_param_bounds)
type_param_bounds.push_back (e->clone_type_param_bound ());
return *this;
}
// move constructors
TypeBoundWhereClauseItem (TypeBoundWhereClauseItem &&other) = default;
TypeBoundWhereClauseItem &operator= (TypeBoundWhereClauseItem &&other)
= default;
std::string as_string () const override;
void accept_vis (ASTVisitor &vis) override;
std::unique_ptr<Type> &get_type ()
{
rust_assert (bound_type != nullptr);
return bound_type;
}
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<std::unique_ptr<TypeParamBound>> &get_type_param_bounds ()
{
return type_param_bounds;
}
const std::vector<std::unique_ptr<TypeParamBound>> &
get_type_param_bounds () const
{
return type_param_bounds;
}
NodeId get_node_id () const override final { return node_id; }
Location get_locus () const { return locus; }
protected:
// Clone function implementation as (not pure) virtual method
TypeBoundWhereClauseItem *clone_where_clause_item_impl () const override
{
return new TypeBoundWhereClauseItem (*this);
}
};
// A where clause
struct WhereClause
{
private:
std::vector<std::unique_ptr<WhereClauseItem>> where_clause_items;
NodeId node_id;
public:
WhereClause (std::vector<std::unique_ptr<WhereClauseItem>> where_clause_items)
: where_clause_items (std::move (where_clause_items)),
node_id (Analysis::Mappings::get ()->get_next_node_id ())
{}
// copy constructor with vector clone
WhereClause (WhereClause const &other)
{
node_id = other.node_id;
where_clause_items.reserve (other.where_clause_items.size ());
for (const auto &e : other.where_clause_items)
where_clause_items.push_back (e->clone_where_clause_item ());
}
// overloaded assignment operator with vector clone
WhereClause &operator= (WhereClause const &other)
{
node_id = other.node_id;
where_clause_items.reserve (other.where_clause_items.size ());
for (const auto &e : other.where_clause_items)
where_clause_items.push_back (e->clone_where_clause_item ());
return *this;
}
// move constructors
WhereClause (WhereClause &&other) = default;
WhereClause &operator= (WhereClause &&other) = default;
// Creates a WhereClause with no items.
static WhereClause create_empty ()
{
return WhereClause (std::vector<std::unique_ptr<WhereClauseItem>> ());
}
// Returns whether the WhereClause has no items.
bool is_empty () const { return where_clause_items.empty (); }
std::string as_string () const;
NodeId get_node_id () const { return node_id; }
// TODO: this mutable getter seems kinda dodgy
std::vector<std::unique_ptr<WhereClauseItem>> &get_items ()
{
return where_clause_items;
}
const std::vector<std::unique_ptr<WhereClauseItem>> &get_items () const
{
return where_clause_items;
}
};
// A self parameter in a method
struct SelfParam
{
private:
bool has_ref;
bool is_mut;
// bool has_lifetime; // only possible if also ref
Lifetime lifetime;
// bool has_type; // only possible if not ref
std::unique_ptr<Type> type;
NodeId node_id;
Location locus;
// Unrestricted constructor used for error state
SelfParam (Lifetime lifetime, bool has_ref, bool is_mut, Type *type)
: has_ref (has_ref), is_mut (is_mut), lifetime (std::move (lifetime)),
type (type), node_id (Analysis::Mappings::get ()->get_next_node_id ())
{}
// this is ok as no outside classes can ever call this
// TODO: self param can have outer attributes
public:
// Returns whether the self-param has a type field.
bool has_type () const { return type != nullptr; }
// Returns whether the self-param has a valid lifetime.
bool has_lifetime () const { return !lifetime.is_error (); }
// Returns whether the self-param is in an error state.
bool is_error () const
{
return (has_type () && has_lifetime ()) || (has_lifetime () && !has_ref);
// not having either is not an error
}
// Creates an error state self-param.
static SelfParam create_error ()
{
// cannot have no ref but have a lifetime at the same time
return SelfParam (Lifetime (Lifetime::STATIC), false, false, nullptr);
}
// Type-based self parameter (not ref, no lifetime)
SelfParam (std::unique_ptr<Type> type, bool is_mut, Location locus)
: has_ref (false), is_mut (is_mut), lifetime (Lifetime::error ()),
type (std::move (type)),
node_id (Analysis::Mappings::get ()->get_next_node_id ()), locus (locus)
{}
// Lifetime-based self parameter (is ref, no type)
SelfParam (Lifetime lifetime, bool is_mut, Location locus)
: has_ref (true), is_mut (is_mut), lifetime (std::move (lifetime)),
node_id (Analysis::Mappings::get ()->get_next_node_id ()), locus (locus)
{}
// Copy constructor requires clone
SelfParam (SelfParam const &other)
: has_ref (other.has_ref), is_mut (other.is_mut), lifetime (other.lifetime),
node_id (Analysis::Mappings::get ()->get_next_node_id ()),
locus (other.locus)
{
node_id = other.node_id;
if (other.type != nullptr)
type = other.type->clone_type ();
}
// Overload assignment operator to use clone
SelfParam &operator= (SelfParam const &other)
{
is_mut = other.is_mut;
has_ref = other.has_ref;
lifetime = other.lifetime;
locus = other.locus;
node_id = other.node_id;
if (other.type != nullptr)
type = other.type->clone_type ();
else
type = nullptr;
return *this;
}
// move constructors
SelfParam (SelfParam &&other) = default;
SelfParam &operator= (SelfParam &&other) = default;
std::string as_string () const;
Location get_locus () const { return locus; }
bool get_has_ref () const { return has_ref; };
bool get_is_mut () const { return is_mut; }
Lifetime get_lifetime () const { return lifetime; }
NodeId get_node_id () const { return node_id; }
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_type ()
{
rust_assert (has_type ());
return type;
}
};
// Qualifiers for function, i.e. const, unsafe, extern etc.
struct FunctionQualifiers
{
private:
AsyncConstStatus const_status;
bool has_unsafe;
bool has_extern;
std::string extern_abi;
Location locus;
public:
FunctionQualifiers (Location locus, AsyncConstStatus const_status,
bool has_unsafe, bool has_extern = false,
std::string extern_abi = std::string ())
: const_status (const_status), has_unsafe (has_unsafe),
has_extern (has_extern), extern_abi (std::move (extern_abi)),
locus (locus)
{
if (!this->extern_abi.empty ())
{
// having extern is required; not having it is an implementation error
rust_assert (has_extern);
}
}
std::string as_string () const;
AsyncConstStatus get_const_status () const { return const_status; }
bool is_unsafe () const { return has_unsafe; }
bool is_extern () const { return has_extern; }
std::string get_extern_abi () const { return extern_abi; }
bool has_abi () const { return !extern_abi.empty (); }
Location get_locus () const { return locus; }
};
// A function parameter
struct FunctionParam
{
private:
std::vector<Attribute> outer_attrs;
Location locus;
std::unique_ptr<Pattern> param_name;
std::unique_ptr<Type> type;
public:
FunctionParam (std::unique_ptr<Pattern> param_name,
std::unique_ptr<Type> param_type,
std::vector<Attribute> outer_attrs, Location locus)
: outer_attrs (std::move (outer_attrs)), locus (locus),
param_name (std::move (param_name)), type (std::move (param_type)),
node_id (Analysis::Mappings::get ()->get_next_node_id ())
{}
// Copy constructor uses clone
FunctionParam (FunctionParam const &other)
: locus (other.locus), node_id (other.node_id)
{
// guard to prevent nullptr dereference
if (other.param_name != nullptr)
param_name = other.param_name->clone_pattern ();
if (other.type != nullptr)
type = other.type->clone_type ();
}
// Overload assignment operator to use clone
FunctionParam &operator= (FunctionParam const &other)
{
locus = other.locus;
node_id = other.node_id;
// guard to prevent nullptr dereference
if (other.param_name != nullptr)
param_name = other.param_name->clone_pattern ();
else
param_name = nullptr;
if (other.type != nullptr)
type = other.type->clone_type ();
else
type = nullptr;
return *this;
}
// move constructors
FunctionParam (FunctionParam &&other) = default;
FunctionParam &operator= (FunctionParam &&other) = default;
// Returns whether FunctionParam is in an invalid state.
bool is_error () const { return param_name == nullptr || type == nullptr; }
// Creates an error FunctionParam.
static FunctionParam create_error ()
{
return FunctionParam (nullptr, nullptr, {}, Location ());
}
std::string as_string () const;
Location get_locus () const { return locus; }
// TODO: seems kinda dodgy. Think of better way.
std::vector<Attribute> &get_outer_attrs () { return outer_attrs; }
const std::vector<Attribute> &get_outer_attrs () const { return outer_attrs; }
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Pattern> &get_pattern ()
{
rust_assert (param_name != nullptr);
return param_name;
}
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_type ()
{
rust_assert (type != nullptr);
return type;
}
NodeId get_node_id () const { return node_id; }
protected:
NodeId node_id;
};
// Visibility of item - if the item has it, then it is some form of public
struct Visibility
{
public:
enum VisType
{
PRIV,
PUB,
PUB_CRATE,
PUB_SELF,
PUB_SUPER,
PUB_IN_PATH
};
private:
VisType vis_type;
// Only assigned if vis_type is IN_PATH
SimplePath in_path;
Location locus;
// should this store location info?
public:
// Creates a Visibility - TODO make constructor protected or private?
Visibility (VisType vis_type, SimplePath in_path, Location locus)
: vis_type (vis_type), in_path (std::move (in_path)), locus (locus)
{}
VisType get_vis_type () const { return vis_type; }
// Returns whether visibility is in an error state.
bool is_error () const
{
return vis_type == PUB_IN_PATH && in_path.is_empty ();
}
// Returns whether a visibility has a path
bool has_path () const { return !(is_error ()) && vis_type == PUB_IN_PATH; }
// Returns whether visibility is public or not.
bool is_public () const { return vis_type != PRIV && !is_error (); }
Location get_locus () const { return locus; }
// empty?
// Creates an error visibility.
static Visibility create_error ()
{
return Visibility (PUB_IN_PATH, SimplePath::create_empty (), Location ());
}
// Unique pointer custom clone function
/*std::unique_ptr<Visibility> clone_visibility() const {
return std::unique_ptr<Visibility>(clone_visibility_impl());
}*/
/* TODO: think of a way to only allow valid Visibility states - polymorphism
* is one idea but may be too resource-intensive. */
// Creates a public visibility with no further features/arguments.
// empty?
static Visibility create_public (Location pub_vis_location)
{
return Visibility (PUB, SimplePath::create_empty (), pub_vis_location);
}
// Creates a public visibility with crate-relative paths
static Visibility create_crate (Location crate_tok_location,
Location crate_vis_location)
{
return Visibility (PUB_CRATE,
SimplePath::from_str ("crate", crate_tok_location),
crate_vis_location);
}
// Creates a public visibility with self-relative paths
static Visibility create_self (Location self_tok_location,
Location self_vis_location)
{
return Visibility (PUB_SELF,
SimplePath::from_str ("self", self_tok_location),
self_vis_location);
}
// Creates a public visibility with parent module-relative paths
static Visibility create_super (Location super_tok_location,
Location super_vis_location)
{
return Visibility (PUB_SUPER,
SimplePath::from_str ("super", super_tok_location),
super_vis_location);
}
// Creates a private visibility
static Visibility create_private ()
{
return Visibility (PRIV, SimplePath::create_empty (), Location ());
}
// Creates a public visibility with a given path or whatever.
static Visibility create_in_path (SimplePath in_path,
Location in_path_vis_location)
{
return Visibility (PUB_IN_PATH, std::move (in_path), in_path_vis_location);
}
std::string as_string () const;
const SimplePath &get_path () const { return in_path; }
SimplePath &get_path () { return in_path; }
protected:
// Clone function implementation - not currently virtual but may be if
// polymorphism used
/*virtual*/ Visibility *clone_visibility_impl () const
{
return new Visibility (*this);
}
};
// A method (function belonging to a type)
class Method : public InherentImplItem, public TraitImplItem
{
std::vector<Attribute> outer_attrs;
Visibility vis;
FunctionQualifiers qualifiers;
Identifier method_name;
std::vector<std::unique_ptr<GenericParam>> generic_params;
SelfParam self_param;
std::vector<FunctionParam> function_params;
std::unique_ptr<Type> return_type;
WhereClause where_clause;
std::unique_ptr<BlockExpr> function_body;
Location locus;
NodeId node_id;
public:
// Returns whether the method is in an error state.
bool is_error () const
{
return function_body == nullptr || method_name.empty ()
|| self_param.is_error ();
}
// Creates an error state method.
static Method create_error ()
{
return Method ("", FunctionQualifiers (Location (), NONE, true),
std::vector<std::unique_ptr<GenericParam>> (),
SelfParam::create_error (), std::vector<FunctionParam> (),
nullptr, WhereClause::create_empty (), nullptr,
Visibility::create_error (), std::vector<Attribute> (), {});
}
// Returns whether the method has generic parameters.
bool has_generics () const { return !generic_params.empty (); }
// Returns whether the method has parameters.
bool has_params () const { return !function_params.empty (); }
// Returns whether the method has a return type (void otherwise).
bool has_return_type () const { return return_type != nullptr; }
// Returns whether the where clause exists (i.e. has items)
bool has_where_clause () const { return !where_clause.is_empty (); }
// Returns whether method has a non-default visibility.
