| /* Output Dwarf2 format symbol table information from GCC. |
| Copyright (C) 1992-2021 Free Software Foundation, Inc. |
| Contributed by Gary Funck (gary@intrepid.com). |
| Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com). |
| Extensively modified by Jason Merrill (jason@cygnus.com). |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* TODO: Emit .debug_line header even when there are no functions, since |
| the file numbers are used by .debug_info. Alternately, leave |
| out locations for types and decls. |
| Avoid talking about ctors and op= for PODs. |
| Factor out common prologue sequences into multiple CIEs. */ |
| |
| /* The first part of this file deals with the DWARF 2 frame unwind |
| information, which is also used by the GCC efficient exception handling |
| mechanism. The second part, controlled only by an #ifdef |
| DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging |
| information. */ |
| |
| /* DWARF2 Abbreviation Glossary: |
| |
| CFA = Canonical Frame Address |
| a fixed address on the stack which identifies a call frame. |
| We define it to be the value of SP just before the call insn. |
| The CFA register and offset, which may change during the course |
| of the function, are used to calculate its value at runtime. |
| |
| CFI = Call Frame Instruction |
| an instruction for the DWARF2 abstract machine |
| |
| CIE = Common Information Entry |
| information describing information common to one or more FDEs |
| |
| DIE = Debugging Information Entry |
| |
| FDE = Frame Description Entry |
| information describing the stack call frame, in particular, |
| how to restore registers |
| |
| DW_CFA_... = DWARF2 CFA call frame instruction |
| DW_TAG_... = DWARF2 DIE tag */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "target.h" |
| #include "function.h" |
| #include "rtl.h" |
| #include "tree.h" |
| #include "memmodel.h" |
| #include "tm_p.h" |
| #include "stringpool.h" |
| #include "insn-config.h" |
| #include "ira.h" |
| #include "cgraph.h" |
| #include "diagnostic.h" |
| #include "fold-const.h" |
| #include "stor-layout.h" |
| #include "varasm.h" |
| #include "version.h" |
| #include "flags.h" |
| #include "rtlhash.h" |
| #include "reload.h" |
| #include "output.h" |
| #include "expr.h" |
| #include "dwarf2out.h" |
| #include "dwarf2ctf.h" |
| #include "dwarf2asm.h" |
| #include "toplev.h" |
| #include "md5.h" |
| #include "tree-pretty-print.h" |
| #include "print-rtl.h" |
| #include "debug.h" |
| #include "common/common-target.h" |
| #include "langhooks.h" |
| #include "lra.h" |
| #include "dumpfile.h" |
| #include "opts.h" |
| #include "tree-dfa.h" |
| #include "gdb/gdb-index.h" |
| #include "rtl-iter.h" |
| #include "stringpool.h" |
| #include "attribs.h" |
| #include "file-prefix-map.h" /* remap_debug_filename() */ |
| |
| static void dwarf2out_source_line (unsigned int, unsigned int, const char *, |
| int, bool); |
| static rtx_insn *last_var_location_insn; |
| static rtx_insn *cached_next_real_insn; |
| static void dwarf2out_decl (tree); |
| static bool is_redundant_typedef (const_tree); |
| |
| #ifndef XCOFF_DEBUGGING_INFO |
| #define XCOFF_DEBUGGING_INFO 0 |
| #endif |
| |
| #ifndef HAVE_XCOFF_DWARF_EXTRAS |
| #define HAVE_XCOFF_DWARF_EXTRAS 0 |
| #endif |
| |
| #ifdef VMS_DEBUGGING_INFO |
| int vms_file_stats_name (const char *, long long *, long *, char *, int *); |
| |
| /* Define this macro to be a nonzero value if the directory specifications |
| which are output in the debug info should end with a separator. */ |
| #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 1 |
| /* Define this macro to evaluate to a nonzero value if GCC should refrain |
| from generating indirect strings in DWARF2 debug information, for instance |
| if your target is stuck with an old version of GDB that is unable to |
| process them properly or uses VMS Debug. */ |
| #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 1 |
| #else |
| #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 0 |
| #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 0 |
| #endif |
| |
| /* ??? Poison these here until it can be done generically. They've been |
| totally replaced in this file; make sure it stays that way. */ |
| #undef DWARF2_UNWIND_INFO |
| #undef DWARF2_FRAME_INFO |
| #if (GCC_VERSION >= 3000) |
| #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO |
| #endif |
| |
| /* The size of the target's pointer type. */ |
| #ifndef PTR_SIZE |
| #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT) |
| #endif |
| |
| /* Array of RTXes referenced by the debugging information, which therefore |
| must be kept around forever. */ |
| static GTY(()) vec<rtx, va_gc> *used_rtx_array; |
| |
| /* A pointer to the base of a list of incomplete types which might be |
| completed at some later time. incomplete_types_list needs to be a |
| vec<tree, va_gc> *because we want to tell the garbage collector about |
| it. */ |
| static GTY(()) vec<tree, va_gc> *incomplete_types; |
| |
| /* Pointers to various DWARF2 sections. */ |
| static GTY(()) section *debug_info_section; |
| static GTY(()) section *debug_skeleton_info_section; |
| static GTY(()) section *debug_abbrev_section; |
| static GTY(()) section *debug_skeleton_abbrev_section; |
| static GTY(()) section *debug_aranges_section; |
| static GTY(()) section *debug_addr_section; |
| static GTY(()) section *debug_macinfo_section; |
| static const char *debug_macinfo_section_name; |
| static unsigned macinfo_label_base = 1; |
| static GTY(()) section *debug_line_section; |
| static GTY(()) section *debug_skeleton_line_section; |
| static GTY(()) section *debug_loc_section; |
| static GTY(()) section *debug_pubnames_section; |
| static GTY(()) section *debug_pubtypes_section; |
| static GTY(()) section *debug_str_section; |
| static GTY(()) section *debug_line_str_section; |
| static GTY(()) section *debug_str_dwo_section; |
| static GTY(()) section *debug_str_offsets_section; |
| static GTY(()) section *debug_ranges_section; |
| static GTY(()) section *debug_ranges_dwo_section; |
| static GTY(()) section *debug_frame_section; |
| |
| /* Maximum size (in bytes) of an artificially generated label. */ |
| #define MAX_ARTIFICIAL_LABEL_BYTES 40 |
| |
| /* According to the (draft) DWARF 3 specification, the initial length |
| should either be 4 or 12 bytes. When it's 12 bytes, the first 4 |
| bytes are 0xffffffff, followed by the length stored in the next 8 |
| bytes. |
| |
| However, the SGI/MIPS ABI uses an initial length which is equal to |
| dwarf_offset_size. It is defined (elsewhere) accordingly. */ |
| |
| #ifndef DWARF_INITIAL_LENGTH_SIZE |
| #define DWARF_INITIAL_LENGTH_SIZE (dwarf_offset_size == 4 ? 4 : 12) |
| #endif |
| |
| #ifndef DWARF_INITIAL_LENGTH_SIZE_STR |
| #define DWARF_INITIAL_LENGTH_SIZE_STR (dwarf_offset_size == 4 ? "-4" : "-12") |
| #endif |
| |
| /* Round SIZE up to the nearest BOUNDARY. */ |
| #define DWARF_ROUND(SIZE,BOUNDARY) \ |
| ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY)) |
| |
| /* CIE identifier. */ |
| #if HOST_BITS_PER_WIDE_INT >= 64 |
| #define DWARF_CIE_ID \ |
| (unsigned HOST_WIDE_INT) (dwarf_offset_size == 4 ? DW_CIE_ID : DW64_CIE_ID) |
| #else |
| #define DWARF_CIE_ID DW_CIE_ID |
| #endif |
| |
| |
| /* A vector for a table that contains frame description |
| information for each routine. */ |
| #define NOT_INDEXED (-1U) |
| #define NO_INDEX_ASSIGNED (-2U) |
| |
| static GTY(()) vec<dw_fde_ref, va_gc> *fde_vec; |
| |
| struct GTY((for_user)) indirect_string_node { |
| const char *str; |
| unsigned int refcount; |
| enum dwarf_form form; |
| char *label; |
| unsigned int index; |
| }; |
| |
| struct indirect_string_hasher : ggc_ptr_hash<indirect_string_node> |
| { |
| typedef const char *compare_type; |
| |
| static hashval_t hash (indirect_string_node *); |
| static bool equal (indirect_string_node *, const char *); |
| }; |
| |
| static GTY (()) hash_table<indirect_string_hasher> *debug_str_hash; |
| |
| static GTY (()) hash_table<indirect_string_hasher> *debug_line_str_hash; |
| |
| /* With split_debug_info, both the comp_dir and dwo_name go in the |
| main object file, rather than the dwo, similar to the force_direct |
| parameter elsewhere but with additional complications: |
| |
| 1) The string is needed in both the main object file and the dwo. |
| That is, the comp_dir and dwo_name will appear in both places. |
| |
| 2) Strings can use four forms: DW_FORM_string, DW_FORM_strp, |
| DW_FORM_line_strp or DW_FORM_strx/GNU_str_index. |
| |
| 3) GCC chooses the form to use late, depending on the size and |
| reference count. |
| |
| Rather than forcing the all debug string handling functions and |
| callers to deal with these complications, simply use a separate, |
| special-cased string table for any attribute that should go in the |
| main object file. This limits the complexity to just the places |
| that need it. */ |
| |
| static GTY (()) hash_table<indirect_string_hasher> *skeleton_debug_str_hash; |
| |
| static GTY(()) int dw2_string_counter; |
| |
| /* True if the compilation unit places functions in more than one section. */ |
| static GTY(()) bool have_multiple_function_sections = false; |
| |
| /* The default cold text section. */ |
| static GTY(()) section *cold_text_section; |
| |
| /* True if currently in text section. */ |
| static GTY(()) bool in_text_section_p = false; |
| |
| /* Last debug-on location in corresponding section. */ |
| static GTY(()) const char *last_text_label; |
| static GTY(()) const char *last_cold_label; |
| |
| /* Mark debug-on/off locations per section. |
| NULL means the section is not used at all. */ |
| static GTY(()) vec<const char *, va_gc> *switch_text_ranges; |
| static GTY(()) vec<const char *, va_gc> *switch_cold_ranges; |
| |
| /* The DIE for C++14 'auto' in a function return type. */ |
| static GTY(()) dw_die_ref auto_die; |
| |
| /* The DIE for C++14 'decltype(auto)' in a function return type. */ |
| static GTY(()) dw_die_ref decltype_auto_die; |
| |
| /* Forward declarations for functions defined in this file. */ |
| |
| static void output_call_frame_info (int); |
| |
| /* Personality decl of current unit. Used only when assembler does not support |
| personality CFI. */ |
| static GTY(()) rtx current_unit_personality; |
| |
| /* Whether an eh_frame section is required. */ |
| static GTY(()) bool do_eh_frame = false; |
| |
| /* .debug_rnglists next index. */ |
| static unsigned int rnglist_idx; |
| |
| /* Data and reference forms for relocatable data. */ |
| #define DW_FORM_data (dwarf_offset_size == 8 ? DW_FORM_data8 : DW_FORM_data4) |
| #define DW_FORM_ref (dwarf_offset_size == 8 ? DW_FORM_ref8 : DW_FORM_ref4) |
| |
| #ifndef DEBUG_FRAME_SECTION |
| #define DEBUG_FRAME_SECTION ".debug_frame" |
| #endif |
| |
| #ifndef FUNC_BEGIN_LABEL |
| #define FUNC_BEGIN_LABEL "LFB" |
| #endif |
| |
| #ifndef FUNC_SECOND_SECT_LABEL |
| #define FUNC_SECOND_SECT_LABEL "LFSB" |
| #endif |
| |
| #ifndef FUNC_END_LABEL |
| #define FUNC_END_LABEL "LFE" |
| #endif |
| |
| #ifndef PROLOGUE_END_LABEL |
| #define PROLOGUE_END_LABEL "LPE" |
| #endif |
| |
| #ifndef EPILOGUE_BEGIN_LABEL |
| #define EPILOGUE_BEGIN_LABEL "LEB" |
| #endif |
| |
| #ifndef FRAME_BEGIN_LABEL |
| #define FRAME_BEGIN_LABEL "Lframe" |
| #endif |
| #define CIE_AFTER_SIZE_LABEL "LSCIE" |
| #define CIE_END_LABEL "LECIE" |
| #define FDE_LABEL "LSFDE" |
| #define FDE_AFTER_SIZE_LABEL "LASFDE" |
| #define FDE_END_LABEL "LEFDE" |
| #define LINE_NUMBER_BEGIN_LABEL "LSLT" |
| #define LINE_NUMBER_END_LABEL "LELT" |
| #define LN_PROLOG_AS_LABEL "LASLTP" |
| #define LN_PROLOG_END_LABEL "LELTP" |
| #define DIE_LABEL_PREFIX "DW" |
| |
| /* Match the base name of a file to the base name of a compilation unit. */ |
| |
| static int |
| matches_main_base (const char *path) |
| { |
| /* Cache the last query. */ |
| static const char *last_path = NULL; |
| static int last_match = 0; |
| if (path != last_path) |
| { |
| const char *base; |
| int length = base_of_path (path, &base); |
| last_path = path; |
| last_match = (length == main_input_baselength |
| && memcmp (base, main_input_basename, length) == 0); |
| } |
| return last_match; |
| } |
| |
| #ifdef DEBUG_DEBUG_STRUCT |
| |
| static int |
| dump_struct_debug (tree type, enum debug_info_usage usage, |
| enum debug_struct_file criterion, int generic, |
| int matches, int result) |
| { |
| /* Find the type name. */ |
| tree type_decl = TYPE_STUB_DECL (type); |
| tree t = type_decl; |
| const char *name = 0; |
| if (TREE_CODE (t) == TYPE_DECL) |
| t = DECL_NAME (t); |
| if (t) |
| name = IDENTIFIER_POINTER (t); |
| |
| fprintf (stderr, " struct %d %s %s %s %s %d %p %s\n", |
| criterion, |
| DECL_IN_SYSTEM_HEADER (type_decl) ? "sys" : "usr", |
| matches ? "bas" : "hdr", |
| generic ? "gen" : "ord", |
| usage == DINFO_USAGE_DFN ? ";" : |
| usage == DINFO_USAGE_DIR_USE ? "." : "*", |
| result, |
| (void*) type_decl, name); |
| return result; |
| } |
| #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \ |
| dump_struct_debug (type, usage, criterion, generic, matches, result) |
| |
| #else |
| |
| #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \ |
| (result) |
| |
| #endif |
| |
| /* Get the number of HOST_WIDE_INTs needed to represent the precision |
| of the number. */ |
| |
| static unsigned int |
| get_full_len (const wide_int &op) |
| { |
| int prec = wi::get_precision (op); |
| return ((prec + HOST_BITS_PER_WIDE_INT - 1) |
| / HOST_BITS_PER_WIDE_INT); |
| } |
| |
| static bool |
| should_emit_struct_debug (tree type, enum debug_info_usage usage) |
| { |
| if (debug_info_level <= DINFO_LEVEL_TERSE) |
| return false; |
| |
| enum debug_struct_file criterion; |
| tree type_decl; |
| bool generic = lang_hooks.types.generic_p (type); |
| |
| if (generic) |
| criterion = debug_struct_generic[usage]; |
| else |
| criterion = debug_struct_ordinary[usage]; |
| |
| if (criterion == DINFO_STRUCT_FILE_NONE) |
| return DUMP_GSTRUCT (type, usage, criterion, generic, false, false); |
| if (criterion == DINFO_STRUCT_FILE_ANY) |
| return DUMP_GSTRUCT (type, usage, criterion, generic, false, true); |
| |
| type_decl = TYPE_STUB_DECL (TYPE_MAIN_VARIANT (type)); |
| |
| if (type_decl != NULL) |
| { |
| if (criterion == DINFO_STRUCT_FILE_SYS && DECL_IN_SYSTEM_HEADER (type_decl)) |
| return DUMP_GSTRUCT (type, usage, criterion, generic, false, true); |
| |
| if (matches_main_base (DECL_SOURCE_FILE (type_decl))) |
| return DUMP_GSTRUCT (type, usage, criterion, generic, true, true); |
| } |
| |
| return DUMP_GSTRUCT (type, usage, criterion, generic, false, false); |
| } |
| |
| /* Switch [BACK] to eh_frame_section. If we don't have an eh_frame_section, |
| switch to the data section instead, and write out a synthetic start label |
| for collect2 the first time around. */ |
| |
| static void |
| switch_to_eh_frame_section (bool back ATTRIBUTE_UNUSED) |
| { |
| if (eh_frame_section == 0) |
| { |
| int flags; |
| |
| if (EH_TABLES_CAN_BE_READ_ONLY) |
| { |
| int fde_encoding; |
| int per_encoding; |
| int lsda_encoding; |
| |
| fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, |
| /*global=*/0); |
| per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, |
| /*global=*/1); |
| lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, |
| /*global=*/0); |
| flags = ((! flag_pic |
| || ((fde_encoding & 0x70) != DW_EH_PE_absptr |
| && (fde_encoding & 0x70) != DW_EH_PE_aligned |
| && (per_encoding & 0x70) != DW_EH_PE_absptr |
| && (per_encoding & 0x70) != DW_EH_PE_aligned |
| && (lsda_encoding & 0x70) != DW_EH_PE_absptr |
| && (lsda_encoding & 0x70) != DW_EH_PE_aligned)) |
| ? 0 : SECTION_WRITE); |
| } |
| else |
| flags = SECTION_WRITE; |
| |
| #ifdef EH_FRAME_SECTION_NAME |
| eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL); |
| #else |
| eh_frame_section = ((flags == SECTION_WRITE) |
| ? data_section : readonly_data_section); |
| #endif /* EH_FRAME_SECTION_NAME */ |
| } |
| |
| switch_to_section (eh_frame_section); |
| |
| #ifdef EH_FRAME_THROUGH_COLLECT2 |
| /* We have no special eh_frame section. Emit special labels to guide |
| collect2. */ |
| if (!back) |
| { |
| tree label = get_file_function_name ("F"); |
| ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE)); |
| targetm.asm_out.globalize_label (asm_out_file, |
| IDENTIFIER_POINTER (label)); |
| ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label)); |
| } |
| #endif |
| } |
| |
| /* Switch [BACK] to the eh or debug frame table section, depending on |
| FOR_EH. */ |
| |
| static void |
| switch_to_frame_table_section (int for_eh, bool back) |
| { |
| if (for_eh) |
| switch_to_eh_frame_section (back); |
| else |
| { |
| if (!debug_frame_section) |
| debug_frame_section = get_section (DEBUG_FRAME_SECTION, |
| SECTION_DEBUG, NULL); |
| switch_to_section (debug_frame_section); |
| } |
| } |
| |
| /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */ |
| |
| enum dw_cfi_oprnd_type |
| dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi) |
| { |
| switch (cfi) |
| { |
| case DW_CFA_nop: |
| case DW_CFA_GNU_window_save: |
| case DW_CFA_remember_state: |
| case DW_CFA_restore_state: |
| return dw_cfi_oprnd_unused; |
| |
| case DW_CFA_set_loc: |
| case DW_CFA_advance_loc1: |
| case DW_CFA_advance_loc2: |
| case DW_CFA_advance_loc4: |
| case DW_CFA_MIPS_advance_loc8: |
| return dw_cfi_oprnd_addr; |
| |
| case DW_CFA_offset: |
| case DW_CFA_offset_extended: |
| case DW_CFA_def_cfa: |
| case DW_CFA_offset_extended_sf: |
| case DW_CFA_def_cfa_sf: |
| case DW_CFA_restore: |
| case DW_CFA_restore_extended: |
| case DW_CFA_undefined: |
| case DW_CFA_same_value: |
| case DW_CFA_def_cfa_register: |
| case DW_CFA_register: |
| case DW_CFA_expression: |
| case DW_CFA_val_expression: |
| return dw_cfi_oprnd_reg_num; |
| |
| case DW_CFA_def_cfa_offset: |
| case DW_CFA_GNU_args_size: |
| case DW_CFA_def_cfa_offset_sf: |
| return dw_cfi_oprnd_offset; |
| |
| case DW_CFA_def_cfa_expression: |
| return dw_cfi_oprnd_loc; |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */ |
| |
| enum dw_cfi_oprnd_type |
| dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi) |
| { |
| switch (cfi) |
| { |
| case DW_CFA_def_cfa: |
| case DW_CFA_def_cfa_sf: |
| case DW_CFA_offset: |
| case DW_CFA_offset_extended_sf: |
| case DW_CFA_offset_extended: |
| return dw_cfi_oprnd_offset; |
| |
| case DW_CFA_register: |
| return dw_cfi_oprnd_reg_num; |
| |
| case DW_CFA_expression: |
| case DW_CFA_val_expression: |
| return dw_cfi_oprnd_loc; |
| |
| case DW_CFA_def_cfa_expression: |
| return dw_cfi_oprnd_cfa_loc; |
| |
| default: |
| return dw_cfi_oprnd_unused; |
| } |
| } |
| |
| /* Output one FDE. */ |
| |
| static void |
| output_fde (dw_fde_ref fde, bool for_eh, bool second, |
| char *section_start_label, int fde_encoding, char *augmentation, |
| bool any_lsda_needed, int lsda_encoding) |
| { |
| const char *begin, *end; |
| static unsigned int j; |
| char l1[MAX_ARTIFICIAL_LABEL_BYTES], l2[MAX_ARTIFICIAL_LABEL_BYTES]; |
| |
| targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, for_eh, |
| /* empty */ 0); |
| targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, |
| for_eh + j); |
| ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + j); |
| ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + j); |
| if (!XCOFF_DEBUGGING_INFO || for_eh) |
| { |
| if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4 && !for_eh) |
| dw2_asm_output_data (4, 0xffffffff, "Initial length escape value" |
| " indicating 64-bit DWARF extension"); |
| dw2_asm_output_delta (for_eh ? 4 : dwarf_offset_size, l2, l1, |
| "FDE Length"); |
| } |
| ASM_OUTPUT_LABEL (asm_out_file, l1); |
| |
| if (for_eh) |
| dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset"); |
| else |
| dw2_asm_output_offset (dwarf_offset_size, section_start_label, |
| debug_frame_section, "FDE CIE offset"); |
| |
| begin = second ? fde->dw_fde_second_begin : fde->dw_fde_begin; |
| end = second ? fde->dw_fde_second_end : fde->dw_fde_end; |
| |
| if (for_eh) |
| { |
| rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, begin); |
| SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL; |
| dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref, false, |
| "FDE initial location"); |
| dw2_asm_output_delta (size_of_encoded_value (fde_encoding), |
| end, begin, "FDE address range"); |
| } |
| else |
| { |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, begin, "FDE initial location"); |
| dw2_asm_output_delta (DWARF2_ADDR_SIZE, end, begin, "FDE address range"); |
| } |
| |
| if (augmentation[0]) |
| { |
| if (any_lsda_needed) |
| { |
| int size = size_of_encoded_value (lsda_encoding); |
| |
| if (lsda_encoding == DW_EH_PE_aligned) |
| { |
| int offset = ( 4 /* Length */ |
| + 4 /* CIE offset */ |
| + 2 * size_of_encoded_value (fde_encoding) |
| + 1 /* Augmentation size */ ); |
| int pad = -offset & (PTR_SIZE - 1); |
| |
| size += pad; |
| gcc_assert (size_of_uleb128 (size) == 1); |
| } |
| |
| dw2_asm_output_data_uleb128 (size, "Augmentation size"); |
| |
| if (fde->uses_eh_lsda) |
| { |
| ASM_GENERATE_INTERNAL_LABEL (l1, second ? "LLSDAC" : "LLSDA", |
| fde->funcdef_number); |
| dw2_asm_output_encoded_addr_rtx (lsda_encoding, |
| gen_rtx_SYMBOL_REF (Pmode, l1), |
| false, |
| "Language Specific Data Area"); |
| } |
| else |
| { |
| if (lsda_encoding == DW_EH_PE_aligned) |
| ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE)); |
| dw2_asm_output_data (size_of_encoded_value (lsda_encoding), 0, |
| "Language Specific Data Area (none)"); |
| } |
| } |
| else |
| dw2_asm_output_data_uleb128 (0, "Augmentation size"); |
| } |
| |
| /* Loop through the Call Frame Instructions associated with this FDE. */ |
| fde->dw_fde_current_label = begin; |
| { |
| size_t from, until, i; |
| |
| from = 0; |
| until = vec_safe_length (fde->dw_fde_cfi); |
| |
| if (fde->dw_fde_second_begin == NULL) |
| ; |
| else if (!second) |
| until = fde->dw_fde_switch_cfi_index; |
| else |
| from = fde->dw_fde_switch_cfi_index; |
| |
| for (i = from; i < until; i++) |
| output_cfi ((*fde->dw_fde_cfi)[i], fde, for_eh); |
| } |
| |
| /* If we are to emit a ref/link from function bodies to their frame tables, |
| do it now. This is typically performed to make sure that tables |
| associated with functions are dragged with them and not discarded in |
| garbage collecting links. We need to do this on a per function basis to |
| cope with -ffunction-sections. */ |
| |
| #ifdef ASM_OUTPUT_DWARF_TABLE_REF |
| /* Switch to the function section, emit the ref to the tables, and |
| switch *back* into the table section. */ |
| switch_to_section (function_section (fde->decl)); |
| ASM_OUTPUT_DWARF_TABLE_REF (section_start_label); |
| switch_to_frame_table_section (for_eh, true); |
| #endif |
| |
| /* Pad the FDE out to an address sized boundary. */ |
| ASM_OUTPUT_ALIGN (asm_out_file, |
| floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE))); |
| ASM_OUTPUT_LABEL (asm_out_file, l2); |
| |
| j += 2; |
| } |
| |
| /* Return true if frame description entry FDE is needed for EH. */ |
| |
| static bool |
| fde_needed_for_eh_p (dw_fde_ref fde) |
| { |
| if (flag_asynchronous_unwind_tables) |
| return true; |
| |
| if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde->decl)) |
| return true; |
| |
| if (fde->uses_eh_lsda) |
| return true; |
| |
| /* If exceptions are enabled, we have collected nothrow info. */ |
| if (flag_exceptions && (fde->all_throwers_are_sibcalls || fde->nothrow)) |
| return false; |
| |
| return true; |
| } |
| |
| /* Output the call frame information used to record information |
| that relates to calculating the frame pointer, and records the |
| location of saved registers. */ |
| |
| static void |
| output_call_frame_info (int for_eh) |
| { |
| unsigned int i; |
| dw_fde_ref fde; |
| dw_cfi_ref cfi; |
| char l1[MAX_ARTIFICIAL_LABEL_BYTES], l2[MAX_ARTIFICIAL_LABEL_BYTES]; |
| char section_start_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| bool any_lsda_needed = false; |
| char augmentation[6]; |
| int augmentation_size; |
| int fde_encoding = DW_EH_PE_absptr; |
| int per_encoding = DW_EH_PE_absptr; |
| int lsda_encoding = DW_EH_PE_absptr; |
| int return_reg; |
| rtx personality = NULL; |
| int dw_cie_version; |
| |
| /* Don't emit a CIE if there won't be any FDEs. */ |
| if (!fde_vec) |
| return; |
| |
| /* Nothing to do if the assembler's doing it all. */ |
| if (dwarf2out_do_cfi_asm ()) |
| return; |
| |
| /* If we don't have any functions we'll want to unwind out of, don't emit |
| any EH unwind information. If we make FDEs linkonce, we may have to |
| emit an empty label for an FDE that wouldn't otherwise be emitted. We |
| want to avoid having an FDE kept around when the function it refers to |
| is discarded. Example where this matters: a primary function template |
| in C++ requires EH information, an explicit specialization doesn't. */ |
| if (for_eh) |
| { |
| bool any_eh_needed = false; |
| |
| FOR_EACH_VEC_ELT (*fde_vec, i, fde) |
| { |
| if (fde->uses_eh_lsda) |
| any_eh_needed = any_lsda_needed = true; |
| else if (fde_needed_for_eh_p (fde)) |
| any_eh_needed = true; |
| else if (TARGET_USES_WEAK_UNWIND_INFO) |
| targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, 1, 1); |
| } |
| |
| if (!any_eh_needed) |
| return; |
| } |
| |
| /* We're going to be generating comments, so turn on app. */ |
| if (flag_debug_asm) |
| app_enable (); |
| |
| /* Switch to the proper frame section, first time. */ |
| switch_to_frame_table_section (for_eh, false); |
| |
| ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh); |
| ASM_OUTPUT_LABEL (asm_out_file, section_start_label); |
| |
| /* Output the CIE. */ |
| ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh); |
| ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh); |
| if (!XCOFF_DEBUGGING_INFO || for_eh) |
| { |
| if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4 && !for_eh) |
| dw2_asm_output_data (4, 0xffffffff, |
| "Initial length escape value indicating 64-bit DWARF extension"); |
| dw2_asm_output_delta (for_eh ? 4 : dwarf_offset_size, l2, l1, |
| "Length of Common Information Entry"); |
| } |
| ASM_OUTPUT_LABEL (asm_out_file, l1); |
| |
| /* Now that the CIE pointer is PC-relative for EH, |
| use 0 to identify the CIE. */ |
| dw2_asm_output_data ((for_eh ? 4 : dwarf_offset_size), |
| (for_eh ? 0 : DWARF_CIE_ID), |
| "CIE Identifier Tag"); |
| |
| /* Use the CIE version 3 for DWARF3; allow DWARF2 to continue to |
| use CIE version 1, unless that would produce incorrect results |
| due to overflowing the return register column. */ |
| return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh); |
| dw_cie_version = 1; |
| if (return_reg >= 256 || dwarf_version > 2) |
| dw_cie_version = 3; |
| dw2_asm_output_data (1, dw_cie_version, "CIE Version"); |
| |
| augmentation[0] = 0; |
| augmentation_size = 0; |
| |
| personality = current_unit_personality; |
| if (for_eh) |
| { |
| char *p; |
| |
| /* Augmentation: |
| z Indicates that a uleb128 is present to size the |
| augmentation section. |
| L Indicates the encoding (and thus presence) of |
| an LSDA pointer in the FDE augmentation. |
| R Indicates a non-default pointer encoding for |
| FDE code pointers. |
| P Indicates the presence of an encoding + language |
| personality routine in the CIE augmentation. */ |
| |
| fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0); |
| per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1); |
| lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0); |
| |
| p = augmentation + 1; |
| if (personality) |
| { |
| *p++ = 'P'; |
| augmentation_size += 1 + size_of_encoded_value (per_encoding); |
| assemble_external_libcall (personality); |
| } |
| if (any_lsda_needed) |
| { |
| *p++ = 'L'; |
| augmentation_size += 1; |
| } |
| if (fde_encoding != DW_EH_PE_absptr) |
| { |
| *p++ = 'R'; |
| augmentation_size += 1; |
| } |
| if (p > augmentation + 1) |
| { |
| augmentation[0] = 'z'; |
| *p = '\0'; |
| } |
| |
| /* Ug. Some platforms can't do unaligned dynamic relocations at all. */ |
| if (personality && per_encoding == DW_EH_PE_aligned) |
| { |
| int offset = ( 4 /* Length */ |
| + 4 /* CIE Id */ |
| + 1 /* CIE version */ |
| + strlen (augmentation) + 1 /* Augmentation */ |
| + size_of_uleb128 (1) /* Code alignment */ |
| + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT) |
| + 1 /* RA column */ |
| + 1 /* Augmentation size */ |
| + 1 /* Personality encoding */ ); |
| int pad = -offset & (PTR_SIZE - 1); |
| |
| augmentation_size += pad; |
| |
| /* Augmentations should be small, so there's scarce need to |
| iterate for a solution. Die if we exceed one uleb128 byte. */ |
| gcc_assert (size_of_uleb128 (augmentation_size) == 1); |
| } |
| } |
| |
| dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation"); |
| if (dw_cie_version >= 4) |
| { |
| dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "CIE Address Size"); |
| dw2_asm_output_data (1, 0, "CIE Segment Size"); |
| } |
| dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor"); |
| dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT, |
| "CIE Data Alignment Factor"); |
| |
| if (dw_cie_version == 1) |
| dw2_asm_output_data (1, return_reg, "CIE RA Column"); |
| else |
| dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column"); |
| |
| if (augmentation[0]) |
| { |
| dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size"); |
| if (personality) |
| { |
| dw2_asm_output_data (1, per_encoding, "Personality (%s)", |
| eh_data_format_name (per_encoding)); |
| dw2_asm_output_encoded_addr_rtx (per_encoding, |
| personality, |
| true, NULL); |
| } |
| |
| if (any_lsda_needed) |
| dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)", |
| eh_data_format_name (lsda_encoding)); |
| |
| if (fde_encoding != DW_EH_PE_absptr) |
| dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)", |
| eh_data_format_name (fde_encoding)); |
| } |
| |
| FOR_EACH_VEC_ELT (*cie_cfi_vec, i, cfi) |
| output_cfi (cfi, NULL, for_eh); |
| |
| /* Pad the CIE out to an address sized boundary. */ |
| ASM_OUTPUT_ALIGN (asm_out_file, |
| floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)); |
| ASM_OUTPUT_LABEL (asm_out_file, l2); |
| |
| /* Loop through all of the FDE's. */ |
| FOR_EACH_VEC_ELT (*fde_vec, i, fde) |
| { |
| unsigned int k; |
| |
| /* Don't emit EH unwind info for leaf functions that don't need it. */ |
| if (for_eh && !fde_needed_for_eh_p (fde)) |
| continue; |
| |
| for (k = 0; k < (fde->dw_fde_second_begin ? 2 : 1); k++) |
| output_fde (fde, for_eh, k, section_start_label, fde_encoding, |
| augmentation, any_lsda_needed, lsda_encoding); |
| } |
| |
| if (for_eh && targetm.terminate_dw2_eh_frame_info) |
| dw2_asm_output_data (4, 0, "End of Table"); |
| |
| /* Turn off app to make assembly quicker. */ |
| if (flag_debug_asm) |
| app_disable (); |
| } |
| |
| /* Emit .cfi_startproc and .cfi_personality/.cfi_lsda if needed. */ |
| |
| static void |
| dwarf2out_do_cfi_startproc (bool second) |
| { |
| int enc; |
| rtx ref; |
| |
| fprintf (asm_out_file, "\t.cfi_startproc\n"); |
| |
| targetm.asm_out.post_cfi_startproc (asm_out_file, current_function_decl); |
| |
| /* .cfi_personality and .cfi_lsda are only relevant to DWARF2 |
| eh unwinders. */ |
| if (targetm_common.except_unwind_info (&global_options) != UI_DWARF2) |
| return; |
| |
| rtx personality = get_personality_function (current_function_decl); |
| |
| if (personality) |
| { |
| enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1); |
| ref = personality; |
| |
| /* ??? The GAS support isn't entirely consistent. We have to |
| handle indirect support ourselves, but PC-relative is done |
| in the assembler. Further, the assembler can't handle any |
| of the weirder relocation types. */ |
| if (enc & DW_EH_PE_indirect) |
| { |
| if (targetm.asm_out.make_eh_symbol_indirect != NULL) |
| ref = targetm.asm_out.make_eh_symbol_indirect (ref, true); |
| else |
| ref = dw2_force_const_mem (ref, true); |
| } |
| |
| fprintf (asm_out_file, "\t.cfi_personality %#x,", enc); |
| output_addr_const (asm_out_file, ref); |
| fputc ('\n', asm_out_file); |
| } |
| |
| if (crtl->uses_eh_lsda) |
| { |
| char lab[MAX_ARTIFICIAL_LABEL_BYTES]; |
| |
| enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0); |
| ASM_GENERATE_INTERNAL_LABEL (lab, second ? "LLSDAC" : "LLSDA", |
| current_function_funcdef_no); |
| ref = gen_rtx_SYMBOL_REF (Pmode, lab); |
| SYMBOL_REF_FLAGS (ref) = SYMBOL_FLAG_LOCAL; |
| |
| if (enc & DW_EH_PE_indirect) |
| { |
| if (targetm.asm_out.make_eh_symbol_indirect != NULL) |
| ref = targetm.asm_out.make_eh_symbol_indirect (ref, true); |
| else |
| ref = dw2_force_const_mem (ref, true); |
| } |
| |
| fprintf (asm_out_file, "\t.cfi_lsda %#x,", enc); |
| output_addr_const (asm_out_file, ref); |
| fputc ('\n', asm_out_file); |
| } |
| } |
| |
| /* Allocate CURRENT_FDE. Immediately initialize all we can, noting that |
| this allocation may be done before pass_final. */ |
| |
| dw_fde_ref |
| dwarf2out_alloc_current_fde (void) |
| { |
| dw_fde_ref fde; |
| |
| fde = ggc_cleared_alloc<dw_fde_node> (); |
| fde->decl = current_function_decl; |
| fde->funcdef_number = current_function_funcdef_no; |
| fde->fde_index = vec_safe_length (fde_vec); |
| fde->all_throwers_are_sibcalls = crtl->all_throwers_are_sibcalls; |
| fde->uses_eh_lsda = crtl->uses_eh_lsda; |
| fde->nothrow = crtl->nothrow; |
| fde->drap_reg = INVALID_REGNUM; |
| fde->vdrap_reg = INVALID_REGNUM; |
| |
| /* Record the FDE associated with this function. */ |
| cfun->fde = fde; |
| vec_safe_push (fde_vec, fde); |
| |
| return fde; |
| } |
| |
| /* Output a marker (i.e. a label) for the beginning of a function, before |
| the prologue. */ |
| |
| void |
| dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED, |
| unsigned int column ATTRIBUTE_UNUSED, |
| const char *file ATTRIBUTE_UNUSED) |
| { |
| char label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| char * dup_label; |
| dw_fde_ref fde; |
| section *fnsec; |
| bool do_frame; |
| |
| current_function_func_begin_label = NULL; |
| |
| do_frame = dwarf2out_do_frame (); |
| |
| /* ??? current_function_func_begin_label is also used by except.c for |
| call-site information. We must emit this label if it might be used. */ |
| if (!do_frame |
| && (!flag_exceptions |
| || targetm_common.except_unwind_info (&global_options) == UI_SJLJ)) |
| return; |
| |
| fnsec = function_section (current_function_decl); |
| switch_to_section (fnsec); |
| ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL, |
| current_function_funcdef_no); |
| ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL, |
| current_function_funcdef_no); |
| dup_label = xstrdup (label); |
| current_function_func_begin_label = dup_label; |
| |
| /* We can elide FDE allocation if we're not emitting frame unwind info. */ |
| if (!do_frame) |
| return; |
| |
| /* Unlike the debug version, the EH version of frame unwind info is a per- |
| function setting so we need to record whether we need it for the unit. */ |
| do_eh_frame |= dwarf2out_do_eh_frame (); |
| |
| /* Cater to the various TARGET_ASM_OUTPUT_MI_THUNK implementations that |
| emit insns as rtx but bypass the bulk of rest_of_compilation, which |
| would include pass_dwarf2_frame. If we've not created the FDE yet, |
| do so now. */ |
| fde = cfun->fde; |
| if (fde == NULL) |
| fde = dwarf2out_alloc_current_fde (); |
| |
| /* Initialize the bits of CURRENT_FDE that were not available earlier. */ |
| fde->dw_fde_begin = dup_label; |
| fde->dw_fde_current_label = dup_label; |
| fde->in_std_section = (fnsec == text_section |
| || (cold_text_section && fnsec == cold_text_section)); |
| fde->ignored_debug = DECL_IGNORED_P (current_function_decl); |
| in_text_section_p = fnsec == text_section; |
| |
| /* We only want to output line number information for the genuine dwarf2 |
| prologue case, not the eh frame case. */ |
| #ifdef DWARF2_DEBUGGING_INFO |
| if (file) |
| dwarf2out_source_line (line, column, file, 0, true); |
| #endif |
| |
| if (dwarf2out_do_cfi_asm ()) |
| dwarf2out_do_cfi_startproc (false); |
| else |
| { |
| rtx personality = get_personality_function (current_function_decl); |
| if (!current_unit_personality) |
| current_unit_personality = personality; |
| |
| /* We cannot keep a current personality per function as without CFI |
| asm, at the point where we emit the CFI data, there is no current |
| function anymore. */ |
| if (personality && current_unit_personality != personality) |
| sorry ("multiple EH personalities are supported only with assemblers " |
| "supporting %<.cfi_personality%> directive"); |
| } |
| } |
| |
| /* Output a marker (i.e. a label) for the end of the generated code |
| for a function prologue. This gets called *after* the prologue code has |
| been generated. */ |
| |
| void |
| dwarf2out_vms_end_prologue (unsigned int line ATTRIBUTE_UNUSED, |
| const char *file ATTRIBUTE_UNUSED) |
| { |
| char label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| |
| /* Output a label to mark the endpoint of the code generated for this |
| function. */ |
| ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL, |
| current_function_funcdef_no); |
| ASM_OUTPUT_DEBUG_LABEL (asm_out_file, PROLOGUE_END_LABEL, |
| current_function_funcdef_no); |
| cfun->fde->dw_fde_vms_end_prologue = xstrdup (label); |
| } |
| |
| /* Output a marker (i.e. a label) for the beginning of the generated code |
| for a function epilogue. This gets called *before* the prologue code has |
| been generated. */ |
| |
| void |
| dwarf2out_vms_begin_epilogue (unsigned int line ATTRIBUTE_UNUSED, |
| const char *file ATTRIBUTE_UNUSED) |
| { |
| dw_fde_ref fde = cfun->fde; |
| char label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| |
| if (fde->dw_fde_vms_begin_epilogue) |
| return; |
| |
| /* Output a label to mark the endpoint of the code generated for this |
| function. */ |
| ASM_GENERATE_INTERNAL_LABEL (label, EPILOGUE_BEGIN_LABEL, |
| current_function_funcdef_no); |
| ASM_OUTPUT_DEBUG_LABEL (asm_out_file, EPILOGUE_BEGIN_LABEL, |
| current_function_funcdef_no); |
| fde->dw_fde_vms_begin_epilogue = xstrdup (label); |
| } |
| |
| /* Mark the ranges of non-debug subsections in the std text sections. */ |
| |
| static void |
| mark_ignored_debug_section (dw_fde_ref fde, bool second) |
| { |
| bool std_section; |
| const char *begin_label, *end_label; |
| const char **last_end_label; |
| vec<const char *, va_gc> **switch_ranges; |
| |
| if (second) |
| { |
| std_section = fde->second_in_std_section; |
| begin_label = fde->dw_fde_second_begin; |
| end_label = fde->dw_fde_second_end; |
| } |
| else |
| { |
| std_section = fde->in_std_section; |
| begin_label = fde->dw_fde_begin; |
| end_label = fde->dw_fde_end; |
| } |
| |
| if (!std_section) |
| return; |
| |
| if (in_text_section_p) |
| { |
| last_end_label = &last_text_label; |
| switch_ranges = &switch_text_ranges; |
| } |
| else |
| { |
| last_end_label = &last_cold_label; |
| switch_ranges = &switch_cold_ranges; |
| } |
| |
| if (fde->ignored_debug) |
| { |
| if (*switch_ranges && !(vec_safe_length (*switch_ranges) & 1)) |
| vec_safe_push (*switch_ranges, *last_end_label); |
| } |
| else |
| { |
| *last_end_label = end_label; |
| |
| if (!*switch_ranges) |
| vec_alloc (*switch_ranges, 16); |
| else if (vec_safe_length (*switch_ranges) & 1) |
| vec_safe_push (*switch_ranges, begin_label); |
| } |
| } |
| |
| /* Output a marker (i.e. a label) for the absolute end of the generated code |
| for a function definition. This gets called *after* the epilogue code has |
| been generated. */ |
| |
| void |
| dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED, |
| const char *file ATTRIBUTE_UNUSED) |
| { |
| dw_fde_ref fde; |
| char label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| |
| last_var_location_insn = NULL; |
| cached_next_real_insn = NULL; |
| |
| if (dwarf2out_do_cfi_asm ()) |
| fprintf (asm_out_file, "\t.cfi_endproc\n"); |
| |
| /* Output a label to mark the endpoint of the code generated for this |
| function. */ |
| ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL, |
| current_function_funcdef_no); |
| ASM_OUTPUT_LABEL (asm_out_file, label); |
| fde = cfun->fde; |
| gcc_assert (fde != NULL); |
| if (fde->dw_fde_second_begin == NULL) |
| fde->dw_fde_end = xstrdup (label); |
| |
| mark_ignored_debug_section (fde, fde->dw_fde_second_begin != NULL); |
| } |
| |
| void |
| dwarf2out_frame_finish (void) |
| { |
| /* Output call frame information. */ |
| if (targetm.debug_unwind_info () == UI_DWARF2) |
| output_call_frame_info (0); |
| |
| /* Output another copy for the unwinder. */ |
| if (do_eh_frame) |
| output_call_frame_info (1); |
| } |
| |
| static void var_location_switch_text_section (void); |
| static void set_cur_line_info_table (section *); |
| |
| void |
| dwarf2out_switch_text_section (void) |
| { |
| char label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| section *sect; |
| dw_fde_ref fde = cfun->fde; |
| |
| gcc_assert (cfun && fde && fde->dw_fde_second_begin == NULL); |
| |
| ASM_GENERATE_INTERNAL_LABEL (label, FUNC_SECOND_SECT_LABEL, |
| current_function_funcdef_no); |
| |
| fde->dw_fde_second_begin = ggc_strdup (label); |
| if (!in_cold_section_p) |
| { |
| fde->dw_fde_end = crtl->subsections.cold_section_end_label; |
| fde->dw_fde_second_end = crtl->subsections.hot_section_end_label; |
| } |
| else |
| { |
| fde->dw_fde_end = crtl->subsections.hot_section_end_label; |
| fde->dw_fde_second_end = crtl->subsections.cold_section_end_label; |
| } |
| have_multiple_function_sections = true; |
| |
| if (dwarf2out_do_cfi_asm ()) |
| fprintf (asm_out_file, "\t.cfi_endproc\n"); |
| |
| mark_ignored_debug_section (fde, false); |
| |
| /* Now do the real section switch. */ |
| sect = current_function_section (); |
| switch_to_section (sect); |
| |
| fde->second_in_std_section |
| = (sect == text_section |
| || (cold_text_section && sect == cold_text_section)); |
| in_text_section_p = sect == text_section; |
| |
| if (dwarf2out_do_cfi_asm ()) |
| dwarf2out_do_cfi_startproc (true); |
| |
| var_location_switch_text_section (); |
| |
| if (cold_text_section != NULL) |
| set_cur_line_info_table (sect); |
| } |
| |
| /* And now, the subset of the debugging information support code necessary |
| for emitting location expressions. */ |
| |
| /* Describe an entry into the .debug_addr section. */ |
| |
| enum ate_kind { |
| ate_kind_rtx, |
| ate_kind_rtx_dtprel, |
| ate_kind_label |
| }; |
| |
| struct GTY((for_user)) addr_table_entry { |
| enum ate_kind kind; |
| unsigned int refcount; |
| unsigned int index; |
| union addr_table_entry_struct_union |
| { |
| rtx GTY ((tag ("0"))) rtl; |
| char * GTY ((tag ("1"))) label; |
| } |
| GTY ((desc ("%1.kind"))) addr; |
| }; |
| |
| typedef unsigned int var_loc_view; |
| |
| /* Location lists are ranges + location descriptions for that range, |
| so you can track variables that are in different places over |
| their entire life. */ |
| typedef struct GTY(()) dw_loc_list_struct { |
| dw_loc_list_ref dw_loc_next; |
| const char *begin; /* Label and addr_entry for start of range */ |
| addr_table_entry *begin_entry; |
| const char *end; /* Label for end of range */ |
| addr_table_entry *end_entry; |
| char *ll_symbol; /* Label for beginning of location list. |
| Only on head of list. */ |
| char *vl_symbol; /* Label for beginning of view list. Ditto. */ |
| const char *section; /* Section this loclist is relative to */ |
| dw_loc_descr_ref expr; |
| var_loc_view vbegin, vend; |
| hashval_t hash; |
| /* True if all addresses in this and subsequent lists are known to be |
| resolved. */ |
| bool resolved_addr; |
| /* True if this list has been replaced by dw_loc_next. */ |
| bool replaced; |
| /* True if it has been emitted into .debug_loc* / .debug_loclists* |
| section. */ |
| unsigned char emitted : 1; |
| /* True if hash field is index rather than hash value. */ |
| unsigned char num_assigned : 1; |
| /* True if .debug_loclists.dwo offset has been emitted for it already. */ |
| unsigned char offset_emitted : 1; |
| /* True if note_variable_value_in_expr has been called on it. */ |
| unsigned char noted_variable_value : 1; |
| /* True if the range should be emitted even if begin and end |
| are the same. */ |
| bool force; |
| } dw_loc_list_node; |
| |
| static dw_loc_descr_ref int_loc_descriptor (poly_int64); |
| static dw_loc_descr_ref uint_loc_descriptor (unsigned HOST_WIDE_INT); |
| |
| /* Convert a DWARF stack opcode into its string name. */ |
| |
| static const char * |
| dwarf_stack_op_name (unsigned int op) |
| { |
| const char *name = get_DW_OP_name (op); |
| |
| if (name != NULL) |
| return name; |
| |
| return "OP_<unknown>"; |
| } |
| |
| /* Return TRUE iff we're to output location view lists as a separate |
| attribute next to the location lists, as an extension compatible |
| with DWARF 2 and above. */ |
| |
| static inline bool |
| dwarf2out_locviews_in_attribute () |
| { |
| return debug_variable_location_views == 1; |
| } |
| |
| /* Return TRUE iff we're to output location view lists as part of the |
| location lists, as proposed for standardization after DWARF 5. */ |
| |
| static inline bool |
| dwarf2out_locviews_in_loclist () |
| { |
| #ifndef DW_LLE_view_pair |
| return false; |
| #else |
| return debug_variable_location_views == -1; |
| #endif |
| } |
| |
| /* Return a pointer to a newly allocated location description. Location |
| descriptions are simple expression terms that can be strung |
| together to form more complicated location (address) descriptions. */ |
| |
| static inline dw_loc_descr_ref |
| new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1, |
| unsigned HOST_WIDE_INT oprnd2) |
| { |
| dw_loc_descr_ref descr = ggc_cleared_alloc<dw_loc_descr_node> (); |
| |
| descr->dw_loc_opc = op; |
| descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const; |
| descr->dw_loc_oprnd1.val_entry = NULL; |
| descr->dw_loc_oprnd1.v.val_unsigned = oprnd1; |
| descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const; |
| descr->dw_loc_oprnd2.val_entry = NULL; |
| descr->dw_loc_oprnd2.v.val_unsigned = oprnd2; |
| |
| return descr; |
| } |
| |
| /* Add a location description term to a location description expression. */ |
| |
| static inline void |
| add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr) |
| { |
| dw_loc_descr_ref *d; |
| |
| /* Find the end of the chain. */ |
| for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next) |
| ; |
| |
| *d = descr; |
| } |
| |
| /* Compare two location operands for exact equality. */ |
| |
| static bool |
| dw_val_equal_p (dw_val_node *a, dw_val_node *b) |
| { |
| if (a->val_class != b->val_class) |
| return false; |
| switch (a->val_class) |
| { |
| case dw_val_class_none: |
| return true; |
| case dw_val_class_addr: |
| return rtx_equal_p (a->v.val_addr, b->v.val_addr); |
| |
| case dw_val_class_offset: |
| case dw_val_class_unsigned_const: |
| case dw_val_class_const: |
| case dw_val_class_unsigned_const_implicit: |
| case dw_val_class_const_implicit: |
| case dw_val_class_range_list: |
| /* These are all HOST_WIDE_INT, signed or unsigned. */ |
| return a->v.val_unsigned == b->v.val_unsigned; |
| |
| case dw_val_class_loc: |
| return a->v.val_loc == b->v.val_loc; |
| case dw_val_class_loc_list: |
| return a->v.val_loc_list == b->v.val_loc_list; |
| case dw_val_class_view_list: |
| return a->v.val_view_list == b->v.val_view_list; |
| case dw_val_class_die_ref: |
| return a->v.val_die_ref.die == b->v.val_die_ref.die; |
| case dw_val_class_fde_ref: |
| return a->v.val_fde_index == b->v.val_fde_index; |
| case dw_val_class_symview: |
| return strcmp (a->v.val_symbolic_view, b->v.val_symbolic_view) == 0; |
| case dw_val_class_lbl_id: |
| case dw_val_class_lineptr: |
| case dw_val_class_macptr: |
| case dw_val_class_loclistsptr: |
| case dw_val_class_high_pc: |
| return strcmp (a->v.val_lbl_id, b->v.val_lbl_id) == 0; |
| case dw_val_class_str: |
| return a->v.val_str == b->v.val_str; |
| case dw_val_class_flag: |
| return a->v.val_flag == b->v.val_flag; |
| case dw_val_class_file: |
| case dw_val_class_file_implicit: |
| return a->v.val_file == b->v.val_file; |
| case dw_val_class_decl_ref: |
| return a->v.val_decl_ref == b->v.val_decl_ref; |
| |
| case dw_val_class_const_double: |
| return (a->v.val_double.high == b->v.val_double.high |
| && a->v.val_double.low == b->v.val_double.low); |
| |
| case dw_val_class_wide_int: |
| return *a->v.val_wide == *b->v.val_wide; |
| |
| case dw_val_class_vec: |
| { |
| size_t a_len = a->v.val_vec.elt_size * a->v.val_vec.length; |
| size_t b_len = b->v.val_vec.elt_size * b->v.val_vec.length; |
| |
| return (a_len == b_len |
| && !memcmp (a->v.val_vec.array, b->v.val_vec.array, a_len)); |
| } |
| |
| case dw_val_class_data8: |
| return memcmp (a->v.val_data8, b->v.val_data8, 8) == 0; |
| |
| case dw_val_class_vms_delta: |
| return (!strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1) |
| && !strcmp (a->v.val_vms_delta.lbl2, b->v.val_vms_delta.lbl2)); |
| |
| case dw_val_class_discr_value: |
| return (a->v.val_discr_value.pos == b->v.val_discr_value.pos |
| && a->v.val_discr_value.v.uval == b->v.val_discr_value.v.uval); |
| case dw_val_class_discr_list: |
| /* It makes no sense comparing two discriminant value lists. */ |
| return false; |
| } |
| gcc_unreachable (); |
| } |
| |
| /* Compare two location atoms for exact equality. */ |
| |
| static bool |
| loc_descr_equal_p_1 (dw_loc_descr_ref a, dw_loc_descr_ref b) |
| { |
| if (a->dw_loc_opc != b->dw_loc_opc) |
| return false; |
| |
| /* ??? This is only ever set for DW_OP_constNu, for N equal to the |
| address size, but since we always allocate cleared storage it |
| should be zero for other types of locations. */ |
| if (a->dtprel != b->dtprel) |
| return false; |
| |
| return (dw_val_equal_p (&a->dw_loc_oprnd1, &b->dw_loc_oprnd1) |
| && dw_val_equal_p (&a->dw_loc_oprnd2, &b->dw_loc_oprnd2)); |
| } |
| |
| /* Compare two complete location expressions for exact equality. */ |
| |
| bool |
| loc_descr_equal_p (dw_loc_descr_ref a, dw_loc_descr_ref b) |
| { |
| while (1) |
| { |
| if (a == b) |
| return true; |
| if (a == NULL || b == NULL) |
| return false; |
| if (!loc_descr_equal_p_1 (a, b)) |
| return false; |
| |
| a = a->dw_loc_next; |
| b = b->dw_loc_next; |
| } |
| } |
| |
| |
| /* Add a constant POLY_OFFSET to a location expression. */ |
| |
| static void |
| loc_descr_plus_const (dw_loc_descr_ref *list_head, poly_int64 poly_offset) |
| { |
| dw_loc_descr_ref loc; |
| HOST_WIDE_INT *p; |
| |
| gcc_assert (*list_head != NULL); |
| |
| if (known_eq (poly_offset, 0)) |
| return; |
| |
| /* Find the end of the chain. */ |
| for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next) |
| ; |
| |
| HOST_WIDE_INT offset; |
| if (!poly_offset.is_constant (&offset)) |
| { |
| loc->dw_loc_next = int_loc_descriptor (poly_offset); |
| add_loc_descr (&loc->dw_loc_next, new_loc_descr (DW_OP_plus, 0, 0)); |
| return; |
| } |
| |
| p = NULL; |
| if (loc->dw_loc_opc == DW_OP_fbreg |
| || (loc->dw_loc_opc >= DW_OP_breg0 && loc->dw_loc_opc <= DW_OP_breg31)) |
| p = &loc->dw_loc_oprnd1.v.val_int; |
| else if (loc->dw_loc_opc == DW_OP_bregx) |
| p = &loc->dw_loc_oprnd2.v.val_int; |
| |
| /* If the last operation is fbreg, breg{0..31,x}, optimize by adjusting its |
| offset. Don't optimize if an signed integer overflow would happen. */ |
| if (p != NULL |
| && ((offset > 0 && *p <= INTTYPE_MAXIMUM (HOST_WIDE_INT) - offset) |
| || (offset < 0 && *p >= INTTYPE_MINIMUM (HOST_WIDE_INT) - offset))) |
| *p += offset; |
| |
| else if (offset > 0) |
| loc->dw_loc_next = new_loc_descr (DW_OP_plus_uconst, offset, 0); |
| |
| else |
| { |
| loc->dw_loc_next |
| = uint_loc_descriptor (-(unsigned HOST_WIDE_INT) offset); |
| add_loc_descr (&loc->dw_loc_next, new_loc_descr (DW_OP_minus, 0, 0)); |
| } |
| } |
| |
| /* Return a pointer to a newly allocated location description for |
| REG and OFFSET. */ |
| |
| static inline dw_loc_descr_ref |
| new_reg_loc_descr (unsigned int reg, poly_int64 offset) |
| { |
| HOST_WIDE_INT const_offset; |
| if (offset.is_constant (&const_offset)) |
| { |
| if (reg <= 31) |
| return new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + reg), |
