blob: 9335ee76deb5b383f77da68a2aef2a071e632741 [file] [log] [blame]
// Definition of the public simd interfaces -*- C++ -*-
// Copyright (C) 2020-2021 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
#ifndef _GLIBCXX_EXPERIMENTAL_SIMD_H
#define _GLIBCXX_EXPERIMENTAL_SIMD_H
#if __cplusplus >= 201703L
#include "simd_detail.h"
#include "numeric_traits.h"
#include <bit>
#include <bitset>
#ifdef _GLIBCXX_DEBUG_UB
#include <cstdio> // for stderr
#endif
#include <cstring>
#include <functional>
#include <iosfwd>
#include <utility>
#if _GLIBCXX_SIMD_X86INTRIN
#include <x86intrin.h>
#elif _GLIBCXX_SIMD_HAVE_NEON
#include <arm_neon.h>
#endif
/** @ingroup ts_simd
* @{
*/
/* There are several closely related types, with the following naming
* convention:
* _Tp: vectorizable (arithmetic) type (or any type)
* _TV: __vector_type_t<_Tp, _Np>
* _TW: _SimdWrapper<_Tp, _Np>
* _TI: __intrinsic_type_t<_Tp, _Np>
* _TVT: _VectorTraits<_TV> or _VectorTraits<_TW>
* If one additional type is needed use _U instead of _T.
* Otherwise use _T\d, _TV\d, _TW\d, TI\d, _TVT\d.
*
* More naming conventions:
* _Ap or _Abi: An ABI tag from the simd_abi namespace
* _Ip: often used for integer types with sizeof(_Ip) == sizeof(_Tp),
* _IV, _IW as for _TV, _TW
* _Np: number of elements (not bytes)
* _Bytes: number of bytes
*
* Variable names:
* __k: mask object (vector- or bitmask)
*/
_GLIBCXX_SIMD_BEGIN_NAMESPACE
#if !_GLIBCXX_SIMD_X86INTRIN
using __m128 [[__gnu__::__vector_size__(16)]] = float;
using __m128d [[__gnu__::__vector_size__(16)]] = double;
using __m128i [[__gnu__::__vector_size__(16)]] = long long;
using __m256 [[__gnu__::__vector_size__(32)]] = float;
using __m256d [[__gnu__::__vector_size__(32)]] = double;
using __m256i [[__gnu__::__vector_size__(32)]] = long long;
using __m512 [[__gnu__::__vector_size__(64)]] = float;
using __m512d [[__gnu__::__vector_size__(64)]] = double;
using __m512i [[__gnu__::__vector_size__(64)]] = long long;
#endif
namespace simd_abi {
// simd_abi forward declarations {{{
// implementation details:
struct _Scalar;
template <int _Np>
struct _Fixed;
// There are two major ABIs that appear on different architectures.
// Both have non-boolean values packed into an N Byte register
// -> #elements = N / sizeof(T)
// Masks differ:
// 1. Use value vector registers for masks (all 0 or all 1)
// 2. Use bitmasks (mask registers) with one bit per value in the corresponding
// value vector
//
// Both can be partially used, masking off the rest when doing horizontal
// operations or operations that can trap (e.g. FP_INVALID or integer division
// by 0). This is encoded as the number of used bytes.
template <int _UsedBytes>
struct _VecBuiltin;
template <int _UsedBytes>
struct _VecBltnBtmsk;
template <typename _Tp, int _Np>
using _VecN = _VecBuiltin<sizeof(_Tp) * _Np>;
template <int _UsedBytes = 16>
using _Sse = _VecBuiltin<_UsedBytes>;
template <int _UsedBytes = 32>
using _Avx = _VecBuiltin<_UsedBytes>;
template <int _UsedBytes = 64>
using _Avx512 = _VecBltnBtmsk<_UsedBytes>;
template <int _UsedBytes = 16>
using _Neon = _VecBuiltin<_UsedBytes>;
// implementation-defined:
using __sse = _Sse<>;
using __avx = _Avx<>;
using __avx512 = _Avx512<>;
using __neon = _Neon<>;
using __neon128 = _Neon<16>;
using __neon64 = _Neon<8>;
// standard:
template <typename _Tp, size_t _Np, typename...>
struct deduce;
template <int _Np>
using fixed_size = _Fixed<_Np>;
using scalar = _Scalar;
// }}}
} // namespace simd_abi
// forward declarations is_simd(_mask), simd(_mask), simd_size {{{
template <typename _Tp>
struct is_simd;
template <typename _Tp>
struct is_simd_mask;
template <typename _Tp, typename _Abi>
class simd;
template <typename _Tp, typename _Abi>
class simd_mask;
template <typename _Tp, typename _Abi>
struct simd_size;
// }}}
// load/store flags {{{
struct element_aligned_tag
{
template <typename _Tp, typename _Up = typename _Tp::value_type>
static constexpr size_t _S_alignment = alignof(_Up);
template <typename _Tp, typename _Up>
_GLIBCXX_SIMD_INTRINSIC static constexpr _Up*
_S_apply(_Up* __ptr)
{ return __ptr; }
};
struct vector_aligned_tag
{
template <typename _Tp, typename _Up = typename _Tp::value_type>
static constexpr size_t _S_alignment
= std::__bit_ceil(sizeof(_Up) * _Tp::size());
template <typename _Tp, typename _Up>
_GLIBCXX_SIMD_INTRINSIC static constexpr _Up*
_S_apply(_Up* __ptr)
{
return static_cast<_Up*>(
__builtin_assume_aligned(__ptr, _S_alignment<_Tp, _Up>));
}
};
template <size_t _Np> struct overaligned_tag
{
template <typename _Tp, typename _Up = typename _Tp::value_type>
static constexpr size_t _S_alignment = _Np;
template <typename _Tp, typename _Up>
_GLIBCXX_SIMD_INTRINSIC static constexpr _Up*
_S_apply(_Up* __ptr)
{ return static_cast<_Up*>(__builtin_assume_aligned(__ptr, _Np)); }
};
inline constexpr element_aligned_tag element_aligned = {};
inline constexpr vector_aligned_tag vector_aligned = {};
template <size_t _Np>
inline constexpr overaligned_tag<_Np> overaligned = {};
// }}}
template <size_t _Xp>
using _SizeConstant = integral_constant<size_t, _Xp>;
namespace __detail
{
struct _Minimum
{
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC constexpr
_Tp
operator()(_Tp __a, _Tp __b) const
{
using std::min;
return min(__a, __b);
}
};
struct _Maximum
{
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC constexpr
_Tp
operator()(_Tp __a, _Tp __b) const
{
using std::max;
return max(__a, __b);
}
};
} // namespace __detail
// unrolled/pack execution helpers
// __execute_n_times{{{
template <typename _Fp, size_t... _I>
[[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
void
__execute_on_index_sequence(_Fp&& __f, index_sequence<_I...>)
{ ((void)__f(_SizeConstant<_I>()), ...); }
template <typename _Fp>
_GLIBCXX_SIMD_INTRINSIC constexpr void
__execute_on_index_sequence(_Fp&&, index_sequence<>)
{ }
template <size_t _Np, typename _Fp>
_GLIBCXX_SIMD_INTRINSIC constexpr void
__execute_n_times(_Fp&& __f)
{
__execute_on_index_sequence(static_cast<_Fp&&>(__f),
make_index_sequence<_Np>{});
}
// }}}
// __generate_from_n_evaluations{{{
template <typename _R, typename _Fp, size_t... _I>
[[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
_R
__execute_on_index_sequence_with_return(_Fp&& __f, index_sequence<_I...>)
{ return _R{__f(_SizeConstant<_I>())...}; }
template <size_t _Np, typename _R, typename _Fp>
_GLIBCXX_SIMD_INTRINSIC constexpr _R
__generate_from_n_evaluations(_Fp&& __f)
{
return __execute_on_index_sequence_with_return<_R>(
static_cast<_Fp&&>(__f), make_index_sequence<_Np>{});
}
// }}}
// __call_with_n_evaluations{{{
template <size_t... _I, typename _F0, typename _FArgs>
[[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
auto
__call_with_n_evaluations(index_sequence<_I...>, _F0&& __f0, _FArgs&& __fargs)
{ return __f0(__fargs(_SizeConstant<_I>())...); }
template <size_t _Np, typename _F0, typename _FArgs>
_GLIBCXX_SIMD_INTRINSIC constexpr auto
__call_with_n_evaluations(_F0&& __f0, _FArgs&& __fargs)
{
return __call_with_n_evaluations(make_index_sequence<_Np>{},
static_cast<_F0&&>(__f0),
static_cast<_FArgs&&>(__fargs));
}
// }}}
// __call_with_subscripts{{{
template <size_t _First = 0, size_t... _It, typename _Tp, typename _Fp>
[[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
auto
__call_with_subscripts(_Tp&& __x, index_sequence<_It...>, _Fp&& __fun)
{ return __fun(__x[_First + _It]...); }
template <size_t _Np, size_t _First = 0, typename _Tp, typename _Fp>
_GLIBCXX_SIMD_INTRINSIC constexpr auto
__call_with_subscripts(_Tp&& __x, _Fp&& __fun)
{
return __call_with_subscripts<_First>(static_cast<_Tp&&>(__x),
make_index_sequence<_Np>(),
static_cast<_Fp&&>(__fun));
}
// }}}
// vvv ---- type traits ---- vvv
// integer type aliases{{{
using _UChar = unsigned char;
using _SChar = signed char;
using _UShort = unsigned short;
using _UInt = unsigned int;
using _ULong = unsigned long;
using _ULLong = unsigned long long;
using _LLong = long long;
//}}}
// __first_of_pack{{{
template <typename _T0, typename...>
struct __first_of_pack
{ using type = _T0; };
template <typename... _Ts>
using __first_of_pack_t = typename __first_of_pack<_Ts...>::type;
//}}}
// __value_type_or_identity_t {{{
template <typename _Tp>
typename _Tp::value_type
__value_type_or_identity_impl(int);
template <typename _Tp>
_Tp
__value_type_or_identity_impl(float);
template <typename _Tp>
using __value_type_or_identity_t
= decltype(__value_type_or_identity_impl<_Tp>(int()));
// }}}
// __is_vectorizable {{{
template <typename _Tp>
struct __is_vectorizable : public is_arithmetic<_Tp> {};
template <>
struct __is_vectorizable<bool> : public false_type {};
template <typename _Tp>
inline constexpr bool __is_vectorizable_v = __is_vectorizable<_Tp>::value;
// Deduces to a vectorizable type
template <typename _Tp, typename = enable_if_t<__is_vectorizable_v<_Tp>>>
using _Vectorizable = _Tp;
// }}}
// _LoadStorePtr / __is_possible_loadstore_conversion {{{
template <typename _Ptr, typename _ValueType>
struct __is_possible_loadstore_conversion
: conjunction<__is_vectorizable<_Ptr>, __is_vectorizable<_ValueType>> {};
template <>
struct __is_possible_loadstore_conversion<bool, bool> : true_type {};
// Deduces to a type allowed for load/store with the given value type.
template <typename _Ptr, typename _ValueType,
typename = enable_if_t<
__is_possible_loadstore_conversion<_Ptr, _ValueType>::value>>
using _LoadStorePtr = _Ptr;
// }}}
// __is_bitmask{{{
template <typename _Tp, typename = void_t<>>
struct __is_bitmask : false_type {};
template <typename _Tp>
inline constexpr bool __is_bitmask_v = __is_bitmask<_Tp>::value;
// the __mmaskXX case:
template <typename _Tp>
struct __is_bitmask<_Tp,
void_t<decltype(declval<unsigned&>() = declval<_Tp>() & 1u)>>
: true_type {};
// }}}
// __int_for_sizeof{{{
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
template <size_t _Bytes>
constexpr auto
__int_for_sizeof()
{
if constexpr (_Bytes == sizeof(int))
return int();
#ifdef __clang__
else if constexpr (_Bytes == sizeof(char))
return char();
#else
else if constexpr (_Bytes == sizeof(_SChar))
return _SChar();
#endif
else if constexpr (_Bytes == sizeof(short))
return short();
#ifndef __clang__
else if constexpr (_Bytes == sizeof(long))
return long();
#endif
else if constexpr (_Bytes == sizeof(_LLong))
return _LLong();
#ifdef __SIZEOF_INT128__
else if constexpr (_Bytes == sizeof(__int128))
return __int128();
#endif // __SIZEOF_INT128__
else if constexpr (_Bytes % sizeof(int) == 0)
{
constexpr size_t _Np = _Bytes / sizeof(int);
struct _Ip
{
int _M_data[_Np];
_GLIBCXX_SIMD_INTRINSIC constexpr _Ip
operator&(_Ip __rhs) const
{
return __generate_from_n_evaluations<_Np, _Ip>(
[&](auto __i) { return __rhs._M_data[__i] & _M_data[__i]; });
}
_GLIBCXX_SIMD_INTRINSIC constexpr _Ip
operator|(_Ip __rhs) const
{
return __generate_from_n_evaluations<_Np, _Ip>(
[&](auto __i) { return __rhs._M_data[__i] | _M_data[__i]; });
}
_GLIBCXX_SIMD_INTRINSIC constexpr _Ip
operator^(_Ip __rhs) const
{
return __generate_from_n_evaluations<_Np, _Ip>(
[&](auto __i) { return __rhs._M_data[__i] ^ _M_data[__i]; });
}
_GLIBCXX_SIMD_INTRINSIC constexpr _Ip
operator~() const
{
return __generate_from_n_evaluations<_Np, _Ip>(
[&](auto __i) { return ~_M_data[__i]; });
}
};
return _Ip{};
}
else
static_assert(_Bytes != _Bytes, "this should be unreachable");
}
#pragma GCC diagnostic pop
template <typename _Tp>
using __int_for_sizeof_t = decltype(__int_for_sizeof<sizeof(_Tp)>());
template <size_t _Np>
using __int_with_sizeof_t = decltype(__int_for_sizeof<_Np>());
// }}}
// __is_fixed_size_abi{{{
template <typename _Tp>
struct __is_fixed_size_abi : false_type {};
template <int _Np>
struct __is_fixed_size_abi<simd_abi::fixed_size<_Np>> : true_type {};
template <typename _Tp>
inline constexpr bool __is_fixed_size_abi_v = __is_fixed_size_abi<_Tp>::value;
// }}}
// constexpr feature detection{{{
constexpr inline bool __have_mmx = _GLIBCXX_SIMD_HAVE_MMX;
constexpr inline bool __have_sse = _GLIBCXX_SIMD_HAVE_SSE;
constexpr inline bool __have_sse2 = _GLIBCXX_SIMD_HAVE_SSE2;
constexpr inline bool __have_sse3 = _GLIBCXX_SIMD_HAVE_SSE3;
constexpr inline bool __have_ssse3 = _GLIBCXX_SIMD_HAVE_SSSE3;
constexpr inline bool __have_sse4_1 = _GLIBCXX_SIMD_HAVE_SSE4_1;
constexpr inline bool __have_sse4_2 = _GLIBCXX_SIMD_HAVE_SSE4_2;
constexpr inline bool __have_xop = _GLIBCXX_SIMD_HAVE_XOP;
constexpr inline bool __have_avx = _GLIBCXX_SIMD_HAVE_AVX;
constexpr inline bool __have_avx2 = _GLIBCXX_SIMD_HAVE_AVX2;
constexpr inline bool __have_bmi = _GLIBCXX_SIMD_HAVE_BMI1;
constexpr inline bool __have_bmi2 = _GLIBCXX_SIMD_HAVE_BMI2;
constexpr inline bool __have_lzcnt = _GLIBCXX_SIMD_HAVE_LZCNT;
constexpr inline bool __have_sse4a = _GLIBCXX_SIMD_HAVE_SSE4A;
constexpr inline bool __have_fma = _GLIBCXX_SIMD_HAVE_FMA;
constexpr inline bool __have_fma4 = _GLIBCXX_SIMD_HAVE_FMA4;
constexpr inline bool __have_f16c = _GLIBCXX_SIMD_HAVE_F16C;
constexpr inline bool __have_popcnt = _GLIBCXX_SIMD_HAVE_POPCNT;
constexpr inline bool __have_avx512f = _GLIBCXX_SIMD_HAVE_AVX512F;
constexpr inline bool __have_avx512dq = _GLIBCXX_SIMD_HAVE_AVX512DQ;
constexpr inline bool __have_avx512vl = _GLIBCXX_SIMD_HAVE_AVX512VL;
constexpr inline bool __have_avx512bw = _GLIBCXX_SIMD_HAVE_AVX512BW;
constexpr inline bool __have_avx512dq_vl = __have_avx512dq && __have_avx512vl;
constexpr inline bool __have_avx512bw_vl = __have_avx512bw && __have_avx512vl;
constexpr inline bool __have_neon = _GLIBCXX_SIMD_HAVE_NEON;
constexpr inline bool __have_neon_a32 = _GLIBCXX_SIMD_HAVE_NEON_A32;
constexpr inline bool __have_neon_a64 = _GLIBCXX_SIMD_HAVE_NEON_A64;
constexpr inline bool __support_neon_float =
#if defined __GCC_IEC_559
__GCC_IEC_559 == 0;
#elif defined __FAST_MATH__
true;
#else
false;
#endif
#ifdef _ARCH_PWR10
constexpr inline bool __have_power10vec = true;
#else
constexpr inline bool __have_power10vec = false;
#endif
#ifdef __POWER9_VECTOR__
constexpr inline bool __have_power9vec = true;
#else
constexpr inline bool __have_power9vec = false;
#endif
#if defined __POWER8_VECTOR__
constexpr inline bool __have_power8vec = true;
#else
constexpr inline bool __have_power8vec = __have_power9vec;
#endif
#if defined __VSX__
constexpr inline bool __have_power_vsx = true;
#else
constexpr inline bool __have_power_vsx = __have_power8vec;
#endif
#if defined __ALTIVEC__
constexpr inline bool __have_power_vmx = true;
#else
constexpr inline bool __have_power_vmx = __have_power_vsx;
#endif
// }}}
// __is_scalar_abi {{{
template <typename _Abi>
constexpr bool
__is_scalar_abi()
{ return is_same_v<simd_abi::scalar, _Abi>; }
// }}}
// __abi_bytes_v {{{
template <template <int> class _Abi, int _Bytes>
constexpr int
__abi_bytes_impl(_Abi<_Bytes>*)
{ return _Bytes; }
template <typename _Tp>
constexpr int
__abi_bytes_impl(_Tp*)
{ return -1; }
template <typename _Abi>
inline constexpr int __abi_bytes_v
= __abi_bytes_impl(static_cast<_Abi*>(nullptr));
// }}}
// __is_builtin_bitmask_abi {{{
template <typename _Abi>
constexpr bool
__is_builtin_bitmask_abi()
{ return is_same_v<simd_abi::_VecBltnBtmsk<__abi_bytes_v<_Abi>>, _Abi>; }
// }}}
// __is_sse_abi {{{
template <typename _Abi>
constexpr bool
__is_sse_abi()
{
constexpr auto _Bytes = __abi_bytes_v<_Abi>;
return _Bytes <= 16 && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>;
}
// }}}
// __is_avx_abi {{{
template <typename _Abi>
constexpr bool
__is_avx_abi()
{
constexpr auto _Bytes = __abi_bytes_v<_Abi>;
return _Bytes > 16 && _Bytes <= 32
&& is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>;
}
// }}}
// __is_avx512_abi {{{
template <typename _Abi>
constexpr bool
__is_avx512_abi()
{
constexpr auto _Bytes = __abi_bytes_v<_Abi>;
return _Bytes <= 64 && is_same_v<simd_abi::_Avx512<_Bytes>, _Abi>;
}
// }}}
// __is_neon_abi {{{
template <typename _Abi>
constexpr bool
__is_neon_abi()
{
constexpr auto _Bytes = __abi_bytes_v<_Abi>;
return _Bytes <= 16 && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>;
}
// }}}
// __make_dependent_t {{{
template <typename, typename _Up>
struct __make_dependent
{ using type = _Up; };
template <typename _Tp, typename _Up>
using __make_dependent_t = typename __make_dependent<_Tp, _Up>::type;
// }}}
// ^^^ ---- type traits ---- ^^^
// __invoke_ub{{{
template <typename... _Args>
[[noreturn]] _GLIBCXX_SIMD_ALWAYS_INLINE void
__invoke_ub([[maybe_unused]] const char* __msg,
[[maybe_unused]] const _Args&... __args)
{
#ifdef _GLIBCXX_DEBUG_UB
__builtin_fprintf(stderr, __msg, __args...);
__builtin_trap();
#else
__builtin_unreachable();
#endif
}
// }}}
// __assert_unreachable{{{
template <typename _Tp>
struct __assert_unreachable
{ static_assert(!is_same_v<_Tp, _Tp>, "this should be unreachable"); };
// }}}
// __size_or_zero_v {{{
template <typename _Tp, typename _Ap, size_t _Np = simd_size<_Tp, _Ap>::value>
constexpr size_t
__size_or_zero_dispatch(int)
{ return _Np; }
template <typename _Tp, typename _Ap>
constexpr size_t
__size_or_zero_dispatch(float)
{ return 0; }
template <typename _Tp, typename _Ap>
inline constexpr size_t __size_or_zero_v
= __size_or_zero_dispatch<_Tp, _Ap>(0);
// }}}
// __div_roundup {{{
inline constexpr size_t
__div_roundup(size_t __a, size_t __b)
{ return (__a + __b - 1) / __b; }
// }}}
// _ExactBool{{{
class _ExactBool
{
const bool _M_data;
public:
_GLIBCXX_SIMD_INTRINSIC constexpr _ExactBool(bool __b) : _M_data(__b) {}
_ExactBool(int) = delete;
_GLIBCXX_SIMD_INTRINSIC constexpr operator bool() const { return _M_data; }
};
// }}}
// __may_alias{{{
/**@internal
* Helper __may_alias<_Tp> that turns _Tp into the type to be used for an
* aliasing pointer. This adds the __may_alias attribute to _Tp (with compilers
* that support it).
*/
template <typename _Tp>
using __may_alias [[__gnu__::__may_alias__]] = _Tp;
// }}}
// _UnsupportedBase {{{
// simd and simd_mask base for unsupported <_Tp, _Abi>
struct _UnsupportedBase
{
_UnsupportedBase() = delete;
_UnsupportedBase(const _UnsupportedBase&) = delete;
_UnsupportedBase& operator=(const _UnsupportedBase&) = delete;
~_UnsupportedBase() = delete;
};
// }}}
// _InvalidTraits {{{
/**
* @internal
* Defines the implementation of __a given <_Tp, _Abi>.
