blob: af50b7c648dfe1d68f6866d3b6891c7c2628b1cf [file] [log] [blame]
/* -----------------------------------------------------------------------
ffi.c
CSKY Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* ffi_prep_args is called by the assembly routine once stack space
has been allocated for the function's arguments
*/
void ffi_prep_args(char *stack, extended_cif *ecif)
{
register unsigned int i;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
if ( ecif->cif->flags == FFI_TYPE_STRUCT ) {
*(void **) argp = ecif->rvalue;
argp += 4;
}
p_argv = ecif->avalue;
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
(i != 0);
i--, p_arg++)
{
size_t z;
size_t alignment;
/* Align if necessary */
alignment = (*p_arg)->alignment;
#ifdef __CSKYABIV1__
/*
* Adapt ABIV1 bug.
* If struct's size is larger than 8 bytes, then it always alignment as 4 bytes.
*/
if (((*p_arg)->type == FFI_TYPE_STRUCT) && ((*p_arg)->size > 8) && (alignment == 8)) {
alignment = 4;
}
#endif
if ((alignment - 1) & (unsigned) argp) {
argp = (char *) FFI_ALIGN(argp, alignment);
}
if ((*p_arg)->type == FFI_TYPE_STRUCT)
argp = (char *) FFI_ALIGN(argp, 4);
z = (*p_arg)->size;
if (z < sizeof(int))
{
z = sizeof(int);
switch ((*p_arg)->type)
{
case FFI_TYPE_SINT8:
*(signed int *) argp = (signed int)*(SINT8 *)(* p_argv);
break;
case FFI_TYPE_UINT8:
*(unsigned int *) argp = (unsigned int)*(UINT8 *)(* p_argv);
break;
case FFI_TYPE_SINT16:
*(signed int *) argp = (signed int)*(SINT16 *)(* p_argv);
break;
case FFI_TYPE_UINT16:
*(unsigned int *) argp = (unsigned int)*(UINT16 *)(* p_argv);
break;
case FFI_TYPE_STRUCT:
#ifdef __CSKYBE__
memcpy((argp + 4 - (*p_arg)->size), *p_argv, (*p_arg)->size);
#else
memcpy(argp, *p_argv, (*p_arg)->size);
#endif
break;
default:
FFI_ASSERT(0);
}
}
else if (z == sizeof(int))
{
*(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv);
}
else
{
memcpy(argp, *p_argv, z);
}
p_argv++;
argp += z;
}
return;
}
/* Perform machine dependent cif processing */
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
{
/* Round the stack up to a multiple of 8 bytes. This isn't needed
everywhere, but it is on some platforms, and it doesn't hcsky anything
when it isn't needed. */
cif->bytes = (cif->bytes + 7) & ~7;
/* Set the return type flag */
switch (cif->rtype->type)
{
case FFI_TYPE_DOUBLE:
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
cif->flags = (unsigned) FFI_TYPE_SINT64;
break;
case FFI_TYPE_STRUCT:
if (cif->rtype->size <= 4)
/* A Composite Type not larger than 4 bytes is returned in r0. */
cif->flags = (unsigned)FFI_TYPE_INT;
else if (cif->rtype->size <= 8)
/* A Composite Type not larger than 8 bytes is returned in r0, r1. */
cif->flags = (unsigned)FFI_TYPE_SINT64;
else
/* A Composite Type larger than 8 bytes, or whose size cannot
be determined statically ... is stored in memory at an
address passed [in r0]. */
cif->flags = (unsigned)FFI_TYPE_STRUCT;
break;
default:
cif->flags = FFI_TYPE_INT;
break;
}
return FFI_OK;
}
/* Perform machine dependent cif processing for variadic calls */
ffi_status ffi_prep_cif_machdep_var(ffi_cif *cif,
unsigned int nfixedargs,
unsigned int ntotalargs)
{
return ffi_prep_cif_machdep(cif);
}
/* Prototypes for assembly functions, in sysv.S */
extern void ffi_call_SYSV (void (*fn)(void), extended_cif *, unsigned, unsigned, unsigned *);
void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
extended_cif ecif;
int small_struct = (cif->flags == FFI_TYPE_INT
&& cif->rtype->type == FFI_TYPE_STRUCT);
ecif.cif = cif;
ecif.avalue = avalue;
unsigned int temp;
/* If the return value is a struct and we don't have a return */
/* value address then we need to make one */
if ((rvalue == NULL) &&
(cif->flags == FFI_TYPE_STRUCT))
{
ecif.rvalue = alloca(cif->rtype->size);
}
else if (small_struct)
ecif.rvalue = &temp;
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
case FFI_SYSV:
ffi_call_SYSV (fn, &ecif, cif->bytes, cif->flags, ecif.rvalue);
break;
default:
FFI_ASSERT(0);
break;
}
if (small_struct)
#ifdef __CSKYBE__
memcpy (rvalue, ((unsigned char *)&temp + (4 - cif->rtype->size)), cif->rtype->size);
#else
memcpy (rvalue, &temp, cif->rtype->size);
#endif
}
/** private members **/
static void ffi_prep_incoming_args_SYSV (char *stack, void **ret,
void** args, ffi_cif* cif);
void ffi_closure_SYSV (ffi_closure *);
/* This function is jumped to by the trampoline */
unsigned int
ffi_closure_SYSV_inner (closure, respp, args)
ffi_closure *closure;
void **respp;
void *args;
{
// our various things...