bool has_visibility () const { return !vis.is_error (); }
// Mega-constructor with all possible fields
Method (Identifier method_name, FunctionQualifiers qualifiers,
std::vector<std::unique_ptr<GenericParam>> generic_params,
SelfParam self_param, std::vector<FunctionParam> function_params,
std::unique_ptr<Type> return_type, WhereClause where_clause,
std::unique_ptr<BlockExpr> function_body, Visibility vis,
std::vector<Attribute> outer_attrs, Location locus)
: outer_attrs (std::move (outer_attrs)), vis (std::move (vis)),
qualifiers (std::move (qualifiers)),
method_name (std::move (method_name)),
generic_params (std::move (generic_params)),
self_param (std::move (self_param)),
function_params (std::move (function_params)),
return_type (std::move (return_type)),
where_clause (std::move (where_clause)),
function_body (std::move (function_body)), locus (locus),
node_id (Analysis::Mappings::get ()->get_next_node_id ())
{}
// TODO: add constructor with less fields
// Copy constructor with clone
Method (Method const &other)
: outer_attrs (other.outer_attrs), vis (other.vis),
qualifiers (other.qualifiers), method_name (other.method_name),
self_param (other.self_param), function_params (other.function_params),
where_clause (other.where_clause), locus (other.locus)
{
// guard to prevent null dereference (always required)
if (other.return_type != nullptr)
return_type = other.return_type->clone_type ();
// guard to prevent null dereference (only required if error state)
if (other.function_body != nullptr)
function_body = other.function_body->clone_block_expr ();
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
node_id = other.node_id;
}
// Overloaded assignment operator to clone
Method &operator= (Method const &other)
{
method_name = other.method_name;
outer_attrs = other.outer_attrs;
vis = other.vis;
qualifiers = other.qualifiers;
self_param = other.self_param;
function_params = other.function_params;
where_clause = other.where_clause;
locus = other.locus;
// guard to prevent null dereference (always required)
if (other.return_type != nullptr)
return_type = other.return_type->clone_type ();
else
return_type = nullptr;
// guard to prevent null dereference (only required if error state)
if (other.function_body != nullptr)
function_body = other.function_body->clone_block_expr ();
else
function_body = nullptr;
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
node_id = other.node_id;
return *this;
}
// move constructors
Method (Method &&other) = default;
Method &operator= (Method &&other) = default;
std::string as_string () const override;
void accept_vis (ASTVisitor &vis) override;
// Invalid if block is null, so base stripping on that.
void mark_for_strip () override { function_body = nullptr; }
bool is_marked_for_strip () const override
{
return function_body == nullptr;
}
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<Attribute> &get_outer_attrs () { return outer_attrs; }
const std::vector<Attribute> &get_outer_attrs () const { return outer_attrs; }
std::vector<FunctionParam> &get_function_params () { return function_params; }
const std::vector<FunctionParam> &get_function_params () const
{
return function_params;
}
std::vector<std::unique_ptr<GenericParam>> &get_generic_params ()
{
return generic_params;
}
const std::vector<std::unique_ptr<GenericParam>> &get_generic_params () const
{
return generic_params;
}
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<BlockExpr> &get_definition ()
{
rust_assert (function_body != nullptr);
return function_body;
}
SelfParam &get_self_param () { return self_param; }
const SelfParam &get_self_param () const { return self_param; }
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_return_type ()
{
rust_assert (has_return_type ());
return return_type;
}
// TODO: is this better? Or is a "vis_block" better?
WhereClause &get_where_clause () { return where_clause; }
Identifier get_method_name () const { return method_name; }
NodeId get_node_id () const { return node_id; }
Location get_locus () const override final { return locus; }
FunctionQualifiers get_qualifiers () { return qualifiers; }
Visibility &get_visibility () { return vis; }
const Visibility &get_visibility () const { return vis; }
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
Method *clone_inherent_impl_item_impl () const final override
{
return clone_method_impl ();
}
/* Use covariance to implement clone function as returning this object
* rather than base */
Method *clone_trait_impl_item_impl () const final override
{
return clone_method_impl ();
}
/*virtual*/ Method *clone_method_impl () const { return new Method (*this); }
};
// Item that supports visibility - abstract base class
class VisItem : public Item
{
Visibility visibility;
std::vector<Attribute> outer_attrs;
protected:
// Visibility constructor
VisItem (Visibility visibility,
std::vector<Attribute> outer_attrs = std::vector<Attribute> ())
: visibility (std::move (visibility)), outer_attrs (std::move (outer_attrs))
{}
// Visibility copy constructor
VisItem (VisItem const &other)
: visibility (other.visibility), outer_attrs (other.outer_attrs)
{}
// Overload assignment operator to clone
VisItem &operator= (VisItem const &other)
{
visibility = other.visibility;
outer_attrs = other.outer_attrs;
return *this;
}
// move constructors
VisItem (VisItem &&other) = default;
VisItem &operator= (VisItem &&other) = default;
public:
/* Does the item have some kind of public visibility (non-default
* visibility)? */
bool has_visibility () const { return visibility.is_public (); }
std::string as_string () const override;
// TODO: this mutable getter seems really dodgy. Think up better way.
Visibility &get_visibility () { return visibility; }
const Visibility &get_visibility () const { return visibility; }
std::vector<Attribute> &get_outer_attrs () { return outer_attrs; }
const std::vector<Attribute> &get_outer_attrs () const { return outer_attrs; }
};
// Rust module item - abstract base class
class Module : public VisItem
{
public:
// Type of the current module. A module can be either loaded or unloaded,
// meaning that the items of the module can already be present or not. For
// example, the following module would be loaded: `mod foo { fn bar() {} }`.
// However, the module would be unloaded if it refers to an external file (i.e
// `mod foo;`) and then become loaded upon expansion.
enum ModuleKind
{
LOADED,
UNLOADED,
};
Identifier get_name () const { return module_name; }
private:
Identifier module_name;
Location locus;
ModuleKind kind;
// Name of the file including the module
std::string outer_filename;
// bool has_inner_attrs;
std::vector<Attribute> inner_attrs;
// bool has_items;
std::vector<std::unique_ptr<Item>> items;
// Names of including inline modules (immediate parent is last in the list)
std::vector<std::string> module_scope;
// Filename the module refers to. Empty string on LOADED modules or if an
// error occured when dealing with UNLOADED modules
std::string module_file;
void clone_items (const std::vector<std::unique_ptr<Item>> &other_items)
{
items.reserve (other_items.size ());
for (const auto &e : other_items)
items.push_back (e->clone_item ());
}
public:
// Returns whether the module has items in its body.
bool has_items () const { return !items.empty (); }
// Returns whether the module has any inner attributes.
bool has_inner_attrs () const { return !inner_attrs.empty (); }
// Unloaded module constructor
Module (Identifier module_name, Visibility visibility,
std::vector<Attribute> outer_attrs, Location locus,
std::string outer_filename, std::vector<std::string> module_scope)
: VisItem (std::move (visibility), std::move (outer_attrs)),
module_name (module_name), locus (locus), kind (ModuleKind::UNLOADED),
outer_filename (outer_filename), inner_attrs (std::vector<Attribute> ()),
items (std::vector<std::unique_ptr<Item>> ()),
module_scope (std::move (module_scope))
{}
// Loaded module constructor, with items
Module (Identifier name, Location locus,
std::vector<std::unique_ptr<Item>> items,
Visibility visibility = Visibility::create_error (),
std::vector<Attribute> inner_attrs = std::vector<Attribute> (),
std::vector<Attribute> outer_attrs = std::vector<Attribute> ())
: VisItem (std::move (visibility), std::move (outer_attrs)),
module_name (name), locus (locus), kind (ModuleKind::LOADED),
outer_filename (std::string ()), inner_attrs (std::move (inner_attrs)),
items (std::move (items))
{}
// Copy constructor with vector clone
Module (Module const &other)
: VisItem (other), module_name (other.module_name), locus (other.locus),
kind (other.kind), inner_attrs (other.inner_attrs),
module_scope (other.module_scope)
{
// We need to check whether we are copying a loaded module or an unloaded
// one. In the second case, clear the `items` vector.
if (other.kind == LOADED)
clone_items (other.items);
else
items.clear ();
}
// Overloaded assignment operator with vector clone
Module &operator= (Module const &other)
{
VisItem::operator= (other);
module_name = other.module_name;
locus = other.locus;
kind = other.kind;
inner_attrs = other.inner_attrs;
module_scope = other.module_scope;
// Likewise, we need to clear the `items` vector in case the other module is
// unloaded
if (kind == LOADED)
clone_items (other.items);
else
items.clear ();
return *this;
}
// Search for the filename associated with an external module, storing it in
// module_file
void process_file_path ();
// Load the items contained in an external module
void load_items ();
void accept_vis (ASTVisitor &vis) override;
/* Override that runs the function recursively on all items contained within
* the module. */
void add_crate_name (std::vector<std::string> &names) const override;
// Returns the kind of the module
enum ModuleKind get_kind () const { return kind; }
// TODO: think of better way to do this - mutable getter seems dodgy
const std::vector<Attribute> &get_inner_attrs () const { return inner_attrs; }
std::vector<Attribute> &get_inner_attrs () { return inner_attrs; }
const std::vector<std::unique_ptr<Item>> &get_items () const { return items; }
std::vector<std::unique_ptr<Item>> &get_items () { return items; }
// move constructors
Module (Module &&other) = default;
Module &operator= (Module &&other) = default;
std::string as_string () const override;
Location get_locus () const override final { return locus; }
// Invalid if name is empty, so base stripping on that.
void mark_for_strip () override { module_name = ""; }
bool is_marked_for_strip () const override { return module_name.empty (); }
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
Module *clone_item_impl () const override { return new Module (*this); }
};
// Rust extern crate declaration AST node
class ExternCrate : public VisItem
{
// this is either an identifier or "self", with self parsed to string
std::string referenced_crate;
// bool has_as_clause;
// AsClause as_clause;
// this is either an identifier or "_", with _ parsed to string
std::string as_clause_name;
Location locus;
/* e.g.
"extern crate foo as _"
"extern crate foo"
"extern crate std as cool_std" */
public:
std::string as_string () const override;
// Returns whether extern crate declaration has an as clause.
bool has_as_clause () const { return !as_clause_name.empty (); }
/* Returns whether extern crate declaration references the current crate
* (i.e. self). */
bool references_self () const { return referenced_crate == "self"; }
// Constructor
ExternCrate (std::string referenced_crate, Visibility visibility,
std::vector<Attribute> outer_attrs, Location locus,
std::string as_clause_name = std::string ())
: VisItem (std::move (visibility), std::move (outer_attrs)),
referenced_crate (std::move (referenced_crate)),
as_clause_name (std::move (as_clause_name)), locus (locus)
{}
Location get_locus () const override final { return locus; }
void accept_vis (ASTVisitor &vis) override;
const std::string &get_referenced_crate () const { return referenced_crate; }
const std::string &get_as_clause () const { return as_clause_name; }
// Override that adds extern crate name in decl to passed list of names.
void add_crate_name (std::vector<std::string> &names) const override
{
names.push_back (referenced_crate);
}
// Invalid if crate name is empty, so base stripping on that.
void mark_for_strip () override { referenced_crate = ""; }
bool is_marked_for_strip () const override
{
return referenced_crate.empty ();
}
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
ExternCrate *clone_item_impl () const override
{
return new ExternCrate (*this);
}
};
// The path-ish thing referred to in a use declaration - abstract base class
class UseTree
{
Location locus;
public:
enum Kind
{
Glob,
Rebind,
List,
};
virtual ~UseTree () {}
// Overload assignment operator to clone
UseTree &operator= (UseTree const &other)
{
locus = other.locus;
return *this;
}
UseTree (const UseTree &other) = default;
// move constructors
UseTree (UseTree &&other) = default;
UseTree &operator= (UseTree &&other) = default;
// Unique pointer custom clone function
std::unique_ptr<UseTree> clone_use_tree () const
{
return std::unique_ptr<UseTree> (clone_use_tree_impl ());
}
virtual std::string as_string () const = 0;
virtual Kind get_kind () const = 0;
Location get_locus () const { return locus; }
virtual void accept_vis (ASTVisitor &vis) = 0;
protected:
// Clone function implementation as pure virtual method
virtual UseTree *clone_use_tree_impl () const = 0;
UseTree (Location locus) : locus (locus) {}
};
// Use tree with a glob (wildcard) operator
class UseTreeGlob : public UseTree
{
public:
enum PathType
{
NO_PATH,
GLOBAL,
PATH_PREFIXED
};
private:
PathType glob_type;
SimplePath path;
public:
UseTreeGlob (PathType glob_type, SimplePath path, Location locus)
: UseTree (locus), glob_type (glob_type), path (std::move (path))
{
if (this->glob_type != PATH_PREFIXED)
{
// compiler implementation error if there is a path with a
// non-path-prefixed use tree glob
rust_assert (!has_path ());
}
// TODO: do path-prefixed paths also have to have a path? If so, have an
// assert for that too.