*
* Implementations must ensure that only valid <_Tp, _Abi> instantiations are
* possible. Static assertions in the type definition do not suffice. It is
* important that SFINAE works.
*/
struct _InvalidTraits
{
using _IsValid = false_type;
using _SimdBase = _UnsupportedBase;
using _MaskBase = _UnsupportedBase;
static constexpr size_t _S_full_size = 0;
static constexpr bool _S_is_partial = false;
static constexpr size_t _S_simd_align = 1;
struct _SimdImpl;
struct _SimdMember {};
struct _SimdCastType;
static constexpr size_t _S_mask_align = 1;
struct _MaskImpl;
struct _MaskMember {};
struct _MaskCastType;
};
// }}}
// _SimdTraits {{{
template <typename _Tp, typename _Abi, typename = void_t<>>
struct _SimdTraits : _InvalidTraits {};
// }}}
// __private_init, __bitset_init{{{
/**
* @internal
* Tag used for private init constructor of simd and simd_mask
*/
inline constexpr struct _PrivateInit {} __private_init = {};
inline constexpr struct _BitsetInit {} __bitset_init = {};
// }}}
// __is_narrowing_conversion<_From, _To>{{{
template <typename _From, typename _To, bool = is_arithmetic_v<_From>,
bool = is_arithmetic_v<_To>>
struct __is_narrowing_conversion;
// ignore "signed/unsigned mismatch" in the following trait.
// The implicit conversions will do the right thing here.
template <typename _From, typename _To>
struct __is_narrowing_conversion<_From, _To, true, true>
: public __bool_constant<(
__digits_v<_From> > __digits_v<_To>
|| __finite_max_v<_From> > __finite_max_v<_To>
|| __finite_min_v<_From> < __finite_min_v<_To>
|| (is_signed_v<_From> && is_unsigned_v<_To>))> {};
template <typename _Tp>
struct __is_narrowing_conversion<_Tp, bool, true, true>
: public true_type {};
template <>
struct __is_narrowing_conversion<bool, bool, true, true>
: public false_type {};
template <typename _Tp>
struct __is_narrowing_conversion<_Tp, _Tp, true, true>
: public false_type {};
template <typename _From, typename _To>
struct __is_narrowing_conversion<_From, _To, false, true>
: public negation<is_convertible<_From, _To>> {};
// }}}
// __converts_to_higher_integer_rank{{{
template <typename _From, typename _To, bool = (sizeof(_From) < sizeof(_To))>
struct __converts_to_higher_integer_rank : public true_type {};
// this may fail for char -> short if sizeof(char) == sizeof(short)
template <typename _From, typename _To>
struct __converts_to_higher_integer_rank<_From, _To, false>
: public is_same<decltype(declval<_From>() + declval<_To>()), _To> {};
// }}}
// __data(simd/simd_mask) {{{
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC constexpr const auto&
__data(const simd<_Tp, _Ap>& __x);
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC constexpr auto&
__data(simd<_Tp, _Ap>& __x);
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC constexpr const auto&
__data(const simd_mask<_Tp, _Ap>& __x);
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC constexpr auto&
__data(simd_mask<_Tp, _Ap>& __x);
// }}}
// _SimdConverter {{{
template <typename _FromT, typename _FromA, typename _ToT, typename _ToA,
typename = void>
struct _SimdConverter;
template <typename _Tp, typename _Ap>
struct _SimdConverter<_Tp, _Ap, _Tp, _Ap, void>
{
template <typename _Up>
_GLIBCXX_SIMD_INTRINSIC const _Up&
operator()(const _Up& __x)
{ return __x; }
};
// }}}
// __to_value_type_or_member_type {{{
template <typename _V>
_GLIBCXX_SIMD_INTRINSIC constexpr auto
__to_value_type_or_member_type(const _V& __x) -> decltype(__data(__x))
{ return __data(__x); }
template <typename _V>
_GLIBCXX_SIMD_INTRINSIC constexpr const typename _V::value_type&
__to_value_type_or_member_type(const typename _V::value_type& __x)
{ return __x; }
// }}}
// __bool_storage_member_type{{{
template <size_t _Size>
struct __bool_storage_member_type;
template <size_t _Size>
using __bool_storage_member_type_t =
typename __bool_storage_member_type<_Size>::type;
// }}}
// _SimdTuple {{{
// why not tuple?
// 1. tuple gives no guarantee about the storage order, but I require
// storage
// equivalent to array<_Tp, _Np>
// 2. direct access to the element type (first template argument)
// 3. enforces equal element type, only different _Abi types are allowed
template <typename _Tp, typename... _Abis>
struct _SimdTuple;
//}}}
// __fixed_size_storage_t {{{
template <typename _Tp, int _Np>
struct __fixed_size_storage;
template <typename _Tp, int _Np>
using __fixed_size_storage_t = typename __fixed_size_storage<_Tp, _Np>::type;
// }}}
// _SimdWrapper fwd decl{{{
template <typename _Tp, size_t _Size, typename = void_t<>>
struct _SimdWrapper;
template <typename _Tp>
using _SimdWrapper8 = _SimdWrapper<_Tp, 8 / sizeof(_Tp)>;
template <typename _Tp>
using _SimdWrapper16 = _SimdWrapper<_Tp, 16 / sizeof(_Tp)>;
template <typename _Tp>
using _SimdWrapper32 = _SimdWrapper<_Tp, 32 / sizeof(_Tp)>;
template <typename _Tp>
using _SimdWrapper64 = _SimdWrapper<_Tp, 64 / sizeof(_Tp)>;
// }}}
// __is_simd_wrapper {{{
template <typename _Tp>
struct __is_simd_wrapper : false_type {};
template <typename _Tp, size_t _Np>
struct __is_simd_wrapper<_SimdWrapper<_Tp, _Np>> : true_type {};
template <typename _Tp>
inline constexpr bool __is_simd_wrapper_v = __is_simd_wrapper<_Tp>::value;
// }}}
// _BitOps {{{
struct _BitOps
{
// _S_bit_iteration {{{
template <typename _Tp, typename _Fp>
static void
_S_bit_iteration(_Tp __mask, _Fp&& __f)
{
static_assert(sizeof(_ULLong) >= sizeof(_Tp));
conditional_t<sizeof(_Tp) <= sizeof(_UInt), _UInt, _ULLong> __k;
if constexpr (is_convertible_v<_Tp, decltype(__k)>)
__k = __mask;
else
__k = __mask.to_ullong();
while(__k)
{
__f(std::__countr_zero(__k));
__k &= (__k - 1);
}
}
//}}}
};
//}}}
// __increment, __decrement {{{
template <typename _Tp = void>
struct __increment
{ constexpr _Tp operator()(_Tp __a) const { return ++__a; } };
template <>
struct __increment<void>
{
template <typename _Tp>
constexpr _Tp
operator()(_Tp __a) const
{ return ++__a; }
};
template <typename _Tp = void>
struct __decrement
{ constexpr _Tp operator()(_Tp __a) const { return --__a; } };
template <>
struct __decrement<void>
{
template <typename _Tp>
constexpr _Tp
operator()(_Tp __a) const
{ return --__a; }
};
// }}}
// _ValuePreserving(OrInt) {{{
template <typename _From, typename _To,
typename = enable_if_t<negation<
__is_narrowing_conversion<__remove_cvref_t<_From>, _To>>::value>>
using _ValuePreserving = _From;
template <typename _From, typename _To,
typename _DecayedFrom = __remove_cvref_t<_From>,
typename = enable_if_t<conjunction<
is_convertible<_From, _To>,
disjunction<
is_same<_DecayedFrom, _To>, is_same<_DecayedFrom, int>,
conjunction<is_same<_DecayedFrom, _UInt>, is_unsigned<_To>>,
negation<__is_narrowing_conversion<_DecayedFrom, _To>>>>::value>>
using _ValuePreservingOrInt = _From;
// }}}
// __intrinsic_type {{{
template <typename _Tp, size_t _Bytes, typename = void_t<>>
struct __intrinsic_type;
template <typename _Tp, size_t _Size>
using __intrinsic_type_t =
typename __intrinsic_type<_Tp, _Size * sizeof(_Tp)>::type;
template <typename _Tp>
using __intrinsic_type2_t = typename __intrinsic_type<_Tp, 2>::type;
template <typename _Tp>
using __intrinsic_type4_t = typename __intrinsic_type<_Tp, 4>::type;
template <typename _Tp>
using __intrinsic_type8_t = typename __intrinsic_type<_Tp, 8>::type;
template <typename _Tp>
using __intrinsic_type16_t = typename __intrinsic_type<_Tp, 16>::type;
template <typename _Tp>
using __intrinsic_type32_t = typename __intrinsic_type<_Tp, 32>::type;
template <typename _Tp>
using __intrinsic_type64_t = typename __intrinsic_type<_Tp, 64>::type;
// }}}
// _BitMask {{{
template <size_t _Np, bool _Sanitized = false>
struct _BitMask;
template <size_t _Np, bool _Sanitized>
struct __is_bitmask<_BitMask<_Np, _Sanitized>, void> : true_type {};
template <size_t _Np>
using _SanitizedBitMask = _BitMask<_Np, true>;
template <size_t _Np, bool _Sanitized>
struct _BitMask
{
static_assert(_Np > 0);
static constexpr size_t _NBytes = __div_roundup(_Np, __CHAR_BIT__);
using _Tp = conditional_t<_Np == 1, bool,
make_unsigned_t<__int_with_sizeof_t<std::min(
sizeof(_ULLong), std::__bit_ceil(_NBytes))>>>;
static constexpr int _S_array_size = __div_roundup(_NBytes, sizeof(_Tp));
_Tp _M_bits[_S_array_size];
static constexpr int _S_unused_bits
= _Np == 1 ? 0 : _S_array_size * sizeof(_Tp) * __CHAR_BIT__ - _Np;
static constexpr _Tp _S_bitmask = +_Tp(~_Tp()) >> _S_unused_bits;
constexpr _BitMask() noexcept = default;
constexpr _BitMask(unsigned long long __x) noexcept
: _M_bits{static_cast<_Tp>(__x)} {}
_BitMask(bitset<_Np> __x) noexcept : _BitMask(__x.to_ullong()) {}
constexpr _BitMask(const _BitMask&) noexcept = default;
template <bool _RhsSanitized, typename = enable_if_t<_RhsSanitized == false
&& _Sanitized == true>>
constexpr _BitMask(const _BitMask<_Np, _RhsSanitized>& __rhs) noexcept
: _BitMask(__rhs._M_sanitized()) {}
constexpr operator _SimdWrapper<bool, _Np>() const noexcept
{
static_assert(_S_array_size == 1);
return _M_bits[0];
}
// precondition: is sanitized
constexpr _Tp
_M_to_bits() const noexcept
{
static_assert(_S_array_size == 1);
return _M_bits[0];
}
// precondition: is sanitized
constexpr unsigned long long
to_ullong() const noexcept
{
static_assert(_S_array_size == 1);
return _M_bits[0];
}
// precondition: is sanitized
constexpr unsigned long
to_ulong() const noexcept
{
static_assert(_S_array_size == 1);
return _M_bits[0];
}
constexpr bitset<_Np>
_M_to_bitset() const noexcept
{
static_assert(_S_array_size == 1);
return _M_bits[0];
}
constexpr decltype(auto)
_M_sanitized() const noexcept
{
if constexpr (_Sanitized)
return *this;
else if constexpr (_Np == 1)
return _SanitizedBitMask<_Np>(_M_bits[0]);
else
{
_SanitizedBitMask<_Np> __r = {};
for (int __i = 0; __i < _S_array_size; ++__i)
__r._M_bits[__i] = _M_bits[__i];
if constexpr (_S_unused_bits > 0)
__r._M_bits[_S_array_size - 1] &= _S_bitmask;
return __r;
}
}
template <size_t _Mp, bool _LSanitized>
constexpr _BitMask<_Np + _Mp, _Sanitized>
_M_prepend(_BitMask<_Mp, _LSanitized> __lsb) const noexcept
{
constexpr size_t _RN = _Np + _Mp;
using _Rp = _BitMask<_RN, _Sanitized>;
if constexpr (_Rp::_S_array_size == 1)
{
_Rp __r{{_M_bits[0]}};
__r._M_bits[0] <<= _Mp;
__r._M_bits[0] |= __lsb._M_sanitized()._M_bits[0];
return __r;
}
else
__assert_unreachable<_Rp>();
}
// Return a new _BitMask with size _NewSize while dropping _DropLsb least
// significant bits. If the operation implicitly produces a sanitized bitmask,
// the result type will have _Sanitized set.
template <size_t _DropLsb, size_t _NewSize = _Np - _DropLsb>
constexpr auto
_M_extract() const noexcept
{
static_assert(_Np > _DropLsb);
static_assert(_DropLsb + _NewSize <= sizeof(_ULLong) * __CHAR_BIT__,
"not implemented for bitmasks larger than one ullong");
if constexpr (_NewSize == 1)
// must sanitize because the return _Tp is bool
return _SanitizedBitMask<1>(_M_bits[0] & (_Tp(1) << _DropLsb));
else
return _BitMask<_NewSize,
((_NewSize + _DropLsb == sizeof(_Tp) * __CHAR_BIT__
&& _NewSize + _DropLsb <= _Np)
|| ((_Sanitized || _Np == sizeof(_Tp) * __CHAR_BIT__)
&& _NewSize + _DropLsb >= _Np))>(_M_bits[0]
>> _DropLsb);
}
// True if all bits are set. Implicitly sanitizes if _Sanitized == false.
constexpr bool
all() const noexcept
{
if constexpr (_Np == 1)
return _M_bits[0];
else if constexpr (!_Sanitized)
return _M_sanitized().all();
else
{
constexpr _Tp __allbits = ~_Tp();
for (int __i = 0; __i < _S_array_size - 1; ++__i)
if (_M_bits[__i] != __allbits)
return false;
return _M_bits[_S_array_size - 1] == _S_bitmask;
}
}
// True if at least one bit is set. Implicitly sanitizes if _Sanitized ==
// false.
constexpr bool
any() const noexcept
{
if constexpr (_Np == 1)
return _M_bits[0];
else if constexpr (!_Sanitized)
return _M_sanitized().any();
else
{
for (int __i = 0; __i < _S_array_size - 1; ++__i)
if (_M_bits[__i] != 0)
return true;
return _M_bits[_S_array_size - 1] != 0;
}
}
// True if no bit is set. Implicitly sanitizes if _Sanitized == false.
constexpr bool
none() const noexcept
{
if constexpr (_Np == 1)
return !_M_bits[0];
else if constexpr (!_Sanitized)
return _M_sanitized().none();
else
{
for (int __i = 0; __i < _S_array_size - 1; ++__i)
if (_M_bits[__i] != 0)
return false;
return _M_bits[_S_array_size - 1] == 0;
}
}
// Returns the number of set bits. Implicitly sanitizes if _Sanitized ==
// false.
constexpr int
count() const noexcept
{
if constexpr (_Np == 1)
return _M_bits[0];
else if constexpr (!_Sanitized)
return _M_sanitized().none();
else
{
int __result = __builtin_popcountll(_M_bits[0]);
for (int __i = 1; __i < _S_array_size; ++__i)
__result += __builtin_popcountll(_M_bits[__i]);
return __result;
}
}
// Returns the bit at offset __i as bool.
constexpr bool
operator[](size_t __i) const noexcept
{
if constexpr (_Np == 1)
return _M_bits[0];
else if constexpr (_S_array_size == 1)
return (_M_bits[0] >> __i) & 1;
else
{
const size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
const size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
return (_M_bits[__j] >> __shift) & 1;
}
}
template <size_t __i>
constexpr bool
operator[](_SizeConstant<__i>) const noexcept
{
static_assert(__i < _Np);
constexpr size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
constexpr size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
return static_cast<bool>(_M_bits[__j] & (_Tp(1) << __shift));
}
// Set the bit at offset __i to __x.
constexpr void
set(size_t __i, bool __x) noexcept
{
if constexpr (_Np == 1)
_M_bits[0] = __x;
else if constexpr (_S_array_size == 1)
{
_M_bits[0] &= ~_Tp(_Tp(1) << __i);
_M_bits[0] |= _Tp(_Tp(__x) << __i);
}
else
{
const size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
const size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
_M_bits[__j] &= ~_Tp(_Tp(1) << __shift);
_M_bits[__j] |= _Tp(_Tp(__x) << __shift);
}
}
template <size_t __i>
constexpr void
set(_SizeConstant<__i>, bool __x) noexcept
{
static_assert(__i < _Np);
if constexpr (_Np == 1)
_M_bits[0] = __x;
else
{
constexpr size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
constexpr size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
constexpr _Tp __mask = ~_Tp(_Tp(1) << __shift);
_M_bits[__j] &= __mask;
_M_bits[__j] |= _Tp(_Tp(__x) << __shift);
}
}
// Inverts all bits. Sanitized input leads to sanitized output.
constexpr _BitMask
operator~() const noexcept
{
if constexpr (_Np == 1)
return !_M_bits[0];
else
{
_BitMask __result{};
for (int __i = 0; __i < _S_array_size - 1; ++__i)
__result._M_bits[__i] = ~_M_bits[__i];
if constexpr (_Sanitized)
__result._M_bits[_S_array_size - 1]
= _M_bits[_S_array_size - 1] ^ _S_bitmask;
else
__result._M_bits[_S_array_size - 1] = ~_M_bits[_S_array_size - 1];
return __result;
}
}
constexpr _BitMask&
operator^=(const _BitMask& __b) & noexcept
{
__execute_n_times<_S_array_size>(
[&](auto __i) { _M_bits[__i] ^= __b._M_bits[__i]; });
return *this;
}
constexpr _BitMask&
operator|=(const _BitMask& __b) & noexcept
{
__execute_n_times<_S_array_size>(
[&](auto __i) { _M_bits[__i] |= __b._M_bits[__i]; });
return *this;
}
constexpr _BitMask&
operator&=(const _BitMask& __b) & noexcept
{
__execute_n_times<_S_array_size>(
[&](auto __i) { _M_bits[__i] &= __b._M_bits[__i]; });
return *this;
}
friend constexpr _BitMask
operator^(const _BitMask& __a, const _BitMask& __b) noexcept
{
_BitMask __r = __a;
__r ^= __b;
return __r;
}
friend constexpr _BitMask
operator|(const _BitMask& __a, const _BitMask& __b) noexcept
{
_BitMask __r = __a;
__r |= __b;
return __r;
}
friend constexpr _BitMask
operator&(const _BitMask& __a, const _BitMask& __b) noexcept
{
_BitMask __r = __a;
__r &= __b;
return __r;
}
_GLIBCXX_SIMD_INTRINSIC
constexpr bool
_M_is_constprop() const
{
if constexpr (_S_array_size == 0)
return __builtin_constant_p(_M_bits[0]);
else
{
for (int __i = 0; __i < _S_array_size; ++__i)
if (!__builtin_constant_p(_M_bits[__i]))
return false;
return true;
}
}
};
// }}}
// vvv ---- builtin vector types [[gnu::vector_size(N)]] and operations ---- vvv
// __min_vector_size {{{
template <typename _Tp = void>
static inline constexpr int __min_vector_size = 2 * sizeof(_Tp);
#if _GLIBCXX_SIMD_HAVE_NEON
template <>
inline constexpr int __min_vector_size<void> = 8;
#else
template <>
inline constexpr int __min_vector_size<void> = 16;
#endif
// }}}
// __vector_type {{{
template <typename _Tp, size_t _Np, typename = void>
struct __vector_type_n {};
// substition failure for 0-element case
template <typename _Tp>
struct __vector_type_n<_Tp, 0, void> {};
// special case 1-element to be _Tp itself
template <typename _Tp>
struct __vector_type_n<_Tp, 1, enable_if_t<__is_vectorizable_v<_Tp>>>
{ using type = _Tp; };
// else, use GNU-style builtin vector types
template <typename _Tp, size_t _Np>
struct __vector_type_n<_Tp, _Np,
enable_if_t<__is_vectorizable_v<_Tp> && _Np >= 2>>
{
static constexpr size_t _S_Np2 = std::__bit_ceil(_Np * sizeof(_Tp));
static constexpr size_t _S_Bytes =
#ifdef __i386__
// Using [[gnu::vector_size(8)]] would wreak havoc on the FPU because
// those objects are passed via MMX registers and nothing ever calls EMMS.