| const_offset, 0); |
| else |
| return new_loc_descr (DW_OP_bregx, reg, const_offset); |
| } |
| else |
| { |
| dw_loc_descr_ref ret = new_reg_loc_descr (reg, 0); |
| loc_descr_plus_const (&ret, offset); |
| return ret; |
| } |
| } |
| |
| /* Add a constant OFFSET to a location list. */ |
| |
| static void |
| loc_list_plus_const (dw_loc_list_ref list_head, poly_int64 offset) |
| { |
| dw_loc_list_ref d; |
| for (d = list_head; d != NULL; d = d->dw_loc_next) |
| loc_descr_plus_const (&d->expr, offset); |
| } |
| |
| #define DWARF_REF_SIZE \ |
| (dwarf_version == 2 ? DWARF2_ADDR_SIZE : dwarf_offset_size) |
| |
| /* The number of bits that can be encoded by largest DW_FORM_dataN. |
| In DWARF4 and earlier it is DW_FORM_data8 with 64 bits, in DWARF5 |
| DW_FORM_data16 with 128 bits. */ |
| #define DWARF_LARGEST_DATA_FORM_BITS \ |
| (dwarf_version >= 5 ? 128 : 64) |
| |
| /* Utility inline function for construction of ops that were GNU extension |
| before DWARF 5. */ |
| static inline enum dwarf_location_atom |
| dwarf_OP (enum dwarf_location_atom op) |
| { |
| switch (op) |
| { |
| case DW_OP_implicit_pointer: |
| if (dwarf_version < 5) |
| return DW_OP_GNU_implicit_pointer; |
| break; |
| |
| case DW_OP_entry_value: |
| if (dwarf_version < 5) |
| return DW_OP_GNU_entry_value; |
| break; |
| |
| case DW_OP_const_type: |
| if (dwarf_version < 5) |
| return DW_OP_GNU_const_type; |
| break; |
| |
| case DW_OP_regval_type: |
| if (dwarf_version < 5) |
| return DW_OP_GNU_regval_type; |
| break; |
| |
| case DW_OP_deref_type: |
| if (dwarf_version < 5) |
| return DW_OP_GNU_deref_type; |
| break; |
| |
| case DW_OP_convert: |
| if (dwarf_version < 5) |
| return DW_OP_GNU_convert; |
| break; |
| |
| case DW_OP_reinterpret: |
| if (dwarf_version < 5) |
| return DW_OP_GNU_reinterpret; |
| break; |
| |
| case DW_OP_addrx: |
| if (dwarf_version < 5) |
| return DW_OP_GNU_addr_index; |
| break; |
| |
| case DW_OP_constx: |
| if (dwarf_version < 5) |
| return DW_OP_GNU_const_index; |
| break; |
| |
| default: |
| break; |
| } |
| return op; |
| } |
| |
| /* Similarly for attributes. */ |
| static inline enum dwarf_attribute |
| dwarf_AT (enum dwarf_attribute at) |
| { |
| switch (at) |
| { |
| case DW_AT_call_return_pc: |
| if (dwarf_version < 5) |
| return DW_AT_low_pc; |
| break; |
| |
| case DW_AT_call_tail_call: |
| if (dwarf_version < 5) |
| return DW_AT_GNU_tail_call; |
| break; |
| |
| case DW_AT_call_origin: |
| if (dwarf_version < 5) |
| return DW_AT_abstract_origin; |
| break; |
| |
| case DW_AT_call_target: |
| if (dwarf_version < 5) |
| return DW_AT_GNU_call_site_target; |
| break; |
| |
| case DW_AT_call_target_clobbered: |
| if (dwarf_version < 5) |
| return DW_AT_GNU_call_site_target_clobbered; |
| break; |
| |
| case DW_AT_call_parameter: |
| if (dwarf_version < 5) |
| return DW_AT_abstract_origin; |
| break; |
| |
| case DW_AT_call_value: |
| if (dwarf_version < 5) |
| return DW_AT_GNU_call_site_value; |
| break; |
| |
| case DW_AT_call_data_value: |
| if (dwarf_version < 5) |
| return DW_AT_GNU_call_site_data_value; |
| break; |
| |
| case DW_AT_call_all_calls: |
| if (dwarf_version < 5) |
| return DW_AT_GNU_all_call_sites; |
| break; |
| |
| case DW_AT_call_all_tail_calls: |
| if (dwarf_version < 5) |
| return DW_AT_GNU_all_tail_call_sites; |
| break; |
| |
| case DW_AT_dwo_name: |
| if (dwarf_version < 5) |
| return DW_AT_GNU_dwo_name; |
| break; |
| |
| case DW_AT_addr_base: |
| if (dwarf_version < 5) |
| return DW_AT_GNU_addr_base; |
| break; |
| |
| default: |
| break; |
| } |
| return at; |
| } |
| |
| /* And similarly for tags. */ |
| static inline enum dwarf_tag |
| dwarf_TAG (enum dwarf_tag tag) |
| { |
| switch (tag) |
| { |
| case DW_TAG_call_site: |
| if (dwarf_version < 5) |
| return DW_TAG_GNU_call_site; |
| break; |
| |
| case DW_TAG_call_site_parameter: |
| if (dwarf_version < 5) |
| return DW_TAG_GNU_call_site_parameter; |
| break; |
| |
| default: |
| break; |
| } |
| return tag; |
| } |
| |
| /* And similarly for forms. */ |
| static inline enum dwarf_form |
| dwarf_FORM (enum dwarf_form form) |
| { |
| switch (form) |
| { |
| case DW_FORM_addrx: |
| if (dwarf_version < 5) |
| return DW_FORM_GNU_addr_index; |
| break; |
| |
| case DW_FORM_strx: |
| if (dwarf_version < 5) |
| return DW_FORM_GNU_str_index; |
| break; |
| |
| default: |
| break; |
| } |
| return form; |
| } |
| |
| static unsigned long int get_base_type_offset (dw_die_ref); |
| |
| /* Return the size of a location descriptor. */ |
| |
| static unsigned long |
| size_of_loc_descr (dw_loc_descr_ref loc) |
| { |
| unsigned long size = 1; |
| |
| switch (loc->dw_loc_opc) |
| { |
| case DW_OP_addr: |
| size += DWARF2_ADDR_SIZE; |
| break; |
| case DW_OP_GNU_addr_index: |
| case DW_OP_addrx: |
| case DW_OP_GNU_const_index: |
| case DW_OP_constx: |
| gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED); |
| size += size_of_uleb128 (loc->dw_loc_oprnd1.val_entry->index); |
| break; |
| case DW_OP_const1u: |
| case DW_OP_const1s: |
| size += 1; |
| break; |
| case DW_OP_const2u: |
| case DW_OP_const2s: |
| size += 2; |
| break; |
| case DW_OP_const4u: |
| case DW_OP_const4s: |
| size += 4; |
| break; |
| case DW_OP_const8u: |
| case DW_OP_const8s: |
| size += 8; |
| break; |
| case DW_OP_constu: |
| size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned); |
| break; |
| case DW_OP_consts: |
| size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int); |
| break; |
| case DW_OP_pick: |
| size += 1; |
| break; |
| case DW_OP_plus_uconst: |
| size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned); |
| break; |
| case DW_OP_skip: |
| case DW_OP_bra: |
| size += 2; |
| break; |
| case DW_OP_breg0: |
| case DW_OP_breg1: |
| case DW_OP_breg2: |
| case DW_OP_breg3: |
| case DW_OP_breg4: |
| case DW_OP_breg5: |
| case DW_OP_breg6: |
| case DW_OP_breg7: |
| case DW_OP_breg8: |
| case DW_OP_breg9: |
| case DW_OP_breg10: |
| case DW_OP_breg11: |
| case DW_OP_breg12: |
| case DW_OP_breg13: |
| case DW_OP_breg14: |
| case DW_OP_breg15: |
| case DW_OP_breg16: |
| case DW_OP_breg17: |
| case DW_OP_breg18: |
| case DW_OP_breg19: |
| case DW_OP_breg20: |
| case DW_OP_breg21: |
| case DW_OP_breg22: |
| case DW_OP_breg23: |
| case DW_OP_breg24: |
| case DW_OP_breg25: |
| case DW_OP_breg26: |
| case DW_OP_breg27: |
| case DW_OP_breg28: |
| case DW_OP_breg29: |
| case DW_OP_breg30: |
| case DW_OP_breg31: |
| size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int); |
| break; |
| case DW_OP_regx: |
| size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned); |
| break; |
| case DW_OP_fbreg: |
| size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int); |
| break; |
| case DW_OP_bregx: |
| size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned); |
| size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int); |
| break; |
| case DW_OP_piece: |
| size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned); |
| break; |
| case DW_OP_bit_piece: |
| size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned); |
| size += size_of_uleb128 (loc->dw_loc_oprnd2.v.val_unsigned); |
| break; |
| case DW_OP_deref_size: |
| case DW_OP_xderef_size: |
| size += 1; |
| break; |
| case DW_OP_call2: |
| size += 2; |
| break; |
| case DW_OP_call4: |
| size += 4; |
| break; |
| case DW_OP_call_ref: |
| case DW_OP_GNU_variable_value: |
| size += DWARF_REF_SIZE; |
| break; |
| case DW_OP_implicit_value: |
| size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned) |
| + loc->dw_loc_oprnd1.v.val_unsigned; |
| break; |
| case DW_OP_implicit_pointer: |
| case DW_OP_GNU_implicit_pointer: |
| size += DWARF_REF_SIZE + size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int); |
| break; |
| case DW_OP_entry_value: |
| case DW_OP_GNU_entry_value: |
| { |
| unsigned long op_size = size_of_locs (loc->dw_loc_oprnd1.v.val_loc); |
| size += size_of_uleb128 (op_size) + op_size; |
| break; |
| } |
| case DW_OP_const_type: |
| case DW_OP_GNU_const_type: |
| { |
| unsigned long o |
| = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die); |
| size += size_of_uleb128 (o) + 1; |
| switch (loc->dw_loc_oprnd2.val_class) |
| { |
| case dw_val_class_vec: |
| size += loc->dw_loc_oprnd2.v.val_vec.length |
| * loc->dw_loc_oprnd2.v.val_vec.elt_size; |
| break; |
| case dw_val_class_const: |
| size += HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT; |
| break; |
| case dw_val_class_const_double: |
| size += HOST_BITS_PER_DOUBLE_INT / BITS_PER_UNIT; |
| break; |
| case dw_val_class_wide_int: |
| size += (get_full_len (*loc->dw_loc_oprnd2.v.val_wide) |
| * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| break; |
| } |
| case DW_OP_regval_type: |
| case DW_OP_GNU_regval_type: |
| { |
| unsigned long o |
| = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die); |
| size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned) |
| + size_of_uleb128 (o); |
| } |
| break; |
| case DW_OP_deref_type: |
| case DW_OP_GNU_deref_type: |
| { |
| unsigned long o |
| = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die); |
| size += 1 + size_of_uleb128 (o); |
| } |
| break; |
| case DW_OP_convert: |
| case DW_OP_reinterpret: |
| case DW_OP_GNU_convert: |
| case DW_OP_GNU_reinterpret: |
| if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const) |
| size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned); |
| else |
| { |
| unsigned long o |
| = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die); |
| size += size_of_uleb128 (o); |
| } |
| break; |
| case DW_OP_GNU_parameter_ref: |
| size += 4; |
| break; |
| default: |
| break; |
| } |
| |
| return size; |
| } |
| |
| /* Return the size of a series of location descriptors. */ |
| |
| unsigned long |
| size_of_locs (dw_loc_descr_ref loc) |
| { |
| dw_loc_descr_ref l; |
| unsigned long size; |
| |
| /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr |
| field, to avoid writing to a PCH file. */ |
| for (size = 0, l = loc; l != NULL; l = l->dw_loc_next) |
| { |
| if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra) |
| break; |
| size += size_of_loc_descr (l); |
| } |
| if (! l) |
| return size; |
| |
| for (size = 0, l = loc; l != NULL; l = l->dw_loc_next) |
| { |
| l->dw_loc_addr = size; |
| size += size_of_loc_descr (l); |
| } |
| |
| return size; |
| } |
| |
| /* Return the size of the value in a DW_AT_discr_value attribute. */ |
| |
| static int |
| size_of_discr_value (dw_discr_value *discr_value) |
| { |
| if (discr_value->pos) |
| return size_of_uleb128 (discr_value->v.uval); |
| else |
| return size_of_sleb128 (discr_value->v.sval); |
| } |
| |
| /* Return the size of the value in a DW_AT_discr_list attribute. */ |
| |
| static int |
| size_of_discr_list (dw_discr_list_ref discr_list) |
| { |
| int size = 0; |
| |
| for (dw_discr_list_ref list = discr_list; |
| list != NULL; |
| list = list->dw_discr_next) |
| { |
| /* One byte for the discriminant value descriptor, and then one or two |
| LEB128 numbers, depending on whether it's a single case label or a |
| range label. */ |
| size += 1; |
| size += size_of_discr_value (&list->dw_discr_lower_bound); |
| if (list->dw_discr_range != 0) |
| size += size_of_discr_value (&list->dw_discr_upper_bound); |
| } |
| return size; |
| } |
| |
| static HOST_WIDE_INT extract_int (const unsigned char *, unsigned); |
| static void get_ref_die_offset_label (char *, dw_die_ref); |
| static unsigned long int get_ref_die_offset (dw_die_ref); |
| |
| /* Output location description stack opcode's operands (if any). |
| The for_eh_or_skip parameter controls whether register numbers are |
| converted using DWARF2_FRAME_REG_OUT, which is needed in the case that |
| hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind |
| info). This should be suppressed for the cases that have not been converted |
| (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */ |
| |
| static void |
| output_loc_operands (dw_loc_descr_ref loc, int for_eh_or_skip) |
| { |
| dw_val_ref val1 = &loc->dw_loc_oprnd1; |
| dw_val_ref val2 = &loc->dw_loc_oprnd2; |
| |
| switch (loc->dw_loc_opc) |
| { |
| #ifdef DWARF2_DEBUGGING_INFO |
| case DW_OP_const2u: |
| case DW_OP_const2s: |
| dw2_asm_output_data (2, val1->v.val_int, NULL); |
| break; |
| case DW_OP_const4u: |
| if (loc->dtprel) |
| { |
| gcc_assert (targetm.asm_out.output_dwarf_dtprel); |
| targetm.asm_out.output_dwarf_dtprel (asm_out_file, 4, |
| val1->v.val_addr); |
| fputc ('\n', asm_out_file); |
| break; |
| } |
| /* FALLTHRU */ |
| case DW_OP_const4s: |
| dw2_asm_output_data (4, val1->v.val_int, NULL); |
| break; |
| case DW_OP_const8u: |
| if (loc->dtprel) |
| { |
| gcc_assert (targetm.asm_out.output_dwarf_dtprel); |
| targetm.asm_out.output_dwarf_dtprel (asm_out_file, 8, |
| val1->v.val_addr); |
| fputc ('\n', asm_out_file); |
| break; |
| } |
| /* FALLTHRU */ |
| case DW_OP_const8s: |
| gcc_assert (HOST_BITS_PER_WIDE_INT >= 64); |
| dw2_asm_output_data (8, val1->v.val_int, NULL); |
| break; |
| case DW_OP_skip: |
| case DW_OP_bra: |
| { |
| int offset; |
| |
| gcc_assert (val1->val_class == dw_val_class_loc); |
| offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3); |
| |
| dw2_asm_output_data (2, offset, NULL); |
| } |
| break; |
| case DW_OP_implicit_value: |
| dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL); |
| switch (val2->val_class) |
| { |
| case dw_val_class_const: |
| dw2_asm_output_data (val1->v.val_unsigned, val2->v.val_int, NULL); |
| break; |
| case dw_val_class_vec: |
| { |
| unsigned int elt_size = val2->v.val_vec.elt_size; |
| unsigned int len = val2->v.val_vec.length; |
| unsigned int i; |
| unsigned char *p; |
| |
| if (elt_size > sizeof (HOST_WIDE_INT)) |
| { |
| elt_size /= 2; |
| len *= 2; |
| } |
| for (i = 0, p = (unsigned char *) val2->v.val_vec.array; |
| i < len; |
| i++, p += elt_size) |
| dw2_asm_output_data (elt_size, extract_int (p, elt_size), |
| "fp or vector constant word %u", i); |
| } |
| break; |
| case dw_val_class_const_double: |
| { |
| unsigned HOST_WIDE_INT first, second; |
| |
| if (WORDS_BIG_ENDIAN) |
| { |
| first = val2->v.val_double.high; |
| second = val2->v.val_double.low; |
| } |
| else |
| { |
| first = val2->v.val_double.low; |
| second = val2->v.val_double.high; |
| } |
| dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR, |
| first, NULL); |
| dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR, |
| second, NULL); |
| } |
| break; |
| case dw_val_class_wide_int: |
| { |
| int i; |
| int len = get_full_len (*val2->v.val_wide); |
| if (WORDS_BIG_ENDIAN) |
| for (i = len - 1; i >= 0; --i) |
| dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR, |
| val2->v.val_wide->elt (i), NULL); |
| else |
| for (i = 0; i < len; ++i) |
| dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR, |
| val2->v.val_wide->elt (i), NULL); |
| } |
| break; |
| case dw_val_class_addr: |
| gcc_assert (val1->v.val_unsigned == DWARF2_ADDR_SIZE); |
| dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val2->v.val_addr, NULL); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| break; |
| #else |
| case DW_OP_const2u: |
| case DW_OP_const2s: |
| case DW_OP_const4u: |
| case DW_OP_const4s: |
| case DW_OP_const8u: |
| case DW_OP_const8s: |
| case DW_OP_skip: |
| case DW_OP_bra: |
| case DW_OP_implicit_value: |
| /* We currently don't make any attempt to make sure these are |
| aligned properly like we do for the main unwind info, so |
| don't support emitting things larger than a byte if we're |
| only doing unwinding. */ |
| gcc_unreachable (); |
| #endif |
| case DW_OP_const1u: |
| case DW_OP_const1s: |
| dw2_asm_output_data (1, val1->v.val_int, NULL); |
| break; |
| case DW_OP_constu: |
| dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL); |
| break; |
| case DW_OP_consts: |
| dw2_asm_output_data_sleb128 (val1->v.val_int, NULL); |
| break; |
| case DW_OP_pick: |
| dw2_asm_output_data (1, val1->v.val_int, NULL); |
| break; |
| case DW_OP_plus_uconst: |
| dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL); |
| break; |
| case DW_OP_breg0: |
| case DW_OP_breg1: |
| case DW_OP_breg2: |
| case DW_OP_breg3: |
| case DW_OP_breg4: |
| case DW_OP_breg5: |
| case DW_OP_breg6: |
| case DW_OP_breg7: |
| case DW_OP_breg8: |
| case DW_OP_breg9: |
| case DW_OP_breg10: |
| case DW_OP_breg11: |
| case DW_OP_breg12: |
| case DW_OP_breg13: |
| case DW_OP_breg14: |
| case DW_OP_breg15: |
| case DW_OP_breg16: |
| case DW_OP_breg17: |
| case DW_OP_breg18: |
| case DW_OP_breg19: |
| case DW_OP_breg20: |
| case DW_OP_breg21: |
| case DW_OP_breg22: |
| case DW_OP_breg23: |
| case DW_OP_breg24: |
| case DW_OP_breg25: |
| case DW_OP_breg26: |
| case DW_OP_breg27: |
| case DW_OP_breg28: |
| case DW_OP_breg29: |
| case DW_OP_breg30: |
| case DW_OP_breg31: |
| dw2_asm_output_data_sleb128 (val1->v.val_int, NULL); |
| break; |
| case DW_OP_regx: |
| { |
| unsigned r = val1->v.val_unsigned; |
| if (for_eh_or_skip >= 0) |
| r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip); |
| gcc_assert (size_of_uleb128 (r) |
| == size_of_uleb128 (val1->v.val_unsigned)); |
| dw2_asm_output_data_uleb128 (r, NULL); |
| } |
| break; |
| case DW_OP_fbreg: |
| dw2_asm_output_data_sleb128 (val1->v.val_int, NULL); |
| break; |
| case DW_OP_bregx: |
| { |
| unsigned r = val1->v.val_unsigned; |
| if (for_eh_or_skip >= 0) |
| r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip); |
| gcc_assert (size_of_uleb128 (r) |
| == size_of_uleb128 (val1->v.val_unsigned)); |
| dw2_asm_output_data_uleb128 (r, NULL); |
| dw2_asm_output_data_sleb128 (val2->v.val_int, NULL); |
| } |
| break; |
| case DW_OP_piece: |
| dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL); |
| break; |
| case DW_OP_bit_piece: |
| dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL); |
| dw2_asm_output_data_uleb128 (val2->v.val_unsigned, NULL); |
| break; |
| case DW_OP_deref_size: |
| case DW_OP_xderef_size: |
| dw2_asm_output_data (1, val1->v.val_int, NULL); |
| break; |
| |
| case DW_OP_addr: |
| if (loc->dtprel) |
| { |
| if (targetm.asm_out.output_dwarf_dtprel) |
| { |
| targetm.asm_out.output_dwarf_dtprel (asm_out_file, |
| DWARF2_ADDR_SIZE, |
| val1->v.val_addr); |
| fputc ('\n', asm_out_file); |
| } |
| else |
| gcc_unreachable (); |
| } |
| else |
| { |
| #ifdef DWARF2_DEBUGGING_INFO |
| dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL); |
| #else |
| gcc_unreachable (); |
| #endif |
| } |
| break; |
| |
| case DW_OP_GNU_addr_index: |
| case DW_OP_addrx: |
| case DW_OP_GNU_const_index: |
| case DW_OP_constx: |
| gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED); |
| dw2_asm_output_data_uleb128 (loc->dw_loc_oprnd1.val_entry->index, |
| "(index into .debug_addr)"); |
| break; |
| |
| case DW_OP_call2: |
| case DW_OP_call4: |
| { |
| unsigned long die_offset |
| = get_ref_die_offset (val1->v.val_die_ref.die); |
| /* Make sure the offset has been computed and that we can encode it as |
| an operand. */ |
| gcc_assert (die_offset > 0 |
| && die_offset <= (loc->dw_loc_opc == DW_OP_call2 |
| ? 0xffff |
| : 0xffffffff)); |
| dw2_asm_output_data ((loc->dw_loc_opc == DW_OP_call2) ? 2 : 4, |
| die_offset, NULL); |
| } |
| break; |
| |
| case DW_OP_call_ref: |
| case DW_OP_GNU_variable_value: |
| { |
| char label[MAX_ARTIFICIAL_LABEL_BYTES |
| + HOST_BITS_PER_WIDE_INT / 2 + 2]; |
| gcc_assert (val1->val_class == dw_val_class_die_ref); |
| get_ref_die_offset_label (label, val1->v.val_die_ref.die); |
| dw2_asm_output_offset (DWARF_REF_SIZE, label, debug_info_section, NULL); |
| } |
| break; |
| |
| case DW_OP_implicit_pointer: |
| case DW_OP_GNU_implicit_pointer: |
| { |
| char label[MAX_ARTIFICIAL_LABEL_BYTES |
| + HOST_BITS_PER_WIDE_INT / 2 + 2]; |
| gcc_assert (val1->val_class == dw_val_class_die_ref); |
| get_ref_die_offset_label (label, val1->v.val_die_ref.die); |
| dw2_asm_output_offset (DWARF_REF_SIZE, label, debug_info_section, NULL); |
| dw2_asm_output_data_sleb128 (val2->v.val_int, NULL); |
| } |
| break; |
| |
| case DW_OP_entry_value: |
| case DW_OP_GNU_entry_value: |
| dw2_asm_output_data_uleb128 (size_of_locs (val1->v.val_loc), NULL); |
| output_loc_sequence (val1->v.val_loc, for_eh_or_skip); |
| break; |
| |
| case DW_OP_const_type: |
| case DW_OP_GNU_const_type: |
| { |
| unsigned long o = get_base_type_offset (val1->v.val_die_ref.die), l; |
| gcc_assert (o); |
| dw2_asm_output_data_uleb128 (o, NULL); |
| switch (val2->val_class) |
| { |
| case dw_val_class_const: |
| l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR; |
| dw2_asm_output_data (1, l, NULL); |
| dw2_asm_output_data (l, val2->v.val_int, NULL); |
| break; |
| case dw_val_class_vec: |
| { |
| unsigned int elt_size = val2->v.val_vec.elt_size; |
| unsigned int len = val2->v.val_vec.length; |
| unsigned int i; |
| unsigned char *p; |
| |
| l = len * elt_size; |
| dw2_asm_output_data (1, l, NULL); |
| if (elt_size > sizeof (HOST_WIDE_INT)) |
| { |
| elt_size /= 2; |
| len *= 2; |
| } |
| for (i = 0, p = (unsigned char *) val2->v.val_vec.array; |
| i < len; |
| i++, p += elt_size) |
| dw2_asm_output_data (elt_size, extract_int (p, elt_size), |
| "fp or vector constant word %u", i); |
| } |
| break; |
| case dw_val_class_const_double: |
| { |
| unsigned HOST_WIDE_INT first, second; |
| l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR; |
| |
| dw2_asm_output_data (1, 2 * l, NULL); |
| if (WORDS_BIG_ENDIAN) |
| { |
| first = val2->v.val_double.high; |
| second = val2->v.val_double.low; |
| } |
| else |
| { |
| first = val2->v.val_double.low; |
| second = val2->v.val_double.high; |
| } |
| dw2_asm_output_data (l, first, NULL); |
| dw2_asm_output_data (l, second, NULL); |
| } |
| break; |
| case dw_val_class_wide_int: |
| { |
| int i; |
| int len = get_full_len (*val2->v.val_wide); |
| l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR; |
| |
| dw2_asm_output_data (1, len * l, NULL); |
| if (WORDS_BIG_ENDIAN) |
| for (i = len - 1; i >= 0; --i) |
| dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL); |
| else |
| for (i = 0; i < len; ++i) |
| dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL); |
| } |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| break; |
| case DW_OP_regval_type: |
| case DW_OP_GNU_regval_type: |
| { |
| unsigned r = val1->v.val_unsigned; |
| unsigned long o = get_base_type_offset (val2->v.val_die_ref.die); |
| gcc_assert (o); |
| if (for_eh_or_skip >= 0) |
| { |
| r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip); |
| gcc_assert (size_of_uleb128 (r) |
| == size_of_uleb128 (val1->v.val_unsigned)); |
| } |
| dw2_asm_output_data_uleb128 (r, NULL); |
| dw2_asm_output_data_uleb128 (o, NULL); |
| } |
| break; |
| case DW_OP_deref_type: |
| case DW_OP_GNU_deref_type: |
| { |
| unsigned long o = get_base_type_offset (val2->v.val_die_ref.die); |
| gcc_assert (o); |
| dw2_asm_output_data (1, val1->v.val_int, NULL); |
| dw2_asm_output_data_uleb128 (o, NULL); |
| } |
| break; |
| case DW_OP_convert: |
| case DW_OP_reinterpret: |
| case DW_OP_GNU_convert: |
| case DW_OP_GNU_reinterpret: |
| if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const) |
| dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL); |
| else |
| { |
| unsigned long o = get_base_type_offset (val1->v.val_die_ref.die); |
| gcc_assert (o); |
| dw2_asm_output_data_uleb128 (o, NULL); |
| } |
| break; |
| |
| case DW_OP_GNU_parameter_ref: |
| { |
| unsigned long o; |
| gcc_assert (val1->val_class == dw_val_class_die_ref); |
| o = get_ref_die_offset (val1->v.val_die_ref.die); |
| dw2_asm_output_data (4, o, NULL); |
| } |
| break; |
| |
| default: |
| /* Other codes have no operands. */ |
| break; |
| } |
| } |
| |
| /* Output a sequence of location operations. |
| The for_eh_or_skip parameter controls whether register numbers are |
| converted using DWARF2_FRAME_REG_OUT, which is needed in the case that |
| hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind |
| info). This should be suppressed for the cases that have not been converted |
| (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */ |
| |
| void |
| output_loc_sequence (dw_loc_descr_ref loc, int for_eh_or_skip) |
| { |
| for (; loc != NULL; loc = loc->dw_loc_next) |
| { |
| enum dwarf_location_atom opc = loc->dw_loc_opc; |
| /* Output the opcode. */ |
| if (for_eh_or_skip >= 0 |
| && opc >= DW_OP_breg0 && opc <= DW_OP_breg31) |
| { |
| unsigned r = (opc - DW_OP_breg0); |
| r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip); |
| gcc_assert (r <= 31); |
| opc = (enum dwarf_location_atom) (DW_OP_breg0 + r); |
| } |
| else if (for_eh_or_skip >= 0 |
| && opc >= DW_OP_reg0 && opc <= DW_OP_reg31) |
| { |
| unsigned r = (opc - DW_OP_reg0); |
| r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip); |
| gcc_assert (r <= 31); |
| opc = (enum dwarf_location_atom) (DW_OP_reg0 + r); |
| } |
| |
| dw2_asm_output_data (1, opc, |
| "%s", dwarf_stack_op_name (opc)); |
| |
| /* Output the operand(s) (if any). */ |
| output_loc_operands (loc, for_eh_or_skip); |
| } |
| } |
| |
| /* Output location description stack opcode's operands (if any). |
| The output is single bytes on a line, suitable for .cfi_escape. */ |
| |
| static void |
| output_loc_operands_raw (dw_loc_descr_ref loc) |
| { |
| dw_val_ref val1 = &loc->dw_loc_oprnd1; |
| dw_val_ref val2 = &loc->dw_loc_oprnd2; |
| |
| switch (loc->dw_loc_opc) |
| { |
| case DW_OP_addr: |
| case DW_OP_GNU_addr_index: |
| case DW_OP_addrx: |
| case DW_OP_GNU_const_index: |
| case DW_OP_constx: |
| case DW_OP_implicit_value: |
| /* We cannot output addresses in .cfi_escape, only bytes. */ |
| gcc_unreachable (); |
| |
| case DW_OP_const1u: |
| case DW_OP_const1s: |
| case DW_OP_pick: |
| case DW_OP_deref_size: |
| case DW_OP_xderef_size: |
| fputc (',', asm_out_file); |
| dw2_asm_output_data_raw (1, val1->v.val_int); |
| break; |
| |
| case DW_OP_const2u: |
| case DW_OP_const2s: |
| fputc (',', asm_out_file); |
| dw2_asm_output_data_raw (2, val1->v.val_int); |
| break; |
| |
| case DW_OP_const4u: |
| case DW_OP_const4s: |
| fputc (',', asm_out_file); |
| dw2_asm_output_data_raw (4, val1->v.val_int); |
| break; |
| |
| case DW_OP_const8u: |
| case DW_OP_const8s: |
| gcc_assert (HOST_BITS_PER_WIDE_INT >= 64); |
| fputc (',', asm_out_file); |
| dw2_asm_output_data_raw (8, val1->v.val_int); |
| break; |
| |
| case DW_OP_skip: |
| case DW_OP_bra: |
| { |
| int offset; |
| |
| gcc_assert (val1->val_class == dw_val_class_loc); |
| offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3); |
| |
| fputc (',', asm_out_file); |
| dw2_asm_output_data_raw (2, offset); |
| } |
| break; |
| |
| case DW_OP_regx: |
| { |
| unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1); |
| gcc_assert (size_of_uleb128 (r) |
| == size_of_uleb128 (val1->v.val_unsigned)); |
| fputc (',', asm_out_file); |
| dw2_asm_output_data_uleb128_raw (r); |
| } |
| break; |
| |
| case DW_OP_constu: |
| case DW_OP_plus_uconst: |
| case DW_OP_piece: |
| fputc (',', asm_out_file); |
| dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned); |
| break; |
| |
| case DW_OP_bit_piece: |
| fputc (',', asm_out_file); |
| dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned); |
| dw2_asm_output_data_uleb128_raw (val2->v.val_unsigned); |
| break; |
| |
| case DW_OP_consts: |
| case DW_OP_breg0: |
| case DW_OP_breg1: |
| case DW_OP_breg2: |
| case DW_OP_breg3: |
| case DW_OP_breg4: |
| case DW_OP_breg5: |
| case DW_OP_breg6: |
| case DW_OP_breg7: |
| case DW_OP_breg8: |
| case DW_OP_breg9: |
| case DW_OP_breg10: |
| case DW_OP_breg11: |
| case DW_OP_breg12: |
| case DW_OP_breg13: |
| case DW_OP_breg14: |
| case DW_OP_breg15: |
| case DW_OP_breg16: |
| case DW_OP_breg17: |
| case DW_OP_breg18: |
| case DW_OP_breg19: |
| case DW_OP_breg20: |
| case DW_OP_breg21: |
| case DW_OP_breg22: |
| case DW_OP_breg23: |
| case DW_OP_breg24: |
| case DW_OP_breg25: |
| case DW_OP_breg26: |
| case DW_OP_breg27: |
| case DW_OP_breg28: |
| case DW_OP_breg29: |
| case DW_OP_breg30: |
| case DW_OP_breg31: |
| case DW_OP_fbreg: |
| fputc (',', asm_out_file); |
| dw2_asm_output_data_sleb128_raw (val1->v.val_int); |
| break; |
| |
| case DW_OP_bregx: |
| { |
| unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1); |
| gcc_assert (size_of_uleb128 (r) |
| == size_of_uleb128 (val1->v.val_unsigned)); |
| fputc (',', asm_out_file); |
| dw2_asm_output_data_uleb128_raw (r); |
| fputc (',', asm_out_file); |
| dw2_asm_output_data_sleb128_raw (val2->v.val_int); |
| } |
| break; |
| |
| case DW_OP_implicit_pointer: |
| case DW_OP_entry_value: |
| case DW_OP_const_type: |
| case DW_OP_regval_type: |
| case DW_OP_deref_type: |
| case DW_OP_convert: |
| case DW_OP_reinterpret: |
| case DW_OP_GNU_implicit_pointer: |
| case DW_OP_GNU_entry_value: |
| case DW_OP_GNU_const_type: |
| case DW_OP_GNU_regval_type: |
| case DW_OP_GNU_deref_type: |
| case DW_OP_GNU_convert: |
| case DW_OP_GNU_reinterpret: |
| case DW_OP_GNU_parameter_ref: |
| gcc_unreachable (); |
| break; |
| |
| default: |
| /* Other codes have no operands. */ |
| break; |
| } |
| } |
| |
| void |
| output_loc_sequence_raw (dw_loc_descr_ref loc) |
| { |
| while (1) |
| { |
| enum dwarf_location_atom opc = loc->dw_loc_opc; |
| /* Output the opcode. */ |
| if (opc >= DW_OP_breg0 && opc <= DW_OP_breg31) |
| { |
| unsigned r = (opc - DW_OP_breg0); |
| r = DWARF2_FRAME_REG_OUT (r, 1); |
| gcc_assert (r <= 31); |
| opc = (enum dwarf_location_atom) (DW_OP_breg0 + r); |
| } |
| else if (opc >= DW_OP_reg0 && opc <= DW_OP_reg31) |
| { |
| unsigned r = (opc - DW_OP_reg0); |
| r = DWARF2_FRAME_REG_OUT (r, 1); |
| gcc_assert (r <= 31); |
| opc = (enum dwarf_location_atom) (DW_OP_reg0 + r); |
| } |
| /* Output the opcode. */ |
| fprintf (asm_out_file, "%#x", opc); |
| output_loc_operands_raw (loc); |
| |
| if (!loc->dw_loc_next) |
| break; |
| loc = loc->dw_loc_next; |
| |
| fputc (',', asm_out_file); |
| } |
| } |
| |
| /* This function builds a dwarf location descriptor sequence from a |
| dw_cfa_location, adding the given OFFSET to the result of the |
| expression. */ |
| |
| struct dw_loc_descr_node * |
| build_cfa_loc (dw_cfa_location *cfa, poly_int64 offset) |
| { |
| struct dw_loc_descr_node *head, *tmp; |
| |
| offset += cfa->offset; |
| |
| if (cfa->indirect) |
| { |
| head = new_reg_loc_descr (cfa->reg, cfa->base_offset); |
| head->dw_loc_oprnd1.val_class = dw_val_class_const; |
| head->dw_loc_oprnd1.val_entry = NULL; |
| tmp = new_loc_descr (DW_OP_deref, 0, 0); |
| add_loc_descr (&head, tmp); |
| loc_descr_plus_const (&head, offset); |
| } |
| else |
| head = new_reg_loc_descr (cfa->reg, offset); |
| |
| return head; |
| } |
| |
| /* This function builds a dwarf location descriptor sequence for |
| the address at OFFSET from the CFA when stack is aligned to |
| ALIGNMENT byte. */ |
| |
| struct dw_loc_descr_node * |
| build_cfa_aligned_loc (dw_cfa_location *cfa, |
| poly_int64 offset, HOST_WIDE_INT alignment) |
| { |
| struct dw_loc_descr_node *head; |
| unsigned int dwarf_fp |
| = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM); |
| |
| /* When CFA is defined as FP+OFFSET, emulate stack alignment. */ |
| if (cfa->reg == HARD_FRAME_POINTER_REGNUM && cfa->indirect == 0) |
| { |
| head = new_reg_loc_descr (dwarf_fp, 0); |
| add_loc_descr (&head, int_loc_descriptor (alignment)); |
| add_loc_descr (&head, new_loc_descr (DW_OP_and, 0, 0)); |
| loc_descr_plus_const (&head, offset); |
| } |
| else |
| head = new_reg_loc_descr (dwarf_fp, offset); |
| return head; |
| } |
| |
| /* And now, the support for symbolic debugging information. */ |
| |
| /* .debug_str support. */ |
| |
| static void dwarf2out_init (const char *); |
| static void dwarf2out_finish (const char *); |
| static void dwarf2out_early_finish (const char *); |
| static void dwarf2out_assembly_start (void); |
| static void dwarf2out_define (unsigned int, const char *); |
| static void dwarf2out_undef (unsigned int, const char *); |
| static void dwarf2out_start_source_file (unsigned, const char *); |
| static void dwarf2out_end_source_file (unsigned); |
| static void dwarf2out_function_decl (tree); |
| static void dwarf2out_begin_block (unsigned, unsigned); |
| static void dwarf2out_end_block (unsigned, unsigned); |
| static bool dwarf2out_ignore_block (const_tree); |
| static void dwarf2out_set_ignored_loc (unsigned, unsigned, const char *); |
| static void dwarf2out_early_global_decl (tree); |
| static void dwarf2out_late_global_decl (tree); |
| static void dwarf2out_type_decl (tree, int); |
| static void dwarf2out_imported_module_or_decl (tree, tree, tree, bool, bool); |
| static void dwarf2out_imported_module_or_decl_1 (tree, tree, tree, |
| dw_die_ref); |
| static void dwarf2out_abstract_function (tree); |
| static void dwarf2out_var_location (rtx_insn *); |
| static void dwarf2out_inline_entry (tree); |
| static void dwarf2out_size_function (tree); |
| static void dwarf2out_begin_function (tree); |
| static void dwarf2out_end_function (unsigned int); |
| static void dwarf2out_register_main_translation_unit (tree unit); |
| static void dwarf2out_set_name (tree, tree); |
| static void dwarf2out_register_external_die (tree decl, const char *sym, |
| unsigned HOST_WIDE_INT off); |
| static bool dwarf2out_die_ref_for_decl (tree decl, const char **sym, |
| unsigned HOST_WIDE_INT *off); |
| |
| /* The debug hooks structure. */ |
| |
| const struct gcc_debug_hooks dwarf2_debug_hooks = |
| { |
| dwarf2out_init, |
| dwarf2out_finish, |
| dwarf2out_early_finish, |
| dwarf2out_assembly_start, |
| dwarf2out_define, |
| dwarf2out_undef, |
| dwarf2out_start_source_file, |
| dwarf2out_end_source_file, |
| dwarf2out_begin_block, |
| dwarf2out_end_block, |
| dwarf2out_ignore_block, |
| dwarf2out_source_line, |
| dwarf2out_set_ignored_loc, |
| dwarf2out_begin_prologue, |
| #if VMS_DEBUGGING_INFO |
| dwarf2out_vms_end_prologue, |
| dwarf2out_vms_begin_epilogue, |
| #else |
| debug_nothing_int_charstar, |
| debug_nothing_int_charstar, |
| #endif |
| dwarf2out_end_epilogue, |
| dwarf2out_begin_function, |
| dwarf2out_end_function, /* end_function */ |
| dwarf2out_register_main_translation_unit, |
| dwarf2out_function_decl, /* function_decl */ |
| dwarf2out_early_global_decl, |
| dwarf2out_late_global_decl, |
| dwarf2out_type_decl, /* type_decl */ |
| dwarf2out_imported_module_or_decl, |
| dwarf2out_die_ref_for_decl, |
| dwarf2out_register_external_die, |
| debug_nothing_tree, /* deferred_inline_function */ |
| /* The DWARF 2 backend tries to reduce debugging bloat by not |
| emitting the abstract description of inline functions until |
| something tries to reference them. */ |
| dwarf2out_abstract_function, /* outlining_inline_function */ |
| debug_nothing_rtx_code_label, /* label */ |
| debug_nothing_int, /* handle_pch */ |
| dwarf2out_var_location, |
| dwarf2out_inline_entry, /* inline_entry */ |
| dwarf2out_size_function, /* size_function */ |
| dwarf2out_switch_text_section, |
| dwarf2out_set_name, |
| 1, /* start_end_main_source_file */ |
| TYPE_SYMTAB_IS_DIE /* tree_type_symtab_field */ |
| }; |
| |
| const struct gcc_debug_hooks dwarf2_lineno_debug_hooks = |
| { |
| dwarf2out_init, |
| debug_nothing_charstar, |
| debug_nothing_charstar, |
| dwarf2out_assembly_start, |
| debug_nothing_int_charstar, |
| debug_nothing_int_charstar, |
| debug_nothing_int_charstar, |
| debug_nothing_int, |
| debug_nothing_int_int, /* begin_block */ |
| debug_nothing_int_int, /* end_block */ |
| debug_true_const_tree, /* ignore_block */ |
| dwarf2out_source_line, /* source_line */ |
| debug_nothing_int_int_charstar, /* set_ignored_loc */ |
| debug_nothing_int_int_charstar, /* begin_prologue */ |
| debug_nothing_int_charstar, /* end_prologue */ |
| debug_nothing_int_charstar, /* begin_epilogue */ |
| debug_nothing_int_charstar, /* end_epilogue */ |
| debug_nothing_tree, /* begin_function */ |
| debug_nothing_int, /* end_function */ |
| debug_nothing_tree, /* register_main_translation_unit */ |
| debug_nothing_tree, /* function_decl */ |
| debug_nothing_tree, /* early_global_decl */ |
| debug_nothing_tree, /* late_global_decl */ |
| debug_nothing_tree_int, /* type_decl */ |
| debug_nothing_tree_tree_tree_bool_bool,/* imported_module_or_decl */ |
| debug_false_tree_charstarstar_uhwistar,/* die_ref_for_decl */ |
| debug_nothing_tree_charstar_uhwi, /* register_external_die */ |
| debug_nothing_tree, /* deferred_inline_function */ |
| debug_nothing_tree, /* outlining_inline_function */ |
| debug_nothing_rtx_code_label, /* label */ |
| debug_nothing_int, /* handle_pch */ |
| debug_nothing_rtx_insn, /* var_location */ |
| debug_nothing_tree, /* inline_entry */ |
| debug_nothing_tree, /* size_function */ |
| debug_nothing_void, /* switch_text_section */ |
| debug_nothing_tree_tree, /* set_name */ |
| 0, /* start_end_main_source_file */ |
| TYPE_SYMTAB_IS_ADDRESS /* tree_type_symtab_field */ |
| }; |
| |
| /* NOTE: In the comments in this file, many references are made to |
| "Debugging Information Entries". This term is abbreviated as `DIE' |
| throughout the remainder of this file. */ |
| |
| /* An internal representation of the DWARF output is built, and then |
| walked to generate the DWARF debugging info. The walk of the internal |
| representation is done after the entire program has been compiled. |
| The types below are used to describe the internal representation. */ |
| |
| /* Whether to put type DIEs into their own section .debug_types instead |
| of making them part of the .debug_info section. Only supported for |
| Dwarf V4 or higher and the user didn't disable them through |
| -fno-debug-types-section. It is more efficient to put them in a |
| separate comdat sections since the linker will then be able to |
| remove duplicates. But not all tools support .debug_types sections |
| yet. For Dwarf V5 or higher .debug_types doesn't exist any more, |
| it is DW_UT_type unit type in .debug_info section. For late LTO |
| debug there should be almost no types emitted so avoid enabling |
| -fdebug-types-section there. */ |
| |
| #define use_debug_types (dwarf_version >= 4 \ |
| && flag_debug_types_section \ |
| && !in_lto_p) |
| |
| /* Various DIE's use offsets relative to the beginning of the |
| .debug_info section to refer to each other. */ |
| |
| typedef long int dw_offset; |
| |
| struct comdat_type_node; |
| |
| /* The entries in the line_info table more-or-less mirror the opcodes |
| that are used in the real dwarf line table. Arrays of these entries |
| are collected per section when DWARF2_ASM_LINE_DEBUG_INFO is not |
| supported. */ |
| |
| enum dw_line_info_opcode { |
| /* Emit DW_LNE_set_address; the operand is the label index. */ |
| LI_set_address, |
| |
| /* Emit a row to the matrix with the given line. This may be done |
| via any combination of DW_LNS_copy, DW_LNS_advance_line, and |
| special opcodes. */ |
| LI_set_line, |
| |
| /* Emit a DW_LNS_set_file. */ |
| LI_set_file, |
| |
| /* Emit a DW_LNS_set_column. */ |
| LI_set_column, |
| |
| /* Emit a DW_LNS_negate_stmt; the operand is ignored. */ |
| LI_negate_stmt, |
| |
| /* Emit a DW_LNS_set_prologue_end/epilogue_begin; the operand is ignored. */ |
| LI_set_prologue_end, |
| LI_set_epilogue_begin, |
| |
| /* Emit a DW_LNE_set_discriminator. */ |
| LI_set_discriminator, |
| |
| /* Output a Fixed Advance PC; the target PC is the label index; the |
| base PC is the previous LI_adv_address or LI_set_address entry. |
| We only use this when emitting debug views without assembler |
| support, at explicit user request. Ideally, we should only use |
| it when the offset might be zero but we can't tell: it's the only |
| way to maybe change the PC without resetting the view number. */ |
| LI_adv_address |
| }; |
| |
| typedef struct GTY(()) dw_line_info_struct { |
| enum dw_line_info_opcode opcode; |
| unsigned int val; |
| } dw_line_info_entry; |
| |
| |
| struct GTY(()) dw_line_info_table { |
| /* The label that marks the end of this section. */ |
| const char *end_label; |
| |
| /* The values for the last row of the matrix, as collected in the table. |
| These are used to minimize the changes to the next row. */ |
| unsigned int file_num; |
| unsigned int line_num; |
| unsigned int column_num; |
| int discrim_num; |
| bool is_stmt; |
| bool in_use; |
| |
| /* This denotes the NEXT view number. |
| |
| If it is 0, it is known that the NEXT view will be the first view |
| at the given PC. |
| |
| If it is -1, we're forcing the view number to be reset, e.g. at a |
| function entry. |
| |
| The meaning of other nonzero values depends on whether we're |
| computing views internally or leaving it for the assembler to do |
| so. If we're emitting them internally, view denotes the view |
| number since the last known advance of PC. If we're leaving it |
| for the assembler, it denotes the LVU label number that we're |
| going to ask the assembler to assign. */ |
| var_loc_view view; |
| |
| /* This counts the number of symbolic views emitted in this table |
| since the latest view reset. Its max value, over all tables, |
| sets symview_upper_bound. */ |
| var_loc_view symviews_since_reset; |
| |
| #define FORCE_RESET_NEXT_VIEW(x) ((x) = (var_loc_view)-1) |
| #define RESET_NEXT_VIEW(x) ((x) = (var_loc_view)0) |
| #define FORCE_RESETTING_VIEW_P(x) ((x) == (var_loc_view)-1) |
| #define RESETTING_VIEW_P(x) ((x) == (var_loc_view)0 || FORCE_RESETTING_VIEW_P (x)) |
| |
| vec<dw_line_info_entry, va_gc> *entries; |
| }; |
| |
| /* This is an upper bound for view numbers that the assembler may |
| assign to symbolic views output in this translation. It is used to |
| decide how big a field to use to represent view numbers in |
| symview-classed attributes. */ |
| |
| static var_loc_view symview_upper_bound; |
| |
| /* If we're keep track of location views and their reset points, and |
| INSN is a reset point (i.e., it necessarily advances the PC), mark |
| the next view in TABLE as reset. */ |
| |
| static void |
| maybe_reset_location_view (rtx_insn *insn, dw_line_info_table *table) |
| { |
| if (!debug_internal_reset_location_views) |
| return; |
| |
| /* Maybe turn (part of?) this test into a default target hook. */ |
| int reset = 0; |
| |
| if (targetm.reset_location_view) |
| reset = targetm.reset_location_view (insn); |
| |
| if (reset) |
| ; |
| else if (JUMP_TABLE_DATA_P (insn)) |
| reset = 1; |
| else if (GET_CODE (insn) == USE |
| || GET_CODE (insn) == CLOBBER |
| || GET_CODE (insn) == ASM_INPUT |
| || asm_noperands (insn) >= 0) |
| ; |
| else if (get_attr_min_length (insn) > 0) |
| reset = 1; |
| |
| if (reset > 0 && !RESETTING_VIEW_P (table->view)) |
| RESET_NEXT_VIEW (table->view); |
| } |
| |
| /* The Debugging Information Entry (DIE) structure. DIEs form a tree. |
| The children of each node form a circular list linked by |
| die_sib. die_child points to the node *before* the "first" child node. */ |
| |
| typedef struct GTY((chain_circular ("%h.die_sib"), for_user)) die_struct { |
| union die_symbol_or_type_node |
| { |
| const char * GTY ((tag ("0"))) die_symbol; |
| comdat_type_node *GTY ((tag ("1"))) die_type_node; |
| } |
| GTY ((desc ("%0.comdat_type_p"))) die_id; |
| vec<dw_attr_node, va_gc> *die_attr; |
| dw_die_ref die_parent; |
| dw_die_ref die_child; |
| dw_die_ref die_sib; |
| dw_die_ref die_definition; /* ref from a specification to its definition */ |
| dw_offset die_offset; |
| unsigned long die_abbrev; |
| int die_mark; |
| unsigned int decl_id; |
| enum dwarf_tag die_tag; |
| /* Die is used and must not be pruned as unused. */ |
| BOOL_BITFIELD die_perennial_p : 1; |
| BOOL_BITFIELD comdat_type_p : 1; /* DIE has a type signature */ |
| /* For an external ref to die_symbol if die_offset contains an extra |
| offset to that symbol. */ |
| BOOL_BITFIELD with_offset : 1; |
| /* Whether this DIE was removed from the DIE tree, for example via |
| prune_unused_types. We don't consider those present from the |
| DIE lookup routines. */ |
| BOOL_BITFIELD removed : 1; |
| /* Lots of spare bits. */ |
| } |
| die_node; |
| |
| /* Set to TRUE while dwarf2out_early_global_decl is running. */ |
| static bool early_dwarf; |
| static bool early_dwarf_finished; |
| class set_early_dwarf { |
| public: |
| bool saved; |
| set_early_dwarf () : saved(early_dwarf) |
| { |
| gcc_assert (! early_dwarf_finished); |
| early_dwarf = true; |
| } |
| ~set_early_dwarf () { early_dwarf = saved; } |
| }; |
| |
| /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */ |
| #define FOR_EACH_CHILD(die, c, expr) do { \ |
| c = die->die_child; \ |
| if (c) do { \ |
| c = c->die_sib; \ |
| expr; \ |
| } while (c != die->die_child); \ |
| } while (0) |
| |
| /* The pubname structure */ |
| |
| typedef struct GTY(()) pubname_struct { |
| dw_die_ref die; |
| const char *name; |
| } |
| pubname_entry; |
| |
| |
| struct GTY(()) dw_ranges { |
| const char *label; |
| /* If this is positive, it's a block number, otherwise it's a |
| bitwise-negated index into dw_ranges_by_label. */ |
| int num; |
| /* If idx is equal to DW_RANGES_IDX_SKELETON, it should be emitted |
| into .debug_rnglists section rather than .debug_rnglists.dwo |
| for -gsplit-dwarf and DWARF >= 5. */ |
| #define DW_RANGES_IDX_SKELETON ((1U << 31) - 1) |
| /* Index for the range list for DW_FORM_rnglistx. */ |
| unsigned int idx : 31; |
| /* True if this range might be possibly in a different section |
| from previous entry. */ |
| unsigned int maybe_new_sec : 1; |
| addr_table_entry *begin_entry; |
| addr_table_entry *end_entry; |
| }; |
| |
| /* A structure to hold a macinfo entry. */ |
| |
| typedef struct GTY(()) macinfo_struct { |
| unsigned char code; |
| unsigned HOST_WIDE_INT lineno; |
| const char *info; |
| } |
| macinfo_entry; |
| |
| |
| struct GTY(()) dw_ranges_by_label { |
| const char *begin; |
| const char *end; |
| }; |
| |
| /* The comdat type node structure. */ |
| struct GTY(()) comdat_type_node |
| { |
| dw_die_ref root_die; |
| dw_die_ref type_die; |
| dw_die_ref skeleton_die; |
| char signature[DWARF_TYPE_SIGNATURE_SIZE]; |
| comdat_type_node *next; |
| }; |
| |
| /* A list of DIEs for which we can't determine ancestry (parent_die |
| field) just yet. Later in dwarf2out_finish we will fill in the |
| missing bits. */ |
| typedef struct GTY(()) limbo_die_struct { |
| dw_die_ref die; |
| /* The tree for which this DIE was created. We use this to |
| determine ancestry later. */ |
| tree created_for; |
| struct limbo_die_struct *next; |
| } |
| limbo_die_node; |
| |
| typedef struct skeleton_chain_struct |
| { |
| dw_die_ref old_die; |
| dw_die_ref new_die; |
| struct skeleton_chain_struct *parent; |
| } |
| skeleton_chain_node; |
| |
| /* Define a macro which returns nonzero for a TYPE_DECL which was |
| implicitly generated for a type. |
| |
| Note that, unlike the C front-end (which generates a NULL named |
| TYPE_DECL node for each complete tagged type, each array type, |
| and each function type node created) the C++ front-end generates |
| a _named_ TYPE_DECL node for each tagged type node created. |
| These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to |
| generate a DW_TAG_typedef DIE for them. Likewise with the Ada |
| front-end, but for each type, tagged or not. */ |
| |
| #define TYPE_DECL_IS_STUB(decl) \ |
| (DECL_NAME (decl) == NULL_TREE \ |
| || (DECL_ARTIFICIAL (decl) \ |
| && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \ |
| /* This is necessary for stub decls that \ |
| appear in nested inline functions. */ \ |
| || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \ |
| && (decl_ultimate_origin (decl) \ |
| == TYPE_STUB_DECL (TREE_TYPE (decl))))))) |
| |
| /* Information concerning the compilation unit's programming |
| language, and compiler version. */ |
| |
| /* Fixed size portion of the DWARF compilation unit header. */ |
| #define DWARF_COMPILE_UNIT_HEADER_SIZE \ |
| (DWARF_INITIAL_LENGTH_SIZE + dwarf_offset_size \ |
| + (dwarf_version >= 5 ? 4 : 3)) |
| |
| /* Fixed size portion of the DWARF comdat type unit header. */ |
| #define DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE \ |
| (DWARF_COMPILE_UNIT_HEADER_SIZE \ |
| + DWARF_TYPE_SIGNATURE_SIZE + dwarf_offset_size) |
| |
| /* Fixed size portion of the DWARF skeleton compilation unit header. */ |
| #define DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE \ |
| (DWARF_COMPILE_UNIT_HEADER_SIZE + (dwarf_version >= 5 ? 8 : 0)) |
| |
| /* Fixed size portion of public names info. */ |
| #define DWARF_PUBNAMES_HEADER_SIZE (2 * dwarf_offset_size + 2) |
| |
| /* Fixed size portion of the address range info. */ |
| #define DWARF_ARANGES_HEADER_SIZE \ |
| (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + dwarf_offset_size + 4, \ |
| DWARF2_ADDR_SIZE * 2) \ |
| - DWARF_INITIAL_LENGTH_SIZE) |
| |
| /* Size of padding portion in the address range info. It must be |
| aligned to twice the pointer size. */ |
| #define DWARF_ARANGES_PAD_SIZE \ |
| (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + dwarf_offset_size + 4, \ |
| DWARF2_ADDR_SIZE * 2) \ |
| - (DWARF_INITIAL_LENGTH_SIZE + dwarf_offset_size + 4)) |
| |
| /* Use assembler line directives if available. */ |
| #ifndef DWARF2_ASM_LINE_DEBUG_INFO |
| #ifdef HAVE_AS_DWARF2_DEBUG_LINE |
| #define DWARF2_ASM_LINE_DEBUG_INFO 1 |
| #else |
| #define DWARF2_ASM_LINE_DEBUG_INFO 0 |
| #endif |
| #endif |
| |
| /* Use assembler views in line directives if available. */ |
| #ifndef DWARF2_ASM_VIEW_DEBUG_INFO |
| #ifdef HAVE_AS_DWARF2_DEBUG_VIEW |
| #define DWARF2_ASM_VIEW_DEBUG_INFO 1 |
| #else |
| #define DWARF2_ASM_VIEW_DEBUG_INFO 0 |
| #endif |
| #endif |
| |
| /* Return true if GCC configure detected assembler support for .loc. */ |
| |
| bool |
| dwarf2out_default_as_loc_support (void) |
| { |
| return DWARF2_ASM_LINE_DEBUG_INFO; |
| #if (GCC_VERSION >= 3000) |
| # undef DWARF2_ASM_LINE_DEBUG_INFO |
| # pragma GCC poison DWARF2_ASM_LINE_DEBUG_INFO |
| #endif |
| } |
| |
| /* Return true if GCC configure detected assembler support for views |
| in .loc directives. */ |
| |
| bool |
| dwarf2out_default_as_locview_support (void) |
| { |
| return DWARF2_ASM_VIEW_DEBUG_INFO; |
| #if (GCC_VERSION >= 3000) |
| # undef DWARF2_ASM_VIEW_DEBUG_INFO |
| # pragma GCC poison DWARF2_ASM_VIEW_DEBUG_INFO |
| #endif |
| } |
| |
| /* A bit is set in ZERO_VIEW_P if we are using the assembler-supported |
| view computation, and it refers to a view identifier for which we |
| will not emit a label because it is known to map to a view number |
| zero. We won't allocate the bitmap if we're not using assembler |
| support for location views, but we have to make the variable |
| visible for GGC and for code that will be optimized out for lack of |
| support but that's still parsed and compiled. We could abstract it |
| out with macros, but it's not worth it. */ |
| static GTY(()) bitmap zero_view_p; |
| |
| /* Evaluate to TRUE iff N is known to identify the first location view |
| at its PC. When not using assembler location view computation, |
| that must be view number zero. Otherwise, ZERO_VIEW_P is allocated |
| and views label numbers recorded in it are the ones known to be |
| zero. */ |
| #define ZERO_VIEW_P(N) ((N) == (var_loc_view)0 \ |
| || (N) == (var_loc_view)-1 \ |
| || (zero_view_p \ |
| && bitmap_bit_p (zero_view_p, (N)))) |
| |
| /* Return true iff we're to emit .loc directives for the assembler to |
| generate line number sections. |
| |
| When we're not emitting views, all we need from the assembler is |
| support for .loc directives. |
| |
| If we are emitting views, we can only use the assembler's .loc |
| support if it also supports views. |
| |
| When the compiler is emitting the line number programs and |
| computing view numbers itself, it resets view numbers at known PC |
| changes and counts from that, and then it emits view numbers as |
| literal constants in locviewlists. There are cases in which the |
| compiler is not sure about PC changes, e.g. when extra alignment is |
| requested for a label. In these cases, the compiler may not reset |
| the view counter, and the potential PC advance in the line number |
| program will use an opcode that does not reset the view counter |
| even if the PC actually changes, so that compiler and debug info |
| consumer can keep view numbers in sync. |
| |
| When the compiler defers view computation to the assembler, it |
| emits symbolic view numbers in locviewlists, with the exception of |