}
/* Returns whether has path. Should be made redundant by PathType
* PATH_PREFIXED. */
bool has_path () const { return !path.is_empty (); }
std::string as_string () const override;
void accept_vis (ASTVisitor &vis) override;
Kind get_kind () const override { return Glob; }
SimplePath get_path () const
{
rust_assert (has_path ());
return path;
}
/* TODO: find way to ensure only PATH_PREFIXED glob_type has path - factory
* methods? */
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
UseTreeGlob *clone_use_tree_impl () const override
{
return new UseTreeGlob (*this);
}
};
// Use tree with a list of paths with a common prefix
class UseTreeList : public UseTree
{
public:
enum PathType
{
NO_PATH,
GLOBAL,
PATH_PREFIXED
};
private:
PathType path_type;
SimplePath path;
std::vector<std::unique_ptr<UseTree>> trees;
public:
UseTreeList (PathType path_type, SimplePath path,
std::vector<std::unique_ptr<UseTree>> trees, Location locus)
: UseTree (locus), path_type (path_type), path (std::move (path)),
trees (std::move (trees))
{
if (this->path_type != PATH_PREFIXED)
{
// compiler implementation error if there is a path with a
// non-path-prefixed use tree glob
rust_assert (!has_path ());
}
// TODO: do path-prefixed paths also have to have a path? If so, have an
// assert for that too.
}
// copy constructor with vector clone
UseTreeList (UseTreeList const &other)
: UseTree (other), path_type (other.path_type), path (other.path)
{
trees.reserve (other.trees.size ());
for (const auto &e : other.trees)
trees.push_back (e->clone_use_tree ());
}
// overloaded assignment operator with vector clone
UseTreeList &operator= (UseTreeList const &other)
{
UseTree::operator= (other);
path_type = other.path_type;
path = other.path;
trees.reserve (other.trees.size ());
for (const auto &e : other.trees)
trees.push_back (e->clone_use_tree ());
return *this;
}
// move constructors
UseTreeList (UseTreeList &&other) = default;
UseTreeList &operator= (UseTreeList &&other) = default;
// Returns whether has path. Should be made redundant by path_type.
bool has_path () const { return !path.is_empty (); }
// Returns whether has inner tree elements.
bool has_trees () const { return !trees.empty (); }
std::string as_string () const override;
void accept_vis (ASTVisitor &vis) override;
Kind get_kind () const override { return List; }
SimplePath get_path () const
{
rust_assert (has_path ());
return path;
}
const std::vector<std::unique_ptr<UseTree>> &get_trees () const
{
return trees;
}
// TODO: find way to ensure only PATH_PREFIXED path_type has path - factory
// methods?
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
UseTreeList *clone_use_tree_impl () const override
{
return new UseTreeList (*this);
}
};
// Use tree where it rebinds the module name as something else
class UseTreeRebind : public UseTree
{
public:
enum NewBindType
{
NONE,
IDENTIFIER,
WILDCARD
};
private:
SimplePath path;
NewBindType bind_type;
Identifier identifier; // only if NewBindType is IDENTIFIER
public:
UseTreeRebind (NewBindType bind_type, SimplePath path, Location locus,
Identifier identifier = std::string ())
: UseTree (locus), path (std::move (path)), bind_type (bind_type),
identifier (std::move (identifier))
{}
// Returns whether has path (this should always be true).
bool has_path () const { return !path.is_empty (); }
// Returns whether has identifier (or, rather, is allowed to).
bool has_identifier () const { return bind_type == IDENTIFIER; }
std::string as_string () const override;
void accept_vis (ASTVisitor &vis) override;
Kind get_kind () const override { return Rebind; }
SimplePath get_path () const
{
rust_assert (has_path ());
return path;
}
const Identifier &get_identifier () const
{
rust_assert (has_identifier ());
return identifier;
}
// TODO: find way to ensure only PATH_PREFIXED path_type has path - factory
// methods?
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
virtual UseTreeRebind *clone_use_tree_impl () const override
{
return new UseTreeRebind (*this);
}
};
// Rust use declaration (i.e. for modules) AST node
class UseDeclaration : public VisItem
{
std::unique_ptr<UseTree> use_tree;
Location locus;
public:
std::string as_string () const override;
UseDeclaration (std::unique_ptr<UseTree> use_tree, Visibility visibility,
std::vector<Attribute> outer_attrs, Location locus)
: VisItem (std::move (visibility), std::move (outer_attrs)),
use_tree (std::move (use_tree)), locus (locus)
{}
// Copy constructor with clone
UseDeclaration (UseDeclaration const &other)
: VisItem (other), locus (other.locus)
{
// guard to prevent null dereference (only required if error state)
if (other.use_tree != nullptr)
use_tree = other.use_tree->clone_use_tree ();
}
// Overloaded assignment operator to clone
UseDeclaration &operator= (UseDeclaration const &other)
{
VisItem::operator= (other);
// visibility = other.visibility->clone_visibility();
// outer_attrs = other.outer_attrs;
locus = other.locus;
// guard to prevent null dereference (only required if error state)
if (other.use_tree != nullptr)
use_tree = other.use_tree->clone_use_tree ();
else
use_tree = nullptr;
return *this;
}
// move constructors
UseDeclaration (UseDeclaration &&other) = default;
UseDeclaration &operator= (UseDeclaration &&other) = default;
Location get_locus () const override final { return locus; }
const std::unique_ptr<UseTree> &get_tree () const { return use_tree; }
void accept_vis (ASTVisitor &vis) override;
// Invalid if use tree is null, so base stripping on that.
void mark_for_strip () override { use_tree = nullptr; }
bool is_marked_for_strip () const override { return use_tree == nullptr; }
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
UseDeclaration *clone_item_impl () const override
{
return new UseDeclaration (*this);
}
};
class LetStmt;
// Rust function declaration AST node
class Function : public VisItem, public InherentImplItem, public TraitImplItem
{
FunctionQualifiers qualifiers;
Identifier function_name;
std::vector<std::unique_ptr<GenericParam>> generic_params;
std::vector<FunctionParam> function_params;
std::unique_ptr<Type> return_type;
WhereClause where_clause;
std::unique_ptr<BlockExpr> function_body;
Location locus;
public:
std::string as_string () const override;
// Returns whether function has generic parameters.
bool has_generics () const { return !generic_params.empty (); }
// Returns whether function has regular parameters.
bool has_function_params () const { return !function_params.empty (); }
// Returns whether function has return type - if not, it is void.
bool has_return_type () const { return return_type != nullptr; }
// Returns whether function has a where clause.
bool has_where_clause () const { return !where_clause.is_empty (); }
// Mega-constructor with all possible fields
Function (Identifier function_name, FunctionQualifiers qualifiers,
std::vector<std::unique_ptr<GenericParam>> generic_params,
std::vector<FunctionParam> function_params,
std::unique_ptr<Type> return_type, WhereClause where_clause,
std::unique_ptr<BlockExpr> function_body, Visibility vis,
std::vector<Attribute> outer_attrs, Location locus)
: VisItem (std::move (vis), std::move (outer_attrs)),
qualifiers (std::move (qualifiers)),
function_name (std::move (function_name)),
generic_params (std::move (generic_params)),
function_params (std::move (function_params)),
return_type (std::move (return_type)),
where_clause (std::move (where_clause)),
function_body (std::move (function_body)), locus (locus)
{}
// TODO: add constructor with less fields
// Copy constructor with clone
Function (Function const &other)
: VisItem (other), qualifiers (other.qualifiers),
function_name (other.function_name),
function_params (other.function_params),
where_clause (other.where_clause), locus (other.locus)
{
// guard to prevent null dereference (always required)
if (other.return_type != nullptr)
return_type = other.return_type->clone_type ();
// guard to prevent null dereference (only required if error state)
if (other.function_body != nullptr)
function_body = other.function_body->clone_block_expr ();
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
}
// Overloaded assignment operator to clone
Function &operator= (Function const &other)
{
VisItem::operator= (other);
function_name = other.function_name;
qualifiers = other.qualifiers;
function_params = other.function_params;
where_clause = other.where_clause;
// visibility = other.visibility->clone_visibility();
// outer_attrs = other.outer_attrs;
locus = other.locus;
// guard to prevent null dereference (always required)
if (other.return_type != nullptr)
return_type = other.return_type->clone_type ();
else
return_type = nullptr;
// guard to prevent null dereference (only required if error state)
if (other.function_body != nullptr)
function_body = other.function_body->clone_block_expr ();
else
function_body = nullptr;
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
return *this;
}
// move constructors
Function (Function &&other) = default;
Function &operator= (Function &&other) = default;
Location get_locus () const override final { return locus; }
void accept_vis (ASTVisitor &vis) override;
// Invalid if block is null, so base stripping on that.
void mark_for_strip () override { function_body = nullptr; }
bool is_marked_for_strip () const override
{
return function_body == nullptr;
}
std::vector<FunctionParam> &get_function_params () { return function_params; }
const std::vector<FunctionParam> &get_function_params () const
{
return function_params;
}
std::vector<std::unique_ptr<GenericParam>> &get_generic_params ()
{
return generic_params;
}
const std::vector<std::unique_ptr<GenericParam>> &get_generic_params () const
{
return generic_params;
}
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<BlockExpr> &get_definition ()
{
rust_assert (function_body != nullptr);
return function_body;
}
const FunctionQualifiers &get_qualifiers () const { return qualifiers; }
Identifier get_function_name () const { return function_name; }
// TODO: is this better? Or is a "vis_block" better?
WhereClause &get_where_clause () { return where_clause; }
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_return_type ()
{
rust_assert (has_return_type ());
return return_type;
}
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
Function *clone_item_impl () const override { return new Function (*this); }
/* Use covariance to implement clone function as returning this object
* rather than base */
Function *clone_inherent_impl_item_impl () const override
{
return new Function (*this);
}
/* Use covariance to implement clone function as returning this object
* rather than base */
Function *clone_trait_impl_item_impl () const override
{
return new Function (*this);
}
};
// Rust type alias (i.e. typedef) AST node
class TypeAlias : public VisItem, public TraitImplItem
{
Identifier new_type_name;
// bool has_generics;
// Generics generic_params;
std::vector<std::unique_ptr<GenericParam>> generic_params; // inlined
// bool has_where_clause;
WhereClause where_clause;
std::unique_ptr<Type> existing_type;
Location locus;
public:
std::string as_string () const override;
// Returns whether type alias has generic parameters.
bool has_generics () const { return !generic_params.empty (); }
// Returns whether type alias has a where clause.
bool has_where_clause () const { return !where_clause.is_empty (); }
// Mega-constructor with all possible fields
TypeAlias (Identifier new_type_name,
std::vector<std::unique_ptr<GenericParam>> generic_params,
WhereClause where_clause, std::unique_ptr<Type> existing_type,
Visibility vis, std::vector<Attribute> outer_attrs, Location locus)
: VisItem (std::move (vis), std::move (outer_attrs)),
new_type_name (std::move (new_type_name)),
generic_params (std::move (generic_params)),
where_clause (std::move (where_clause)),
existing_type (std::move (existing_type)), locus (locus)
{}
// Copy constructor
TypeAlias (TypeAlias const &other)
: VisItem (other), new_type_name (other.new_type_name),
where_clause (other.where_clause), locus (other.locus)
{
// guard to prevent null dereference (only required if error state)
if (other.existing_type != nullptr)
existing_type = other.existing_type->clone_type ();
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
}
// Overloaded assignment operator to clone
TypeAlias &operator= (TypeAlias const &other)
{
VisItem::operator= (other);
new_type_name = other.new_type_name;
where_clause = other.where_clause;
// visibility = other.visibility->clone_visibility();
// outer_attrs = other.outer_attrs;
locus = other.locus;
// guard to prevent null dereference (only required if error state)
if (other.existing_type != nullptr)
existing_type = other.existing_type->clone_type ();
else
existing_type = nullptr;
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
return *this;
}
// move constructors
TypeAlias (TypeAlias &&other) = default;
TypeAlias &operator= (TypeAlias &&other) = default;
Location get_locus () const override final { return locus; }
void accept_vis (ASTVisitor &vis) override;
// Invalid if existing type is null, so base stripping on that.
void mark_for_strip () override { existing_type = nullptr; }
bool is_marked_for_strip () const override
{
return existing_type == nullptr;
}
std::vector<std::unique_ptr<GenericParam>> &get_generic_params ()
{
return generic_params;
}
const std::vector<std::unique_ptr<GenericParam>> &get_generic_params () const
{
return generic_params;
}
// TODO: is this better? Or is a "vis_block" better?
WhereClause &get_where_clause () { return where_clause; }
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_type_aliased ()
{
rust_assert (existing_type != nullptr);
return existing_type;
}
Identifier get_new_type_name () const { return new_type_name; }
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
TypeAlias *clone_item_impl () const override { return new TypeAlias (*this); }
/* Use covariance to implement clone function as returning this object
* rather than base */
TypeAlias *clone_trait_impl_item_impl () const override
{
return new TypeAlias (*this);
}
};
// Rust base struct declaration AST node - abstract base class
class Struct : public VisItem
{
protected:
// protected to enable access by derived classes - allows better as_string
Identifier struct_name;
// bool has_generics;
// Generics generic_params;
std::vector<std::unique_ptr<GenericParam>> generic_params; // inlined
// bool has_where_clause;
WhereClause where_clause;
private:
Location locus;
public:
// Returns whether struct has generic parameters.
bool has_generics () const { return !generic_params.empty (); }
// Returns whether struct has a where clause.
bool has_where_clause () const { return !where_clause.is_empty (); }
Location get_locus () const override final { return locus; }
// Invalid if name is empty, so base stripping on that.
void mark_for_strip () override { struct_name = ""; }
bool is_marked_for_strip () const override { return struct_name.empty (); }
Identifier get_struct_name () const { return struct_name; }
std::vector<std::unique_ptr<GenericParam>> &get_generic_params ()
{
return generic_params;
}
const std::vector<std::unique_ptr<GenericParam>> &get_generic_params () const
{
return generic_params;
}
// TODO: is this better? Or is a "vis_block" better?