_S_Np2 == 8 ? 16 :
#endif
_S_Np2 < __min_vector_size<_Tp> ? __min_vector_size<_Tp>
: _S_Np2;
using type [[__gnu__::__vector_size__(_S_Bytes)]] = _Tp;
};
template <typename _Tp, size_t _Bytes, size_t = _Bytes % sizeof(_Tp)>
struct __vector_type;
template <typename _Tp, size_t _Bytes>
struct __vector_type<_Tp, _Bytes, 0>
: __vector_type_n<_Tp, _Bytes / sizeof(_Tp)> {};
template <typename _Tp, size_t _Size>
using __vector_type_t = typename __vector_type_n<_Tp, _Size>::type;
template <typename _Tp>
using __vector_type2_t = typename __vector_type<_Tp, 2>::type;
template <typename _Tp>
using __vector_type4_t = typename __vector_type<_Tp, 4>::type;
template <typename _Tp>
using __vector_type8_t = typename __vector_type<_Tp, 8>::type;
template <typename _Tp>
using __vector_type16_t = typename __vector_type<_Tp, 16>::type;
template <typename _Tp>
using __vector_type32_t = typename __vector_type<_Tp, 32>::type;
template <typename _Tp>
using __vector_type64_t = typename __vector_type<_Tp, 64>::type;
// }}}
// __is_vector_type {{{
template <typename _Tp, typename = void_t<>>
struct __is_vector_type : false_type {};
template <typename _Tp>
struct __is_vector_type<
_Tp, void_t<typename __vector_type<
remove_reference_t<decltype(declval<_Tp>()[0])>, sizeof(_Tp)>::type>>
: is_same<_Tp, typename __vector_type<
remove_reference_t<decltype(declval<_Tp>()[0])>,
sizeof(_Tp)>::type> {};
template <typename _Tp>
inline constexpr bool __is_vector_type_v = __is_vector_type<_Tp>::value;
// }}}
// __is_intrinsic_type {{{
#if _GLIBCXX_SIMD_HAVE_SSE_ABI
template <typename _Tp>
using __is_intrinsic_type = __is_vector_type<_Tp>;
#else // not SSE (x86)
template <typename _Tp, typename = void_t<>>
struct __is_intrinsic_type : false_type {};
template <typename _Tp>
struct __is_intrinsic_type<
_Tp, void_t<typename __intrinsic_type<
remove_reference_t<decltype(declval<_Tp>()[0])>, sizeof(_Tp)>::type>>
: is_same<_Tp, typename __intrinsic_type<
remove_reference_t<decltype(declval<_Tp>()[0])>,
sizeof(_Tp)>::type> {};
#endif
template <typename _Tp>
inline constexpr bool __is_intrinsic_type_v = __is_intrinsic_type<_Tp>::value;
// }}}
// _VectorTraits{{{
template <typename _Tp, typename = void_t<>>
struct _VectorTraitsImpl;
template <typename _Tp>
struct _VectorTraitsImpl<_Tp, enable_if_t<__is_vector_type_v<_Tp>
|| __is_intrinsic_type_v<_Tp>>>
{
using type = _Tp;
using value_type = remove_reference_t<decltype(declval<_Tp>()[0])>;
static constexpr int _S_full_size = sizeof(_Tp) / sizeof(value_type);
using _Wrapper = _SimdWrapper<value_type, _S_full_size>;
template <typename _Up, int _W = _S_full_size>
static constexpr bool _S_is
= is_same_v<value_type, _Up> && _W == _S_full_size;
};
template <typename _Tp, size_t _Np>
struct _VectorTraitsImpl<_SimdWrapper<_Tp, _Np>,
void_t<__vector_type_t<_Tp, _Np>>>
{
using type = __vector_type_t<_Tp, _Np>;
using value_type = _Tp;
static constexpr int _S_full_size = sizeof(type) / sizeof(value_type);
using _Wrapper = _SimdWrapper<_Tp, _Np>;
static constexpr bool _S_is_partial = (_Np == _S_full_size);
static constexpr int _S_partial_width = _Np;
template <typename _Up, int _W = _S_full_size>
static constexpr bool _S_is
= is_same_v<value_type, _Up>&& _W == _S_full_size;
};
template <typename _Tp, typename = typename _VectorTraitsImpl<_Tp>::type>
using _VectorTraits = _VectorTraitsImpl<_Tp>;
// }}}
// __as_vector{{{
template <typename _V>
_GLIBCXX_SIMD_INTRINSIC constexpr auto
__as_vector(_V __x)
{
if constexpr (__is_vector_type_v<_V>)
return __x;
else if constexpr (is_simd<_V>::value || is_simd_mask<_V>::value)
return __data(__x)._M_data;
else if constexpr (__is_vectorizable_v<_V>)
return __vector_type_t<_V, 2>{__x};
else
return __x._M_data;
}
// }}}
// __as_wrapper{{{
template <size_t _Np = 0, typename _V>
_GLIBCXX_SIMD_INTRINSIC constexpr auto
__as_wrapper(_V __x)
{
if constexpr (__is_vector_type_v<_V>)
return _SimdWrapper<typename _VectorTraits<_V>::value_type,
(_Np > 0 ? _Np : _VectorTraits<_V>::_S_full_size)>(__x);
else if constexpr (is_simd<_V>::value || is_simd_mask<_V>::value)
{
static_assert(_V::size() == _Np);
return __data(__x);
}
else
{
static_assert(_V::_S_size == _Np);
return __x;
}
}
// }}}
// __intrin_bitcast{{{
template <typename _To, typename _From>
_GLIBCXX_SIMD_INTRINSIC constexpr _To
__intrin_bitcast(_From __v)
{
static_assert((__is_vector_type_v<_From> || __is_intrinsic_type_v<_From>)
&& (__is_vector_type_v<_To> || __is_intrinsic_type_v<_To>));
if constexpr (sizeof(_To) == sizeof(_From))
return reinterpret_cast<_To>(__v);
else if constexpr (sizeof(_From) > sizeof(_To))
if constexpr (sizeof(_To) >= 16)
return reinterpret_cast<const __may_alias<_To>&>(__v);
else
{
_To __r;
__builtin_memcpy(&__r, &__v, sizeof(_To));
return __r;
}
#if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__
else if constexpr (__have_avx && sizeof(_From) == 16 && sizeof(_To) == 32)
return reinterpret_cast<_To>(__builtin_ia32_ps256_ps(
reinterpret_cast<__vector_type_t<float, 4>>(__v)));
else if constexpr (__have_avx512f && sizeof(_From) == 16
&& sizeof(_To) == 64)
return reinterpret_cast<_To>(__builtin_ia32_ps512_ps(
reinterpret_cast<__vector_type_t<float, 4>>(__v)));
else if constexpr (__have_avx512f && sizeof(_From) == 32
&& sizeof(_To) == 64)
return reinterpret_cast<_To>(__builtin_ia32_ps512_256ps(
reinterpret_cast<__vector_type_t<float, 8>>(__v)));
#endif // _GLIBCXX_SIMD_X86INTRIN
else if constexpr (sizeof(__v) <= 8)
return reinterpret_cast<_To>(
__vector_type_t<__int_for_sizeof_t<_From>, sizeof(_To) / sizeof(_From)>{
reinterpret_cast<__int_for_sizeof_t<_From>>(__v)});
else
{
static_assert(sizeof(_To) > sizeof(_From));
_To __r = {};
__builtin_memcpy(&__r, &__v, sizeof(_From));
return __r;
}
}
// }}}
// __vector_bitcast{{{
template <typename _To, size_t _NN = 0, typename _From,
typename _FromVT = _VectorTraits<_From>,
size_t _Np = _NN == 0 ? sizeof(_From) / sizeof(_To) : _NN>
_GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_To, _Np>
__vector_bitcast(_From __x)
{
using _R = __vector_type_t<_To, _Np>;
return __intrin_bitcast<_R>(__x);
}
template <typename _To, size_t _NN = 0, typename _Tp, size_t _Nx,
size_t _Np
= _NN == 0 ? sizeof(_SimdWrapper<_Tp, _Nx>) / sizeof(_To) : _NN>
_GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_To, _Np>
__vector_bitcast(const _SimdWrapper<_Tp, _Nx>& __x)
{
static_assert(_Np > 1);
return __intrin_bitcast<__vector_type_t<_To, _Np>>(__x._M_data);
}
// }}}
// __convert_x86 declarations {{{
#ifdef _GLIBCXX_SIMD_WORKAROUND_PR85048
template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
_To __convert_x86(_Tp);
template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
_To __convert_x86(_Tp, _Tp);
template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
_To __convert_x86(_Tp, _Tp, _Tp, _Tp);
template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
_To __convert_x86(_Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp);
template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
_To __convert_x86(_Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp,
_Tp, _Tp, _Tp, _Tp);
#endif // _GLIBCXX_SIMD_WORKAROUND_PR85048
//}}}
// __bit_cast {{{
template <typename _To, typename _From>
_GLIBCXX_SIMD_INTRINSIC constexpr _To
__bit_cast(const _From __x)
{
#if __has_builtin(__builtin_bit_cast)
return __builtin_bit_cast(_To, __x);
#else
static_assert(sizeof(_To) == sizeof(_From));
constexpr bool __to_is_vectorizable
= is_arithmetic_v<_To> || is_enum_v<_To>;
constexpr bool __from_is_vectorizable
= is_arithmetic_v<_From> || is_enum_v<_From>;
if constexpr (__is_vector_type_v<_To> && __is_vector_type_v<_From>)
return reinterpret_cast<_To>(__x);
else if constexpr (__is_vector_type_v<_To> && __from_is_vectorizable)
{
using _FV [[gnu::vector_size(sizeof(_From))]] = _From;
return reinterpret_cast<_To>(_FV{__x});
}
else if constexpr (__to_is_vectorizable && __from_is_vectorizable)
{
using _TV [[gnu::vector_size(sizeof(_To))]] = _To;
using _FV [[gnu::vector_size(sizeof(_From))]] = _From;
return reinterpret_cast<_TV>(_FV{__x})[0];
}
else if constexpr (__to_is_vectorizable && __is_vector_type_v<_From>)
{
using _TV [[gnu::vector_size(sizeof(_To))]] = _To;
return reinterpret_cast<_TV>(__x)[0];
}
else
{
_To __r;
__builtin_memcpy(reinterpret_cast<char*>(&__r),
reinterpret_cast<const char*>(&__x), sizeof(_To));
return __r;
}
#endif
}
// }}}
// __to_intrin {{{
template <typename _Tp, typename _TVT = _VectorTraits<_Tp>,
typename _R
= __intrinsic_type_t<typename _TVT::value_type, _TVT::_S_full_size>>
_GLIBCXX_SIMD_INTRINSIC constexpr _R
__to_intrin(_Tp __x)
{
static_assert(sizeof(__x) <= sizeof(_R),
"__to_intrin may never drop values off the end");
if constexpr (sizeof(__x) == sizeof(_R))
return reinterpret_cast<_R>(__as_vector(__x));
else
{
using _Up = __int_for_sizeof_t<_Tp>;
return reinterpret_cast<_R>(
__vector_type_t<_Up, sizeof(_R) / sizeof(_Up)>{__bit_cast<_Up>(__x)});
}
}
// }}}
// __make_vector{{{
template <typename _Tp, typename... _Args>
_GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, sizeof...(_Args)>
__make_vector(const _Args&... __args)
{
return __vector_type_t<_Tp, sizeof...(_Args)>{static_cast<_Tp>(__args)...};
}
// }}}
// __vector_broadcast{{{
template <size_t _Np, typename _Tp>
_GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
__vector_broadcast(_Tp __x)
{
return __call_with_n_evaluations<_Np>(
[](auto... __xx) { return __vector_type_t<_Tp, _Np>{__xx...}; },
[&__x](int) { return __x; });
}
// }}}
// __generate_vector{{{
template <typename _Tp, size_t _Np, typename _Gp, size_t... _I>
_GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
__generate_vector_impl(_Gp&& __gen, index_sequence<_I...>)
{
return __vector_type_t<_Tp, _Np>{
static_cast<_Tp>(__gen(_SizeConstant<_I>()))...};
}
template <typename _V, typename _VVT = _VectorTraits<_V>, typename _Gp>
_GLIBCXX_SIMD_INTRINSIC constexpr _V
__generate_vector(_Gp&& __gen)
{
if constexpr (__is_vector_type_v<_V>)
return __generate_vector_impl<typename _VVT::value_type,
_VVT::_S_full_size>(
static_cast<_Gp&&>(__gen), make_index_sequence<_VVT::_S_full_size>());
else
return __generate_vector_impl<typename _VVT::value_type,
_VVT::_S_partial_width>(
static_cast<_Gp&&>(__gen),
make_index_sequence<_VVT::_S_partial_width>());
}
template <typename _Tp, size_t _Np, typename _Gp>
_GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
__generate_vector(_Gp&& __gen)
{
return __generate_vector_impl<_Tp, _Np>(static_cast<_Gp&&>(__gen),
make_index_sequence<_Np>());
}
// }}}
// __xor{{{
template <typename _TW>
_GLIBCXX_SIMD_INTRINSIC constexpr _TW
__xor(_TW __a, _TW __b) noexcept
{
if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
{
using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW,
_VectorTraitsImpl<_TW>>::value_type;
if constexpr (is_floating_point_v<_Tp>)
{
using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a)
^ __vector_bitcast<_Ip>(__b));
}
else if constexpr (__is_vector_type_v<_TW>)
return __a ^ __b;
else
return __a._M_data ^ __b._M_data;
}
else
return __a ^ __b;
}
// }}}
// __or{{{
template <typename _TW>
_GLIBCXX_SIMD_INTRINSIC constexpr _TW
__or(_TW __a, _TW __b) noexcept
{
if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
{
using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW,
_VectorTraitsImpl<_TW>>::value_type;
if constexpr (is_floating_point_v<_Tp>)
{
using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a)
| __vector_bitcast<_Ip>(__b));
}
else if constexpr (__is_vector_type_v<_TW>)
return __a | __b;
else
return __a._M_data | __b._M_data;
}
else
return __a | __b;
}
// }}}
// __and{{{
template <typename _TW>
_GLIBCXX_SIMD_INTRINSIC constexpr _TW
__and(_TW __a, _TW __b) noexcept
{
if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
{
using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW,
_VectorTraitsImpl<_TW>>::value_type;
if constexpr (is_floating_point_v<_Tp>)
{
using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a)
& __vector_bitcast<_Ip>(__b));
}
else if constexpr (__is_vector_type_v<_TW>)
return __a & __b;
else
return __a._M_data & __b._M_data;
}
else
return __a & __b;
}
// }}}
// __andnot{{{
#if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__
static constexpr struct
{
_GLIBCXX_SIMD_INTRINSIC __v4sf
operator()(__v4sf __a, __v4sf __b) const noexcept
{ return __builtin_ia32_andnps(__a, __b); }
_GLIBCXX_SIMD_INTRINSIC __v2df
operator()(__v2df __a, __v2df __b) const noexcept
{ return __builtin_ia32_andnpd(__a, __b); }
_GLIBCXX_SIMD_INTRINSIC __v2di
operator()(__v2di __a, __v2di __b) const noexcept
{ return __builtin_ia32_pandn128(__a, __b); }
_GLIBCXX_SIMD_INTRINSIC __v8sf
operator()(__v8sf __a, __v8sf __b) const noexcept
{ return __builtin_ia32_andnps256(__a, __b); }
_GLIBCXX_SIMD_INTRINSIC __v4df
operator()(__v4df __a, __v4df __b) const noexcept
{ return __builtin_ia32_andnpd256(__a, __b); }
_GLIBCXX_SIMD_INTRINSIC __v4di
operator()(__v4di __a, __v4di __b) const noexcept
{
if constexpr (__have_avx2)
return __builtin_ia32_andnotsi256(__a, __b);
else
return reinterpret_cast<__v4di>(
__builtin_ia32_andnpd256(reinterpret_cast<__v4df>(__a),
reinterpret_cast<__v4df>(__b)));
}
_GLIBCXX_SIMD_INTRINSIC __v16sf
operator()(__v16sf __a, __v16sf __b) const noexcept
{
if constexpr (__have_avx512dq)
return _mm512_andnot_ps(__a, __b);
else
return reinterpret_cast<__v16sf>(
_mm512_andnot_si512(reinterpret_cast<__v8di>(__a),
reinterpret_cast<__v8di>(__b)));
}
_GLIBCXX_SIMD_INTRINSIC __v8df
operator()(__v8df __a, __v8df __b) const noexcept
{
if constexpr (__have_avx512dq)
return _mm512_andnot_pd(__a, __b);
else
return reinterpret_cast<__v8df>(
_mm512_andnot_si512(reinterpret_cast<__v8di>(__a),
reinterpret_cast<__v8di>(__b)));
}
_GLIBCXX_SIMD_INTRINSIC __v8di
operator()(__v8di __a, __v8di __b) const noexcept
{ return _mm512_andnot_si512(__a, __b); }
} _S_x86_andnot;
#endif // _GLIBCXX_SIMD_X86INTRIN && !__clang__
template <typename _TW>
_GLIBCXX_SIMD_INTRINSIC constexpr _TW
__andnot(_TW __a, _TW __b) noexcept
{
if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
{
using _TVT = conditional_t<__is_simd_wrapper_v<_TW>, _TW,
_VectorTraitsImpl<_TW>>;
using _Tp = typename _TVT::value_type;
#if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__
if constexpr (sizeof(_TW) >= 16)
{
const auto __ai = __to_intrin(__a);
const auto __bi = __to_intrin(__b);
if (!__builtin_is_constant_evaluated()
&& !(__builtin_constant_p(__ai) && __builtin_constant_p(__bi)))
{
const auto __r = _S_x86_andnot(__ai, __bi);
if constexpr (is_convertible_v<decltype(__r), _TW>)
return __r;
else
return reinterpret_cast<typename _TVT::type>(__r);
}
}
#endif // _GLIBCXX_SIMD_X86INTRIN
using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
return __vector_bitcast<_Tp>(~__vector_bitcast<_Ip>(__a)
& __vector_bitcast<_Ip>(__b));
}
else
return ~__a & __b;
}
// }}}
// __not{{{
template <typename _Tp, typename _TVT = _VectorTraits<_Tp>>
_GLIBCXX_SIMD_INTRINSIC constexpr _Tp
__not(_Tp __a) noexcept
{
if constexpr (is_floating_point_v<typename _TVT::value_type>)
return reinterpret_cast<typename _TVT::type>(
~__vector_bitcast<unsigned>(__a));
else
return ~__a;
}
// }}}
// __concat{{{
template <typename _Tp, typename _TVT = _VectorTraits<_Tp>,
typename _R = __vector_type_t<typename _TVT::value_type,
_TVT::_S_full_size * 2>>
constexpr _R
__concat(_Tp a_, _Tp b_)
{
#ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_1
using _W
= conditional_t<is_floating_point_v<typename _TVT::value_type>, double,
conditional_t<(sizeof(_Tp) >= 2 * sizeof(long long)),
long long, typename _TVT::value_type>>;
constexpr int input_width = sizeof(_Tp) / sizeof(_W);
const auto __a = __vector_bitcast<_W>(a_);
const auto __b = __vector_bitcast<_W>(b_);
using _Up = __vector_type_t<_W, sizeof(_R) / sizeof(_W)>;
#else
constexpr int input_width = _TVT::_S_full_size;
const _Tp& __a = a_;
const _Tp& __b = b_;
using _Up = _R;
#endif
if constexpr (input_width == 2)
return reinterpret_cast<_R>(_Up{__a[0], __a[1], __b[0], __b[1]});
else if constexpr (input_width == 4)
return reinterpret_cast<_R>(
_Up{__a[0], __a[1], __a[2], __a[3], __b[0], __b[1], __b[2], __b[3]});
else if constexpr (input_width == 8)
return reinterpret_cast<_R>(
_Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6], __a[7],
__b[0], __b[1], __b[2], __b[3], __b[4], __b[5], __b[6], __b[7]});
else if constexpr (input_width == 16)
return reinterpret_cast<_R>(
_Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6],
__a[7], __a[8], __a[9], __a[10], __a[11], __a[12], __a[13],
__a[14], __a[15], __b[0], __b[1], __b[2], __b[3], __b[4],
__b[5], __b[6], __b[7], __b[8], __b[9], __b[10], __b[11],
__b[12], __b[13], __b[14], __b[15]});
else if constexpr (input_width == 32)
return reinterpret_cast<_R>(
_Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6],
__a[7], __a[8], __a[9], __a[10], __a[11], __a[12], __a[13],
__a[14], __a[15], __a[16], __a[17], __a[18], __a[19], __a[20],
__a[21], __a[22], __a[23], __a[24], __a[25], __a[26], __a[27],
__a[28], __a[29], __a[30], __a[31], __b[0], __b[1], __b[2],
__b[3], __b[4], __b[5], __b[6], __b[7], __b[8], __b[9],
__b[10], __b[11], __b[12], __b[13], __b[14], __b[15], __b[16],
__b[17], __b[18], __b[19], __b[20], __b[21], __b[22], __b[23],
__b[24], __b[25], __b[26], __b[27], __b[28], __b[29], __b[30],
__b[31]});
}
// }}}
// __zero_extend {{{
template <typename _Tp, typename _TVT = _VectorTraits<_Tp>>
struct _ZeroExtendProxy
{
using value_type = typename _TVT::value_type;
static constexpr size_t _Np = _TVT::_S_full_size;
const _Tp __x;
template <typename _To, typename _ToVT = _VectorTraits<_To>,
typename
= enable_if_t<is_same_v<typename _ToVT::value_type, value_type>>>
_GLIBCXX_SIMD_INTRINSIC operator _To() const
{
constexpr size_t _ToN = _ToVT::_S_full_size;
if constexpr (_ToN == _Np)
return __x;
else if constexpr (_ToN == 2 * _Np)
{
#ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_3
if constexpr (__have_avx && _TVT::template _S_is<float, 4>)
return __vector_bitcast<value_type>(
_mm256_insertf128_ps(__m256(), __x, 0));
else if constexpr (__have_avx && _TVT::template _S_is<double, 2>)
return __vector_bitcast<value_type>(
_mm256_insertf128_pd(__m256d(), __x, 0));
else if constexpr (__have_avx2 && _Np * sizeof(value_type) == 16)
return __vector_bitcast<value_type>(
_mm256_insertf128_si256(__m256i(), __to_intrin(__x), 0));
else if constexpr (__have_avx512f && _TVT::template _S_is<float, 8>)
{
if constexpr (__have_avx512dq)
return __vector_bitcast<value_type>(
_mm512_insertf32x8(__m512(), __x, 0));
else
return reinterpret_cast<__m512>(
_mm512_insertf64x4(__m512d(),
reinterpret_cast<__m256d>(__x), 0));
}
else if constexpr (__have_avx512f
&& _TVT::template _S_is<double, 4>)
return __vector_bitcast<value_type>(
_mm512_insertf64x4(__m512d(), __x, 0));
else if constexpr (__have_avx512f && _Np * sizeof(value_type) == 32)
return __vector_bitcast<value_type>(
_mm512_inserti64x4(__m512i(), __to_intrin(__x), 0));
#endif
return __concat(__x, _Tp());
}
else if constexpr (_ToN == 4 * _Np)
{
#ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_3
if constexpr (__have_avx512dq && _TVT::template _S_is<double, 2>)
{
return __vector_bitcast<value_type>(
_mm512_insertf64x2(__m512d(), __x, 0));
}
else if constexpr (__have_avx512f
&& is_floating_point_v<value_type>)
{
return __vector_bitcast<value_type>(
_mm512_insertf32x4(__m512(), reinterpret_cast<__m128>(__x),
0));
}
else if constexpr (__have_avx512f && _Np * sizeof(value_type) == 16)
{
return __vector_bitcast<value_type>(
_mm512_inserti32x4(__m512i(), __to_intrin(__x), 0));
}
#endif
return __concat(__concat(__x, _Tp()),
__vector_type_t<value_type, _Np * 2>());
}
else if constexpr (_ToN == 8 * _Np)
return __concat(operator __vector_type_t<value_type, _Np * 4>(),