| views known to be zero (forced resets, or reset after |
| compiler-visible PC changes): instead of emitting symbols for |
| these, we emit literal zero and assert the assembler agrees with |
| the compiler's assessment. We could use symbolic views everywhere, |
| instead of special-casing zero views, but then we'd be unable to |
| optimize out locviewlists that contain only zeros. */ |
| |
| static bool |
| output_asm_line_debug_info (void) |
| { |
| return (dwarf2out_as_loc_support |
| && (dwarf2out_as_locview_support |
| || !debug_variable_location_views)); |
| } |
| |
| static bool asm_outputs_debug_line_str (void); |
| |
| /* Minimum line offset in a special line info. opcode. |
| This value was chosen to give a reasonable range of values. */ |
| #define DWARF_LINE_BASE -10 |
| |
| /* First special line opcode - leave room for the standard opcodes. */ |
| #define DWARF_LINE_OPCODE_BASE ((int)DW_LNS_set_isa + 1) |
| |
| /* Range of line offsets in a special line info. opcode. */ |
| #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1) |
| |
| /* Flag that indicates the initial value of the is_stmt_start flag. |
| In the present implementation, we do not mark any lines as |
| the beginning of a source statement, because that information |
| is not made available by the GCC front-end. */ |
| #define DWARF_LINE_DEFAULT_IS_STMT_START 1 |
| |
| /* Maximum number of operations per instruction bundle. */ |
| #ifndef DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN |
| #define DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN 1 |
| #endif |
| |
| /* This location is used by calc_die_sizes() to keep track |
| the offset of each DIE within the .debug_info section. */ |
| static unsigned long next_die_offset; |
| |
| /* Record the root of the DIE's built for the current compilation unit. */ |
| static GTY(()) dw_die_ref single_comp_unit_die; |
| |
| /* A list of type DIEs that have been separated into comdat sections. */ |
| static GTY(()) comdat_type_node *comdat_type_list; |
| |
| /* A list of CU DIEs that have been separated. */ |
| static GTY(()) limbo_die_node *cu_die_list; |
| |
| /* A list of DIEs with a NULL parent waiting to be relocated. */ |
| static GTY(()) limbo_die_node *limbo_die_list; |
| |
| /* A list of DIEs for which we may have to generate |
| DW_AT_{,MIPS_}linkage_name once their DECL_ASSEMBLER_NAMEs are set. */ |
| static GTY(()) limbo_die_node *deferred_asm_name; |
| |
| struct dwarf_file_hasher : ggc_ptr_hash<dwarf_file_data> |
| { |
| typedef const char *compare_type; |
| |
| static hashval_t hash (dwarf_file_data *); |
| static bool equal (dwarf_file_data *, const char *); |
| }; |
| |
| /* Filenames referenced by this compilation unit. */ |
| static GTY(()) hash_table<dwarf_file_hasher> *file_table; |
| |
| struct decl_die_hasher : ggc_ptr_hash<die_node> |
| { |
| typedef tree compare_type; |
| |
| static hashval_t hash (die_node *); |
| static bool equal (die_node *, tree); |
| }; |
| /* A hash table of references to DIE's that describe declarations. |
| The key is a DECL_UID() which is a unique number identifying each decl. */ |
| static GTY (()) hash_table<decl_die_hasher> *decl_die_table; |
| |
| struct GTY ((for_user)) variable_value_struct { |
| unsigned int decl_id; |
| vec<dw_die_ref, va_gc> *dies; |
| }; |
| |
| struct variable_value_hasher : ggc_ptr_hash<variable_value_struct> |
| { |
| typedef tree compare_type; |
| |
| static hashval_t hash (variable_value_struct *); |
| static bool equal (variable_value_struct *, tree); |
| }; |
| /* A hash table of DIEs that contain DW_OP_GNU_variable_value with |
| dw_val_class_decl_ref class, indexed by FUNCTION_DECLs which is |
| DECL_CONTEXT of the referenced VAR_DECLs. */ |
| static GTY (()) hash_table<variable_value_hasher> *variable_value_hash; |
| |
| struct block_die_hasher : ggc_ptr_hash<die_struct> |
| { |
| static hashval_t hash (die_struct *); |
| static bool equal (die_struct *, die_struct *); |
| }; |
| |
| /* A hash table of references to DIE's that describe COMMON blocks. |
| The key is DECL_UID() ^ die_parent. */ |
| static GTY (()) hash_table<block_die_hasher> *common_block_die_table; |
| |
| typedef struct GTY(()) die_arg_entry_struct { |
| dw_die_ref die; |
| tree arg; |
| } die_arg_entry; |
| |
| |
| /* Node of the variable location list. */ |
| struct GTY ((chain_next ("%h.next"))) var_loc_node { |
| /* Either NOTE_INSN_VAR_LOCATION, or, for SRA optimized variables, |
| EXPR_LIST chain. For small bitsizes, bitsize is encoded |
| in mode of the EXPR_LIST node and first EXPR_LIST operand |
| is either NOTE_INSN_VAR_LOCATION for a piece with a known |
| location or NULL for padding. For larger bitsizes, |
| mode is 0 and first operand is a CONCAT with bitsize |
| as first CONCAT operand and NOTE_INSN_VAR_LOCATION resp. |
| NULL as second operand. */ |
| rtx GTY (()) loc; |
| const char * GTY (()) label; |
| struct var_loc_node * GTY (()) next; |
| var_loc_view view; |
| }; |
| |
| /* Variable location list. */ |
| struct GTY ((for_user)) var_loc_list_def { |
| struct var_loc_node * GTY (()) first; |
| |
| /* Pointer to the last but one or last element of the |
| chained list. If the list is empty, both first and |
| last are NULL, if the list contains just one node |
| or the last node certainly is not redundant, it points |
| to the last node, otherwise points to the last but one. |
| Do not mark it for GC because it is marked through the chain. */ |
| struct var_loc_node * GTY ((skip ("%h"))) last; |
| |
| /* Pointer to the last element before section switch, |
| if NULL, either sections weren't switched or first |
| is after section switch. */ |
| struct var_loc_node * GTY ((skip ("%h"))) last_before_switch; |
| |
| /* DECL_UID of the variable decl. */ |
| unsigned int decl_id; |
| }; |
| typedef struct var_loc_list_def var_loc_list; |
| |
| /* Call argument location list. */ |
| struct GTY ((chain_next ("%h.next"))) call_arg_loc_node { |
| rtx GTY (()) call_arg_loc_note; |
| const char * GTY (()) label; |
| tree GTY (()) block; |
| bool tail_call_p; |
| rtx GTY (()) symbol_ref; |
| struct call_arg_loc_node * GTY (()) next; |
| }; |
| |
| |
| struct decl_loc_hasher : ggc_ptr_hash<var_loc_list> |
| { |
| typedef const_tree compare_type; |
| |
| static hashval_t hash (var_loc_list *); |
| static bool equal (var_loc_list *, const_tree); |
| }; |
| |
| /* Table of decl location linked lists. */ |
| static GTY (()) hash_table<decl_loc_hasher> *decl_loc_table; |
| |
| /* Head and tail of call_arg_loc chain. */ |
| static GTY (()) struct call_arg_loc_node *call_arg_locations; |
| static struct call_arg_loc_node *call_arg_loc_last; |
| |
| /* Number of call sites in the current function. */ |
| static int call_site_count = -1; |
| /* Number of tail call sites in the current function. */ |
| static int tail_call_site_count = -1; |
| |
| /* A cached location list. */ |
| struct GTY ((for_user)) cached_dw_loc_list_def { |
| /* The DECL_UID of the decl that this entry describes. */ |
| unsigned int decl_id; |
| |
| /* The cached location list. */ |
| dw_loc_list_ref loc_list; |
| }; |
| typedef struct cached_dw_loc_list_def cached_dw_loc_list; |
| |
| struct dw_loc_list_hasher : ggc_ptr_hash<cached_dw_loc_list> |
| { |
| |
| typedef const_tree compare_type; |
| |
| static hashval_t hash (cached_dw_loc_list *); |
| static bool equal (cached_dw_loc_list *, const_tree); |
| }; |
| |
| /* Table of cached location lists. */ |
| static GTY (()) hash_table<dw_loc_list_hasher> *cached_dw_loc_list_table; |
| |
| /* A vector of references to DIE's that are uniquely identified by their tag, |
| presence/absence of children DIE's, and list of attribute/value pairs. */ |
| static GTY(()) vec<dw_die_ref, va_gc> *abbrev_die_table; |
| |
| /* A hash map to remember the stack usage for DWARF procedures. The value |
| stored is the stack size difference between before the DWARF procedure |
| invokation and after it returned. In other words, for a DWARF procedure |
| that consumes N stack slots and that pushes M ones, this stores M - N. */ |
| static hash_map<dw_die_ref, int> *dwarf_proc_stack_usage_map; |
| |
| /* A global counter for generating labels for line number data. */ |
| static unsigned int line_info_label_num; |
| |
| /* The current table to which we should emit line number information |
| for the current function. This will be set up at the beginning of |
| assembly for the function. */ |
| static GTY(()) dw_line_info_table *cur_line_info_table; |
| |
| /* The two default tables of line number info. */ |
| static GTY(()) dw_line_info_table *text_section_line_info; |
| static GTY(()) dw_line_info_table *cold_text_section_line_info; |
| |
| /* The set of all non-default tables of line number info. */ |
| static GTY(()) vec<dw_line_info_table *, va_gc> *separate_line_info; |
| |
| /* A flag to tell pubnames/types export if there is an info section to |
| refer to. */ |
| static bool info_section_emitted; |
| |
| /* A pointer to the base of a table that contains a list of publicly |
| accessible names. */ |
| static GTY (()) vec<pubname_entry, va_gc> *pubname_table; |
| |
| /* A pointer to the base of a table that contains a list of publicly |
| accessible types. */ |
| static GTY (()) vec<pubname_entry, va_gc> *pubtype_table; |
| |
| /* A pointer to the base of a table that contains a list of macro |
| defines/undefines (and file start/end markers). */ |
| static GTY (()) vec<macinfo_entry, va_gc> *macinfo_table; |
| |
| /* True if .debug_macinfo or .debug_macros section is going to be |
| emitted. */ |
| #define have_macinfo \ |
| ((!XCOFF_DEBUGGING_INFO || HAVE_XCOFF_DWARF_EXTRAS) \ |
| && debug_info_level >= DINFO_LEVEL_VERBOSE \ |
| && !macinfo_table->is_empty ()) |
| |
| /* Vector of dies for which we should generate .debug_ranges info. */ |
| static GTY (()) vec<dw_ranges, va_gc> *ranges_table; |
| |
| /* Vector of pairs of labels referenced in ranges_table. */ |
| static GTY (()) vec<dw_ranges_by_label, va_gc> *ranges_by_label; |
| |
| /* Whether we have location lists that need outputting */ |
| static GTY(()) bool have_location_lists; |
| |
| /* Unique label counter. */ |
| static GTY(()) unsigned int loclabel_num; |
| |
| /* Unique label counter for point-of-call tables. */ |
| static GTY(()) unsigned int poc_label_num; |
| |
| /* The last file entry emitted by maybe_emit_file(). */ |
| static GTY(()) struct dwarf_file_data * last_emitted_file; |
| |
| /* Number of internal labels generated by gen_internal_sym(). */ |
| static GTY(()) int label_num; |
| |
| static GTY(()) vec<die_arg_entry, va_gc> *tmpl_value_parm_die_table; |
| |
| /* Instances of generic types for which we need to generate debug |
| info that describe their generic parameters and arguments. That |
| generation needs to happen once all types are properly laid out so |
| we do it at the end of compilation. */ |
| static GTY(()) vec<tree, va_gc> *generic_type_instances; |
| |
| /* Offset from the "steady-state frame pointer" to the frame base, |
| within the current function. */ |
| static poly_int64 frame_pointer_fb_offset; |
| static bool frame_pointer_fb_offset_valid; |
| |
| static vec<dw_die_ref> base_types; |
| |
| /* Flags to represent a set of attribute classes for attributes that represent |
| a scalar value (bounds, pointers, ...). */ |
| enum dw_scalar_form |
| { |
| dw_scalar_form_constant = 0x01, |
| dw_scalar_form_exprloc = 0x02, |
| dw_scalar_form_reference = 0x04 |
| }; |
| |
| /* Forward declarations for functions defined in this file. */ |
| |
| static int is_pseudo_reg (const_rtx); |
| static tree type_main_variant (tree); |
| static int is_tagged_type (const_tree); |
| static const char *dwarf_tag_name (unsigned); |
| static const char *dwarf_attr_name (unsigned); |
| static const char *dwarf_form_name (unsigned); |
| static tree decl_ultimate_origin (const_tree); |
| static tree decl_class_context (tree); |
| static void add_dwarf_attr (dw_die_ref, dw_attr_node *); |
| static inline unsigned int AT_index (dw_attr_node *); |
| static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned); |
| static inline unsigned AT_flag (dw_attr_node *); |
| static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT); |
| static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT); |
| static void add_AT_double (dw_die_ref, enum dwarf_attribute, |
| HOST_WIDE_INT, unsigned HOST_WIDE_INT); |
| static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int, |
| unsigned int, unsigned char *); |
| static void add_AT_data8 (dw_die_ref, enum dwarf_attribute, unsigned char *); |
| static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *); |
| static inline const char *AT_string (dw_attr_node *); |
| static enum dwarf_form AT_string_form (dw_attr_node *); |
| static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref); |
| static void add_AT_specification (dw_die_ref, dw_die_ref); |
| static inline dw_die_ref AT_ref (dw_attr_node *); |
| static inline int AT_ref_external (dw_attr_node *); |
| static inline void set_AT_ref_external (dw_attr_node *, int); |
| static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref); |
| static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute, |
| dw_loc_list_ref); |
| static inline dw_loc_list_ref AT_loc_list (dw_attr_node *); |
| static void add_AT_view_list (dw_die_ref, enum dwarf_attribute); |
| static inline dw_loc_list_ref AT_loc_list (dw_attr_node *); |
| static addr_table_entry *add_addr_table_entry (void *, enum ate_kind); |
| static void remove_addr_table_entry (addr_table_entry *); |
| static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx, bool); |
| static inline rtx AT_addr (dw_attr_node *); |
| static void add_AT_symview (dw_die_ref, enum dwarf_attribute, const char *); |
| static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *); |
| static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *); |
| static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *); |
| static void add_AT_range_list (dw_die_ref, enum dwarf_attribute, |
| unsigned long, bool); |
| static inline const char *AT_lbl (dw_attr_node *); |
| static const char *get_AT_low_pc (dw_die_ref); |
| static bool is_c (void); |
| static bool is_cxx (void); |
| static bool is_cxx (const_tree); |
| static bool is_fortran (void); |
| static bool is_ada (void); |
| static bool remove_AT (dw_die_ref, enum dwarf_attribute); |
| static void remove_child_TAG (dw_die_ref, enum dwarf_tag); |
| static void add_child_die (dw_die_ref, dw_die_ref); |
| static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree); |
| static dw_die_ref strip_naming_typedef (tree, dw_die_ref); |
| static dw_die_ref lookup_type_die_strip_naming_typedef (tree); |
| static void equate_type_number_to_die (tree, dw_die_ref); |
| static var_loc_list *lookup_decl_loc (const_tree); |
| static void equate_decl_number_to_die (tree, dw_die_ref); |
| static struct var_loc_node *add_var_loc_to_decl (tree, rtx, const char *, var_loc_view); |
| static void print_spaces (FILE *); |
| static void print_die (dw_die_ref, FILE *); |
| static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *); |
| static void attr_checksum (dw_attr_node *, struct md5_ctx *, int *); |
| static void die_checksum (dw_die_ref, struct md5_ctx *, int *); |
| static void checksum_sleb128 (HOST_WIDE_INT, struct md5_ctx *); |
| static void checksum_uleb128 (unsigned HOST_WIDE_INT, struct md5_ctx *); |
| static void loc_checksum_ordered (dw_loc_descr_ref, struct md5_ctx *); |
| static void attr_checksum_ordered (enum dwarf_tag, dw_attr_node *, |
| struct md5_ctx *, int *); |
| struct checksum_attributes; |
| static void collect_checksum_attributes (struct checksum_attributes *, dw_die_ref); |
| static void die_checksum_ordered (dw_die_ref, struct md5_ctx *, int *); |
| static void checksum_die_context (dw_die_ref, struct md5_ctx *); |
| static void generate_type_signature (dw_die_ref, comdat_type_node *); |
| static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *); |
| static int same_dw_val_p (const dw_val_node *, const dw_val_node *, int *); |
| static int same_attr_p (dw_attr_node *, dw_attr_node *, int *); |
| static int same_die_p (dw_die_ref, dw_die_ref, int *); |
| static int is_type_die (dw_die_ref); |
| static inline bool is_template_instantiation (dw_die_ref); |
| static int is_declaration_die (dw_die_ref); |
| static int should_move_die_to_comdat (dw_die_ref); |
| static dw_die_ref clone_as_declaration (dw_die_ref); |
| static dw_die_ref clone_die (dw_die_ref); |
| static dw_die_ref clone_tree (dw_die_ref); |
| static dw_die_ref copy_declaration_context (dw_die_ref, dw_die_ref); |
| static void generate_skeleton_ancestor_tree (skeleton_chain_node *); |
| static void generate_skeleton_bottom_up (skeleton_chain_node *); |
| static dw_die_ref generate_skeleton (dw_die_ref); |
| static dw_die_ref remove_child_or_replace_with_skeleton (dw_die_ref, |
| dw_die_ref, |
| dw_die_ref); |
| static void break_out_comdat_types (dw_die_ref); |
| static void copy_decls_for_unworthy_types (dw_die_ref); |
| |
| static void add_sibling_attributes (dw_die_ref); |
| static void output_location_lists (dw_die_ref); |
| static int constant_size (unsigned HOST_WIDE_INT); |
| static unsigned long size_of_die (dw_die_ref); |
| static void calc_die_sizes (dw_die_ref); |
| static void calc_base_type_die_sizes (void); |
| static void mark_dies (dw_die_ref); |
| static void unmark_dies (dw_die_ref); |
| static void unmark_all_dies (dw_die_ref); |
| static unsigned long size_of_pubnames (vec<pubname_entry, va_gc> *); |
| static unsigned long size_of_aranges (void); |
| static enum dwarf_form value_format (dw_attr_node *); |
| static void output_value_format (dw_attr_node *); |
| static void output_abbrev_section (void); |
| static void output_die_abbrevs (unsigned long, dw_die_ref); |
| static void output_die (dw_die_ref); |
| static void output_compilation_unit_header (enum dwarf_unit_type); |
| static void output_comp_unit (dw_die_ref, int, const unsigned char *); |
| static void output_comdat_type_unit (comdat_type_node *, bool); |
| static const char *dwarf2_name (tree, int); |
| static void add_pubname (tree, dw_die_ref); |
| static void add_enumerator_pubname (const char *, dw_die_ref); |
| static void add_pubname_string (const char *, dw_die_ref); |
| static void add_pubtype (tree, dw_die_ref); |
| static void output_pubnames (vec<pubname_entry, va_gc> *); |
| static void output_aranges (void); |
| static unsigned int add_ranges (const_tree, bool = false); |
| static void add_ranges_by_labels (dw_die_ref, const char *, const char *, |
| bool *, bool); |
| static void output_ranges (void); |
| static dw_line_info_table *new_line_info_table (void); |
| static void output_line_info (bool); |
| static void output_file_names (void); |
| static int is_base_type (tree); |
| static dw_die_ref subrange_type_die (tree, tree, tree, tree, dw_die_ref); |
| static int decl_quals (const_tree); |
| static dw_die_ref modified_type_die (tree, int, bool, dw_die_ref); |
| static dw_die_ref generic_parameter_die (tree, tree, bool, dw_die_ref); |
| static dw_die_ref template_parameter_pack_die (tree, tree, dw_die_ref); |
| static unsigned int dbx_reg_number (const_rtx); |
| static void add_loc_descr_op_piece (dw_loc_descr_ref *, int); |
| static dw_loc_descr_ref reg_loc_descriptor (rtx, enum var_init_status); |
| static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int, |
| enum var_init_status); |
| static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx, |
| enum var_init_status); |
| static dw_loc_descr_ref based_loc_descr (rtx, poly_int64, |
| enum var_init_status); |
| static int is_based_loc (const_rtx); |
| static bool resolve_one_addr (rtx *); |
| static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx, |
| enum var_init_status); |
| static dw_loc_descr_ref loc_descriptor (rtx, machine_mode mode, |
| enum var_init_status); |
| struct loc_descr_context; |
| static void add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref); |
| static void add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list); |
| static dw_loc_list_ref loc_list_from_tree (tree, int, |
| struct loc_descr_context *); |
| static dw_loc_descr_ref loc_descriptor_from_tree (tree, int, |
| struct loc_descr_context *); |
| static tree field_type (const_tree); |
| static unsigned int simple_type_align_in_bits (const_tree); |
| static unsigned int simple_decl_align_in_bits (const_tree); |
| static unsigned HOST_WIDE_INT simple_type_size_in_bits (const_tree); |
| struct vlr_context; |
| static dw_loc_descr_ref field_byte_offset (const_tree, struct vlr_context *, |
| HOST_WIDE_INT *); |
| static void add_AT_location_description (dw_die_ref, enum dwarf_attribute, |
| dw_loc_list_ref); |
| static void add_data_member_location_attribute (dw_die_ref, tree, |
| struct vlr_context *); |
| static bool add_const_value_attribute (dw_die_ref, rtx); |
| static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *); |
| static void insert_wide_int (const wide_int &, unsigned char *, int); |
| static unsigned insert_float (const_rtx, unsigned char *); |
| static rtx rtl_for_decl_location (tree); |
| static bool add_location_or_const_value_attribute (dw_die_ref, tree, bool); |
| static bool tree_add_const_value_attribute (dw_die_ref, tree); |
| static bool tree_add_const_value_attribute_for_decl (dw_die_ref, tree); |
| static void add_desc_attribute (dw_die_ref, tree); |
| static void add_gnat_descriptive_type_attribute (dw_die_ref, tree, dw_die_ref); |
| static void add_comp_dir_attribute (dw_die_ref); |
| static void add_scalar_info (dw_die_ref, enum dwarf_attribute, tree, int, |
| struct loc_descr_context *); |
| static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree, |
| struct loc_descr_context *); |
| static void add_subscript_info (dw_die_ref, tree, bool); |
| static void add_byte_size_attribute (dw_die_ref, tree); |
| static void add_alignment_attribute (dw_die_ref, tree); |
| static void add_bit_offset_attribute (dw_die_ref, tree); |
| static void add_bit_size_attribute (dw_die_ref, tree); |
| static void add_prototyped_attribute (dw_die_ref, tree); |
| static void add_abstract_origin_attribute (dw_die_ref, tree); |
| static void add_pure_or_virtual_attribute (dw_die_ref, tree); |
| static void add_src_coords_attributes (dw_die_ref, tree); |
| static void add_name_and_src_coords_attributes (dw_die_ref, tree, bool = false); |
| static void add_discr_value (dw_die_ref, dw_discr_value *); |
| static void add_discr_list (dw_die_ref, dw_discr_list_ref); |
| static inline dw_discr_list_ref AT_discr_list (dw_attr_node *); |
| static dw_die_ref scope_die_for (tree, dw_die_ref); |
| static inline int local_scope_p (dw_die_ref); |
| static inline int class_scope_p (dw_die_ref); |
| static inline int class_or_namespace_scope_p (dw_die_ref); |
| static void add_type_attribute (dw_die_ref, tree, int, bool, dw_die_ref); |
| static void add_calling_convention_attribute (dw_die_ref, tree); |
| static const char *type_tag (const_tree); |
| static tree member_declared_type (const_tree); |
| #if 0 |
| static const char *decl_start_label (tree); |
| #endif |
| static void gen_array_type_die (tree, dw_die_ref); |
| static void gen_descr_array_type_die (tree, struct array_descr_info *, dw_die_ref); |
| #if 0 |
| static void gen_entry_point_die (tree, dw_die_ref); |
| #endif |
| static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref); |
| static dw_die_ref gen_formal_parameter_die (tree, tree, bool, dw_die_ref); |
| static dw_die_ref gen_formal_parameter_pack_die (tree, tree, dw_die_ref, tree*); |
| static void gen_unspecified_parameters_die (tree, dw_die_ref); |
| static void gen_formal_types_die (tree, dw_die_ref); |
| static void gen_subprogram_die (tree, dw_die_ref); |
| static void gen_variable_die (tree, tree, dw_die_ref); |
| static void gen_const_die (tree, dw_die_ref); |
| static void gen_label_die (tree, dw_die_ref); |
| static void gen_lexical_block_die (tree, dw_die_ref); |
| static void gen_inlined_subroutine_die (tree, dw_die_ref); |
| static void gen_field_die (tree, struct vlr_context *, dw_die_ref); |
| static void gen_ptr_to_mbr_type_die (tree, dw_die_ref); |
| static dw_die_ref gen_compile_unit_die (const char *); |
| static void gen_inheritance_die (tree, tree, tree, dw_die_ref); |
| static void gen_member_die (tree, dw_die_ref); |
| static void gen_struct_or_union_type_die (tree, dw_die_ref, |
| enum debug_info_usage); |
| static void gen_subroutine_type_die (tree, dw_die_ref); |
| static void gen_typedef_die (tree, dw_die_ref); |
| static void gen_type_die (tree, dw_die_ref); |
| static void gen_block_die (tree, dw_die_ref); |
| static void decls_for_scope (tree, dw_die_ref, bool = true); |
| static bool is_naming_typedef_decl (const_tree); |
| static inline dw_die_ref get_context_die (tree); |
| static void gen_namespace_die (tree, dw_die_ref); |
| static dw_die_ref gen_namelist_decl (tree, dw_die_ref, tree); |
| static dw_die_ref gen_decl_die (tree, tree, struct vlr_context *, dw_die_ref); |
| static dw_die_ref force_decl_die (tree); |
| static dw_die_ref force_type_die (tree); |
| static dw_die_ref setup_namespace_context (tree, dw_die_ref); |
| static dw_die_ref declare_in_namespace (tree, dw_die_ref); |
| static struct dwarf_file_data * lookup_filename (const char *); |
| static void retry_incomplete_types (void); |
| static void gen_type_die_for_member (tree, tree, dw_die_ref); |
| static void gen_generic_params_dies (tree); |
| static void gen_tagged_type_die (tree, dw_die_ref, enum debug_info_usage); |
| static void gen_type_die_with_usage (tree, dw_die_ref, enum debug_info_usage); |
| static void splice_child_die (dw_die_ref, dw_die_ref); |
| static int file_info_cmp (const void *, const void *); |
| static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *, var_loc_view, |
| const char *, var_loc_view, const char *); |
| static void output_loc_list (dw_loc_list_ref); |
| static char *gen_internal_sym (const char *); |
| static bool want_pubnames (void); |
| |
| static void prune_unmark_dies (dw_die_ref); |
| static void prune_unused_types_mark_generic_parms_dies (dw_die_ref); |
| static void prune_unused_types_mark (dw_die_ref, int); |
| static void prune_unused_types_walk (dw_die_ref); |
| static void prune_unused_types_walk_attribs (dw_die_ref); |
| static void prune_unused_types_prune (dw_die_ref); |
| static void prune_unused_types (void); |
| static int maybe_emit_file (struct dwarf_file_data *fd); |
| static inline const char *AT_vms_delta1 (dw_attr_node *); |
| static inline const char *AT_vms_delta2 (dw_attr_node *); |
| #if VMS_DEBUGGING_INFO |
| static inline void add_AT_vms_delta (dw_die_ref, enum dwarf_attribute, |
| const char *, const char *); |
| #endif |
| static void append_entry_to_tmpl_value_parm_die_table (dw_die_ref, tree); |
| static void gen_remaining_tmpl_value_param_die_attribute (void); |
| static bool generic_type_p (tree); |
| static void schedule_generic_params_dies_gen (tree t); |
| static void gen_scheduled_generic_parms_dies (void); |
| static void resolve_variable_values (void); |
| |
| static const char *comp_dir_string (void); |
| |
| static void hash_loc_operands (dw_loc_descr_ref, inchash::hash &); |
| |
| /* enum for tracking thread-local variables whose address is really an offset |
| relative to the TLS pointer, which will need link-time relocation, but will |
| not need relocation by the DWARF consumer. */ |
| |
| enum dtprel_bool |
| { |
| dtprel_false = 0, |
| dtprel_true = 1 |
| }; |
| |
| /* Return the operator to use for an address of a variable. For dtprel_true, we |
| use DW_OP_const*. For regular variables, which need both link-time |
| relocation and consumer-level relocation (e.g., to account for shared objects |
| loaded at a random address), we use DW_OP_addr*. */ |
| |
| static inline enum dwarf_location_atom |
| dw_addr_op (enum dtprel_bool dtprel) |
| { |
| if (dtprel == dtprel_true) |
| return (dwarf_split_debug_info ? dwarf_OP (DW_OP_constx) |
| : (DWARF2_ADDR_SIZE == 4 ? DW_OP_const4u : DW_OP_const8u)); |
| else |
| return dwarf_split_debug_info ? dwarf_OP (DW_OP_addrx) : DW_OP_addr; |
| } |
| |
| /* Return a pointer to a newly allocated address location description. If |
| dwarf_split_debug_info is true, then record the address with the appropriate |
| relocation. */ |
| static inline dw_loc_descr_ref |
| new_addr_loc_descr (rtx addr, enum dtprel_bool dtprel) |
| { |
| dw_loc_descr_ref ref = new_loc_descr (dw_addr_op (dtprel), 0, 0); |
| |
| ref->dw_loc_oprnd1.val_class = dw_val_class_addr; |
| ref->dw_loc_oprnd1.v.val_addr = addr; |
| ref->dtprel = dtprel; |
| if (dwarf_split_debug_info) |
| ref->dw_loc_oprnd1.val_entry |
| = add_addr_table_entry (addr, |
| dtprel ? ate_kind_rtx_dtprel : ate_kind_rtx); |
| else |
| ref->dw_loc_oprnd1.val_entry = NULL; |
| |
| return ref; |
| } |
| |
| /* Section names used to hold DWARF debugging information. */ |
| |
| #ifndef DEBUG_INFO_SECTION |
| #define DEBUG_INFO_SECTION ".debug_info" |
| #endif |
| #ifndef DEBUG_DWO_INFO_SECTION |
| #define DEBUG_DWO_INFO_SECTION ".debug_info.dwo" |
| #endif |
| #ifndef DEBUG_LTO_INFO_SECTION |
| #define DEBUG_LTO_INFO_SECTION ".gnu.debuglto_.debug_info" |
| #endif |
| #ifndef DEBUG_LTO_DWO_INFO_SECTION |
| #define DEBUG_LTO_DWO_INFO_SECTION ".gnu.debuglto_.debug_info.dwo" |
| #endif |
| #ifndef DEBUG_ABBREV_SECTION |
| #define DEBUG_ABBREV_SECTION ".debug_abbrev" |
| #endif |
| #ifndef DEBUG_LTO_ABBREV_SECTION |
| #define DEBUG_LTO_ABBREV_SECTION ".gnu.debuglto_.debug_abbrev" |
| #endif |
| #ifndef DEBUG_DWO_ABBREV_SECTION |
| #define DEBUG_DWO_ABBREV_SECTION ".debug_abbrev.dwo" |
| #endif |
| #ifndef DEBUG_LTO_DWO_ABBREV_SECTION |
| #define DEBUG_LTO_DWO_ABBREV_SECTION ".gnu.debuglto_.debug_abbrev.dwo" |
| #endif |
| #ifndef DEBUG_ARANGES_SECTION |
| #define DEBUG_ARANGES_SECTION ".debug_aranges" |
| #endif |
| #ifndef DEBUG_ADDR_SECTION |
| #define DEBUG_ADDR_SECTION ".debug_addr" |
| #endif |
| #ifndef DEBUG_MACINFO_SECTION |
| #define DEBUG_MACINFO_SECTION ".debug_macinfo" |
| #endif |
| #ifndef DEBUG_LTO_MACINFO_SECTION |
| #define DEBUG_LTO_MACINFO_SECTION ".gnu.debuglto_.debug_macinfo" |
| #endif |
| #ifndef DEBUG_DWO_MACINFO_SECTION |
| #define DEBUG_DWO_MACINFO_SECTION ".debug_macinfo.dwo" |
| #endif |
| #ifndef DEBUG_LTO_DWO_MACINFO_SECTION |
| #define DEBUG_LTO_DWO_MACINFO_SECTION ".gnu.debuglto_.debug_macinfo.dwo" |
| #endif |
| #ifndef DEBUG_MACRO_SECTION |
| #define DEBUG_MACRO_SECTION ".debug_macro" |
| #endif |
| #ifndef DEBUG_LTO_MACRO_SECTION |
| #define DEBUG_LTO_MACRO_SECTION ".gnu.debuglto_.debug_macro" |
| #endif |
| #ifndef DEBUG_DWO_MACRO_SECTION |
| #define DEBUG_DWO_MACRO_SECTION ".debug_macro.dwo" |
| #endif |
| #ifndef DEBUG_LTO_DWO_MACRO_SECTION |
| #define DEBUG_LTO_DWO_MACRO_SECTION ".gnu.debuglto_.debug_macro.dwo" |
| #endif |
| #ifndef DEBUG_LINE_SECTION |
| #define DEBUG_LINE_SECTION ".debug_line" |
| #endif |
| #ifndef DEBUG_LTO_LINE_SECTION |
| #define DEBUG_LTO_LINE_SECTION ".gnu.debuglto_.debug_line" |
| #endif |
| #ifndef DEBUG_DWO_LINE_SECTION |
| #define DEBUG_DWO_LINE_SECTION ".debug_line.dwo" |
| #endif |
| #ifndef DEBUG_LTO_DWO_LINE_SECTION |
| #define DEBUG_LTO_DWO_LINE_SECTION ".gnu.debuglto_.debug_line.dwo" |
| #endif |
| #ifndef DEBUG_LOC_SECTION |
| #define DEBUG_LOC_SECTION ".debug_loc" |
| #endif |
| #ifndef DEBUG_DWO_LOC_SECTION |
| #define DEBUG_DWO_LOC_SECTION ".debug_loc.dwo" |
| #endif |
| #ifndef DEBUG_LOCLISTS_SECTION |
| #define DEBUG_LOCLISTS_SECTION ".debug_loclists" |
| #endif |
| #ifndef DEBUG_DWO_LOCLISTS_SECTION |
| #define DEBUG_DWO_LOCLISTS_SECTION ".debug_loclists.dwo" |
| #endif |
| #ifndef DEBUG_PUBNAMES_SECTION |
| #define DEBUG_PUBNAMES_SECTION \ |
| ((debug_generate_pub_sections == 2) \ |
| ? ".debug_gnu_pubnames" : ".debug_pubnames") |
| #endif |
| #ifndef DEBUG_PUBTYPES_SECTION |
| #define DEBUG_PUBTYPES_SECTION \ |
| ((debug_generate_pub_sections == 2) \ |
| ? ".debug_gnu_pubtypes" : ".debug_pubtypes") |
| #endif |
| #ifndef DEBUG_STR_OFFSETS_SECTION |
| #define DEBUG_STR_OFFSETS_SECTION ".debug_str_offsets" |
| #endif |
| #ifndef DEBUG_DWO_STR_OFFSETS_SECTION |
| #define DEBUG_DWO_STR_OFFSETS_SECTION ".debug_str_offsets.dwo" |
| #endif |
| #ifndef DEBUG_LTO_DWO_STR_OFFSETS_SECTION |
| #define DEBUG_LTO_DWO_STR_OFFSETS_SECTION ".gnu.debuglto_.debug_str_offsets.dwo" |
| #endif |
| #ifndef DEBUG_STR_SECTION |
| #define DEBUG_STR_SECTION ".debug_str" |
| #endif |
| #ifndef DEBUG_LTO_STR_SECTION |
| #define DEBUG_LTO_STR_SECTION ".gnu.debuglto_.debug_str" |
| #endif |
| #ifndef DEBUG_STR_DWO_SECTION |
| #define DEBUG_STR_DWO_SECTION ".debug_str.dwo" |
| #endif |
| #ifndef DEBUG_LTO_STR_DWO_SECTION |
| #define DEBUG_LTO_STR_DWO_SECTION ".gnu.debuglto_.debug_str.dwo" |
| #endif |
| #ifndef DEBUG_RANGES_SECTION |
| #define DEBUG_RANGES_SECTION ".debug_ranges" |
| #endif |
| #ifndef DEBUG_RNGLISTS_SECTION |
| #define DEBUG_RNGLISTS_SECTION ".debug_rnglists" |
| #endif |
| #ifndef DEBUG_DWO_RNGLISTS_SECTION |
| #define DEBUG_DWO_RNGLISTS_SECTION ".debug_rnglists.dwo" |
| #endif |
| #ifndef DEBUG_LINE_STR_SECTION |
| #define DEBUG_LINE_STR_SECTION ".debug_line_str" |
| #endif |
| #ifndef DEBUG_LTO_LINE_STR_SECTION |
| #define DEBUG_LTO_LINE_STR_SECTION ".gnu.debuglto_.debug_line_str" |
| #endif |
| |
| /* Standard ELF section names for compiled code and data. */ |
| #ifndef TEXT_SECTION_NAME |
| #define TEXT_SECTION_NAME ".text" |
| #endif |
| |
| /* Section flags for .debug_str section. */ |
| #define DEBUG_STR_SECTION_FLAGS \ |
| (HAVE_GAS_SHF_MERGE && flag_merge_debug_strings \ |
| ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \ |
| : SECTION_DEBUG) |
| |
| /* Section flags for .debug_str.dwo section. */ |
| #define DEBUG_STR_DWO_SECTION_FLAGS (SECTION_DEBUG | SECTION_EXCLUDE) |
| |
| /* Attribute used to refer to the macro section. */ |
| #define DEBUG_MACRO_ATTRIBUTE (dwarf_version >= 5 ? DW_AT_macros \ |
| : dwarf_strict ? DW_AT_macro_info : DW_AT_GNU_macros) |
| |
| /* Labels we insert at beginning sections we can reference instead of |
| the section names themselves. */ |
| |
| #ifndef TEXT_SECTION_LABEL |
| #define TEXT_SECTION_LABEL "Ltext" |
| #endif |
| #ifndef COLD_TEXT_SECTION_LABEL |
| #define COLD_TEXT_SECTION_LABEL "Ltext_cold" |
| #endif |
| #ifndef DEBUG_LINE_SECTION_LABEL |
| #define DEBUG_LINE_SECTION_LABEL "Ldebug_line" |
| #endif |
| #ifndef DEBUG_SKELETON_LINE_SECTION_LABEL |
| #define DEBUG_SKELETON_LINE_SECTION_LABEL "Lskeleton_debug_line" |
| #endif |
| #ifndef DEBUG_INFO_SECTION_LABEL |
| #define DEBUG_INFO_SECTION_LABEL "Ldebug_info" |
| #endif |
| #ifndef DEBUG_SKELETON_INFO_SECTION_LABEL |
| #define DEBUG_SKELETON_INFO_SECTION_LABEL "Lskeleton_debug_info" |
| #endif |
| #ifndef DEBUG_ABBREV_SECTION_LABEL |
| #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev" |
| #endif |
| #ifndef DEBUG_SKELETON_ABBREV_SECTION_LABEL |
| #define DEBUG_SKELETON_ABBREV_SECTION_LABEL "Lskeleton_debug_abbrev" |
| #endif |
| #ifndef DEBUG_ADDR_SECTION_LABEL |
| #define DEBUG_ADDR_SECTION_LABEL "Ldebug_addr" |
| #endif |
| #ifndef DEBUG_LOC_SECTION_LABEL |
| #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc" |
| #endif |
| #ifndef DEBUG_RANGES_SECTION_LABEL |
| #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges" |
| #endif |
| #ifndef DEBUG_MACINFO_SECTION_LABEL |
| #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo" |
| #endif |
| #ifndef DEBUG_MACRO_SECTION_LABEL |
| #define DEBUG_MACRO_SECTION_LABEL "Ldebug_macro" |
| #endif |
| #define SKELETON_COMP_DIE_ABBREV 1 |
| #define SKELETON_TYPE_DIE_ABBREV 2 |
| |
| /* Definitions of defaults for formats and names of various special |
| (artificial) labels which may be generated within this file (when the -g |
| options is used and DWARF2_DEBUGGING_INFO is in effect. |
| If necessary, these may be overridden from within the tm.h file, but |
| typically, overriding these defaults is unnecessary. */ |
| |
| static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| static char debug_skeleton_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| static char debug_skeleton_abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| static char debug_addr_section_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| static char debug_skeleton_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES]; |
| static char ranges_base_label[2 * MAX_ARTIFICIAL_LABEL_BYTES]; |
| |
| #ifndef TEXT_END_LABEL |
| #define TEXT_END_LABEL "Letext" |
| #endif |
| #ifndef COLD_END_LABEL |
| #define COLD_END_LABEL "Letext_cold" |
| #endif |
| #ifndef BLOCK_BEGIN_LABEL |
| #define BLOCK_BEGIN_LABEL "LBB" |
| #endif |
| #ifndef BLOCK_INLINE_ENTRY_LABEL |
| #define BLOCK_INLINE_ENTRY_LABEL "LBI" |
| #endif |
| #ifndef BLOCK_END_LABEL |
| #define BLOCK_END_LABEL "LBE" |
| #endif |
| #ifndef LINE_CODE_LABEL |
| #define LINE_CODE_LABEL "LM" |
| #endif |
| |
| |
| /* Return the root of the DIE's built for the current compilation unit. */ |
| static dw_die_ref |
| comp_unit_die (void) |
| { |
| if (!single_comp_unit_die) |
| single_comp_unit_die = gen_compile_unit_die (NULL); |
| return single_comp_unit_die; |
| } |
| |
| /* We allow a language front-end to designate a function that is to be |
| called to "demangle" any name before it is put into a DIE. */ |
| |
| static const char *(*demangle_name_func) (const char *); |
| |
| void |
| dwarf2out_set_demangle_name_func (const char *(*func) (const char *)) |
| { |
| demangle_name_func = func; |
| } |
| |
| /* Test if rtl node points to a pseudo register. */ |
| |
| static inline int |
| is_pseudo_reg (const_rtx rtl) |
| { |
| return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER) |
| || (GET_CODE (rtl) == SUBREG |
| && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER)); |
| } |
| |
| /* Return a reference to a type, with its const and volatile qualifiers |
| removed. */ |
| |
| static inline tree |
| type_main_variant (tree type) |
| { |
| type = TYPE_MAIN_VARIANT (type); |
| |
| /* ??? There really should be only one main variant among any group of |
| variants of a given type (and all of the MAIN_VARIANT values for all |
| members of the group should point to that one type) but sometimes the C |
| front-end messes this up for array types, so we work around that bug |
| here. */ |
| if (TREE_CODE (type) == ARRAY_TYPE) |
| while (type != TYPE_MAIN_VARIANT (type)) |
| type = TYPE_MAIN_VARIANT (type); |
| |
| return type; |
| } |
| |
| /* Return nonzero if the given type node represents a tagged type. */ |
| |
| static inline int |
| is_tagged_type (const_tree type) |
| { |
| enum tree_code code = TREE_CODE (type); |
| |
| return (code == RECORD_TYPE || code == UNION_TYPE |
| || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE); |
| } |
| |
| /* Set label to debug_info_section_label + die_offset of a DIE reference. */ |
| |
| static void |
| get_ref_die_offset_label (char *label, dw_die_ref ref) |
| { |
| sprintf (label, "%s+%ld", debug_info_section_label, ref->die_offset); |
| } |
| |
| /* Return die_offset of a DIE reference to a base type. */ |
| |
| static unsigned long int |
| get_base_type_offset (dw_die_ref ref) |
| { |
| if (ref->die_offset) |
| return ref->die_offset; |
| if (comp_unit_die ()->die_abbrev) |
| { |
| calc_base_type_die_sizes (); |
| gcc_assert (ref->die_offset); |
| } |
| return ref->die_offset; |
| } |
| |
| /* Return die_offset of a DIE reference other than base type. */ |
| |
| static unsigned long int |
| get_ref_die_offset (dw_die_ref ref) |
| { |
| gcc_assert (ref->die_offset); |
| return ref->die_offset; |
| } |
| |
| /* Convert a DIE tag into its string name. */ |
| |
| static const char * |
| dwarf_tag_name (unsigned int tag) |
| { |
| const char *name = get_DW_TAG_name (tag); |
| |
| if (name != NULL) |
| return name; |
| |
| return "DW_TAG_<unknown>"; |
| } |
| |
| /* Convert a DWARF attribute code into its string name. */ |
| |
| static const char * |
| dwarf_attr_name (unsigned int attr) |
| { |
| const char *name; |
| |
| switch (attr) |
| { |
| #if VMS_DEBUGGING_INFO |
| case DW_AT_HP_prologue: |
| return "DW_AT_HP_prologue"; |
| #else |
| case DW_AT_MIPS_loop_unroll_factor: |
| return "DW_AT_MIPS_loop_unroll_factor"; |
| #endif |
| |
| #if VMS_DEBUGGING_INFO |
| case DW_AT_HP_epilogue: |
| return "DW_AT_HP_epilogue"; |
| #else |
| case DW_AT_MIPS_stride: |
| return "DW_AT_MIPS_stride"; |
| #endif |
| } |
| |
| name = get_DW_AT_name (attr); |
| |
| if (name != NULL) |
| return name; |
| |
| return "DW_AT_<unknown>"; |
| } |
| |
| /* Convert a DWARF value form code into its string name. */ |
| |
| static const char * |
| dwarf_form_name (unsigned int form) |
| { |
| const char *name = get_DW_FORM_name (form); |
| |
| if (name != NULL) |
| return name; |
| |
| return "DW_FORM_<unknown>"; |
| } |
| |
| /* Determine the "ultimate origin" of a decl. The decl may be an inlined |
| instance of an inlined instance of a decl which is local to an inline |
| function, so we have to trace all of the way back through the origin chain |
| to find out what sort of node actually served as the original seed for the |
| given block. */ |
| |
| static tree |
| decl_ultimate_origin (const_tree decl) |
| { |
| if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON)) |
| return NULL_TREE; |
| |
| /* DECL_ABSTRACT_ORIGIN can point to itself; ignore that if |
| we're trying to output the abstract instance of this function. */ |
| if (DECL_ABSTRACT_P (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl) |
| return NULL_TREE; |
| |
| /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the |
| most distant ancestor, this should never happen. */ |
| gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl))); |
| |
| return DECL_ABSTRACT_ORIGIN (decl); |
| } |
| |
| /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT |
| of a virtual function may refer to a base class, so we check the 'this' |
| parameter. */ |
| |
| static tree |
| decl_class_context (tree decl) |
| { |
| tree context = NULL_TREE; |
| |
| if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl)) |
| context = DECL_CONTEXT (decl); |
| else |
| context = TYPE_MAIN_VARIANT |
| (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))))); |
| |
| if (context && !TYPE_P (context)) |
| context = NULL_TREE; |
| |
| return context; |
| } |
| |
| /* Add an attribute/value pair to a DIE. */ |
| |
| static inline void |
| add_dwarf_attr (dw_die_ref die, dw_attr_node *attr) |
| { |
| /* Maybe this should be an assert? */ |
| if (die == NULL) |
| return; |
| |
| if (flag_checking) |
| { |
| /* Check we do not add duplicate attrs. Can't use get_AT here |
| because that recurses to the specification/abstract origin DIE. */ |
| dw_attr_node *a; |
| unsigned ix; |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| gcc_assert (a->dw_attr != attr->dw_attr); |
| } |
| |
| vec_safe_reserve (die->die_attr, 1); |
| vec_safe_push (die->die_attr, *attr); |
| } |
| |
| enum dw_val_class |
| AT_class (dw_attr_node *a) |
| { |
| return a->dw_attr_val.val_class; |
| } |
| |
| /* Return the index for any attribute that will be referenced with a |
| DW_FORM_addrx/GNU_addr_index or DW_FORM_strx/GNU_str_index. String |
| indices are stored in dw_attr_val.v.val_str for reference counting |
| pruning. */ |
| |
| static inline unsigned int |
| AT_index (dw_attr_node *a) |
| { |
| if (AT_class (a) == dw_val_class_str) |
| return a->dw_attr_val.v.val_str->index; |
| else if (a->dw_attr_val.val_entry != NULL) |
| return a->dw_attr_val.val_entry->index; |
| return NOT_INDEXED; |
| } |
| |
| /* Add a flag value attribute to a DIE. */ |
| |
| static inline void |
| add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_flag; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_flag = flag; |
| add_dwarf_attr (die, &attr); |
| } |
| |
| static inline unsigned |
| AT_flag (dw_attr_node *a) |
| { |
| gcc_assert (a && AT_class (a) == dw_val_class_flag); |
| return a->dw_attr_val.v.val_flag; |
| } |
| |
| /* Add a signed integer attribute value to a DIE. */ |
| |
| static inline void |
| add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_const; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_int = int_val; |
| add_dwarf_attr (die, &attr); |
| } |
| |
| HOST_WIDE_INT |
| AT_int (dw_attr_node *a) |
| { |
| gcc_assert (a && (AT_class (a) == dw_val_class_const |
| || AT_class (a) == dw_val_class_const_implicit)); |
| return a->dw_attr_val.v.val_int; |
| } |
| |
| /* Add an unsigned integer attribute value to a DIE. */ |
| |
| static inline void |
| add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind, |
| unsigned HOST_WIDE_INT unsigned_val) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_unsigned_const; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_unsigned = unsigned_val; |
| add_dwarf_attr (die, &attr); |
| } |
| |
| unsigned HOST_WIDE_INT |
| AT_unsigned (dw_attr_node *a) |
| { |
| gcc_assert (a && (AT_class (a) == dw_val_class_unsigned_const |
| || AT_class (a) == dw_val_class_unsigned_const_implicit)); |
| return a->dw_attr_val.v.val_unsigned; |
| } |
| |
| /* Add an unsigned wide integer attribute value to a DIE. */ |
| |
| static inline void |
| add_AT_wide (dw_die_ref die, enum dwarf_attribute attr_kind, |
| const wide_int& w) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_wide_int; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_wide = ggc_alloc<wide_int> (); |
| *attr.dw_attr_val.v.val_wide = w; |
| add_dwarf_attr (die, &attr); |
| } |
| |
| /* Add an unsigned double integer attribute value to a DIE. */ |
| |
| static inline void |
| add_AT_double (dw_die_ref die, enum dwarf_attribute attr_kind, |
| HOST_WIDE_INT high, unsigned HOST_WIDE_INT low) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_const_double; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_double.high = high; |
| attr.dw_attr_val.v.val_double.low = low; |
| add_dwarf_attr (die, &attr); |
| } |
| |
| /* Add a floating point attribute value to a DIE and return it. */ |
| |
| static inline void |
| add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind, |
| unsigned int length, unsigned int elt_size, unsigned char *array) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_vec; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_vec.length = length; |
| attr.dw_attr_val.v.val_vec.elt_size = elt_size; |
| attr.dw_attr_val.v.val_vec.array = array; |
| add_dwarf_attr (die, &attr); |
| } |
| |
| /* Add an 8-byte data attribute value to a DIE. */ |
| |
| static inline void |
| add_AT_data8 (dw_die_ref die, enum dwarf_attribute attr_kind, |
| unsigned char data8[8]) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_data8; |
| attr.dw_attr_val.val_entry = NULL; |
| memcpy (attr.dw_attr_val.v.val_data8, data8, 8); |
| add_dwarf_attr (die, &attr); |
| } |
| |
| /* Add DW_AT_low_pc and DW_AT_high_pc to a DIE. When using |
| dwarf_split_debug_info, address attributes in dies destined for the |
| final executable have force_direct set to avoid using indexed |
| references. */ |
| |
| static inline void |
| add_AT_low_high_pc (dw_die_ref die, const char *lbl_low, const char *lbl_high, |
| bool force_direct) |
| { |
| dw_attr_node attr; |
| char * lbl_id; |
| |
| lbl_id = xstrdup (lbl_low); |
| attr.dw_attr = DW_AT_low_pc; |
| attr.dw_attr_val.val_class = dw_val_class_lbl_id; |
| attr.dw_attr_val.v.val_lbl_id = lbl_id; |
| if (dwarf_split_debug_info && !force_direct) |
| attr.dw_attr_val.val_entry |
| = add_addr_table_entry (lbl_id, ate_kind_label); |
| else |
| attr.dw_attr_val.val_entry = NULL; |
| add_dwarf_attr (die, &attr); |
| |
| attr.dw_attr = DW_AT_high_pc; |
| if (dwarf_version < 4) |
| attr.dw_attr_val.val_class = dw_val_class_lbl_id; |
| else |
| attr.dw_attr_val.val_class = dw_val_class_high_pc; |
| lbl_id = xstrdup (lbl_high); |
| attr.dw_attr_val.v.val_lbl_id = lbl_id; |
| if (attr.dw_attr_val.val_class == dw_val_class_lbl_id |
| && dwarf_split_debug_info && !force_direct) |
| attr.dw_attr_val.val_entry |
| = add_addr_table_entry (lbl_id, ate_kind_label); |
| else |
| attr.dw_attr_val.val_entry = NULL; |
| add_dwarf_attr (die, &attr); |
| } |
| |
| /* Hash and equality functions for debug_str_hash. */ |
| |
| hashval_t |
| indirect_string_hasher::hash (indirect_string_node *x) |
| { |
| return htab_hash_string (x->str); |
| } |
| |
| bool |
| indirect_string_hasher::equal (indirect_string_node *x1, const char *x2) |
| { |
| return strcmp (x1->str, x2) == 0; |
| } |
| |
| /* Add STR to the given string hash table. */ |
| |
| static struct indirect_string_node * |
| find_AT_string_in_table (const char *str, |
| hash_table<indirect_string_hasher> *table, |
| enum insert_option insert = INSERT) |
| { |
| struct indirect_string_node *node; |
| |
| indirect_string_node **slot |
| = table->find_slot_with_hash (str, htab_hash_string (str), insert); |
| if (*slot == NULL) |
| { |
| node = ggc_cleared_alloc<indirect_string_node> (); |
| node->str = ggc_strdup (str); |
| *slot = node; |
| } |
| else |
| node = *slot; |
| |
| node->refcount++; |
| return node; |
| } |
| |
| /* Add STR to the indirect string hash table. */ |
| |
| static struct indirect_string_node * |
| find_AT_string (const char *str, enum insert_option insert = INSERT) |
| { |
| if (! debug_str_hash) |
| debug_str_hash = hash_table<indirect_string_hasher>::create_ggc (10); |
| |
| return find_AT_string_in_table (str, debug_str_hash, insert); |
| } |
| |
| /* Add a string attribute value to a DIE. */ |
| |
| static inline void |
| add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str) |
| { |
| dw_attr_node attr; |
| struct indirect_string_node *node; |
| |
| node = find_AT_string (str); |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_str; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_str = node; |
| add_dwarf_attr (die, &attr); |
| } |
| |
| static inline const char * |
| AT_string (dw_attr_node *a) |
| { |
| gcc_assert (a && AT_class (a) == dw_val_class_str); |
| return a->dw_attr_val.v.val_str->str; |
| } |
| |
| /* Call this function directly to bypass AT_string_form's logic to put |
| the string inline in the die. */ |
| |
| static void |
| set_indirect_string (struct indirect_string_node *node) |
| { |
| char label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| /* Already indirect is a no op. */ |
| if (node->form == DW_FORM_strp |
| || node->form == DW_FORM_line_strp |
| || node->form == dwarf_FORM (DW_FORM_strx)) |
| { |
| gcc_assert (node->label); |
| return; |
| } |
| ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter); |
| ++dw2_string_counter; |
| node->label = xstrdup (label); |
| |
| if (!dwarf_split_debug_info) |
| { |
| node->form = DW_FORM_strp; |
| node->index = NOT_INDEXED; |
| } |
| else |
| { |
| node->form = dwarf_FORM (DW_FORM_strx); |
| node->index = NO_INDEX_ASSIGNED; |
| } |
| } |
| |
| /* A helper function for dwarf2out_finish, called to reset indirect |
| string decisions done for early LTO dwarf output before fat object |
| dwarf output. */ |
| |
| int |
| reset_indirect_string (indirect_string_node **h, void *) |
| { |
| struct indirect_string_node *node = *h; |
| if (node->form == DW_FORM_strp |
| || node->form == DW_FORM_line_strp |
| || node->form == dwarf_FORM (DW_FORM_strx)) |
| { |
| free (node->label); |
| node->label = NULL; |
| node->form = (dwarf_form) 0; |
| node->index = 0; |
| } |
| return 1; |
| } |
| |
| /* Add a string representing a file or filepath attribute value to a DIE. */ |
| |
| static inline void |
| add_filepath_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, |
| const char *str) |
| { |
| if (! asm_outputs_debug_line_str ()) |
| add_AT_string (die, attr_kind, str); |
| else |
| { |
| dw_attr_node attr; |
| struct indirect_string_node *node; |
| |
| if (!debug_line_str_hash) |
| debug_line_str_hash |
| = hash_table<indirect_string_hasher>::create_ggc (10); |
| |
| node = find_AT_string_in_table (str, debug_line_str_hash); |
| set_indirect_string (node); |
| node->form = DW_FORM_line_strp; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_str; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_str = node; |