WhereClause &get_where_clause () { return where_clause; }
Identifier get_identifier () const { return struct_name; }
protected:
Struct (Identifier struct_name,
std::vector<std::unique_ptr<GenericParam>> generic_params,
WhereClause where_clause, Visibility vis, Location locus,
std::vector<Attribute> outer_attrs = std::vector<Attribute> ())
: VisItem (std::move (vis), std::move (outer_attrs)),
struct_name (std::move (struct_name)),
generic_params (std::move (generic_params)),
where_clause (std::move (where_clause)), locus (locus)
{}
// Copy constructor with vector clone
Struct (Struct const &other)
: VisItem (other), struct_name (other.struct_name),
where_clause (other.where_clause), locus (other.locus)
{
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
}
// Overloaded assignment operator with vector clone
Struct &operator= (Struct const &other)
{
VisItem::operator= (other);
struct_name = other.struct_name;
where_clause = other.where_clause;
locus = other.locus;
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
return *this;
}
// move constructors
Struct (Struct &&other) = default;
Struct &operator= (Struct &&other) = default;
};
// A single field in a struct
struct StructField
{
private:
// bool has_outer_attributes;
std::vector<Attribute> outer_attrs;
// bool has_visibility;
Visibility visibility;
Identifier field_name;
std::unique_ptr<Type> field_type;
NodeId node_id;
Location locus;
public:
// Returns whether struct field has any outer attributes.
bool has_outer_attributes () const { return !outer_attrs.empty (); }
// Returns whether struct field has a non-private (non-default) visibility.
bool has_visibility () const { return !visibility.is_error (); }
StructField (Identifier field_name, std::unique_ptr<Type> field_type,
Visibility vis, Location locus,
std::vector<Attribute> outer_attrs = std::vector<Attribute> ())
: outer_attrs (std::move (outer_attrs)), visibility (std::move (vis)),
field_name (std::move (field_name)), field_type (std::move (field_type)),
node_id (Analysis::Mappings::get ()->get_next_node_id ()), locus (locus)
{}
// Copy constructor
StructField (StructField const &other)
: outer_attrs (other.outer_attrs), visibility (other.visibility),
field_name (other.field_name), node_id (other.node_id),
locus (other.locus)
{
// guard to prevent null dereference
if (other.field_type != nullptr)
field_type = other.field_type->clone_type ();
}
~StructField () = default;
// Overloaded assignment operator to clone
StructField &operator= (StructField const &other)
{
field_name = other.field_name;
visibility = other.visibility;
outer_attrs = other.outer_attrs;
node_id = other.node_id;
// guard to prevent null dereference
if (other.field_type != nullptr)
field_type = other.field_type->clone_type ();
else
field_type = nullptr;
return *this;
}
// move constructors
StructField (StructField &&other) = default;
StructField &operator= (StructField &&other) = default;
// Returns whether struct field is in an error state.
bool is_error () const
{
return field_name.empty () && field_type == nullptr;
// this should really be an or since neither are allowed
}
// Creates an error state struct field.
static StructField create_error ()
{
return StructField (std::string (""), nullptr, Visibility::create_error (),
Location ());
}
std::string as_string () const;
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<Attribute> &get_outer_attrs () { return outer_attrs; }
const std::vector<Attribute> &get_outer_attrs () const { return outer_attrs; }
Identifier get_field_name () const { return field_name; }
Location get_locus () const { return locus; }
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_field_type ()
{
rust_assert (field_type != nullptr);
return field_type;
}
Visibility &get_visibility () { return visibility; }
const Visibility &get_visibility () const { return visibility; }
NodeId get_node_id () const { return node_id; }
};
// Rust struct declaration with true struct type AST node
class StructStruct : public Struct
{
std::vector<StructField> fields;
bool is_unit;
public:
std::string as_string () const override;
// Mega-constructor with all possible fields
StructStruct (std::vector<StructField> fields, Identifier struct_name,
std::vector<std::unique_ptr<GenericParam>> generic_params,
WhereClause where_clause, bool is_unit, Visibility vis,
std::vector<Attribute> outer_attrs, Location locus)
: Struct (std::move (struct_name), std::move (generic_params),
std::move (where_clause), std::move (vis), locus,
std::move (outer_attrs)),
fields (std::move (fields)), is_unit (is_unit)
{}
// Unit struct constructor
StructStruct (Identifier struct_name,
std::vector<std::unique_ptr<GenericParam>> generic_params,
WhereClause where_clause, Visibility vis,
std::vector<Attribute> outer_attrs, Location locus)
: Struct (std::move (struct_name), std::move (generic_params),
std::move (where_clause), std::move (vis), locus,
std::move (outer_attrs)),
is_unit (true)
{}
/* Returns whether the struct is a unit struct - struct defined without
* fields. This is important because it also means an implicit constant of its
* type is defined. */
bool is_unit_struct () const { return is_unit; }
void accept_vis (ASTVisitor &vis) override;
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<StructField> &get_fields () { return fields; }
const std::vector<StructField> &get_fields () const { return fields; }
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
StructStruct *clone_item_impl () const override
{
return new StructStruct (*this);
}
};
// A single field in a tuple
struct TupleField
{
private:
// bool has_outer_attributes;
std::vector<Attribute> outer_attrs;
// bool has_visibility;
Visibility visibility;
std::unique_ptr<Type> field_type;
NodeId node_id;
Location locus;
public:
// Returns whether tuple field has outer attributes.
bool has_outer_attributes () const { return !outer_attrs.empty (); }
/* Returns whether tuple field has a non-default visibility (i.e. a public
* one) */
bool has_visibility () const { return !visibility.is_error (); }
// Complete constructor
TupleField (std::unique_ptr<Type> field_type, Visibility vis, Location locus,
std::vector<Attribute> outer_attrs = std::vector<Attribute> ())
: outer_attrs (std::move (outer_attrs)), visibility (std::move (vis)),
field_type (std::move (field_type)),
node_id (Analysis::Mappings::get ()->get_next_node_id ()), locus (locus)
{}
// Copy constructor with clone
TupleField (TupleField const &other)
: outer_attrs (other.outer_attrs), visibility (other.visibility),
node_id (other.node_id), locus (other.locus)
{
// guard to prevent null dereference (only required if error)
if (other.field_type != nullptr)
field_type = other.field_type->clone_type ();
}
~TupleField () = default;
// Overloaded assignment operator to clone
TupleField &operator= (TupleField const &other)
{
visibility = other.visibility;
outer_attrs = other.outer_attrs;
node_id = other.node_id;
locus = other.locus;
// guard to prevent null dereference (only required if error)
if (other.field_type != nullptr)
field_type = other.field_type->clone_type ();
else
field_type = nullptr;
return *this;
}
// move constructors
TupleField (TupleField &&other) = default;
TupleField &operator= (TupleField &&other) = default;
// Returns whether tuple field is in an error state.
bool is_error () const { return field_type == nullptr; }
// Creates an error state tuple field.
static TupleField create_error ()
{
return TupleField (nullptr, Visibility::create_error (), Location ());
}
std::string as_string () const;
NodeId get_node_id () const { return node_id; }
Visibility &get_visibility () { return visibility; }
const Visibility &get_visibility () const { return visibility; }
Location get_locus () const { return locus; }
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<Attribute> &get_outer_attrs () { return outer_attrs; }
const std::vector<Attribute> &get_outer_attrs () const { return outer_attrs; }
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_field_type ()
{
rust_assert (field_type != nullptr);
return field_type;
}
};
// Rust tuple declared using struct keyword AST node
class TupleStruct : public Struct
{
std::vector<TupleField> fields;
public:
std::string as_string () const override;
// Mega-constructor with all possible fields
TupleStruct (std::vector<TupleField> fields, Identifier struct_name,
std::vector<std::unique_ptr<GenericParam>> generic_params,
WhereClause where_clause, Visibility vis,
std::vector<Attribute> outer_attrs, Location locus)
: Struct (std::move (struct_name), std::move (generic_params),
std::move (where_clause), std::move (vis), locus,
std::move (outer_attrs)),
fields (std::move (fields))
{}
void accept_vis (ASTVisitor &vis) override;
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<TupleField> &get_fields () { return fields; }
const std::vector<TupleField> &get_fields () const { return fields; }
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
TupleStruct *clone_item_impl () const override
{
return new TupleStruct (*this);
}
};
/* An item used in an "enum" tagged union - not abstract: base represents a
* name-only enum. EnumItems (variants) syntactically allow a Visibility
* annotation. */
class EnumItem : public VisItem
{
Identifier variant_name;
Location locus;
public:
virtual ~EnumItem () {}
EnumItem (Identifier variant_name, Visibility vis,
std::vector<Attribute> outer_attrs, Location locus)
: VisItem (std::move (vis), std::move (outer_attrs)),
variant_name (std::move (variant_name)), locus (locus)
{}
// Unique pointer custom clone function
std::unique_ptr<EnumItem> clone_enum_item () const
{
return std::unique_ptr<EnumItem> (clone_item_impl ());
}
virtual std::string as_string () const;
// not pure virtual as not abstract
virtual void accept_vis (ASTVisitor &vis);
Location get_locus () const { return locus; }
Identifier get_identifier () const { return variant_name; }
// Based on idea that name is never empty.
void mark_for_strip () { variant_name = ""; }
bool is_marked_for_strip () const { return variant_name.empty (); }
protected:
EnumItem *clone_item_impl () const override { return new EnumItem (*this); }
};
// A tuple item used in an "enum" tagged union
class EnumItemTuple : public EnumItem
{
// bool has_tuple_fields;
std::vector<TupleField> tuple_fields;
public:
// Returns whether tuple enum item has tuple fields.
bool has_tuple_fields () const { return !tuple_fields.empty (); }
EnumItemTuple (Identifier variant_name, Visibility vis,
std::vector<TupleField> tuple_fields,
std::vector<Attribute> outer_attrs, Location locus)
: EnumItem (std::move (variant_name), std::move (vis),
std::move (outer_attrs), locus),
tuple_fields (std::move (tuple_fields))
{}
std::string as_string () const override;
void accept_vis (ASTVisitor &vis) override;
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<TupleField> &get_tuple_fields () { return tuple_fields; }
const std::vector<TupleField> &get_tuple_fields () const
{
return tuple_fields;
}
protected:
// Clone function implementation as (not pure) virtual method
EnumItemTuple *clone_item_impl () const override
{
return new EnumItemTuple (*this);
}
};
// A struct item used in an "enum" tagged union
class EnumItemStruct : public EnumItem
{
// bool has_struct_fields;
std::vector<StructField> struct_fields;
public:
// Returns whether struct enum item has struct fields.
bool has_struct_fields () const { return !struct_fields.empty (); }
EnumItemStruct (Identifier variant_name, Visibility vis,
std::vector<StructField> struct_fields,
std::vector<Attribute> outer_attrs, Location locus)
: EnumItem (std::move (variant_name), std::move (vis),
std::move (outer_attrs), locus),
struct_fields (std::move (struct_fields))
{}
std::string as_string () const override;
void accept_vis (ASTVisitor &vis) override;
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<StructField> &get_struct_fields () { return struct_fields; }
const std::vector<StructField> &get_struct_fields () const
{
return struct_fields;
}
protected:
// Clone function implementation as (not pure) virtual method
EnumItemStruct *clone_item_impl () const override
{
return new EnumItemStruct (*this);
}
};
// A discriminant (numbered enum) item used in an "enum" tagged union
class EnumItemDiscriminant : public EnumItem
{
std::unique_ptr<Expr> expression;
public:
EnumItemDiscriminant (Identifier variant_name, Visibility vis,
std::unique_ptr<Expr> expr,
std::vector<Attribute> outer_attrs, Location locus)
: EnumItem (std::move (variant_name), std::move (vis),
std::move (outer_attrs), locus),
expression (std::move (expr))
{}
// Copy constructor with clone
EnumItemDiscriminant (EnumItemDiscriminant const &other)
: EnumItem (other), expression (other.expression->clone_expr ())
{}
// Overloaded assignment operator to clone
EnumItemDiscriminant &operator= (EnumItemDiscriminant const &other)
{
EnumItem::operator= (other);
expression = other.expression->clone_expr ();
// variant_name = other.variant_name;
// outer_attrs = other.outer_attrs;
return *this;
}
// move constructors
EnumItemDiscriminant (EnumItemDiscriminant &&other) = default;
EnumItemDiscriminant &operator= (EnumItemDiscriminant &&other) = default;
std::string as_string () const override;
void accept_vis (ASTVisitor &vis) override;
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Expr> &get_expr ()
{
rust_assert (expression != nullptr);
return expression;
}
protected:
// Clone function implementation as (not pure) virtual method
EnumItemDiscriminant *clone_item_impl () const override
{
return new EnumItemDiscriminant (*this);
}
};
// AST node for Rust "enum" - tagged union
class Enum : public VisItem
{
Identifier enum_name;
// bool has_generics;
// Generics generic_params;
std::vector<std::unique_ptr<GenericParam>> generic_params; // inlined
// bool has_where_clause;
WhereClause where_clause;
std::vector<std::unique_ptr<EnumItem>> items;
Location locus;
public:
std::string as_string () const override;
// Returns whether "enum" has generic parameters.
bool has_generics () const { return !generic_params.empty (); }
// Returns whether "enum" has a where clause.