__vector_type_t<value_type, _Np * 4>());
else if constexpr (_ToN == 16 * _Np)
return __concat(operator __vector_type_t<value_type, _Np * 8>(),
__vector_type_t<value_type, _Np * 8>());
else
__assert_unreachable<_Tp>();
}
};
template <typename _Tp, typename _TVT = _VectorTraits<_Tp>>
_GLIBCXX_SIMD_INTRINSIC _ZeroExtendProxy<_Tp, _TVT>
__zero_extend(_Tp __x)
{ return {__x}; }
// }}}
// __extract<_Np, By>{{{
template <int _Offset,
int _SplitBy,
typename _Tp,
typename _TVT = _VectorTraits<_Tp>,
typename _R = __vector_type_t<typename _TVT::value_type,
_TVT::_S_full_size / _SplitBy>>
_GLIBCXX_SIMD_INTRINSIC constexpr _R
__extract(_Tp __in)
{
using value_type = typename _TVT::value_type;
#if _GLIBCXX_SIMD_X86INTRIN // {{{
if constexpr (sizeof(_Tp) == 64 && _SplitBy == 4 && _Offset > 0)
{
if constexpr (__have_avx512dq && is_same_v<double, value_type>)
return _mm512_extractf64x2_pd(__to_intrin(__in), _Offset);
else if constexpr (is_floating_point_v<value_type>)
return __vector_bitcast<value_type>(
_mm512_extractf32x4_ps(__intrin_bitcast<__m512>(__in), _Offset));
else
return reinterpret_cast<_R>(
_mm512_extracti32x4_epi32(__intrin_bitcast<__m512i>(__in),
_Offset));
}
else
#endif // _GLIBCXX_SIMD_X86INTRIN }}}
{
#ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_1
using _W = conditional_t<
is_floating_point_v<value_type>, double,
conditional_t<(sizeof(_R) >= 16), long long, value_type>>;
static_assert(sizeof(_R) % sizeof(_W) == 0);
constexpr int __return_width = sizeof(_R) / sizeof(_W);
using _Up = __vector_type_t<_W, __return_width>;
const auto __x = __vector_bitcast<_W>(__in);
#else
constexpr int __return_width = _TVT::_S_full_size / _SplitBy;
using _Up = _R;
const __vector_type_t<value_type, _TVT::_S_full_size>& __x
= __in; // only needed for _Tp = _SimdWrapper<value_type, _Np>
#endif
constexpr int _O = _Offset * __return_width;
return __call_with_subscripts<__return_width, _O>(
__x, [](auto... __entries) {
return reinterpret_cast<_R>(_Up{__entries...});
});
}
}
// }}}
// __lo/__hi64[z]{{{
template <typename _Tp,
typename _R
= __vector_type8_t<typename _VectorTraits<_Tp>::value_type>>
_GLIBCXX_SIMD_INTRINSIC constexpr _R
__lo64(_Tp __x)
{
_R __r{};
__builtin_memcpy(&__r, &__x, 8);
return __r;
}
template <typename _Tp,
typename _R
= __vector_type8_t<typename _VectorTraits<_Tp>::value_type>>
_GLIBCXX_SIMD_INTRINSIC constexpr _R
__hi64(_Tp __x)
{
static_assert(sizeof(_Tp) == 16, "use __hi64z if you meant it");
_R __r{};
__builtin_memcpy(&__r, reinterpret_cast<const char*>(&__x) + 8, 8);
return __r;
}
template <typename _Tp,
typename _R
= __vector_type8_t<typename _VectorTraits<_Tp>::value_type>>
_GLIBCXX_SIMD_INTRINSIC constexpr _R
__hi64z([[maybe_unused]] _Tp __x)
{
_R __r{};
if constexpr (sizeof(_Tp) == 16)
__builtin_memcpy(&__r, reinterpret_cast<const char*>(&__x) + 8, 8);
return __r;
}
// }}}
// __lo/__hi128{{{
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC constexpr auto
__lo128(_Tp __x)
{ return __extract<0, sizeof(_Tp) / 16>(__x); }
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC constexpr auto
__hi128(_Tp __x)
{
static_assert(sizeof(__x) == 32);
return __extract<1, 2>(__x);
}
// }}}
// __lo/__hi256{{{
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC constexpr auto
__lo256(_Tp __x)
{
static_assert(sizeof(__x) == 64);
return __extract<0, 2>(__x);
}
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC constexpr auto
__hi256(_Tp __x)
{
static_assert(sizeof(__x) == 64);
return __extract<1, 2>(__x);
}
// }}}
// __auto_bitcast{{{
template <typename _Tp>
struct _AutoCast
{
static_assert(__is_vector_type_v<_Tp>);
const _Tp __x;
template <typename _Up, typename _UVT = _VectorTraits<_Up>>
_GLIBCXX_SIMD_INTRINSIC constexpr operator _Up() const
{ return __intrin_bitcast<typename _UVT::type>(__x); }
};
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC constexpr _AutoCast<_Tp>
__auto_bitcast(const _Tp& __x)
{ return {__x}; }
template <typename _Tp, size_t _Np>
_GLIBCXX_SIMD_INTRINSIC constexpr
_AutoCast<typename _SimdWrapper<_Tp, _Np>::_BuiltinType>
__auto_bitcast(const _SimdWrapper<_Tp, _Np>& __x)
{ return {__x._M_data}; }
// }}}
// ^^^ ---- builtin vector types [[gnu::vector_size(N)]] and operations ---- ^^^
#if _GLIBCXX_SIMD_HAVE_SSE_ABI
// __bool_storage_member_type{{{
#if _GLIBCXX_SIMD_HAVE_AVX512F && _GLIBCXX_SIMD_X86INTRIN
template <size_t _Size>
struct __bool_storage_member_type
{
static_assert((_Size & (_Size - 1)) != 0,
"This trait may only be used for non-power-of-2 sizes. "
"Power-of-2 sizes must be specialized.");
using type =
typename __bool_storage_member_type<std::__bit_ceil(_Size)>::type;
};
template <>
struct __bool_storage_member_type<1> { using type = bool; };
template <>
struct __bool_storage_member_type<2> { using type = __mmask8; };
template <>
struct __bool_storage_member_type<4> { using type = __mmask8; };
template <>
struct __bool_storage_member_type<8> { using type = __mmask8; };
template <>
struct __bool_storage_member_type<16> { using type = __mmask16; };
template <>
struct __bool_storage_member_type<32> { using type = __mmask32; };
template <>
struct __bool_storage_member_type<64> { using type = __mmask64; };
#endif // _GLIBCXX_SIMD_HAVE_AVX512F
// }}}
// __intrinsic_type (x86){{{
// the following excludes bool via __is_vectorizable
#if _GLIBCXX_SIMD_HAVE_SSE
template <typename _Tp, size_t _Bytes>
struct __intrinsic_type<_Tp, _Bytes,
enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 64>>
{
static_assert(!is_same_v<_Tp, long double>,
"no __intrinsic_type support for long double on x86");
static constexpr size_t _S_VBytes = _Bytes <= 16 ? 16
: _Bytes <= 32 ? 32
: 64;
using type [[__gnu__::__vector_size__(_S_VBytes)]]
= conditional_t<is_integral_v<_Tp>, long long int, _Tp>;
};
#endif // _GLIBCXX_SIMD_HAVE_SSE
// }}}
#endif // _GLIBCXX_SIMD_HAVE_SSE_ABI
// __intrinsic_type (ARM){{{
#if _GLIBCXX_SIMD_HAVE_NEON
template <>
struct __intrinsic_type<float, 8, void>
{ using type = float32x2_t; };
template <>
struct __intrinsic_type<float, 16, void>
{ using type = float32x4_t; };
#if _GLIBCXX_SIMD_HAVE_NEON_A64
template <>
struct __intrinsic_type<double, 8, void>
{ using type = float64x1_t; };
template <>
struct __intrinsic_type<double, 16, void>
{ using type = float64x2_t; };
#endif
#define _GLIBCXX_SIMD_ARM_INTRIN(_Bits, _Np) \
template <> \
struct __intrinsic_type<__int_with_sizeof_t<_Bits / 8>, \
_Np * _Bits / 8, void> \
{ using type = int##_Bits##x##_Np##_t; }; \
template <> \
struct __intrinsic_type<make_unsigned_t<__int_with_sizeof_t<_Bits / 8>>, \
_Np * _Bits / 8, void> \
{ using type = uint##_Bits##x##_Np##_t; }
_GLIBCXX_SIMD_ARM_INTRIN(8, 8);
_GLIBCXX_SIMD_ARM_INTRIN(8, 16);
_GLIBCXX_SIMD_ARM_INTRIN(16, 4);
_GLIBCXX_SIMD_ARM_INTRIN(16, 8);
_GLIBCXX_SIMD_ARM_INTRIN(32, 2);
_GLIBCXX_SIMD_ARM_INTRIN(32, 4);
_GLIBCXX_SIMD_ARM_INTRIN(64, 1);
_GLIBCXX_SIMD_ARM_INTRIN(64, 2);
#undef _GLIBCXX_SIMD_ARM_INTRIN
template <typename _Tp, size_t _Bytes>
struct __intrinsic_type<_Tp, _Bytes,
enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 16>>
{
static constexpr int _SVecBytes = _Bytes <= 8 ? 8 : 16;
using _Ip = __int_for_sizeof_t<_Tp>;
using _Up = conditional_t<
is_floating_point_v<_Tp>, _Tp,
conditional_t<is_unsigned_v<_Tp>, make_unsigned_t<_Ip>, _Ip>>;
static_assert(!is_same_v<_Tp, _Up> || _SVecBytes != _Bytes,
"should use explicit specialization above");
using type = typename __intrinsic_type<_Up, _SVecBytes>::type;
};
#endif // _GLIBCXX_SIMD_HAVE_NEON
// }}}
// __intrinsic_type (PPC){{{
#ifdef __ALTIVEC__
template <typename _Tp>
struct __intrinsic_type_impl;
#define _GLIBCXX_SIMD_PPC_INTRIN(_Tp) \
template <> \
struct __intrinsic_type_impl<_Tp> { using type = __vector _Tp; }
_GLIBCXX_SIMD_PPC_INTRIN(float);
_GLIBCXX_SIMD_PPC_INTRIN(double);
_GLIBCXX_SIMD_PPC_INTRIN(signed char);
_GLIBCXX_SIMD_PPC_INTRIN(unsigned char);
_GLIBCXX_SIMD_PPC_INTRIN(signed short);
_GLIBCXX_SIMD_PPC_INTRIN(unsigned short);
_GLIBCXX_SIMD_PPC_INTRIN(signed int);
_GLIBCXX_SIMD_PPC_INTRIN(unsigned int);
_GLIBCXX_SIMD_PPC_INTRIN(signed long);
_GLIBCXX_SIMD_PPC_INTRIN(unsigned long);
_GLIBCXX_SIMD_PPC_INTRIN(signed long long);
_GLIBCXX_SIMD_PPC_INTRIN(unsigned long long);
#undef _GLIBCXX_SIMD_PPC_INTRIN
template <typename _Tp, size_t _Bytes>
struct __intrinsic_type<_Tp, _Bytes,
enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 16>>
{
static constexpr bool _S_is_ldouble = is_same_v<_Tp, long double>;
// allow _Tp == long double with -mlong-double-64
static_assert(!(_S_is_ldouble && sizeof(long double) > sizeof(double)),
"no __intrinsic_type support for long double on PPC");
#ifndef __VSX__
static_assert(!is_same_v<_Tp, double>,
"no __intrinsic_type support for double on PPC w/o VSX");
#endif
using type =
typename __intrinsic_type_impl<
conditional_t<is_floating_point_v<_Tp>,
conditional_t<_S_is_ldouble, double, _Tp>,
__int_for_sizeof_t<_Tp>>>::type;
};
#endif // __ALTIVEC__
// }}}
// _SimdWrapper<bool>{{{1
template <size_t _Width>
struct _SimdWrapper<bool, _Width,
void_t<typename __bool_storage_member_type<_Width>::type>>
{
using _BuiltinType = typename __bool_storage_member_type<_Width>::type;
using value_type = bool;
static constexpr size_t _S_full_size = sizeof(_BuiltinType) * __CHAR_BIT__;
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper<bool, _S_full_size>
__as_full_vector() const { return _M_data; }
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper() = default;
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_BuiltinType __k)
: _M_data(__k) {};
_GLIBCXX_SIMD_INTRINSIC operator const _BuiltinType&() const
{ return _M_data; }
_GLIBCXX_SIMD_INTRINSIC operator _BuiltinType&()
{ return _M_data; }
_GLIBCXX_SIMD_INTRINSIC _BuiltinType __intrin() const
{ return _M_data; }
_GLIBCXX_SIMD_INTRINSIC constexpr value_type operator[](size_t __i) const
{ return _M_data & (_BuiltinType(1) << __i); }
template <size_t __i>
_GLIBCXX_SIMD_INTRINSIC constexpr value_type
operator[](_SizeConstant<__i>) const
{ return _M_data & (_BuiltinType(1) << __i); }
_GLIBCXX_SIMD_INTRINSIC constexpr void _M_set(size_t __i, value_type __x)
{
if (__x)
_M_data |= (_BuiltinType(1) << __i);
else
_M_data &= ~(_BuiltinType(1) << __i);
}
_GLIBCXX_SIMD_INTRINSIC
constexpr bool _M_is_constprop() const
{ return __builtin_constant_p(_M_data); }
_GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_none_of() const
{
if (__builtin_constant_p(_M_data))
{
constexpr int __nbits = sizeof(_BuiltinType) * __CHAR_BIT__;
constexpr _BuiltinType __active_mask
= ~_BuiltinType() >> (__nbits - _Width);
return (_M_data & __active_mask) == 0;
}
return false;
}
_GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_all_of() const
{
if (__builtin_constant_p(_M_data))
{
constexpr int __nbits = sizeof(_BuiltinType) * __CHAR_BIT__;
constexpr _BuiltinType __active_mask
= ~_BuiltinType() >> (__nbits - _Width);
return (_M_data & __active_mask) == __active_mask;
}
return false;
}
_BuiltinType _M_data;
};
// _SimdWrapperBase{{{1
template <bool _MustZeroInitPadding, typename _BuiltinType>
struct _SimdWrapperBase;
template <typename _BuiltinType>
struct _SimdWrapperBase<false, _BuiltinType> // no padding or no SNaNs
{
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase() = default;
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase(_BuiltinType __init)
: _M_data(__init)
{}
_BuiltinType _M_data;
};
template <typename _BuiltinType>
struct _SimdWrapperBase<true, _BuiltinType> // with padding that needs to
// never become SNaN
{
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase() : _M_data() {}
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase(_BuiltinType __init)
: _M_data(__init)
{}
_BuiltinType _M_data;
};
// }}}
// _SimdWrapper{{{
template <typename _Tp, size_t _Width>
struct _SimdWrapper<
_Tp, _Width,
void_t<__vector_type_t<_Tp, _Width>, __intrinsic_type_t<_Tp, _Width>>>
: _SimdWrapperBase<__has_iec559_behavior<__signaling_NaN, _Tp>::value
&& sizeof(_Tp) * _Width
== sizeof(__vector_type_t<_Tp, _Width>),
__vector_type_t<_Tp, _Width>>
{
using _Base
= _SimdWrapperBase<__has_iec559_behavior<__signaling_NaN, _Tp>::value
&& sizeof(_Tp) * _Width
== sizeof(__vector_type_t<_Tp, _Width>),
__vector_type_t<_Tp, _Width>>;
static_assert(__is_vectorizable_v<_Tp>);
static_assert(_Width >= 2); // 1 doesn't make sense, use _Tp directly then
using _BuiltinType = __vector_type_t<_Tp, _Width>;
using value_type = _Tp;
static inline constexpr size_t _S_full_size
= sizeof(_BuiltinType) / sizeof(value_type);
static inline constexpr int _S_size = _Width;
static inline constexpr bool _S_is_partial = _S_full_size != _S_size;
using _Base::_M_data;
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper<_Tp, _S_full_size>
__as_full_vector() const
{ return _M_data; }
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(initializer_list<_Tp> __init)
: _Base(__generate_from_n_evaluations<_Width, _BuiltinType>(
[&](auto __i) { return __init.begin()[__i.value]; })) {}
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper() = default;
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(const _SimdWrapper&)
= default;
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_SimdWrapper&&) = default;
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper&
operator=(const _SimdWrapper&) = default;
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper&
operator=(_SimdWrapper&&) = default;
template <typename _V, typename = enable_if_t<disjunction_v<
is_same<_V, __vector_type_t<_Tp, _Width>>,
is_same<_V, __intrinsic_type_t<_Tp, _Width>>>>>
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_V __x)
// __vector_bitcast can convert e.g. __m128 to __vector(2) float
: _Base(__vector_bitcast<_Tp, _Width>(__x)) {}
template <typename... _As,
typename = enable_if_t<((is_same_v<simd_abi::scalar, _As> && ...)
&& sizeof...(_As) <= _Width)>>
_GLIBCXX_SIMD_INTRINSIC constexpr
operator _SimdTuple<_Tp, _As...>() const
{
const auto& dd = _M_data; // workaround for GCC7 ICE
return __generate_from_n_evaluations<sizeof...(_As),
_SimdTuple<_Tp, _As...>>([&](
auto __i) constexpr { return dd[int(__i)]; });
}
_GLIBCXX_SIMD_INTRINSIC constexpr operator const _BuiltinType&() const
{ return _M_data; }
_GLIBCXX_SIMD_INTRINSIC constexpr operator _BuiltinType&()
{ return _M_data; }
_GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator[](size_t __i) const
{ return _M_data[__i]; }
template <size_t __i>
_GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator[](_SizeConstant<__i>) const
{ return _M_data[__i]; }
_GLIBCXX_SIMD_INTRINSIC constexpr void _M_set(size_t __i, _Tp __x)
{ _M_data[__i] = __x; }
_GLIBCXX_SIMD_INTRINSIC
constexpr bool _M_is_constprop() const
{ return __builtin_constant_p(_M_data); }
_GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_none_of() const
{
if (__builtin_constant_p(_M_data))
{
bool __r = true;
if constexpr (is_floating_point_v<_Tp>)
{
using _Ip = __int_for_sizeof_t<_Tp>;
const auto __intdata = __vector_bitcast<_Ip>(_M_data);
__execute_n_times<_Width>(
[&](auto __i) { __r &= __intdata[__i.value] == _Ip(); });
}
else
__execute_n_times<_Width>(
[&](auto __i) { __r &= _M_data[__i.value] == _Tp(); });
return __r;
}
return false;
}
_GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_all_of() const
{
if (__builtin_constant_p(_M_data))
{
bool __r = true;
if constexpr (is_floating_point_v<_Tp>)
{
using _Ip = __int_for_sizeof_t<_Tp>;
const auto __intdata = __vector_bitcast<_Ip>(_M_data);
__execute_n_times<_Width>(
[&](auto __i) { __r &= __intdata[__i.value] == ~_Ip(); });
}
else
__execute_n_times<_Width>(
[&](auto __i) { __r &= _M_data[__i.value] == ~_Tp(); });
return __r;
}
return false;
}
};
// }}}
// __vectorized_sizeof {{{
template <typename _Tp>
constexpr size_t
__vectorized_sizeof()
{
if constexpr (!__is_vectorizable_v<_Tp>)
return 0;
if constexpr (sizeof(_Tp) <= 8)
{
// X86:
if constexpr (__have_avx512bw)
return 64;
if constexpr (__have_avx512f && sizeof(_Tp) >= 4)
return 64;
if constexpr (__have_avx2)
return 32;
if constexpr (__have_avx && is_floating_point_v<_Tp>)
return 32;
if constexpr (__have_sse2)
return 16;
if constexpr (__have_sse && is_same_v<_Tp, float>)
return 16;
/* The following is too much trouble because of mixed MMX and x87 code.
* While nothing here explicitly calls MMX instructions of registers,
* they are still emitted but no EMMS cleanup is done.
if constexpr (__have_mmx && sizeof(_Tp) <= 4 && is_integral_v<_Tp>)
return 8;
*/
// PowerPC:
if constexpr (__have_power8vec
|| (__have_power_vmx && (sizeof(_Tp) < 8))
|| (__have_power_vsx && is_floating_point_v<_Tp>) )
return 16;
// ARM:
if constexpr (__have_neon_a64
|| (__have_neon_a32 && !is_same_v<_Tp, double>) )
return 16;
if constexpr (__have_neon
&& sizeof(_Tp) < 8
// Only allow fp if the user allows non-ICE559 fp (e.g.
// via -ffast-math). ARMv7 NEON fp is not conforming to
// IEC559.
&& (__support_neon_float || !is_floating_point_v<_Tp>))
return 16;
}
return sizeof(_Tp);
}
// }}}
namespace simd_abi {
// most of simd_abi is defined in simd_detail.h
template <typename _Tp>
inline constexpr int max_fixed_size
= (__have_avx512bw && sizeof(_Tp) == 1) ? 64 : 32;
// compatible {{{
#if defined __x86_64__ || defined __aarch64__
template <typename _Tp>
using compatible = conditional_t<(sizeof(_Tp) <= 8), _VecBuiltin<16>, scalar>;
#elif defined __ARM_NEON
// FIXME: not sure, probably needs to be scalar (or dependent on the hard-float
// ABI?)
template <typename _Tp>
using compatible
= conditional_t<(sizeof(_Tp) < 8
&& (__support_neon_float || !is_floating_point_v<_Tp>)),
_VecBuiltin<16>, scalar>;
#else
template <typename>
using compatible = scalar;
#endif
// }}}
// native {{{
template <typename _Tp>
constexpr auto
__determine_native_abi()
{
constexpr size_t __bytes = __vectorized_sizeof<_Tp>();
if constexpr (__bytes == sizeof(_Tp))
return static_cast<scalar*>(nullptr);
else if constexpr (__have_avx512vl || (__have_avx512f && __bytes == 64))
return static_cast<_VecBltnBtmsk<__bytes>*>(nullptr);
else
return static_cast<_VecBuiltin<__bytes>*>(nullptr);
}
template <typename _Tp, typename = enable_if_t<__is_vectorizable_v<_Tp>>>
using native = remove_pointer_t<decltype(__determine_native_abi<_Tp>())>;
// }}}
// __default_abi {{{
#if defined _GLIBCXX_SIMD_DEFAULT_ABI
template <typename _Tp>
using __default_abi = _GLIBCXX_SIMD_DEFAULT_ABI<_Tp>;
#else
template <typename _Tp>
using __default_abi = compatible<_Tp>;
#endif
// }}}
} // namespace simd_abi
// traits {{{1
// is_abi_tag {{{2
template <typename _Tp, typename = void_t<>>
struct is_abi_tag : false_type {};
template <typename _Tp>
struct is_abi_tag<_Tp, void_t<typename _Tp::_IsValidAbiTag>>
: public _Tp::_IsValidAbiTag {};
template <typename _Tp>
inline constexpr bool is_abi_tag_v = is_abi_tag<_Tp>::value;
// is_simd(_mask) {{{2
template <typename _Tp>
struct is_simd : public false_type {};
template <typename _Tp>
inline constexpr bool is_simd_v = is_simd<_Tp>::value;
template <typename _Tp>
struct is_simd_mask : public false_type {};
template <typename _Tp>
inline constexpr bool is_simd_mask_v = is_simd_mask<_Tp>::value;
// simd_size {{{2
template <typename _Tp, typename _Abi, typename = void>
struct __simd_size_impl {};
template <typename _Tp, typename _Abi>
struct __simd_size_impl<
_Tp, _Abi,
enable_if_t<conjunction_v<__is_vectorizable<_Tp>, is_abi_tag<_Abi>>>>
: _SizeConstant<_Abi::template _S_size<_Tp>> {};
template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
struct simd_size : __simd_size_impl<_Tp, _Abi> {};
template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
inline constexpr size_t simd_size_v = simd_size<_Tp, _Abi>::value;
// simd_abi::deduce {{{2
template <typename _Tp, size_t _Np, typename = void>
struct __deduce_impl;
namespace simd_abi {
/**
* @tparam _Tp The requested `value_type` for the elements.