| add_dwarf_attr (die, &attr); |
| } |
| } |
| |
| /* Find out whether a string should be output inline in DIE |
| or out-of-line in .debug_str section. */ |
| |
| static enum dwarf_form |
| find_string_form (struct indirect_string_node *node) |
| { |
| unsigned int len; |
| |
| if (node->form) |
| return node->form; |
| |
| len = strlen (node->str) + 1; |
| |
| /* If the string is shorter or equal to the size of the reference, it is |
| always better to put it inline. */ |
| if (len <= (unsigned) dwarf_offset_size || node->refcount == 0) |
| return node->form = DW_FORM_string; |
| |
| /* If we cannot expect the linker to merge strings in .debug_str |
| section, only put it into .debug_str if it is worth even in this |
| single module. */ |
| if (DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET |
| || ((debug_str_section->common.flags & SECTION_MERGE) == 0 |
| && (len - dwarf_offset_size) * node->refcount <= len)) |
| return node->form = DW_FORM_string; |
| |
| set_indirect_string (node); |
| |
| return node->form; |
| } |
| |
| /* Find out whether the string referenced from the attribute should be |
| output inline in DIE or out-of-line in .debug_str section. */ |
| |
| static enum dwarf_form |
| AT_string_form (dw_attr_node *a) |
| { |
| gcc_assert (a && AT_class (a) == dw_val_class_str); |
| return find_string_form (a->dw_attr_val.v.val_str); |
| } |
| |
| /* Add a DIE reference attribute value to a DIE. */ |
| |
| static inline void |
| add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die) |
| { |
| dw_attr_node attr; |
| gcc_checking_assert (targ_die != NULL); |
| |
| /* With LTO we can end up trying to reference something we didn't create |
| a DIE for. Avoid crashing later on a NULL referenced DIE. */ |
| if (targ_die == NULL) |
| return; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_die_ref; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_die_ref.die = targ_die; |
| attr.dw_attr_val.v.val_die_ref.external = 0; |
| add_dwarf_attr (die, &attr); |
| } |
| |
| /* Change DIE reference REF to point to NEW_DIE instead. */ |
| |
| static inline void |
| change_AT_die_ref (dw_attr_node *ref, dw_die_ref new_die) |
| { |
| gcc_assert (ref->dw_attr_val.val_class == dw_val_class_die_ref); |
| ref->dw_attr_val.v.val_die_ref.die = new_die; |
| ref->dw_attr_val.v.val_die_ref.external = 0; |
| } |
| |
| /* Add an AT_specification attribute to a DIE, and also make the back |
| pointer from the specification to the definition. */ |
| |
| static inline void |
| add_AT_specification (dw_die_ref die, dw_die_ref targ_die) |
| { |
| add_AT_die_ref (die, DW_AT_specification, targ_die); |
| gcc_assert (!targ_die->die_definition); |
| targ_die->die_definition = die; |
| } |
| |
| static inline dw_die_ref |
| AT_ref (dw_attr_node *a) |
| { |
| gcc_assert (a && AT_class (a) == dw_val_class_die_ref); |
| return a->dw_attr_val.v.val_die_ref.die; |
| } |
| |
| static inline int |
| AT_ref_external (dw_attr_node *a) |
| { |
| if (a && AT_class (a) == dw_val_class_die_ref) |
| return a->dw_attr_val.v.val_die_ref.external; |
| |
| return 0; |
| } |
| |
| static inline void |
| set_AT_ref_external (dw_attr_node *a, int i) |
| { |
| gcc_assert (a && AT_class (a) == dw_val_class_die_ref); |
| a->dw_attr_val.v.val_die_ref.external = i; |
| } |
| |
| /* Add a location description attribute value to a DIE. */ |
| |
| static inline void |
| add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_loc; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_loc = loc; |
| add_dwarf_attr (die, &attr); |
| } |
| |
| dw_loc_descr_ref |
| AT_loc (dw_attr_node *a) |
| { |
| gcc_assert (a && AT_class (a) == dw_val_class_loc); |
| return a->dw_attr_val.v.val_loc; |
| } |
| |
| static inline void |
| add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list) |
| { |
| dw_attr_node attr; |
| |
| if (XCOFF_DEBUGGING_INFO && !HAVE_XCOFF_DWARF_EXTRAS) |
| return; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_loc_list; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_loc_list = loc_list; |
| add_dwarf_attr (die, &attr); |
| have_location_lists = true; |
| } |
| |
| static inline dw_loc_list_ref |
| AT_loc_list (dw_attr_node *a) |
| { |
| gcc_assert (a && AT_class (a) == dw_val_class_loc_list); |
| return a->dw_attr_val.v.val_loc_list; |
| } |
| |
| /* Add a view list attribute to DIE. It must have a DW_AT_location |
| attribute, because the view list complements the location list. */ |
| |
| static inline void |
| add_AT_view_list (dw_die_ref die, enum dwarf_attribute attr_kind) |
| { |
| dw_attr_node attr; |
| |
| if (XCOFF_DEBUGGING_INFO && !HAVE_XCOFF_DWARF_EXTRAS) |
| return; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_view_list; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_view_list = die; |
| add_dwarf_attr (die, &attr); |
| gcc_checking_assert (get_AT (die, DW_AT_location)); |
| gcc_assert (have_location_lists); |
| } |
| |
| /* Return a pointer to the location list referenced by the attribute. |
| If the named attribute is a view list, look up the corresponding |
| DW_AT_location attribute and return its location list. */ |
| |
| static inline dw_loc_list_ref * |
| AT_loc_list_ptr (dw_attr_node *a) |
| { |
| gcc_assert (a); |
| switch (AT_class (a)) |
| { |
| case dw_val_class_loc_list: |
| return &a->dw_attr_val.v.val_loc_list; |
| case dw_val_class_view_list: |
| { |
| dw_attr_node *l; |
| l = get_AT (a->dw_attr_val.v.val_view_list, DW_AT_location); |
| if (!l) |
| return NULL; |
| gcc_checking_assert (l + 1 == a); |
| return AT_loc_list_ptr (l); |
| } |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Return the location attribute value associated with a view list |
| attribute value. */ |
| |
| static inline dw_val_node * |
| view_list_to_loc_list_val_node (dw_val_node *val) |
| { |
| gcc_assert (val->val_class == dw_val_class_view_list); |
| dw_attr_node *loc = get_AT (val->v.val_view_list, DW_AT_location); |
| if (!loc) |
| return NULL; |
| gcc_checking_assert (&(loc + 1)->dw_attr_val == val); |
| gcc_assert (AT_class (loc) == dw_val_class_loc_list); |
| return &loc->dw_attr_val; |
| } |
| |
| struct addr_hasher : ggc_ptr_hash<addr_table_entry> |
| { |
| static hashval_t hash (addr_table_entry *); |
| static bool equal (addr_table_entry *, addr_table_entry *); |
| }; |
| |
| /* Table of entries into the .debug_addr section. */ |
| |
| static GTY (()) hash_table<addr_hasher> *addr_index_table; |
| |
| /* Hash an address_table_entry. */ |
| |
| hashval_t |
| addr_hasher::hash (addr_table_entry *a) |
| { |
| inchash::hash hstate; |
| switch (a->kind) |
| { |
| case ate_kind_rtx: |
| hstate.add_int (0); |
| break; |
| case ate_kind_rtx_dtprel: |
| hstate.add_int (1); |
| break; |
| case ate_kind_label: |
| return htab_hash_string (a->addr.label); |
| default: |
| gcc_unreachable (); |
| } |
| inchash::add_rtx (a->addr.rtl, hstate); |
| return hstate.end (); |
| } |
| |
| /* Determine equality for two address_table_entries. */ |
| |
| bool |
| addr_hasher::equal (addr_table_entry *a1, addr_table_entry *a2) |
| { |
| if (a1->kind != a2->kind) |
| return 0; |
| switch (a1->kind) |
| { |
| case ate_kind_rtx: |
| case ate_kind_rtx_dtprel: |
| return rtx_equal_p (a1->addr.rtl, a2->addr.rtl); |
| case ate_kind_label: |
| return strcmp (a1->addr.label, a2->addr.label) == 0; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Initialize an addr_table_entry. */ |
| |
| void |
| init_addr_table_entry (addr_table_entry *e, enum ate_kind kind, void *addr) |
| { |
| e->kind = kind; |
| switch (kind) |
| { |
| case ate_kind_rtx: |
| case ate_kind_rtx_dtprel: |
| e->addr.rtl = (rtx) addr; |
| break; |
| case ate_kind_label: |
| e->addr.label = (char *) addr; |
| break; |
| } |
| e->refcount = 0; |
| e->index = NO_INDEX_ASSIGNED; |
| } |
| |
| /* Add attr to the address table entry to the table. Defer setting an |
| index until output time. */ |
| |
| static addr_table_entry * |
| add_addr_table_entry (void *addr, enum ate_kind kind) |
| { |
| addr_table_entry *node; |
| addr_table_entry finder; |
| |
| gcc_assert (dwarf_split_debug_info); |
| if (! addr_index_table) |
| addr_index_table = hash_table<addr_hasher>::create_ggc (10); |
| init_addr_table_entry (&finder, kind, addr); |
| addr_table_entry **slot = addr_index_table->find_slot (&finder, INSERT); |
| |
| if (*slot == HTAB_EMPTY_ENTRY) |
| { |
| node = ggc_cleared_alloc<addr_table_entry> (); |
| init_addr_table_entry (node, kind, addr); |
| *slot = node; |
| } |
| else |
| node = *slot; |
| |
| node->refcount++; |
| return node; |
| } |
| |
| /* Remove an entry from the addr table by decrementing its refcount. |
| Strictly, decrementing the refcount would be enough, but the |
| assertion that the entry is actually in the table has found |
| bugs. */ |
| |
| static void |
| remove_addr_table_entry (addr_table_entry *entry) |
| { |
| gcc_assert (dwarf_split_debug_info && addr_index_table); |
| /* After an index is assigned, the table is frozen. */ |
| gcc_assert (entry->refcount > 0 && entry->index == NO_INDEX_ASSIGNED); |
| entry->refcount--; |
| } |
| |
| /* Given a location list, remove all addresses it refers to from the |
| address_table. */ |
| |
| static void |
| remove_loc_list_addr_table_entries (dw_loc_descr_ref descr) |
| { |
| for (; descr; descr = descr->dw_loc_next) |
| if (descr->dw_loc_oprnd1.val_entry != NULL) |
| { |
| gcc_assert (descr->dw_loc_oprnd1.val_entry->index == NO_INDEX_ASSIGNED); |
| remove_addr_table_entry (descr->dw_loc_oprnd1.val_entry); |
| } |
| } |
| |
| /* A helper function for dwarf2out_finish called through |
| htab_traverse. Assign an addr_table_entry its index. All entries |
| must be collected into the table when this function is called, |
| because the indexing code relies on htab_traverse to traverse nodes |
| in the same order for each run. */ |
| |
| int |
| index_addr_table_entry (addr_table_entry **h, unsigned int *index) |
| { |
| addr_table_entry *node = *h; |
| |
| /* Don't index unreferenced nodes. */ |
| if (node->refcount == 0) |
| return 1; |
| |
| gcc_assert (node->index == NO_INDEX_ASSIGNED); |
| node->index = *index; |
| *index += 1; |
| |
| return 1; |
| } |
| |
| /* Return the tag of a given DIE. */ |
| |
| enum dwarf_tag |
| dw_get_die_tag (dw_die_ref die) |
| { |
| return die->die_tag; |
| } |
| |
| /* Return a reference to the children list of a given DIE. */ |
| |
| dw_die_ref |
| dw_get_die_child (dw_die_ref die) |
| { |
| return die->die_child; |
| } |
| |
| /* Return a reference to the sibling of a given DIE. */ |
| |
| dw_die_ref |
| dw_get_die_sib (dw_die_ref die) |
| { |
| return die->die_sib; |
| } |
| |
| /* Add an address constant attribute value to a DIE. When using |
| dwarf_split_debug_info, address attributes in dies destined for the |
| final executable should be direct references--setting the parameter |
| force_direct ensures this behavior. */ |
| |
| static inline void |
| add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr, |
| bool force_direct) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_addr; |
| attr.dw_attr_val.v.val_addr = addr; |
| if (dwarf_split_debug_info && !force_direct) |
| attr.dw_attr_val.val_entry = add_addr_table_entry (addr, ate_kind_rtx); |
| else |
| attr.dw_attr_val.val_entry = NULL; |
| add_dwarf_attr (die, &attr); |
| } |
| |
| /* Get the RTX from to an address DIE attribute. */ |
| |
| static inline rtx |
| AT_addr (dw_attr_node *a) |
| { |
| gcc_assert (a && AT_class (a) == dw_val_class_addr); |
| return a->dw_attr_val.v.val_addr; |
| } |
| |
| /* Add a file attribute value to a DIE. */ |
| |
| static inline void |
| add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind, |
| struct dwarf_file_data *fd) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_file; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_file = fd; |
| add_dwarf_attr (die, &attr); |
| } |
| |
| /* Get the dwarf_file_data from a file DIE attribute. */ |
| |
| static inline struct dwarf_file_data * |
| AT_file (dw_attr_node *a) |
| { |
| gcc_assert (a && (AT_class (a) == dw_val_class_file |
| || AT_class (a) == dw_val_class_file_implicit)); |
| return a->dw_attr_val.v.val_file; |
| } |
| |
| #if VMS_DEBUGGING_INFO |
| /* Add a vms delta attribute value to a DIE. */ |
| |
| static inline void |
| add_AT_vms_delta (dw_die_ref die, enum dwarf_attribute attr_kind, |
| const char *lbl1, const char *lbl2) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_vms_delta; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_vms_delta.lbl1 = xstrdup (lbl1); |
| attr.dw_attr_val.v.val_vms_delta.lbl2 = xstrdup (lbl2); |
| add_dwarf_attr (die, &attr); |
| } |
| #endif |
| |
| /* Add a symbolic view identifier attribute value to a DIE. */ |
| |
| static inline void |
| add_AT_symview (dw_die_ref die, enum dwarf_attribute attr_kind, |
| const char *view_label) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_symview; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_symbolic_view = xstrdup (view_label); |
| add_dwarf_attr (die, &attr); |
| } |
| |
| /* Add a label identifier attribute value to a DIE. */ |
| |
| static inline void |
| add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, |
| const char *lbl_id) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_lbl_id; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id); |
| if (dwarf_split_debug_info) |
| attr.dw_attr_val.val_entry |
| = add_addr_table_entry (attr.dw_attr_val.v.val_lbl_id, |
| ate_kind_label); |
| add_dwarf_attr (die, &attr); |
| } |
| |
| /* Add a section offset attribute value to a DIE, an offset into the |
| debug_line section. */ |
| |
| static inline void |
| add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind, |
| const char *label) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_lineptr; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_lbl_id = xstrdup (label); |
| add_dwarf_attr (die, &attr); |
| } |
| |
| /* Add a section offset attribute value to a DIE, an offset into the |
| debug_macinfo section. */ |
| |
| static inline void |
| add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind, |
| const char *label) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_macptr; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_lbl_id = xstrdup (label); |
| add_dwarf_attr (die, &attr); |
| } |
| |
| /* Add a range_list attribute value to a DIE. When using |
| dwarf_split_debug_info, address attributes in dies destined for the |
| final executable should be direct references--setting the parameter |
| force_direct ensures this behavior. */ |
| |
| #define UNRELOCATED_OFFSET ((addr_table_entry *) 1) |
| #define RELOCATED_OFFSET (NULL) |
| |
| static void |
| add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind, |
| long unsigned int offset, bool force_direct) |
| { |
| dw_attr_node attr; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_range_list; |
| /* For the range_list attribute, use val_entry to store whether the |
| offset should follow split-debug-info or normal semantics. This |
| value is read in output_range_list_offset. */ |
| if (dwarf_split_debug_info && !force_direct) |
| attr.dw_attr_val.val_entry = UNRELOCATED_OFFSET; |
| else |
| attr.dw_attr_val.val_entry = RELOCATED_OFFSET; |
| attr.dw_attr_val.v.val_offset = offset; |
| add_dwarf_attr (die, &attr); |
| } |
| |
| /* Return the start label of a delta attribute. */ |
| |
| static inline const char * |
| AT_vms_delta1 (dw_attr_node *a) |
| { |
| gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta)); |
| return a->dw_attr_val.v.val_vms_delta.lbl1; |
| } |
| |
| /* Return the end label of a delta attribute. */ |
| |
| static inline const char * |
| AT_vms_delta2 (dw_attr_node *a) |
| { |
| gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta)); |
| return a->dw_attr_val.v.val_vms_delta.lbl2; |
| } |
| |
| static inline const char * |
| AT_lbl (dw_attr_node *a) |
| { |
| gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id |
| || AT_class (a) == dw_val_class_lineptr |
| || AT_class (a) == dw_val_class_macptr |
| || AT_class (a) == dw_val_class_loclistsptr |
| || AT_class (a) == dw_val_class_high_pc)); |
| return a->dw_attr_val.v.val_lbl_id; |
| } |
| |
| /* Get the attribute of type attr_kind. */ |
| |
| dw_attr_node * |
| get_AT (dw_die_ref die, enum dwarf_attribute attr_kind) |
| { |
| dw_attr_node *a; |
| unsigned ix; |
| dw_die_ref spec = NULL; |
| |
| if (! die) |
| return NULL; |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| if (a->dw_attr == attr_kind) |
| return a; |
| else if (a->dw_attr == DW_AT_specification |
| || a->dw_attr == DW_AT_abstract_origin) |
| spec = AT_ref (a); |
| |
| if (spec) |
| return get_AT (spec, attr_kind); |
| |
| return NULL; |
| } |
| |
| /* Returns the parent of the declaration of DIE. */ |
| |
| static dw_die_ref |
| get_die_parent (dw_die_ref die) |
| { |
| dw_die_ref t; |
| |
| if (!die) |
| return NULL; |
| |
| if ((t = get_AT_ref (die, DW_AT_abstract_origin)) |
| || (t = get_AT_ref (die, DW_AT_specification))) |
| die = t; |
| |
| return die->die_parent; |
| } |
| |
| /* Return the "low pc" attribute value, typically associated with a subprogram |
| DIE. Return null if the "low pc" attribute is either not present, or if it |
| cannot be represented as an assembler label identifier. */ |
| |
| static inline const char * |
| get_AT_low_pc (dw_die_ref die) |
| { |
| dw_attr_node *a = get_AT (die, DW_AT_low_pc); |
| |
| return a ? AT_lbl (a) : NULL; |
| } |
| |
| /* Return the value of the string attribute designated by ATTR_KIND, or |
| NULL if it is not present. */ |
| |
| const char * |
| get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind) |
| { |
| dw_attr_node *a = get_AT (die, attr_kind); |
| |
| return a ? AT_string (a) : NULL; |
| } |
| |
| /* Return the value of the flag attribute designated by ATTR_KIND, or -1 |
| if it is not present. */ |
| |
| int |
| get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind) |
| { |
| dw_attr_node *a = get_AT (die, attr_kind); |
| |
| return a ? AT_flag (a) : 0; |
| } |
| |
| /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0 |
| if it is not present. */ |
| |
| unsigned |
| get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind) |
| { |
| dw_attr_node *a = get_AT (die, attr_kind); |
| |
| return a ? AT_unsigned (a) : 0; |
| } |
| |
| dw_die_ref |
| get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind) |
| { |
| dw_attr_node *a = get_AT (die, attr_kind); |
| |
| return a ? AT_ref (a) : NULL; |
| } |
| |
| struct dwarf_file_data * |
| get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind) |
| { |
| dw_attr_node *a = get_AT (die, attr_kind); |
| |
| return a ? AT_file (a) : NULL; |
| } |
| |
| /* Return TRUE if the language is C. */ |
| |
| static inline bool |
| is_c (void) |
| { |
| unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language); |
| |
| return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_C99 |
| || lang == DW_LANG_C11 || lang == DW_LANG_ObjC); |
| |
| |
| } |
| |
| /* Return TRUE if the language is C++. */ |
| |
| static inline bool |
| is_cxx (void) |
| { |
| unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language); |
| |
| return (lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus |
| || lang == DW_LANG_C_plus_plus_11 || lang == DW_LANG_C_plus_plus_14); |
| } |
| |
| /* Return TRUE if DECL was created by the C++ frontend. */ |
| |
| static bool |
| is_cxx (const_tree decl) |
| { |
| if (in_lto_p) |
| { |
| const_tree context = get_ultimate_context (decl); |
| if (context && TRANSLATION_UNIT_LANGUAGE (context)) |
| return startswith (TRANSLATION_UNIT_LANGUAGE (context), "GNU C++"); |
| } |
| return is_cxx (); |
| } |
| |
| /* Return TRUE if the language is Fortran. */ |
| |
| static inline bool |
| is_fortran (void) |
| { |
| unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language); |
| |
| return (lang == DW_LANG_Fortran77 |
| || lang == DW_LANG_Fortran90 |
| || lang == DW_LANG_Fortran95 |
| || lang == DW_LANG_Fortran03 |
| || lang == DW_LANG_Fortran08); |
| } |
| |
| static inline bool |
| is_fortran (const_tree decl) |
| { |
| if (in_lto_p) |
| { |
| const_tree context = get_ultimate_context (decl); |
| if (context && TRANSLATION_UNIT_LANGUAGE (context)) |
| return (strncmp (TRANSLATION_UNIT_LANGUAGE (context), |
| "GNU Fortran", 11) == 0 |
| || strcmp (TRANSLATION_UNIT_LANGUAGE (context), |
| "GNU F77") == 0); |
| } |
| return is_fortran (); |
| } |
| |
| /* Return TRUE if the language is Ada. */ |
| |
| static inline bool |
| is_ada (void) |
| { |
| unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language); |
| |
| return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83; |
| } |
| |
| /* Return TRUE if the language is D. */ |
| |
| static inline bool |
| is_dlang (void) |
| { |
| unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language); |
| |
| return lang == DW_LANG_D; |
| } |
| |
| /* Remove the specified attribute if present. Return TRUE if removal |
| was successful. */ |
| |
| static bool |
| remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind) |
| { |
| dw_attr_node *a; |
| unsigned ix; |
| |
| if (! die) |
| return false; |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| if (a->dw_attr == attr_kind) |
| { |
| if (AT_class (a) == dw_val_class_str) |
| if (a->dw_attr_val.v.val_str->refcount) |
| a->dw_attr_val.v.val_str->refcount--; |
| |
| /* vec::ordered_remove should help reduce the number of abbrevs |
| that are needed. */ |
| die->die_attr->ordered_remove (ix); |
| return true; |
| } |
| return false; |
| } |
| |
| /* Remove CHILD from its parent. PREV must have the property that |
| PREV->DIE_SIB == CHILD. Does not alter CHILD. */ |
| |
| static void |
| remove_child_with_prev (dw_die_ref child, dw_die_ref prev) |
| { |
| gcc_assert (child->die_parent == prev->die_parent); |
| gcc_assert (prev->die_sib == child); |
| if (prev == child) |
| { |
| gcc_assert (child->die_parent->die_child == child); |
| prev = NULL; |
| } |
| else |
| prev->die_sib = child->die_sib; |
| if (child->die_parent->die_child == child) |
| child->die_parent->die_child = prev; |
| child->die_sib = NULL; |
| } |
| |
| /* Replace OLD_CHILD with NEW_CHILD. PREV must have the property that |
| PREV->DIE_SIB == OLD_CHILD. Does not alter OLD_CHILD. */ |
| |
| static void |
| replace_child (dw_die_ref old_child, dw_die_ref new_child, dw_die_ref prev) |
| { |
| dw_die_ref parent = old_child->die_parent; |
| |
| gcc_assert (parent == prev->die_parent); |
| gcc_assert (prev->die_sib == old_child); |
| |
| new_child->die_parent = parent; |
| if (prev == old_child) |
| { |
| gcc_assert (parent->die_child == old_child); |
| new_child->die_sib = new_child; |
| } |
| else |
| { |
| prev->die_sib = new_child; |
| new_child->die_sib = old_child->die_sib; |
| } |
| if (old_child->die_parent->die_child == old_child) |
| old_child->die_parent->die_child = new_child; |
| old_child->die_sib = NULL; |
| } |
| |
| /* Move all children from OLD_PARENT to NEW_PARENT. */ |
| |
| static void |
| move_all_children (dw_die_ref old_parent, dw_die_ref new_parent) |
| { |
| dw_die_ref c; |
| new_parent->die_child = old_parent->die_child; |
| old_parent->die_child = NULL; |
| FOR_EACH_CHILD (new_parent, c, c->die_parent = new_parent); |
| } |
| |
| /* Remove child DIE whose die_tag is TAG. Do nothing if no child |
| matches TAG. */ |
| |
| static void |
| remove_child_TAG (dw_die_ref die, enum dwarf_tag tag) |
| { |
| dw_die_ref c; |
| |
| c = die->die_child; |
| if (c) do { |
| dw_die_ref prev = c; |
| c = c->die_sib; |
| while (c->die_tag == tag) |
| { |
| remove_child_with_prev (c, prev); |
| c->die_parent = NULL; |
| /* Might have removed every child. */ |
| if (die->die_child == NULL) |
| return; |
| c = prev->die_sib; |
| } |
| } while (c != die->die_child); |
| } |
| |
| /* Add a CHILD_DIE as the last child of DIE. */ |
| |
| static void |
| add_child_die (dw_die_ref die, dw_die_ref child_die) |
| { |
| /* FIXME this should probably be an assert. */ |
| if (! die || ! child_die) |
| return; |
| gcc_assert (die != child_die); |
| |
| child_die->die_parent = die; |
| if (die->die_child) |
| { |
| child_die->die_sib = die->die_child->die_sib; |
| die->die_child->die_sib = child_die; |
| } |
| else |
| child_die->die_sib = child_die; |
| die->die_child = child_die; |
| } |
| |
| /* Like add_child_die, but put CHILD_DIE after AFTER_DIE. */ |
| |
| static void |
| add_child_die_after (dw_die_ref die, dw_die_ref child_die, |
| dw_die_ref after_die) |
| { |
| gcc_assert (die |
| && child_die |
| && after_die |
| && die->die_child |
| && die != child_die); |
| |
| child_die->die_parent = die; |
| child_die->die_sib = after_die->die_sib; |
| after_die->die_sib = child_die; |
| if (die->die_child == after_die) |
| die->die_child = child_die; |
| } |
| |
| /* Unassociate CHILD from its parent, and make its parent be |
| NEW_PARENT. */ |
| |
| static void |
| reparent_child (dw_die_ref child, dw_die_ref new_parent) |
| { |
| for (dw_die_ref p = child->die_parent->die_child; ; p = p->die_sib) |
| if (p->die_sib == child) |
| { |
| remove_child_with_prev (child, p); |
| break; |
| } |
| add_child_die (new_parent, child); |
| } |
| |
| /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT |
| is the specification, to the end of PARENT's list of children. |
| This is done by removing and re-adding it. */ |
| |
| static void |
| splice_child_die (dw_die_ref parent, dw_die_ref child) |
| { |
| /* We want the declaration DIE from inside the class, not the |
| specification DIE at toplevel. */ |
| if (child->die_parent != parent) |
| { |
| dw_die_ref tmp = get_AT_ref (child, DW_AT_specification); |
| |
| if (tmp) |
| child = tmp; |
| } |
| |
| gcc_assert (child->die_parent == parent |
| || (child->die_parent |
| == get_AT_ref (parent, DW_AT_specification))); |
| |
| reparent_child (child, parent); |
| } |
| |
| /* Create and return a new die with TAG_VALUE as tag. */ |
| |
| dw_die_ref |
| new_die_raw (enum dwarf_tag tag_value) |
| { |
| dw_die_ref die = ggc_cleared_alloc<die_node> (); |
| die->die_tag = tag_value; |
| return die; |
| } |
| |
| /* Create and return a new die with a parent of PARENT_DIE. If |
| PARENT_DIE is NULL, the new DIE is placed in limbo and an |
| associated tree T must be supplied to determine parenthood |
| later. */ |
| |
| static inline dw_die_ref |
| new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t) |
| { |
| dw_die_ref die = new_die_raw (tag_value); |
| |
| if (parent_die != NULL) |
| add_child_die (parent_die, die); |
| else |
| { |
| limbo_die_node *limbo_node; |
| |
| /* No DIEs created after early dwarf should end up in limbo, |
| because the limbo list should not persist past LTO |
| streaming. */ |
| if (tag_value != DW_TAG_compile_unit |
| /* These are allowed because they're generated while |
| breaking out COMDAT units late. */ |
| && tag_value != DW_TAG_type_unit |
| && tag_value != DW_TAG_skeleton_unit |
| && !early_dwarf |
| /* Allow nested functions to live in limbo because they will |
| only temporarily live there, as decls_for_scope will fix |
| them up. */ |
| && (TREE_CODE (t) != FUNCTION_DECL |
| || !decl_function_context (t)) |
| /* Same as nested functions above but for types. Types that |
| are local to a function will be fixed in |
| decls_for_scope. */ |
| && (!RECORD_OR_UNION_TYPE_P (t) |
| || !TYPE_CONTEXT (t) |
| || TREE_CODE (TYPE_CONTEXT (t)) != FUNCTION_DECL) |
| /* FIXME debug-early: Allow late limbo DIE creation for LTO, |
| especially in the ltrans stage, but once we implement LTO |
| dwarf streaming, we should remove this exception. */ |
| && !in_lto_p) |
| { |
| fprintf (stderr, "symbol ended up in limbo too late:"); |
| debug_generic_stmt (t); |
| gcc_unreachable (); |
| } |
| |
| limbo_node = ggc_cleared_alloc<limbo_die_node> (); |
| limbo_node->die = die; |
| limbo_node->created_for = t; |
| limbo_node->next = limbo_die_list; |
| limbo_die_list = limbo_node; |
| } |
| |
| return die; |
| } |
| |
| /* Return the DIE associated with the given type specifier. */ |
| |
| dw_die_ref |
| lookup_type_die (tree type) |
| { |
| dw_die_ref die = TYPE_SYMTAB_DIE (type); |
| if (die && die->removed) |
| { |
| TYPE_SYMTAB_DIE (type) = NULL; |
| return NULL; |
| } |
| return die; |
| } |
| |
| /* Given a TYPE_DIE representing the type TYPE, if TYPE is an |
| anonymous type named by the typedef TYPE_DIE, return the DIE of the |
| anonymous type instead the one of the naming typedef. */ |
| |
| static inline dw_die_ref |
| strip_naming_typedef (tree type, dw_die_ref type_die) |
| { |
| if (type |
| && TREE_CODE (type) == RECORD_TYPE |
| && type_die |
| && type_die->die_tag == DW_TAG_typedef |
| && is_naming_typedef_decl (TYPE_NAME (type))) |
| type_die = get_AT_ref (type_die, DW_AT_type); |
| return type_die; |
| } |
| |
| /* Like lookup_type_die, but if type is an anonymous type named by a |
| typedef[1], return the DIE of the anonymous type instead the one of |
| the naming typedef. This is because in gen_typedef_die, we did |
| equate the anonymous struct named by the typedef with the DIE of |
| the naming typedef. So by default, lookup_type_die on an anonymous |
| struct yields the DIE of the naming typedef. |
| |
| [1]: Read the comment of is_naming_typedef_decl to learn about what |
| a naming typedef is. */ |
| |
| static inline dw_die_ref |
| lookup_type_die_strip_naming_typedef (tree type) |
| { |
| dw_die_ref die = lookup_type_die (type); |
| return strip_naming_typedef (type, die); |
| } |
| |
| /* Equate a DIE to a given type specifier. */ |
| |
| static inline void |
| equate_type_number_to_die (tree type, dw_die_ref type_die) |
| { |
| TYPE_SYMTAB_DIE (type) = type_die; |
| } |
| |
| static dw_die_ref maybe_create_die_with_external_ref (tree); |
| struct GTY(()) sym_off_pair |
| { |
| const char * GTY((skip)) sym; |
| unsigned HOST_WIDE_INT off; |
| }; |
| static GTY(()) hash_map<tree, sym_off_pair> *external_die_map; |
| |
| /* Returns a hash value for X (which really is a die_struct). */ |
| |
| inline hashval_t |
| decl_die_hasher::hash (die_node *x) |
| { |
| return (hashval_t) x->decl_id; |
| } |
| |
| /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */ |
| |
| inline bool |
| decl_die_hasher::equal (die_node *x, tree y) |
| { |
| return (x->decl_id == DECL_UID (y)); |
| } |
| |
| /* Return the DIE associated with a given declaration. */ |
| |
| dw_die_ref |
| lookup_decl_die (tree decl) |
| { |
| dw_die_ref *die = decl_die_table->find_slot_with_hash (decl, DECL_UID (decl), |
| NO_INSERT); |
| if (!die) |
| { |
| if (in_lto_p) |
| return maybe_create_die_with_external_ref (decl); |
| return NULL; |
| } |
| if ((*die)->removed) |
| { |
| decl_die_table->clear_slot (die); |
| return NULL; |
| } |
| return *die; |
| } |
| |
| |
| /* Return the DIE associated with BLOCK. */ |
| |
| static inline dw_die_ref |
| lookup_block_die (tree block) |
| { |
| dw_die_ref die = BLOCK_DIE (block); |
| if (!die && in_lto_p) |
| return maybe_create_die_with_external_ref (block); |
| return die; |
| } |
| |
| /* Associate DIE with BLOCK. */ |
| |
| static inline void |
| equate_block_to_die (tree block, dw_die_ref die) |
| { |
| BLOCK_DIE (block) = die; |
| } |
| #undef BLOCK_DIE |
| |
| |
| /* For DECL which might have early dwarf output query a SYMBOL + OFFSET |
| style reference. Return true if we found one refering to a DIE for |
| DECL, otherwise return false. */ |
| |
| static bool |
| dwarf2out_die_ref_for_decl (tree decl, const char **sym, |
| unsigned HOST_WIDE_INT *off) |
| { |
| dw_die_ref die; |
| |
| if (in_lto_p) |
| { |
| /* During WPA stage and incremental linking we use a hash-map |
| to store the decl <-> label + offset map. */ |
| if (!external_die_map) |
| return false; |
| sym_off_pair *desc = external_die_map->get (decl); |
| if (!desc) |
| return false; |
| *sym = desc->sym; |
| *off = desc->off; |
| return true; |
| } |
| |
| if (TREE_CODE (decl) == BLOCK) |
| die = lookup_block_die (decl); |
| else |
| die = lookup_decl_die (decl); |
| if (!die) |
| return false; |
| |
| /* Similar to get_ref_die_offset_label, but using the "correct" |
| label. */ |
| *off = die->die_offset; |
| while (die->die_parent) |
| die = die->die_parent; |
| /* For the containing CU DIE we compute a die_symbol in |
| compute_comp_unit_symbol. */ |
| gcc_assert (die->die_tag == DW_TAG_compile_unit |
| && die->die_id.die_symbol != NULL); |
| *sym = die->die_id.die_symbol; |
| return true; |
| } |
| |
| /* Add a reference of kind ATTR_KIND to a DIE at SYMBOL + OFFSET to DIE. */ |
| |
| static void |
| add_AT_external_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, |
| const char *symbol, HOST_WIDE_INT offset) |
| { |
| /* Create a fake DIE that contains the reference. Don't use |
| new_die because we don't want to end up in the limbo list. */ |
| /* ??? We probably want to share these, thus put a ref to the DIE |
| we create here to the external_die_map entry. */ |
| dw_die_ref ref = new_die_raw (die->die_tag); |
| ref->die_id.die_symbol = symbol; |
| ref->die_offset = offset; |
| ref->with_offset = 1; |
| add_AT_die_ref (die, attr_kind, ref); |
| } |
| |
| /* Create a DIE for DECL if required and add a reference to a DIE |
| at SYMBOL + OFFSET which contains attributes dumped early. */ |
| |
| static void |
| dwarf2out_register_external_die (tree decl, const char *sym, |
| unsigned HOST_WIDE_INT off) |
| { |
| if (debug_info_level == DINFO_LEVEL_NONE) |
| return; |
| |
| if (!external_die_map) |
| external_die_map = hash_map<tree, sym_off_pair>::create_ggc (1000); |
| gcc_checking_assert (!external_die_map->get (decl)); |
| sym_off_pair p = { IDENTIFIER_POINTER (get_identifier (sym)), off }; |
| external_die_map->put (decl, p); |
| } |
| |
| /* If we have a registered external DIE for DECL return a new DIE for |
| the concrete instance with an appropriate abstract origin. */ |
| |
| static dw_die_ref |
| maybe_create_die_with_external_ref (tree decl) |
| { |
| if (!external_die_map) |
| return NULL; |
| sym_off_pair *desc = external_die_map->get (decl); |
| if (!desc) |
| return NULL; |
| |
| const char *sym = desc->sym; |
| unsigned HOST_WIDE_INT off = desc->off; |
| external_die_map->remove (decl); |
| |
| in_lto_p = false; |
| dw_die_ref die = (TREE_CODE (decl) == BLOCK |
| ? lookup_block_die (decl) : lookup_decl_die (decl)); |
| gcc_assert (!die); |
| in_lto_p = true; |
| |
| tree ctx; |
| dw_die_ref parent = NULL; |
| /* Need to lookup a DIE for the decls context - the containing |
| function or translation unit. */ |
| if (TREE_CODE (decl) == BLOCK) |
| { |
| ctx = BLOCK_SUPERCONTEXT (decl); |
| /* ??? We do not output DIEs for all scopes thus skip as |
| many DIEs as needed. */ |
| while (TREE_CODE (ctx) == BLOCK |
| && !lookup_block_die (ctx)) |
| ctx = BLOCK_SUPERCONTEXT (ctx); |
| } |
| else |
| ctx = DECL_CONTEXT (decl); |
| /* Peel types in the context stack. */ |
| while (ctx && TYPE_P (ctx)) |
| ctx = TYPE_CONTEXT (ctx); |
| /* Likewise namespaces in case we do not want to emit DIEs for them. */ |
| if (debug_info_level <= DINFO_LEVEL_TERSE) |
| while (ctx && TREE_CODE (ctx) == NAMESPACE_DECL) |
| ctx = DECL_CONTEXT (ctx); |
| if (ctx) |
| { |
| if (TREE_CODE (ctx) == BLOCK) |
| parent = lookup_block_die (ctx); |
| else if (TREE_CODE (ctx) == TRANSLATION_UNIT_DECL |
| /* Keep the 1:1 association during WPA. */ |
| && !flag_wpa |
| && flag_incremental_link != INCREMENTAL_LINK_LTO) |
| /* Otherwise all late annotations go to the main CU which |
| imports the original CUs. */ |
| parent = comp_unit_die (); |
| else if (TREE_CODE (ctx) == FUNCTION_DECL |
| && TREE_CODE (decl) != FUNCTION_DECL |
| && TREE_CODE (decl) != PARM_DECL |
| && TREE_CODE (decl) != RESULT_DECL |
| && TREE_CODE (decl) != BLOCK) |
| /* Leave function local entities parent determination to when |
| we process scope vars. */ |
| ; |
| else |
| parent = lookup_decl_die (ctx); |
| } |
| else |
| /* In some cases the FEs fail to set DECL_CONTEXT properly. |
| Handle this case gracefully by globalizing stuff. */ |
| parent = comp_unit_die (); |
| /* Create a DIE "stub". */ |
| switch (TREE_CODE (decl)) |
| { |
| case TRANSLATION_UNIT_DECL: |
| { |
| die = comp_unit_die (); |
| /* We re-target all CU decls to the LTRANS CU DIE, so no need |
| to create a DIE for the original CUs. */ |
| return die; |
| } |
| case NAMESPACE_DECL: |
| if (is_fortran (decl)) |
| die = new_die (DW_TAG_module, parent, decl); |
| else |
| die = new_die (DW_TAG_namespace, parent, decl); |
| break; |
| case FUNCTION_DECL: |
| die = new_die (DW_TAG_subprogram, parent, decl); |
| break; |
| case VAR_DECL: |
| die = new_die (DW_TAG_variable, parent, decl); |
| break; |
| case RESULT_DECL: |
| die = new_die (DW_TAG_variable, parent, decl); |
| break; |
| case PARM_DECL: |
| die = new_die (DW_TAG_formal_parameter, parent, decl); |
| break; |
| case CONST_DECL: |
| die = new_die (DW_TAG_constant, parent, decl); |
| break; |
| case LABEL_DECL: |
| die = new_die (DW_TAG_label, parent, decl); |
| break; |
| case BLOCK: |
| die = new_die (DW_TAG_lexical_block, parent, decl); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| if (TREE_CODE (decl) == BLOCK) |
| equate_block_to_die (decl, die); |
| else |
| equate_decl_number_to_die (decl, die); |
| |
| add_desc_attribute (die, decl); |
| |
| /* Add a reference to the DIE providing early debug at $sym + off. */ |
| add_AT_external_die_ref (die, DW_AT_abstract_origin, sym, off); |
| |
| return die; |
| } |
| |
| /* Returns a hash value for X (which really is a var_loc_list). */ |
| |
| inline hashval_t |
| decl_loc_hasher::hash (var_loc_list *x) |
| { |
| return (hashval_t) x->decl_id; |
| } |
| |
| /* Return nonzero if decl_id of var_loc_list X is the same as |
| UID of decl *Y. */ |
| |
| inline bool |
| decl_loc_hasher::equal (var_loc_list *x, const_tree y) |
| { |
| return (x->decl_id == DECL_UID (y)); |
| } |
| |
| /* Return the var_loc list associated with a given declaration. */ |
| |
| static inline var_loc_list * |
| lookup_decl_loc (const_tree decl) |
| { |
| if (!decl_loc_table) |
| return NULL; |
| return decl_loc_table->find_with_hash (decl, DECL_UID (decl)); |
| } |
| |
| /* Returns a hash value for X (which really is a cached_dw_loc_list_list). */ |
| |
| inline hashval_t |
| dw_loc_list_hasher::hash (cached_dw_loc_list *x) |
| { |
| return (hashval_t) x->decl_id; |
| } |
| |
| /* Return nonzero if decl_id of cached_dw_loc_list X is the same as |
| UID of decl *Y. */ |
| |
| inline bool |
| dw_loc_list_hasher::equal (cached_dw_loc_list *x, const_tree y) |
| { |
| return (x->decl_id == DECL_UID (y)); |
| } |
| |
| /* Equate a DIE to a particular declaration. */ |
| |
| static void |
| equate_decl_number_to_die (tree decl, dw_die_ref decl_die) |
| { |
| unsigned int decl_id = DECL_UID (decl); |
| |
| *decl_die_table->find_slot_with_hash (decl, decl_id, INSERT) = decl_die; |
| decl_die->decl_id = decl_id; |
| } |
| |
| /* Return how many bits covers PIECE EXPR_LIST. */ |
| |
| static HOST_WIDE_INT |
| decl_piece_bitsize (rtx piece) |
| { |
| int ret = (int) GET_MODE (piece); |
| if (ret) |
| return ret; |
| gcc_assert (GET_CODE (XEXP (piece, 0)) == CONCAT |
| && CONST_INT_P (XEXP (XEXP (piece, 0), 0))); |
| return INTVAL (XEXP (XEXP (piece, 0), 0)); |
| } |
| |
| /* Return pointer to the location of location note in PIECE EXPR_LIST. */ |
| |
| static rtx * |
| decl_piece_varloc_ptr (rtx piece) |
| { |
| if ((int) GET_MODE (piece)) |
| return &XEXP (piece, 0); |
| else |
| return &XEXP (XEXP (piece, 0), 1); |
| } |
| |
| /* Create an EXPR_LIST for location note LOC_NOTE covering BITSIZE bits. |
| Next is the chain of following piece nodes. */ |
| |
| static rtx_expr_list * |
| decl_piece_node (rtx loc_note, HOST_WIDE_INT bitsize, rtx next) |
| { |
| if (bitsize > 0 && bitsize <= (int) MAX_MACHINE_MODE) |
| return alloc_EXPR_LIST (bitsize, loc_note, next); |
| else |
| return alloc_EXPR_LIST (0, gen_rtx_CONCAT (VOIDmode, |
| GEN_INT (bitsize), |
| loc_note), next); |
| } |
| |
| /* Return rtx that should be stored into loc field for |
| LOC_NOTE and BITPOS/BITSIZE. */ |
| |
| static rtx |
| construct_piece_list (rtx loc_note, HOST_WIDE_INT bitpos, |
| HOST_WIDE_INT bitsize) |
| { |
| if (bitsize != -1) |
| { |
| loc_note = decl_piece_node (loc_note, bitsize, NULL_RTX); |
| if (bitpos != 0) |
| loc_note = decl_piece_node (NULL_RTX, bitpos, loc_note); |
| } |
| return loc_note; |
| } |
| |
| /* This function either modifies location piece list *DEST in |
| place (if SRC and INNER is NULL), or copies location piece list |
| *SRC to *DEST while modifying it. Location BITPOS is modified |
| to contain LOC_NOTE, any pieces overlapping it are removed resp. |
| not copied and if needed some padding around it is added. |
| When modifying in place, DEST should point to EXPR_LIST where |
| earlier pieces cover PIECE_BITPOS bits, when copying SRC points |
| to the start of the whole list and INNER points to the EXPR_LIST |
| where earlier pieces cover PIECE_BITPOS bits. */ |
| |
| static void |
| adjust_piece_list (rtx *dest, rtx *src, rtx *inner, |
| HOST_WIDE_INT bitpos, HOST_WIDE_INT piece_bitpos, |
| HOST_WIDE_INT bitsize, rtx loc_note) |
| { |
| HOST_WIDE_INT diff; |
| bool copy = inner != NULL; |
| |
| if (copy) |
| { |
| /* First copy all nodes preceding the current bitpos. */ |
| while (src != inner) |
| { |
| *dest = decl_piece_node (*decl_piece_varloc_ptr (*src), |
| decl_piece_bitsize (*src), NULL_RTX); |
| dest = &XEXP (*dest, 1); |
| src = &XEXP (*src, 1); |
| } |
| } |
| /* Add padding if needed. */ |
| if (bitpos != piece_bitpos) |
| { |
| *dest = decl_piece_node (NULL_RTX, bitpos - piece_bitpos, |
| copy ? NULL_RTX : *dest); |
| dest = &XEXP (*dest, 1); |
| } |
| else if (*dest && decl_piece_bitsize (*dest) == bitsize) |
| { |
| gcc_assert (!copy); |
| /* A piece with correct bitpos and bitsize already exist, |
| just update the location for it and return. */ |
| *decl_piece_varloc_ptr (*dest) = loc_note; |
| return; |
| } |
| /* Add the piece that changed. */ |
| *dest = decl_piece_node (loc_note, bitsize, copy ? NULL_RTX : *dest); |
| dest = &XEXP (*dest, 1); |
| /* Skip over pieces that overlap it. */ |
| diff = bitpos - piece_bitpos + bitsize; |
| if (!copy) |
| src = dest; |
| while (diff > 0 && *src) |
| { |
| rtx piece = *src; |
| diff -= decl_piece_bitsize (piece); |
| if (copy) |
| src = &XEXP (piece, 1); |
| else |
| { |
| *src = XEXP (piece, 1); |
| free_EXPR_LIST_node (piece); |
| } |
| } |
| /* Add padding if needed. */ |
| if (diff < 0 && *src) |
| { |
| if (!copy) |
| dest = src; |
| *dest = decl_piece_node (NULL_RTX, -diff, copy ? NULL_RTX : *dest); |
| dest = &XEXP (*dest, 1); |
| } |
| if (!copy) |
| return; |
| /* Finally copy all nodes following it. */ |
| while (*src) |
| { |
| *dest = decl_piece_node (*decl_piece_varloc_ptr (*src), |
| decl_piece_bitsize (*src), NULL_RTX); |
| dest = &XEXP (*dest, 1); |
| src = &XEXP (*src, 1); |
| } |
| } |
| |
| /* Add a variable location node to the linked list for DECL. */ |
| |
| static struct var_loc_node * |
| add_var_loc_to_decl (tree decl, rtx loc_note, const char *label, var_loc_view view) |
| { |
| unsigned int decl_id; |
| var_loc_list *temp; |
| struct var_loc_node *loc = NULL; |
| HOST_WIDE_INT bitsize = -1, bitpos = -1; |
| |
| if (VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl)) |
| { |
| tree realdecl = DECL_DEBUG_EXPR (decl); |
| if (handled_component_p (realdecl) |
| || (TREE_CODE (realdecl) == MEM_REF |
| && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR)) |
| { |
| bool reverse; |
| tree innerdecl = get_ref_base_and_extent_hwi (realdecl, &bitpos, |
| &bitsize, &reverse); |
| if (!innerdecl |
| || !DECL_P (innerdecl) |
| || DECL_IGNORED_P (innerdecl) |
| || TREE_STATIC (innerdecl) |
| || bitsize == 0 |
| || bitpos + bitsize > 256) |
| return NULL; |
| decl = innerdecl; |
| } |
| } |
| |
| decl_id = DECL_UID (decl); |
| var_loc_list **slot |
| = decl_loc_table->find_slot_with_hash (decl, decl_id, INSERT); |
| if (*slot == NULL) |
| { |
| temp = ggc_cleared_alloc<var_loc_list> (); |
| temp->decl_id = decl_id; |
| *slot = temp; |
| } |
| else |
| temp = *slot; |
| |
| /* For PARM_DECLs try to keep around the original incoming value, |
| even if that means we'll emit a zero-range .debug_loc entry. */ |
| if (temp->last |
| && temp->first == temp->last |
| && TREE_CODE (decl) == PARM_DECL |
| && NOTE_P (temp->first->loc) |
| && NOTE_VAR_LOCATION_DECL (temp->first->loc) == decl |
| && DECL_INCOMING_RTL (decl) |
| && NOTE_VAR_LOCATION_LOC (temp->first->loc) |
| && GET_CODE (NOTE_VAR_LOCATION_LOC (temp->first->loc)) |
| == GET_CODE (DECL_INCOMING_RTL (decl)) |
| && prev_real_insn (as_a<rtx_insn *> (temp->first->loc)) == NULL_RTX |
| && (bitsize != -1 |
| || !rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->first->loc), |
| NOTE_VAR_LOCATION_LOC (loc_note)) |
| || (NOTE_VAR_LOCATION_STATUS (temp->first->loc) |
| != NOTE_VAR_LOCATION_STATUS (loc_note)))) |
| { |
| loc = ggc_cleared_alloc<var_loc_node> (); |
| temp->first->next = loc; |
| temp->last = loc; |
| loc->loc = construct_piece_list (loc_note, bitpos, bitsize); |
| } |
| else if (temp->last) |
| { |
| struct var_loc_node *last = temp->last, *unused = NULL; |
| rtx *piece_loc = NULL, last_loc_note; |
| HOST_WIDE_INT piece_bitpos = 0; |
| if (last->next) |
| { |
| last = last->next; |
| gcc_assert (last->next == NULL); |
| } |
| if (bitsize != -1 && GET_CODE (last->loc) == EXPR_LIST) |
| { |
| piece_loc = &last->loc; |
| do |
| { |
| HOST_WIDE_INT cur_bitsize = decl_piece_bitsize (*piece_loc); |
| if (piece_bitpos + cur_bitsize > bitpos) |
| break; |
| piece_bitpos += cur_bitsize; |
| piece_loc = &XEXP (*piece_loc, 1); |
| } |
| while (*piece_loc); |
| } |
| /* TEMP->LAST here is either pointer to the last but one or |
| last element in the chained list, LAST is pointer to the |
| last element. */ |
| if (label && strcmp (last->label, label) == 0 && last->view == view) |
| { |
| /* For SRA optimized variables if there weren't any real |
| insns since last note, just modify the last node. */ |
| if (piece_loc != NULL) |
| { |
| adjust_piece_list (piece_loc, NULL, NULL, |
| bitpos, piece_bitpos, bitsize, loc_note); |
| return NULL; |
| } |
| /* If the last note doesn't cover any instructions, remove it. */ |
| if (temp->last != last) |
| { |
| temp->last->next = NULL; |
| unused = last; |
| last = temp->last; |
| gcc_assert (strcmp (last->label, label) != 0 || last->view != view); |
| } |
| else |
| { |
| gcc_assert (temp->first == temp->last |
| || (temp->first->next == temp->last |
| && TREE_CODE (decl) == PARM_DECL)); |
| memset (temp->last, '\0', sizeof (*temp->last)); |
| temp->last->loc = construct_piece_list (loc_note, bitpos, bitsize); |
| return temp->last; |
| } |
| } |
| if (bitsize == -1 && NOTE_P (last->loc)) |
| last_loc_note = last->loc; |
| else if (piece_loc != NULL |
| && *piece_loc != NULL_RTX |
| && piece_bitpos == bitpos |
| && decl_piece_bitsize (*piece_loc) == bitsize) |
| last_loc_note = *decl_piece_varloc_ptr (*piece_loc); |
| else |
| last_loc_note = NULL_RTX; |
| /* If the current location is the same as the end of the list, |
| and either both or neither of the locations is uninitialized, |
| we have nothing to do. */ |
| if (last_loc_note == NULL_RTX |
| || (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (last_loc_note), |
| NOTE_VAR_LOCATION_LOC (loc_note))) |
| || ((NOTE_VAR_LOCATION_STATUS (last_loc_note) |
| != NOTE_VAR_LOCATION_STATUS (loc_note)) |
| && ((NOTE_VAR_LOCATION_STATUS (last_loc_note) |
| == VAR_INIT_STATUS_UNINITIALIZED) |
| || (NOTE_VAR_LOCATION_STATUS (loc_note) |
| == VAR_INIT_STATUS_UNINITIALIZED)))) |
| { |
| /* Add LOC to the end of list and update LAST. If the last |
| element of the list has been removed above, reuse its |
| memory for the new node, otherwise allocate a new one. */ |
| if (unused) |
| { |
| loc = unused; |
| memset (loc, '\0', sizeof (*loc)); |
| } |
| else |
| loc = ggc_cleared_alloc<var_loc_node> (); |
| if (bitsize == -1 || piece_loc == NULL) |
| loc->loc = construct_piece_list (loc_note, bitpos, bitsize); |
| else |
| adjust_piece_list (&loc->loc, &last->loc, piece_loc, |
| bitpos, piece_bitpos, bitsize, loc_note); |
| last->next = loc; |
| /* Ensure TEMP->LAST will point either to the new last but one |
| element of the chain, or to the last element in it. */ |
| if (last != temp->last) |
| temp->last = last; |
| } |
| else if (unused) |
| ggc_free (unused); |
| } |
| else |
| { |
| loc = ggc_cleared_alloc<var_loc_node> (); |
| temp->first = loc; |
| temp->last = loc; |
| loc->loc = construct_piece_list (loc_note, bitpos, bitsize); |
| } |
| return loc; |
| } |
| |
| /* Keep track of the number of spaces used to indent the |
| output of the debugging routines that print the structure of |
| the DIE internal representation. */ |
| static int print_indent; |
| |
| /* Indent the line the number of spaces given by print_indent. */ |
| |
| static inline void |
| print_spaces (FILE *outfile) |
| { |
| fprintf (outfile, "%*s", print_indent, ""); |
| } |
| |
| /* Print a type signature in hex. */ |
| |
| static inline void |
| print_signature (FILE *outfile, char *sig) |
| { |
| int i; |
| |
| for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++) |
| fprintf (outfile, "%02x", sig[i] & 0xff); |
| } |
| |
| static inline void |
| print_discr_value (FILE *outfile, dw_discr_value *discr_value) |
| { |
| if (discr_value->pos) |
| fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, discr_value->v.sval); |
| else |
| fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, discr_value->v.uval); |
| } |
| |
| static void print_loc_descr (dw_loc_descr_ref, FILE *); |
| |
| /* Print the value associated to the VAL DWARF value node to OUTFILE. If |
| RECURSE, output location descriptor operations. */ |
| |
| static void |
| print_dw_val (dw_val_node *val, bool recurse, FILE *outfile) |
| { |
| switch (val->val_class) |
| { |
| case dw_val_class_addr: |
| fprintf (outfile, "address"); |
| break; |
| case dw_val_class_offset: |
| fprintf (outfile, "offset"); |
| break; |
| case dw_val_class_loc: |
| fprintf (outfile, "location descriptor"); |
| if (val->v.val_loc == NULL) |
| fprintf (outfile, " -> <null>\n"); |
| else if (recurse) |
| { |
| fprintf (outfile, ":\n"); |
| print_indent += 4; |
| print_loc_descr (val->v.val_loc, outfile); |
| print_indent -= 4; |
| } |
| else |
| { |
| if (flag_dump_noaddr || flag_dump_unnumbered) |
| fprintf (outfile, " #\n"); |
| else |
| fprintf (outfile, " (%p)\n", (void *) val->v.val_loc); |
| } |
| break; |
| case dw_val_class_loc_list: |
| fprintf (outfile, "location list -> label:%s", |
| val->v.val_loc_list->ll_symbol); |
| break; |
| case dw_val_class_view_list: |
| val = view_list_to_loc_list_val_node (val); |
| fprintf (outfile, "location list with views -> labels:%s and %s", |
| val->v.val_loc_list->ll_symbol, |
| val->v.val_loc_list->vl_symbol); |
| break; |
| case dw_val_class_range_list: |
| fprintf (outfile, "range list"); |
| break; |
| case dw_val_class_const: |
| case dw_val_class_const_implicit: |
| fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, val->v.val_int); |
| break; |
| case dw_val_class_unsigned_const: |
| case dw_val_class_unsigned_const_implicit: |
| fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, val->v.val_unsigned); |
| break; |
| case dw_val_class_const_double: |
| fprintf (outfile, "constant (" HOST_WIDE_INT_PRINT_DEC","\ |
| HOST_WIDE_INT_PRINT_UNSIGNED")", |
| val->v.val_double.high, |
| val->v.val_double.low); |
| break; |
| case dw_val_class_wide_int: |
| { |
| int i = val->v.val_wide->get_len (); |
| fprintf (outfile, "constant ("); |
| gcc_assert (i > 0); |
| if (val->v.val_wide->elt (i - 1) == 0) |
| fprintf (outfile, "0x"); |
| fprintf (outfile, HOST_WIDE_INT_PRINT_HEX, |
| val->v.val_wide->elt (--i)); |
| while (--i >= 0) |
| fprintf (outfile, HOST_WIDE_INT_PRINT_PADDED_HEX, |
| val->v.val_wide->elt (i)); |
| fprintf (outfile, ")"); |
| break; |
| } |
| case dw_val_class_vec: |
| fprintf (outfile, "floating-point or vector constant"); |
| break; |
| case dw_val_class_flag: |
| fprintf (outfile, "%u", val->v.val_flag); |
| break; |
| case dw_val_class_die_ref: |