bool has_where_clause () const { return !where_clause.is_empty (); }
/* Returns whether enum is a "zero-variant" (no possible variant) enum,
* which cannot be instantiated. */
bool is_zero_variant () const { return items.empty (); }
// Mega-constructor
Enum (Identifier enum_name, Visibility vis,
std::vector<std::unique_ptr<GenericParam>> generic_params,
WhereClause where_clause, std::vector<std::unique_ptr<EnumItem>> items,
std::vector<Attribute> outer_attrs, Location locus)
: VisItem (std::move (vis), std::move (outer_attrs)),
enum_name (std::move (enum_name)),
generic_params (std::move (generic_params)),
where_clause (std::move (where_clause)), items (std::move (items)),
locus (locus)
{}
// TODO: constructor with less arguments
// Copy constructor with vector clone
Enum (Enum const &other)
: VisItem (other), enum_name (other.enum_name),
where_clause (other.where_clause), locus (other.locus)
{
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
items.reserve (other.items.size ());
for (const auto &e : other.items)
items.push_back (e->clone_enum_item ());
}
// Overloaded assignment operator with vector clone
Enum &operator= (Enum const &other)
{
VisItem::operator= (other);
enum_name = other.enum_name;
where_clause = other.where_clause;
locus = other.locus;
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
items.reserve (other.items.size ());
for (const auto &e : other.items)
items.push_back (e->clone_enum_item ());
return *this;
}
// Move constructors
Enum (Enum &&other) = default;
Enum &operator= (Enum &&other) = default;
Location get_locus () const override final { return locus; }
void accept_vis (ASTVisitor &vis) override;
Identifier get_identifier () const { return enum_name; }
// Invalid if name is empty, so base stripping on that.
void mark_for_strip () override { enum_name = ""; }
bool is_marked_for_strip () const override { return enum_name.empty (); }
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<std::unique_ptr<EnumItem>> &get_variants () { return items; }
const std::vector<std::unique_ptr<EnumItem>> &get_variants () const
{
return items;
}
std::vector<std::unique_ptr<GenericParam>> &get_generic_params ()
{
return generic_params;
}
const std::vector<std::unique_ptr<GenericParam>> &get_generic_params () const
{
return generic_params;
}
// TODO: is this better? Or is a "vis_block" better?
WhereClause &get_where_clause () { return where_clause; }
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
Enum *clone_item_impl () const override { return new Enum (*this); }
};
// Rust untagged union used for C compat AST node
class Union : public VisItem
{
Identifier union_name;
// bool has_generics;
// Generics generic_params;
std::vector<std::unique_ptr<GenericParam>> generic_params; // inlined
// bool has_where_clause;
WhereClause where_clause;
std::vector<StructField> variants;
Location locus;
public:
std::string as_string () const override;
// Returns whether union has generic params.
bool has_generics () const { return !generic_params.empty (); }
// Returns whether union has where clause.
bool has_where_clause () const { return !where_clause.is_empty (); }
Union (Identifier union_name, Visibility vis,
std::vector<std::unique_ptr<GenericParam>> generic_params,
WhereClause where_clause, std::vector<StructField> variants,
std::vector<Attribute> outer_attrs, Location locus)
: VisItem (std::move (vis), std::move (outer_attrs)),
union_name (std::move (union_name)),
generic_params (std::move (generic_params)),
where_clause (std::move (where_clause)), variants (std::move (variants)),
locus (locus)
{}
// copy constructor with vector clone
Union (Union const &other)
: VisItem (other), union_name (other.union_name),
where_clause (other.where_clause), variants (other.variants),
locus (other.locus)
{
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
}
// overloaded assignment operator with vector clone
Union &operator= (Union const &other)
{
VisItem::operator= (other);
union_name = other.union_name;
where_clause = other.where_clause;
variants = other.variants;
locus = other.locus;
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
return *this;
}
// move constructors
Union (Union &&other) = default;
Union &operator= (Union &&other) = default;
Location get_locus () const override final { return locus; }
void accept_vis (ASTVisitor &vis) override;
// Invalid if name is empty, so base stripping on that.
void mark_for_strip () override { union_name = ""; }
bool is_marked_for_strip () const override { return union_name.empty (); }
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<StructField> &get_variants () { return variants; }
const std::vector<StructField> &get_variants () const { return variants; }
std::vector<std::unique_ptr<GenericParam>> &get_generic_params ()
{
return generic_params;
}
const std::vector<std::unique_ptr<GenericParam>> &get_generic_params () const
{
return generic_params;
}
// TODO: is this better? Or is a "vis_block" better?
WhereClause &get_where_clause () { return where_clause; }
Identifier get_identifier () const { return union_name; }
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
Union *clone_item_impl () const override { return new Union (*this); }
};
/* "Constant item" AST node - used for constant, compile-time expressions
* within module scope (like constexpr) */
class ConstantItem : public VisItem,
public InherentImplItem,
public TraitImplItem
{
// either has an identifier or "_" - maybe handle in identifier?
// bool identifier_is_underscore;
// if no identifier declared, identifier will be "_"
std::string identifier;
std::unique_ptr<Type> type;
std::unique_ptr<Expr> const_expr;
Location locus;
public:
std::string as_string () const override;
ConstantItem (std::string ident, Visibility vis, std::unique_ptr<Type> type,
std::unique_ptr<Expr> const_expr,
std::vector<Attribute> outer_attrs, Location locus)
: VisItem (std::move (vis), std::move (outer_attrs)),
identifier (std::move (ident)), type (std::move (type)),
const_expr (std::move (const_expr)), locus (locus)
{}
ConstantItem (ConstantItem const &other)
: VisItem (other), identifier (other.identifier), locus (other.locus)
{
// guard to prevent null dereference (only required if error state)
if (other.type != nullptr)
type = other.type->clone_type ();
if (other.const_expr != nullptr)
const_expr = other.const_expr->clone_expr ();
}
// Overload assignment operator to clone
ConstantItem &operator= (ConstantItem const &other)
{
VisItem::operator= (other);
identifier = other.identifier;
locus = other.locus;
// guard to prevent null dereference (only required if error state)
if (other.type != nullptr)
type = other.type->clone_type ();
else
type = nullptr;
if (other.const_expr != nullptr)
const_expr = other.const_expr->clone_expr ();
else
const_expr = nullptr;
return *this;
}
// move constructors
ConstantItem (ConstantItem &&other) = default;
ConstantItem &operator= (ConstantItem &&other) = default;
/* Returns whether constant item is an "unnamed" (wildcard underscore used
* as identifier) constant. */
bool is_unnamed () const { return identifier == "_"; }
Location get_locus () const override final { return locus; }
void accept_vis (ASTVisitor &vis) override;
// Invalid if type or expression are null, so base stripping on that.
void mark_for_strip () override
{
type = nullptr;
const_expr = nullptr;
}
bool is_marked_for_strip () const override
{
return type == nullptr && const_expr == nullptr;
}
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Expr> &get_expr ()
{
rust_assert (const_expr != nullptr);
return const_expr;
}
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_type ()
{
rust_assert (type != nullptr);
return type;
}
std::string get_identifier () const { return identifier; }
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
ConstantItem *clone_item_impl () const override
{
return new ConstantItem (*this);
}
/* Use covariance to implement clone function as returning this object
* rather than base */
ConstantItem *clone_inherent_impl_item_impl () const override
{
return new ConstantItem (*this);
}
/* Use covariance to implement clone function as returning this object
* rather than base */
ConstantItem *clone_trait_impl_item_impl () const override
{
return new ConstantItem (*this);
}
};
/* Static item AST node - items within module scope with fixed storage
* duration? */
class StaticItem : public VisItem
{
bool has_mut;
Identifier name;
std::unique_ptr<Type> type;
std::unique_ptr<Expr> expr;
Location locus;
public:
std::string as_string () const override;
StaticItem (Identifier name, bool is_mut, std::unique_ptr<Type> type,
std::unique_ptr<Expr> expr, Visibility vis,
std::vector<Attribute> outer_attrs, Location locus)
: VisItem (std::move (vis), std::move (outer_attrs)), has_mut (is_mut),
name (std::move (name)), type (std::move (type)), expr (std::move (expr)),
locus (locus)
{}
// Copy constructor with clone
StaticItem (StaticItem const &other)
: VisItem (other), has_mut (other.has_mut), name (other.name),
locus (other.locus)
{
// guard to prevent null dereference (only required if error state)
if (other.type != nullptr)
type = other.type->clone_type ();
if (other.expr != nullptr)
expr = other.expr->clone_expr ();
}
// Overloaded assignment operator to clone
StaticItem &operator= (StaticItem const &other)
{
VisItem::operator= (other);
name = other.name;
has_mut = other.has_mut;
locus = other.locus;
// guard to prevent null dereference (only required if error state)
if (other.type != nullptr)
type = other.type->clone_type ();
else
type = nullptr;
if (other.expr != nullptr)
expr = other.expr->clone_expr ();
else
expr = nullptr;
return *this;
}
// move constructors
StaticItem (StaticItem &&other) = default;
StaticItem &operator= (StaticItem &&other) = default;
Location get_locus () const override final { return locus; }
void accept_vis (ASTVisitor &vis) override;
// Invalid if type or expression are null, so base stripping on that.
void mark_for_strip () override
{
type = nullptr;
expr = nullptr;
}
bool is_marked_for_strip () const override
{
return type == nullptr && expr == nullptr;
}
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Expr> &get_expr ()
{
rust_assert (expr != nullptr);
return expr;
}
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_type ()
{
rust_assert (type != nullptr);
return type;
}
bool is_mutable () const { return has_mut; }
Identifier get_identifier () const { return name; }
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
StaticItem *clone_item_impl () const override
{
return new StaticItem (*this);
}
};
// Function declaration in traits
struct TraitFunctionDecl
{
private:
// TODO: delete and replace with Function decl item? no as no body in this.
FunctionQualifiers qualifiers;
Identifier function_name;
// bool has_generics;
// Generics generic_params;
std::vector<std::unique_ptr<GenericParam>> generic_params; // inlined
// bool has_params;
// FunctionParams function_params;
std::vector<FunctionParam> function_params; // inlined
// bool has_return_type;
std::unique_ptr<Type> return_type;
// bool has_where_clause;
WhereClause where_clause;
// should this store location info?
public:
// Returns whether function decl has generic parameters.
bool has_generics () const { return !generic_params.empty (); }
// Returns whether function decl has regular parameters.
bool has_params () const { return !function_params.empty (); }
// Returns whether function has return type (otherwise is void).
bool has_return_type () const { return return_type != nullptr; }
// Returns whether function has a where clause.
bool has_where_clause () const { return !where_clause.is_empty (); }
Identifier get_identifier () const { return function_name; }
// Mega-constructor
TraitFunctionDecl (Identifier function_name, FunctionQualifiers qualifiers,
std::vector<std::unique_ptr<GenericParam>> generic_params,
std::vector<FunctionParam> function_params,
std::unique_ptr<Type> return_type,
WhereClause where_clause)
: qualifiers (std::move (qualifiers)),
function_name (std::move (function_name)),
generic_params (std::move (generic_params)),
function_params (std::move (function_params)),
return_type (std::move (return_type)),
where_clause (std::move (where_clause))
{}
// Copy constructor with clone
TraitFunctionDecl (TraitFunctionDecl const &other)
: qualifiers (other.qualifiers), function_name (other.function_name),
function_params (other.function_params), where_clause (other.where_clause)
{
// guard to prevent nullptr dereference
if (other.return_type != nullptr)
return_type = other.return_type->clone_type ();
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
}
~TraitFunctionDecl () = default;
// Overloaded assignment operator with clone
TraitFunctionDecl &operator= (TraitFunctionDecl const &other)
{
function_name = other.function_name;
qualifiers = other.qualifiers;
function_params = other.function_params;
where_clause = other.where_clause;
// guard to prevent nullptr dereference
if (other.return_type != nullptr)
return_type = other.return_type->clone_type ();
else
return_type = nullptr;
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
return *this;
}
// move constructors
TraitFunctionDecl (TraitFunctionDecl &&other) = default;
TraitFunctionDecl &operator= (TraitFunctionDecl &&other) = default;
std::string as_string () const;
// Invalid if function name is empty, so base stripping on that.
void mark_for_strip () { function_name = ""; }
bool is_marked_for_strip () const { return function_name.empty (); }
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<FunctionParam> &get_function_params () { return function_params; }
const std::vector<FunctionParam> &get_function_params () const
{
return function_params;
}
std::vector<std::unique_ptr<GenericParam>> &get_generic_params ()
{
return generic_params;
}
const std::vector<std::unique_ptr<GenericParam>> &get_generic_params () const
{
return generic_params;
}
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_return_type () { return return_type; }
// TODO: is this better? Or is a "vis_block" better?