* @tparam _Np The requested number of elements.
* @tparam _Abis This parameter is ignored, since this implementation cannot
* make any use of it. Either __a good native ABI is matched and used as `type`
* alias, or the `fixed_size<_Np>` ABI is used, which internally is built from
* the best matching native ABIs.
*/
template <typename _Tp, size_t _Np, typename...>
struct deduce : __deduce_impl<_Tp, _Np> {};
template <typename _Tp, size_t _Np, typename... _Abis>
using deduce_t = typename deduce<_Tp, _Np, _Abis...>::type;
} // namespace simd_abi
// }}}2
// rebind_simd {{{2
template <typename _Tp, typename _V, typename = void>
struct rebind_simd;
template <typename _Tp, typename _Up, typename _Abi>
struct rebind_simd<
_Tp, simd<_Up, _Abi>,
void_t<simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>>
{
using type
= simd<_Tp, simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>;
};
template <typename _Tp, typename _Up, typename _Abi>
struct rebind_simd<
_Tp, simd_mask<_Up, _Abi>,
void_t<simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>>
{
using type
= simd_mask<_Tp, simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>;
};
template <typename _Tp, typename _V>
using rebind_simd_t = typename rebind_simd<_Tp, _V>::type;
// resize_simd {{{2
template <int _Np, typename _V, typename = void>
struct resize_simd;
template <int _Np, typename _Tp, typename _Abi>
struct resize_simd<_Np, simd<_Tp, _Abi>,
void_t<simd_abi::deduce_t<_Tp, _Np, _Abi>>>
{ using type = simd<_Tp, simd_abi::deduce_t<_Tp, _Np, _Abi>>; };
template <int _Np, typename _Tp, typename _Abi>
struct resize_simd<_Np, simd_mask<_Tp, _Abi>,
void_t<simd_abi::deduce_t<_Tp, _Np, _Abi>>>
{ using type = simd_mask<_Tp, simd_abi::deduce_t<_Tp, _Np, _Abi>>; };
template <int _Np, typename _V>
using resize_simd_t = typename resize_simd<_Np, _V>::type;
// }}}2
// memory_alignment {{{2
template <typename _Tp, typename _Up = typename _Tp::value_type>
struct memory_alignment
: public _SizeConstant<vector_aligned_tag::_S_alignment<_Tp, _Up>> {};
template <typename _Tp, typename _Up = typename _Tp::value_type>
inline constexpr size_t memory_alignment_v = memory_alignment<_Tp, _Up>::value;
// class template simd [simd] {{{1
template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
class simd;
template <typename _Tp, typename _Abi>
struct is_simd<simd<_Tp, _Abi>> : public true_type {};
template <typename _Tp>
using native_simd = simd<_Tp, simd_abi::native<_Tp>>;
template <typename _Tp, int _Np>
using fixed_size_simd = simd<_Tp, simd_abi::fixed_size<_Np>>;
template <typename _Tp, size_t _Np>
using __deduced_simd = simd<_Tp, simd_abi::deduce_t<_Tp, _Np>>;
// class template simd_mask [simd_mask] {{{1
template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
class simd_mask;
template <typename _Tp, typename _Abi>
struct is_simd_mask<simd_mask<_Tp, _Abi>> : public true_type {};
template <typename _Tp>
using native_simd_mask = simd_mask<_Tp, simd_abi::native<_Tp>>;
template <typename _Tp, int _Np>
using fixed_size_simd_mask = simd_mask<_Tp, simd_abi::fixed_size<_Np>>;
template <typename _Tp, size_t _Np>
using __deduced_simd_mask = simd_mask<_Tp, simd_abi::deduce_t<_Tp, _Np>>;
// casts [simd.casts] {{{1
// static_simd_cast {{{2
template <typename _Tp, typename _Up, typename _Ap, bool = is_simd_v<_Tp>,
typename = void>
struct __static_simd_cast_return_type;
template <typename _Tp, typename _A0, typename _Up, typename _Ap>
struct __static_simd_cast_return_type<simd_mask<_Tp, _A0>, _Up, _Ap, false,
void>
: __static_simd_cast_return_type<simd<_Tp, _A0>, _Up, _Ap> {};
template <typename _Tp, typename _Up, typename _Ap>
struct __static_simd_cast_return_type<
_Tp, _Up, _Ap, true, enable_if_t<_Tp::size() == simd_size_v<_Up, _Ap>>>
{ using type = _Tp; };
template <typename _Tp, typename _Ap>
struct __static_simd_cast_return_type<_Tp, _Tp, _Ap, false,
#ifdef _GLIBCXX_SIMD_FIX_P2TS_ISSUE66
enable_if_t<__is_vectorizable_v<_Tp>>
#else
void
#endif
>
{ using type = simd<_Tp, _Ap>; };
template <typename _Tp, typename = void>
struct __safe_make_signed { using type = _Tp;};
template <typename _Tp>
struct __safe_make_signed<_Tp, enable_if_t<is_integral_v<_Tp>>>
{
// the extra make_unsigned_t is because of PR85951
using type = make_signed_t<make_unsigned_t<_Tp>>;
};
template <typename _Tp>
using safe_make_signed_t = typename __safe_make_signed<_Tp>::type;
template <typename _Tp, typename _Up, typename _Ap>
struct __static_simd_cast_return_type<_Tp, _Up, _Ap, false,
#ifdef _GLIBCXX_SIMD_FIX_P2TS_ISSUE66
enable_if_t<__is_vectorizable_v<_Tp>>
#else
void
#endif
>
{
using type = conditional_t<
(is_integral_v<_Up> && is_integral_v<_Tp> &&
#ifndef _GLIBCXX_SIMD_FIX_P2TS_ISSUE65
is_signed_v<_Up> != is_signed_v<_Tp> &&
#endif
is_same_v<safe_make_signed_t<_Up>, safe_make_signed_t<_Tp>>),
simd<_Tp, _Ap>, fixed_size_simd<_Tp, simd_size_v<_Up, _Ap>>>;
};
template <typename _Tp, typename _Up, typename _Ap,
typename _R
= typename __static_simd_cast_return_type<_Tp, _Up, _Ap>::type>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _R
static_simd_cast(const simd<_Up, _Ap>& __x)
{
if constexpr (is_same<_R, simd<_Up, _Ap>>::value)
return __x;
else
{
_SimdConverter<_Up, _Ap, typename _R::value_type, typename _R::abi_type>
__c;
return _R(__private_init, __c(__data(__x)));
}
}
namespace __proposed {
template <typename _Tp, typename _Up, typename _Ap,
typename _R
= typename __static_simd_cast_return_type<_Tp, _Up, _Ap>::type>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR typename _R::mask_type
static_simd_cast(const simd_mask<_Up, _Ap>& __x)
{
using _RM = typename _R::mask_type;
return {__private_init, _RM::abi_type::_MaskImpl::template _S_convert<
typename _RM::simd_type::value_type>(__x)};
}
template <typename _To, typename _Up, typename _Abi>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
_To
simd_bit_cast(const simd<_Up, _Abi>& __x)
{
using _Tp = typename _To::value_type;
using _ToMember = typename _SimdTraits<_Tp, typename _To::abi_type>::_SimdMember;
using _From = simd<_Up, _Abi>;
using _FromMember = typename _SimdTraits<_Up, _Abi>::_SimdMember;
// with concepts, the following should be constraints
static_assert(sizeof(_To) == sizeof(_From));
static_assert(is_trivially_copyable_v<_Tp> && is_trivially_copyable_v<_Up>);
static_assert(is_trivially_copyable_v<_ToMember> && is_trivially_copyable_v<_FromMember>);
#if __has_builtin(__builtin_bit_cast)
return {__private_init, __builtin_bit_cast(_ToMember, __data(__x))};
#else
return {__private_init, __bit_cast<_ToMember>(__data(__x))};
#endif
}
template <typename _To, typename _Up, typename _Abi>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
_To
simd_bit_cast(const simd_mask<_Up, _Abi>& __x)
{
using _From = simd_mask<_Up, _Abi>;
static_assert(sizeof(_To) == sizeof(_From));
static_assert(is_trivially_copyable_v<_From>);
// _To can be simd<T, A>, specifically simd<T, fixed_size<N>> in which case _To is not trivially
// copyable.
if constexpr (is_simd_v<_To>)
{
using _Tp = typename _To::value_type;
using _ToMember = typename _SimdTraits<_Tp, typename _To::abi_type>::_SimdMember;
static_assert(is_trivially_copyable_v<_ToMember>);
#if __has_builtin(__builtin_bit_cast)
return {__private_init, __builtin_bit_cast(_ToMember, __x)};
#else
return {__private_init, __bit_cast<_ToMember>(__x)};
#endif
}
else
{
static_assert(is_trivially_copyable_v<_To>);
#if __has_builtin(__builtin_bit_cast)
return __builtin_bit_cast(_To, __x);
#else
return __bit_cast<_To>(__x);
#endif
}
}
} // namespace __proposed
// simd_cast {{{2
template <typename _Tp, typename _Up, typename _Ap,
typename _To = __value_type_or_identity_t<_Tp>>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR auto
simd_cast(const simd<_ValuePreserving<_Up, _To>, _Ap>& __x)
-> decltype(static_simd_cast<_Tp>(__x))
{ return static_simd_cast<_Tp>(__x); }
namespace __proposed {
template <typename _Tp, typename _Up, typename _Ap,
typename _To = __value_type_or_identity_t<_Tp>>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR auto
simd_cast(const simd_mask<_ValuePreserving<_Up, _To>, _Ap>& __x)
-> decltype(static_simd_cast<_Tp>(__x))
{ return static_simd_cast<_Tp>(__x); }
} // namespace __proposed
// }}}2
// resizing_simd_cast {{{
namespace __proposed {
/* Proposed spec:
template <class T, class U, class Abi>
T resizing_simd_cast(const simd<U, Abi>& x)
p1 Constraints:
- is_simd_v<T> is true and
- T::value_type is the same type as U
p2 Returns:
A simd object with the i^th element initialized to x[i] for all i in the
range of [0, min(T::size(), simd_size_v<U, Abi>)). If T::size() is larger
than simd_size_v<U, Abi>, the remaining elements are value-initialized.
template <class T, class U, class Abi>
T resizing_simd_cast(const simd_mask<U, Abi>& x)
p1 Constraints: is_simd_mask_v<T> is true
p2 Returns:
A simd_mask object with the i^th element initialized to x[i] for all i in
the range of [0, min(T::size(), simd_size_v<U, Abi>)). If T::size() is larger
than simd_size_v<U, Abi>, the remaining elements are initialized to false.
*/
template <typename _Tp, typename _Up, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR enable_if_t<
conjunction_v<is_simd<_Tp>, is_same<typename _Tp::value_type, _Up>>, _Tp>
resizing_simd_cast(const simd<_Up, _Ap>& __x)
{
if constexpr (is_same_v<typename _Tp::abi_type, _Ap>)
return __x;
else if constexpr (simd_size_v<_Up, _Ap> == 1)
{
_Tp __r{};
__r[0] = __x[0];
return __r;
}
else if constexpr (_Tp::size() == 1)
return __x[0];
else if constexpr (sizeof(_Tp) == sizeof(__x)
&& !__is_fixed_size_abi_v<_Ap>)
return {__private_init,
__vector_bitcast<typename _Tp::value_type, _Tp::size()>(
_Ap::_S_masked(__data(__x))._M_data)};
else
{
_Tp __r{};
__builtin_memcpy(&__data(__r), &__data(__x),
sizeof(_Up)
* std::min(_Tp::size(), simd_size_v<_Up, _Ap>));
return __r;
}
}
template <typename _Tp, typename _Up, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
enable_if_t<is_simd_mask_v<_Tp>, _Tp>
resizing_simd_cast(const simd_mask<_Up, _Ap>& __x)
{
return {__private_init, _Tp::abi_type::_MaskImpl::template _S_convert<
typename _Tp::simd_type::value_type>(__x)};
}
} // namespace __proposed
// }}}
// to_fixed_size {{{2
template <typename _Tp, int _Np>
_GLIBCXX_SIMD_INTRINSIC fixed_size_simd<_Tp, _Np>
to_fixed_size(const fixed_size_simd<_Tp, _Np>& __x)
{ return __x; }
template <typename _Tp, int _Np>
_GLIBCXX_SIMD_INTRINSIC fixed_size_simd_mask<_Tp, _Np>
to_fixed_size(const fixed_size_simd_mask<_Tp, _Np>& __x)
{ return __x; }
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC auto
to_fixed_size(const simd<_Tp, _Ap>& __x)
{
return simd<_Tp, simd_abi::fixed_size<simd_size_v<_Tp, _Ap>>>([&__x](
auto __i) constexpr { return __x[__i]; });
}
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC auto
to_fixed_size(const simd_mask<_Tp, _Ap>& __x)
{
constexpr int _Np = simd_mask<_Tp, _Ap>::size();
fixed_size_simd_mask<_Tp, _Np> __r;
__execute_n_times<_Np>([&](auto __i) constexpr { __r[__i] = __x[__i]; });
return __r;
}
// to_native {{{2
template <typename _Tp, int _Np>
_GLIBCXX_SIMD_INTRINSIC
enable_if_t<(_Np == native_simd<_Tp>::size()), native_simd<_Tp>>
to_native(const fixed_size_simd<_Tp, _Np>& __x)
{
alignas(memory_alignment_v<native_simd<_Tp>>) _Tp __mem[_Np];
__x.copy_to(__mem, vector_aligned);
return {__mem, vector_aligned};
}
template <typename _Tp, size_t _Np>
_GLIBCXX_SIMD_INTRINSIC
enable_if_t<(_Np == native_simd_mask<_Tp>::size()), native_simd_mask<_Tp>>
to_native(const fixed_size_simd_mask<_Tp, _Np>& __x)
{
return native_simd_mask<_Tp>([&](auto __i) constexpr { return __x[__i]; });
}
// to_compatible {{{2
template <typename _Tp, size_t _Np>
_GLIBCXX_SIMD_INTRINSIC enable_if_t<(_Np == simd<_Tp>::size()), simd<_Tp>>
to_compatible(const simd<_Tp, simd_abi::fixed_size<_Np>>& __x)
{
alignas(memory_alignment_v<simd<_Tp>>) _Tp __mem[_Np];
__x.copy_to(__mem, vector_aligned);
return {__mem, vector_aligned};
}
template <typename _Tp, size_t _Np>
_GLIBCXX_SIMD_INTRINSIC
enable_if_t<(_Np == simd_mask<_Tp>::size()), simd_mask<_Tp>>
to_compatible(const simd_mask<_Tp, simd_abi::fixed_size<_Np>>& __x)
{ return simd_mask<_Tp>([&](auto __i) constexpr { return __x[__i]; }); }
// masked assignment [simd_mask.where] {{{1
// where_expression {{{1
// const_where_expression<M, T> {{{2
template <typename _M, typename _Tp>
class const_where_expression
{
using _V = _Tp;
static_assert(is_same_v<_V, __remove_cvref_t<_Tp>>);
struct _Wrapper { using value_type = _V; };
protected:
using _Impl = typename _V::_Impl;
using value_type =
typename conditional_t<is_arithmetic_v<_V>, _Wrapper, _V>::value_type;
_GLIBCXX_SIMD_INTRINSIC friend const _M&
__get_mask(const const_where_expression& __x)
{ return __x._M_k; }
_GLIBCXX_SIMD_INTRINSIC friend const _Tp&
__get_lvalue(const const_where_expression& __x)
{ return __x._M_value; }
const _M& _M_k;
_Tp& _M_value;
public:
const_where_expression(const const_where_expression&) = delete;
const_where_expression& operator=(const const_where_expression&) = delete;
_GLIBCXX_SIMD_INTRINSIC const_where_expression(const _M& __kk, const _Tp& dd)
: _M_k(__kk), _M_value(const_cast<_Tp&>(dd)) {}
_GLIBCXX_SIMD_INTRINSIC _V
operator-() const&&
{
return {__private_init,
_Impl::template _S_masked_unary<negate>(__data(_M_k),
__data(_M_value))};
}
template <typename _Up, typename _Flags>
[[nodiscard]] _GLIBCXX_SIMD_INTRINSIC _V
copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
{
return {__private_init,
_Impl::_S_masked_load(__data(_M_value), __data(_M_k),
_Flags::template _S_apply<_V>(__mem))};
}
template <typename _Up, typename _Flags>
_GLIBCXX_SIMD_INTRINSIC void
copy_to(_LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
{
_Impl::_S_masked_store(__data(_M_value),
_Flags::template _S_apply<_V>(__mem),
__data(_M_k));
}
};
// const_where_expression<bool, T> {{{2
template <typename _Tp>
class const_where_expression<bool, _Tp>
{
using _M = bool;
using _V = _Tp;
static_assert(is_same_v<_V, __remove_cvref_t<_Tp>>);
struct _Wrapper { using value_type = _V; };
protected:
using value_type =
typename conditional_t<is_arithmetic_v<_V>, _Wrapper, _V>::value_type;
_GLIBCXX_SIMD_INTRINSIC friend const _M&
__get_mask(const const_where_expression& __x)
{ return __x._M_k; }
_GLIBCXX_SIMD_INTRINSIC friend const _Tp&
__get_lvalue(const const_where_expression& __x)
{ return __x._M_value; }
const bool _M_k;
_Tp& _M_value;
public:
const_where_expression(const const_where_expression&) = delete;
const_where_expression& operator=(const const_where_expression&) = delete;
_GLIBCXX_SIMD_INTRINSIC const_where_expression(const bool __kk, const _Tp& dd)
: _M_k(__kk), _M_value(const_cast<_Tp&>(dd)) {}
_GLIBCXX_SIMD_INTRINSIC _V operator-() const&&
{ return _M_k ? -_M_value : _M_value; }
template <typename _Up, typename _Flags>
[[nodiscard]] _GLIBCXX_SIMD_INTRINSIC _V
copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
{ return _M_k ? static_cast<_V>(__mem[0]) : _M_value; }
template <typename _Up, typename _Flags>
_GLIBCXX_SIMD_INTRINSIC void
copy_to(_LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
{
if (_M_k)
__mem[0] = _M_value;
}
};
// where_expression<M, T> {{{2
template <typename _M, typename _Tp>
class where_expression : public const_where_expression<_M, _Tp>
{
using _Impl = typename const_where_expression<_M, _Tp>::_Impl;
static_assert(!is_const<_Tp>::value,
"where_expression may only be instantiated with __a non-const "
"_Tp parameter");
using typename const_where_expression<_M, _Tp>::value_type;
using const_where_expression<_M, _Tp>::_M_k;
using const_where_expression<_M, _Tp>::_M_value;
static_assert(
is_same<typename _M::abi_type, typename _Tp::abi_type>::value, "");
static_assert(_M::size() == _Tp::size(), "");
_GLIBCXX_SIMD_INTRINSIC friend _Tp& __get_lvalue(where_expression& __x)
{ return __x._M_value; }
public:
where_expression(const where_expression&) = delete;
where_expression& operator=(const where_expression&) = delete;
_GLIBCXX_SIMD_INTRINSIC where_expression(const _M& __kk, _Tp& dd)
: const_where_expression<_M, _Tp>(__kk, dd) {}
template <typename _Up>
_GLIBCXX_SIMD_INTRINSIC void operator=(_Up&& __x) &&
{
_Impl::_S_masked_assign(__data(_M_k), __data(_M_value),
__to_value_type_or_member_type<_Tp>(
static_cast<_Up&&>(__x)));
}
#define _GLIBCXX_SIMD_OP_(__op, __name) \
template <typename _Up> \
_GLIBCXX_SIMD_INTRINSIC void operator __op##=(_Up&& __x)&& \
{ \
_Impl::template _S_masked_cassign( \
__data(_M_k), __data(_M_value), \
__to_value_type_or_member_type<_Tp>(static_cast<_Up&&>(__x)), \
[](auto __impl, auto __lhs, auto __rhs) constexpr { \
return __impl.__name(__lhs, __rhs); \
}); \
} \
static_assert(true)
_GLIBCXX_SIMD_OP_(+, _S_plus);
_GLIBCXX_SIMD_OP_(-, _S_minus);
_GLIBCXX_SIMD_OP_(*, _S_multiplies);
_GLIBCXX_SIMD_OP_(/, _S_divides);
_GLIBCXX_SIMD_OP_(%, _S_modulus);
_GLIBCXX_SIMD_OP_(&, _S_bit_and);
_GLIBCXX_SIMD_OP_(|, _S_bit_or);
_GLIBCXX_SIMD_OP_(^, _S_bit_xor);
_GLIBCXX_SIMD_OP_(<<, _S_shift_left);
_GLIBCXX_SIMD_OP_(>>, _S_shift_right);
#undef _GLIBCXX_SIMD_OP_
_GLIBCXX_SIMD_INTRINSIC void operator++() &&
{
__data(_M_value)
= _Impl::template _S_masked_unary<__increment>(__data(_M_k),
__data(_M_value));
}
_GLIBCXX_SIMD_INTRINSIC void operator++(int) &&
{
__data(_M_value)
= _Impl::template _S_masked_unary<__increment>(__data(_M_k),
__data(_M_value));
}
_GLIBCXX_SIMD_INTRINSIC void operator--() &&
{
__data(_M_value)
= _Impl::template _S_masked_unary<__decrement>(__data(_M_k),
__data(_M_value));
}
_GLIBCXX_SIMD_INTRINSIC void operator--(int) &&
{
__data(_M_value)
= _Impl::template _S_masked_unary<__decrement>(__data(_M_k),