| if (val->v.val_die_ref.die != NULL) |
| { |
| dw_die_ref die = val->v.val_die_ref.die; |
| |
| if (die->comdat_type_p) |
| { |
| fprintf (outfile, "die -> signature: "); |
| print_signature (outfile, |
| die->die_id.die_type_node->signature); |
| } |
| else if (die->die_id.die_symbol) |
| { |
| fprintf (outfile, "die -> label: %s", die->die_id.die_symbol); |
| if (die->with_offset) |
| fprintf (outfile, " + %ld", die->die_offset); |
| } |
| else |
| fprintf (outfile, "die -> %ld", die->die_offset); |
| if (flag_dump_noaddr || flag_dump_unnumbered) |
| fprintf (outfile, " #"); |
| else |
| fprintf (outfile, " (%p)", (void *) die); |
| } |
| else |
| fprintf (outfile, "die -> <null>"); |
| break; |
| case dw_val_class_vms_delta: |
| fprintf (outfile, "delta: @slotcount(%s-%s)", |
| val->v.val_vms_delta.lbl2, val->v.val_vms_delta.lbl1); |
| break; |
| case dw_val_class_symview: |
| fprintf (outfile, "view: %s", val->v.val_symbolic_view); |
| break; |
| case dw_val_class_lbl_id: |
| case dw_val_class_lineptr: |
| case dw_val_class_macptr: |
| case dw_val_class_loclistsptr: |
| case dw_val_class_high_pc: |
| fprintf (outfile, "label: %s", val->v.val_lbl_id); |
| break; |
| case dw_val_class_str: |
| if (val->v.val_str->str != NULL) |
| fprintf (outfile, "\"%s\"", val->v.val_str->str); |
| else |
| fprintf (outfile, "<null>"); |
| break; |
| case dw_val_class_file: |
| case dw_val_class_file_implicit: |
| fprintf (outfile, "\"%s\" (%d)", val->v.val_file->filename, |
| val->v.val_file->emitted_number); |
| break; |
| case dw_val_class_data8: |
| { |
| int i; |
| |
| for (i = 0; i < 8; i++) |
| fprintf (outfile, "%02x", val->v.val_data8[i]); |
| break; |
| } |
| case dw_val_class_discr_value: |
| print_discr_value (outfile, &val->v.val_discr_value); |
| break; |
| case dw_val_class_discr_list: |
| for (dw_discr_list_ref node = val->v.val_discr_list; |
| node != NULL; |
| node = node->dw_discr_next) |
| { |
| if (node->dw_discr_range) |
| { |
| fprintf (outfile, " .. "); |
| print_discr_value (outfile, &node->dw_discr_lower_bound); |
| print_discr_value (outfile, &node->dw_discr_upper_bound); |
| } |
| else |
| print_discr_value (outfile, &node->dw_discr_lower_bound); |
| |
| if (node->dw_discr_next != NULL) |
| fprintf (outfile, " | "); |
| } |
| default: |
| break; |
| } |
| } |
| |
| /* Likewise, for a DIE attribute. */ |
| |
| static void |
| print_attribute (dw_attr_node *a, bool recurse, FILE *outfile) |
| { |
| print_dw_val (&a->dw_attr_val, recurse, outfile); |
| } |
| |
| |
| /* Print the list of operands in the LOC location description to OUTFILE. This |
| routine is a debugging aid only. */ |
| |
| static void |
| print_loc_descr (dw_loc_descr_ref loc, FILE *outfile) |
| { |
| dw_loc_descr_ref l = loc; |
| |
| if (loc == NULL) |
| { |
| print_spaces (outfile); |
| fprintf (outfile, "<null>\n"); |
| return; |
| } |
| |
| for (l = loc; l != NULL; l = l->dw_loc_next) |
| { |
| print_spaces (outfile); |
| if (flag_dump_noaddr || flag_dump_unnumbered) |
| fprintf (outfile, "#"); |
| else |
| fprintf (outfile, "(%p)", (void *) l); |
| fprintf (outfile, " %s", |
| dwarf_stack_op_name (l->dw_loc_opc)); |
| if (l->dw_loc_oprnd1.val_class != dw_val_class_none) |
| { |
| fprintf (outfile, " "); |
| print_dw_val (&l->dw_loc_oprnd1, false, outfile); |
| } |
| if (l->dw_loc_oprnd2.val_class != dw_val_class_none) |
| { |
| fprintf (outfile, ", "); |
| print_dw_val (&l->dw_loc_oprnd2, false, outfile); |
| } |
| fprintf (outfile, "\n"); |
| } |
| } |
| |
| /* Print the information associated with a given DIE, and its children. |
| This routine is a debugging aid only. */ |
| |
| static void |
| print_die (dw_die_ref die, FILE *outfile) |
| { |
| dw_attr_node *a; |
| dw_die_ref c; |
| unsigned ix; |
| |
| print_spaces (outfile); |
| fprintf (outfile, "DIE %4ld: %s ", |
| die->die_offset, dwarf_tag_name (die->die_tag)); |
| if (flag_dump_noaddr || flag_dump_unnumbered) |
| fprintf (outfile, "#\n"); |
| else |
| fprintf (outfile, "(%p)\n", (void*) die); |
| print_spaces (outfile); |
| fprintf (outfile, " abbrev id: %lu", die->die_abbrev); |
| fprintf (outfile, " offset: %ld", die->die_offset); |
| fprintf (outfile, " mark: %d\n", die->die_mark); |
| |
| if (die->comdat_type_p) |
| { |
| print_spaces (outfile); |
| fprintf (outfile, " signature: "); |
| print_signature (outfile, die->die_id.die_type_node->signature); |
| fprintf (outfile, "\n"); |
| } |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| { |
| print_spaces (outfile); |
| fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr)); |
| |
| print_attribute (a, true, outfile); |
| fprintf (outfile, "\n"); |
| } |
| |
| if (die->die_child != NULL) |
| { |
| print_indent += 4; |
| FOR_EACH_CHILD (die, c, print_die (c, outfile)); |
| print_indent -= 4; |
| } |
| if (print_indent == 0) |
| fprintf (outfile, "\n"); |
| } |
| |
| /* Print the list of operations in the LOC location description. */ |
| |
| DEBUG_FUNCTION void |
| debug_dwarf_loc_descr (dw_loc_descr_ref loc) |
| { |
| print_loc_descr (loc, stderr); |
| } |
| |
| /* Print the information collected for a given DIE. */ |
| |
| DEBUG_FUNCTION void |
| debug_dwarf_die (dw_die_ref die) |
| { |
| print_die (die, stderr); |
| } |
| |
| DEBUG_FUNCTION void |
| debug (die_struct &ref) |
| { |
| print_die (&ref, stderr); |
| } |
| |
| DEBUG_FUNCTION void |
| debug (die_struct *ptr) |
| { |
| if (ptr) |
| debug (*ptr); |
| else |
| fprintf (stderr, "<nil>\n"); |
| } |
| |
| |
| /* Print all DWARF information collected for the compilation unit. |
| This routine is a debugging aid only. */ |
| |
| DEBUG_FUNCTION void |
| debug_dwarf (void) |
| { |
| print_indent = 0; |
| print_die (comp_unit_die (), stderr); |
| } |
| |
| /* Verify the DIE tree structure. */ |
| |
| DEBUG_FUNCTION void |
| verify_die (dw_die_ref die) |
| { |
| gcc_assert (!die->die_mark); |
| if (die->die_parent == NULL |
| && die->die_sib == NULL) |
| return; |
| /* Verify the die_sib list is cyclic. */ |
| dw_die_ref x = die; |
| do |
| { |
| x->die_mark = 1; |
| x = x->die_sib; |
| } |
| while (x && !x->die_mark); |
| gcc_assert (x == die); |
| x = die; |
| do |
| { |
| /* Verify all dies have the same parent. */ |
| gcc_assert (x->die_parent == die->die_parent); |
| if (x->die_child) |
| { |
| /* Verify the child has the proper parent and recurse. */ |
| gcc_assert (x->die_child->die_parent == x); |
| verify_die (x->die_child); |
| } |
| x->die_mark = 0; |
| x = x->die_sib; |
| } |
| while (x && x->die_mark); |
| } |
| |
| /* Sanity checks on DIEs. */ |
| |
| static void |
| check_die (dw_die_ref die) |
| { |
| unsigned ix; |
| dw_attr_node *a; |
| bool inline_found = false; |
| int n_location = 0, n_low_pc = 0, n_high_pc = 0, n_artificial = 0; |
| int n_decl_line = 0, n_decl_column = 0, n_decl_file = 0; |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| { |
| switch (a->dw_attr) |
| { |
| case DW_AT_inline: |
| if (a->dw_attr_val.v.val_unsigned) |
| inline_found = true; |
| break; |
| case DW_AT_location: |
| ++n_location; |
| break; |
| case DW_AT_low_pc: |
| ++n_low_pc; |
| break; |
| case DW_AT_high_pc: |
| ++n_high_pc; |
| break; |
| case DW_AT_artificial: |
| ++n_artificial; |
| break; |
| case DW_AT_decl_column: |
| ++n_decl_column; |
| break; |
| case DW_AT_decl_line: |
| ++n_decl_line; |
| break; |
| case DW_AT_decl_file: |
| ++n_decl_file; |
| break; |
| default: |
| break; |
| } |
| } |
| if (n_location > 1 || n_low_pc > 1 || n_high_pc > 1 || n_artificial > 1 |
| || n_decl_column > 1 || n_decl_line > 1 || n_decl_file > 1) |
| { |
| fprintf (stderr, "Duplicate attributes in DIE:\n"); |
| debug_dwarf_die (die); |
| gcc_unreachable (); |
| } |
| if (inline_found) |
| { |
| /* A debugging information entry that is a member of an abstract |
| instance tree [that has DW_AT_inline] should not contain any |
| attributes which describe aspects of the subroutine which vary |
| between distinct inlined expansions or distinct out-of-line |
| expansions. */ |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| gcc_assert (a->dw_attr != DW_AT_low_pc |
| && a->dw_attr != DW_AT_high_pc |
| && a->dw_attr != DW_AT_location |
| && a->dw_attr != DW_AT_frame_base |
| && a->dw_attr != DW_AT_call_all_calls |
| && a->dw_attr != DW_AT_GNU_all_call_sites); |
| } |
| } |
| |
| #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx) |
| #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx) |
| #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx) |
| |
| /* Calculate the checksum of a location expression. */ |
| |
| static inline void |
| loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx) |
| { |
| int tem; |
| inchash::hash hstate; |
| hashval_t hash; |
| |
| tem = (loc->dtprel << 8) | ((unsigned int) loc->dw_loc_opc); |
| CHECKSUM (tem); |
| hash_loc_operands (loc, hstate); |
| hash = hstate.end(); |
| CHECKSUM (hash); |
| } |
| |
| /* Calculate the checksum of an attribute. */ |
| |
| static void |
| attr_checksum (dw_attr_node *at, struct md5_ctx *ctx, int *mark) |
| { |
| dw_loc_descr_ref loc; |
| rtx r; |
| |
| CHECKSUM (at->dw_attr); |
| |
| /* We don't care that this was compiled with a different compiler |
| snapshot; if the output is the same, that's what matters. */ |
| if (at->dw_attr == DW_AT_producer) |
| return; |
| |
| switch (AT_class (at)) |
| { |
| case dw_val_class_const: |
| case dw_val_class_const_implicit: |
| CHECKSUM (at->dw_attr_val.v.val_int); |
| break; |
| case dw_val_class_unsigned_const: |
| case dw_val_class_unsigned_const_implicit: |
| CHECKSUM (at->dw_attr_val.v.val_unsigned); |
| break; |
| case dw_val_class_const_double: |
| CHECKSUM (at->dw_attr_val.v.val_double); |
| break; |
| case dw_val_class_wide_int: |
| CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (), |
| get_full_len (*at->dw_attr_val.v.val_wide) |
| * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR); |
| break; |
| case dw_val_class_vec: |
| CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array, |
| (at->dw_attr_val.v.val_vec.length |
| * at->dw_attr_val.v.val_vec.elt_size)); |
| break; |
| case dw_val_class_flag: |
| CHECKSUM (at->dw_attr_val.v.val_flag); |
| break; |
| case dw_val_class_str: |
| CHECKSUM_STRING (AT_string (at)); |
| break; |
| |
| case dw_val_class_addr: |
| r = AT_addr (at); |
| gcc_assert (GET_CODE (r) == SYMBOL_REF); |
| CHECKSUM_STRING (XSTR (r, 0)); |
| break; |
| |
| case dw_val_class_offset: |
| CHECKSUM (at->dw_attr_val.v.val_offset); |
| break; |
| |
| case dw_val_class_loc: |
| for (loc = AT_loc (at); loc; loc = loc->dw_loc_next) |
| loc_checksum (loc, ctx); |
| break; |
| |
| case dw_val_class_die_ref: |
| die_checksum (AT_ref (at), ctx, mark); |
| break; |
| |
| case dw_val_class_fde_ref: |
| case dw_val_class_vms_delta: |
| case dw_val_class_symview: |
| case dw_val_class_lbl_id: |
| case dw_val_class_lineptr: |
| case dw_val_class_macptr: |
| case dw_val_class_loclistsptr: |
| case dw_val_class_high_pc: |
| break; |
| |
| case dw_val_class_file: |
| case dw_val_class_file_implicit: |
| CHECKSUM_STRING (AT_file (at)->filename); |
| break; |
| |
| case dw_val_class_data8: |
| CHECKSUM (at->dw_attr_val.v.val_data8); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Calculate the checksum of a DIE. */ |
| |
| static void |
| die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark) |
| { |
| dw_die_ref c; |
| dw_attr_node *a; |
| unsigned ix; |
| |
| /* To avoid infinite recursion. */ |
| if (die->die_mark) |
| { |
| CHECKSUM (die->die_mark); |
| return; |
| } |
| die->die_mark = ++(*mark); |
| |
| CHECKSUM (die->die_tag); |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| attr_checksum (a, ctx, mark); |
| |
| FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark)); |
| } |
| |
| #undef CHECKSUM |
| #undef CHECKSUM_BLOCK |
| #undef CHECKSUM_STRING |
| |
| /* For DWARF-4 types, include the trailing NULL when checksumming strings. */ |
| #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx) |
| #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx) |
| #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO) + 1, ctx) |
| #define CHECKSUM_SLEB128(FOO) checksum_sleb128 ((FOO), ctx) |
| #define CHECKSUM_ULEB128(FOO) checksum_uleb128 ((FOO), ctx) |
| #define CHECKSUM_ATTR(FOO) \ |
| if (FOO) attr_checksum_ordered (die->die_tag, (FOO), ctx, mark) |
| |
| /* Calculate the checksum of a number in signed LEB128 format. */ |
| |
| static void |
| checksum_sleb128 (HOST_WIDE_INT value, struct md5_ctx *ctx) |
| { |
| unsigned char byte; |
| bool more; |
| |
| while (1) |
| { |
| byte = (value & 0x7f); |
| value >>= 7; |
| more = !((value == 0 && (byte & 0x40) == 0) |
| || (value == -1 && (byte & 0x40) != 0)); |
| if (more) |
| byte |= 0x80; |
| CHECKSUM (byte); |
| if (!more) |
| break; |
| } |
| } |
| |
| /* Calculate the checksum of a number in unsigned LEB128 format. */ |
| |
| static void |
| checksum_uleb128 (unsigned HOST_WIDE_INT value, struct md5_ctx *ctx) |
| { |
| while (1) |
| { |
| unsigned char byte = (value & 0x7f); |
| value >>= 7; |
| if (value != 0) |
| /* More bytes to follow. */ |
| byte |= 0x80; |
| CHECKSUM (byte); |
| if (value == 0) |
| break; |
| } |
| } |
| |
| /* Checksum the context of the DIE. This adds the names of any |
| surrounding namespaces or structures to the checksum. */ |
| |
| static void |
| checksum_die_context (dw_die_ref die, struct md5_ctx *ctx) |
| { |
| const char *name; |
| dw_die_ref spec; |
| int tag = die->die_tag; |
| |
| if (tag != DW_TAG_namespace |
| && tag != DW_TAG_structure_type |
| && tag != DW_TAG_class_type) |
| return; |
| |
| name = get_AT_string (die, DW_AT_name); |
| |
| spec = get_AT_ref (die, DW_AT_specification); |
| if (spec != NULL) |
| die = spec; |
| |
| if (die->die_parent != NULL) |
| checksum_die_context (die->die_parent, ctx); |
| |
| CHECKSUM_ULEB128 ('C'); |
| CHECKSUM_ULEB128 (tag); |
| if (name != NULL) |
| CHECKSUM_STRING (name); |
| } |
| |
| /* Calculate the checksum of a location expression. */ |
| |
| static inline void |
| loc_checksum_ordered (dw_loc_descr_ref loc, struct md5_ctx *ctx) |
| { |
| /* Special case for lone DW_OP_plus_uconst: checksum as if the location |
| were emitted as a DW_FORM_sdata instead of a location expression. */ |
| if (loc->dw_loc_opc == DW_OP_plus_uconst && loc->dw_loc_next == NULL) |
| { |
| CHECKSUM_ULEB128 (DW_FORM_sdata); |
| CHECKSUM_SLEB128 ((HOST_WIDE_INT) loc->dw_loc_oprnd1.v.val_unsigned); |
| return; |
| } |
| |
| /* Otherwise, just checksum the raw location expression. */ |
| while (loc != NULL) |
| { |
| inchash::hash hstate; |
| hashval_t hash; |
| |
| CHECKSUM_ULEB128 (loc->dtprel); |
| CHECKSUM_ULEB128 (loc->dw_loc_opc); |
| hash_loc_operands (loc, hstate); |
| hash = hstate.end (); |
| CHECKSUM (hash); |
| loc = loc->dw_loc_next; |
| } |
| } |
| |
| /* Calculate the checksum of an attribute. */ |
| |
| static void |
| attr_checksum_ordered (enum dwarf_tag tag, dw_attr_node *at, |
| struct md5_ctx *ctx, int *mark) |
| { |
| dw_loc_descr_ref loc; |
| rtx r; |
| |
| if (AT_class (at) == dw_val_class_die_ref) |
| { |
| dw_die_ref target_die = AT_ref (at); |
| |
| /* For pointer and reference types, we checksum only the (qualified) |
| name of the target type (if there is a name). For friend entries, |
| we checksum only the (qualified) name of the target type or function. |
| This allows the checksum to remain the same whether the target type |
| is complete or not. */ |
| if ((at->dw_attr == DW_AT_type |
| && (tag == DW_TAG_pointer_type |
| || tag == DW_TAG_reference_type |
| || tag == DW_TAG_rvalue_reference_type |
| || tag == DW_TAG_ptr_to_member_type)) |
| || (at->dw_attr == DW_AT_friend |
| && tag == DW_TAG_friend)) |
| { |
| dw_attr_node *name_attr = get_AT (target_die, DW_AT_name); |
| |
| if (name_attr != NULL) |
| { |
| dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification); |
| |
| if (decl == NULL) |
| decl = target_die; |
| CHECKSUM_ULEB128 ('N'); |
| CHECKSUM_ULEB128 (at->dw_attr); |
| if (decl->die_parent != NULL) |
| checksum_die_context (decl->die_parent, ctx); |
| CHECKSUM_ULEB128 ('E'); |
| CHECKSUM_STRING (AT_string (name_attr)); |
| return; |
| } |
| } |
| |
| /* For all other references to another DIE, we check to see if the |
| target DIE has already been visited. If it has, we emit a |
| backward reference; if not, we descend recursively. */ |
| if (target_die->die_mark > 0) |
| { |
| CHECKSUM_ULEB128 ('R'); |
| CHECKSUM_ULEB128 (at->dw_attr); |
| CHECKSUM_ULEB128 (target_die->die_mark); |
| } |
| else |
| { |
| dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification); |
| |
| if (decl == NULL) |
| decl = target_die; |
| target_die->die_mark = ++(*mark); |
| CHECKSUM_ULEB128 ('T'); |
| CHECKSUM_ULEB128 (at->dw_attr); |
| if (decl->die_parent != NULL) |
| checksum_die_context (decl->die_parent, ctx); |
| die_checksum_ordered (target_die, ctx, mark); |
| } |
| return; |
| } |
| |
| CHECKSUM_ULEB128 ('A'); |
| CHECKSUM_ULEB128 (at->dw_attr); |
| |
| switch (AT_class (at)) |
| { |
| case dw_val_class_const: |
| case dw_val_class_const_implicit: |
| CHECKSUM_ULEB128 (DW_FORM_sdata); |
| CHECKSUM_SLEB128 (at->dw_attr_val.v.val_int); |
| break; |
| |
| case dw_val_class_unsigned_const: |
| case dw_val_class_unsigned_const_implicit: |
| CHECKSUM_ULEB128 (DW_FORM_sdata); |
| CHECKSUM_SLEB128 ((int) at->dw_attr_val.v.val_unsigned); |
| break; |
| |
| case dw_val_class_const_double: |
| CHECKSUM_ULEB128 (DW_FORM_block); |
| CHECKSUM_ULEB128 (sizeof (at->dw_attr_val.v.val_double)); |
| CHECKSUM (at->dw_attr_val.v.val_double); |
| break; |
| |
| case dw_val_class_wide_int: |
| CHECKSUM_ULEB128 (DW_FORM_block); |
| CHECKSUM_ULEB128 (get_full_len (*at->dw_attr_val.v.val_wide) |
| * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT); |
| CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (), |
| get_full_len (*at->dw_attr_val.v.val_wide) |
| * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR); |
| break; |
| |
| case dw_val_class_vec: |
| CHECKSUM_ULEB128 (DW_FORM_block); |
| CHECKSUM_ULEB128 (at->dw_attr_val.v.val_vec.length |
| * at->dw_attr_val.v.val_vec.elt_size); |
| CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array, |
| (at->dw_attr_val.v.val_vec.length |
| * at->dw_attr_val.v.val_vec.elt_size)); |
| break; |
| |
| case dw_val_class_flag: |
| CHECKSUM_ULEB128 (DW_FORM_flag); |
| CHECKSUM_ULEB128 (at->dw_attr_val.v.val_flag ? 1 : 0); |
| break; |
| |
| case dw_val_class_str: |
| CHECKSUM_ULEB128 (DW_FORM_string); |
| CHECKSUM_STRING (AT_string (at)); |
| break; |
| |
| case dw_val_class_addr: |
| r = AT_addr (at); |
| gcc_assert (GET_CODE (r) == SYMBOL_REF); |
| CHECKSUM_ULEB128 (DW_FORM_string); |
| CHECKSUM_STRING (XSTR (r, 0)); |
| break; |
| |
| case dw_val_class_offset: |
| CHECKSUM_ULEB128 (DW_FORM_sdata); |
| CHECKSUM_ULEB128 (at->dw_attr_val.v.val_offset); |
| break; |
| |
| case dw_val_class_loc: |
| for (loc = AT_loc (at); loc; loc = loc->dw_loc_next) |
| loc_checksum_ordered (loc, ctx); |
| break; |
| |
| case dw_val_class_fde_ref: |
| case dw_val_class_symview: |
| case dw_val_class_lbl_id: |
| case dw_val_class_lineptr: |
| case dw_val_class_macptr: |
| case dw_val_class_loclistsptr: |
| case dw_val_class_high_pc: |
| break; |
| |
| case dw_val_class_file: |
| case dw_val_class_file_implicit: |
| CHECKSUM_ULEB128 (DW_FORM_string); |
| CHECKSUM_STRING (AT_file (at)->filename); |
| break; |
| |
| case dw_val_class_data8: |
| CHECKSUM (at->dw_attr_val.v.val_data8); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| struct checksum_attributes |
| { |
| dw_attr_node *at_name; |
| dw_attr_node *at_type; |
| dw_attr_node *at_friend; |
| dw_attr_node *at_accessibility; |
| dw_attr_node *at_address_class; |
| dw_attr_node *at_alignment; |
| dw_attr_node *at_allocated; |
| dw_attr_node *at_artificial; |
| dw_attr_node *at_associated; |
| dw_attr_node *at_binary_scale; |
| dw_attr_node *at_bit_offset; |
| dw_attr_node *at_bit_size; |
| dw_attr_node *at_bit_stride; |
| dw_attr_node *at_byte_size; |
| dw_attr_node *at_byte_stride; |
| dw_attr_node *at_const_value; |
| dw_attr_node *at_containing_type; |
| dw_attr_node *at_count; |
| dw_attr_node *at_data_location; |
| dw_attr_node *at_data_member_location; |
| dw_attr_node *at_decimal_scale; |
| dw_attr_node *at_decimal_sign; |
| dw_attr_node *at_default_value; |
| dw_attr_node *at_digit_count; |
| dw_attr_node *at_discr; |
| dw_attr_node *at_discr_list; |
| dw_attr_node *at_discr_value; |
| dw_attr_node *at_encoding; |
| dw_attr_node *at_endianity; |
| dw_attr_node *at_explicit; |
| dw_attr_node *at_is_optional; |
| dw_attr_node *at_location; |
| dw_attr_node *at_lower_bound; |
| dw_attr_node *at_mutable; |
| dw_attr_node *at_ordering; |
| dw_attr_node *at_picture_string; |
| dw_attr_node *at_prototyped; |
| dw_attr_node *at_small; |
| dw_attr_node *at_segment; |
| dw_attr_node *at_string_length; |
| dw_attr_node *at_string_length_bit_size; |
| dw_attr_node *at_string_length_byte_size; |
| dw_attr_node *at_threads_scaled; |
| dw_attr_node *at_upper_bound; |
| dw_attr_node *at_use_location; |
| dw_attr_node *at_use_UTF8; |
| dw_attr_node *at_variable_parameter; |
| dw_attr_node *at_virtuality; |
| dw_attr_node *at_visibility; |
| dw_attr_node *at_vtable_elem_location; |
| }; |
| |
| /* Collect the attributes that we will want to use for the checksum. */ |
| |
| static void |
| collect_checksum_attributes (struct checksum_attributes *attrs, dw_die_ref die) |
| { |
| dw_attr_node *a; |
| unsigned ix; |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| { |
| switch (a->dw_attr) |
| { |
| case DW_AT_name: |
| attrs->at_name = a; |
| break; |
| case DW_AT_type: |
| attrs->at_type = a; |
| break; |
| case DW_AT_friend: |
| attrs->at_friend = a; |
| break; |
| case DW_AT_accessibility: |
| attrs->at_accessibility = a; |
| break; |
| case DW_AT_address_class: |
| attrs->at_address_class = a; |
| break; |
| case DW_AT_alignment: |
| attrs->at_alignment = a; |
| break; |
| case DW_AT_allocated: |
| attrs->at_allocated = a; |
| break; |
| case DW_AT_artificial: |
| attrs->at_artificial = a; |
| break; |
| case DW_AT_associated: |
| attrs->at_associated = a; |
| break; |
| case DW_AT_binary_scale: |
| attrs->at_binary_scale = a; |
| break; |
| case DW_AT_bit_offset: |
| attrs->at_bit_offset = a; |
| break; |
| case DW_AT_bit_size: |
| attrs->at_bit_size = a; |
| break; |
| case DW_AT_bit_stride: |
| attrs->at_bit_stride = a; |
| break; |
| case DW_AT_byte_size: |
| attrs->at_byte_size = a; |
| break; |
| case DW_AT_byte_stride: |
| attrs->at_byte_stride = a; |
| break; |
| case DW_AT_const_value: |
| attrs->at_const_value = a; |
| break; |
| case DW_AT_containing_type: |
| attrs->at_containing_type = a; |
| break; |
| case DW_AT_count: |
| attrs->at_count = a; |
| break; |
| case DW_AT_data_location: |
| attrs->at_data_location = a; |
| break; |
| case DW_AT_data_member_location: |
| attrs->at_data_member_location = a; |
| break; |
| case DW_AT_decimal_scale: |
| attrs->at_decimal_scale = a; |
| break; |
| case DW_AT_decimal_sign: |
| attrs->at_decimal_sign = a; |
| break; |
| case DW_AT_default_value: |
| attrs->at_default_value = a; |
| break; |
| case DW_AT_digit_count: |
| attrs->at_digit_count = a; |
| break; |
| case DW_AT_discr: |
| attrs->at_discr = a; |
| break; |
| case DW_AT_discr_list: |
| attrs->at_discr_list = a; |
| break; |
| case DW_AT_discr_value: |
| attrs->at_discr_value = a; |
| break; |
| case DW_AT_encoding: |
| attrs->at_encoding = a; |
| break; |
| case DW_AT_endianity: |
| attrs->at_endianity = a; |
| break; |
| case DW_AT_explicit: |
| attrs->at_explicit = a; |
| break; |
| case DW_AT_is_optional: |
| attrs->at_is_optional = a; |
| break; |
| case DW_AT_location: |
| attrs->at_location = a; |
| break; |
| case DW_AT_lower_bound: |
| attrs->at_lower_bound = a; |
| break; |
| case DW_AT_mutable: |
| attrs->at_mutable = a; |
| break; |
| case DW_AT_ordering: |
| attrs->at_ordering = a; |
| break; |
| case DW_AT_picture_string: |
| attrs->at_picture_string = a; |
| break; |
| case DW_AT_prototyped: |
| attrs->at_prototyped = a; |
| break; |
| case DW_AT_small: |
| attrs->at_small = a; |
| break; |
| case DW_AT_segment: |
| attrs->at_segment = a; |
| break; |
| case DW_AT_string_length: |
| attrs->at_string_length = a; |
| break; |
| case DW_AT_string_length_bit_size: |
| attrs->at_string_length_bit_size = a; |
| break; |
| case DW_AT_string_length_byte_size: |
| attrs->at_string_length_byte_size = a; |
| break; |
| case DW_AT_threads_scaled: |
| attrs->at_threads_scaled = a; |
| break; |
| case DW_AT_upper_bound: |
| attrs->at_upper_bound = a; |
| break; |
| case DW_AT_use_location: |
| attrs->at_use_location = a; |
| break; |
| case DW_AT_use_UTF8: |
| attrs->at_use_UTF8 = a; |
| break; |
| case DW_AT_variable_parameter: |
| attrs->at_variable_parameter = a; |
| break; |
| case DW_AT_virtuality: |
| attrs->at_virtuality = a; |
| break; |
| case DW_AT_visibility: |
| attrs->at_visibility = a; |
| break; |
| case DW_AT_vtable_elem_location: |
| attrs->at_vtable_elem_location = a; |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| /* Calculate the checksum of a DIE, using an ordered subset of attributes. */ |
| |
| static void |
| die_checksum_ordered (dw_die_ref die, struct md5_ctx *ctx, int *mark) |
| { |
| dw_die_ref c; |
| dw_die_ref decl; |
| struct checksum_attributes attrs; |
| |
| CHECKSUM_ULEB128 ('D'); |
| CHECKSUM_ULEB128 (die->die_tag); |
| |
| memset (&attrs, 0, sizeof (attrs)); |
| |
| decl = get_AT_ref (die, DW_AT_specification); |
| if (decl != NULL) |
| collect_checksum_attributes (&attrs, decl); |
| collect_checksum_attributes (&attrs, die); |
| |
| CHECKSUM_ATTR (attrs.at_name); |
| CHECKSUM_ATTR (attrs.at_accessibility); |
| CHECKSUM_ATTR (attrs.at_address_class); |
| CHECKSUM_ATTR (attrs.at_allocated); |
| CHECKSUM_ATTR (attrs.at_artificial); |
| CHECKSUM_ATTR (attrs.at_associated); |
| CHECKSUM_ATTR (attrs.at_binary_scale); |
| CHECKSUM_ATTR (attrs.at_bit_offset); |
| CHECKSUM_ATTR (attrs.at_bit_size); |
| CHECKSUM_ATTR (attrs.at_bit_stride); |
| CHECKSUM_ATTR (attrs.at_byte_size); |
| CHECKSUM_ATTR (attrs.at_byte_stride); |
| CHECKSUM_ATTR (attrs.at_const_value); |
| CHECKSUM_ATTR (attrs.at_containing_type); |
| CHECKSUM_ATTR (attrs.at_count); |
| CHECKSUM_ATTR (attrs.at_data_location); |
| CHECKSUM_ATTR (attrs.at_data_member_location); |
| CHECKSUM_ATTR (attrs.at_decimal_scale); |
| CHECKSUM_ATTR (attrs.at_decimal_sign); |
| CHECKSUM_ATTR (attrs.at_default_value); |
| CHECKSUM_ATTR (attrs.at_digit_count); |
| CHECKSUM_ATTR (attrs.at_discr); |
| CHECKSUM_ATTR (attrs.at_discr_list); |
| CHECKSUM_ATTR (attrs.at_discr_value); |
| CHECKSUM_ATTR (attrs.at_encoding); |
| CHECKSUM_ATTR (attrs.at_endianity); |
| CHECKSUM_ATTR (attrs.at_explicit); |
| CHECKSUM_ATTR (attrs.at_is_optional); |
| CHECKSUM_ATTR (attrs.at_location); |
| CHECKSUM_ATTR (attrs.at_lower_bound); |
| CHECKSUM_ATTR (attrs.at_mutable); |
| CHECKSUM_ATTR (attrs.at_ordering); |
| CHECKSUM_ATTR (attrs.at_picture_string); |
| CHECKSUM_ATTR (attrs.at_prototyped); |
| CHECKSUM_ATTR (attrs.at_small); |
| CHECKSUM_ATTR (attrs.at_segment); |
| CHECKSUM_ATTR (attrs.at_string_length); |
| CHECKSUM_ATTR (attrs.at_string_length_bit_size); |
| CHECKSUM_ATTR (attrs.at_string_length_byte_size); |
| CHECKSUM_ATTR (attrs.at_threads_scaled); |
| CHECKSUM_ATTR (attrs.at_upper_bound); |
| CHECKSUM_ATTR (attrs.at_use_location); |
| CHECKSUM_ATTR (attrs.at_use_UTF8); |
| CHECKSUM_ATTR (attrs.at_variable_parameter); |
| CHECKSUM_ATTR (attrs.at_virtuality); |
| CHECKSUM_ATTR (attrs.at_visibility); |
| CHECKSUM_ATTR (attrs.at_vtable_elem_location); |
| CHECKSUM_ATTR (attrs.at_type); |
| CHECKSUM_ATTR (attrs.at_friend); |
| CHECKSUM_ATTR (attrs.at_alignment); |
| |
| /* Checksum the child DIEs. */ |
| c = die->die_child; |
| if (c) do { |
| dw_attr_node *name_attr; |
| |
| c = c->die_sib; |
| name_attr = get_AT (c, DW_AT_name); |
| if (is_template_instantiation (c)) |
| { |
| /* Ignore instantiations of member type and function templates. */ |
| } |
| else if (name_attr != NULL |
| && (is_type_die (c) || c->die_tag == DW_TAG_subprogram)) |
| { |
| /* Use a shallow checksum for named nested types and member |
| functions. */ |
| CHECKSUM_ULEB128 ('S'); |
| CHECKSUM_ULEB128 (c->die_tag); |
| CHECKSUM_STRING (AT_string (name_attr)); |
| } |
| else |
| { |
| /* Use a deep checksum for other children. */ |
| /* Mark this DIE so it gets processed when unmarking. */ |
| if (c->die_mark == 0) |
| c->die_mark = -1; |
| die_checksum_ordered (c, ctx, mark); |
| } |
| } while (c != die->die_child); |
| |
| CHECKSUM_ULEB128 (0); |
| } |
| |
| /* Add a type name and tag to a hash. */ |
| static void |
| die_odr_checksum (int tag, const char *name, md5_ctx *ctx) |
| { |
| CHECKSUM_ULEB128 (tag); |
| CHECKSUM_STRING (name); |
| } |
| |
| #undef CHECKSUM |
| #undef CHECKSUM_STRING |
| #undef CHECKSUM_ATTR |
| #undef CHECKSUM_LEB128 |
| #undef CHECKSUM_ULEB128 |
| |
| /* Generate the type signature for DIE. This is computed by generating an |
| MD5 checksum over the DIE's tag, its relevant attributes, and its |
| children. Attributes that are references to other DIEs are processed |
| by recursion, using the MARK field to prevent infinite recursion. |
| If the DIE is nested inside a namespace or another type, we also |
| need to include that context in the signature. The lower 64 bits |
| of the resulting MD5 checksum comprise the signature. */ |
| |
| static void |
| generate_type_signature (dw_die_ref die, comdat_type_node *type_node) |
| { |
| int mark; |
| const char *name; |
| unsigned char checksum[16]; |
| struct md5_ctx ctx; |
| dw_die_ref decl; |
| dw_die_ref parent; |
| |
| name = get_AT_string (die, DW_AT_name); |
| decl = get_AT_ref (die, DW_AT_specification); |
| parent = get_die_parent (die); |
| |
| /* First, compute a signature for just the type name (and its surrounding |
| context, if any. This is stored in the type unit DIE for link-time |
| ODR (one-definition rule) checking. */ |
| |
| if (is_cxx () && name != NULL) |
| { |
| md5_init_ctx (&ctx); |
| |
| /* Checksum the names of surrounding namespaces and structures. */ |
| if (parent != NULL) |
| checksum_die_context (parent, &ctx); |
| |
| /* Checksum the current DIE. */ |
| die_odr_checksum (die->die_tag, name, &ctx); |
| md5_finish_ctx (&ctx, checksum); |
| |
| add_AT_data8 (type_node->root_die, DW_AT_GNU_odr_signature, &checksum[8]); |
| } |
| |
| /* Next, compute the complete type signature. */ |
| |
| md5_init_ctx (&ctx); |
| mark = 1; |
| die->die_mark = mark; |
| |
| /* Checksum the names of surrounding namespaces and structures. */ |
| if (parent != NULL) |
| checksum_die_context (parent, &ctx); |
| |
| /* Checksum the DIE and its children. */ |
| die_checksum_ordered (die, &ctx, &mark); |
| unmark_all_dies (die); |
| md5_finish_ctx (&ctx, checksum); |
| |
| /* Store the signature in the type node and link the type DIE and the |
| type node together. */ |
| memcpy (type_node->signature, &checksum[16 - DWARF_TYPE_SIGNATURE_SIZE], |
| DWARF_TYPE_SIGNATURE_SIZE); |
| die->comdat_type_p = true; |
| die->die_id.die_type_node = type_node; |
| type_node->type_die = die; |
| |
| /* If the DIE is a specification, link its declaration to the type node |
| as well. */ |
| if (decl != NULL) |
| { |
| decl->comdat_type_p = true; |
| decl->die_id.die_type_node = type_node; |
| } |
| } |
| |
| /* Do the location expressions look same? */ |
| static inline int |
| same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark) |
| { |
| return loc1->dw_loc_opc == loc2->dw_loc_opc |
| && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark) |
| && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark); |
| } |
| |
| /* Do the values look the same? */ |
| static int |
| same_dw_val_p (const dw_val_node *v1, const dw_val_node *v2, int *mark) |
| { |
| dw_loc_descr_ref loc1, loc2; |
| rtx r1, r2; |
| |
| if (v1->val_class != v2->val_class) |
| return 0; |
| |
| switch (v1->val_class) |
| { |
| case dw_val_class_const: |
| case dw_val_class_const_implicit: |
| return v1->v.val_int == v2->v.val_int; |
| case dw_val_class_unsigned_const: |
| case dw_val_class_unsigned_const_implicit: |
| return v1->v.val_unsigned == v2->v.val_unsigned; |
| case dw_val_class_const_double: |
| return v1->v.val_double.high == v2->v.val_double.high |
| && v1->v.val_double.low == v2->v.val_double.low; |
| case dw_val_class_wide_int: |
| return *v1->v.val_wide == *v2->v.val_wide; |
| case dw_val_class_vec: |
| if (v1->v.val_vec.length != v2->v.val_vec.length |
| || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size) |
| return 0; |
| if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array, |
| v1->v.val_vec.length * v1->v.val_vec.elt_size)) |
| return 0; |
| return 1; |
| case dw_val_class_flag: |
| return v1->v.val_flag == v2->v.val_flag; |
| case dw_val_class_str: |
| return !strcmp (v1->v.val_str->str, v2->v.val_str->str); |
| |
| case dw_val_class_addr: |
| r1 = v1->v.val_addr; |
| r2 = v2->v.val_addr; |
| if (GET_CODE (r1) != GET_CODE (r2)) |
| return 0; |
| return !rtx_equal_p (r1, r2); |
| |
| case dw_val_class_offset: |
| return v1->v.val_offset == v2->v.val_offset; |
| |
| case dw_val_class_loc: |
| for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc; |
| loc1 && loc2; |
| loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next) |
| if (!same_loc_p (loc1, loc2, mark)) |
| return 0; |
| return !loc1 && !loc2; |
| |
| case dw_val_class_die_ref: |
| return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark); |
| |
| case dw_val_class_symview: |
| return strcmp (v1->v.val_symbolic_view, v2->v.val_symbolic_view) == 0; |
| |
| case dw_val_class_fde_ref: |
| case dw_val_class_vms_delta: |
| case dw_val_class_lbl_id: |
| case dw_val_class_lineptr: |
| case dw_val_class_macptr: |
| case dw_val_class_loclistsptr: |
| case dw_val_class_high_pc: |
| return 1; |
| |
| case dw_val_class_file: |
| case dw_val_class_file_implicit: |
| return v1->v.val_file == v2->v.val_file; |
| |
| case dw_val_class_data8: |
| return !memcmp (v1->v.val_data8, v2->v.val_data8, 8); |
| |
| default: |
| return 1; |
| } |
| } |
| |
| /* Do the attributes look the same? */ |
| |
| static int |
| same_attr_p (dw_attr_node *at1, dw_attr_node *at2, int *mark) |
| { |
| if (at1->dw_attr != at2->dw_attr) |
| return 0; |
| |
| /* We don't care that this was compiled with a different compiler |
| snapshot; if the output is the same, that's what matters. */ |
| if (at1->dw_attr == DW_AT_producer) |
| return 1; |
| |
| return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark); |
| } |
| |
| /* Do the dies look the same? */ |
| |
| static int |
| same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark) |
| { |
| dw_die_ref c1, c2; |
| dw_attr_node *a1; |
| unsigned ix; |
| |
| /* To avoid infinite recursion. */ |
| if (die1->die_mark) |
| return die1->die_mark == die2->die_mark; |
| die1->die_mark = die2->die_mark = ++(*mark); |
| |
| if (die1->die_tag != die2->die_tag) |
| return 0; |
| |
| if (vec_safe_length (die1->die_attr) != vec_safe_length (die2->die_attr)) |
| return 0; |
| |
| FOR_EACH_VEC_SAFE_ELT (die1->die_attr, ix, a1) |
| if (!same_attr_p (a1, &(*die2->die_attr)[ix], mark)) |
| return 0; |
| |
| c1 = die1->die_child; |
| c2 = die2->die_child; |
| if (! c1) |
| { |
| if (c2) |
| return 0; |
| } |
| else |
| for (;;) |
| { |
| if (!same_die_p (c1, c2, mark)) |
| return 0; |
| c1 = c1->die_sib; |
| c2 = c2->die_sib; |
| if (c1 == die1->die_child) |
| { |
| if (c2 == die2->die_child) |
| break; |
| else |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its |
| children, and set die_symbol. */ |
| |
| static void |
| compute_comp_unit_symbol (dw_die_ref unit_die) |
| { |
| const char *die_name = get_AT_string (unit_die, DW_AT_name); |
| const char *base = die_name ? lbasename (die_name) : "anonymous"; |
| char *name = XALLOCAVEC (char, strlen (base) + 64); |
| char *p; |
| int i, mark; |
| unsigned char checksum[16]; |
| struct md5_ctx ctx; |
| |
| /* Compute the checksum of the DIE, then append part of it as hex digits to |
| the name filename of the unit. */ |
| |
| md5_init_ctx (&ctx); |
| mark = 0; |
| die_checksum (unit_die, &ctx, &mark); |
| unmark_all_dies (unit_die); |
| md5_finish_ctx (&ctx, checksum); |
| |
| /* When we this for comp_unit_die () we have a DW_AT_name that might |
| not start with a letter but with anything valid for filenames and |
| clean_symbol_name doesn't fix that up. Prepend 'g' if the first |
| character is not a letter. */ |
| sprintf (name, "%s%s.", ISALPHA (*base) ? "" : "g", base); |
| clean_symbol_name (name); |
| |
| p = name + strlen (name); |
| for (i = 0; i < 4; i++) |
| { |
| sprintf (p, "%.2x", checksum[i]); |
| p += 2; |
| } |
| |
| unit_die->die_id.die_symbol = xstrdup (name); |
| } |
| |
| /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */ |
| |
| static int |
| is_type_die (dw_die_ref die) |
| { |
| switch (die->die_tag) |
| { |
| case DW_TAG_array_type: |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_enumeration_type: |
| case DW_TAG_pointer_type: |
| case DW_TAG_reference_type: |
| case DW_TAG_rvalue_reference_type: |
| case DW_TAG_string_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_subroutine_type: |
| case DW_TAG_union_type: |
| case DW_TAG_ptr_to_member_type: |
| case DW_TAG_set_type: |
| case DW_TAG_subrange_type: |
| case DW_TAG_base_type: |
| case DW_TAG_const_type: |
| case DW_TAG_file_type: |
| case DW_TAG_packed_type: |
| case DW_TAG_volatile_type: |
| case DW_TAG_typedef: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| /* Returns true iff C is a compile-unit DIE. */ |
| |
| static inline bool |
| is_cu_die (dw_die_ref c) |
| { |
| return c && (c->die_tag == DW_TAG_compile_unit |
| || c->die_tag == DW_TAG_skeleton_unit); |
| } |
| |
| /* Returns true iff C is a unit DIE of some sort. */ |
| |
| static inline bool |
| is_unit_die (dw_die_ref c) |
| { |
| return c && (c->die_tag == DW_TAG_compile_unit |
| || c->die_tag == DW_TAG_partial_unit |
| || c->die_tag == DW_TAG_type_unit |
| || c->die_tag == DW_TAG_skeleton_unit); |
| } |
| |
| /* Returns true iff C is a namespace DIE. */ |
| |
| static inline bool |
| is_namespace_die (dw_die_ref c) |
| { |
| return c && c->die_tag == DW_TAG_namespace; |
| } |
| |
| /* Return non-zero if this DIE is a template parameter. */ |
| |
| static inline bool |
| is_template_parameter (dw_die_ref die) |
| { |
| switch (die->die_tag) |
| { |
| case DW_TAG_template_type_param: |
| case DW_TAG_template_value_param: |
| case DW_TAG_GNU_template_template_param: |
| case DW_TAG_GNU_template_parameter_pack: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* Return non-zero if this DIE represents a template instantiation. */ |
| |
| static inline bool |
| is_template_instantiation (dw_die_ref die) |
| { |
| dw_die_ref c; |
| |
| if (!is_type_die (die) && die->die_tag != DW_TAG_subprogram) |
| return false; |
| FOR_EACH_CHILD (die, c, if (is_template_parameter (c)) return true); |
| return false; |
| } |
| |
| static char * |
| gen_internal_sym (const char *prefix) |
| { |
| char buf[MAX_ARTIFICIAL_LABEL_BYTES]; |
| |
| ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++); |
| return xstrdup (buf); |
| } |
| |
| /* Return non-zero if this DIE is a declaration. */ |
| |
| static int |
| is_declaration_die (dw_die_ref die) |
| { |
| dw_attr_node *a; |
| unsigned ix; |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| if (a->dw_attr == DW_AT_declaration) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Return non-zero if this DIE is nested inside a subprogram. */ |
| |
| static int |
| is_nested_in_subprogram (dw_die_ref die) |
| { |
| dw_die_ref decl = get_AT_ref (die, DW_AT_specification); |
| |
| if (decl == NULL) |
| decl = die; |
| return local_scope_p (decl); |
| } |
| |
| /* Return non-zero if this DIE contains a defining declaration of a |
| subprogram. */ |
| |
| static int |
| contains_subprogram_definition (dw_die_ref die) |
| { |
| dw_die_ref c; |
| |
| if (die->die_tag == DW_TAG_subprogram && ! is_declaration_die (die)) |
| return 1; |
| FOR_EACH_CHILD (die, c, if (contains_subprogram_definition (c)) return 1); |
| return 0; |
| } |
| |
| /* Return non-zero if this is a type DIE that should be moved to a |
| COMDAT .debug_types section or .debug_info section with DW_UT_*type |
| unit type. */ |
| |
| static int |
| should_move_die_to_comdat (dw_die_ref die) |
| { |
| switch (die->die_tag) |
| { |
| case DW_TAG_class_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_enumeration_type: |
| case DW_TAG_union_type: |
| /* Don't move declarations, inlined instances, types nested in a |
| subprogram, or types that contain subprogram definitions. */ |
| if (is_declaration_die (die) |
| || get_AT (die, DW_AT_abstract_origin) |
| || is_nested_in_subprogram (die) |
| || contains_subprogram_definition (die)) |
| return 0; |
| return 1; |
| case DW_TAG_array_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_pointer_type: |
| case DW_TAG_reference_type: |
| case DW_TAG_rvalue_reference_type: |
| case DW_TAG_string_type: |
| case DW_TAG_subroutine_type: |
| case DW_TAG_ptr_to_member_type: |
| case DW_TAG_set_type: |
| case DW_TAG_subrange_type: |
| case DW_TAG_base_type: |
| case DW_TAG_const_type: |
| case DW_TAG_file_type: |
| case DW_TAG_packed_type: |
| case DW_TAG_volatile_type: |
| case DW_TAG_typedef: |
| default: |
| return 0; |
| } |
| } |
| |
| /* Make a clone of DIE. */ |
| |
| static dw_die_ref |
| clone_die (dw_die_ref die) |
| { |
| dw_die_ref clone = new_die_raw (die->die_tag); |
| dw_attr_node *a; |
| unsigned ix; |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| add_dwarf_attr (clone, a); |
| |
| return clone; |
| } |
| |
| /* Make a clone of the tree rooted at DIE. */ |
| |
| static dw_die_ref |
| clone_tree (dw_die_ref die) |
| { |
| dw_die_ref c; |
| dw_die_ref clone = clone_die (die); |
| |
| FOR_EACH_CHILD (die, c, add_child_die (clone, clone_tree (c))); |
| |
| return clone; |
| } |
| |
| /* Make a clone of DIE as a declaration. */ |
| |
| static dw_die_ref |
| clone_as_declaration (dw_die_ref die) |
| { |
| dw_die_ref clone; |
| dw_die_ref decl; |
| dw_attr_node *a; |
| unsigned ix; |
| |
| /* If the DIE is already a declaration, just clone it. */ |
| if (is_declaration_die (die)) |
| return clone_die (die); |
| |
| /* If the DIE is a specification, just clone its declaration DIE. */ |
| decl = get_AT_ref (die, DW_AT_specification); |
| if (decl != NULL) |
| { |
| clone = clone_die (decl); |
| if (die->comdat_type_p) |
| add_AT_die_ref (clone, DW_AT_signature, die); |
| return clone; |
| } |
| |
| clone = new_die_raw (die->die_tag); |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| { |
| /* We don't want to copy over all attributes. |
| For example we don't want DW_AT_byte_size because otherwise we will no |
| longer have a declaration and GDB will treat it as a definition. */ |
| |
| switch (a->dw_attr) |
| { |
| case DW_AT_abstract_origin: |
| case DW_AT_artificial: |
| case DW_AT_containing_type: |
| case DW_AT_external: |
| case DW_AT_name: |
| case DW_AT_type: |
| case DW_AT_virtuality: |
| case DW_AT_linkage_name: |
| case DW_AT_MIPS_linkage_name: |
| add_dwarf_attr (clone, a); |
| break; |
| case DW_AT_byte_size: |
| case DW_AT_alignment: |
| default: |
| break; |
| } |
| } |
| |
| if (die->comdat_type_p) |
| add_AT_die_ref (clone, DW_AT_signature, die); |
| |
| add_AT_flag (clone, DW_AT_declaration, 1); |
| return clone; |
| } |
| |
| |
| /* Structure to map a DIE in one CU to its copy in a comdat type unit. */ |
| |
| struct decl_table_entry |
| { |
| dw_die_ref orig; |
| dw_die_ref copy; |
| }; |
| |
| /* Helpers to manipulate hash table of copied declarations. */ |
| |
| /* Hashtable helpers. */ |
| |
| struct decl_table_entry_hasher : free_ptr_hash <decl_table_entry> |
| { |
| typedef die_struct *compare_type; |
| static inline hashval_t hash (const decl_table_entry *); |
| static inline bool equal (const decl_table_entry *, const die_struct *); |
| }; |
| |
| inline hashval_t |
| decl_table_entry_hasher::hash (const decl_table_entry *entry) |
| { |
| return htab_hash_pointer (entry->orig); |
| } |
| |
| inline bool |
| decl_table_entry_hasher::equal (const decl_table_entry *entry1, |
| const die_struct *entry2) |
| { |
| return entry1->orig == entry2; |
| } |
| |
| typedef hash_table<decl_table_entry_hasher> decl_hash_type; |
| |
| /* Copy DIE and its ancestors, up to, but not including, the compile unit |
| or type unit entry, to a new tree. Adds the new tree to UNIT and returns |
| a pointer to the copy of DIE. If DECL_TABLE is provided, it is used |
| to check if the ancestor has already been copied into UNIT. */ |
| |
| static dw_die_ref |
| copy_ancestor_tree (dw_die_ref unit, dw_die_ref die, |
| decl_hash_type *decl_table) |
| { |
| dw_die_ref parent = die->die_parent; |
| dw_die_ref new_parent = unit; |
| dw_die_ref copy; |
| decl_table_entry **slot = NULL; |
| struct decl_table_entry *entry = NULL; |
| |
| /* If DIE refers to a stub unfold that so we get the appropriate |
| DIE registered as orig in decl_table. */ |
| if (dw_die_ref c = get_AT_ref (die, DW_AT_signature)) |
| die = c; |
| |
| if (decl_table) |
| { |
| /* Check if the entry has already been copied to UNIT. */ |
| slot = decl_table->find_slot_with_hash (die, htab_hash_pointer (die), |
| INSERT); |
| if (*slot != HTAB_EMPTY_ENTRY) |
| { |
| entry = *slot; |
| return entry->copy; |
| } |
| |
| /* Record in DECL_TABLE that DIE has been copied to UNIT. */ |
| entry = XCNEW (struct decl_table_entry); |
| entry->orig = die; |
| entry->copy = NULL; |
| *slot = entry; |
| } |
| |
| if (parent != NULL) |
| { |
| dw_die_ref spec = get_AT_ref (parent, DW_AT_specification); |
| if (spec != NULL) |
| parent = spec; |
| if (!is_unit_die (parent)) |
| new_parent = copy_ancestor_tree (unit, parent, decl_table); |
| } |
| |
| copy = clone_as_declaration (die); |
| add_child_die (new_parent, copy); |
| |
| if (decl_table) |
| { |
| /* Record the pointer to the copy. */ |
| entry->copy = copy; |
| } |
| |
| return copy; |
| } |
| /* Copy the declaration context to the new type unit DIE. This includes |
| any surrounding namespace or type declarations. If the DIE has an |
| AT_specification attribute, it also includes attributes and children |
| attached to the specification, and returns a pointer to the original |
| parent of the declaration DIE. Returns NULL otherwise. */ |
| |
| static dw_die_ref |
| copy_declaration_context (dw_die_ref unit, dw_die_ref die) |
| { |
| dw_die_ref decl; |
| dw_die_ref new_decl; |
| dw_die_ref orig_parent = NULL; |
| |
| decl = get_AT_ref (die, DW_AT_specification); |
| if (decl == NULL) |
| decl = die; |
| else |
| { |
| unsigned ix; |
| dw_die_ref c; |
| dw_attr_node *a; |
| |
| /* The original DIE will be changed to a declaration, and must |
| be moved to be a child of the original declaration DIE. */ |
| orig_parent = decl->die_parent; |
| |
| /* Copy the type node pointer from the new DIE to the original |
| declaration DIE so we can forward references later. */ |
| decl->comdat_type_p = true; |
| decl->die_id.die_type_node = die->die_id.die_type_node; |
| |
| remove_AT (die, DW_AT_specification); |
| |
| FOR_EACH_VEC_SAFE_ELT (decl->die_attr, ix, a) |
| { |
| if (a->dw_attr != DW_AT_name |
| && a->dw_attr != DW_AT_declaration |
| && a->dw_attr != DW_AT_external) |
| add_dwarf_attr (die, a); |
| } |
| |
| FOR_EACH_CHILD (decl, c, add_child_die (die, clone_tree (c))); |
| } |
| |
| if (decl->die_parent != NULL |
| && !is_unit_die (decl->die_parent)) |
| { |
| new_decl = copy_ancestor_tree (unit, decl, NULL); |
| if (new_decl != NULL) |
| { |
| remove_AT (new_decl, DW_AT_signature); |
| add_AT_specification (die, new_decl); |
| } |
| } |
| |
| return orig_parent; |
| } |
| |
| /* Generate the skeleton ancestor tree for the given NODE, then clone |
| the DIE and add the clone into the tree. */ |
| |
| static void |
| generate_skeleton_ancestor_tree (skeleton_chain_node *node) |
| { |
| if (node->new_die != NULL) |
| return; |
| |
| node->new_die = clone_as_declaration (node->old_die); |
| |
| if (node->parent != NULL) |
| { |
| generate_skeleton_ancestor_tree (node->parent); |
| add_child_die (node->parent->new_die, node->new_die); |
| } |
| } |
| |
| /* Generate a skeleton tree of DIEs containing any declarations that are |
| found in the original tree. We traverse the tree looking for declaration |
| DIEs, and construct the skeleton from the bottom up whenever we find one. */ |
| |
| static void |
| generate_skeleton_bottom_up (skeleton_chain_node *parent) |
| { |
| skeleton_chain_node node; |
| dw_die_ref c; |
| dw_die_ref first; |
| dw_die_ref prev = NULL; |
| dw_die_ref next = NULL; |
| |
| node.parent = parent; |
| |
| first = c = parent->old_die->die_child; |
| if (c) |
| next = c->die_sib; |
| if (c) do { |
| if (prev == NULL || prev->die_sib == c) |
| prev = c; |
| c = next; |
| next = (c == first ? NULL : c->die_sib); |
| node.old_die = c; |
| node.new_die = NULL; |
| if (is_declaration_die (c)) |
| { |
| if (is_template_instantiation (c)) |
| { |
| /* Instantiated templates do not need to be cloned into the |
| type unit. Just move the DIE and its children back to |
| the skeleton tree (in the main CU). */ |
| remove_child_with_prev (c, prev); |
| add_child_die (parent->new_die, c); |
| c = prev; |
| } |
| else if (c->comdat_type_p) |
| { |
| /* This is the skeleton of earlier break_out_comdat_types |
| type. Clone the existing DIE, but keep the children |
| under the original (which is in the main CU). */ |
| dw_die_ref clone = clone_die (c); |
| |
| replace_child (c, clone, prev); |
| generate_skeleton_ancestor_tree (parent); |
| add_child_die (parent->new_die, c); |
| c = clone; |
| continue; |
| } |
| else |
| { |
| /* Clone the existing DIE, move the original to the skeleton |
| tree (which is in the main CU), and put the clone, with |
| all the original's children, where the original came from |
| (which is about to be moved to the type unit). */ |
| dw_die_ref clone = clone_die (c); |
| move_all_children (c, clone); |
| |
| /* If the original has a DW_AT_object_pointer attribute, |
| it would now point to a child DIE just moved to the |
| cloned tree, so we need to remove that attribute from |
| the original. */ |
| remove_AT (c, DW_AT_object_pointer); |
| |
| replace_child (c, clone, prev); |
| generate_skeleton_ancestor_tree (parent); |
| add_child_die (parent->new_die, c); |
| node.old_die = clone; |
| node.new_die = c; |
| c = clone; |
| } |
| } |
| generate_skeleton_bottom_up (&node); |
| } while (next != NULL); |
| } |
| |
| /* Wrapper function for generate_skeleton_bottom_up. */ |
| |
| static dw_die_ref |
| generate_skeleton (dw_die_ref die) |
| { |
| skeleton_chain_node node; |
| |
| node.old_die = die; |
| node.new_die = NULL; |
| node.parent = NULL; |
| |
| /* If this type definition is nested inside another type, |
| and is not an instantiation of a template, always leave |
| at least a declaration in its place. */ |
| if (die->die_parent != NULL |
| && is_type_die (die->die_parent) |
| && !is_template_instantiation (die)) |
| node.new_die = clone_as_declaration (die); |
| |
| generate_skeleton_bottom_up (&node); |
| return node.new_die; |
| } |
| |
| /* Remove the CHILD DIE from its parent, possibly replacing it with a cloned |
| declaration. The original DIE is moved to a new compile unit so that |
| existing references to it follow it to the new location. If any of the |
| original DIE's descendants is a declaration, we need to replace the |
| original DIE with a skeleton tree and move the declarations back into the |
| skeleton tree. */ |
| |
| static dw_die_ref |
| remove_child_or_replace_with_skeleton (dw_die_ref unit, dw_die_ref child, |
| dw_die_ref prev) |
| { |
| dw_die_ref skeleton, orig_parent; |
| |
| /* Copy the declaration context to the type unit DIE. If the returned |
| ORIG_PARENT is not NULL, the skeleton needs to be added as a child of |
| that DIE. */ |
| orig_parent = copy_declaration_context (unit, child); |
| |
| skeleton = generate_skeleton (child); |
| if (skeleton == NULL) |
| remove_child_with_prev (child, prev); |
| else |
| { |
| skeleton->comdat_type_p = true; |