WhereClause &get_where_clause () { return where_clause; }
FunctionQualifiers get_qualifiers () { return qualifiers; }
};
// Actual trait item function declaration within traits
class TraitItemFunc : public TraitItem
{
std::vector<Attribute> outer_attrs;
TraitFunctionDecl decl;
std::unique_ptr<BlockExpr> block_expr;
public:
// Returns whether function has a definition or is just a declaration.
bool has_definition () const { return block_expr != nullptr; }
TraitItemFunc (TraitFunctionDecl decl, std::unique_ptr<BlockExpr> block_expr,
std::vector<Attribute> outer_attrs, Location locus)
: TraitItem (locus), outer_attrs (std::move (outer_attrs)),
decl (std::move (decl)), block_expr (std::move (block_expr))
{}
// Copy constructor with clone
TraitItemFunc (TraitItemFunc const &other)
: TraitItem (other.locus), outer_attrs (other.outer_attrs),
decl (other.decl)
{
node_id = other.node_id;
// guard to prevent null dereference
if (other.block_expr != nullptr)
block_expr = other.block_expr->clone_block_expr ();
}
// Overloaded assignment operator to clone
TraitItemFunc &operator= (TraitItemFunc const &other)
{
TraitItem::operator= (other);
outer_attrs = other.outer_attrs;
decl = other.decl;
locus = other.locus;
node_id = other.node_id;
// guard to prevent null dereference
if (other.block_expr != nullptr)
block_expr = other.block_expr->clone_block_expr ();
else
block_expr = nullptr;
return *this;
}
// move constructors
TraitItemFunc (TraitItemFunc &&other) = default;
TraitItemFunc &operator= (TraitItemFunc &&other) = default;
std::string as_string () const override;
void accept_vis (ASTVisitor &vis) override;
// Invalid if trait decl is empty, so base stripping on that.
void mark_for_strip () override { decl.mark_for_strip (); }
bool is_marked_for_strip () const override
{
return decl.is_marked_for_strip ();
}
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<Attribute> &get_outer_attrs () { return outer_attrs; }
const std::vector<Attribute> &get_outer_attrs () const { return outer_attrs; }
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<BlockExpr> &get_definition () { return block_expr; }
// TODO: is this better? Or is a "vis_block" better?
TraitFunctionDecl &get_trait_function_decl ()
{
// TODO: maybe only allow access if not marked for strip?
return decl;
}
protected:
// Clone function implementation as (not pure) virtual method
TraitItemFunc *clone_trait_item_impl () const override
{
return new TraitItemFunc (*this);
}
};
// Method declaration within traits
struct TraitMethodDecl
{
private:
// TODO: delete and replace with Function decl item? no as no body.
FunctionQualifiers qualifiers;
Identifier function_name;
// bool has_generics;
// Generics generic_params;
std::vector<std::unique_ptr<GenericParam>> generic_params; // inlined
SelfParam self_param;
// bool has_params;
// FunctionParams function_params;
std::vector<FunctionParam> function_params; // inlined
// bool has_return_type;
std::unique_ptr<Type> return_type;
// bool has_where_clause;
WhereClause where_clause;
// should this store location info?
public:
// Returns whether method decl has generic parameters.
bool has_generics () const { return !generic_params.empty (); }
// Returns whether method decl has regular parameters.
bool has_params () const { return !function_params.empty (); }
// Returns whether method has return type (otherwise is void).
bool has_return_type () const { return return_type != nullptr; }
// Returns whether method has a where clause.
bool has_where_clause () const { return !where_clause.is_empty (); }
Identifier get_identifier () const { return function_name; }
// Mega-constructor
TraitMethodDecl (Identifier function_name, FunctionQualifiers qualifiers,
std::vector<std::unique_ptr<GenericParam>> generic_params,
SelfParam self_param,
std::vector<FunctionParam> function_params,
std::unique_ptr<Type> return_type, WhereClause where_clause)
: qualifiers (std::move (qualifiers)),
function_name (std::move (function_name)),
generic_params (std::move (generic_params)),
self_param (std::move (self_param)),
function_params (std::move (function_params)),
return_type (std::move (return_type)),
where_clause (std::move (where_clause))
{}
// Copy constructor with clone
TraitMethodDecl (TraitMethodDecl const &other)
: qualifiers (other.qualifiers), function_name (other.function_name),
self_param (other.self_param), function_params (other.function_params),
where_clause (other.where_clause)
{
// guard to prevent nullptr dereference
if (other.return_type != nullptr)
return_type = other.return_type->clone_type ();
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
}
~TraitMethodDecl () = default;
// Overloaded assignment operator with clone
TraitMethodDecl &operator= (TraitMethodDecl const &other)
{
function_name = other.function_name;
qualifiers = other.qualifiers;
self_param = other.self_param;
function_params = other.function_params;
where_clause = other.where_clause;
// guard to prevent nullptr dereference
if (other.return_type != nullptr)
return_type = other.return_type->clone_type ();
else
return_type = nullptr;
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
return *this;
}
// move constructors
TraitMethodDecl (TraitMethodDecl &&other) = default;
TraitMethodDecl &operator= (TraitMethodDecl &&other) = default;
std::string as_string () const;
// Invalid if method name is empty, so base stripping on that.
void mark_for_strip () { function_name = ""; }
bool is_marked_for_strip () const { return function_name.empty (); }
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<FunctionParam> &get_function_params () { return function_params; }
const std::vector<FunctionParam> &get_function_params () const
{
return function_params;
}
std::vector<std::unique_ptr<GenericParam>> &get_generic_params ()
{
return generic_params;
}
const std::vector<std::unique_ptr<GenericParam>> &get_generic_params () const
{
return generic_params;
}
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_return_type () { return return_type; }
// TODO: is this better? Or is a "vis_block" better?
WhereClause &get_where_clause () { return where_clause; }
SelfParam &get_self_param () { return self_param; }
const SelfParam &get_self_param () const { return self_param; }
FunctionQualifiers get_qualifiers () { return qualifiers; }
};
// Actual trait item method declaration within traits
class TraitItemMethod : public TraitItem
{
std::vector<Attribute> outer_attrs;
TraitMethodDecl decl;
std::unique_ptr<BlockExpr> block_expr;
public:
// Returns whether method has a definition or is just a declaration.
bool has_definition () const { return block_expr != nullptr; }
TraitItemMethod (TraitMethodDecl decl, std::unique_ptr<BlockExpr> block_expr,
std::vector<Attribute> outer_attrs, Location locus)
: TraitItem (locus), outer_attrs (std::move (outer_attrs)),
decl (std::move (decl)), block_expr (std::move (block_expr))
{}
// Copy constructor with clone
TraitItemMethod (TraitItemMethod const &other)
: TraitItem (other.locus), outer_attrs (other.outer_attrs),
decl (other.decl)
{
node_id = other.node_id;
// guard to prevent null dereference
if (other.block_expr != nullptr)
block_expr = other.block_expr->clone_block_expr ();
}
// Overloaded assignment operator to clone
TraitItemMethod &operator= (TraitItemMethod const &other)
{
TraitItem::operator= (other);
outer_attrs = other.outer_attrs;
decl = other.decl;
locus = other.locus;
node_id = other.node_id;
// guard to prevent null dereference
if (other.block_expr != nullptr)
block_expr = other.block_expr->clone_block_expr ();
else
block_expr = nullptr;
return *this;
}
// move constructors
TraitItemMethod (TraitItemMethod &&other) = default;
TraitItemMethod &operator= (TraitItemMethod &&other) = default;
std::string as_string () const override;
void accept_vis (ASTVisitor &vis) override;
// Invalid if trait decl is empty, so base stripping on that.
void mark_for_strip () override { decl.mark_for_strip (); }
bool is_marked_for_strip () const override
{
return decl.is_marked_for_strip ();
}
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<Attribute> &get_outer_attrs () { return outer_attrs; }
const std::vector<Attribute> &get_outer_attrs () const { return outer_attrs; }
// TODO: is this better? Or is a "vis_block" better?
TraitMethodDecl &get_trait_method_decl ()
{
// TODO: maybe only allow access if not marked for strip?
return decl;
}
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<BlockExpr> &get_definition () { return block_expr; }
protected:
// Clone function implementation as (not pure) virtual method
TraitItemMethod *clone_trait_item_impl () const override
{
return new TraitItemMethod (*this);
}
};
// Constant item within traits
class TraitItemConst : public TraitItem
{
std::vector<Attribute> outer_attrs;
Identifier name;
std::unique_ptr<Type> type;
// bool has_expression;
std::unique_ptr<Expr> expr;
public:
// Whether the constant item has an associated expression.
bool has_expression () const { return expr != nullptr; }
TraitItemConst (Identifier name, std::unique_ptr<Type> type,
std::unique_ptr<Expr> expr,
std::vector<Attribute> outer_attrs, Location locus)
: TraitItem (locus), outer_attrs (std::move (outer_attrs)),
name (std::move (name)), type (std::move (type)), expr (std::move (expr))
{}
// Copy constructor with clones
TraitItemConst (TraitItemConst const &other)
: TraitItem (other.locus), outer_attrs (other.outer_attrs),
name (other.name)
{
node_id = other.node_id;
// guard to prevent null dereference
if (other.expr != nullptr)
expr = other.expr->clone_expr ();
// guard to prevent null dereference (only for error state)
if (other.type != nullptr)
type = other.type->clone_type ();
}
// Overloaded assignment operator to clone
TraitItemConst &operator= (TraitItemConst const &other)
{
TraitItem::operator= (other);
outer_attrs = other.outer_attrs;
name = other.name;
locus = other.locus;
node_id = other.node_id;
// guard to prevent null dereference
if (other.expr != nullptr)
expr = other.expr->clone_expr ();
else
expr = nullptr;
// guard to prevent null dereference (only for error state)
if (other.type != nullptr)
type = other.type->clone_type ();
else
type = nullptr;
return *this;
}
// move constructors
TraitItemConst (TraitItemConst &&other) = default;
TraitItemConst &operator= (TraitItemConst &&other) = default;
std::string as_string () const override;
Location get_locus () const { return locus; }
void accept_vis (ASTVisitor &vis) override;
// Invalid if type is null, so base stripping on that.
void mark_for_strip () override { type = nullptr; }
bool is_marked_for_strip () const override { return type == nullptr; }
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<Attribute> &get_outer_attrs () { return outer_attrs; }
const std::vector<Attribute> &get_outer_attrs () const { return outer_attrs; }
bool has_expr () const { return expr != nullptr; }
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Expr> &get_expr ()
{
rust_assert (has_expr ());
return expr;
}
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_type ()
{
rust_assert (type != nullptr);
return type;
}
Identifier get_identifier () const { return name; }
protected:
// Clone function implementation as (not pure) virtual method
TraitItemConst *clone_trait_item_impl () const override
{
return new TraitItemConst (*this);
}
};
// Type items within traits
class TraitItemType : public TraitItem
{
std::vector<Attribute> outer_attrs;
Identifier name;
// bool has_type_param_bounds;
// TypeParamBounds type_param_bounds;
std::vector<std::unique_ptr<TypeParamBound>>
type_param_bounds; // inlined form
public:
// Returns whether trait item type has type param bounds.
bool has_type_param_bounds () const { return !type_param_bounds.empty (); }
TraitItemType (Identifier name,
std::vector<std::unique_ptr<TypeParamBound>> type_param_bounds,
std::vector<Attribute> outer_attrs, Location locus)
: TraitItem (locus), outer_attrs (std::move (outer_attrs)),
name (std::move (name)), type_param_bounds (std::move (type_param_bounds))
{}
// Copy constructor with vector clone
TraitItemType (TraitItemType const &other)
: TraitItem (other.locus), outer_attrs (other.outer_attrs),
name (other.name)
{
node_id = other.node_id;
type_param_bounds.reserve (other.type_param_bounds.size ());
for (const auto &e : other.type_param_bounds)
type_param_bounds.push_back (e->clone_type_param_bound ());
}
// Overloaded assignment operator with vector clone
TraitItemType &operator= (TraitItemType const &other)
{
TraitItem::operator= (other);
outer_attrs = other.outer_attrs;
name = other.name;
locus = other.locus;
node_id = other.node_id;
type_param_bounds.reserve (other.type_param_bounds.size ());
for (const auto &e : other.type_param_bounds)
type_param_bounds.push_back (e->clone_type_param_bound ());
return *this;
}
// default move constructors
TraitItemType (TraitItemType &&other) = default;
TraitItemType &operator= (TraitItemType &&other) = default;
std::string as_string () const override;
void accept_vis (ASTVisitor &vis) override;
// Invalid if name is empty, so base stripping on that.
void mark_for_strip () override { name = ""; }
bool is_marked_for_strip () const override { return name.empty (); }
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<Attribute> &get_outer_attrs () { return outer_attrs; }
const std::vector<Attribute> &get_outer_attrs () const { return outer_attrs; }
// TODO: mutable getter seems kinda dodgy
std::vector<std::unique_ptr<TypeParamBound>> &get_type_param_bounds ()
{
return type_param_bounds;
}
const std::vector<std::unique_ptr<TypeParamBound>> &
get_type_param_bounds () const
{
return type_param_bounds;
}
Identifier get_identifier () const { return name; }
protected:
// Clone function implementation as (not pure) virtual method
TraitItemType *clone_trait_item_impl () const override
{
return new TraitItemType (*this);
}
};
// Rust trait item declaration AST node
class Trait : public VisItem
{
bool has_unsafe;
Identifier name;
std::vector<std::unique_ptr<GenericParam>> generic_params;
std::vector<std::unique_ptr<TypeParamBound>> type_param_bounds;
WhereClause where_clause;
std::vector<Attribute> inner_attrs;
std::vector<std::unique_ptr<TraitItem>> trait_items;
Location locus;
public:
std::string as_string () const override;
// Returns whether trait has generic parameters.
bool has_generics () const { return !generic_params.empty (); }
// Returns whether trait has type parameter bounds.
bool has_type_param_bounds () const { return !type_param_bounds.empty (); }
// Returns whether trait has where clause.
bool has_where_clause () const { return !where_clause.is_empty (); }
// Returns whether trait has trait items.