__data(_M_value));
}
// intentionally hides const_where_expression::copy_from
template <typename _Up, typename _Flags>
_GLIBCXX_SIMD_INTRINSIC void
copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) &&
{
__data(_M_value)
= _Impl::_S_masked_load(__data(_M_value), __data(_M_k),
_Flags::template _S_apply<_Tp>(__mem));
}
};
// where_expression<bool, T> {{{2
template <typename _Tp>
class where_expression<bool, _Tp> : public const_where_expression<bool, _Tp>
{
using _M = bool;
using typename const_where_expression<_M, _Tp>::value_type;
using const_where_expression<_M, _Tp>::_M_k;
using const_where_expression<_M, _Tp>::_M_value;
public:
where_expression(const where_expression&) = delete;
where_expression& operator=(const where_expression&) = delete;
_GLIBCXX_SIMD_INTRINSIC where_expression(const _M& __kk, _Tp& dd)
: const_where_expression<_M, _Tp>(__kk, dd) {}
#define _GLIBCXX_SIMD_OP_(__op) \
template <typename _Up> \
_GLIBCXX_SIMD_INTRINSIC void operator __op(_Up&& __x)&& \
{ if (_M_k) _M_value __op static_cast<_Up&&>(__x); }
_GLIBCXX_SIMD_OP_(=)
_GLIBCXX_SIMD_OP_(+=)
_GLIBCXX_SIMD_OP_(-=)
_GLIBCXX_SIMD_OP_(*=)
_GLIBCXX_SIMD_OP_(/=)
_GLIBCXX_SIMD_OP_(%=)
_GLIBCXX_SIMD_OP_(&=)
_GLIBCXX_SIMD_OP_(|=)
_GLIBCXX_SIMD_OP_(^=)
_GLIBCXX_SIMD_OP_(<<=)
_GLIBCXX_SIMD_OP_(>>=)
#undef _GLIBCXX_SIMD_OP_
_GLIBCXX_SIMD_INTRINSIC void operator++() &&
{ if (_M_k) ++_M_value; }
_GLIBCXX_SIMD_INTRINSIC void operator++(int) &&
{ if (_M_k) ++_M_value; }
_GLIBCXX_SIMD_INTRINSIC void operator--() &&
{ if (_M_k) --_M_value; }
_GLIBCXX_SIMD_INTRINSIC void operator--(int) &&
{ if (_M_k) --_M_value; }
// intentionally hides const_where_expression::copy_from
template <typename _Up, typename _Flags>
_GLIBCXX_SIMD_INTRINSIC void
copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) &&
{ if (_M_k) _M_value = __mem[0]; }
};
// where {{{1
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC where_expression<simd_mask<_Tp, _Ap>, simd<_Tp, _Ap>>
where(const typename simd<_Tp, _Ap>::mask_type& __k, simd<_Tp, _Ap>& __value)
{ return {__k, __value}; }
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC
const_where_expression<simd_mask<_Tp, _Ap>, simd<_Tp, _Ap>>
where(const typename simd<_Tp, _Ap>::mask_type& __k,
const simd<_Tp, _Ap>& __value)
{ return {__k, __value}; }
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC
where_expression<simd_mask<_Tp, _Ap>, simd_mask<_Tp, _Ap>>
where(const remove_const_t<simd_mask<_Tp, _Ap>>& __k,
simd_mask<_Tp, _Ap>& __value)
{ return {__k, __value}; }
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC
const_where_expression<simd_mask<_Tp, _Ap>, simd_mask<_Tp, _Ap>>
where(const remove_const_t<simd_mask<_Tp, _Ap>>& __k,
const simd_mask<_Tp, _Ap>& __value)
{ return {__k, __value}; }
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC where_expression<bool, _Tp>
where(_ExactBool __k, _Tp& __value)
{ return {__k, __value}; }
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC const_where_expression<bool, _Tp>
where(_ExactBool __k, const _Tp& __value)
{ return {__k, __value}; }
template <typename _Tp, typename _Ap>
void where(bool __k, simd<_Tp, _Ap>& __value) = delete;
template <typename _Tp, typename _Ap>
void where(bool __k, const simd<_Tp, _Ap>& __value) = delete;
// proposed mask iterations {{{1
namespace __proposed {
template <size_t _Np>
class where_range
{
const bitset<_Np> __bits;
public:
where_range(bitset<_Np> __b) : __bits(__b) {}
class iterator
{
size_t __mask;
size_t __bit;
_GLIBCXX_SIMD_INTRINSIC void __next_bit()
{ __bit = __builtin_ctzl(__mask); }
_GLIBCXX_SIMD_INTRINSIC void __reset_lsb()
{
// 01100100 - 1 = 01100011
__mask &= (__mask - 1);
// __asm__("btr %1,%0" : "+r"(__mask) : "r"(__bit));
}
public:
iterator(decltype(__mask) __m) : __mask(__m) { __next_bit(); }
iterator(const iterator&) = default;
iterator(iterator&&) = default;
_GLIBCXX_SIMD_ALWAYS_INLINE size_t operator->() const
{ return __bit; }
_GLIBCXX_SIMD_ALWAYS_INLINE size_t operator*() const
{ return __bit; }
_GLIBCXX_SIMD_ALWAYS_INLINE iterator& operator++()
{
__reset_lsb();
__next_bit();
return *this;
}
_GLIBCXX_SIMD_ALWAYS_INLINE iterator operator++(int)
{
iterator __tmp = *this;
__reset_lsb();
__next_bit();
return __tmp;
}
_GLIBCXX_SIMD_ALWAYS_INLINE bool operator==(const iterator& __rhs) const
{ return __mask == __rhs.__mask; }
_GLIBCXX_SIMD_ALWAYS_INLINE bool operator!=(const iterator& __rhs) const
{ return __mask != __rhs.__mask; }
};
iterator begin() const
{ return __bits.to_ullong(); }
iterator end() const
{ return 0; }
};
template <typename _Tp, typename _Ap>
where_range<simd_size_v<_Tp, _Ap>>
where(const simd_mask<_Tp, _Ap>& __k)
{ return __k.__to_bitset(); }
} // namespace __proposed
// }}}1
// reductions [simd.reductions] {{{1
template <typename _Tp, typename _Abi, typename _BinaryOperation = plus<>>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp
reduce(const simd<_Tp, _Abi>& __v,
_BinaryOperation __binary_op = _BinaryOperation())
{ return _Abi::_SimdImpl::_S_reduce(__v, __binary_op); }
template <typename _M, typename _V, typename _BinaryOperation = plus<>>
_GLIBCXX_SIMD_INTRINSIC typename _V::value_type
reduce(const const_where_expression<_M, _V>& __x,
typename _V::value_type __identity_element,
_BinaryOperation __binary_op)
{
if (__builtin_expect(none_of(__get_mask(__x)), false))
return __identity_element;
_V __tmp = __identity_element;
_V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp),
__data(__get_lvalue(__x)));
return reduce(__tmp, __binary_op);
}
template <typename _M, typename _V>
_GLIBCXX_SIMD_INTRINSIC typename _V::value_type
reduce(const const_where_expression<_M, _V>& __x, plus<> __binary_op = {})
{ return reduce(__x, 0, __binary_op); }
template <typename _M, typename _V>
_GLIBCXX_SIMD_INTRINSIC typename _V::value_type
reduce(const const_where_expression<_M, _V>& __x, multiplies<> __binary_op)
{ return reduce(__x, 1, __binary_op); }
template <typename _M, typename _V>
_GLIBCXX_SIMD_INTRINSIC typename _V::value_type
reduce(const const_where_expression<_M, _V>& __x, bit_and<> __binary_op)
{ return reduce(__x, ~typename _V::value_type(), __binary_op); }
template <typename _M, typename _V>
_GLIBCXX_SIMD_INTRINSIC typename _V::value_type
reduce(const const_where_expression<_M, _V>& __x, bit_or<> __binary_op)
{ return reduce(__x, 0, __binary_op); }
template <typename _M, typename _V>
_GLIBCXX_SIMD_INTRINSIC typename _V::value_type
reduce(const const_where_expression<_M, _V>& __x, bit_xor<> __binary_op)
{ return reduce(__x, 0, __binary_op); }
template <typename _Tp, typename _Abi>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp
hmin(const simd<_Tp, _Abi>& __v) noexcept
{
return _Abi::_SimdImpl::_S_reduce(__v, __detail::_Minimum());
}
template <typename _Tp, typename _Abi>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp
hmax(const simd<_Tp, _Abi>& __v) noexcept
{
return _Abi::_SimdImpl::_S_reduce(__v, __detail::_Maximum());
}
template <typename _M, typename _V>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
typename _V::value_type
hmin(const const_where_expression<_M, _V>& __x) noexcept
{
using _Tp = typename _V::value_type;
constexpr _Tp __id_elem =
#ifdef __FINITE_MATH_ONLY__
__finite_max_v<_Tp>;
#else
__value_or<__infinity, _Tp>(__finite_max_v<_Tp>);
#endif
_V __tmp = __id_elem;
_V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp),
__data(__get_lvalue(__x)));
return _V::abi_type::_SimdImpl::_S_reduce(__tmp, __detail::_Minimum());
}
template <typename _M, typename _V>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
typename _V::value_type
hmax(const const_where_expression<_M, _V>& __x) noexcept
{
using _Tp = typename _V::value_type;
constexpr _Tp __id_elem =
#ifdef __FINITE_MATH_ONLY__
__finite_min_v<_Tp>;
#else
[] {
if constexpr (__value_exists_v<__infinity, _Tp>)
return -__infinity_v<_Tp>;
else
return __finite_min_v<_Tp>;
}();
#endif
_V __tmp = __id_elem;
_V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp),
__data(__get_lvalue(__x)));
return _V::abi_type::_SimdImpl::_S_reduce(__tmp, __detail::_Maximum());
}
// }}}1
// algorithms [simd.alg] {{{
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
min(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
{ return {__private_init, _Ap::_SimdImpl::_S_min(__data(__a), __data(__b))}; }
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
max(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
{ return {__private_init, _Ap::_SimdImpl::_S_max(__data(__a), __data(__b))}; }
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
pair<simd<_Tp, _Ap>, simd<_Tp, _Ap>>
minmax(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
{
const auto pair_of_members
= _Ap::_SimdImpl::_S_minmax(__data(__a), __data(__b));
return {simd<_Tp, _Ap>(__private_init, pair_of_members.first),
simd<_Tp, _Ap>(__private_init, pair_of_members.second)};
}
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
clamp(const simd<_Tp, _Ap>& __v, const simd<_Tp, _Ap>& __lo,
const simd<_Tp, _Ap>& __hi)
{
using _Impl = typename _Ap::_SimdImpl;
return {__private_init,
_Impl::_S_min(__data(__hi),
_Impl::_S_max(__data(__lo), __data(__v)))};
}
// }}}
template <size_t... _Sizes, typename _Tp, typename _Ap,
typename = enable_if_t<((_Sizes + ...) == simd<_Tp, _Ap>::size())>>
inline tuple<simd<_Tp, simd_abi::deduce_t<_Tp, _Sizes>>...>
split(const simd<_Tp, _Ap>&);
// __extract_part {{{
template <int _Index, int _Total, int _Combine = 1, typename _Tp, size_t _Np>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_CONST
_SimdWrapper<_Tp, _Np / _Total * _Combine>
__extract_part(const _SimdWrapper<_Tp, _Np> __x);
template <int Index, int Parts, int _Combine = 1, typename _Tp, typename _A0,
typename... _As>
_GLIBCXX_SIMD_INTRINSIC auto
__extract_part(const _SimdTuple<_Tp, _A0, _As...>& __x);
// }}}
// _SizeList {{{
template <size_t _V0, size_t... _Values>
struct _SizeList
{
template <size_t _I>
static constexpr size_t _S_at(_SizeConstant<_I> = {})
{
if constexpr (_I == 0)
return _V0;
else
return _SizeList<_Values...>::template _S_at<_I - 1>();
}
template <size_t _I>
static constexpr auto _S_before(_SizeConstant<_I> = {})
{
if constexpr (_I == 0)
return _SizeConstant<0>();
else
return _SizeConstant<
_V0 + _SizeList<_Values...>::template _S_before<_I - 1>()>();
}
template <size_t _Np>
static constexpr auto _S_pop_front(_SizeConstant<_Np> = {})
{
if constexpr (_Np == 0)
return _SizeList();
else
return _SizeList<_Values...>::template _S_pop_front<_Np - 1>();
}
};
// }}}
// __extract_center {{{
template <typename _Tp, size_t _Np>
_GLIBCXX_SIMD_INTRINSIC _SimdWrapper<_Tp, _Np / 2>
__extract_center(_SimdWrapper<_Tp, _Np> __x)
{
static_assert(_Np >= 4);
static_assert(_Np % 4 == 0); // x0 - x1 - x2 - x3 -> return {x1, x2}
#if _GLIBCXX_SIMD_X86INTRIN // {{{
if constexpr (__have_avx512f && sizeof(_Tp) * _Np == 64)
{
const auto __intrin = __to_intrin(__x);
if constexpr (is_integral_v<_Tp>)
return __vector_bitcast<_Tp>(_mm512_castsi512_si256(
_mm512_shuffle_i32x4(__intrin, __intrin,
1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40)));
else if constexpr (sizeof(_Tp) == 4)
return __vector_bitcast<_Tp>(_mm512_castps512_ps256(
_mm512_shuffle_f32x4(__intrin, __intrin,
1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40)));
else if constexpr (sizeof(_Tp) == 8)
return __vector_bitcast<_Tp>(_mm512_castpd512_pd256(
_mm512_shuffle_f64x2(__intrin, __intrin,
1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40)));
else
__assert_unreachable<_Tp>();
}
else if constexpr (sizeof(_Tp) * _Np == 32 && is_floating_point_v<_Tp>)
return __vector_bitcast<_Tp>(
_mm_shuffle_pd(__lo128(__vector_bitcast<double>(__x)),
__hi128(__vector_bitcast<double>(__x)), 1));
else if constexpr (sizeof(__x) == 32 && sizeof(_Tp) * _Np <= 32)
return __vector_bitcast<_Tp>(
_mm_alignr_epi8(__hi128(__vector_bitcast<_LLong>(__x)),
__lo128(__vector_bitcast<_LLong>(__x)),
sizeof(_Tp) * _Np / 4));
else
#endif // _GLIBCXX_SIMD_X86INTRIN }}}
{
__vector_type_t<_Tp, _Np / 2> __r;
__builtin_memcpy(&__r,
reinterpret_cast<const char*>(&__x)
+ sizeof(_Tp) * _Np / 4,
sizeof(_Tp) * _Np / 2);
return __r;
}
}
template <typename _Tp, typename _A0, typename... _As>
_GLIBCXX_SIMD_INTRINSIC
_SimdWrapper<_Tp, _SimdTuple<_Tp, _A0, _As...>::_S_size() / 2>
__extract_center(const _SimdTuple<_Tp, _A0, _As...>& __x)
{
if constexpr (sizeof...(_As) == 0)
return __extract_center(__x.first);
else
return __extract_part<1, 4, 2>(__x);
}
// }}}
// __split_wrapper {{{
template <size_t... _Sizes, typename _Tp, typename... _As>
auto
__split_wrapper(_SizeList<_Sizes...>, const _SimdTuple<_Tp, _As...>& __x)
{
return split<_Sizes...>(
fixed_size_simd<_Tp, _SimdTuple<_Tp, _As...>::_S_size()>(__private_init,
__x));
}
// }}}
// split<simd>(simd) {{{
template <typename _V, typename _Ap,
size_t Parts = simd_size_v<typename _V::value_type, _Ap> / _V::size()>
enable_if_t<simd_size_v<typename _V::value_type, _Ap> == Parts * _V::size()
&& is_simd_v<_V>, array<_V, Parts>>
split(const simd<typename _V::value_type, _Ap>& __x)
{
using _Tp = typename _V::value_type;
if constexpr (Parts == 1)
{
return {simd_cast<_V>(__x)};
}
else if (__x._M_is_constprop())
{
return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
auto __i) constexpr {
return _V([&](auto __j) constexpr {
return __x[__i * _V::size() + __j];
});
});
}
else if constexpr (
__is_fixed_size_abi_v<_Ap>
&& (is_same_v<typename _V::abi_type, simd_abi::scalar>
|| (__is_fixed_size_abi_v<typename _V::abi_type>
&& sizeof(_V) == sizeof(_Tp) * _V::size() // _V doesn't have padding
)))
{
// fixed_size -> fixed_size (w/o padding) or scalar
#ifdef _GLIBCXX_SIMD_USE_ALIASING_LOADS
const __may_alias<_Tp>* const __element_ptr
= reinterpret_cast<const __may_alias<_Tp>*>(&__data(__x));
return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
auto __i) constexpr {
return _V(__element_ptr + __i * _V::size(), vector_aligned);
});
#else
const auto& __xx = __data(__x);
return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
auto __i) constexpr {
[[maybe_unused]] constexpr size_t __offset
= decltype(__i)::value * _V::size();
return _V([&](auto __j) constexpr {
constexpr _SizeConstant<__j + __offset> __k;
return __xx[__k];
});
});
#endif
}
else if constexpr (is_same_v<typename _V::abi_type, simd_abi::scalar>)
{
// normally memcpy should work here as well
return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
auto __i) constexpr { return __x[__i]; });
}
else
{
return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
auto __i) constexpr {
if constexpr (__is_fixed_size_abi_v<typename _V::abi_type>)
return _V([&](auto __j) constexpr {
return __x[__i * _V::size() + __j];
});
else
return _V(__private_init,
__extract_part<decltype(__i)::value, Parts>(__data(__x)));
});
}
}
// }}}
// split<simd_mask>(simd_mask) {{{
template <typename _V, typename _Ap,
size_t _Parts
= simd_size_v<typename _V::simd_type::value_type, _Ap> / _V::size()>
enable_if_t<is_simd_mask_v<_V> && simd_size_v<typename
_V::simd_type::value_type, _Ap> == _Parts * _V::size(), array<_V, _Parts>>
split(const simd_mask<typename _V::simd_type::value_type, _Ap>& __x)
{
if constexpr (is_same_v<_Ap, typename _V::abi_type>)
return {__x};
else if constexpr (_Parts == 1)
return {__proposed::static_simd_cast<_V>(__x)};
else if constexpr (_Parts == 2 && __is_sse_abi<typename _V::abi_type>()
&& __is_avx_abi<_Ap>())
return {_V(__private_init, __lo128(__data(__x))),
_V(__private_init, __hi128(__data(__x)))};
else if constexpr (_V::size() <= __CHAR_BIT__ * sizeof(_ULLong))
{
const bitset __bits = __x.__to_bitset();
return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>([&](
auto __i) constexpr {
constexpr size_t __offset = __i * _V::size();
return _V(__bitset_init, (__bits >> __offset).to_ullong());
});
}
else
{
return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>([&](
auto __i) constexpr {
constexpr size_t __offset = __i * _V::size();
return _V(
__private_init, [&](auto __j) constexpr {
return __x[__j + __offset];
});
});
}
}
// }}}
// split<_Sizes...>(simd) {{{
template <size_t... _Sizes, typename _Tp, typename _Ap, typename>
_GLIBCXX_SIMD_ALWAYS_INLINE
tuple<simd<_Tp, simd_abi::deduce_t<_Tp, _Sizes>>...>
split(const simd<_Tp, _Ap>& __x)
{
using _SL = _SizeList<_Sizes...>;
using _Tuple = tuple<__deduced_simd<_Tp, _Sizes>...>;
constexpr size_t _Np = simd_size_v<_Tp, _Ap>;
constexpr size_t _N0 = _SL::template _S_at<0>();
using _V = __deduced_simd<_Tp, _N0>;
if (__x._M_is_constprop())
return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>([&](
auto __i) constexpr {
using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>;
constexpr size_t __offset = _SL::_S_before(__i);
return _Vi([&](auto __j) constexpr { return __x[__offset + __j]; });
});
else if constexpr (_Np == _N0)
{
static_assert(sizeof...(_Sizes) == 1);
return {simd_cast<_V>(__x)};
}
else if constexpr // split from fixed_size, such that __x::first.size == _N0
(__is_fixed_size_abi_v<
_Ap> && __fixed_size_storage_t<_Tp, _Np>::_S_first_size == _N0)
{
static_assert(
!__is_fixed_size_abi_v<typename _V::abi_type>,
"How can <_Tp, _Np> be __a single _SimdTuple entry but __a "
"fixed_size_simd "
"when deduced?");
// extract first and recurse (__split_wrapper is needed to deduce a new
// _Sizes pack)
return tuple_cat(make_tuple(_V(__private_init, __data(__x).first)),
__split_wrapper(_SL::template _S_pop_front<1>(),
__data(__x).second));
}
else if constexpr ((!is_same_v<simd_abi::scalar,
simd_abi::deduce_t<_Tp, _Sizes>> && ...)
&& (!__is_fixed_size_abi_v<
simd_abi::deduce_t<_Tp, _Sizes>> && ...))