| skeleton->die_id.die_type_node = child->die_id.die_type_node; |
| |
| /* If the original DIE was a specification, we need to put |
| the skeleton under the parent DIE of the declaration. |
| This leaves the original declaration in the tree, but |
| it will be pruned later since there are no longer any |
| references to it. */ |
| if (orig_parent != NULL) |
| { |
| remove_child_with_prev (child, prev); |
| add_child_die (orig_parent, skeleton); |
| } |
| else |
| replace_child (child, skeleton, prev); |
| } |
| |
| return skeleton; |
| } |
| |
| static void |
| copy_dwarf_procs_ref_in_attrs (dw_die_ref die, |
| comdat_type_node *type_node, |
| hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs); |
| |
| /* Helper for copy_dwarf_procs_ref_in_dies. Make a copy of the DIE DWARF |
| procedure, put it under TYPE_NODE and return the copy. Continue looking for |
| DWARF procedure references in the DW_AT_location attribute. */ |
| |
| static dw_die_ref |
| copy_dwarf_procedure (dw_die_ref die, |
| comdat_type_node *type_node, |
| hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs) |
| { |
| gcc_assert (die->die_tag == DW_TAG_dwarf_procedure); |
| |
| /* DWARF procedures are not supposed to have children... */ |
| gcc_assert (die->die_child == NULL); |
| |
| /* ... and they are supposed to have only one attribute: DW_AT_location. */ |
| gcc_assert (vec_safe_length (die->die_attr) == 1 |
| && ((*die->die_attr)[0].dw_attr == DW_AT_location)); |
| |
| /* Do not copy more than once DWARF procedures. */ |
| bool existed; |
| dw_die_ref &die_copy = copied_dwarf_procs.get_or_insert (die, &existed); |
| if (existed) |
| return die_copy; |
| |
| die_copy = clone_die (die); |
| add_child_die (type_node->root_die, die_copy); |
| copy_dwarf_procs_ref_in_attrs (die_copy, type_node, copied_dwarf_procs); |
| return die_copy; |
| } |
| |
| /* Helper for copy_dwarf_procs_ref_in_dies. Look for references to DWARF |
| procedures in DIE's attributes. */ |
| |
| static void |
| copy_dwarf_procs_ref_in_attrs (dw_die_ref die, |
| comdat_type_node *type_node, |
| hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs) |
| { |
| dw_attr_node *a; |
| unsigned i; |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, i, a) |
| { |
| dw_loc_descr_ref loc; |
| |
| if (a->dw_attr_val.val_class != dw_val_class_loc) |
| continue; |
| |
| for (loc = a->dw_attr_val.v.val_loc; loc != NULL; loc = loc->dw_loc_next) |
| { |
| switch (loc->dw_loc_opc) |
| { |
| case DW_OP_call2: |
| case DW_OP_call4: |
| case DW_OP_call_ref: |
| gcc_assert (loc->dw_loc_oprnd1.val_class |
| == dw_val_class_die_ref); |
| loc->dw_loc_oprnd1.v.val_die_ref.die |
| = copy_dwarf_procedure (loc->dw_loc_oprnd1.v.val_die_ref.die, |
| type_node, |
| copied_dwarf_procs); |
| |
| default: |
| break; |
| } |
| } |
| } |
| } |
| |
| /* Copy DWARF procedures that are referenced by the DIE tree to TREE_NODE and |
| rewrite references to point to the copies. |
| |
| References are looked for in DIE's attributes and recursively in all its |
| children attributes that are location descriptions. COPIED_DWARF_PROCS is a |
| mapping from old DWARF procedures to their copy. It is used not to copy |
| twice the same DWARF procedure under TYPE_NODE. */ |
| |
| static void |
| copy_dwarf_procs_ref_in_dies (dw_die_ref die, |
| comdat_type_node *type_node, |
| hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs) |
| { |
| dw_die_ref c; |
| |
| copy_dwarf_procs_ref_in_attrs (die, type_node, copied_dwarf_procs); |
| FOR_EACH_CHILD (die, c, copy_dwarf_procs_ref_in_dies (c, |
| type_node, |
| copied_dwarf_procs)); |
| } |
| |
| /* Traverse the DIE and set up additional .debug_types or .debug_info |
| DW_UT_*type sections for each type worthy of being placed in a COMDAT |
| section. */ |
| |
| static void |
| break_out_comdat_types (dw_die_ref die) |
| { |
| dw_die_ref c; |
| dw_die_ref first; |
| dw_die_ref prev = NULL; |
| dw_die_ref next = NULL; |
| dw_die_ref unit = NULL; |
| |
| first = c = die->die_child; |
| if (c) |
| next = c->die_sib; |
| if (c) do { |
| if (prev == NULL || prev->die_sib == c) |
| prev = c; |
| c = next; |
| next = (c == first ? NULL : c->die_sib); |
| if (should_move_die_to_comdat (c)) |
| { |
| dw_die_ref replacement; |
| comdat_type_node *type_node; |
| |
| /* Break out nested types into their own type units. */ |
| break_out_comdat_types (c); |
| |
| /* Create a new type unit DIE as the root for the new tree. */ |
| unit = new_die (DW_TAG_type_unit, NULL, NULL); |
| add_AT_unsigned (unit, DW_AT_language, |
| get_AT_unsigned (comp_unit_die (), DW_AT_language)); |
| |
| /* Add the new unit's type DIE into the comdat type list. */ |
| type_node = ggc_cleared_alloc<comdat_type_node> (); |
| type_node->root_die = unit; |
| type_node->next = comdat_type_list; |
| comdat_type_list = type_node; |
| |
| /* Generate the type signature. */ |
| generate_type_signature (c, type_node); |
| |
| /* Copy the declaration context, attributes, and children of the |
| declaration into the new type unit DIE, then remove this DIE |
| from the main CU (or replace it with a skeleton if necessary). */ |
| replacement = remove_child_or_replace_with_skeleton (unit, c, prev); |
| type_node->skeleton_die = replacement; |
| |
| /* Add the DIE to the new compunit. */ |
| add_child_die (unit, c); |
| |
| /* Types can reference DWARF procedures for type size or data location |
| expressions. Calls in DWARF expressions cannot target procedures |
| that are not in the same section. So we must copy DWARF procedures |
| along with this type and then rewrite references to them. */ |
| hash_map<dw_die_ref, dw_die_ref> copied_dwarf_procs; |
| copy_dwarf_procs_ref_in_dies (c, type_node, copied_dwarf_procs); |
| |
| if (replacement != NULL) |
| c = replacement; |
| } |
| else if (c->die_tag == DW_TAG_namespace |
| || c->die_tag == DW_TAG_class_type |
| || c->die_tag == DW_TAG_structure_type |
| || c->die_tag == DW_TAG_union_type) |
| { |
| /* Look for nested types that can be broken out. */ |
| break_out_comdat_types (c); |
| } |
| } while (next != NULL); |
| } |
| |
| /* Like clone_tree, but copy DW_TAG_subprogram DIEs as declarations. |
| Enter all the cloned children into the hash table decl_table. */ |
| |
| static dw_die_ref |
| clone_tree_partial (dw_die_ref die, decl_hash_type *decl_table) |
| { |
| dw_die_ref c; |
| dw_die_ref clone; |
| struct decl_table_entry *entry; |
| decl_table_entry **slot; |
| |
| if (die->die_tag == DW_TAG_subprogram) |
| clone = clone_as_declaration (die); |
| else |
| clone = clone_die (die); |
| |
| slot = decl_table->find_slot_with_hash (die, |
| htab_hash_pointer (die), INSERT); |
| |
| /* Assert that DIE isn't in the hash table yet. If it would be there |
| before, the ancestors would be necessarily there as well, therefore |
| clone_tree_partial wouldn't be called. */ |
| gcc_assert (*slot == HTAB_EMPTY_ENTRY); |
| |
| entry = XCNEW (struct decl_table_entry); |
| entry->orig = die; |
| entry->copy = clone; |
| *slot = entry; |
| |
| if (die->die_tag != DW_TAG_subprogram) |
| FOR_EACH_CHILD (die, c, |
| add_child_die (clone, clone_tree_partial (c, decl_table))); |
| |
| return clone; |
| } |
| |
| /* Walk the DIE and its children, looking for references to incomplete |
| or trivial types that are unmarked (i.e., that are not in the current |
| type_unit). */ |
| |
| static void |
| copy_decls_walk (dw_die_ref unit, dw_die_ref die, decl_hash_type *decl_table) |
| { |
| dw_die_ref c; |
| dw_attr_node *a; |
| unsigned ix; |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| { |
| if (AT_class (a) == dw_val_class_die_ref) |
| { |
| dw_die_ref targ = AT_ref (a); |
| decl_table_entry **slot; |
| struct decl_table_entry *entry; |
| |
| if (targ->die_mark != 0 || targ->comdat_type_p) |
| continue; |
| |
| slot = decl_table->find_slot_with_hash (targ, |
| htab_hash_pointer (targ), |
| INSERT); |
| |
| if (*slot != HTAB_EMPTY_ENTRY) |
| { |
| /* TARG has already been copied, so we just need to |
| modify the reference to point to the copy. */ |
| entry = *slot; |
| a->dw_attr_val.v.val_die_ref.die = entry->copy; |
| } |
| else |
| { |
| dw_die_ref parent = unit; |
| dw_die_ref copy = clone_die (targ); |
| |
| /* Record in DECL_TABLE that TARG has been copied. |
| Need to do this now, before the recursive call, |
| because DECL_TABLE may be expanded and SLOT |
| would no longer be a valid pointer. */ |
| entry = XCNEW (struct decl_table_entry); |
| entry->orig = targ; |
| entry->copy = copy; |
| *slot = entry; |
| |
| /* If TARG is not a declaration DIE, we need to copy its |
| children. */ |
| if (!is_declaration_die (targ)) |
| { |
| FOR_EACH_CHILD ( |
| targ, c, |
| add_child_die (copy, |
| clone_tree_partial (c, decl_table))); |
| } |
| |
| /* Make sure the cloned tree is marked as part of the |
| type unit. */ |
| mark_dies (copy); |
| |
| /* If TARG has surrounding context, copy its ancestor tree |
| into the new type unit. */ |
| if (targ->die_parent != NULL |
| && !is_unit_die (targ->die_parent)) |
| parent = copy_ancestor_tree (unit, targ->die_parent, |
| decl_table); |
| |
| add_child_die (parent, copy); |
| a->dw_attr_val.v.val_die_ref.die = copy; |
| |
| /* Make sure the newly-copied DIE is walked. If it was |
| installed in a previously-added context, it won't |
| get visited otherwise. */ |
| if (parent != unit) |
| { |
| /* Find the highest point of the newly-added tree, |
| mark each node along the way, and walk from there. */ |
| parent->die_mark = 1; |
| while (parent->die_parent |
| && parent->die_parent->die_mark == 0) |
| { |
| parent = parent->die_parent; |
| parent->die_mark = 1; |
| } |
| copy_decls_walk (unit, parent, decl_table); |
| } |
| } |
| } |
| } |
| |
| FOR_EACH_CHILD (die, c, copy_decls_walk (unit, c, decl_table)); |
| } |
| |
| /* Collect skeleton dies in DIE created by break_out_comdat_types already |
| and record them in DECL_TABLE. */ |
| |
| static void |
| collect_skeleton_dies (dw_die_ref die, decl_hash_type *decl_table) |
| { |
| dw_die_ref c; |
| |
| if (dw_attr_node *a = get_AT (die, DW_AT_signature)) |
| { |
| dw_die_ref targ = AT_ref (a); |
| gcc_assert (targ->die_mark == 0 && targ->comdat_type_p); |
| decl_table_entry **slot |
| = decl_table->find_slot_with_hash (targ, |
| htab_hash_pointer (targ), |
| INSERT); |
| gcc_assert (*slot == HTAB_EMPTY_ENTRY); |
| /* Record in DECL_TABLE that TARG has been already copied |
| by remove_child_or_replace_with_skeleton. */ |
| decl_table_entry *entry = XCNEW (struct decl_table_entry); |
| entry->orig = targ; |
| entry->copy = die; |
| *slot = entry; |
| } |
| FOR_EACH_CHILD (die, c, collect_skeleton_dies (c, decl_table)); |
| } |
| |
| /* Copy declarations for "unworthy" types into the new comdat section. |
| Incomplete types, modified types, and certain other types aren't broken |
| out into comdat sections of their own, so they don't have a signature, |
| and we need to copy the declaration into the same section so that we |
| don't have an external reference. */ |
| |
| static void |
| copy_decls_for_unworthy_types (dw_die_ref unit) |
| { |
| mark_dies (unit); |
| decl_hash_type decl_table (10); |
| collect_skeleton_dies (unit, &decl_table); |
| copy_decls_walk (unit, unit, &decl_table); |
| unmark_dies (unit); |
| } |
| |
| /* Traverse the DIE and add a sibling attribute if it may have the |
| effect of speeding up access to siblings. To save some space, |
| avoid generating sibling attributes for DIE's without children. */ |
| |
| static void |
| add_sibling_attributes (dw_die_ref die) |
| { |
| dw_die_ref c; |
| |
| if (! die->die_child) |
| return; |
| |
| if (die->die_parent && die != die->die_parent->die_child) |
| add_AT_die_ref (die, DW_AT_sibling, die->die_sib); |
| |
| FOR_EACH_CHILD (die, c, add_sibling_attributes (c)); |
| } |
| |
| /* Output all location lists for the DIE and its children. */ |
| |
| static void |
| output_location_lists (dw_die_ref die) |
| { |
| dw_die_ref c; |
| dw_attr_node *a; |
| unsigned ix; |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| if (AT_class (a) == dw_val_class_loc_list) |
| output_loc_list (AT_loc_list (a)); |
| |
| FOR_EACH_CHILD (die, c, output_location_lists (c)); |
| } |
| |
| /* During assign_location_list_indexes and output_loclists_offset the |
| current index, after it the number of assigned indexes (i.e. how |
| large the .debug_loclists* offset table should be). */ |
| static unsigned int loc_list_idx; |
| |
| /* Output all location list offsets for the DIE and its children. */ |
| |
| static void |
| output_loclists_offsets (dw_die_ref die) |
| { |
| dw_die_ref c; |
| dw_attr_node *a; |
| unsigned ix; |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| if (AT_class (a) == dw_val_class_loc_list) |
| { |
| dw_loc_list_ref l = AT_loc_list (a); |
| if (l->offset_emitted) |
| continue; |
| dw2_asm_output_delta (dwarf_offset_size, l->ll_symbol, |
| loc_section_label, NULL); |
| gcc_assert (l->hash == loc_list_idx); |
| loc_list_idx++; |
| l->offset_emitted = true; |
| } |
| |
| FOR_EACH_CHILD (die, c, output_loclists_offsets (c)); |
| } |
| |
| /* Recursively set indexes of location lists. */ |
| |
| static void |
| assign_location_list_indexes (dw_die_ref die) |
| { |
| dw_die_ref c; |
| dw_attr_node *a; |
| unsigned ix; |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| if (AT_class (a) == dw_val_class_loc_list) |
| { |
| dw_loc_list_ref list = AT_loc_list (a); |
| if (!list->num_assigned) |
| { |
| list->num_assigned = true; |
| list->hash = loc_list_idx++; |
| } |
| } |
| |
| FOR_EACH_CHILD (die, c, assign_location_list_indexes (c)); |
| } |
| |
| /* We want to limit the number of external references, because they are |
| larger than local references: a relocation takes multiple words, and |
| even a sig8 reference is always eight bytes, whereas a local reference |
| can be as small as one byte (though DW_FORM_ref is usually 4 in GCC). |
| So if we encounter multiple external references to the same type DIE, we |
| make a local typedef stub for it and redirect all references there. |
| |
| This is the element of the hash table for keeping track of these |
| references. */ |
| |
| struct external_ref |
| { |
| dw_die_ref type; |
| dw_die_ref stub; |
| unsigned n_refs; |
| }; |
| |
| /* Hashtable helpers. */ |
| |
| struct external_ref_hasher : free_ptr_hash <external_ref> |
| { |
| static inline hashval_t hash (const external_ref *); |
| static inline bool equal (const external_ref *, const external_ref *); |
| }; |
| |
| inline hashval_t |
| external_ref_hasher::hash (const external_ref *r) |
| { |
| dw_die_ref die = r->type; |
| hashval_t h = 0; |
| |
| /* We can't use the address of the DIE for hashing, because |
| that will make the order of the stub DIEs non-deterministic. */ |
| if (! die->comdat_type_p) |
| /* We have a symbol; use it to compute a hash. */ |
| h = htab_hash_string (die->die_id.die_symbol); |
| else |
| { |
| /* We have a type signature; use a subset of the bits as the hash. |
| The 8-byte signature is at least as large as hashval_t. */ |
| comdat_type_node *type_node = die->die_id.die_type_node; |
| memcpy (&h, type_node->signature, sizeof (h)); |
| } |
| return h; |
| } |
| |
| inline bool |
| external_ref_hasher::equal (const external_ref *r1, const external_ref *r2) |
| { |
| return r1->type == r2->type; |
| } |
| |
| typedef hash_table<external_ref_hasher> external_ref_hash_type; |
| |
| /* Return a pointer to the external_ref for references to DIE. */ |
| |
| static struct external_ref * |
| lookup_external_ref (external_ref_hash_type *map, dw_die_ref die) |
| { |
| struct external_ref ref, *ref_p; |
| external_ref **slot; |
| |
| ref.type = die; |
| slot = map->find_slot (&ref, INSERT); |
| if (*slot != HTAB_EMPTY_ENTRY) |
| return *slot; |
| |
| ref_p = XCNEW (struct external_ref); |
| ref_p->type = die; |
| *slot = ref_p; |
| return ref_p; |
| } |
| |
| /* Subroutine of optimize_external_refs, below. |
| |
| If we see a type skeleton, record it as our stub. If we see external |
| references, remember how many we've seen. */ |
| |
| static void |
| optimize_external_refs_1 (dw_die_ref die, external_ref_hash_type *map) |
| { |
| dw_die_ref c; |
| dw_attr_node *a; |
| unsigned ix; |
| struct external_ref *ref_p; |
| |
| if (is_type_die (die) |
| && (c = get_AT_ref (die, DW_AT_signature))) |
| { |
| /* This is a local skeleton; use it for local references. */ |
| ref_p = lookup_external_ref (map, c); |
| ref_p->stub = die; |
| } |
| |
| /* Scan the DIE references, and remember any that refer to DIEs from |
| other CUs (i.e. those which are not marked). */ |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| if (AT_class (a) == dw_val_class_die_ref |
| && (c = AT_ref (a))->die_mark == 0 |
| && is_type_die (c)) |
| { |
| ref_p = lookup_external_ref (map, c); |
| ref_p->n_refs++; |
| } |
| |
| FOR_EACH_CHILD (die, c, optimize_external_refs_1 (c, map)); |
| } |
| |
| /* htab_traverse callback function for optimize_external_refs, below. SLOT |
| points to an external_ref, DATA is the CU we're processing. If we don't |
| already have a local stub, and we have multiple refs, build a stub. */ |
| |
| int |
| dwarf2_build_local_stub (external_ref **slot, dw_die_ref data) |
| { |
| struct external_ref *ref_p = *slot; |
| |
| if (ref_p->stub == NULL && ref_p->n_refs > 1 && !dwarf_strict) |
| { |
| /* We have multiple references to this type, so build a small stub. |
| Both of these forms are a bit dodgy from the perspective of the |
| DWARF standard, since technically they should have names. */ |
| dw_die_ref cu = data; |
| dw_die_ref type = ref_p->type; |
| dw_die_ref stub = NULL; |
| |
| if (type->comdat_type_p) |
| { |
| /* If we refer to this type via sig8, use AT_signature. */ |
| stub = new_die (type->die_tag, cu, NULL_TREE); |
| add_AT_die_ref (stub, DW_AT_signature, type); |
| } |
| else |
| { |
| /* Otherwise, use a typedef with no name. */ |
| stub = new_die (DW_TAG_typedef, cu, NULL_TREE); |
| add_AT_die_ref (stub, DW_AT_type, type); |
| } |
| |
| stub->die_mark++; |
| ref_p->stub = stub; |
| } |
| return 1; |
| } |
| |
| /* DIE is a unit; look through all the DIE references to see if there are |
| any external references to types, and if so, create local stubs for |
| them which will be applied in build_abbrev_table. This is useful because |
| references to local DIEs are smaller. */ |
| |
| static external_ref_hash_type * |
| optimize_external_refs (dw_die_ref die) |
| { |
| external_ref_hash_type *map = new external_ref_hash_type (10); |
| optimize_external_refs_1 (die, map); |
| map->traverse <dw_die_ref, dwarf2_build_local_stub> (die); |
| return map; |
| } |
| |
| /* The following 3 variables are temporaries that are computed only during the |
| build_abbrev_table call and used and released during the following |
| optimize_abbrev_table call. */ |
| |
| /* First abbrev_id that can be optimized based on usage. */ |
| static unsigned int abbrev_opt_start; |
| |
| /* Maximum abbrev_id of a base type plus one (we can't optimize DIEs with |
| abbrev_id smaller than this, because they must be already sized |
| during build_abbrev_table). */ |
| static unsigned int abbrev_opt_base_type_end; |
| |
| /* Vector of usage counts during build_abbrev_table. Indexed by |
| abbrev_id - abbrev_opt_start. */ |
| static vec<unsigned int> abbrev_usage_count; |
| |
| /* Vector of all DIEs added with die_abbrev >= abbrev_opt_start. */ |
| static vec<dw_die_ref> sorted_abbrev_dies; |
| |
| /* The format of each DIE (and its attribute value pairs) is encoded in an |
| abbreviation table. This routine builds the abbreviation table and assigns |
| a unique abbreviation id for each abbreviation entry. The children of each |
| die are visited recursively. */ |
| |
| static void |
| build_abbrev_table (dw_die_ref die, external_ref_hash_type *extern_map) |
| { |
| unsigned int abbrev_id = 0; |
| dw_die_ref c; |
| dw_attr_node *a; |
| unsigned ix; |
| dw_die_ref abbrev; |
| |
| /* Scan the DIE references, and replace any that refer to |
| DIEs from other CUs (i.e. those which are not marked) with |
| the local stubs we built in optimize_external_refs. */ |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| if (AT_class (a) == dw_val_class_die_ref |
| && (c = AT_ref (a))->die_mark == 0) |
| { |
| struct external_ref *ref_p; |
| gcc_assert (AT_ref (a)->comdat_type_p || AT_ref (a)->die_id.die_symbol); |
| |
| if (is_type_die (c) |
| && (ref_p = lookup_external_ref (extern_map, c)) |
| && ref_p->stub && ref_p->stub != die) |
| { |
| gcc_assert (a->dw_attr != DW_AT_signature); |
| change_AT_die_ref (a, ref_p->stub); |
| } |
| else |
| /* We aren't changing this reference, so mark it external. */ |
| set_AT_ref_external (a, 1); |
| } |
| |
| FOR_EACH_VEC_SAFE_ELT (abbrev_die_table, abbrev_id, abbrev) |
| { |
| dw_attr_node *die_a, *abbrev_a; |
| unsigned ix; |
| bool ok = true; |
| |
| if (abbrev_id == 0) |
| continue; |
| if (abbrev->die_tag != die->die_tag) |
| continue; |
| if ((abbrev->die_child != NULL) != (die->die_child != NULL)) |
| continue; |
| |
| if (vec_safe_length (abbrev->die_attr) != vec_safe_length (die->die_attr)) |
| continue; |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, die_a) |
| { |
| abbrev_a = &(*abbrev->die_attr)[ix]; |
| if ((abbrev_a->dw_attr != die_a->dw_attr) |
| || (value_format (abbrev_a) != value_format (die_a))) |
| { |
| ok = false; |
| break; |
| } |
| } |
| if (ok) |
| break; |
| } |
| |
| if (abbrev_id >= vec_safe_length (abbrev_die_table)) |
| { |
| vec_safe_push (abbrev_die_table, die); |
| if (abbrev_opt_start) |
| abbrev_usage_count.safe_push (0); |
| } |
| if (abbrev_opt_start && abbrev_id >= abbrev_opt_start) |
| { |
| abbrev_usage_count[abbrev_id - abbrev_opt_start]++; |
| sorted_abbrev_dies.safe_push (die); |
| } |
| |
| die->die_abbrev = abbrev_id; |
| FOR_EACH_CHILD (die, c, build_abbrev_table (c, extern_map)); |
| } |
| |
| /* Callback function for sorted_abbrev_dies vector sorting. We sort |
| by die_abbrev's usage count, from the most commonly used |
| abbreviation to the least. */ |
| |
| static int |
| die_abbrev_cmp (const void *p1, const void *p2) |
| { |
| dw_die_ref die1 = *(const dw_die_ref *) p1; |
| dw_die_ref die2 = *(const dw_die_ref *) p2; |
| |
| gcc_checking_assert (die1->die_abbrev >= abbrev_opt_start); |
| gcc_checking_assert (die2->die_abbrev >= abbrev_opt_start); |
| |
| if (die1->die_abbrev >= abbrev_opt_base_type_end |
| && die2->die_abbrev >= abbrev_opt_base_type_end) |
| { |
| if (abbrev_usage_count[die1->die_abbrev - abbrev_opt_start] |
| > abbrev_usage_count[die2->die_abbrev - abbrev_opt_start]) |
| return -1; |
| if (abbrev_usage_count[die1->die_abbrev - abbrev_opt_start] |
| < abbrev_usage_count[die2->die_abbrev - abbrev_opt_start]) |
| return 1; |
| } |
| |
| /* Stabilize the sort. */ |
| if (die1->die_abbrev < die2->die_abbrev) |
| return -1; |
| if (die1->die_abbrev > die2->die_abbrev) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Convert dw_val_class_const and dw_val_class_unsigned_const class attributes |
| of DIEs in between sorted_abbrev_dies[first_id] and abbrev_dies[end_id - 1] |
| into dw_val_class_const_implicit or |
| dw_val_class_unsigned_const_implicit. */ |
| |
| static void |
| optimize_implicit_const (unsigned int first_id, unsigned int end, |
| vec<bool> &implicit_consts) |
| { |
| /* It never makes sense if there is just one DIE using the abbreviation. */ |
| if (end < first_id + 2) |
| return; |
| |
| dw_attr_node *a; |
| unsigned ix, i; |
| dw_die_ref die = sorted_abbrev_dies[first_id]; |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| if (implicit_consts[ix]) |
| { |
| enum dw_val_class new_class = dw_val_class_none; |
| switch (AT_class (a)) |
| { |
| case dw_val_class_unsigned_const: |
| if ((HOST_WIDE_INT) AT_unsigned (a) < 0) |
| continue; |
| |
| /* The .debug_abbrev section will grow by |
| size_of_sleb128 (AT_unsigned (a)) and we avoid the constants |
| in all the DIEs using that abbreviation. */ |
| if (constant_size (AT_unsigned (a)) * (end - first_id) |
| <= (unsigned) size_of_sleb128 (AT_unsigned (a))) |
| continue; |
| |
| new_class = dw_val_class_unsigned_const_implicit; |
| break; |
| |
| case dw_val_class_const: |
| new_class = dw_val_class_const_implicit; |
| break; |
| |
| case dw_val_class_file: |
| new_class = dw_val_class_file_implicit; |
| break; |
| |
| default: |
| continue; |
| } |
| for (i = first_id; i < end; i++) |
| (*sorted_abbrev_dies[i]->die_attr)[ix].dw_attr_val.val_class |
| = new_class; |
| } |
| } |
| |
| /* Attempt to optimize abbreviation table from abbrev_opt_start |
| abbreviation above. */ |
| |
| static void |
| optimize_abbrev_table (void) |
| { |
| if (abbrev_opt_start |
| && vec_safe_length (abbrev_die_table) > abbrev_opt_start |
| && (dwarf_version >= 5 || vec_safe_length (abbrev_die_table) > 127)) |
| { |
| auto_vec<bool, 32> implicit_consts; |
| sorted_abbrev_dies.qsort (die_abbrev_cmp); |
| |
| unsigned int abbrev_id = abbrev_opt_start - 1; |
| unsigned int first_id = ~0U; |
| unsigned int last_abbrev_id = 0; |
| unsigned int i; |
| dw_die_ref die; |
| if (abbrev_opt_base_type_end > abbrev_opt_start) |
| abbrev_id = abbrev_opt_base_type_end - 1; |
| /* Reassign abbreviation ids from abbrev_opt_start above, so that |
| most commonly used abbreviations come first. */ |
| FOR_EACH_VEC_ELT (sorted_abbrev_dies, i, die) |
| { |
| dw_attr_node *a; |
| unsigned ix; |
| |
| /* If calc_base_type_die_sizes has been called, the CU and |
| base types after it can't be optimized, because we've already |
| calculated their DIE offsets. We've sorted them first. */ |
| if (die->die_abbrev < abbrev_opt_base_type_end) |
| continue; |
| if (die->die_abbrev != last_abbrev_id) |
| { |
| last_abbrev_id = die->die_abbrev; |
| if (dwarf_version >= 5 && first_id != ~0U) |
| optimize_implicit_const (first_id, i, implicit_consts); |
| abbrev_id++; |
| (*abbrev_die_table)[abbrev_id] = die; |
| if (dwarf_version >= 5) |
| { |
| first_id = i; |
| implicit_consts.truncate (0); |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| switch (AT_class (a)) |
| { |
| case dw_val_class_const: |
| case dw_val_class_unsigned_const: |
| case dw_val_class_file: |
| implicit_consts.safe_push (true); |
| break; |
| default: |
| implicit_consts.safe_push (false); |
| break; |
| } |
| } |
| } |
| else if (dwarf_version >= 5) |
| { |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| if (!implicit_consts[ix]) |
| continue; |
| else |
| { |
| dw_attr_node *other_a |
| = &(*(*abbrev_die_table)[abbrev_id]->die_attr)[ix]; |
| if (!dw_val_equal_p (&a->dw_attr_val, |
| &other_a->dw_attr_val)) |
| implicit_consts[ix] = false; |
| } |
| } |
| die->die_abbrev = abbrev_id; |
| } |
| gcc_assert (abbrev_id == vec_safe_length (abbrev_die_table) - 1); |
| if (dwarf_version >= 5 && first_id != ~0U) |
| optimize_implicit_const (first_id, i, implicit_consts); |
| } |
| |
| abbrev_opt_start = 0; |
| abbrev_opt_base_type_end = 0; |
| abbrev_usage_count.release (); |
| sorted_abbrev_dies.release (); |
| } |
| |
| /* Return the power-of-two number of bytes necessary to represent VALUE. */ |
| |
| static int |
| constant_size (unsigned HOST_WIDE_INT value) |
| { |
| int log; |
| |
| if (value == 0) |
| log = 0; |
| else |
| log = floor_log2 (value); |
| |
| log = log / 8; |
| log = 1 << (floor_log2 (log) + 1); |
| |
| return log; |
| } |
| |
| /* Return the size of a DIE as it is represented in the |
| .debug_info section. */ |
| |
| static unsigned long |
| size_of_die (dw_die_ref die) |
| { |
| unsigned long size = 0; |
| dw_attr_node *a; |
| unsigned ix; |
| enum dwarf_form form; |
| |
| size += size_of_uleb128 (die->die_abbrev); |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| { |
| switch (AT_class (a)) |
| { |
| case dw_val_class_addr: |
| if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED) |
| { |
| gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED); |
| size += size_of_uleb128 (AT_index (a)); |
| } |
| else |
| size += DWARF2_ADDR_SIZE; |
| break; |
| case dw_val_class_offset: |
| size += dwarf_offset_size; |
| break; |
| case dw_val_class_loc: |
| { |
| unsigned long lsize = size_of_locs (AT_loc (a)); |
| |
| /* Block length. */ |
| if (dwarf_version >= 4) |
| size += size_of_uleb128 (lsize); |
| else |
| size += constant_size (lsize); |
| size += lsize; |
| } |
| break; |
| case dw_val_class_loc_list: |
| if (dwarf_split_debug_info && dwarf_version >= 5) |
| { |
| gcc_assert (AT_loc_list (a)->num_assigned); |
| size += size_of_uleb128 (AT_loc_list (a)->hash); |
| } |
| else |
| size += dwarf_offset_size; |
| break; |
| case dw_val_class_view_list: |
| size += dwarf_offset_size; |
| break; |
| case dw_val_class_range_list: |
| if (value_format (a) == DW_FORM_rnglistx) |
| { |
| gcc_assert (rnglist_idx); |
| dw_ranges *r = &(*ranges_table)[a->dw_attr_val.v.val_offset]; |
| size += size_of_uleb128 (r->idx); |
| } |
| else |
| size += dwarf_offset_size; |
| break; |
| case dw_val_class_const: |
| size += size_of_sleb128 (AT_int (a)); |
| break; |
| case dw_val_class_unsigned_const: |
| { |
| int csize = constant_size (AT_unsigned (a)); |
| if (dwarf_version == 3 |
| && a->dw_attr == DW_AT_data_member_location |
| && csize >= 4) |
| size += size_of_uleb128 (AT_unsigned (a)); |
| else |
| size += csize; |
| } |
| break; |
| case dw_val_class_symview: |
| if (symview_upper_bound <= 0xff) |
| size += 1; |
| else if (symview_upper_bound <= 0xffff) |
| size += 2; |
| else if (symview_upper_bound <= 0xffffffff) |
| size += 4; |
| else |
| size += 8; |
| break; |
| case dw_val_class_const_implicit: |
| case dw_val_class_unsigned_const_implicit: |
| case dw_val_class_file_implicit: |
| /* These occupy no size in the DIE, just an extra sleb128 in |
| .debug_abbrev. */ |
| break; |
| case dw_val_class_const_double: |
| size += HOST_BITS_PER_DOUBLE_INT / HOST_BITS_PER_CHAR; |
| if (HOST_BITS_PER_WIDE_INT >= DWARF_LARGEST_DATA_FORM_BITS) |
| size++; /* block */ |
| break; |
| case dw_val_class_wide_int: |
| size += (get_full_len (*a->dw_attr_val.v.val_wide) |
| * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR); |
| if (get_full_len (*a->dw_attr_val.v.val_wide) |
| * HOST_BITS_PER_WIDE_INT > DWARF_LARGEST_DATA_FORM_BITS) |
| size++; /* block */ |
| break; |
| case dw_val_class_vec: |
| size += constant_size (a->dw_attr_val.v.val_vec.length |
| * a->dw_attr_val.v.val_vec.elt_size) |
| + a->dw_attr_val.v.val_vec.length |
| * a->dw_attr_val.v.val_vec.elt_size; /* block */ |
| break; |
| case dw_val_class_flag: |
| if (dwarf_version >= 4) |
| /* Currently all add_AT_flag calls pass in 1 as last argument, |
| so DW_FORM_flag_present can be used. If that ever changes, |
| we'll need to use DW_FORM_flag and have some optimization |
| in build_abbrev_table that will change those to |
| DW_FORM_flag_present if it is set to 1 in all DIEs using |
| the same abbrev entry. */ |
| gcc_assert (a->dw_attr_val.v.val_flag == 1); |
| else |
| size += 1; |
| break; |
| case dw_val_class_die_ref: |
| if (AT_ref_external (a)) |
| { |
| /* In DWARF4, we use DW_FORM_ref_sig8; for earlier versions |
| we use DW_FORM_ref_addr. In DWARF2, DW_FORM_ref_addr |
| is sized by target address length, whereas in DWARF3 |
| it's always sized as an offset. */ |
| if (AT_ref (a)->comdat_type_p) |
| size += DWARF_TYPE_SIGNATURE_SIZE; |
| else if (dwarf_version == 2) |
| size += DWARF2_ADDR_SIZE; |
| else |
| size += dwarf_offset_size; |
| } |
| else |
| size += dwarf_offset_size; |
| break; |
| case dw_val_class_fde_ref: |
| size += dwarf_offset_size; |
| break; |
| case dw_val_class_lbl_id: |
| if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED) |
| { |
| gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED); |
| size += size_of_uleb128 (AT_index (a)); |
| } |
| else |
| size += DWARF2_ADDR_SIZE; |
| break; |
| case dw_val_class_lineptr: |
| case dw_val_class_macptr: |
| case dw_val_class_loclistsptr: |
| size += dwarf_offset_size; |
| break; |
| case dw_val_class_str: |
| form = AT_string_form (a); |
| if (form == DW_FORM_strp || form == DW_FORM_line_strp) |
| size += dwarf_offset_size; |
| else if (form == dwarf_FORM (DW_FORM_strx)) |
| size += size_of_uleb128 (AT_index (a)); |
| else |
| size += strlen (a->dw_attr_val.v.val_str->str) + 1; |
| break; |
| case dw_val_class_file: |
| size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)); |
| break; |
| case dw_val_class_data8: |
| size += 8; |
| break; |
| case dw_val_class_vms_delta: |
| size += dwarf_offset_size; |
| break; |
| case dw_val_class_high_pc: |
| size += DWARF2_ADDR_SIZE; |
| break; |
| case dw_val_class_discr_value: |
| size += size_of_discr_value (&a->dw_attr_val.v.val_discr_value); |
| break; |
| case dw_val_class_discr_list: |
| { |
| unsigned block_size = size_of_discr_list (AT_discr_list (a)); |
| |
| /* This is a block, so we have the block length and then its |
| data. */ |
| size += constant_size (block_size) + block_size; |
| } |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| return size; |
| } |
| |
| /* Size the debugging information associated with a given DIE. Visits the |
| DIE's children recursively. Updates the global variable next_die_offset, on |
| each time through. Uses the current value of next_die_offset to update the |
| die_offset field in each DIE. */ |
| |
| static void |
| calc_die_sizes (dw_die_ref die) |
| { |
| dw_die_ref c; |
| |
| gcc_assert (die->die_offset == 0 |
| || (unsigned long int) die->die_offset == next_die_offset); |
| die->die_offset = next_die_offset; |
| next_die_offset += size_of_die (die); |
| |
| FOR_EACH_CHILD (die, c, calc_die_sizes (c)); |
| |
| if (die->die_child != NULL) |
| /* Count the null byte used to terminate sibling lists. */ |
| next_die_offset += 1; |
| } |
| |
| /* Size just the base type children at the start of the CU. |
| This is needed because build_abbrev needs to size locs |
| and sizing of type based stack ops needs to know die_offset |
| values for the base types. */ |
| |
| static void |
| calc_base_type_die_sizes (void) |
| { |
| unsigned long die_offset = (dwarf_split_debug_info |
| ? DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE |
| : DWARF_COMPILE_UNIT_HEADER_SIZE); |
| unsigned int i; |
| dw_die_ref base_type; |
| #if ENABLE_ASSERT_CHECKING |
| dw_die_ref prev = comp_unit_die ()->die_child; |
| #endif |
| |
| die_offset += size_of_die (comp_unit_die ()); |
| for (i = 0; base_types.iterate (i, &base_type); i++) |
| { |
| #if ENABLE_ASSERT_CHECKING |
| gcc_assert (base_type->die_offset == 0 |
| && prev->die_sib == base_type |
| && base_type->die_child == NULL |
| && base_type->die_abbrev); |
| prev = base_type; |
| #endif |
| if (abbrev_opt_start |
| && base_type->die_abbrev >= abbrev_opt_base_type_end) |
| abbrev_opt_base_type_end = base_type->die_abbrev + 1; |
| base_type->die_offset = die_offset; |
| die_offset += size_of_die (base_type); |
| } |
| } |
| |
| /* Set the marks for a die and its children. We do this so |
| that we know whether or not a reference needs to use FORM_ref_addr; only |
| DIEs in the same CU will be marked. We used to clear out the offset |
| and use that as the flag, but ran into ordering problems. */ |
| |
| static void |
| mark_dies (dw_die_ref die) |
| { |
| dw_die_ref c; |
| |
| gcc_assert (!die->die_mark); |
| |
| die->die_mark = 1; |
| FOR_EACH_CHILD (die, c, mark_dies (c)); |
| } |
| |
| /* Clear the marks for a die and its children. */ |
| |
| static void |
| unmark_dies (dw_die_ref die) |
| { |
| dw_die_ref c; |
| |
| if (! use_debug_types) |
| gcc_assert (die->die_mark); |
| |
| die->die_mark = 0; |
| FOR_EACH_CHILD (die, c, unmark_dies (c)); |
| } |
| |
| /* Clear the marks for a die, its children and referred dies. */ |
| |
| static void |
| unmark_all_dies (dw_die_ref die) |
| { |
| dw_die_ref c; |
| dw_attr_node *a; |
| unsigned ix; |
| |
| if (!die->die_mark) |
| return; |
| die->die_mark = 0; |
| |
| FOR_EACH_CHILD (die, c, unmark_all_dies (c)); |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| if (AT_class (a) == dw_val_class_die_ref) |
| unmark_all_dies (AT_ref (a)); |
| } |
| |
| /* Calculate if the entry should appear in the final output file. It may be |
| from a pruned a type. */ |
| |
| static bool |
| include_pubname_in_output (vec<pubname_entry, va_gc> *table, pubname_entry *p) |
| { |
| /* By limiting gnu pubnames to definitions only, gold can generate a |
| gdb index without entries for declarations, which don't include |
| enough information to be useful. */ |
| if (debug_generate_pub_sections == 2 && is_declaration_die (p->die)) |
| return false; |
| |
| if (table == pubname_table) |
| { |
| /* Enumerator names are part of the pubname table, but the |
| parent DW_TAG_enumeration_type die may have been pruned. |
| Don't output them if that is the case. */ |
| if (p->die->die_tag == DW_TAG_enumerator && |
| (p->die->die_parent == NULL |
| || !p->die->die_parent->die_perennial_p)) |
| return false; |
| |
| /* Everything else in the pubname table is included. */ |
| return true; |
| } |
| |
| /* The pubtypes table shouldn't include types that have been |
| pruned. */ |
| return (p->die->die_offset != 0 |
| || !flag_eliminate_unused_debug_types); |
| } |
| |
| /* Return the size of the .debug_pubnames or .debug_pubtypes table |
| generated for the compilation unit. */ |
| |
| static unsigned long |
| size_of_pubnames (vec<pubname_entry, va_gc> *names) |
| { |
| unsigned long size; |
| unsigned i; |
| pubname_entry *p; |
| int space_for_flags = (debug_generate_pub_sections == 2) ? 1 : 0; |
| |
| size = DWARF_PUBNAMES_HEADER_SIZE; |
| FOR_EACH_VEC_ELT (*names, i, p) |
| if (include_pubname_in_output (names, p)) |
| size += strlen (p->name) + dwarf_offset_size + 1 + space_for_flags; |
| |
| size += dwarf_offset_size; |
| return size; |
| } |
| |
| /* Return the size of the information in the .debug_aranges section. */ |
| |
| static unsigned long |
| size_of_aranges (void) |
| { |
| unsigned long size; |
| |
| size = DWARF_ARANGES_HEADER_SIZE; |
| |
| /* Count the address/length pair for this compilation unit. */ |
| if (switch_text_ranges) |
| size += 2 * DWARF2_ADDR_SIZE |
| * (vec_safe_length (switch_text_ranges) / 2 + 1); |
| if (switch_cold_ranges) |
| size += 2 * DWARF2_ADDR_SIZE |
| * (vec_safe_length (switch_cold_ranges) / 2 + 1); |
| if (have_multiple_function_sections) |
| { |
| unsigned fde_idx; |
| dw_fde_ref fde; |
| |
| FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde) |
| { |
| if (fde->ignored_debug) |
| continue; |
| if (!fde->in_std_section) |
| size += 2 * DWARF2_ADDR_SIZE; |
| if (fde->dw_fde_second_begin && !fde->second_in_std_section) |
| size += 2 * DWARF2_ADDR_SIZE; |
| } |
| } |
| |
| /* Count the two zero words used to terminated the address range table. */ |
| size += 2 * DWARF2_ADDR_SIZE; |
| return size; |
| } |
| |
| /* Select the encoding of an attribute value. */ |
| |
| static enum dwarf_form |
| value_format (dw_attr_node *a) |
| { |
| switch (AT_class (a)) |
| { |
| case dw_val_class_addr: |
| /* Only very few attributes allow DW_FORM_addr. */ |
| switch (a->dw_attr) |
| { |
| case DW_AT_low_pc: |
| case DW_AT_high_pc: |
| case DW_AT_entry_pc: |
| case DW_AT_trampoline: |
| return (AT_index (a) == NOT_INDEXED |
| ? DW_FORM_addr : dwarf_FORM (DW_FORM_addrx)); |
| default: |
| break; |
| } |
| switch (DWARF2_ADDR_SIZE) |
| { |
| case 1: |
| return DW_FORM_data1; |
| case 2: |
| return DW_FORM_data2; |
| case 4: |
| return DW_FORM_data4; |
| case 8: |
| return DW_FORM_data8; |
| default: |
| gcc_unreachable (); |
| } |
| case dw_val_class_loc_list: |
| if (dwarf_split_debug_info |
| && dwarf_version >= 5 |
| && AT_loc_list (a)->num_assigned) |
| return DW_FORM_loclistx; |
| /* FALLTHRU */ |
| case dw_val_class_view_list: |
| case dw_val_class_range_list: |
| /* For range lists in DWARF 5, use DW_FORM_rnglistx from .debug_info.dwo |
| but in .debug_info use DW_FORM_sec_offset, which is shorter if we |
| care about sizes of .debug* sections in shared libraries and |
| executables and don't take into account relocations that affect just |
| relocatable objects - for DW_FORM_rnglistx we'd have to emit offset |
| table in the .debug_rnglists section. */ |
| if (dwarf_split_debug_info |
| && dwarf_version >= 5 |
| && AT_class (a) == dw_val_class_range_list |
| && rnglist_idx |
| && a->dw_attr_val.val_entry != RELOCATED_OFFSET) |
| return DW_FORM_rnglistx; |
| if (dwarf_version >= 4) |
| return DW_FORM_sec_offset; |
| /* FALLTHRU */ |
| case dw_val_class_vms_delta: |
| case dw_val_class_offset: |
| switch (dwarf_offset_size) |
| { |
| case 4: |
| return DW_FORM_data4; |
| case 8: |
| return DW_FORM_data8; |
| default: |
| gcc_unreachable (); |
| } |
| case dw_val_class_loc: |
| if (dwarf_version >= 4) |
| return DW_FORM_exprloc; |
| switch (constant_size (size_of_locs (AT_loc (a)))) |
| { |
| case 1: |
| return DW_FORM_block1; |
| case 2: |
| return DW_FORM_block2; |
| case 4: |
| return DW_FORM_block4; |
| default: |
| gcc_unreachable (); |
| } |
| case dw_val_class_const: |
| return DW_FORM_sdata; |
| case dw_val_class_unsigned_const: |
| switch (constant_size (AT_unsigned (a))) |
| { |
| case 1: |
| return DW_FORM_data1; |
| case 2: |
| return DW_FORM_data2; |
| case 4: |
| /* In DWARF3 DW_AT_data_member_location with |
| DW_FORM_data4 or DW_FORM_data8 is a loclistptr, not |
| constant, so we need to use DW_FORM_udata if we need |
| a large constant. */ |
| if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location) |
| return DW_FORM_udata; |
| return DW_FORM_data4; |
| case 8: |
| if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location) |
| return DW_FORM_udata; |
| return DW_FORM_data8; |
| default: |
| gcc_unreachable (); |
| } |
| case dw_val_class_const_implicit: |
| case dw_val_class_unsigned_const_implicit: |
| case dw_val_class_file_implicit: |
| return DW_FORM_implicit_const; |
| case dw_val_class_const_double: |
| switch (HOST_BITS_PER_WIDE_INT) |
| { |
| case 8: |
| return DW_FORM_data2; |
| case 16: |
| return DW_FORM_data4; |
| case 32: |
| return DW_FORM_data8; |
| case 64: |
| if (dwarf_version >= 5) |
| return DW_FORM_data16; |
| /* FALLTHRU */ |
| default: |
| return DW_FORM_block1; |
| } |
| case dw_val_class_wide_int: |
| switch (get_full_len (*a->dw_attr_val.v.val_wide) * HOST_BITS_PER_WIDE_INT) |
| { |
| case 8: |
| return DW_FORM_data1; |
| case 16: |
| return DW_FORM_data2; |
| case 32: |
| return DW_FORM_data4; |
| case 64: |
| return DW_FORM_data8; |
| case 128: |
| if (dwarf_version >= 5) |
| return DW_FORM_data16; |
| /* FALLTHRU */ |
| default: |
| return DW_FORM_block1; |
| } |
| case dw_val_class_symview: |
| /* ??? We might use uleb128, but then we'd have to compute |
| .debug_info offsets in the assembler. */ |
| if (symview_upper_bound <= 0xff) |
| return DW_FORM_data1; |
| else if (symview_upper_bound <= 0xffff) |
| return DW_FORM_data2; |
| else if (symview_upper_bound <= 0xffffffff) |
| return DW_FORM_data4; |
| else |
| return DW_FORM_data8; |
| case dw_val_class_vec: |
| switch (constant_size (a->dw_attr_val.v.val_vec.length |
| * a->dw_attr_val.v.val_vec.elt_size)) |
| { |
| case 1: |
| return DW_FORM_block1; |
| case 2: |
| return DW_FORM_block2; |
| case 4: |
| return DW_FORM_block4; |
| default: |
| gcc_unreachable (); |
| } |
| case dw_val_class_flag: |
| if (dwarf_version >= 4) |
| { |
| /* Currently all add_AT_flag calls pass in 1 as last argument, |
| so DW_FORM_flag_present can be used. If that ever changes, |
| we'll need to use DW_FORM_flag and have some optimization |
| in build_abbrev_table that will change those to |
| DW_FORM_flag_present if it is set to 1 in all DIEs using |
| the same abbrev entry. */ |
| gcc_assert (a->dw_attr_val.v.val_flag == 1); |
| return DW_FORM_flag_present; |
| } |
| return DW_FORM_flag; |
| case dw_val_class_die_ref: |
| if (AT_ref_external (a)) |
| { |
| if (AT_ref (a)->comdat_type_p) |
| return DW_FORM_ref_sig8; |
| else |
| return DW_FORM_ref_addr; |
| } |
| else |
| return DW_FORM_ref; |
| case dw_val_class_fde_ref: |
| return DW_FORM_data; |
| case dw_val_class_lbl_id: |
| return (AT_index (a) == NOT_INDEXED |
| ? DW_FORM_addr : dwarf_FORM (DW_FORM_addrx)); |
| case dw_val_class_lineptr: |
| case dw_val_class_macptr: |
| case dw_val_class_loclistsptr: |
| return dwarf_version >= 4 ? DW_FORM_sec_offset : DW_FORM_data; |
| case dw_val_class_str: |
| return AT_string_form (a); |
| case dw_val_class_file: |
| switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file))) |
| { |
| case 1: |
| return DW_FORM_data1; |
| case 2: |
| return DW_FORM_data2; |
| case 4: |
| return DW_FORM_data4; |
| default: |
| gcc_unreachable (); |
| } |
| |
| case dw_val_class_data8: |
| return DW_FORM_data8; |
| |
| case dw_val_class_high_pc: |
| switch (DWARF2_ADDR_SIZE) |
| { |
| case 1: |
| return DW_FORM_data1; |
| case 2: |
| return DW_FORM_data2; |
| case 4: |
| return DW_FORM_data4; |
| case 8: |
| return DW_FORM_data8; |
| default: |
| gcc_unreachable (); |
| } |
| |
| case dw_val_class_discr_value: |
| return (a->dw_attr_val.v.val_discr_value.pos |
| ? DW_FORM_udata |
| : DW_FORM_sdata); |
| case dw_val_class_discr_list: |
| switch (constant_size (size_of_discr_list (AT_discr_list (a)))) |
| { |
| case 1: |
| return DW_FORM_block1; |
| case 2: |
| return DW_FORM_block2; |
| case 4: |
| return DW_FORM_block4; |
| default: |
| gcc_unreachable (); |
| } |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Output the encoding of an attribute value. */ |
| |
| static void |
| output_value_format (dw_attr_node *a) |
| { |
| enum dwarf_form form = value_format (a); |
| |
| dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form)); |
| } |
| |
| /* Given a die and id, produce the appropriate abbreviations. */ |
| |
| static void |
| output_die_abbrevs (unsigned long abbrev_id, dw_die_ref abbrev) |
| { |
| unsigned ix; |
| dw_attr_node *a_attr; |
| |
| dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)"); |
| dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)", |
| dwarf_tag_name (abbrev->die_tag)); |
| |
| if (abbrev->die_child != NULL) |
| dw2_asm_output_data (1, DW_children_yes, "DW_children_yes"); |
| else |
| dw2_asm_output_data (1, DW_children_no, "DW_children_no"); |
| |
| for (ix = 0; vec_safe_iterate (abbrev->die_attr, ix, &a_attr); ix++) |
| { |
| dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)", |
| dwarf_attr_name (a_attr->dw_attr)); |
| output_value_format (a_attr); |
| if (value_format (a_attr) == DW_FORM_implicit_const) |
| { |
| if (AT_class (a_attr) == dw_val_class_file_implicit) |
| { |
| int f = maybe_emit_file (a_attr->dw_attr_val.v.val_file); |
| const char *filename = a_attr->dw_attr_val.v.val_file->filename; |
| dw2_asm_output_data_sleb128 (f, "(%s)", filename); |
| } |
| else |
| dw2_asm_output_data_sleb128 (a_attr->dw_attr_val.v.val_int, NULL); |
| } |
| } |
| |
| dw2_asm_output_data (1, 0, NULL); |
| dw2_asm_output_data (1, 0, NULL); |
| } |
| |
| |
| /* Output the .debug_abbrev section which defines the DIE abbreviation |
| table. */ |
| |
| static void |
| output_abbrev_section (void) |
| { |
| unsigned int abbrev_id; |
| dw_die_ref abbrev; |
| |
| FOR_EACH_VEC_SAFE_ELT (abbrev_die_table, abbrev_id, abbrev) |
| if (abbrev_id != 0) |
| output_die_abbrevs (abbrev_id, abbrev); |
| |
| /* Terminate the table. */ |
| dw2_asm_output_data (1, 0, NULL); |
| } |
| |
| /* Return a new location list, given the begin and end range, and the |
| expression. */ |
| |
| static inline dw_loc_list_ref |
| new_loc_list (dw_loc_descr_ref expr, const char *begin, var_loc_view vbegin, |
| const char *end, var_loc_view vend, |
| const char *section) |
| { |
| dw_loc_list_ref retlist = ggc_cleared_alloc<dw_loc_list_node> (); |
| |
| retlist->begin = begin; |
| retlist->begin_entry = NULL; |
| retlist->end = end; |
| retlist->end_entry = NULL; |
| retlist->expr = expr; |
| retlist->section = section; |
| retlist->vbegin = vbegin; |
| retlist->vend = vend; |
| |
| return retlist; |
| } |
| |
| /* Return true iff there's any nonzero view number in the loc list. |
| |
| ??? When views are not enabled, we'll often extend a single range |
| to the entire function, so that we emit a single location |
| expression rather than a location list. With views, even with a |
| single range, we'll output a list if start or end have a nonzero |
| view. If we change this, we may want to stop splitting a single |
| range in dw_loc_list just because of a nonzero view, even if it |
| straddles across hot/cold partitions. */ |
| |
| static bool |
| loc_list_has_views (dw_loc_list_ref list) |
| { |
| if (!debug_variable_location_views) |
| return false; |
| |
| for (dw_loc_list_ref loc = list; |
| loc != NULL; loc = loc->dw_loc_next) |
| if (!ZERO_VIEW_P (loc->vbegin) || !ZERO_VIEW_P (loc->vend)) |
| return true; |
| |
| return false; |
| } |
| |
| /* Generate a new internal symbol for this location list node, if it |
| hasn't got one yet. */ |
| |
| static inline void |
| gen_llsym (dw_loc_list_ref list) |
| { |
| gcc_assert (!list->ll_symbol); |
| list->ll_symbol = gen_internal_sym ("LLST"); |
| |
| if (!loc_list_has_views (list)) |
| return; |
| |
| if (dwarf2out_locviews_in_attribute ()) |
| { |
| /* Use the same label_num for the view list. */ |
| label_num--; |
| list->vl_symbol = gen_internal_sym ("LVUS"); |
| } |
| else |
| list->vl_symbol = list->ll_symbol; |
| } |
| |
| /* Generate a symbol for the list, but only if we really want to emit |
| it as a list. */ |
| |
| static inline void |
| maybe_gen_llsym (dw_loc_list_ref list) |
| { |
| if (!list || (!list->dw_loc_next && !loc_list_has_views (list))) |
| return; |
| |
| gen_llsym (list); |
| } |
| |
| /* Determine whether or not to skip loc_list entry CURR. If SIZEP is |
| NULL, don't consider size of the location expression. If we're not |
| to skip it, and SIZEP is non-null, store the size of CURR->expr's |
| representation in *SIZEP. */ |
| |
| static bool |
| skip_loc_list_entry (dw_loc_list_ref curr, unsigned long *sizep = NULL) |
| { |
| /* Don't output an entry that starts and ends at the same address. */ |
| if (strcmp (curr->begin, curr->end) == 0 |
| && curr->vbegin == curr->vend && !curr->force) |
| return true; |
| |
| if (!sizep) |
| return false; |
| |
| unsigned long size = size_of_locs (curr->expr); |
| |
| /* If the expression is too large, drop it on the floor. We could |
| perhaps put it into DW_TAG_dwarf_procedure and refer to that |
| in the expression, but >= 64KB expressions for a single value |
| in a single range are unlikely very useful. */ |
| if (dwarf_version < 5 && size > 0xffff) |
| return true; |
| |
| *sizep = size; |
| |
| return false; |
| } |
| |
| /* Output a view pair loclist entry for CURR, if it requires one. */ |
| |
| static void |
| dwarf2out_maybe_output_loclist_view_pair (dw_loc_list_ref curr) |
| { |
| if (!dwarf2out_locviews_in_loclist ()) |
| return; |
| |
| if (ZERO_VIEW_P (curr->vbegin) && ZERO_VIEW_P (curr->vend)) |
| return; |
| |
| #ifdef DW_LLE_view_pair |
| dw2_asm_output_data (1, DW_LLE_view_pair, "DW_LLE_view_pair"); |
| |
| if (dwarf2out_as_locview_support) |
| { |
| if (ZERO_VIEW_P (curr->vbegin)) |
| dw2_asm_output_data_uleb128 (0, "Location view begin"); |
| else |
| { |
| char label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| ASM_GENERATE_INTERNAL_LABEL (label, "LVU", curr->vbegin); |
| dw2_asm_output_symname_uleb128 (label, "Location view begin"); |
| } |
| |
| if (ZERO_VIEW_P (curr->vend)) |
| dw2_asm_output_data_uleb128 (0, "Location view end"); |
| else |
| { |
| char label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| ASM_GENERATE_INTERNAL_LABEL (label, "LVU", curr->vend); |
| dw2_asm_output_symname_uleb128 (label, "Location view end"); |
| } |
| } |
| else |
| { |
| dw2_asm_output_data_uleb128 (curr->vbegin, "Location view begin"); |
| dw2_asm_output_data_uleb128 (curr->vend, "Location view end"); |
| } |
| #endif /* DW_LLE_view_pair */ |
| |
| return; |
| } |
| |
| /* Output the location list given to us. */ |
| |
| static void |
| output_loc_list (dw_loc_list_ref list_head) |
| { |
| int vcount = 0, lcount = 0; |
| |
| if (list_head->emitted) |
| return; |
| list_head->emitted = true; |
| |