ffi_cif *cif;
void **arg_area;
cif = closure->cif;
arg_area = (void**) alloca (cif->nargs * sizeof (void*));
/* this call will initialize ARG_AREA, such that each
* element in that array points to the corresponding
* value on the stack; and if the function returns
* a structure, it will re-set RESP to point to the
* structure return address. */
ffi_prep_incoming_args_SYSV(args, respp, arg_area, cif);
(closure->fun) (cif, *respp, arg_area, closure->user_data);
#ifdef __CSKYBE__
if (cif->flags == FFI_TYPE_INT && cif->rtype->type == FFI_TYPE_STRUCT) {
unsigned int tmp = 0;
tmp = *(unsigned int *)(*respp);
*(unsigned int *)(*respp) = (tmp >> ((4 - cif->rtype->size) * 8));
}
#endif
return cif->flags;
}
static void
ffi_prep_incoming_args_SYSV(char *stack, void **rvalue,
void **avalue, ffi_cif *cif)
{
register unsigned int i;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
if ( cif->flags == FFI_TYPE_STRUCT ) {
*rvalue = *(void **) argp;
argp += 4;
}
p_argv = avalue;
for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
{
size_t z;
size_t alignment;
alignment = (*p_arg)->alignment;
if (alignment < 4)
alignment = 4;
#ifdef __CSKYABIV1__
/*
* Adapt ABIV1 bug.
* If struct's size is larger than 8 bytes, then it always alignment as 4 bytes.
*/
if (((*p_arg)->type == FFI_TYPE_STRUCT) && ((*p_arg)->size > 8) && (alignment == 8)) {
alignment = 4;
}
#endif
/* Align if necessary */
if ((alignment - 1) & (unsigned) argp) {
argp = (char *) FFI_ALIGN(argp, alignment);
}
z = (*p_arg)->size;
#ifdef __CSKYBE__
unsigned int tmp = 0;
if ((*p_arg)->size < 4) {
tmp = *(unsigned int *)argp;
memcpy(argp, ((unsigned char *)&tmp + (4 - (*p_arg)->size)), (*p_arg)->size);
}
#else
/* because we're little endian, this is what it turns into. */
#endif
*p_argv = (void*) argp;
p_argv++;
argp += z;
}
return;
}
/* How to make a trampoline. */
extern unsigned char ffi_csky_trampoline[TRAMPOLINE_SIZE];
/*
* Since there is no __clear_cache in libgcc in csky toolchain.
* define ffi_csky_cacheflush in sysv.S.
* void ffi_csky_cacheflush(uint32 start_addr, uint32 size, int cache)
*/
#define CACHEFLUSH_IN_FFI 1
#if CACHEFLUSH_IN_FFI
extern void ffi_csky_cacheflush(unsigned char *__tramp, unsigned int k,
int i);
#define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX) \
({ unsigned char *__tramp = (unsigned char*)(TRAMP); \
unsigned int __fun = (unsigned int)(FUN); \
unsigned int __ctx = (unsigned int)(CTX); \
unsigned char *insns = (unsigned char *)(CTX); \
memcpy (__tramp, ffi_csky_trampoline, TRAMPOLINE_SIZE); \
*(unsigned int*) &__tramp[TRAMPOLINE_SIZE] = __ctx; \
*(unsigned int*) &__tramp[TRAMPOLINE_SIZE + 4] = __fun; \
ffi_csky_cacheflush(&__tramp[0], TRAMPOLINE_SIZE, 3); /* Clear data mapping. */ \
ffi_csky_cacheflush(insns, TRAMPOLINE_SIZE, 3); \
/* Clear instruction \
mapping. */ \
})
#else
#define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX) \
({ unsigned char *__tramp = (unsigned char*)(TRAMP); \
unsigned int __fun = (unsigned int)(FUN); \
unsigned int __ctx = (unsigned int)(CTX); \
unsigned char *insns = (unsigned char *)(CTX); \
memcpy (__tramp, ffi_csky_trampoline, TRAMPOLINE_SIZE); \
*(unsigned int*) &__tramp[TRAMPOLINE_SIZE] = __ctx; \
*(unsigned int*) &__tramp[TRAMPOLINE_SIZE + 4] = __fun; \
__clear_cache((&__tramp[0]), (&__tramp[TRAMPOLINE_SIZE-1])); /* Clear data mapping. */ \
__clear_cache(insns, insns + TRAMPOLINE_SIZE); \
/* Clear instruction \
mapping. */ \
})
#endif
/* the cif must already be prep'ed */
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
void *codeloc)
{
void (*closure_func)(ffi_closure*) = NULL;
if (cif->abi == FFI_SYSV)
closure_func = &ffi_closure_SYSV;
else
return FFI_BAD_ABI;
FFI_INIT_TRAMPOLINE (&closure->tramp[0], \
closure_func, \
codeloc);
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}