{
if constexpr (((_Sizes * 2 == _Np) && ...))
return {{__private_init, __extract_part<0, 2>(__data(__x))},
{__private_init, __extract_part<1, 2>(__data(__x))}};
else if constexpr (is_same_v<_SizeList<_Sizes...>,
_SizeList<_Np / 3, _Np / 3, _Np / 3>>)
return {{__private_init, __extract_part<0, 3>(__data(__x))},
{__private_init, __extract_part<1, 3>(__data(__x))},
{__private_init, __extract_part<2, 3>(__data(__x))}};
else if constexpr (is_same_v<_SizeList<_Sizes...>,
_SizeList<2 * _Np / 3, _Np / 3>>)
return {{__private_init, __extract_part<0, 3, 2>(__data(__x))},
{__private_init, __extract_part<2, 3>(__data(__x))}};
else if constexpr (is_same_v<_SizeList<_Sizes...>,
_SizeList<_Np / 3, 2 * _Np / 3>>)
return {{__private_init, __extract_part<0, 3>(__data(__x))},
{__private_init, __extract_part<1, 3, 2>(__data(__x))}};
else if constexpr (is_same_v<_SizeList<_Sizes...>,
_SizeList<_Np / 2, _Np / 4, _Np / 4>>)
return {{__private_init, __extract_part<0, 2>(__data(__x))},
{__private_init, __extract_part<2, 4>(__data(__x))},
{__private_init, __extract_part<3, 4>(__data(__x))}};
else if constexpr (is_same_v<_SizeList<_Sizes...>,
_SizeList<_Np / 4, _Np / 4, _Np / 2>>)
return {{__private_init, __extract_part<0, 4>(__data(__x))},
{__private_init, __extract_part<1, 4>(__data(__x))},
{__private_init, __extract_part<1, 2>(__data(__x))}};
else if constexpr (is_same_v<_SizeList<_Sizes...>,
_SizeList<_Np / 4, _Np / 2, _Np / 4>>)
return {{__private_init, __extract_part<0, 4>(__data(__x))},
{__private_init, __extract_center(__data(__x))},
{__private_init, __extract_part<3, 4>(__data(__x))}};
else if constexpr (((_Sizes * 4 == _Np) && ...))
return {{__private_init, __extract_part<0, 4>(__data(__x))},
{__private_init, __extract_part<1, 4>(__data(__x))},
{__private_init, __extract_part<2, 4>(__data(__x))},
{__private_init, __extract_part<3, 4>(__data(__x))}};
// else fall through
}
#ifdef _GLIBCXX_SIMD_USE_ALIASING_LOADS
const __may_alias<_Tp>* const __element_ptr
= reinterpret_cast<const __may_alias<_Tp>*>(&__x);
return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>([&](
auto __i) constexpr {
using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>;
constexpr size_t __offset = _SL::_S_before(__i);
constexpr size_t __base_align = alignof(simd<_Tp, _Ap>);
constexpr size_t __a
= __base_align - ((__offset * sizeof(_Tp)) % __base_align);
constexpr size_t __b = ((__a - 1) & __a) ^ __a;
constexpr size_t __alignment = __b == 0 ? __a : __b;
return _Vi(__element_ptr + __offset, overaligned<__alignment>);
});
#else
return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>([&](
auto __i) constexpr {
using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>;
const auto& __xx = __data(__x);
using _Offset = decltype(_SL::_S_before(__i));
return _Vi([&](auto __j) constexpr {
constexpr _SizeConstant<_Offset::value + __j> __k;
return __xx[__k];
});
});
#endif
}
// }}}
// __subscript_in_pack {{{
template <size_t _I, typename _Tp, typename _Ap, typename... _As>
_GLIBCXX_SIMD_INTRINSIC constexpr _Tp
__subscript_in_pack(const simd<_Tp, _Ap>& __x, const simd<_Tp, _As>&... __xs)
{
if constexpr (_I < simd_size_v<_Tp, _Ap>)
return __x[_I];
else
return __subscript_in_pack<_I - simd_size_v<_Tp, _Ap>>(__xs...);
}
// }}}
// __store_pack_of_simd {{{
template <typename _Tp, typename _A0, typename... _As>
_GLIBCXX_SIMD_INTRINSIC void
__store_pack_of_simd(char* __mem, const simd<_Tp, _A0>& __x0,
const simd<_Tp, _As>&... __xs)
{
constexpr size_t __n_bytes = sizeof(_Tp) * simd_size_v<_Tp, _A0>;
__builtin_memcpy(__mem, &__data(__x0), __n_bytes);
if constexpr (sizeof...(__xs) > 0)
__store_pack_of_simd(__mem + __n_bytes, __xs...);
}
// }}}
// concat(simd...) {{{
template <typename _Tp, typename... _As>
inline _GLIBCXX_SIMD_CONSTEXPR
simd<_Tp, simd_abi::deduce_t<_Tp, (simd_size_v<_Tp, _As> + ...)>>
concat(const simd<_Tp, _As>&... __xs)
{
using _Rp = __deduced_simd<_Tp, (simd_size_v<_Tp, _As> + ...)>;
if constexpr (sizeof...(__xs) == 1)
return simd_cast<_Rp>(__xs...);
else if ((... && __xs._M_is_constprop()))
return simd<_Tp,
simd_abi::deduce_t<_Tp, (simd_size_v<_Tp, _As> + ...)>>([&](
auto __i) constexpr { return __subscript_in_pack<__i>(__xs...); });
else
{
_Rp __r{};
__store_pack_of_simd(reinterpret_cast<char*>(&__data(__r)), __xs...);
return __r;
}
}
// }}}
// concat(array<simd>) {{{
template <typename _Tp, typename _Abi, size_t _Np>
_GLIBCXX_SIMD_ALWAYS_INLINE
_GLIBCXX_SIMD_CONSTEXPR __deduced_simd<_Tp, simd_size_v<_Tp, _Abi> * _Np>
concat(const array<simd<_Tp, _Abi>, _Np>& __x)
{
return __call_with_subscripts<_Np>(__x, [](const auto&... __xs) {
return concat(__xs...);
});
}
// }}}
/// @cond undocumented
// _SmartReference {{{
template <typename _Up, typename _Accessor = _Up,
typename _ValueType = typename _Up::value_type>
class _SmartReference
{
friend _Accessor;
int _M_index;
_Up& _M_obj;
_GLIBCXX_SIMD_INTRINSIC constexpr _ValueType _M_read() const noexcept
{
if constexpr (is_arithmetic_v<_Up>)
return _M_obj;
else
return _M_obj[_M_index];
}
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC constexpr void _M_write(_Tp&& __x) const
{ _Accessor::_S_set(_M_obj, _M_index, static_cast<_Tp&&>(__x)); }
public:
_GLIBCXX_SIMD_INTRINSIC constexpr
_SmartReference(_Up& __o, int __i) noexcept
: _M_index(__i), _M_obj(__o) {}
using value_type = _ValueType;
_GLIBCXX_SIMD_INTRINSIC _SmartReference(const _SmartReference&) = delete;
_GLIBCXX_SIMD_INTRINSIC constexpr operator value_type() const noexcept
{ return _M_read(); }
template <typename _Tp,
typename
= _ValuePreservingOrInt<__remove_cvref_t<_Tp>, value_type>>
_GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator=(_Tp&& __x) &&
{
_M_write(static_cast<_Tp&&>(__x));
return {_M_obj, _M_index};
}
#define _GLIBCXX_SIMD_OP_(__op) \
template <typename _Tp, \
typename _TT \
= decltype(declval<value_type>() __op declval<_Tp>()), \
typename = _ValuePreservingOrInt<__remove_cvref_t<_Tp>, _TT>, \
typename = _ValuePreservingOrInt<_TT, value_type>> \
_GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference \
operator __op##=(_Tp&& __x) && \
{ \
const value_type& __lhs = _M_read(); \
_M_write(__lhs __op __x); \
return {_M_obj, _M_index}; \
}
_GLIBCXX_SIMD_ALL_ARITHMETICS(_GLIBCXX_SIMD_OP_);
_GLIBCXX_SIMD_ALL_SHIFTS(_GLIBCXX_SIMD_OP_);
_GLIBCXX_SIMD_ALL_BINARY(_GLIBCXX_SIMD_OP_);
#undef _GLIBCXX_SIMD_OP_
template <typename _Tp = void,
typename
= decltype(++declval<conditional_t<true, value_type, _Tp>&>())>
_GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator++() &&
{
value_type __x = _M_read();
_M_write(++__x);
return {_M_obj, _M_index};
}
template <typename _Tp = void,
typename
= decltype(declval<conditional_t<true, value_type, _Tp>&>()++)>
_GLIBCXX_SIMD_INTRINSIC constexpr value_type operator++(int) &&
{
const value_type __r = _M_read();
value_type __x = __r;
_M_write(++__x);
return __r;
}
template <typename _Tp = void,
typename
= decltype(--declval<conditional_t<true, value_type, _Tp>&>())>
_GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator--() &&
{
value_type __x = _M_read();
_M_write(--__x);
return {_M_obj, _M_index};
}
template <typename _Tp = void,
typename
= decltype(declval<conditional_t<true, value_type, _Tp>&>()--)>
_GLIBCXX_SIMD_INTRINSIC constexpr value_type operator--(int) &&
{
const value_type __r = _M_read();
value_type __x = __r;
_M_write(--__x);
return __r;
}
_GLIBCXX_SIMD_INTRINSIC friend void
swap(_SmartReference&& __a, _SmartReference&& __b) noexcept(
conjunction<
is_nothrow_constructible<value_type, _SmartReference&&>,
is_nothrow_assignable<_SmartReference&&, value_type&&>>::value)
{
value_type __tmp = static_cast<_SmartReference&&>(__a);
static_cast<_SmartReference&&>(__a) = static_cast<value_type>(__b);
static_cast<_SmartReference&&>(__b) = std::move(__tmp);
}
_GLIBCXX_SIMD_INTRINSIC friend void
swap(value_type& __a, _SmartReference&& __b) noexcept(
conjunction<
is_nothrow_constructible<value_type, value_type&&>,
is_nothrow_assignable<value_type&, value_type&&>,
is_nothrow_assignable<_SmartReference&&, value_type&&>>::value)
{
value_type __tmp(std::move(__a));
__a = static_cast<value_type>(__b);
static_cast<_SmartReference&&>(__b) = std::move(__tmp);
}
_GLIBCXX_SIMD_INTRINSIC friend void
swap(_SmartReference&& __a, value_type& __b) noexcept(
conjunction<
is_nothrow_constructible<value_type, _SmartReference&&>,
is_nothrow_assignable<value_type&, value_type&&>,
is_nothrow_assignable<_SmartReference&&, value_type&&>>::value)
{
value_type __tmp(__a);
static_cast<_SmartReference&&>(__a) = std::move(__b);
__b = std::move(__tmp);
}
};
// }}}
// __scalar_abi_wrapper {{{
template <int _Bytes>
struct __scalar_abi_wrapper
{
template <typename _Tp> static constexpr size_t _S_full_size = 1;
template <typename _Tp> static constexpr size_t _S_size = 1;
template <typename _Tp> static constexpr size_t _S_is_partial = false;
template <typename _Tp, typename _Abi = simd_abi::scalar>
static constexpr bool _S_is_valid_v
= _Abi::template _IsValid<_Tp>::value && sizeof(_Tp) == _Bytes;
};
// }}}
// __decay_abi metafunction {{{
template <typename _Tp>
struct __decay_abi { using type = _Tp; };
template <int _Bytes>
struct __decay_abi<__scalar_abi_wrapper<_Bytes>>
{ using type = simd_abi::scalar; };
// }}}
// __find_next_valid_abi metafunction {{{1
// Given an ABI tag A<N>, find an N2 < N such that A<N2>::_S_is_valid_v<_Tp> ==
// true, N2 is a power-of-2, and A<N2>::_S_is_partial<_Tp> is false. Break
// recursion at 2 elements in the resulting ABI tag. In this case
// type::_S_is_valid_v<_Tp> may be false.
template <template <int> class _Abi, int _Bytes, typename _Tp>
struct __find_next_valid_abi
{
static constexpr auto _S_choose()
{
constexpr int _NextBytes = std::__bit_ceil(_Bytes) / 2;
using _NextAbi = _Abi<_NextBytes>;
if constexpr (_NextBytes < sizeof(_Tp) * 2) // break recursion
return _Abi<_Bytes>();
else if constexpr (_NextAbi::template _S_is_partial<_Tp> == false
&& _NextAbi::template _S_is_valid_v<_Tp>)
return _NextAbi();
else
return __find_next_valid_abi<_Abi, _NextBytes, _Tp>::_S_choose();
}
using type = decltype(_S_choose());
};
template <int _Bytes, typename _Tp>
struct __find_next_valid_abi<__scalar_abi_wrapper, _Bytes, _Tp>
{ using type = simd_abi::scalar; };
// _AbiList {{{1
template <template <int> class...>
struct _AbiList
{
template <typename, int> static constexpr bool _S_has_valid_abi = false;
template <typename, int> using _FirstValidAbi = void;
template <typename, int> using _BestAbi = void;
};
template <template <int> class _A0, template <int> class... _Rest>
struct _AbiList<_A0, _Rest...>
{
template <typename _Tp, int _Np>
static constexpr bool _S_has_valid_abi
= _A0<sizeof(_Tp) * _Np>::template _S_is_valid_v<
_Tp> || _AbiList<_Rest...>::template _S_has_valid_abi<_Tp, _Np>;
template <typename _Tp, int _Np>
using _FirstValidAbi = conditional_t<
_A0<sizeof(_Tp) * _Np>::template _S_is_valid_v<_Tp>,
typename __decay_abi<_A0<sizeof(_Tp) * _Np>>::type,
typename _AbiList<_Rest...>::template _FirstValidAbi<_Tp, _Np>>;
template <typename _Tp, int _Np>
static constexpr auto _S_determine_best_abi()
{
static_assert(_Np >= 1);
constexpr int _Bytes = sizeof(_Tp) * _Np;
if constexpr (_Np == 1)
return __make_dependent_t<_Tp, simd_abi::scalar>{};
else
{
constexpr int __fullsize = _A0<_Bytes>::template _S_full_size<_Tp>;
// _A0<_Bytes> is good if:
// 1. The ABI tag is valid for _Tp
// 2. The storage overhead is no more than padding to fill the next
// power-of-2 number of bytes
if constexpr (_A0<_Bytes>::template _S_is_valid_v<
_Tp> && __fullsize / 2 < _Np)
return typename __decay_abi<_A0<_Bytes>>::type{};
else
{
using _Bp =
typename __find_next_valid_abi<_A0, _Bytes, _Tp>::type;
if constexpr (_Bp::template _S_is_valid_v<
_Tp> && _Bp::template _S_size<_Tp> <= _Np)
return _Bp{};
else
return
typename _AbiList<_Rest...>::template _BestAbi<_Tp, _Np>{};
}
}
}
template <typename _Tp, int _Np>
using _BestAbi = decltype(_S_determine_best_abi<_Tp, _Np>());
};
// }}}1
// the following lists all native ABIs, which makes them accessible to
// simd_abi::deduce and select_best_vector_type_t (for fixed_size). Order
// matters: Whatever comes first has higher priority.
using _AllNativeAbis = _AbiList<simd_abi::_VecBltnBtmsk, simd_abi::_VecBuiltin,
__scalar_abi_wrapper>;
// valid _SimdTraits specialization {{{1
template <typename _Tp, typename _Abi>
struct _SimdTraits<_Tp, _Abi, void_t<typename _Abi::template _IsValid<_Tp>>>
: _Abi::template __traits<_Tp> {};
// __deduce_impl specializations {{{1
// try all native ABIs (including scalar) first
template <typename _Tp, size_t _Np>
struct __deduce_impl<
_Tp, _Np, enable_if_t<_AllNativeAbis::template _S_has_valid_abi<_Tp, _Np>>>
{ using type = _AllNativeAbis::_FirstValidAbi<_Tp, _Np>; };
// fall back to fixed_size only if scalar and native ABIs don't match
template <typename _Tp, size_t _Np, typename = void>
struct __deduce_fixed_size_fallback {};
template <typename _Tp, size_t _Np>
struct __deduce_fixed_size_fallback<_Tp, _Np,
enable_if_t<simd_abi::fixed_size<_Np>::template _S_is_valid_v<_Tp>>>
{ using type = simd_abi::fixed_size<_Np>; };
template <typename _Tp, size_t _Np, typename>
struct __deduce_impl : public __deduce_fixed_size_fallback<_Tp, _Np> {};
//}}}1
/// @endcond
// simd_mask {{{
template <typename _Tp, typename _Abi>
class simd_mask : public _SimdTraits<_Tp, _Abi>::_MaskBase
{
// types, tags, and friends {{{
using _Traits = _SimdTraits<_Tp, _Abi>;
using _MemberType = typename _Traits::_MaskMember;
// We map all masks with equal element sizeof to a single integer type, the
// one given by __int_for_sizeof_t<_Tp>. This is the approach
// [[gnu::vector_size(N)]] types take as well and it reduces the number of
// template specializations in the implementation classes.
using _Ip = __int_for_sizeof_t<_Tp>;
static constexpr _Ip* _S_type_tag = nullptr;
friend typename _Traits::_MaskBase;
friend class simd<_Tp, _Abi>; // to construct masks on return
friend typename _Traits::_SimdImpl; // to construct masks on return and
// inspect data on masked operations
public:
using _Impl = typename _Traits::_MaskImpl;
friend _Impl;
// }}}
// member types {{{
using value_type = bool;
using reference = _SmartReference<_MemberType, _Impl, value_type>;
using simd_type = simd<_Tp, _Abi>;
using abi_type = _Abi;
// }}}
static constexpr size_t size() // {{{
{ return __size_or_zero_v<_Tp, _Abi>; }
// }}}
// constructors & assignment {{{
simd_mask() = default;
simd_mask(const simd_mask&) = default;
simd_mask(simd_mask&&) = default;
simd_mask& operator=(const simd_mask&) = default;
simd_mask& operator=(simd_mask&&) = default;
// }}}
// access to internal representation (optional feature) {{{
_GLIBCXX_SIMD_ALWAYS_INLINE explicit
simd_mask(typename _Traits::_MaskCastType __init)
: _M_data{__init} {}
// conversions to internal type is done in _MaskBase
// }}}
// bitset interface (extension to be proposed) {{{
// TS_FEEDBACK:
// Conversion of simd_mask to and from bitset makes it much easier to
// interface with other facilities. I suggest adding `static
// simd_mask::from_bitset` and `simd_mask::to_bitset`.
_GLIBCXX_SIMD_ALWAYS_INLINE static simd_mask
__from_bitset(bitset<size()> bs)
{ return {__bitset_init, bs}; }
_GLIBCXX_SIMD_ALWAYS_INLINE bitset<size()>
__to_bitset() const
{ return _Impl::_S_to_bits(_M_data)._M_to_bitset(); }
// }}}
// explicit broadcast constructor {{{
_GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
simd_mask(value_type __x)
: _M_data(_Impl::template _S_broadcast<_Ip>(__x)) {}
// }}}
// implicit type conversion constructor {{{
#ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
// proposed improvement
template <typename _Up, typename _A2,
typename = enable_if_t<simd_size_v<_Up, _A2> == size()>>
_GLIBCXX_SIMD_ALWAYS_INLINE explicit(sizeof(_MemberType)
!= sizeof(typename _SimdTraits<_Up, _A2>::_MaskMember))
simd_mask(const simd_mask<_Up, _A2>& __x)
: simd_mask(__proposed::static_simd_cast<simd_mask>(__x)) {}
#else
// conforming to ISO/IEC 19570:2018
template <typename _Up, typename = enable_if_t<conjunction<
is_same<abi_type, simd_abi::fixed_size<size()>>,
is_same<_Up, _Up>>::value>>
_GLIBCXX_SIMD_ALWAYS_INLINE
simd_mask(const simd_mask<_Up, simd_abi::fixed_size<size()>>& __x)
: _M_data(_Impl::_S_from_bitmask(__data(__x), _S_type_tag)) {}
#endif
// }}}
// load constructor {{{
template <typename _Flags>
_GLIBCXX_SIMD_ALWAYS_INLINE
simd_mask(const value_type* __mem, _Flags)
: _M_data(_Impl::template _S_load<_Ip>(
_Flags::template _S_apply<simd_mask>(__mem))) {}
template <typename _Flags>
_GLIBCXX_SIMD_ALWAYS_INLINE
simd_mask(const value_type* __mem, simd_mask __k, _Flags)
: _M_data{}
{
_M_data
= _Impl::_S_masked_load(_M_data, __k._M_data,
_Flags::template _S_apply<simd_mask>(__mem));
}
// }}}
// loads [simd_mask.load] {{{
template <typename _Flags>
_GLIBCXX_SIMD_ALWAYS_INLINE void
copy_from(const value_type* __mem, _Flags)
{
_M_data = _Impl::template _S_load<_Ip>(
_Flags::template _S_apply<simd_mask>(__mem));
}
// }}}
// stores [simd_mask.store] {{{
template <typename _Flags>
_GLIBCXX_SIMD_ALWAYS_INLINE void
copy_to(value_type* __mem, _Flags) const
{ _Impl::_S_store(_M_data, _Flags::template _S_apply<simd_mask>(__mem)); }
// }}}
// scalar access {{{
_GLIBCXX_SIMD_ALWAYS_INLINE reference
operator[](size_t __i)
{
if (__i >= size())
__invoke_ub("Subscript %d is out of range [0, %d]", __i, size() - 1);
return {_M_data, int(__i)};
}
_GLIBCXX_SIMD_ALWAYS_INLINE value_type
operator[](size_t __i) const
{
if (__i >= size())
__invoke_ub("Subscript %d is out of range [0, %d]", __i, size() - 1);
if constexpr (__is_scalar_abi<_Abi>())
return _M_data;
else
return static_cast<bool>(_M_data[__i]);
}
// }}}
// negation {{{
_GLIBCXX_SIMD_ALWAYS_INLINE simd_mask
operator!() const
{ return {__private_init, _Impl::_S_bit_not(_M_data)}; }
// }}}
// simd_mask binary operators [simd_mask.binary] {{{
#ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
// simd_mask<int> && simd_mask<uint> needs disambiguation
template <typename _Up, typename _A2,
typename
= enable_if_t<is_convertible_v<simd_mask<_Up, _A2>, simd_mask>>>
_GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
operator&&(const simd_mask& __x, const simd_mask<_Up, _A2>& __y)
{
return {__private_init,
_Impl::_S_logical_and(__x._M_data, simd_mask(__y)._M_data)};
}
template <typename _Up, typename _A2,
typename
= enable_if_t<is_convertible_v<simd_mask<_Up, _A2>, simd_mask>>>
_GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
operator||(const simd_mask& __x, const simd_mask<_Up, _A2>& __y)
{
return {__private_init,
_Impl::_S_logical_or(__x._M_data, simd_mask(__y)._M_data)};
}
#endif // _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
_GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
operator&&(const simd_mask& __x, const simd_mask& __y)
{
return {__private_init, _Impl::_S_logical_and(__x._M_data, __y._M_data)};
}
_GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
operator||(const simd_mask& __x, const simd_mask& __y)
{
return {__private_init, _Impl::_S_logical_or(__x._M_data, __y._M_data)};
}
_GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
operator&(const simd_mask& __x, const simd_mask& __y)
{ return {__private_init, _Impl::_S_bit_and(__x._M_data, __y._M_data)}; }
_GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
operator|(const simd_mask& __x, const simd_mask& __y)
{ return {__private_init, _Impl::_S_bit_or(__x._M_data, __y._M_data)}; }
_GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
operator^(const simd_mask& __x, const simd_mask& __y)
{ return {__private_init, _Impl::_S_bit_xor(__x._M_data, __y._M_data)}; }
_GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask&
operator&=(simd_mask& __x, const simd_mask& __y)
{
__x._M_data = _Impl::_S_bit_and(__x._M_data, __y._M_data);
return __x;
}
_GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask&
operator|=(simd_mask& __x, const simd_mask& __y)
{
__x._M_data = _Impl::_S_bit_or(__x._M_data, __y._M_data);
return __x;
}
_GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask&
operator^=(simd_mask& __x, const simd_mask& __y)
{
__x._M_data = _Impl::_S_bit_xor(__x._M_data, __y._M_data);
return __x;
}
// }}}
// simd_mask compares [simd_mask.comparison] {{{
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
operator==(const simd_mask& __x, const simd_mask& __y)
{ return !operator!=(__x, __y); }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
operator!=(const simd_mask& __x, const simd_mask& __y)
{ return {__private_init, _Impl::_S_bit_xor(__x._M_data, __y._M_data)}; }
// }}}
// private_init ctor {{{
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
simd_mask(_PrivateInit, typename _Traits::_MaskMember __init)
: _M_data(__init) {}
// }}}
// private_init generator ctor {{{
template <typename _Fp, typename = decltype(bool(declval<_Fp>()(size_t())))>
_GLIBCXX_SIMD_INTRINSIC constexpr
simd_mask(_PrivateInit, _Fp&& __gen)
: _M_data()
{
__execute_n_times<size()>([&](auto __i) constexpr {
_Impl::_S_set(_M_data, __i, __gen(__i));
});
}
// }}}
// bitset_init ctor {{{
_GLIBCXX_SIMD_INTRINSIC simd_mask(_BitsetInit, bitset<size()> __init)
: _M_data(
_Impl::_S_from_bitmask(_SanitizedBitMask<size()>(__init), _S_type_tag))
{}
// }}}
// __cvt {{{
// TS_FEEDBACK:
// The conversion operator this implements should be a ctor on simd_mask.