| if (list_head->vl_symbol && dwarf2out_locviews_in_attribute ()) |
| { |
| ASM_OUTPUT_LABEL (asm_out_file, list_head->vl_symbol); |
| |
| for (dw_loc_list_ref curr = list_head; curr != NULL; |
| curr = curr->dw_loc_next) |
| { |
| unsigned long size; |
| |
| if (skip_loc_list_entry (curr, &size)) |
| continue; |
| |
| vcount++; |
| |
| /* ?? dwarf_split_debug_info? */ |
| if (dwarf2out_as_locview_support) |
| { |
| char label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| |
| if (!ZERO_VIEW_P (curr->vbegin)) |
| { |
| ASM_GENERATE_INTERNAL_LABEL (label, "LVU", curr->vbegin); |
| dw2_asm_output_symname_uleb128 (label, |
| "View list begin (%s)", |
| list_head->vl_symbol); |
| } |
| else |
| dw2_asm_output_data_uleb128 (0, |
| "View list begin (%s)", |
| list_head->vl_symbol); |
| |
| if (!ZERO_VIEW_P (curr->vend)) |
| { |
| ASM_GENERATE_INTERNAL_LABEL (label, "LVU", curr->vend); |
| dw2_asm_output_symname_uleb128 (label, |
| "View list end (%s)", |
| list_head->vl_symbol); |
| } |
| else |
| dw2_asm_output_data_uleb128 (0, |
| "View list end (%s)", |
| list_head->vl_symbol); |
| } |
| else |
| { |
| dw2_asm_output_data_uleb128 (curr->vbegin, |
| "View list begin (%s)", |
| list_head->vl_symbol); |
| dw2_asm_output_data_uleb128 (curr->vend, |
| "View list end (%s)", |
| list_head->vl_symbol); |
| } |
| } |
| } |
| |
| ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol); |
| |
| const char *last_section = NULL; |
| const char *base_label = NULL; |
| |
| /* Walk the location list, and output each range + expression. */ |
| for (dw_loc_list_ref curr = list_head; curr != NULL; |
| curr = curr->dw_loc_next) |
| { |
| unsigned long size; |
| |
| /* Skip this entry? If we skip it here, we must skip it in the |
| view list above as well. */ |
| if (skip_loc_list_entry (curr, &size)) |
| continue; |
| |
| lcount++; |
| |
| if (dwarf_version >= 5) |
| { |
| if (dwarf_split_debug_info && HAVE_AS_LEB128) |
| { |
| dwarf2out_maybe_output_loclist_view_pair (curr); |
| /* For -gsplit-dwarf, emit DW_LLE_startx_length, which has |
| uleb128 index into .debug_addr and uleb128 length. */ |
| dw2_asm_output_data (1, DW_LLE_startx_length, |
| "DW_LLE_startx_length (%s)", |
| list_head->ll_symbol); |
| dw2_asm_output_data_uleb128 (curr->begin_entry->index, |
| "Location list range start index " |
| "(%s)", curr->begin); |
| dw2_asm_output_delta_uleb128 (curr->end, curr->begin, |
| "Location list length (%s)", |
| list_head->ll_symbol); |
| } |
| else if (dwarf_split_debug_info) |
| { |
| dwarf2out_maybe_output_loclist_view_pair (curr); |
| /* For -gsplit-dwarf without usable .uleb128 support, emit |
| DW_LLE_startx_endx, which has two uleb128 indexes into |
| .debug_addr. */ |
| dw2_asm_output_data (1, DW_LLE_startx_endx, |
| "DW_LLE_startx_endx (%s)", |
| list_head->ll_symbol); |
| dw2_asm_output_data_uleb128 (curr->begin_entry->index, |
| "Location list range start index " |
| "(%s)", curr->begin); |
| dw2_asm_output_data_uleb128 (curr->end_entry->index, |
| "Location list range end index " |
| "(%s)", curr->end); |
| } |
| else if (!have_multiple_function_sections && HAVE_AS_LEB128) |
| { |
| dwarf2out_maybe_output_loclist_view_pair (curr); |
| /* If all code is in .text section, the base address is |
| already provided by the CU attributes. Use |
| DW_LLE_offset_pair where both addresses are uleb128 encoded |
| offsets against that base. */ |
| dw2_asm_output_data (1, DW_LLE_offset_pair, |
| "DW_LLE_offset_pair (%s)", |
| list_head->ll_symbol); |
| dw2_asm_output_delta_uleb128 (curr->begin, curr->section, |
| "Location list begin address (%s)", |
| list_head->ll_symbol); |
| dw2_asm_output_delta_uleb128 (curr->end, curr->section, |
| "Location list end address (%s)", |
| list_head->ll_symbol); |
| } |
| else if (HAVE_AS_LEB128) |
| { |
| /* Otherwise, find out how many consecutive entries could share |
| the same base entry. If just one, emit DW_LLE_start_length, |
| otherwise emit DW_LLE_base_address for the base address |
| followed by a series of DW_LLE_offset_pair. */ |
| if (last_section == NULL || curr->section != last_section) |
| { |
| dw_loc_list_ref curr2; |
| for (curr2 = curr->dw_loc_next; curr2 != NULL; |
| curr2 = curr2->dw_loc_next) |
| { |
| if (strcmp (curr2->begin, curr2->end) == 0 |
| && !curr2->force) |
| continue; |
| break; |
| } |
| if (curr2 == NULL || curr->section != curr2->section) |
| last_section = NULL; |
| else |
| { |
| last_section = curr->section; |
| base_label = curr->begin; |
| dw2_asm_output_data (1, DW_LLE_base_address, |
| "DW_LLE_base_address (%s)", |
| list_head->ll_symbol); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, base_label, |
| "Base address (%s)", |
| list_head->ll_symbol); |
| } |
| } |
| /* Only one entry with the same base address. Use |
| DW_LLE_start_length with absolute address and uleb128 |
| length. */ |
| if (last_section == NULL) |
| { |
| dwarf2out_maybe_output_loclist_view_pair (curr); |
| dw2_asm_output_data (1, DW_LLE_start_length, |
| "DW_LLE_start_length (%s)", |
| list_head->ll_symbol); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin, |
| "Location list begin address (%s)", |
| list_head->ll_symbol); |
| dw2_asm_output_delta_uleb128 (curr->end, curr->begin, |
| "Location list length " |
| "(%s)", list_head->ll_symbol); |
| } |
| /* Otherwise emit DW_LLE_offset_pair, relative to above emitted |
| DW_LLE_base_address. */ |
| else |
| { |
| dwarf2out_maybe_output_loclist_view_pair (curr); |
| dw2_asm_output_data (1, DW_LLE_offset_pair, |
| "DW_LLE_offset_pair (%s)", |
| list_head->ll_symbol); |
| dw2_asm_output_delta_uleb128 (curr->begin, base_label, |
| "Location list begin address " |
| "(%s)", list_head->ll_symbol); |
| dw2_asm_output_delta_uleb128 (curr->end, base_label, |
| "Location list end address " |
| "(%s)", list_head->ll_symbol); |
| } |
| } |
| /* The assembler does not support .uleb128 directive. Emit |
| DW_LLE_start_end with a pair of absolute addresses. */ |
| else |
| { |
| dwarf2out_maybe_output_loclist_view_pair (curr); |
| dw2_asm_output_data (1, DW_LLE_start_end, |
| "DW_LLE_start_end (%s)", |
| list_head->ll_symbol); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin, |
| "Location list begin address (%s)", |
| list_head->ll_symbol); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end, |
| "Location list end address (%s)", |
| list_head->ll_symbol); |
| } |
| } |
| else if (dwarf_split_debug_info) |
| { |
| /* For -gsplit-dwarf -gdwarf-{2,3,4} emit index into .debug_addr |
| and 4 byte length. */ |
| dw2_asm_output_data (1, DW_LLE_GNU_start_length_entry, |
| "Location list start/length entry (%s)", |
| list_head->ll_symbol); |
| dw2_asm_output_data_uleb128 (curr->begin_entry->index, |
| "Location list range start index (%s)", |
| curr->begin); |
| /* The length field is 4 bytes. If we ever need to support |
| an 8-byte length, we can add a new DW_LLE code or fall back |
| to DW_LLE_GNU_start_end_entry. */ |
| dw2_asm_output_delta (4, curr->end, curr->begin, |
| "Location list range length (%s)", |
| list_head->ll_symbol); |
| } |
| else if (!have_multiple_function_sections) |
| { |
| /* Pair of relative addresses against start of text section. */ |
| dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section, |
| "Location list begin address (%s)", |
| list_head->ll_symbol); |
| dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section, |
| "Location list end address (%s)", |
| list_head->ll_symbol); |
| } |
| else |
| { |
| /* Pair of absolute addresses. */ |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin, |
| "Location list begin address (%s)", |
| list_head->ll_symbol); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end, |
| "Location list end address (%s)", |
| list_head->ll_symbol); |
| } |
| |
| /* Output the block length for this list of location operations. */ |
| if (dwarf_version >= 5) |
| dw2_asm_output_data_uleb128 (size, "Location expression size"); |
| else |
| { |
| gcc_assert (size <= 0xffff); |
| dw2_asm_output_data (2, size, "Location expression size"); |
| } |
| |
| output_loc_sequence (curr->expr, -1); |
| } |
| |
| /* And finally list termination. */ |
| if (dwarf_version >= 5) |
| dw2_asm_output_data (1, DW_LLE_end_of_list, |
| "DW_LLE_end_of_list (%s)", list_head->ll_symbol); |
| else if (dwarf_split_debug_info) |
| dw2_asm_output_data (1, DW_LLE_GNU_end_of_list_entry, |
| "Location list terminator (%s)", |
| list_head->ll_symbol); |
| else |
| { |
| dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, |
| "Location list terminator begin (%s)", |
| list_head->ll_symbol); |
| dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, |
| "Location list terminator end (%s)", |
| list_head->ll_symbol); |
| } |
| |
| gcc_assert (!list_head->vl_symbol |
| || vcount == lcount * (dwarf2out_locviews_in_attribute () ? 1 : 0)); |
| } |
| |
| /* Output a range_list offset into the .debug_ranges or .debug_rnglists |
| section. Emit a relocated reference if val_entry is NULL, otherwise, |
| emit an indirect reference. */ |
| |
| static void |
| output_range_list_offset (dw_attr_node *a) |
| { |
| const char *name = dwarf_attr_name (a->dw_attr); |
| |
| if (a->dw_attr_val.val_entry == RELOCATED_OFFSET) |
| { |
| if (dwarf_version >= 5) |
| { |
| dw_ranges *r = &(*ranges_table)[a->dw_attr_val.v.val_offset]; |
| dw2_asm_output_offset (dwarf_offset_size, r->label, |
| debug_ranges_section, "%s", name); |
| } |
| else |
| { |
| char *p = strchr (ranges_section_label, '\0'); |
| sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX, |
| a->dw_attr_val.v.val_offset * 2 * DWARF2_ADDR_SIZE); |
| dw2_asm_output_offset (dwarf_offset_size, ranges_section_label, |
| debug_ranges_section, "%s", name); |
| *p = '\0'; |
| } |
| } |
| else if (dwarf_version >= 5) |
| { |
| dw_ranges *r = &(*ranges_table)[a->dw_attr_val.v.val_offset]; |
| gcc_assert (rnglist_idx); |
| dw2_asm_output_data_uleb128 (r->idx, "%s", name); |
| } |
| else |
| dw2_asm_output_data (dwarf_offset_size, |
| a->dw_attr_val.v.val_offset * 2 * DWARF2_ADDR_SIZE, |
| "%s (offset from %s)", name, ranges_section_label); |
| } |
| |
| /* Output the offset into the debug_loc section. */ |
| |
| static void |
| output_loc_list_offset (dw_attr_node *a) |
| { |
| char *sym = AT_loc_list (a)->ll_symbol; |
| |
| gcc_assert (sym); |
| if (!dwarf_split_debug_info) |
| dw2_asm_output_offset (dwarf_offset_size, sym, debug_loc_section, |
| "%s", dwarf_attr_name (a->dw_attr)); |
| else if (dwarf_version >= 5) |
| { |
| gcc_assert (AT_loc_list (a)->num_assigned); |
| dw2_asm_output_data_uleb128 (AT_loc_list (a)->hash, "%s (%s)", |
| dwarf_attr_name (a->dw_attr), |
| sym); |
| } |
| else |
| dw2_asm_output_delta (dwarf_offset_size, sym, loc_section_label, |
| "%s", dwarf_attr_name (a->dw_attr)); |
| } |
| |
| /* Output the offset into the debug_loc section. */ |
| |
| static void |
| output_view_list_offset (dw_attr_node *a) |
| { |
| char *sym = (*AT_loc_list_ptr (a))->vl_symbol; |
| |
| gcc_assert (sym); |
| if (dwarf_split_debug_info) |
| dw2_asm_output_delta (dwarf_offset_size, sym, loc_section_label, |
| "%s", dwarf_attr_name (a->dw_attr)); |
| else |
| dw2_asm_output_offset (dwarf_offset_size, sym, debug_loc_section, |
| "%s", dwarf_attr_name (a->dw_attr)); |
| } |
| |
| /* Output an attribute's index or value appropriately. */ |
| |
| static void |
| output_attr_index_or_value (dw_attr_node *a) |
| { |
| const char *name = dwarf_attr_name (a->dw_attr); |
| |
| if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED) |
| { |
| dw2_asm_output_data_uleb128 (AT_index (a), "%s", name); |
| return; |
| } |
| switch (AT_class (a)) |
| { |
| case dw_val_class_addr: |
| dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name); |
| break; |
| case dw_val_class_high_pc: |
| case dw_val_class_lbl_id: |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Output a type signature. */ |
| |
| static inline void |
| output_signature (const char *sig, const char *name) |
| { |
| int i; |
| |
| for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++) |
| dw2_asm_output_data (1, sig[i], i == 0 ? "%s" : NULL, name); |
| } |
| |
| /* Output a discriminant value. */ |
| |
| static inline void |
| output_discr_value (dw_discr_value *discr_value, const char *name) |
| { |
| if (discr_value->pos) |
| dw2_asm_output_data_uleb128 (discr_value->v.uval, "%s", name); |
| else |
| dw2_asm_output_data_sleb128 (discr_value->v.sval, "%s", name); |
| } |
| |
| /* Output the DIE and its attributes. Called recursively to generate |
| the definitions of each child DIE. */ |
| |
| static void |
| output_die (dw_die_ref die) |
| { |
| dw_attr_node *a; |
| dw_die_ref c; |
| unsigned long size; |
| unsigned ix; |
| |
| dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (%#lx) %s)", |
| (unsigned long)die->die_offset, |
| dwarf_tag_name (die->die_tag)); |
| |
| FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a) |
| { |
| const char *name = dwarf_attr_name (a->dw_attr); |
| |
| switch (AT_class (a)) |
| { |
| case dw_val_class_addr: |
| output_attr_index_or_value (a); |
| break; |
| |
| case dw_val_class_offset: |
| dw2_asm_output_data (dwarf_offset_size, a->dw_attr_val.v.val_offset, |
| "%s", name); |
| break; |
| |
| case dw_val_class_range_list: |
| output_range_list_offset (a); |
| break; |
| |
| case dw_val_class_loc: |
| size = size_of_locs (AT_loc (a)); |
| |
| /* Output the block length for this list of location operations. */ |
| if (dwarf_version >= 4) |
| dw2_asm_output_data_uleb128 (size, "%s", name); |
| else |
| dw2_asm_output_data (constant_size (size), size, "%s", name); |
| |
| output_loc_sequence (AT_loc (a), -1); |
| break; |
| |
| case dw_val_class_const: |
| /* ??? It would be slightly more efficient to use a scheme like is |
| used for unsigned constants below, but gdb 4.x does not sign |
| extend. Gdb 5.x does sign extend. */ |
| dw2_asm_output_data_sleb128 (AT_int (a), "%s", name); |
| break; |
| |
| case dw_val_class_unsigned_const: |
| { |
| int csize = constant_size (AT_unsigned (a)); |
| if (dwarf_version == 3 |
| && a->dw_attr == DW_AT_data_member_location |
| && csize >= 4) |
| dw2_asm_output_data_uleb128 (AT_unsigned (a), "%s", name); |
| else |
| dw2_asm_output_data (csize, AT_unsigned (a), "%s", name); |
| } |
| break; |
| |
| case dw_val_class_symview: |
| { |
| int vsize; |
| if (symview_upper_bound <= 0xff) |
| vsize = 1; |
| else if (symview_upper_bound <= 0xffff) |
| vsize = 2; |
| else if (symview_upper_bound <= 0xffffffff) |
| vsize = 4; |
| else |
| vsize = 8; |
| dw2_asm_output_addr (vsize, a->dw_attr_val.v.val_symbolic_view, |
| "%s", name); |
| } |
| break; |
| |
| case dw_val_class_const_implicit: |
| if (flag_debug_asm) |
| fprintf (asm_out_file, "\t\t\t%s %s (" |
| HOST_WIDE_INT_PRINT_DEC ")\n", |
| ASM_COMMENT_START, name, AT_int (a)); |
| break; |
| |
| case dw_val_class_unsigned_const_implicit: |
| if (flag_debug_asm) |
| fprintf (asm_out_file, "\t\t\t%s %s (" |
| HOST_WIDE_INT_PRINT_HEX ")\n", |
| ASM_COMMENT_START, name, AT_unsigned (a)); |
| break; |
| |
| case dw_val_class_const_double: |
| { |
| unsigned HOST_WIDE_INT first, second; |
| |
| if (HOST_BITS_PER_WIDE_INT >= DWARF_LARGEST_DATA_FORM_BITS) |
| dw2_asm_output_data (1, |
| HOST_BITS_PER_DOUBLE_INT |
| / HOST_BITS_PER_CHAR, |
| NULL); |
| |
| if (WORDS_BIG_ENDIAN) |
| { |
| first = a->dw_attr_val.v.val_double.high; |
| second = a->dw_attr_val.v.val_double.low; |
| } |
| else |
| { |
| first = a->dw_attr_val.v.val_double.low; |
| second = a->dw_attr_val.v.val_double.high; |
| } |
| |
| dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR, |
| first, "%s", name); |
| dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR, |
| second, NULL); |
| } |
| break; |
| |
| case dw_val_class_wide_int: |
| { |
| int i; |
| int len = get_full_len (*a->dw_attr_val.v.val_wide); |
| int l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR; |
| if (len * HOST_BITS_PER_WIDE_INT > DWARF_LARGEST_DATA_FORM_BITS) |
| dw2_asm_output_data (1, get_full_len (*a->dw_attr_val.v.val_wide) |
| * l, NULL); |
| |
| if (WORDS_BIG_ENDIAN) |
| for (i = len - 1; i >= 0; --i) |
| { |
| dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i), |
| "%s", name); |
| name = ""; |
| } |
| else |
| for (i = 0; i < len; ++i) |
| { |
| dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i), |
| "%s", name); |
| name = ""; |
| } |
| } |
| break; |
| |
| case dw_val_class_vec: |
| { |
| unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size; |
| unsigned int len = a->dw_attr_val.v.val_vec.length; |
| unsigned int i; |
| unsigned char *p; |
| |
| dw2_asm_output_data (constant_size (len * elt_size), |
| len * elt_size, "%s", name); |
| if (elt_size > sizeof (HOST_WIDE_INT)) |
| { |
| elt_size /= 2; |
| len *= 2; |
| } |
| for (i = 0, p = (unsigned char *) a->dw_attr_val.v.val_vec.array; |
| i < len; |
| i++, p += elt_size) |
| dw2_asm_output_data (elt_size, extract_int (p, elt_size), |
| "fp or vector constant word %u", i); |
| break; |
| } |
| |
| case dw_val_class_flag: |
| if (dwarf_version >= 4) |
| { |
| /* Currently all add_AT_flag calls pass in 1 as last argument, |
| so DW_FORM_flag_present can be used. If that ever changes, |
| we'll need to use DW_FORM_flag and have some optimization |
| in build_abbrev_table that will change those to |
| DW_FORM_flag_present if it is set to 1 in all DIEs using |
| the same abbrev entry. */ |
| gcc_assert (AT_flag (a) == 1); |
| if (flag_debug_asm) |
| fprintf (asm_out_file, "\t\t\t%s %s\n", |
| ASM_COMMENT_START, name); |
| break; |
| } |
| dw2_asm_output_data (1, AT_flag (a), "%s", name); |
| break; |
| |
| case dw_val_class_loc_list: |
| output_loc_list_offset (a); |
| break; |
| |
| case dw_val_class_view_list: |
| output_view_list_offset (a); |
| break; |
| |
| case dw_val_class_die_ref: |
| if (AT_ref_external (a)) |
| { |
| if (AT_ref (a)->comdat_type_p) |
| { |
| comdat_type_node *type_node |
| = AT_ref (a)->die_id.die_type_node; |
| |
| gcc_assert (type_node); |
| output_signature (type_node->signature, name); |
| } |
| else |
| { |
| const char *sym = AT_ref (a)->die_id.die_symbol; |
| int size; |
| |
| gcc_assert (sym); |
| /* In DWARF2, DW_FORM_ref_addr is sized by target address |
| length, whereas in DWARF3 it's always sized as an |
| offset. */ |
| if (dwarf_version == 2) |
| size = DWARF2_ADDR_SIZE; |
| else |
| size = dwarf_offset_size; |
| /* ??? We cannot unconditionally output die_offset if |
| non-zero - others might create references to those |
| DIEs via symbols. |
| And we do not clear its DIE offset after outputting it |
| (and the label refers to the actual DIEs, not the |
| DWARF CU unit header which is when using label + offset |
| would be the correct thing to do). |
| ??? This is the reason for the with_offset flag. */ |
| if (AT_ref (a)->with_offset) |
| dw2_asm_output_offset (size, sym, AT_ref (a)->die_offset, |
| debug_info_section, "%s", name); |
| else |
| dw2_asm_output_offset (size, sym, debug_info_section, "%s", |
| name); |
| } |
| } |
| else |
| { |
| gcc_assert (AT_ref (a)->die_offset); |
| dw2_asm_output_data (dwarf_offset_size, AT_ref (a)->die_offset, |
| "%s", name); |
| } |
| break; |
| |
| case dw_val_class_fde_ref: |
| { |
| char l1[MAX_ARTIFICIAL_LABEL_BYTES]; |
| |
| ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL, |
| a->dw_attr_val.v.val_fde_index * 2); |
| dw2_asm_output_offset (dwarf_offset_size, l1, debug_frame_section, |
| "%s", name); |
| } |
| break; |
| |
| case dw_val_class_vms_delta: |
| #ifdef ASM_OUTPUT_DWARF_VMS_DELTA |
| dw2_asm_output_vms_delta (dwarf_offset_size, |
| AT_vms_delta2 (a), AT_vms_delta1 (a), |
| "%s", name); |
| #else |
| dw2_asm_output_delta (dwarf_offset_size, |
| AT_vms_delta2 (a), AT_vms_delta1 (a), |
| "%s", name); |
| #endif |
| break; |
| |
| case dw_val_class_lbl_id: |
| output_attr_index_or_value (a); |
| break; |
| |
| case dw_val_class_lineptr: |
| dw2_asm_output_offset (dwarf_offset_size, AT_lbl (a), |
| debug_line_section, "%s", name); |
| break; |
| |
| case dw_val_class_macptr: |
| dw2_asm_output_offset (dwarf_offset_size, AT_lbl (a), |
| debug_macinfo_section, "%s", name); |
| break; |
| |
| case dw_val_class_loclistsptr: |
| dw2_asm_output_offset (dwarf_offset_size, AT_lbl (a), |
| debug_loc_section, "%s", name); |
| break; |
| |
| case dw_val_class_str: |
| if (a->dw_attr_val.v.val_str->form == DW_FORM_strp) |
| dw2_asm_output_offset (dwarf_offset_size, |
| a->dw_attr_val.v.val_str->label, |
| debug_str_section, |
| "%s: \"%s\"", name, AT_string (a)); |
| else if (a->dw_attr_val.v.val_str->form == DW_FORM_line_strp) |
| dw2_asm_output_offset (dwarf_offset_size, |
| a->dw_attr_val.v.val_str->label, |
| debug_line_str_section, |
| "%s: \"%s\"", name, AT_string (a)); |
| else if (a->dw_attr_val.v.val_str->form == dwarf_FORM (DW_FORM_strx)) |
| dw2_asm_output_data_uleb128 (AT_index (a), |
| "%s: \"%s\"", name, AT_string (a)); |
| else |
| dw2_asm_output_nstring (AT_string (a), -1, "%s", name); |
| break; |
| |
| case dw_val_class_file: |
| { |
| int f = maybe_emit_file (a->dw_attr_val.v.val_file); |
| |
| dw2_asm_output_data (constant_size (f), f, "%s (%s)", name, |
| a->dw_attr_val.v.val_file->filename); |
| break; |
| } |
| |
| case dw_val_class_file_implicit: |
| if (flag_debug_asm) |
| fprintf (asm_out_file, "\t\t\t%s %s (%d, %s)\n", |
| ASM_COMMENT_START, name, |
| maybe_emit_file (a->dw_attr_val.v.val_file), |
| a->dw_attr_val.v.val_file->filename); |
| break; |
| |
| case dw_val_class_data8: |
| { |
| int i; |
| |
| for (i = 0; i < 8; i++) |
| dw2_asm_output_data (1, a->dw_attr_val.v.val_data8[i], |
| i == 0 ? "%s" : NULL, name); |
| break; |
| } |
| |
| case dw_val_class_high_pc: |
| dw2_asm_output_delta (DWARF2_ADDR_SIZE, AT_lbl (a), |
| get_AT_low_pc (die), "DW_AT_high_pc"); |
| break; |
| |
| case dw_val_class_discr_value: |
| output_discr_value (&a->dw_attr_val.v.val_discr_value, name); |
| break; |
| |
| case dw_val_class_discr_list: |
| { |
| dw_discr_list_ref list = AT_discr_list (a); |
| const int size = size_of_discr_list (list); |
| |
| /* This is a block, so output its length first. */ |
| dw2_asm_output_data (constant_size (size), size, |
| "%s: block size", name); |
| |
| for (; list != NULL; list = list->dw_discr_next) |
| { |
| /* One byte for the discriminant value descriptor, and then as |
| many LEB128 numbers as required. */ |
| if (list->dw_discr_range) |
| dw2_asm_output_data (1, DW_DSC_range, |
| "%s: DW_DSC_range", name); |
| else |
| dw2_asm_output_data (1, DW_DSC_label, |
| "%s: DW_DSC_label", name); |
| |
| output_discr_value (&list->dw_discr_lower_bound, name); |
| if (list->dw_discr_range) |
| output_discr_value (&list->dw_discr_upper_bound, name); |
| } |
| break; |
| } |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| FOR_EACH_CHILD (die, c, output_die (c)); |
| |
| /* Add null byte to terminate sibling list. */ |
| if (die->die_child != NULL) |
| dw2_asm_output_data (1, 0, "end of children of DIE %#lx", |
| (unsigned long) die->die_offset); |
| } |
| |
| /* Output the dwarf version number. */ |
| |
| static void |
| output_dwarf_version () |
| { |
| /* ??? For now, if -gdwarf-6 is specified, we output version 5 with |
| views in loclist. That will change eventually. */ |
| if (dwarf_version == 6) |
| { |
| static bool once; |
| if (!once) |
| { |
| warning (0, "%<-gdwarf-6%> is output as version 5 with " |
| "incompatibilities"); |
| once = true; |
| } |
| dw2_asm_output_data (2, 5, "DWARF version number"); |
| } |
| else |
| dw2_asm_output_data (2, dwarf_version, "DWARF version number"); |
| } |
| |
| /* Output the compilation unit that appears at the beginning of the |
| .debug_info section, and precedes the DIE descriptions. */ |
| |
| static void |
| output_compilation_unit_header (enum dwarf_unit_type ut) |
| { |
| if (!XCOFF_DEBUGGING_INFO) |
| { |
| if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4) |
| dw2_asm_output_data (4, 0xffffffff, |
| "Initial length escape value indicating 64-bit DWARF extension"); |
| dw2_asm_output_data (dwarf_offset_size, |
| next_die_offset - DWARF_INITIAL_LENGTH_SIZE, |
| "Length of Compilation Unit Info"); |
| } |
| |
| output_dwarf_version (); |
| if (dwarf_version >= 5) |
| { |
| const char *name; |
| switch (ut) |
| { |
| case DW_UT_compile: name = "DW_UT_compile"; break; |
| case DW_UT_type: name = "DW_UT_type"; break; |
| case DW_UT_split_compile: name = "DW_UT_split_compile"; break; |
| case DW_UT_split_type: name = "DW_UT_split_type"; break; |
| default: gcc_unreachable (); |
| } |
| dw2_asm_output_data (1, ut, "%s", name); |
| dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)"); |
| } |
| dw2_asm_output_offset (dwarf_offset_size, abbrev_section_label, |
| debug_abbrev_section, |
| "Offset Into Abbrev. Section"); |
| if (dwarf_version < 5) |
| dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)"); |
| } |
| |
| /* Output the compilation unit DIE and its children. */ |
| |
| static void |
| output_comp_unit (dw_die_ref die, int output_if_empty, |
| const unsigned char *dwo_id) |
| { |
| const char *secname, *oldsym; |
| char *tmp; |
| |
| /* Unless we are outputting main CU, we may throw away empty ones. */ |
| if (!output_if_empty && die->die_child == NULL) |
| return; |
| |
| /* Even if there are no children of this DIE, we must output the information |
| about the compilation unit. Otherwise, on an empty translation unit, we |
| will generate a present, but empty, .debug_info section. IRIX 6.5 `nm' |
| will then complain when examining the file. First mark all the DIEs in |
| this CU so we know which get local refs. */ |
| mark_dies (die); |
| |
| external_ref_hash_type *extern_map = optimize_external_refs (die); |
| |
| /* For now, optimize only the main CU, in order to optimize the rest |
| we'd need to see all of them earlier. Leave the rest for post-linking |
| tools like DWZ. */ |
| if (die == comp_unit_die ()) |
| abbrev_opt_start = vec_safe_length (abbrev_die_table); |
| |
| build_abbrev_table (die, extern_map); |
| |
| optimize_abbrev_table (); |
| |
| delete extern_map; |
| |
| /* Initialize the beginning DIE offset - and calculate sizes/offsets. */ |
| next_die_offset = (dwo_id |
| ? DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE |
| : DWARF_COMPILE_UNIT_HEADER_SIZE); |
| calc_die_sizes (die); |
| |
| oldsym = die->die_id.die_symbol; |
| if (oldsym && die->comdat_type_p) |
| { |
| tmp = XALLOCAVEC (char, strlen (oldsym) + 24); |
| |
| sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym); |
| secname = tmp; |
| die->die_id.die_symbol = NULL; |
| switch_to_section (get_section (secname, SECTION_DEBUG, NULL)); |
| } |
| else |
| { |
| switch_to_section (debug_info_section); |
| ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label); |
| info_section_emitted = true; |
| } |
| |
| /* For LTO cross unit DIE refs we want a symbol on the start of the |
| debuginfo section, not on the CU DIE. */ |
| if ((flag_generate_lto || flag_generate_offload) && oldsym) |
| { |
| /* ??? No way to get visibility assembled without a decl. */ |
| tree decl = build_decl (UNKNOWN_LOCATION, VAR_DECL, |
| get_identifier (oldsym), char_type_node); |
| TREE_PUBLIC (decl) = true; |
| TREE_STATIC (decl) = true; |
| DECL_ARTIFICIAL (decl) = true; |
| DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN; |
| DECL_VISIBILITY_SPECIFIED (decl) = true; |
| targetm.asm_out.assemble_visibility (decl, VISIBILITY_HIDDEN); |
| #ifdef ASM_WEAKEN_LABEL |
| /* We prefer a .weak because that handles duplicates from duplicate |
| archive members in a graceful way. */ |
| ASM_WEAKEN_LABEL (asm_out_file, oldsym); |
| #else |
| targetm.asm_out.globalize_label (asm_out_file, oldsym); |
| #endif |
| ASM_OUTPUT_LABEL (asm_out_file, oldsym); |
| } |
| |
| /* Output debugging information. */ |
| output_compilation_unit_header (dwo_id |
| ? DW_UT_split_compile : DW_UT_compile); |
| if (dwarf_version >= 5) |
| { |
| if (dwo_id != NULL) |
| for (int i = 0; i < 8; i++) |
| dw2_asm_output_data (1, dwo_id[i], i == 0 ? "DWO id" : NULL); |
| } |
| output_die (die); |
| |
| /* Leave the marks on the main CU, so we can check them in |
| output_pubnames. */ |
| if (oldsym) |
| { |
| unmark_dies (die); |
| die->die_id.die_symbol = oldsym; |
| } |
| } |
| |
| /* Whether to generate the DWARF accelerator tables in .debug_pubnames |
| and .debug_pubtypes. This is configured per-target, but can be |
| overridden by the -gpubnames or -gno-pubnames options. */ |
| |
| static inline bool |
| want_pubnames (void) |
| { |
| if (debug_info_level <= DINFO_LEVEL_TERSE |
| /* Names and types go to the early debug part only. */ |
| || in_lto_p) |
| return false; |
| if (debug_generate_pub_sections != -1) |
| return debug_generate_pub_sections; |
| return targetm.want_debug_pub_sections; |
| } |
| |
| /* Add the DW_AT_GNU_pubnames and DW_AT_GNU_pubtypes attributes. */ |
| |
| static void |
| add_AT_pubnames (dw_die_ref die) |
| { |
| if (want_pubnames ()) |
| add_AT_flag (die, DW_AT_GNU_pubnames, 1); |
| } |
| |
| /* Add a string attribute value to a skeleton DIE. */ |
| |
| static inline void |
| add_skeleton_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, |
| const char *str) |
| { |
| dw_attr_node attr; |
| struct indirect_string_node *node; |
| |
| if (! skeleton_debug_str_hash) |
| skeleton_debug_str_hash |
| = hash_table<indirect_string_hasher>::create_ggc (10); |
| |
| node = find_AT_string_in_table (str, skeleton_debug_str_hash); |
| find_string_form (node); |
| if (node->form == dwarf_FORM (DW_FORM_strx)) |
| node->form = DW_FORM_strp; |
| |
| attr.dw_attr = attr_kind; |
| attr.dw_attr_val.val_class = dw_val_class_str; |
| attr.dw_attr_val.val_entry = NULL; |
| attr.dw_attr_val.v.val_str = node; |
| add_dwarf_attr (die, &attr); |
| } |
| |
| /* Helper function to generate top-level dies for skeleton debug_info and |
| debug_types. */ |
| |
| static void |
| add_top_level_skeleton_die_attrs (dw_die_ref die) |
| { |
| const char *dwo_file_name = concat (aux_base_name, ".dwo", NULL); |
| const char *comp_dir = comp_dir_string (); |
| |
| add_skeleton_AT_string (die, dwarf_AT (DW_AT_dwo_name), dwo_file_name); |
| if (comp_dir != NULL) |
| add_skeleton_AT_string (die, DW_AT_comp_dir, comp_dir); |
| add_AT_pubnames (die); |
| if (addr_index_table != NULL && addr_index_table->size () > 0) |
| add_AT_lineptr (die, dwarf_AT (DW_AT_addr_base), debug_addr_section_label); |
| } |
| |
| /* Output skeleton debug sections that point to the dwo file. */ |
| |
| static void |
| output_skeleton_debug_sections (dw_die_ref comp_unit, |
| const unsigned char *dwo_id) |
| { |
| /* These attributes will be found in the full debug_info section. */ |
| remove_AT (comp_unit, DW_AT_producer); |
| remove_AT (comp_unit, DW_AT_language); |
| |
| switch_to_section (debug_skeleton_info_section); |
| ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_info_section_label); |
| |
| /* Produce the skeleton compilation-unit header. This one differs enough from |
| a normal CU header that it's better not to call output_compilation_unit |
| header. */ |
| if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4) |
| dw2_asm_output_data (4, 0xffffffff, |
| "Initial length escape value indicating 64-bit " |
| "DWARF extension"); |
| |
| dw2_asm_output_data (dwarf_offset_size, |
| DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE |
| - DWARF_INITIAL_LENGTH_SIZE |
| + size_of_die (comp_unit), |
| "Length of Compilation Unit Info"); |
| output_dwarf_version (); |
| if (dwarf_version >= 5) |
| { |
| dw2_asm_output_data (1, DW_UT_skeleton, "DW_UT_skeleton"); |
| dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)"); |
| } |
| dw2_asm_output_offset (dwarf_offset_size, debug_skeleton_abbrev_section_label, |
| debug_skeleton_abbrev_section, |
| "Offset Into Abbrev. Section"); |
| if (dwarf_version < 5) |
| dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)"); |
| else |
| for (int i = 0; i < 8; i++) |
| dw2_asm_output_data (1, dwo_id[i], i == 0 ? "DWO id" : NULL); |
| |
| comp_unit->die_abbrev = SKELETON_COMP_DIE_ABBREV; |
| output_die (comp_unit); |
| |
| /* Build the skeleton debug_abbrev section. */ |
| switch_to_section (debug_skeleton_abbrev_section); |
| ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_abbrev_section_label); |
| |
| output_die_abbrevs (SKELETON_COMP_DIE_ABBREV, comp_unit); |
| |
| dw2_asm_output_data (1, 0, "end of skeleton .debug_abbrev"); |
| } |
| |
| /* Output a comdat type unit DIE and its children. */ |
| |
| static void |
| output_comdat_type_unit (comdat_type_node *node, |
| bool early_lto_debug ATTRIBUTE_UNUSED) |
| { |
| const char *secname; |
| char *tmp; |
| int i; |
| #if defined (OBJECT_FORMAT_ELF) |
| tree comdat_key; |
| #endif |
| |
| /* First mark all the DIEs in this CU so we know which get local refs. */ |
| mark_dies (node->root_die); |
| |
| external_ref_hash_type *extern_map = optimize_external_refs (node->root_die); |
| |
| build_abbrev_table (node->root_die, extern_map); |
| |
| delete extern_map; |
| extern_map = NULL; |
| |
| /* Initialize the beginning DIE offset - and calculate sizes/offsets. */ |
| next_die_offset = DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE; |
| calc_die_sizes (node->root_die); |
| |
| #if defined (OBJECT_FORMAT_ELF) |
| if (dwarf_version >= 5) |
| { |
| if (!dwarf_split_debug_info) |
| secname = early_lto_debug ? DEBUG_LTO_INFO_SECTION : DEBUG_INFO_SECTION; |
| else |
| secname = (early_lto_debug |
| ? DEBUG_LTO_DWO_INFO_SECTION : DEBUG_DWO_INFO_SECTION); |
| } |
| else if (!dwarf_split_debug_info) |
| secname = early_lto_debug ? ".gnu.debuglto_.debug_types" : ".debug_types"; |
| else |
| secname = (early_lto_debug |
| ? ".gnu.debuglto_.debug_types.dwo" : ".debug_types.dwo"); |
| |
| tmp = XALLOCAVEC (char, 4 + DWARF_TYPE_SIGNATURE_SIZE * 2); |
| sprintf (tmp, dwarf_version >= 5 ? "wi." : "wt."); |
| for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++) |
| sprintf (tmp + 3 + i * 2, "%02x", node->signature[i] & 0xff); |
| comdat_key = get_identifier (tmp); |
| targetm.asm_out.named_section (secname, |
| SECTION_DEBUG | SECTION_LINKONCE, |
| comdat_key); |
| #else |
| tmp = XALLOCAVEC (char, 18 + DWARF_TYPE_SIGNATURE_SIZE * 2); |
| sprintf (tmp, (dwarf_version >= 5 |
| ? ".gnu.linkonce.wi." : ".gnu.linkonce.wt.")); |
| for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++) |
| sprintf (tmp + 17 + i * 2, "%02x", node->signature[i] & 0xff); |
| secname = tmp; |
| switch_to_section (get_section (secname, SECTION_DEBUG, NULL)); |
| #endif |
| |
| /* Output debugging information. */ |
| output_compilation_unit_header (dwarf_split_debug_info |
| ? DW_UT_split_type : DW_UT_type); |
| output_signature (node->signature, "Type Signature"); |
| dw2_asm_output_data (dwarf_offset_size, node->type_die->die_offset, |
| "Offset to Type DIE"); |
| output_die (node->root_die); |
| |
| unmark_dies (node->root_die); |
| } |
| |
| /* Return the DWARF2/3 pubname associated with a decl. */ |
| |
| static const char * |
| dwarf2_name (tree decl, int scope) |
| { |
| if (DECL_NAMELESS (decl)) |
| return NULL; |
| return lang_hooks.dwarf_name (decl, scope ? 1 : 0); |
| } |
| |
| /* Add a new entry to .debug_pubnames if appropriate. */ |
| |
| static void |
| add_pubname_string (const char *str, dw_die_ref die) |
| { |
| pubname_entry e; |
| |
| e.die = die; |
| e.name = xstrdup (str); |
| vec_safe_push (pubname_table, e); |
| } |
| |
| static void |
| add_pubname (tree decl, dw_die_ref die) |
| { |
| if (!want_pubnames ()) |
| return; |
| |
| /* Don't add items to the table when we expect that the consumer will have |
| just read the enclosing die. For example, if the consumer is looking at a |
| class_member, it will either be inside the class already, or will have just |
| looked up the class to find the member. Either way, searching the class is |
| faster than searching the index. */ |
| if ((TREE_PUBLIC (decl) && !class_scope_p (die->die_parent)) |
| || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent)) |
| { |
| const char *name = dwarf2_name (decl, 1); |
| |
| if (name) |
| add_pubname_string (name, die); |
| } |
| } |
| |
| /* Add an enumerator to the pubnames section. */ |
| |
| static void |
| add_enumerator_pubname (const char *scope_name, dw_die_ref die) |
| { |
| pubname_entry e; |
| |
| gcc_assert (scope_name); |
| e.name = concat (scope_name, get_AT_string (die, DW_AT_name), NULL); |
| e.die = die; |
| vec_safe_push (pubname_table, e); |
| } |
| |
| /* Add a new entry to .debug_pubtypes if appropriate. */ |
| |
| static void |
| add_pubtype (tree decl, dw_die_ref die) |
| { |
| pubname_entry e; |
| |
| if (!want_pubnames ()) |
| return; |
| |
| if ((TREE_PUBLIC (decl) |
| || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent)) |
| && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl))) |
| { |
| tree scope = NULL; |
| const char *scope_name = ""; |
| const char *sep = is_cxx () ? "::" : "."; |
| const char *name; |
| |
| scope = TYPE_P (decl) ? TYPE_CONTEXT (decl) : NULL; |
| if (scope && TREE_CODE (scope) == NAMESPACE_DECL) |
| { |
| scope_name = lang_hooks.dwarf_name (scope, 1); |
| if (scope_name != NULL && scope_name[0] != '\0') |
| scope_name = concat (scope_name, sep, NULL); |
| else |
| scope_name = ""; |
| } |
| |
| if (TYPE_P (decl)) |
| name = type_tag (decl); |
| else |
| name = lang_hooks.dwarf_name (decl, 1); |
| |
| /* If we don't have a name for the type, there's no point in adding |
| it to the table. */ |
| if (name != NULL && name[0] != '\0') |
| { |
| e.die = die; |
| e.name = concat (scope_name, name, NULL); |
| vec_safe_push (pubtype_table, e); |
| } |
| |
| /* Although it might be more consistent to add the pubinfo for the |
| enumerators as their dies are created, they should only be added if the |
| enum type meets the criteria above. So rather than re-check the parent |
| enum type whenever an enumerator die is created, just output them all |
| here. This isn't protected by the name conditional because anonymous |
| enums don't have names. */ |
| if (die->die_tag == DW_TAG_enumeration_type) |
| { |
| dw_die_ref c; |
| |
| FOR_EACH_CHILD (die, c, add_enumerator_pubname (scope_name, c)); |
| } |
| } |
| } |
| |
| /* Output a single entry in the pubnames table. */ |
| |
| static void |
| output_pubname (dw_offset die_offset, pubname_entry *entry) |
| { |
| dw_die_ref die = entry->die; |
| int is_static = get_AT_flag (die, DW_AT_external) ? 0 : 1; |
| |
| dw2_asm_output_data (dwarf_offset_size, die_offset, "DIE offset"); |
| |
| if (debug_generate_pub_sections == 2) |
| { |
| /* This logic follows gdb's method for determining the value of the flag |
| byte. */ |
| uint32_t flags = GDB_INDEX_SYMBOL_KIND_NONE; |
| switch (die->die_tag) |
| { |
| case DW_TAG_typedef: |
| case DW_TAG_base_type: |
| case DW_TAG_subrange_type: |
| GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE); |
| GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1); |
| break; |
| case DW_TAG_enumerator: |
| GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, |
| GDB_INDEX_SYMBOL_KIND_VARIABLE); |
| if (!is_cxx ()) |
| GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1); |
| break; |
| case DW_TAG_subprogram: |
| GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, |
| GDB_INDEX_SYMBOL_KIND_FUNCTION); |
| if (!is_ada ()) |
| GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static); |
| break; |
| case DW_TAG_constant: |
| GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, |
| GDB_INDEX_SYMBOL_KIND_VARIABLE); |
| GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static); |
| break; |
| case DW_TAG_variable: |
| GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, |
| GDB_INDEX_SYMBOL_KIND_VARIABLE); |
| GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static); |
| break; |
| case DW_TAG_namespace: |
| case DW_TAG_imported_declaration: |
| GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE); |
| break; |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_enumeration_type: |
| GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE); |
| if (!is_cxx ()) |
| GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1); |
| break; |
| default: |
| /* An unusual tag. Leave the flag-byte empty. */ |
| break; |
| } |
| dw2_asm_output_data (1, flags >> GDB_INDEX_CU_BITSIZE, |
| "GDB-index flags"); |
| } |
| |
| dw2_asm_output_nstring (entry->name, -1, "external name"); |
| } |
| |
| |
| /* Output the public names table used to speed up access to externally |
| visible names; or the public types table used to find type definitions. */ |
| |
| static void |
| output_pubnames (vec<pubname_entry, va_gc> *names) |
| { |
| unsigned i; |
| unsigned long pubnames_length = size_of_pubnames (names); |
| pubname_entry *pub; |
| |
| if (!XCOFF_DEBUGGING_INFO) |
| { |
| if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4) |
| dw2_asm_output_data (4, 0xffffffff, |
| "Initial length escape value indicating 64-bit DWARF extension"); |
| dw2_asm_output_data (dwarf_offset_size, pubnames_length, |
| "Pub Info Length"); |
| } |
| |
| /* Version number for pubnames/pubtypes is independent of dwarf version. */ |
| dw2_asm_output_data (2, 2, "DWARF pubnames/pubtypes version"); |
| |
| if (dwarf_split_debug_info) |
| dw2_asm_output_offset (dwarf_offset_size, debug_skeleton_info_section_label, |
| debug_skeleton_info_section, |
| "Offset of Compilation Unit Info"); |
| else |
| dw2_asm_output_offset (dwarf_offset_size, debug_info_section_label, |
| debug_info_section, |
| "Offset of Compilation Unit Info"); |
| dw2_asm_output_data (dwarf_offset_size, next_die_offset, |
| "Compilation Unit Length"); |
| |
| FOR_EACH_VEC_ELT (*names, i, pub) |
| { |
| if (include_pubname_in_output (names, pub)) |
| { |
| dw_offset die_offset = pub->die->die_offset; |
| |
| /* We shouldn't see pubnames for DIEs outside of the main CU. */ |
| if (names == pubname_table && pub->die->die_tag != DW_TAG_enumerator) |
| gcc_assert (pub->die->die_mark); |
| |
| /* If we're putting types in their own .debug_types sections, |
| the .debug_pubtypes table will still point to the compile |
| unit (not the type unit), so we want to use the offset of |
| the skeleton DIE (if there is one). */ |
| if (pub->die->comdat_type_p && names == pubtype_table) |
| { |
| comdat_type_node *type_node = pub->die->die_id.die_type_node; |
| |
| if (type_node != NULL) |
| die_offset = (type_node->skeleton_die != NULL |
| ? type_node->skeleton_die->die_offset |
| : comp_unit_die ()->die_offset); |
| } |
| |
| output_pubname (die_offset, pub); |
| } |
| } |
| |
| dw2_asm_output_data (dwarf_offset_size, 0, NULL); |
| } |
| |
| /* Output public names and types tables if necessary. */ |
| |
| static void |
| output_pubtables (void) |
| { |
| if (!want_pubnames () || !info_section_emitted) |
| return; |
| |
| switch_to_section (debug_pubnames_section); |
| output_pubnames (pubname_table); |
| /* ??? Only defined by DWARF3, but emitted by Darwin for DWARF2. |
| It shouldn't hurt to emit it always, since pure DWARF2 consumers |
| simply won't look for the section. */ |
| switch_to_section (debug_pubtypes_section); |
| output_pubnames (pubtype_table); |
| } |
| |
| |
| /* Output the information that goes into the .debug_aranges table. |
| Namely, define the beginning and ending address range of the |
| text section generated for this compilation unit. */ |
| |
| static void |
| output_aranges (void) |
| { |
| unsigned i; |
| unsigned long aranges_length = size_of_aranges (); |
| |
| if (!XCOFF_DEBUGGING_INFO) |
| { |
| if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4) |
| dw2_asm_output_data (4, 0xffffffff, |
| "Initial length escape value indicating 64-bit DWARF extension"); |
| dw2_asm_output_data (dwarf_offset_size, aranges_length, |
| "Length of Address Ranges Info"); |
| } |
| |
| /* Version number for aranges is still 2, even up to DWARF5. */ |
| dw2_asm_output_data (2, 2, "DWARF aranges version"); |
| if (dwarf_split_debug_info) |
| dw2_asm_output_offset (dwarf_offset_size, debug_skeleton_info_section_label, |
| debug_skeleton_info_section, |
| "Offset of Compilation Unit Info"); |
| else |
| dw2_asm_output_offset (dwarf_offset_size, debug_info_section_label, |
| debug_info_section, |
| "Offset of Compilation Unit Info"); |
| dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address"); |
| dw2_asm_output_data (1, 0, "Size of Segment Descriptor"); |
| |
| /* We need to align to twice the pointer size here. */ |
| if (DWARF_ARANGES_PAD_SIZE) |
| { |
| /* Pad using a 2 byte words so that padding is correct for any |
| pointer size. */ |
| dw2_asm_output_data (2, 0, "Pad to %d byte boundary", |
| 2 * DWARF2_ADDR_SIZE); |
| for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2) |
| dw2_asm_output_data (2, 0, NULL); |
| } |
| |
| /* It is necessary not to output these entries if the sections were |
| not used; if the sections were not used, the length will be 0 and |
| the address may end up as 0 if the section is discarded by ld |
| --gc-sections, leaving an invalid (0, 0) entry that can be |
| confused with the terminator. */ |
| if (switch_text_ranges) |
| { |
| const char *prev_loc = text_section_label; |
| const char *loc; |
| unsigned idx; |
| |
| FOR_EACH_VEC_ELT (*switch_text_ranges, idx, loc) |
| if (prev_loc) |
| { |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, prev_loc, "Address"); |
| dw2_asm_output_delta (DWARF2_ADDR_SIZE, loc, prev_loc, "Length"); |
| prev_loc = NULL; |
| } |
| else |
| prev_loc = loc; |
| |
| if (prev_loc) |
| { |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, prev_loc, "Address"); |
| dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label, |
| prev_loc, "Length"); |
| } |
| } |
| |
| if (switch_cold_ranges) |
| { |
| const char *prev_loc = cold_text_section_label; |
| const char *loc; |
| unsigned idx; |
| |
| FOR_EACH_VEC_ELT (*switch_cold_ranges, idx, loc) |
| if (prev_loc) |
| { |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, prev_loc, "Address"); |
| dw2_asm_output_delta (DWARF2_ADDR_SIZE, loc, prev_loc, "Length"); |
| prev_loc = NULL; |
| } |
| else |
| prev_loc = loc; |
| |
| if (prev_loc) |
| { |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, prev_loc, "Address"); |
| dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label, |
| prev_loc, "Length"); |
| } |
| } |
| |
| if (have_multiple_function_sections) |
| { |
| unsigned fde_idx; |
| dw_fde_ref fde; |
| |
| FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde) |
| { |
| if (fde->ignored_debug) |
| continue; |
| if (!fde->in_std_section) |
| { |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin, |
| "Address"); |
| dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_end, |
| fde->dw_fde_begin, "Length"); |
| } |
| if (fde->dw_fde_second_begin && !fde->second_in_std_section) |
| { |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_second_begin, |
| "Address"); |
| dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_second_end, |
| fde->dw_fde_second_begin, "Length"); |
| } |
| } |
| } |
| |
| /* Output the terminator words. */ |
| dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL); |
| dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL); |
| } |
| |
| /* Add a new entry to .debug_ranges. Return its index into |
| ranges_table vector. */ |
| |
| static unsigned int |
| add_ranges_num (int num, bool maybe_new_sec) |
| { |
| dw_ranges r = { NULL, num, 0, maybe_new_sec, NULL, NULL }; |
| vec_safe_push (ranges_table, r); |
| return vec_safe_length (ranges_table) - 1; |
| } |
| |
| /* Add a new entry to .debug_ranges corresponding to a block, or a |
| range terminator if BLOCK is NULL. MAYBE_NEW_SEC is true if |
| this entry might be in a different section from previous range. */ |
| |
| static unsigned int |
| add_ranges (const_tree block, bool maybe_new_sec) |
| { |
| return add_ranges_num (block ? BLOCK_NUMBER (block) : 0, maybe_new_sec); |
| } |
| |
| /* Note that (*rnglist_table)[offset] is either a head of a rnglist |
| chain, or middle entry of a chain that will be directly referred to. */ |
| |
| static void |
| note_rnglist_head (unsigned int offset) |
| { |
| if (dwarf_version < 5 || (*ranges_table)[offset].label) |
| return; |
| (*ranges_table)[offset].label = gen_internal_sym ("LLRL"); |
| } |
| |
| /* Add a new entry to .debug_ranges corresponding to a pair of labels. |
| When using dwarf_split_debug_info, address attributes in dies destined |
| for the final executable should be direct references--setting the |
| parameter force_direct ensures this behavior. */ |
| |
| static void |
| add_ranges_by_labels (dw_die_ref die, const char *begin, const char *end, |
| bool *added, bool force_direct) |
| { |
| unsigned int in_use = vec_safe_length (ranges_by_label); |
| unsigned int offset; |
| dw_ranges_by_label rbl = { begin, end }; |
| vec_safe_push (ranges_by_label, rbl); |
| offset = add_ranges_num (-(int)in_use - 1, true); |
| if (!*added) |
| { |
| add_AT_range_list (die, DW_AT_ranges, offset, force_direct); |
| *added = true; |
| note_rnglist_head (offset); |
| if (dwarf_split_debug_info && force_direct) |
| (*ranges_table)[offset].idx = DW_RANGES_IDX_SKELETON; |
| } |
| } |
| |
| /* Emit .debug_ranges section. */ |
| |
| static void |
| output_ranges (void) |
| { |
| unsigned i; |
| static const char *const start_fmt = "Offset %#x"; |
| const char *fmt = start_fmt; |
| dw_ranges *r; |
| |
| switch_to_section (debug_ranges_section); |
| ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label); |
| FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r) |
| { |
| int block_num = r->num; |
| |
| if (block_num > 0) |
| { |
| char blabel[MAX_ARTIFICIAL_LABEL_BYTES]; |
| char elabel[MAX_ARTIFICIAL_LABEL_BYTES]; |
| |
| ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num); |
| ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num); |
| |
| /* If all code is in the text section, then the compilation |
| unit base address defaults to DW_AT_low_pc, which is the |
| base of the text section. */ |
| if (!have_multiple_function_sections) |
| { |
| dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel, |
| text_section_label, |
| fmt, i * 2 * DWARF2_ADDR_SIZE); |
| dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel, |
| text_section_label, NULL); |
| } |
| |
| /* Otherwise, the compilation unit base address is zero, |
| which allows us to use absolute addresses, and not worry |
| about whether the target supports cross-section |
| arithmetic. */ |
| else |
| { |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel, |
| fmt, i * 2 * DWARF2_ADDR_SIZE); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL); |
| } |
| |
| fmt = NULL; |
| } |
| |
| /* Negative block_num stands for an index into ranges_by_label. */ |
| else if (block_num < 0) |
| { |
| int lab_idx = - block_num - 1; |
| |
| if (!have_multiple_function_sections) |
| { |
| gcc_unreachable (); |
| #if 0 |
| /* If we ever use add_ranges_by_labels () for a single |
| function section, all we have to do is to take out |
| the #if 0 above. */ |
| dw2_asm_output_delta (DWARF2_ADDR_SIZE, |
| (*ranges_by_label)[lab_idx].begin, |
| text_section_label, |
| fmt, i * 2 * DWARF2_ADDR_SIZE); |
| dw2_asm_output_delta (DWARF2_ADDR_SIZE, |
| (*ranges_by_label)[lab_idx].end, |
| text_section_label, NULL); |
| #endif |
| } |
| else |
| { |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, |
| (*ranges_by_label)[lab_idx].begin, |
| fmt, i * 2 * DWARF2_ADDR_SIZE); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, |
| (*ranges_by_label)[lab_idx].end, |
| NULL); |
| } |
| } |
| else |
| { |
| dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL); |
| dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL); |
| fmt = start_fmt; |
| } |
| } |
| } |
| |
| /* Non-zero if .debug_line_str should be used for .debug_line section |
| strings or strings that are likely shareable with those. */ |
| #define DWARF5_USE_DEBUG_LINE_STR \ |
| (!DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET \ |
| && (DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) != 0 \ |
| /* FIXME: there is no .debug_line_str.dwo section, \ |
| for -gsplit-dwarf we should use DW_FORM_strx instead. */ \ |
| && !dwarf_split_debug_info) |
| |
| |