bool has_trait_items () const { return !trait_items.empty (); }
// Returns whether trait has inner attributes.
bool has_inner_attrs () const { return !inner_attrs.empty (); }
Identifier get_identifier () const { return name; }
bool is_unsafe () const { return has_unsafe; }
// Mega-constructor
Trait (Identifier name, bool is_unsafe,
std::vector<std::unique_ptr<GenericParam>> generic_params,
std::vector<std::unique_ptr<TypeParamBound>> type_param_bounds,
WhereClause where_clause,
std::vector<std::unique_ptr<TraitItem>> trait_items, Visibility vis,
std::vector<Attribute> outer_attrs, std::vector<Attribute> inner_attrs,
Location locus)
: VisItem (std::move (vis), std::move (outer_attrs)),
has_unsafe (is_unsafe), name (std::move (name)),
generic_params (std::move (generic_params)),
type_param_bounds (std::move (type_param_bounds)),
where_clause (std::move (where_clause)),
inner_attrs (std::move (inner_attrs)),
trait_items (std::move (trait_items)), locus (locus)
{}
// Copy constructor with vector clone
Trait (Trait const &other)
: VisItem (other), has_unsafe (other.has_unsafe), name (other.name),
where_clause (other.where_clause), inner_attrs (other.inner_attrs),
locus (other.locus)
{
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
type_param_bounds.reserve (other.type_param_bounds.size ());
for (const auto &e : other.type_param_bounds)
type_param_bounds.push_back (e->clone_type_param_bound ());
trait_items.reserve (other.trait_items.size ());
for (const auto &e : other.trait_items)
trait_items.push_back (e->clone_trait_item ());
}
// Overloaded assignment operator with vector clone
Trait &operator= (Trait const &other)
{
VisItem::operator= (other);
name = other.name;
has_unsafe = other.has_unsafe;
where_clause = other.where_clause;
inner_attrs = other.inner_attrs;
locus = other.locus;
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
type_param_bounds.reserve (other.type_param_bounds.size ());
for (const auto &e : other.type_param_bounds)
type_param_bounds.push_back (e->clone_type_param_bound ());
trait_items.reserve (other.trait_items.size ());
for (const auto &e : other.trait_items)
trait_items.push_back (e->clone_trait_item ());
return *this;
}
// default move constructors
Trait (Trait &&other) = default;
Trait &operator= (Trait &&other) = default;
Location get_locus () const override final { return locus; }
void accept_vis (ASTVisitor &vis) override;
// Invalid if trait name is empty, so base stripping on that.
void mark_for_strip () override { name = ""; }
bool is_marked_for_strip () const override { return name.empty (); }
// TODO: think of better way to do this
const std::vector<Attribute> &get_inner_attrs () const { return inner_attrs; }
std::vector<Attribute> &get_inner_attrs () { return inner_attrs; }
const std::vector<std::unique_ptr<TraitItem>> &get_trait_items () const
{
return trait_items;
}
std::vector<std::unique_ptr<TraitItem>> &get_trait_items ()
{
return trait_items;
}
std::vector<std::unique_ptr<GenericParam>> &get_generic_params ()
{
return generic_params;
}
const std::vector<std::unique_ptr<GenericParam>> &get_generic_params () const
{
return generic_params;
}
std::vector<std::unique_ptr<TypeParamBound>> &get_type_param_bounds ()
{
return type_param_bounds;
}
const std::vector<std::unique_ptr<TypeParamBound>> &
get_type_param_bounds () const
{
return type_param_bounds;
}
WhereClause &get_where_clause () { return where_clause; }
void insert_implict_self (std::unique_ptr<AST::GenericParam> &&param)
{
std::vector<std::unique_ptr<GenericParam>> new_list;
new_list.reserve (generic_params.size () + 1);
new_list.push_back (std::move (param));
for (auto &p : generic_params)
{
new_list.push_back (std::move (p));
}
generic_params = std::move (new_list);
}
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
Trait *clone_item_impl () const override { return new Trait (*this); }
};
// Implementation item declaration AST node - abstract base class
class Impl : public VisItem
{
// must be protected to allow subclasses to access them properly
protected:
// bool has_generics;
// Generics generic_params;
std::vector<std::unique_ptr<GenericParam>> generic_params; // inlined
std::unique_ptr<Type> trait_type;
// bool has_where_clause;
WhereClause where_clause;
// bool has_inner_attrs;
std::vector<Attribute> inner_attrs;
private:
// doesn't really need to be protected as write access probably not needed
Location locus;
public:
// Returns whether impl has generic parameters.
bool has_generics () const { return !generic_params.empty (); }
// Returns whether impl has where clause.
bool has_where_clause () const { return !where_clause.is_empty (); }
// Returns whether impl has inner attributes.
bool has_inner_attrs () const { return !inner_attrs.empty (); }
Location get_locus () const override final { return locus; }
// Invalid if trait type is null, so base stripping on that.
void mark_for_strip () override { trait_type = nullptr; }
bool is_marked_for_strip () const override { return trait_type == nullptr; }
// TODO: think of better way to do this
const std::vector<Attribute> &get_inner_attrs () const { return inner_attrs; }
std::vector<Attribute> &get_inner_attrs () { return inner_attrs; }
std::vector<std::unique_ptr<GenericParam>> &get_generic_params ()
{
return generic_params;
}
const std::vector<std::unique_ptr<GenericParam>> &get_generic_params () const
{
return generic_params;
}
// TODO: is this better? Or is a "vis_block" better?
WhereClause &get_where_clause () { return where_clause; }
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_type ()
{
rust_assert (trait_type != nullptr);
return trait_type;
}
protected:
// Mega-constructor
Impl (std::vector<std::unique_ptr<GenericParam>> generic_params,
std::unique_ptr<Type> trait_type, WhereClause where_clause,
Visibility vis, std::vector<Attribute> inner_attrs,
std::vector<Attribute> outer_attrs, Location locus)
: VisItem (std::move (vis), std::move (outer_attrs)),
generic_params (std::move (generic_params)),
trait_type (std::move (trait_type)),
where_clause (std::move (where_clause)),
inner_attrs (std::move (inner_attrs)), locus (locus)
{}
// Copy constructor
Impl (Impl const &other)
: VisItem (other), where_clause (other.where_clause),
inner_attrs (other.inner_attrs), locus (other.locus)
{
// guard to prevent null dereference (only required if error state)
if (other.trait_type != nullptr)
trait_type = other.trait_type->clone_type ();
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
}
// Assignment operator overload with cloning
Impl &operator= (Impl const &other)
{
VisItem::operator= (other);
where_clause = other.where_clause;
inner_attrs = other.inner_attrs;
locus = other.locus;
// guard to prevent null dereference (only required if error state)
if (other.trait_type != nullptr)
trait_type = other.trait_type->clone_type ();
else
trait_type = nullptr;
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
return *this;
}
// move constructors
Impl (Impl &&other) = default;
Impl &operator= (Impl &&other) = default;
};
// Regular "impl foo" impl block declaration AST node
class InherentImpl : public Impl
{
// bool has_impl_items;
std::vector<std::unique_ptr<InherentImplItem>> impl_items;
public:
std::string as_string () const override;
// Returns whether inherent impl block has inherent impl items.
bool has_impl_items () const { return !impl_items.empty (); }
// Mega-constructor
InherentImpl (std::vector<std::unique_ptr<InherentImplItem>> impl_items,
std::vector<std::unique_ptr<GenericParam>> generic_params,
std::unique_ptr<Type> trait_type, WhereClause where_clause,
Visibility vis, std::vector<Attribute> inner_attrs,
std::vector<Attribute> outer_attrs, Location locus)
: Impl (std::move (generic_params), std::move (trait_type),
std::move (where_clause), std::move (vis), std::move (inner_attrs),
std::move (outer_attrs), locus),
impl_items (std::move (impl_items))
{}
// Copy constructor with vector clone
InherentImpl (InherentImpl const &other) : Impl (other)
{
impl_items.reserve (other.impl_items.size ());
for (const auto &e : other.impl_items)
impl_items.push_back (e->clone_inherent_impl_item ());
}
// Overloaded assignment operator with vector clone
InherentImpl &operator= (InherentImpl const &other)
{
Impl::operator= (other);
impl_items.reserve (other.impl_items.size ());
for (const auto &e : other.impl_items)
impl_items.push_back (e->clone_inherent_impl_item ());
return *this;
}
// default move constructors
InherentImpl (InherentImpl &&other) = default;
InherentImpl &operator= (InherentImpl &&other) = default;
void accept_vis (ASTVisitor &vis) override;
// TODO: think of better way to do this
const std::vector<std::unique_ptr<InherentImplItem>> &get_impl_items () const
{
return impl_items;
}
std::vector<std::unique_ptr<InherentImplItem>> &get_impl_items ()
{
return impl_items;
}
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
InherentImpl *clone_item_impl () const override
{
return new InherentImpl (*this);
}
};
// The "impl footrait for foo" impl block declaration AST node
class TraitImpl : public Impl
{
bool has_unsafe;
bool has_exclam;
TypePath trait_path;
// bool has_impl_items;
std::vector<std::unique_ptr<TraitImplItem>> impl_items;
public:
std::string as_string () const override;
// Returns whether trait impl has impl items.
bool has_impl_items () const { return !impl_items.empty (); }
// Mega-constructor
TraitImpl (TypePath trait_path, bool is_unsafe, bool has_exclam,
std::vector<std::unique_ptr<TraitImplItem>> impl_items,
std::vector<std::unique_ptr<GenericParam>> generic_params,
std::unique_ptr<Type> trait_type, WhereClause where_clause,
Visibility vis, std::vector<Attribute> inner_attrs,
std::vector<Attribute> outer_attrs, Location locus)
: Impl (std::move (generic_params), std::move (trait_type),
std::move (where_clause), std::move (vis), std::move (inner_attrs),
std::move (outer_attrs), locus),
has_unsafe (is_unsafe), has_exclam (has_exclam),
trait_path (std::move (trait_path)), impl_items (std::move (impl_items))
{}
// Copy constructor with vector clone
TraitImpl (TraitImpl const &other)
: Impl (other), has_unsafe (other.has_unsafe),
has_exclam (other.has_exclam), trait_path (other.trait_path)
{
impl_items.reserve (other.impl_items.size ());
for (const auto &e : other.impl_items)
impl_items.push_back (e->clone_trait_impl_item ());
}
// Overloaded assignment operator with vector clone
TraitImpl &operator= (TraitImpl const &other)
{
Impl::operator= (other);
trait_path = other.trait_path;
has_unsafe = other.has_unsafe;
has_exclam = other.has_exclam;
impl_items.reserve (other.impl_items.size ());
for (const auto &e : other.impl_items)
impl_items.push_back (e->clone_trait_impl_item ());
return *this;
}
// move constructors
TraitImpl (TraitImpl &&other) = default;
TraitImpl &operator= (TraitImpl &&other) = default;
void accept_vis (ASTVisitor &vis) override;
bool is_unsafe () const { return has_unsafe; };
bool is_exclam () const { return has_exclam; }
// TODO: think of better way to do this
const std::vector<std::unique_ptr<TraitImplItem>> &get_impl_items () const
{
return impl_items;
}
std::vector<std::unique_ptr<TraitImplItem>> &get_impl_items ()
{
return impl_items;
}
// TODO: is this better? Or is a "vis_block" better?
TypePath &get_trait_path ()
{
// TODO: assert that trait path is not empty?
return trait_path;
}
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
TraitImpl *clone_item_impl () const override { return new TraitImpl (*this); }
};
#if 0
// Abstract base class for an item used inside an extern block
class ExternalItem
{
// bool has_outer_attrs;
std::vector<Attribute> outer_attrs;
// bool has_visibility;
Visibility visibility;
Identifier item_name;
Location locus;
public:
virtual ~ExternalItem () {}
/* TODO: spec syntax rules state that "MacroInvocationSemi" can be used as
* ExternalItem, but text body isn't so clear. Adding MacroInvocationSemi
* support would require a lot of refactoring. */
// Returns whether item has outer attributes.
bool has_outer_attrs () const { return !outer_attrs.empty (); }
// Returns whether item has non-default visibility.
bool has_visibility () const { return !visibility.is_error (); }
// Unique pointer custom clone function
std::unique_ptr<ExternalItem> clone_external_item () const
{
return std::unique_ptr<ExternalItem> (clone_external_item_impl ());
}
virtual std::string as_string () const;
Location get_locus () const override final { return locus; }
virtual void accept_vis (ASTVisitor &vis) = 0;
// TODO: make virtual? Would be more flexible.