// Once you call .__cvt() on a simd_mask it converts conveniently.
// A useful variation: add `explicit(sizeof(_Tp) != sizeof(_Up))`
struct _CvtProxy
{
template <typename _Up, typename _A2,
typename
= enable_if_t<simd_size_v<_Up, _A2> == simd_size_v<_Tp, _Abi>>>
operator simd_mask<_Up, _A2>() &&
{
using namespace std::experimental::__proposed;
return static_simd_cast<simd_mask<_Up, _A2>>(_M_data);
}
const simd_mask<_Tp, _Abi>& _M_data;
};
_GLIBCXX_SIMD_INTRINSIC _CvtProxy
__cvt() const
{ return {*this}; }
// }}}
// operator?: overloads (suggested extension) {{{
#ifdef __GXX_CONDITIONAL_IS_OVERLOADABLE__
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
operator?:(const simd_mask& __k, const simd_mask& __where_true,
const simd_mask& __where_false)
{
auto __ret = __where_false;
_Impl::_S_masked_assign(__k._M_data, __ret._M_data, __where_true._M_data);
return __ret;
}
template <typename _U1, typename _U2,
typename _Rp = simd<common_type_t<_U1, _U2>, _Abi>,
typename = enable_if_t<conjunction_v<
is_convertible<_U1, _Rp>, is_convertible<_U2, _Rp>,
is_convertible<simd_mask, typename _Rp::mask_type>>>>
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend _Rp
operator?:(const simd_mask& __k, const _U1& __where_true,
const _U2& __where_false)
{
_Rp __ret = __where_false;
_Rp::_Impl::_S_masked_assign(
__data(static_cast<typename _Rp::mask_type>(__k)), __data(__ret),
__data(static_cast<_Rp>(__where_true)));
return __ret;
}
#ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
template <typename _Kp, typename _Ak, typename _Up, typename _Au,
typename = enable_if_t<
conjunction_v<is_convertible<simd_mask<_Kp, _Ak>, simd_mask>,
is_convertible<simd_mask<_Up, _Au>, simd_mask>>>>
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
operator?:(const simd_mask<_Kp, _Ak>& __k, const simd_mask& __where_true,
const simd_mask<_Up, _Au>& __where_false)
{
simd_mask __ret = __where_false;
_Impl::_S_masked_assign(simd_mask(__k)._M_data, __ret._M_data,
__where_true._M_data);
return __ret;
}
#endif // _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
#endif // __GXX_CONDITIONAL_IS_OVERLOADABLE__
// }}}
// _M_is_constprop {{{
_GLIBCXX_SIMD_INTRINSIC constexpr bool
_M_is_constprop() const
{
if constexpr (__is_scalar_abi<_Abi>())
return __builtin_constant_p(_M_data);
else
return _M_data._M_is_constprop();
}
// }}}
private:
friend const auto& __data<_Tp, abi_type>(const simd_mask&);
friend auto& __data<_Tp, abi_type>(simd_mask&);
alignas(_Traits::_S_mask_align) _MemberType _M_data;
};
// }}}
/// @cond undocumented
// __data(simd_mask) {{{
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC constexpr const auto&
__data(const simd_mask<_Tp, _Ap>& __x)
{ return __x._M_data; }
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC constexpr auto&
__data(simd_mask<_Tp, _Ap>& __x)
{ return __x._M_data; }
// }}}
/// @endcond
// simd_mask reductions [simd_mask.reductions] {{{
template <typename _Tp, typename _Abi>
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
all_of(const simd_mask<_Tp, _Abi>& __k) noexcept
{
if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
{
for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i)
if (!__k[__i])
return false;
return true;
}
else
return _Abi::_MaskImpl::_S_all_of(__k);
}
template <typename _Tp, typename _Abi>
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
any_of(const simd_mask<_Tp, _Abi>& __k) noexcept
{
if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
{
for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i)
if (__k[__i])
return true;
return false;
}
else
return _Abi::_MaskImpl::_S_any_of(__k);
}
template <typename _Tp, typename _Abi>
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
none_of(const simd_mask<_Tp, _Abi>& __k) noexcept
{
if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
{
for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i)
if (__k[__i])
return false;
return true;
}
else
return _Abi::_MaskImpl::_S_none_of(__k);
}
template <typename _Tp, typename _Abi>
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
some_of(const simd_mask<_Tp, _Abi>& __k) noexcept
{
if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
{
for (size_t __i = 1; __i < simd_size_v<_Tp, _Abi>; ++__i)
if (__k[__i] != __k[__i - 1])
return true;
return false;
}
else
return _Abi::_MaskImpl::_S_some_of(__k);
}
template <typename _Tp, typename _Abi>
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
popcount(const simd_mask<_Tp, _Abi>& __k) noexcept
{
if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
{
const int __r = __call_with_subscripts<simd_size_v<_Tp, _Abi>>(
__k, [](auto... __elements) { return ((__elements != 0) + ...); });
if (__builtin_is_constant_evaluated() || __builtin_constant_p(__r))
return __r;
}
return _Abi::_MaskImpl::_S_popcount(__k);
}
template <typename _Tp, typename _Abi>
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
find_first_set(const simd_mask<_Tp, _Abi>& __k)
{
if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
{
constexpr size_t _Np = simd_size_v<_Tp, _Abi>;
const size_t _Idx = __call_with_n_evaluations<_Np>(
[](auto... __indexes) { return std::min({__indexes...}); },
[&](auto __i) { return __k[__i] ? +__i : _Np; });
if (_Idx >= _Np)
__invoke_ub("find_first_set(empty mask) is UB");
if (__builtin_constant_p(_Idx))
return _Idx;
}
return _Abi::_MaskImpl::_S_find_first_set(__k);
}
template <typename _Tp, typename _Abi>
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
find_last_set(const simd_mask<_Tp, _Abi>& __k)
{
if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
{
constexpr size_t _Np = simd_size_v<_Tp, _Abi>;
const int _Idx = __call_with_n_evaluations<_Np>(
[](auto... __indexes) { return std::max({__indexes...}); },
[&](auto __i) { return __k[__i] ? int(__i) : -1; });
if (_Idx < 0)
__invoke_ub("find_first_set(empty mask) is UB");
if (__builtin_constant_p(_Idx))
return _Idx;
}
return _Abi::_MaskImpl::_S_find_last_set(__k);
}
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
all_of(_ExactBool __x) noexcept
{ return __x; }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
any_of(_ExactBool __x) noexcept
{ return __x; }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
none_of(_ExactBool __x) noexcept
{ return !__x; }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
some_of(_ExactBool) noexcept
{ return false; }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
popcount(_ExactBool __x) noexcept
{ return __x; }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
find_first_set(_ExactBool)
{ return 0; }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
find_last_set(_ExactBool)
{ return 0; }
// }}}
/// @cond undocumented
// _SimdIntOperators{{{1
template <typename _V, typename _Impl, bool>
class _SimdIntOperators {};
template <typename _V, typename _Impl>
class _SimdIntOperators<_V, _Impl, true>
{
_GLIBCXX_SIMD_INTRINSIC const _V& __derived() const
{ return *static_cast<const _V*>(this); }
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC static _GLIBCXX_SIMD_CONSTEXPR _V
_S_make_derived(_Tp&& __d)
{ return {__private_init, static_cast<_Tp&&>(__d)}; }
public:
_GLIBCXX_SIMD_CONSTEXPR friend _V& operator%=(_V& __lhs, const _V& __x)
{ return __lhs = __lhs % __x; }
_GLIBCXX_SIMD_CONSTEXPR friend _V& operator&=(_V& __lhs, const _V& __x)
{ return __lhs = __lhs & __x; }
_GLIBCXX_SIMD_CONSTEXPR friend _V& operator|=(_V& __lhs, const _V& __x)
{ return __lhs = __lhs | __x; }
_GLIBCXX_SIMD_CONSTEXPR friend _V& operator^=(_V& __lhs, const _V& __x)
{ return __lhs = __lhs ^ __x; }
_GLIBCXX_SIMD_CONSTEXPR friend _V& operator<<=(_V& __lhs, const _V& __x)
{ return __lhs = __lhs << __x; }
_GLIBCXX_SIMD_CONSTEXPR friend _V& operator>>=(_V& __lhs, const _V& __x)
{ return __lhs = __lhs >> __x; }
_GLIBCXX_SIMD_CONSTEXPR friend _V& operator<<=(_V& __lhs, int __x)
{ return __lhs = __lhs << __x; }
_GLIBCXX_SIMD_CONSTEXPR friend _V& operator>>=(_V& __lhs, int __x)
{ return __lhs = __lhs >> __x; }
_GLIBCXX_SIMD_CONSTEXPR friend _V operator%(const _V& __x, const _V& __y)
{
return _SimdIntOperators::_S_make_derived(
_Impl::_S_modulus(__data(__x), __data(__y)));
}
_GLIBCXX_SIMD_CONSTEXPR friend _V operator&(const _V& __x, const _V& __y)
{
return _SimdIntOperators::_S_make_derived(
_Impl::_S_bit_and(__data(__x), __data(__y)));
}
_GLIBCXX_SIMD_CONSTEXPR friend _V operator|(const _V& __x, const _V& __y)
{
return _SimdIntOperators::_S_make_derived(
_Impl::_S_bit_or(__data(__x), __data(__y)));
}
_GLIBCXX_SIMD_CONSTEXPR friend _V operator^(const _V& __x, const _V& __y)
{
return _SimdIntOperators::_S_make_derived(
_Impl::_S_bit_xor(__data(__x), __data(__y)));
}
_GLIBCXX_SIMD_CONSTEXPR friend _V operator<<(const _V& __x, const _V& __y)
{
return _SimdIntOperators::_S_make_derived(
_Impl::_S_bit_shift_left(__data(__x), __data(__y)));
}
_GLIBCXX_SIMD_CONSTEXPR friend _V operator>>(const _V& __x, const _V& __y)
{
return _SimdIntOperators::_S_make_derived(
_Impl::_S_bit_shift_right(__data(__x), __data(__y)));
}
template <typename _VV = _V>
_GLIBCXX_SIMD_CONSTEXPR friend _V operator<<(const _V& __x, int __y)
{
using _Tp = typename _VV::value_type;
if (__y < 0)
__invoke_ub("The behavior is undefined if the right operand of a "
"shift operation is negative. [expr.shift]\nA shift by "
"%d was requested",
__y);
if (size_t(__y) >= sizeof(declval<_Tp>() << __y) * __CHAR_BIT__)
__invoke_ub(
"The behavior is undefined if the right operand of a "
"shift operation is greater than or equal to the width of the "
"promoted left operand. [expr.shift]\nA shift by %d was requested",
__y);
return _SimdIntOperators::_S_make_derived(
_Impl::_S_bit_shift_left(__data(__x), __y));
}
template <typename _VV = _V>
_GLIBCXX_SIMD_CONSTEXPR friend _V operator>>(const _V& __x, int __y)
{
using _Tp = typename _VV::value_type;
if (__y < 0)
__invoke_ub(
"The behavior is undefined if the right operand of a shift "
"operation is negative. [expr.shift]\nA shift by %d was requested",
__y);
if (size_t(__y) >= sizeof(declval<_Tp>() << __y) * __CHAR_BIT__)
__invoke_ub(
"The behavior is undefined if the right operand of a shift "
"operation is greater than or equal to the width of the promoted "
"left operand. [expr.shift]\nA shift by %d was requested",
__y);
return _SimdIntOperators::_S_make_derived(
_Impl::_S_bit_shift_right(__data(__x), __y));
}
// unary operators (for integral _Tp)
_GLIBCXX_SIMD_CONSTEXPR _V operator~() const
{ return {__private_init, _Impl::_S_complement(__derived()._M_data)}; }
};
//}}}1
/// @endcond
// simd {{{
template <typename _Tp, typename _Abi>
class simd : public _SimdIntOperators<
simd<_Tp, _Abi>, typename _SimdTraits<_Tp, _Abi>::_SimdImpl,
conjunction<is_integral<_Tp>,
typename _SimdTraits<_Tp, _Abi>::_IsValid>::value>,
public _SimdTraits<_Tp, _Abi>::_SimdBase
{
using _Traits = _SimdTraits<_Tp, _Abi>;
using _MemberType = typename _Traits::_SimdMember;
using _CastType = typename _Traits::_SimdCastType;
static constexpr _Tp* _S_type_tag = nullptr;
friend typename _Traits::_SimdBase;
public:
using _Impl = typename _Traits::_SimdImpl;
friend _Impl;
friend _SimdIntOperators<simd, _Impl, true>;
using value_type = _Tp;
using reference = _SmartReference<_MemberType, _Impl, value_type>;
using mask_type = simd_mask<_Tp, _Abi>;
using abi_type = _Abi;
static constexpr size_t size()
{ return __size_or_zero_v<_Tp, _Abi>; }
_GLIBCXX_SIMD_CONSTEXPR simd() = default;
_GLIBCXX_SIMD_CONSTEXPR simd(const simd&) = default;
_GLIBCXX_SIMD_CONSTEXPR simd(simd&&) noexcept = default;
_GLIBCXX_SIMD_CONSTEXPR simd& operator=(const simd&) = default;
_GLIBCXX_SIMD_CONSTEXPR simd& operator=(simd&&) noexcept = default;
// implicit broadcast constructor
template <typename _Up,
typename = enable_if_t<!is_same_v<__remove_cvref_t<_Up>, bool>>>
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR
simd(_ValuePreservingOrInt<_Up, value_type>&& __x)
: _M_data(
_Impl::_S_broadcast(static_cast<value_type>(static_cast<_Up&&>(__x))))
{}
// implicit type conversion constructor (convert from fixed_size to
// fixed_size)
template <typename _Up>
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR
simd(const simd<_Up, simd_abi::fixed_size<size()>>& __x,
enable_if_t<
conjunction<
is_same<simd_abi::fixed_size<size()>, abi_type>,
negation<__is_narrowing_conversion<_Up, value_type>>,
__converts_to_higher_integer_rank<_Up, value_type>>::value,
void*> = nullptr)
: simd{static_cast<array<_Up, size()>>(__x).data(), vector_aligned} {}
// explicit type conversion constructor
#ifdef _GLIBCXX_SIMD_ENABLE_STATIC_CAST
template <typename _Up, typename _A2,
typename = decltype(static_simd_cast<simd>(
declval<const simd<_Up, _A2>&>()))>
_GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
simd(const simd<_Up, _A2>& __x)
: simd(static_simd_cast<simd>(__x)) {}
#endif // _GLIBCXX_SIMD_ENABLE_STATIC_CAST
// generator constructor
template <typename _Fp>
_GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
simd(_Fp&& __gen, _ValuePreservingOrInt<decltype(declval<_Fp>()(
declval<_SizeConstant<0>&>())),
value_type>* = nullptr)
: _M_data(_Impl::_S_generator(static_cast<_Fp&&>(__gen), _S_type_tag)) {}
// load constructor
template <typename _Up, typename _Flags>
_GLIBCXX_SIMD_ALWAYS_INLINE
simd(const _Up* __mem, _Flags)
: _M_data(
_Impl::_S_load(_Flags::template _S_apply<simd>(__mem), _S_type_tag))
{}
// loads [simd.load]
template <typename _Up, typename _Flags>
_GLIBCXX_SIMD_ALWAYS_INLINE void
copy_from(const _Vectorizable<_Up>* __mem, _Flags)
{
_M_data = static_cast<decltype(_M_data)>(
_Impl::_S_load(_Flags::template _S_apply<simd>(__mem), _S_type_tag));
}
// stores [simd.store]
template <typename _Up, typename _Flags>
_GLIBCXX_SIMD_ALWAYS_INLINE void
copy_to(_Vectorizable<_Up>* __mem, _Flags) const
{
_Impl::_S_store(_M_data, _Flags::template _S_apply<simd>(__mem),
_S_type_tag);
}
// scalar access
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR reference
operator[](size_t __i)
{ return {_M_data, int(__i)}; }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR value_type
operator[]([[maybe_unused]] size_t __i) const
{
if constexpr (__is_scalar_abi<_Abi>())
{
_GLIBCXX_DEBUG_ASSERT(__i == 0);
return _M_data;
}
else
return _M_data[__i];
}
// increment and decrement:
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd&
operator++()
{
_Impl::_S_increment(_M_data);
return *this;
}
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
operator++(int)
{
simd __r = *this;
_Impl::_S_increment(_M_data);
return __r;
}
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd&
operator--()
{
_Impl::_S_decrement(_M_data);
return *this;
}
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
operator--(int)
{
simd __r = *this;
_Impl::_S_decrement(_M_data);
return __r;
}
// unary operators (for any _Tp)
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR mask_type
operator!() const
{ return {__private_init, _Impl::_S_negate(_M_data)}; }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
operator+() const
{ return *this; }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
operator-() const
{ return {__private_init, _Impl::_S_unary_minus(_M_data)}; }
// access to internal representation (suggested extension)
_GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
simd(_CastType __init) : _M_data(__init) {}
// compound assignment [simd.cassign]
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
operator+=(simd& __lhs, const simd& __x)
{ return __lhs = __lhs + __x; }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
operator-=(simd& __lhs, const simd& __x)
{ return __lhs = __lhs - __x; }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
operator*=(simd& __lhs, const simd& __x)
{ return __lhs = __lhs * __x; }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
operator/=(simd& __lhs, const simd& __x)
{ return __lhs = __lhs / __x; }
// binary operators [simd.binary]
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
operator+(const simd& __x, const simd& __y)
{ return {__private_init, _Impl::_S_plus(__x._M_data, __y._M_data)}; }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
operator-(const simd& __x, const simd& __y)
{ return {__private_init, _Impl::_S_minus(__x._M_data, __y._M_data)}; }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
operator*(const simd& __x, const simd& __y)
{ return {__private_init, _Impl::_S_multiplies(__x._M_data, __y._M_data)}; }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
operator/(const simd& __x, const simd& __y)
{ return {__private_init, _Impl::_S_divides(__x._M_data, __y._M_data)}; }
// compares [simd.comparison]
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
operator==(const simd& __x, const simd& __y)
{ return simd::_S_make_mask(_Impl::_S_equal_to(__x._M_data, __y._M_data)); }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
operator!=(const simd& __x, const simd& __y)
{
return simd::_S_make_mask(
_Impl::_S_not_equal_to(__x._M_data, __y._M_data));
}
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
operator<(const simd& __x, const simd& __y)
{ return simd::_S_make_mask(_Impl::_S_less(__x._M_data, __y._M_data)); }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
operator<=(const simd& __x, const simd& __y)
{
return simd::_S_make_mask(_Impl::_S_less_equal(__x._M_data, __y._M_data));
}
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
operator>(const simd& __x, const simd& __y)
{ return simd::_S_make_mask(_Impl::_S_less(__y._M_data, __x._M_data)); }
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
operator>=(const simd& __x, const simd& __y)
{
return simd::_S_make_mask(_Impl::_S_less_equal(__y._M_data, __x._M_data));
}
// operator?: overloads (suggested extension) {{{
#ifdef __GXX_CONDITIONAL_IS_OVERLOADABLE__
_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
operator?:(const mask_type& __k, const simd& __where_true,
const simd& __where_false)
{
auto __ret = __where_false;
_Impl::_S_masked_assign(__data(__k), __data(__ret), __data(__where_true));
return __ret;
}
#endif // __GXX_CONDITIONAL_IS_OVERLOADABLE__
// }}}
// "private" because of the first arguments's namespace
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
simd(_PrivateInit, const _MemberType& __init)
: _M_data(__init) {}
// "private" because of the first arguments's namespace
_GLIBCXX_SIMD_INTRINSIC
simd(_BitsetInit, bitset<size()> __init) : _M_data()
{ where(mask_type(__bitset_init, __init), *this) = ~*this; }
_GLIBCXX_SIMD_INTRINSIC constexpr bool
_M_is_constprop() const
{
if constexpr (__is_scalar_abi<_Abi>())
return __builtin_constant_p(_M_data);
else
return _M_data._M_is_constprop();
}
private:
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR static mask_type
_S_make_mask(typename mask_type::_MemberType __k)
{ return {__private_init, __k}; }
friend const auto& __data<value_type, abi_type>(const simd&);
friend auto& __data<value_type, abi_type>(simd&);
alignas(_Traits::_S_simd_align) _MemberType _M_data;
};
// }}}
/// @cond undocumented
// __data {{{
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC constexpr const auto&
__data(const simd<_Tp, _Ap>& __x)
{ return __x._M_data; }
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC constexpr auto&
__data(simd<_Tp, _Ap>& __x)
{ return __x._M_data; }
// }}}
namespace __float_bitwise_operators { //{{{
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
operator^(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
{
return {__private_init,
_Ap::_SimdImpl::_S_bit_xor(__data(__a), __data(__b))};
}
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
operator|(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
{
return {__private_init,
_Ap::_SimdImpl::_S_bit_or(__data(__a), __data(__b))};
}
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
operator&(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
{
return {__private_init,
_Ap::_SimdImpl::_S_bit_and(__data(__a), __data(__b))};
}
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Ap>>
operator~(const simd<_Tp, _Ap>& __a)
{ return {__private_init, _Ap::_SimdImpl::_S_complement(__data(__a))}; }
} // namespace __float_bitwise_operators }}}
/// @endcond
/// @}
_GLIBCXX_SIMD_END_NAMESPACE
#endif // __cplusplus >= 201703L
#endif // _GLIBCXX_EXPERIMENTAL_SIMD_H
// vim: foldmethod=marker foldmarker={{{,}}}