// Based on idea that name should never be empty.
void mark_for_strip () { item_name = ""; };
bool is_marked_for_strip () const { return item_name.empty (); };
protected:
ExternalItem (Identifier item_name, Visibility vis,
std::vector<Attribute> outer_attrs, Location locus)
: outer_attrs (std::move (outer_attrs)), visibility (std::move (vis)),
item_name (std::move (item_name)), locus (locus)
{}
// Copy constructor
ExternalItem (ExternalItem const &other)
: outer_attrs (other.outer_attrs), visibility (other.visibility),
item_name (other.item_name), locus (other.locus)
{}
// Overloaded assignment operator to clone
ExternalItem &operator= (ExternalItem const &other)
{
item_name = other.item_name;
visibility = other.visibility;
outer_attrs = other.outer_attrs;
locus = other.locus;
return *this;
}
// move constructors
ExternalItem (ExternalItem &&other) = default;
ExternalItem &operator= (ExternalItem &&other) = default;
// Clone function implementation as pure virtual method
virtual ExternalItem *clone_external_item_impl () const = 0;
// possibly make this public if required
std::string get_item_name () const { return item_name; }
};
#endif
// A static item used in an extern block
class ExternalStaticItem : public ExternalItem
{
// bool has_outer_attrs;
std::vector<Attribute> outer_attrs;
// bool has_visibility;
Visibility visibility;
Identifier item_name;
Location locus;
bool has_mut;
std::unique_ptr<Type> item_type;
public:
ExternalStaticItem (Identifier item_name, std::unique_ptr<Type> item_type,
bool is_mut, Visibility vis,
std::vector<Attribute> outer_attrs, Location locus)
: ExternalItem (), outer_attrs (std::move (outer_attrs)),
visibility (std::move (vis)), item_name (std::move (item_name)),
locus (locus), has_mut (is_mut), item_type (std::move (item_type))
{}
// Copy constructor
ExternalStaticItem (ExternalStaticItem const &other)
: outer_attrs (other.outer_attrs), visibility (other.visibility),
item_name (other.item_name), locus (other.locus), has_mut (other.has_mut)
{
node_id = other.node_id;
// guard to prevent null dereference (only required if error state)
if (other.item_type != nullptr)
item_type = other.item_type->clone_type ();
}
// Overloaded assignment operator to clone
ExternalStaticItem &operator= (ExternalStaticItem const &other)
{
node_id = other.node_id;
outer_attrs = other.outer_attrs;
visibility = other.visibility;
item_name = other.item_name;
locus = other.locus;
has_mut = other.has_mut;
// guard to prevent null dereference (only required if error state)
if (other.item_type != nullptr)
item_type = other.item_type->clone_type ();
else
item_type = nullptr;
return *this;
}
// move constructors
ExternalStaticItem (ExternalStaticItem &&other) = default;
ExternalStaticItem &operator= (ExternalStaticItem &&other) = default;
std::string as_string () const override;
void accept_vis (ASTVisitor &vis) override;
// Returns whether item has outer attributes.
bool has_outer_attrs () const { return !outer_attrs.empty (); }
// Returns whether item has non-default visibility.
bool has_visibility () const { return !visibility.is_error (); }
Location get_locus () const { return locus; }
// Based on idea that type should never be null.
void mark_for_strip () override { item_type = nullptr; };
bool is_marked_for_strip () const override { return item_type == nullptr; };
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<Attribute> &get_outer_attrs () { return outer_attrs; }
const std::vector<Attribute> &get_outer_attrs () const { return outer_attrs; }
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_type ()
{
rust_assert (item_type != nullptr);
return item_type;
}
Identifier get_identifier () const { return item_name; }
const Visibility &get_visibility () const { return visibility; }
bool is_mut () const { return has_mut; }
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
ExternalStaticItem *clone_external_item_impl () const override
{
return new ExternalStaticItem (*this);
}
};
// A named function parameter used in external functions
struct NamedFunctionParam
{
private:
// bool has_name; // otherwise is _
std::string name;
std::unique_ptr<Type> param_type;
// seemingly new since writing this node
std::vector<Attribute> outer_attrs;
NodeId node_id;
Location locus;
public:
/* Returns whether the named function parameter has a name (i.e. name is not
* '_'). */
bool has_name () const { return name != "_"; }
bool has_outer_attrs () const { return !outer_attrs.empty (); }
// Returns whether the named function parameter is in an error state.
bool is_error () const
{
// also if identifier is "" but that is probably more costly to compute
return param_type == nullptr;
}
std::string get_name () const { return name; }
// Creates an error state named function parameter.
static NamedFunctionParam create_error ()
{
return NamedFunctionParam ("", nullptr, {}, Location ());
}
NamedFunctionParam (std::string name, std::unique_ptr<Type> param_type,
std::vector<Attribute> outer_attrs, Location locus)
: name (std::move (name)), param_type (std::move (param_type)),
outer_attrs (std::move (outer_attrs)),
node_id (Analysis::Mappings::get ()->get_next_node_id ()), locus (locus)
{}
// Copy constructor
NamedFunctionParam (NamedFunctionParam const &other)
: name (other.name), outer_attrs (other.outer_attrs)
{
node_id = other.node_id;
// guard to prevent null dereference (only required if error state)
if (other.param_type != nullptr)
param_type = other.param_type->clone_type ();
}
~NamedFunctionParam () = default;
// Overloaded assignment operator to clone
NamedFunctionParam &operator= (NamedFunctionParam const &other)
{
node_id = other.node_id;
name = other.name;
// has_name = other.has_name;
outer_attrs = other.outer_attrs;
// guard to prevent null dereference (only required if error state)
if (other.param_type != nullptr)
param_type = other.param_type->clone_type ();
else
param_type = nullptr;
return *this;
}
// move constructors
NamedFunctionParam (NamedFunctionParam &&other) = default;
NamedFunctionParam &operator= (NamedFunctionParam &&other) = default;
std::string as_string () const;
// Based on idea that nane should never be empty.
void mark_for_strip () { param_type = nullptr; };
bool is_marked_for_strip () const { return is_error (); };
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<Attribute> &get_outer_attrs () { return outer_attrs; }
const std::vector<Attribute> &get_outer_attrs () const { return outer_attrs; }
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_type ()
{
rust_assert (param_type != nullptr);
return param_type;
}
NodeId get_node_id () const { return node_id; }
};
// A function item used in an extern block
class ExternalFunctionItem : public ExternalItem
{
// bool has_outer_attrs;
std::vector<Attribute> outer_attrs;
// bool has_visibility;
Visibility visibility;
Identifier item_name;
Location locus;
// bool has_generics;
// Generics generic_params;
std::vector<std::unique_ptr<GenericParam>> generic_params; // inlined
// bool has_return_type;
// FunctionReturnType return_type;
std::unique_ptr<Type> return_type; // inlined
// bool has_where_clause;
WhereClause where_clause;
std::vector<NamedFunctionParam> function_params;
bool has_variadics;
std::vector<Attribute> variadic_outer_attrs;
public:
// Returns whether item has generic parameters.
bool has_generics () const { return !generic_params.empty (); }
// Returns whether item has a return type (otherwise void).
bool has_return_type () const { return return_type != nullptr; }
// Returns whether item has a where clause.
bool has_where_clause () const { return !where_clause.is_empty (); }
// Returns whether item has outer attributes.
bool has_outer_attrs () const { return !outer_attrs.empty (); }
// Returns whether item has non-default visibility.
bool has_visibility () const { return !visibility.is_error (); }
// Returns whether item has variadic parameters.
bool is_variadic () const { return has_variadics; }
// Returns whether item has outer attributes on its variadic parameters.
bool has_variadic_outer_attrs () const
{
return !variadic_outer_attrs.empty ();
}
Location get_locus () const { return locus; }
Visibility &get_visibility () { return visibility; }
const Visibility &get_visibility () const { return visibility; }
ExternalFunctionItem (
Identifier item_name,
std::vector<std::unique_ptr<GenericParam>> generic_params,
std::unique_ptr<Type> return_type, WhereClause where_clause,
std::vector<NamedFunctionParam> function_params, bool has_variadics,
std::vector<Attribute> variadic_outer_attrs, Visibility vis,
std::vector<Attribute> outer_attrs, Location locus)
: ExternalItem (), outer_attrs (std::move (outer_attrs)),
visibility (std::move (vis)), item_name (std::move (item_name)),
locus (locus), generic_params (std::move (generic_params)),
return_type (std::move (return_type)),
where_clause (std::move (where_clause)),
function_params (std::move (function_params)),
has_variadics (has_variadics),
variadic_outer_attrs (std::move (variadic_outer_attrs))
{
// TODO: assert that if has variadic outer attrs, then has_variadics is
// true?
}
// Copy constructor with clone
ExternalFunctionItem (ExternalFunctionItem const &other)
: outer_attrs (other.outer_attrs), visibility (other.visibility),
item_name (other.item_name), locus (other.locus),
where_clause (other.where_clause),
function_params (other.function_params),
has_variadics (other.has_variadics),
variadic_outer_attrs (other.variadic_outer_attrs)
{
node_id = other.node_id;
// guard to prevent null pointer dereference
if (other.return_type != nullptr)
return_type = other.return_type->clone_type ();
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
}
// Overloaded assignment operator with clone
ExternalFunctionItem &operator= (ExternalFunctionItem const &other)
{
outer_attrs = other.outer_attrs;
visibility = other.visibility;
item_name = other.item_name;
locus = other.locus;
where_clause = other.where_clause;
function_params = other.function_params;
has_variadics = other.has_variadics;
variadic_outer_attrs = other.variadic_outer_attrs;
node_id = other.node_id;
// guard to prevent null pointer dereference
if (other.return_type != nullptr)
return_type = other.return_type->clone_type ();
else
return_type = nullptr;
generic_params.reserve (other.generic_params.size ());
for (const auto &e : other.generic_params)
generic_params.push_back (e->clone_generic_param ());
return *this;
}
// move constructors
ExternalFunctionItem (ExternalFunctionItem &&other) = default;
ExternalFunctionItem &operator= (ExternalFunctionItem &&other) = default;
std::string as_string () const override;
void accept_vis (ASTVisitor &vis) override;
// Based on idea that nane should never be empty.
void mark_for_strip () override { item_name = ""; };
bool is_marked_for_strip () const override { return item_name.empty (); };
// TODO: this mutable getter seems really dodgy. Think up better way.
std::vector<Attribute> &get_outer_attrs () { return outer_attrs; }
const std::vector<Attribute> &get_outer_attrs () const { return outer_attrs; }
std::vector<NamedFunctionParam> &get_function_params ()
{
return function_params;
}
const std::vector<NamedFunctionParam> &get_function_params () const
{
return function_params;
}
std::vector<std::unique_ptr<GenericParam>> &get_generic_params ()
{
return generic_params;
}
const std::vector<std::unique_ptr<GenericParam>> &get_generic_params () const
{
return generic_params;
}
// TODO: is this better? Or is a "vis_block" better?
WhereClause &get_where_clause () { return where_clause; }
// TODO: is this better? Or is a "vis_block" better?
std::unique_ptr<Type> &get_return_type ()
{
rust_assert (has_return_type ());
return return_type;
}
Identifier get_identifier () const { return item_name; };
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
ExternalFunctionItem *clone_external_item_impl () const override
{
return new ExternalFunctionItem (*this);
}
};
// An extern block AST node
class ExternBlock : public VisItem
{
// bool has_abi;
std::string abi;
// bool has_inner_attrs;
std::vector<Attribute> inner_attrs;
// bool has_extern_items;
std::vector<std::unique_ptr<ExternalItem>> extern_items;
Location locus;
// TODO: find another way to store this to save memory?
bool marked_for_strip = false;
public:
std::string as_string () const override;
// Returns whether extern block has inner attributes.
bool has_inner_attrs () const { return !inner_attrs.empty (); }
// Returns whether extern block has extern items.
bool has_extern_items () const { return !extern_items.empty (); }
// Returns whether extern block has ABI name.
bool has_abi () const { return !abi.empty (); }
std::string get_abi () const { return abi; }
ExternBlock (std::string abi,
std::vector<std::unique_ptr<ExternalItem>> extern_items,
Visibility vis, std::vector<Attribute> inner_attrs,
std::vector<Attribute> outer_attrs, Location locus)
: VisItem (std::move (vis), std::move (outer_attrs)), abi (std::move (abi)),
inner_attrs (std::move (inner_attrs)),
extern_items (std::move (extern_items)), locus (locus)
{}
// Copy constructor with vector clone
ExternBlock (ExternBlock const &other)
: VisItem (other), abi (other.abi), inner_attrs (other.inner_attrs),
locus (other.locus), marked_for_strip (other.marked_for_strip)
{
extern_items.reserve (other.extern_items.size ());
for (const auto &e : other.extern_items)
extern_items.push_back (e->clone_external_item ());
}
// Overloaded assignment operator with vector clone
ExternBlock &operator= (ExternBlock const &other)
{
VisItem::operator= (other);
abi = other.abi;
inner_attrs = other.inner_attrs;
locus = other.locus;
marked_for_strip = other.marked_for_strip;
extern_items.reserve (other.extern_items.size ());
for (const auto &e : other.extern_items)
extern_items.push_back (e->clone_external_item ());
return *this;
}
// move constructors
ExternBlock (ExternBlock &&other) = default;
ExternBlock &operator= (ExternBlock &&other) = default;
Location get_locus () const override final { return locus; }
void accept_vis (ASTVisitor &vis) override;
// Can't think of any invalid invariants, so store boolean.
void mark_for_strip () override { marked_for_strip = true; }
bool is_marked_for_strip () const override { return marked_for_strip; }
// TODO: think of better way to do this
const std::vector<std::unique_ptr<ExternalItem>> &get_extern_items () const
{
return extern_items;
}
std::vector<std::unique_ptr<ExternalItem>> &get_extern_items ()
{
return extern_items;
}
// TODO: think of better way to do this
const std::vector<Attribute> &get_inner_attrs () const { return inner_attrs; }
std::vector<Attribute> &get_inner_attrs () { return inner_attrs; }
protected:
/* Use covariance to implement clone function as returning this object
* rather than base */
ExternBlock *clone_item_impl () const override
{
return new ExternBlock (*this);
}
};
class MacroRulesDefinition;
} // namespace AST
} // namespace Rust
#endif