| /* Returns TRUE if we are outputting DWARF5 and the assembler supports |
| DWARF5 .debug_line tables using .debug_line_str or we generate |
| it ourselves, except for split-dwarf which doesn't have a |
| .debug_line_str. */ |
| static bool |
| asm_outputs_debug_line_str (void) |
| { |
| if (dwarf_version >= 5 |
| && ! output_asm_line_debug_info () |
| && DWARF5_USE_DEBUG_LINE_STR) |
| return true; |
| else |
| { |
| #if defined(HAVE_AS_GDWARF_5_DEBUG_FLAG) && defined(HAVE_AS_WORKING_DWARF_N_FLAG) |
| return !dwarf_split_debug_info && dwarf_version >= 5; |
| #else |
| return false; |
| #endif |
| } |
| } |
| |
| /* Return true if it is beneficial to use DW_RLE_base_address{,x}. |
| I is index of the following range. */ |
| |
| static bool |
| use_distinct_base_address_for_range (unsigned int i) |
| { |
| if (i >= vec_safe_length (ranges_table)) |
| return false; |
| |
| dw_ranges *r2 = &(*ranges_table)[i]; |
| /* Use DW_RLE_base_address{,x} if there is a next range in the |
| range list and is guaranteed to be in the same section. */ |
| return r2->num != 0 && r2->label == NULL && !r2->maybe_new_sec; |
| } |
| |
| /* Assign .debug_rnglists indexes and unique indexes into the debug_addr |
| section when needed. */ |
| |
| static void |
| index_rnglists (void) |
| { |
| unsigned i; |
| dw_ranges *r; |
| bool base = false; |
| |
| FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r) |
| { |
| if (r->label && r->idx != DW_RANGES_IDX_SKELETON) |
| r->idx = rnglist_idx++; |
| |
| if (!have_multiple_function_sections) |
| continue; |
| int block_num = r->num; |
| if (HAVE_AS_LEB128 && (r->label || r->maybe_new_sec)) |
| base = false; |
| if (block_num > 0) |
| { |
| char blabel[MAX_ARTIFICIAL_LABEL_BYTES]; |
| char elabel[MAX_ARTIFICIAL_LABEL_BYTES]; |
| |
| ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num); |
| ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num); |
| |
| if (HAVE_AS_LEB128) |
| { |
| if (!base && use_distinct_base_address_for_range (i + 1)) |
| { |
| r->begin_entry = add_addr_table_entry (xstrdup (blabel), |
| ate_kind_label); |
| base = true; |
| } |
| if (base) |
| /* If we have a base, no need for further |
| begin_entry/end_entry, as DW_RLE_offset_pair will be |
| used. */ |
| continue; |
| r->begin_entry |
| = add_addr_table_entry (xstrdup (blabel), ate_kind_label); |
| /* No need for end_entry, DW_RLE_start{,x}_length will use |
| length as opposed to a pair of addresses. */ |
| } |
| else |
| { |
| r->begin_entry |
| = add_addr_table_entry (xstrdup (blabel), ate_kind_label); |
| r->end_entry |
| = add_addr_table_entry (xstrdup (elabel), ate_kind_label); |
| } |
| } |
| |
| /* Negative block_num stands for an index into ranges_by_label. */ |
| else if (block_num < 0) |
| { |
| int lab_idx = - block_num - 1; |
| const char *blabel = (*ranges_by_label)[lab_idx].begin; |
| const char *elabel = (*ranges_by_label)[lab_idx].end; |
| |
| r->begin_entry |
| = add_addr_table_entry (xstrdup (blabel), ate_kind_label); |
| if (!HAVE_AS_LEB128) |
| r->end_entry |
| = add_addr_table_entry (xstrdup (elabel), ate_kind_label); |
| } |
| } |
| } |
| |
| /* Emit .debug_rnglists or (when DWO is true) .debug_rnglists.dwo section. */ |
| |
| static bool |
| output_rnglists (unsigned generation, bool dwo) |
| { |
| unsigned i; |
| dw_ranges *r; |
| char l1[MAX_ARTIFICIAL_LABEL_BYTES]; |
| char l2[MAX_ARTIFICIAL_LABEL_BYTES]; |
| char basebuf[MAX_ARTIFICIAL_LABEL_BYTES]; |
| |
| if (dwo) |
| switch_to_section (debug_ranges_dwo_section); |
| else |
| { |
| switch_to_section (debug_ranges_section); |
| ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label); |
| } |
| /* There are up to 4 unique ranges labels per generation. |
| See also init_sections_and_labels. */ |
| ASM_GENERATE_INTERNAL_LABEL (l1, DEBUG_RANGES_SECTION_LABEL, |
| 2 + 2 * dwo + generation * 6); |
| ASM_GENERATE_INTERNAL_LABEL (l2, DEBUG_RANGES_SECTION_LABEL, |
| 3 + 2 * dwo + generation * 6); |
| if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4) |
| dw2_asm_output_data (4, 0xffffffff, |
| "Initial length escape value indicating " |
| "64-bit DWARF extension"); |
| dw2_asm_output_delta (dwarf_offset_size, l2, l1, |
| "Length of Range Lists"); |
| ASM_OUTPUT_LABEL (asm_out_file, l1); |
| output_dwarf_version (); |
| dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Address Size"); |
| dw2_asm_output_data (1, 0, "Segment Size"); |
| /* Emit the offset table only for -gsplit-dwarf. If we don't care |
| about relocation sizes and primarily care about the size of .debug* |
| sections in linked shared libraries and executables, then |
| the offset table plus corresponding DW_FORM_rnglistx uleb128 indexes |
| into it are usually larger than just DW_FORM_sec_offset offsets |
| into the .debug_rnglists section. */ |
| dw2_asm_output_data (4, dwo ? rnglist_idx : 0, |
| "Offset Entry Count"); |
| if (dwo) |
| { |
| ASM_OUTPUT_LABEL (asm_out_file, ranges_base_label); |
| FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r) |
| if (r->label && r->idx != DW_RANGES_IDX_SKELETON) |
| dw2_asm_output_delta (dwarf_offset_size, r->label, |
| ranges_base_label, NULL); |
| } |
| |
| const char *lab = ""; |
| const char *base = NULL; |
| bool skipping = false; |
| bool ret = false; |
| FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r) |
| { |
| int block_num = r->num; |
| |
| if (r->label) |
| { |
| if (dwarf_split_debug_info |
| && (r->idx == DW_RANGES_IDX_SKELETON) == dwo) |
| { |
| ret = true; |
| skipping = true; |
| continue; |
| } |
| ASM_OUTPUT_LABEL (asm_out_file, r->label); |
| lab = r->label; |
| } |
| if (skipping) |
| { |
| if (block_num == 0) |
| skipping = false; |
| continue; |
| } |
| if (HAVE_AS_LEB128 && (r->label || r->maybe_new_sec)) |
| base = NULL; |
| if (block_num > 0) |
| { |
| char blabel[MAX_ARTIFICIAL_LABEL_BYTES]; |
| char elabel[MAX_ARTIFICIAL_LABEL_BYTES]; |
| |
| ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num); |
| ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num); |
| |
| if (HAVE_AS_LEB128) |
| { |
| /* If all code is in the text section, then the compilation |
| unit base address defaults to DW_AT_low_pc, which is the |
| base of the text section. */ |
| if (!have_multiple_function_sections) |
| { |
| dw2_asm_output_data (1, DW_RLE_offset_pair, |
| "DW_RLE_offset_pair (%s)", lab); |
| dw2_asm_output_delta_uleb128 (blabel, text_section_label, |
| "Range begin address (%s)", lab); |
| dw2_asm_output_delta_uleb128 (elabel, text_section_label, |
| "Range end address (%s)", lab); |
| continue; |
| } |
| if (base == NULL && use_distinct_base_address_for_range (i + 1)) |
| { |
| if (dwarf_split_debug_info) |
| { |
| dw2_asm_output_data (1, DW_RLE_base_addressx, |
| "DW_RLE_base_addressx (%s)", lab); |
| dw2_asm_output_data_uleb128 (r->begin_entry->index, |
| "Base address index (%s)", |
| blabel); |
| } |
| else |
| { |
| dw2_asm_output_data (1, DW_RLE_base_address, |
| "DW_RLE_base_address (%s)", lab); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel, |
| "Base address (%s)", lab); |
| } |
| strcpy (basebuf, blabel); |
| base = basebuf; |
| } |
| if (base) |
| { |
| dw2_asm_output_data (1, DW_RLE_offset_pair, |
| "DW_RLE_offset_pair (%s)", lab); |
| dw2_asm_output_delta_uleb128 (blabel, base, |
| "Range begin address (%s)", lab); |
| dw2_asm_output_delta_uleb128 (elabel, base, |
| "Range end address (%s)", lab); |
| continue; |
| } |
| if (dwarf_split_debug_info) |
| { |
| dw2_asm_output_data (1, DW_RLE_startx_length, |
| "DW_RLE_startx_length (%s)", lab); |
| dw2_asm_output_data_uleb128 (r->begin_entry->index, |
| "Range begin address index " |
| "(%s)", blabel); |
| } |
| else |
| { |
| dw2_asm_output_data (1, DW_RLE_start_length, |
| "DW_RLE_start_length (%s)", lab); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel, |
| "Range begin address (%s)", lab); |
| } |
| dw2_asm_output_delta_uleb128 (elabel, blabel, |
| "Range length (%s)", lab); |
| } |
| else if (dwarf_split_debug_info) |
| { |
| dw2_asm_output_data (1, DW_RLE_startx_endx, |
| "DW_RLE_startx_endx (%s)", lab); |
| dw2_asm_output_data_uleb128 (r->begin_entry->index, |
| "Range begin address index " |
| "(%s)", blabel); |
| dw2_asm_output_data_uleb128 (r->end_entry->index, |
| "Range end address index " |
| "(%s)", elabel); |
| } |
| else |
| { |
| dw2_asm_output_data (1, DW_RLE_start_end, |
| "DW_RLE_start_end (%s)", lab); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel, |
| "Range begin address (%s)", lab); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, |
| "Range end address (%s)", lab); |
| } |
| } |
| |
| /* Negative block_num stands for an index into ranges_by_label. */ |
| else if (block_num < 0) |
| { |
| int lab_idx = - block_num - 1; |
| const char *blabel = (*ranges_by_label)[lab_idx].begin; |
| const char *elabel = (*ranges_by_label)[lab_idx].end; |
| |
| if (!have_multiple_function_sections) |
| gcc_unreachable (); |
| if (HAVE_AS_LEB128) |
| { |
| if (dwarf_split_debug_info) |
| { |
| dw2_asm_output_data (1, DW_RLE_startx_length, |
| "DW_RLE_startx_length (%s)", lab); |
| dw2_asm_output_data_uleb128 (r->begin_entry->index, |
| "Range begin address index " |
| "(%s)", blabel); |
| } |
| else |
| { |
| dw2_asm_output_data (1, DW_RLE_start_length, |
| "DW_RLE_start_length (%s)", lab); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel, |
| "Range begin address (%s)", lab); |
| } |
| dw2_asm_output_delta_uleb128 (elabel, blabel, |
| "Range length (%s)", lab); |
| } |
| else if (dwarf_split_debug_info) |
| { |
| dw2_asm_output_data (1, DW_RLE_startx_endx, |
| "DW_RLE_startx_endx (%s)", lab); |
| dw2_asm_output_data_uleb128 (r->begin_entry->index, |
| "Range begin address index " |
| "(%s)", blabel); |
| dw2_asm_output_data_uleb128 (r->end_entry->index, |
| "Range end address index " |
| "(%s)", elabel); |
| } |
| else |
| { |
| dw2_asm_output_data (1, DW_RLE_start_end, |
| "DW_RLE_start_end (%s)", lab); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel, |
| "Range begin address (%s)", lab); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, |
| "Range end address (%s)", lab); |
| } |
| } |
| else |
| dw2_asm_output_data (1, DW_RLE_end_of_list, |
| "DW_RLE_end_of_list (%s)", lab); |
| } |
| ASM_OUTPUT_LABEL (asm_out_file, l2); |
| return ret; |
| } |
| |
| /* Data structure containing information about input files. */ |
| struct file_info |
| { |
| const char *path; /* Complete file name. */ |
| const char *fname; /* File name part. */ |
| int length; /* Length of entire string. */ |
| struct dwarf_file_data * file_idx; /* Index in input file table. */ |
| int dir_idx; /* Index in directory table. */ |
| }; |
| |
| /* Data structure containing information about directories with source |
| files. */ |
| struct dir_info |
| { |
| const char *path; /* Path including directory name. */ |
| int length; /* Path length. */ |
| int prefix; /* Index of directory entry which is a prefix. */ |
| int count; /* Number of files in this directory. */ |
| int dir_idx; /* Index of directory used as base. */ |
| }; |
| |
| /* Callback function for file_info comparison. We sort by looking at |
| the directories in the path. */ |
| |
| static int |
| file_info_cmp (const void *p1, const void *p2) |
| { |
| const struct file_info *const s1 = (const struct file_info *) p1; |
| const struct file_info *const s2 = (const struct file_info *) p2; |
| const unsigned char *cp1; |
| const unsigned char *cp2; |
| |
| /* Take care of file names without directories. We need to make sure that |
| we return consistent values to qsort since some will get confused if |
| we return the same value when identical operands are passed in opposite |
| orders. So if neither has a directory, return 0 and otherwise return |
| 1 or -1 depending on which one has the directory. We want the one with |
| the directory to sort after the one without, so all no directory files |
| are at the start (normally only the compilation unit file). */ |
| if ((s1->path == s1->fname || s2->path == s2->fname)) |
| return (s2->path == s2->fname) - (s1->path == s1->fname); |
| |
| cp1 = (const unsigned char *) s1->path; |
| cp2 = (const unsigned char *) s2->path; |
| |
| while (1) |
| { |
| ++cp1; |
| ++cp2; |
| /* Reached the end of the first path? If so, handle like above, |
| but now we want longer directory prefixes before shorter ones. */ |
| if ((cp1 == (const unsigned char *) s1->fname) |
| || (cp2 == (const unsigned char *) s2->fname)) |
| return ((cp1 == (const unsigned char *) s1->fname) |
| - (cp2 == (const unsigned char *) s2->fname)); |
| |
| /* Character of current path component the same? */ |
| else if (*cp1 != *cp2) |
| return *cp1 - *cp2; |
| } |
| } |
| |
| struct file_name_acquire_data |
| { |
| struct file_info *files; |
| int used_files; |
| int max_files; |
| }; |
| |
| /* Traversal function for the hash table. */ |
| |
| int |
| file_name_acquire (dwarf_file_data **slot, file_name_acquire_data *fnad) |
| { |
| struct dwarf_file_data *d = *slot; |
| struct file_info *fi; |
| const char *f; |
| |
| gcc_assert (fnad->max_files >= d->emitted_number); |
| |
| if (! d->emitted_number) |
| return 1; |
| |
| gcc_assert (fnad->max_files != fnad->used_files); |
| |
| fi = fnad->files + fnad->used_files++; |
| |
| f = d->filename; |
| |
| /* Skip all leading "./". */ |
| while (f[0] == '.' && IS_DIR_SEPARATOR (f[1])) |
| f += 2; |
| |
| /* Create a new array entry. */ |
| fi->path = f; |
| fi->length = strlen (f); |
| fi->file_idx = d; |
| |
| /* Search for the file name part. */ |
| f = strrchr (f, DIR_SEPARATOR); |
| #if defined (DIR_SEPARATOR_2) |
| { |
| const char *g = strrchr (fi->path, DIR_SEPARATOR_2); |
| |
| if (g != NULL) |
| { |
| if (f == NULL || f < g) |
| f = g; |
| } |
| } |
| #endif |
| |
| fi->fname = f == NULL ? fi->path : f + 1; |
| return 1; |
| } |
| |
| /* Helper function for output_file_names. Emit a FORM encoded |
| string STR, with assembly comment start ENTRY_KIND and |
| index IDX */ |
| |
| static void |
| output_line_string (enum dwarf_form form, const char *str, |
| const char *entry_kind, unsigned int idx) |
| { |
| switch (form) |
| { |
| case DW_FORM_string: |
| dw2_asm_output_nstring (str, -1, "%s: %#x", entry_kind, idx); |
| break; |
| case DW_FORM_line_strp: |
| if (!debug_line_str_hash) |
| debug_line_str_hash |
| = hash_table<indirect_string_hasher>::create_ggc (10); |
| |
| struct indirect_string_node *node; |
| node = find_AT_string_in_table (str, debug_line_str_hash); |
| set_indirect_string (node); |
| node->form = form; |
| dw2_asm_output_offset (dwarf_offset_size, node->label, |
| debug_line_str_section, "%s: %#x: \"%s\"", |
| entry_kind, 0, node->str); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Output the directory table and the file name table. We try to minimize |
| the total amount of memory needed. A heuristic is used to avoid large |
| slowdowns with many input files. */ |
| |
| static void |
| output_file_names (void) |
| { |
| struct file_name_acquire_data fnad; |
| int numfiles; |
| struct file_info *files; |
| struct dir_info *dirs; |
| int *saved; |
| int *savehere; |
| int *backmap; |
| int ndirs; |
| int idx_offset; |
| int i; |
| |
| if (!last_emitted_file) |
| { |
| if (dwarf_version >= 5) |
| { |
| const char *comp_dir = comp_dir_string (); |
| if (comp_dir == NULL) |
| comp_dir = ""; |
| dw2_asm_output_data (1, 1, "Directory entry format count"); |
| enum dwarf_form str_form = DW_FORM_string; |
| if (DWARF5_USE_DEBUG_LINE_STR) |
| str_form = DW_FORM_line_strp; |
| dw2_asm_output_data_uleb128 (DW_LNCT_path, "DW_LNCT_path"); |
| dw2_asm_output_data_uleb128 (str_form, "%s", |
| get_DW_FORM_name (str_form)); |
| dw2_asm_output_data_uleb128 (1, "Directories count"); |
| if (str_form == DW_FORM_string) |
| dw2_asm_output_nstring (comp_dir, -1, "Directory Entry: %#x", 0); |
| else |
| output_line_string (str_form, comp_dir, "Directory Entry", 0); |
| const char *filename0 = get_AT_string (comp_unit_die (), DW_AT_name); |
| if (filename0 == NULL) |
| filename0 = ""; |
| #ifdef VMS_DEBUGGING_INFO |
| dw2_asm_output_data (1, 4, "File name entry format count"); |
| #else |
| dw2_asm_output_data (1, 2, "File name entry format count"); |
| #endif |
| dw2_asm_output_data_uleb128 (DW_LNCT_path, "DW_LNCT_path"); |
| dw2_asm_output_data_uleb128 (str_form, "%s", |
| get_DW_FORM_name (str_form)); |
| dw2_asm_output_data_uleb128 (DW_LNCT_directory_index, |
| "DW_LNCT_directory_index"); |
| dw2_asm_output_data_uleb128 (DW_FORM_data1, "%s", |
| get_DW_FORM_name (DW_FORM_data1)); |
| #ifdef VMS_DEBUGGING_INFO |
| dw2_asm_output_data_uleb128 (DW_LNCT_timestamp, "DW_LNCT_timestamp"); |
| dw2_asm_output_data_uleb128 (DW_FORM_udata, "DW_FORM_udata"); |
| dw2_asm_output_data_uleb128 (DW_LNCT_size, "DW_LNCT_size"); |
| dw2_asm_output_data_uleb128 (DW_FORM_udata, "DW_FORM_udata"); |
| #endif |
| dw2_asm_output_data_uleb128 (1, "File names count"); |
| |
| output_line_string (str_form, filename0, "File Entry", 0); |
| dw2_asm_output_data (1, 0, NULL); |
| #ifdef VMS_DEBUGGING_INFO |
| dw2_asm_output_data_uleb128 (0, NULL); |
| dw2_asm_output_data_uleb128 (0, NULL); |
| #endif |
| } |
| else |
| { |
| dw2_asm_output_data (1, 0, "End directory table"); |
| dw2_asm_output_data (1, 0, "End file name table"); |
| } |
| return; |
| } |
| |
| numfiles = last_emitted_file->emitted_number; |
| |
| /* Allocate the various arrays we need. */ |
| files = XALLOCAVEC (struct file_info, numfiles); |
| dirs = XALLOCAVEC (struct dir_info, numfiles); |
| |
| fnad.files = files; |
| fnad.used_files = 0; |
| fnad.max_files = numfiles; |
| file_table->traverse<file_name_acquire_data *, file_name_acquire> (&fnad); |
| gcc_assert (fnad.used_files == fnad.max_files); |
| |
| qsort (files, numfiles, sizeof (files[0]), file_info_cmp); |
| |
| /* Find all the different directories used. */ |
| dirs[0].path = files[0].path; |
| dirs[0].length = files[0].fname - files[0].path; |
| dirs[0].prefix = -1; |
| dirs[0].count = 1; |
| dirs[0].dir_idx = 0; |
| files[0].dir_idx = 0; |
| ndirs = 1; |
| |
| for (i = 1; i < numfiles; i++) |
| if (files[i].fname - files[i].path == dirs[ndirs - 1].length |
| && memcmp (dirs[ndirs - 1].path, files[i].path, |
| dirs[ndirs - 1].length) == 0) |
| { |
| /* Same directory as last entry. */ |
| files[i].dir_idx = ndirs - 1; |
| ++dirs[ndirs - 1].count; |
| } |
| else |
| { |
| int j; |
| |
| /* This is a new directory. */ |
| dirs[ndirs].path = files[i].path; |
| dirs[ndirs].length = files[i].fname - files[i].path; |
| dirs[ndirs].count = 1; |
| dirs[ndirs].dir_idx = ndirs; |
| files[i].dir_idx = ndirs; |
| |
| /* Search for a prefix. */ |
| dirs[ndirs].prefix = -1; |
| for (j = 0; j < ndirs; j++) |
| if (dirs[j].length < dirs[ndirs].length |
| && dirs[j].length > 1 |
| && (dirs[ndirs].prefix == -1 |
| || dirs[j].length > dirs[dirs[ndirs].prefix].length) |
| && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0) |
| dirs[ndirs].prefix = j; |
| |
| ++ndirs; |
| } |
| |
| /* Now to the actual work. We have to find a subset of the directories which |
| allow expressing the file name using references to the directory table |
| with the least amount of characters. We do not do an exhaustive search |
| where we would have to check out every combination of every single |
| possible prefix. Instead we use a heuristic which provides nearly optimal |
| results in most cases and never is much off. */ |
| saved = XALLOCAVEC (int, ndirs); |
| savehere = XALLOCAVEC (int, ndirs); |
| |
| memset (saved, '\0', ndirs * sizeof (saved[0])); |
| for (i = 0; i < ndirs; i++) |
| { |
| int j; |
| int total; |
| |
| /* We can always save some space for the current directory. But this |
| does not mean it will be enough to justify adding the directory. */ |
| savehere[i] = dirs[i].length; |
| total = (savehere[i] - saved[i]) * dirs[i].count; |
| |
| for (j = i + 1; j < ndirs; j++) |
| { |
| savehere[j] = 0; |
| if (saved[j] < dirs[i].length) |
| { |
| /* Determine whether the dirs[i] path is a prefix of the |
| dirs[j] path. */ |
| int k; |
| |
| k = dirs[j].prefix; |
| while (k != -1 && k != (int) i) |
| k = dirs[k].prefix; |
| |
| if (k == (int) i) |
| { |
| /* Yes it is. We can possibly save some memory by |
| writing the filenames in dirs[j] relative to |
| dirs[i]. */ |
| savehere[j] = dirs[i].length; |
| total += (savehere[j] - saved[j]) * dirs[j].count; |
| } |
| } |
| } |
| |
| /* Check whether we can save enough to justify adding the dirs[i] |
| directory. */ |
| if (total > dirs[i].length + 1) |
| { |
| /* It's worthwhile adding. */ |
| for (j = i; j < ndirs; j++) |
| if (savehere[j] > 0) |
| { |
| /* Remember how much we saved for this directory so far. */ |
| saved[j] = savehere[j]; |
| |
| /* Remember the prefix directory. */ |
| dirs[j].dir_idx = i; |
| } |
| } |
| } |
| |
| /* Emit the directory name table. */ |
| idx_offset = dirs[0].length > 0 ? 1 : 0; |
| enum dwarf_form str_form = DW_FORM_string; |
| enum dwarf_form idx_form = DW_FORM_udata; |
| if (dwarf_version >= 5) |
| { |
| const char *comp_dir = comp_dir_string (); |
| if (comp_dir == NULL) |
| comp_dir = ""; |
| dw2_asm_output_data (1, 1, "Directory entry format count"); |
| if (DWARF5_USE_DEBUG_LINE_STR) |
| str_form = DW_FORM_line_strp; |
| dw2_asm_output_data_uleb128 (DW_LNCT_path, "DW_LNCT_path"); |
| dw2_asm_output_data_uleb128 (str_form, "%s", |
| get_DW_FORM_name (str_form)); |
| dw2_asm_output_data_uleb128 (ndirs + idx_offset, "Directories count"); |
| if (str_form == DW_FORM_string) |
| { |
| dw2_asm_output_nstring (comp_dir, -1, "Directory Entry: %#x", 0); |
| for (i = 1 - idx_offset; i < ndirs; i++) |
| dw2_asm_output_nstring (dirs[i].path, |
| dirs[i].length |
| - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR, |
| "Directory Entry: %#x", i + idx_offset); |
| } |
| else |
| { |
| output_line_string (str_form, comp_dir, "Directory Entry", 0); |
| for (i = 1 - idx_offset; i < ndirs; i++) |
| { |
| const char *str |
| = ggc_alloc_string (dirs[i].path, |
| dirs[i].length |
| - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR); |
| output_line_string (str_form, str, "Directory Entry", |
| (unsigned) i + idx_offset); |
| } |
| } |
| } |
| else |
| { |
| for (i = 1 - idx_offset; i < ndirs; i++) |
| dw2_asm_output_nstring (dirs[i].path, |
| dirs[i].length |
| - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR, |
| "Directory Entry: %#x", i + idx_offset); |
| |
| dw2_asm_output_data (1, 0, "End directory table"); |
| } |
| |
| /* We have to emit them in the order of emitted_number since that's |
| used in the debug info generation. To do this efficiently we |
| generate a back-mapping of the indices first. */ |
| backmap = XALLOCAVEC (int, numfiles); |
| for (i = 0; i < numfiles; i++) |
| backmap[files[i].file_idx->emitted_number - 1] = i; |
| |
| if (dwarf_version >= 5) |
| { |
| const char *filename0 = get_AT_string (comp_unit_die (), DW_AT_name); |
| if (filename0 == NULL) |
| filename0 = ""; |
| /* DW_LNCT_directory_index can use DW_FORM_udata, DW_FORM_data1 and |
| DW_FORM_data2. Choose one based on the number of directories |
| and how much space would they occupy in each encoding. |
| If we have at most 256 directories, all indexes fit into |
| a single byte, so DW_FORM_data1 is most compact (if there |
| are at most 128 directories, DW_FORM_udata would be as |
| compact as that, but not shorter and slower to decode). */ |
| if (ndirs + idx_offset <= 256) |
| idx_form = DW_FORM_data1; |
| /* If there are more than 65536 directories, we have to use |
| DW_FORM_udata, DW_FORM_data2 can't refer to them. |
| Otherwise, compute what space would occupy if all the indexes |
| used DW_FORM_udata - sum - and compare that to how large would |
| be DW_FORM_data2 encoding, and pick the more efficient one. */ |
| else if (ndirs + idx_offset <= 65536) |
| { |
| unsigned HOST_WIDE_INT sum = 1; |
| for (i = 0; i < numfiles; i++) |
| { |
| int file_idx = backmap[i]; |
| int dir_idx = dirs[files[file_idx].dir_idx].dir_idx; |
| sum += size_of_uleb128 (dir_idx); |
| } |
| if (sum >= HOST_WIDE_INT_UC (2) * (numfiles + 1)) |
| idx_form = DW_FORM_data2; |
| } |
| #ifdef VMS_DEBUGGING_INFO |
| dw2_asm_output_data (1, 4, "File name entry format count"); |
| #else |
| dw2_asm_output_data (1, 2, "File name entry format count"); |
| #endif |
| dw2_asm_output_data_uleb128 (DW_LNCT_path, "DW_LNCT_path"); |
| dw2_asm_output_data_uleb128 (str_form, "%s", |
| get_DW_FORM_name (str_form)); |
| dw2_asm_output_data_uleb128 (DW_LNCT_directory_index, |
| "DW_LNCT_directory_index"); |
| dw2_asm_output_data_uleb128 (idx_form, "%s", |
| get_DW_FORM_name (idx_form)); |
| #ifdef VMS_DEBUGGING_INFO |
| dw2_asm_output_data_uleb128 (DW_LNCT_timestamp, "DW_LNCT_timestamp"); |
| dw2_asm_output_data_uleb128 (DW_FORM_udata, "DW_FORM_udata"); |
| dw2_asm_output_data_uleb128 (DW_LNCT_size, "DW_LNCT_size"); |
| dw2_asm_output_data_uleb128 (DW_FORM_udata, "DW_FORM_udata"); |
| #endif |
| dw2_asm_output_data_uleb128 (numfiles + 1, "File names count"); |
| |
| output_line_string (str_form, filename0, "File Entry", 0); |
| |
| /* Include directory index. */ |
| if (idx_form != DW_FORM_udata) |
| dw2_asm_output_data (idx_form == DW_FORM_data1 ? 1 : 2, |
| 0, NULL); |
| else |
| dw2_asm_output_data_uleb128 (0, NULL); |
| |
| #ifdef VMS_DEBUGGING_INFO |
| dw2_asm_output_data_uleb128 (0, NULL); |
| dw2_asm_output_data_uleb128 (0, NULL); |
| #endif |
| } |
| |
| /* Now write all the file names. */ |
| for (i = 0; i < numfiles; i++) |
| { |
| int file_idx = backmap[i]; |
| int dir_idx = dirs[files[file_idx].dir_idx].dir_idx; |
| |
| #ifdef VMS_DEBUGGING_INFO |
| #define MAX_VMS_VERSION_LEN 6 /* ";32768" */ |
| |
| /* Setting these fields can lead to debugger miscomparisons, |
| but VMS Debug requires them to be set correctly. */ |
| |
| int ver; |
| long long cdt; |
| long siz; |
| int maxfilelen = (strlen (files[file_idx].path) |
| + dirs[dir_idx].length |
| + MAX_VMS_VERSION_LEN + 1); |
| char *filebuf = XALLOCAVEC (char, maxfilelen); |
| |
| vms_file_stats_name (files[file_idx].path, 0, 0, 0, &ver); |
| snprintf (filebuf, maxfilelen, "%s;%d", |
| files[file_idx].path + dirs[dir_idx].length, ver); |
| |
| output_line_string (str_form, filebuf, "File Entry", (unsigned) i + 1); |
| |
| /* Include directory index. */ |
| if (dwarf_version >= 5 && idx_form != DW_FORM_udata) |
| dw2_asm_output_data (idx_form == DW_FORM_data1 ? 1 : 2, |
| dir_idx + idx_offset, NULL); |
| else |
| dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL); |
| |
| /* Modification time. */ |
| dw2_asm_output_data_uleb128 ((vms_file_stats_name (files[file_idx].path, |
| &cdt, 0, 0, 0) == 0) |
| ? cdt : 0, NULL); |
| |
| /* File length in bytes. */ |
| dw2_asm_output_data_uleb128 ((vms_file_stats_name (files[file_idx].path, |
| 0, &siz, 0, 0) == 0) |
| ? siz : 0, NULL); |
| #else |
| output_line_string (str_form, |
| files[file_idx].path + dirs[dir_idx].length, |
| "File Entry", (unsigned) i + 1); |
| |
| /* Include directory index. */ |
| if (dwarf_version >= 5 && idx_form != DW_FORM_udata) |
| dw2_asm_output_data (idx_form == DW_FORM_data1 ? 1 : 2, |
| dir_idx + idx_offset, NULL); |
| else |
| dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL); |
| |
| if (dwarf_version >= 5) |
| continue; |
| |
| /* Modification time. */ |
| dw2_asm_output_data_uleb128 (0, NULL); |
| |
| /* File length in bytes. */ |
| dw2_asm_output_data_uleb128 (0, NULL); |
| #endif /* VMS_DEBUGGING_INFO */ |
| } |
| |
| if (dwarf_version < 5) |
| dw2_asm_output_data (1, 0, "End file name table"); |
| } |
| |
| |
| /* Output one line number table into the .debug_line section. */ |
| |
| static void |
| output_one_line_info_table (dw_line_info_table *table) |
| { |
| char line_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| unsigned int current_line = 1; |
| bool current_is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START; |
| dw_line_info_entry *ent, *prev_addr; |
| size_t i; |
| unsigned int view; |
| |
| view = 0; |
| |
| FOR_EACH_VEC_SAFE_ELT (table->entries, i, ent) |
| { |
| switch (ent->opcode) |
| { |
| case LI_set_address: |
| /* ??? Unfortunately, we have little choice here currently, and |
| must always use the most general form. GCC does not know the |
| address delta itself, so we can't use DW_LNS_advance_pc. Many |
| ports do have length attributes which will give an upper bound |
| on the address range. We could perhaps use length attributes |
| to determine when it is safe to use DW_LNS_fixed_advance_pc. */ |
| ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, ent->val); |
| |
| view = 0; |
| |
| /* This can handle any delta. This takes |
| 4+DWARF2_ADDR_SIZE bytes. */ |
| dw2_asm_output_data (1, 0, "set address %s%s", line_label, |
| debug_variable_location_views |
| ? ", reset view to 0" : ""); |
| dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL); |
| dw2_asm_output_data (1, DW_LNE_set_address, NULL); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL); |
| |
| prev_addr = ent; |
| break; |
| |
| case LI_adv_address: |
| { |
| ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, ent->val); |
| char prev_label[MAX_ARTIFICIAL_LABEL_BYTES]; |
| ASM_GENERATE_INTERNAL_LABEL (prev_label, LINE_CODE_LABEL, prev_addr->val); |
| |
| view++; |
| |
| dw2_asm_output_data (1, DW_LNS_fixed_advance_pc, "fixed advance PC, increment view to %i", view); |
| dw2_asm_output_delta (2, line_label, prev_label, |
| "from %s to %s", prev_label, line_label); |
| |
| prev_addr = ent; |
| break; |
| } |
| |
| case LI_set_line: |
| if (ent->val == current_line) |
| { |
| /* We still need to start a new row, so output a copy insn. */ |
| dw2_asm_output_data (1, DW_LNS_copy, |
| "copy line %u", current_line); |
| } |
| else |
| { |
| int line_offset = ent->val - current_line; |
| int line_delta = line_offset - DWARF_LINE_BASE; |
| |
| current_line = ent->val; |
| if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1)) |
| { |
| /* This can handle deltas from -10 to 234, using the current |
| definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. |
| This takes 1 byte. */ |
| dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta, |
| "line %u", current_line); |
| } |
| else |
| { |
| /* This can handle any delta. This takes at least 4 bytes, |
| depending on the value being encoded. */ |
| dw2_asm_output_data (1, DW_LNS_advance_line, |
| "advance to line %u", current_line); |
| dw2_asm_output_data_sleb128 (line_offset, NULL); |
| dw2_asm_output_data (1, DW_LNS_copy, NULL); |
| } |
| } |
| break; |
| |
| case LI_set_file: |
| dw2_asm_output_data (1, DW_LNS_set_file, "set file %u", ent->val); |
| dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val); |
| break; |
| |
| case LI_set_column: |
| dw2_asm_output_data (1, DW_LNS_set_column, "column %u", ent->val); |
| dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val); |
| break; |
| |
| case LI_negate_stmt: |
| current_is_stmt = !current_is_stmt; |
| dw2_asm_output_data (1, DW_LNS_negate_stmt, |
| "is_stmt %d", current_is_stmt); |
| break; |
| |
| case LI_set_prologue_end: |
| dw2_asm_output_data (1, DW_LNS_set_prologue_end, |
| "set prologue end"); |
| break; |
| |
| case LI_set_epilogue_begin: |
| dw2_asm_output_data (1, DW_LNS_set_epilogue_begin, |
| "set epilogue begin"); |
| break; |
| |
| case LI_set_discriminator: |
| dw2_asm_output_data (1, 0, "discriminator %u", ent->val); |
| dw2_asm_output_data_uleb128 (1 + size_of_uleb128 (ent->val), NULL); |
| dw2_asm_output_data (1, DW_LNE_set_discriminator, NULL); |
| dw2_asm_output_data_uleb128 (ent->val, NULL); |
| break; |
| } |
| } |
| |
| /* Emit debug info for the address of the end of the table. */ |
| dw2_asm_output_data (1, 0, "set address %s", table->end_label); |
| dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL); |
| dw2_asm_output_data (1, DW_LNE_set_address, NULL); |
| dw2_asm_output_addr (DWARF2_ADDR_SIZE, table->end_label, NULL); |
| |
| dw2_asm_output_data (1, 0, "end sequence"); |
| dw2_asm_output_data_uleb128 (1, NULL); |
| dw2_asm_output_data (1, DW_LNE_end_sequence, NULL); |
| } |
| |
| static unsigned int output_line_info_generation; |
| |
| /* Output the source line number correspondence information. This |
| information goes into the .debug_line section. */ |
| |
| static void |
| output_line_info (bool prologue_only) |
| { |
| char l1[MAX_ARTIFICIAL_LABEL_BYTES], l2[MAX_ARTIFICIAL_LABEL_BYTES]; |
| char p1[MAX_ARTIFICIAL_LABEL_BYTES], p2[MAX_ARTIFICIAL_LABEL_BYTES]; |
| bool saw_one = false; |
| int opc; |
| |
| ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, |
| output_line_info_generation); |
| ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, |
| output_line_info_generation); |
| ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, |
| output_line_info_generation); |
| ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, |
| output_line_info_generation++); |
| |
| if (!XCOFF_DEBUGGING_INFO) |
| { |
| if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4) |
| dw2_asm_output_data (4, 0xffffffff, |
| "Initial length escape value indicating 64-bit DWARF extension"); |
| dw2_asm_output_delta (dwarf_offset_size, l2, l1, |
| "Length of Source Line Info"); |
| } |
| |
| ASM_OUTPUT_LABEL (asm_out_file, l1); |
| |
| output_dwarf_version (); |
| if (dwarf_version >= 5) |
| { |
| dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Address Size"); |
| dw2_asm_output_data (1, 0, "Segment Size"); |
| } |
| dw2_asm_output_delta (dwarf_offset_size, p2, p1, "Prolog Length"); |
| ASM_OUTPUT_LABEL (asm_out_file, p1); |
| |
| /* Define the architecture-dependent minimum instruction length (in bytes). |
| In this implementation of DWARF, this field is used for information |
| purposes only. Since GCC generates assembly language, we have no |
| a priori knowledge of how many instruction bytes are generated for each |
| source line, and therefore can use only the DW_LNE_set_address and |
| DW_LNS_fixed_advance_pc line information commands. Accordingly, we fix |
| this as '1', which is "correct enough" for all architectures, |
| and don't let the target override. */ |
| dw2_asm_output_data (1, 1, "Minimum Instruction Length"); |
| |
| if (dwarf_version >= 4) |
| dw2_asm_output_data (1, DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN, |
| "Maximum Operations Per Instruction"); |
| dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START, |
| "Default is_stmt_start flag"); |
| dw2_asm_output_data (1, DWARF_LINE_BASE, |
| "Line Base Value (Special Opcodes)"); |
| dw2_asm_output_data (1, DWARF_LINE_RANGE, |
| "Line Range Value (Special Opcodes)"); |
| dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE, |
| "Special Opcode Base"); |
| |
| for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++) |
| { |
| int n_op_args; |
| switch (opc) |
| { |
| case DW_LNS_advance_pc: |
| case DW_LNS_advance_line: |
| case DW_LNS_set_file: |
| case DW_LNS_set_column: |
| case DW_LNS_fixed_advance_pc: |
| case DW_LNS_set_isa: |
| n_op_args = 1; |
| break; |
| default: |
| n_op_args = 0; |
| break; |
| } |
| |
| dw2_asm_output_data (1, n_op_args, "opcode: %#x has %d args", |
| opc, n_op_args); |
| } |
| |
| /* Write out the information about the files we use. */ |
| output_file_names (); |
| ASM_OUTPUT_LABEL (asm_out_file, p2); |
| if (prologue_only) |
| { |
| /* Output the marker for the end of the line number info. */ |
| ASM_OUTPUT_LABEL (asm_out_file, l2); |
| return; |
| } |
| |
| if (separate_line_info) |
| { |
| dw_line_info_table *table; |
| size_t i; |
| |
| FOR_EACH_VEC_ELT (*separate_line_info, i, table) |
| if (table->in_use) |
| { |
| output_one_line_info_table (table); |
| saw_one = true; |
| } |
| } |
| if (cold_text_section_line_info && cold_text_section_line_info->in_use) |
| { |
| output_one_line_info_table (cold_text_section_line_info); |
| saw_one = true; |
| } |
| |
| /* ??? Some Darwin linkers crash on a .debug_line section with no |
| sequences. Further, merely a DW_LNE_end_sequence entry is not |
| sufficient -- the address column must also be initialized. |
| Make sure to output at least one set_address/end_sequence pair, |
| choosing .text since that section is always present. */ |
| if (text_section_line_info->in_use || !saw_one) |
| output_one_line_info_table (text_section_line_info); |
| |
| /* Output the marker for the end of the line number info. */ |
| ASM_OUTPUT_LABEL (asm_out_file, l2); |
| } |
| |
| /* Return true if DW_AT_endianity should be emitted according to REVERSE. */ |
| |
| static inline bool |
| need_endianity_attribute_p (bool reverse) |
| { |
| return reverse && (dwarf_version >= 3 || !dwarf_strict); |
| } |
| |
| /* Given a pointer to a tree node for some base type, return a pointer to |
| a DIE that describes the given type. REVERSE is true if the type is |
| to be interpreted in the reverse storage order wrt the target order. |
| |
| This routine must only be called for GCC type nodes that correspond to |
| Dwarf base (fundamental) types. */ |
| |
| dw_die_ref |
| base_type_die (tree type, bool reverse) |
| { |
| dw_die_ref base_type_result; |
| enum dwarf_type encoding; |
| bool fpt_used = false; |
| struct fixed_point_type_info fpt_info; |
| tree type_bias = NULL_TREE; |
| |
| /* If this is a subtype that should not be emitted as a subrange type, |
| use the base type. See subrange_type_for_debug_p. */ |
| if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE) |
| type = TREE_TYPE (type); |
| |
| switch (TREE_CODE (type)) |
| { |
| case INTEGER_TYPE: |
| if ((dwarf_version >= 4 || !dwarf_strict) |
| && TYPE_NAME (type) |
| && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL |
| && DECL_IS_UNDECLARED_BUILTIN (TYPE_NAME (type)) |
| && DECL_NAME (TYPE_NAME (type))) |
| { |
| const char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))); |
| if (strcmp (name, "char16_t") == 0 |
| || strcmp (name, "char32_t") == 0) |
| { |
| encoding = DW_ATE_UTF; |
| break; |
| } |
| } |
| if ((dwarf_version >= 3 || !dwarf_strict) |
| && lang_hooks.types.get_fixed_point_type_info) |
| { |
| memset (&fpt_info, 0, sizeof (fpt_info)); |
| if (lang_hooks.types.get_fixed_point_type_info (type, &fpt_info)) |
| { |
| fpt_used = true; |
| encoding = ((TYPE_UNSIGNED (type)) |
| ? DW_ATE_unsigned_fixed |
| : DW_ATE_signed_fixed); |
| break; |
| } |
| } |
| if (TYPE_STRING_FLAG (type)) |
| { |
| if (TYPE_UNSIGNED (type)) |
| encoding = DW_ATE_unsigned_char; |
| else |
| encoding = DW_ATE_signed_char; |
| } |
| else if (TYPE_UNSIGNED (type)) |
| encoding = DW_ATE_unsigned; |
| else |
| encoding = DW_ATE_signed; |
| |
| if (!dwarf_strict |
| && lang_hooks.types.get_type_bias) |
| type_bias = lang_hooks.types.get_type_bias (type); |
| break; |
| |
| case REAL_TYPE: |
| if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type))) |
| { |
| if (dwarf_version >= 3 || !dwarf_strict) |
| encoding = DW_ATE_decimal_float; |
| else |
| encoding = DW_ATE_lo_user; |
| } |
| else |
| encoding = DW_ATE_float; |
| break; |
| |
| case FIXED_POINT_TYPE: |
| if (!(dwarf_version >= 3 || !dwarf_strict)) |
| encoding = DW_ATE_lo_user; |
| else if (TYPE_UNSIGNED (type)) |
| encoding = DW_ATE_unsigned_fixed; |
| else |
| encoding = DW_ATE_signed_fixed; |
| break; |
| |
| /* Dwarf2 doesn't know anything about complex ints, so use |
| a user defined type for it. */ |
| case COMPLEX_TYPE: |
| if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE) |
| encoding = DW_ATE_complex_float; |
| else |
| encoding = DW_ATE_lo_user; |
| break; |
| |
| case BOOLEAN_TYPE: |
| /* GNU FORTRAN/Ada/C++ BOOLEAN type. */ |
| encoding = DW_ATE_boolean; |
| break; |
| |
| default: |
| /* No other TREE_CODEs are Dwarf fundamental types. */ |
| gcc_unreachable (); |
| } |
| |
| base_type_result = new_die_raw (DW_TAG_base_type); |
| |
| add_AT_unsigned (base_type_result, DW_AT_byte_size, |
| int_size_in_bytes (type)); |
| add_AT_unsigned (base_type_result, DW_AT_encoding, encoding); |
| |
| if (need_endianity_attribute_p (reverse)) |
| add_AT_unsigned (base_type_result, DW_AT_endianity, |
| BYTES_BIG_ENDIAN ? DW_END_little : DW_END_big); |
| |
| add_alignment_attribute (base_type_result, type); |
| |
| if (fpt_used) |
| { |
| switch (fpt_info.scale_factor_kind) |
| { |
| case fixed_point_scale_factor_binary: |
| add_AT_int (base_type_result, DW_AT_binary_scale, |
| fpt_info.scale_factor.binary); |
| break; |
| |
| case fixed_point_scale_factor_decimal: |
| add_AT_int (base_type_result, DW_AT_decimal_scale, |
| fpt_info.scale_factor.decimal); |
| break; |
| |
| case fixed_point_scale_factor_arbitrary: |
| /* Arbitrary scale factors cannot be described in standard DWARF. */ |
| if (!dwarf_strict) |
| { |
| /* Describe the scale factor as a rational constant. */ |
| const dw_die_ref scale_factor |
| = new_die (DW_TAG_constant, comp_unit_die (), type); |
| |
| add_scalar_info (scale_factor, DW_AT_GNU_numerator, |
| fpt_info.scale_factor.arbitrary.numerator, |
| dw_scalar_form_constant, NULL); |
| add_scalar_info (scale_factor, DW_AT_GNU_denominator, |
| fpt_info.scale_factor.arbitrary.denominator, |
| dw_scalar_form_constant, NULL); |
| |
| add_AT_die_ref (base_type_result, DW_AT_small, scale_factor); |
| } |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| if (type_bias) |
| add_scalar_info (base_type_result, DW_AT_GNU_bias, type_bias, |
| dw_scalar_form_constant |
| | dw_scalar_form_exprloc |
| | dw_scalar_form_reference, |
| NULL); |
| |
| return base_type_result; |
| } |
| |
| /* A C++ function with deduced return type can have a TEMPLATE_TYPE_PARM |
| named 'auto' in its type: return true for it, false otherwise. */ |
| |
| static inline bool |
| is_cxx_auto (tree type) |
| { |
| if (is_cxx ()) |
| { |
| tree name = TYPE_IDENTIFIER (type); |
| if (name == get_identifier ("auto") |
| || name == get_identifier ("decltype(auto)")) |
| return true; |
| } |
| return false; |
| } |
| |
| /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the |
| given input type is a Dwarf "fundamental" type. Otherwise return null. */ |
| |
| static inline int |
| is_base_type (tree type) |
| { |
| switch (TREE_CODE (type)) |
| { |
| case INTEGER_TYPE: |
| case REAL_TYPE: |
| case FIXED_POINT_TYPE: |
| case COMPLEX_TYPE: |
| case BOOLEAN_TYPE: |
| return 1; |
| |
| case VOID_TYPE: |
| case OPAQUE_TYPE: |
| case ARRAY_TYPE: |
| case RECORD_TYPE: |
| case UNION_TYPE: |
| case QUAL_UNION_TYPE: |
| case ENUMERAL_TYPE: |
| case FUNCTION_TYPE: |
| case METHOD_TYPE: |
| case POINTER_TYPE: |
| case REFERENCE_TYPE: |
| case NULLPTR_TYPE: |
| case OFFSET_TYPE: |
| case LANG_TYPE: |
| case VECTOR_TYPE: |
| return 0; |
| |
| default: |
| if (is_cxx_auto (type)) |
| return 0; |
| gcc_unreachable (); |
| } |
| |
| return 0; |
| } |
| |
| /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE |
| node, return the size in bits for the type if it is a constant, or else |
| return the alignment for the type if the type's size is not constant, or |
| else return BITS_PER_WORD if the type actually turns out to be an |
| ERROR_MARK node. */ |
| |
| static inline unsigned HOST_WIDE_INT |
| simple_type_size_in_bits (const_tree type) |
| { |
| if (TREE_CODE (type) == ERROR_MARK) |
| return BITS_PER_WORD; |
| else if (TYPE_SIZE (type) == NULL_TREE) |
| return 0; |
| else if (tree_fits_uhwi_p (TYPE_SIZE (type))) |
| return tree_to_uhwi (TYPE_SIZE (type)); |
| else |
| return TYPE_ALIGN (type); |
| } |
| |
| /* Similarly, but return an offset_int instead of UHWI. */ |
| |
| static inline offset_int |
| offset_int_type_size_in_bits (const_tree type) |
| { |
| if (TREE_CODE (type) == ERROR_MARK) |
| return BITS_PER_WORD; |
| else if (TYPE_SIZE (type) == NULL_TREE) |
| return 0; |
| else if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST) |
| return wi::to_offset (TYPE_SIZE (type)); |
| else |
| return TYPE_ALIGN (type); |
| } |
| |
| /* Given a pointer to a tree node for a subrange type, return a pointer |
| to a DIE that describes the given type. */ |
| |
| static dw_die_ref |
| subrange_type_die (tree type, tree low, tree high, tree bias, |
| dw_die_ref context_die) |
| { |
| dw_die_ref subrange_die; |
| const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type); |
| |
| if (context_die == NULL) |
| context_die = comp_unit_die (); |
| |
| subrange_die = new_die (DW_TAG_subrange_type, context_die, type); |
| |
| if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes) |
| { |
| /* The size of the subrange type and its base type do not match, |
| so we need to generate a size attribute for the subrange type. */ |
| add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes); |
| } |
| |
| add_alignment_attribute (subrange_die, type); |
| |
| if (low) |
| add_bound_info (subrange_die, DW_AT_lower_bound, low, NULL); |
| if (high) |
| add_bound_info (subrange_die, DW_AT_upper_bound, high, NULL); |
| if (bias && !dwarf_strict) |
| add_scalar_info (subrange_die, DW_AT_GNU_bias, bias, |
| dw_scalar_form_constant |
| | dw_scalar_form_exprloc |
| | dw_scalar_form_reference, |
| NULL); |
| |
| return subrange_die; |
| } |
| |
| /* Returns the (const and/or volatile) cv_qualifiers associated with |
| the decl node. This will normally be augmented with the |
| cv_qualifiers of the underlying type in add_type_attribute. */ |
| |
| static int |
| decl_quals (const_tree decl) |
| { |
| return ((TREE_READONLY (decl) |
| /* The C++ front-end correctly marks reference-typed |
| variables as readonly, but from a language (and debug |
| info) standpoint they are not const-qualified. */ |
| && TREE_CODE (TREE_TYPE (decl)) != REFERENCE_TYPE |
| ? TYPE_QUAL_CONST : TYPE_UNQUALIFIED) |
| | (TREE_THIS_VOLATILE (decl) |
| ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED)); |
| } |
| |
| /* Determine the TYPE whose qualifiers match the largest strict subset |
| of the given TYPE_QUALS, and return its qualifiers. Ignore all |
| qualifiers outside QUAL_MASK. */ |
| |
| static int |
| get_nearest_type_subqualifiers (tree type, int type_quals, int qual_mask) |
| { |
| tree t; |
| int best_rank = 0, best_qual = 0, max_rank; |
| |
| type_quals &= qual_mask; |
| max_rank = popcount_hwi (type_quals) - 1; |
| |
| for (t = TYPE_MAIN_VARIANT (type); t && best_rank < max_rank; |
| t = TYPE_NEXT_VARIANT (t)) |
| { |
| int q = TYPE_QUALS (t) & qual_mask; |
| |
| if ((q & type_quals) == q && q != type_quals |
| && check_base_type (t, type)) |
| { |
| int rank = popcount_hwi (q); |
| |
| if (rank > best_rank) |
| { |
| best_rank = rank; |
| best_qual = q; |
| } |
| } |
| } |
| |
| return best_qual; |
| } |
| |
| struct dwarf_qual_info_t { int q; enum dwarf_tag t; }; |
| static const dwarf_qual_info_t dwarf_qual_info[] = |
| { |
| { TYPE_QUAL_CONST, DW_TAG_const_type }, |
| { TYPE_QUAL_VOLATILE, DW_TAG_volatile_type }, |
| { TYPE_QUAL_RESTRICT, DW_TAG_restrict_type }, |
| { TYPE_QUAL_ATOMIC, DW_TAG_atomic_type } |
| }; |
| static const unsigned int dwarf_qual_info_size |
| = sizeof (dwarf_qual_info) / sizeof (dwarf_qual_info[0]); |
| |
| /* If DIE is a qualified DIE of some base DIE with the same parent, |
| return the base DIE, otherwise return NULL. Set MASK to the |
| qualifiers added compared to the returned DIE. */ |
| |
| static dw_die_ref |
| qualified_die_p (dw_die_ref die, int *mask, unsigned int depth) |
| { |
| unsigned int i; |
| for (i = 0; i < dwarf_qual_info_size; i++) |
| if (die->die_tag == dwarf_qual_info[i].t) |
| break; |
| if (i == dwarf_qual_info_size) |
| return NULL; |
| if (vec_safe_length (die->die_attr) != 1) |
| return NULL; |
| dw_die_ref type = get_AT_ref (die, DW_AT_type); |
| if (type == NULL || type->die_parent != die->die_parent) |
| return NULL; |
| *mask |= dwarf_qual_info[i].q; |
| if (depth) |
| { |
| dw_die_ref ret = qualified_die_p (type, mask, depth - 1); |
| if (ret) |
| return ret; |
| } |
| return type; |
| } |
| |
| /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging |
| entry that chains the modifiers specified by CV_QUALS in front of the |
| given type. REVERSE is true if the type is to be interpreted in the |
| reverse storage order wrt the target order. */ |
| |
| static dw_die_ref |
| modified_type_die (tree type, int cv_quals, bool reverse, |
| dw_die_ref context_die) |
| { |
| enum tree_code code = TREE_CODE (type); |
| dw_die_ref mod_type_die; |
| dw_die_ref sub_die = NULL; |
| tree item_type = NULL; |
| tree qualified_type; |
| tree name, low, high; |
| dw_die_ref mod_scope; |
| struct array_descr_info info; |
| /* Only these cv-qualifiers are currently handled. */ |
| const int cv_qual_mask = (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE |
| | TYPE_QUAL_RESTRICT | TYPE_QUAL_ATOMIC | |
| ENCODE_QUAL_ADDR_SPACE(~0U)); |
| const bool reverse_base_type |
| = need_endianity_attribute_p (reverse) && is_base_type (type); |
| |
| if (code == ERROR_MARK) |
| return NULL; |
| |
| if (lang_hooks.types.get_debug_type) |
| { |
| tree debug_type = lang_hooks.types.get_debug_type (type); |
| |
| if (debug_type != NULL_TREE && debug_type != type) |
| return modified_type_die (debug_type, cv_quals, reverse, context_die); |
| } |
| |
| cv_quals &= cv_qual_mask; |
| |
| /* Don't emit DW_TAG_restrict_type for DWARFv2, since it is a type |
| tag modifier (and not an attribute) old consumers won't be able |
| to handle it. */ |
| if (dwarf_version < 3) |
| cv_quals &= ~TYPE_QUAL_RESTRICT; |
| |
| /* Likewise for DW_TAG_atomic_type for DWARFv5. */ |
| if (dwarf_version < 5) |
| cv_quals &= ~TYPE_QUAL_ATOMIC; |
| |
| /* See if we already have the appropriately qualified variant of |
| this type. */ |
| qualified_type = get_qualified_type (type, cv_quals); |
| |
| if (qualified_type == sizetype) |
| { |
| /* Try not to expose the internal sizetype type's name. */ |
| if (TYPE_NAME (qualified_type) |
| && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL) |
| { |
| tree t = TREE_TYPE (TYPE_NAME (qualified_type)); |
| |
| gcc_checking_assert (TREE_CODE (t) == INTEGER_TYPE |
| && (TYPE_PRECISION (t) |
| == TYPE_PRECISION (qualified_type)) |
| && (TYPE_UNSIGNED (t) |
| == TYPE_UNSIGNED (qualified_type))); |
| qualified_type = t; |
| } |
| else if (qualified_type == sizetype |
| && TREE_CODE (sizetype) == TREE_CODE (size_type_node) |
| && TYPE_PRECISION (sizetype) == TYPE_PRECISION (size_type_node) |
| && TYPE_UNSIGNED (sizetype) == TYPE_UNSIGNED (size_type_node)) |
| qualified_type = size_type_node; |
| if (type == sizetype) |
| type = qualified_type; |
| } |
| |
| /* If we do, then we can just use its DIE, if it exists. */ |
| if (qualified_type) |
| { |
| mod_type_die = lookup_type_die (qualified_type); |
| |
| /* DW_AT_endianity doesn't come from a qualifier on the type, so it is |
| dealt with specially: the DIE with the attribute, if it exists, is |
| placed immediately after the regular DIE for the same base type. */ |
| if (mod_type_die |
| && (!reverse_base_type |
| || ((mod_type_die = mod_type_die->die_sib) != NULL |
| && get_AT_unsigned (mod_type_die, DW_AT_endianity)))) |
| return mod_type_die; |
| } |
| |
| name = qualified_type ? TYPE_NAME (qualified_type) : NULL; |
| |
| /* Handle C typedef types. */ |
| if (name |
| && TREE_CODE (name) == TYPE_DECL |
| && DECL_ORIGINAL_TYPE (name) |
| && !DECL_ARTIFICIAL (name)) |
| { |
| tree dtype = TREE_TYPE (name); |
| |
| /* Skip the typedef for base types with DW_AT_endianity, no big deal. */ |
| if (qualified_type == dtype && !reverse_base_type) |
| { |
| tree origin = decl_ultimate_origin (name); |
| |
| /* Typedef variants that have an abstract origin don't get their own |
| type DIE (see gen_typedef_die), so fall back on the ultimate |
| abstract origin instead. */ |
| if (origin != NULL && origin != name) |
| return modified_type_die (TREE_TYPE (origin), cv_quals, reverse, |
| context_die); |
| |
| /* For a named type, use the typedef. */ |
| gen_type_die (qualified_type, context_die); |
| return lookup_type_die (qualified_type); |
| } |
| else |
| { |
| int dquals = TYPE_QUALS_NO_ADDR_SPACE (dtype); |
| dquals &= cv_qual_mask; |
| if ((dquals & ~cv_quals) != TYPE_UNQUALIFIED |
| || (cv_quals == dquals && DECL_ORIGINAL_TYPE (name) != type)) |
| /* cv-unqualified version of named type. Just use |
| the unnamed type to which it refers. */ |
| return modified_type_die (DECL_ORIGINAL_TYPE (name), cv_quals, |
| reverse, context_die); |
| /* Else cv-qualified version of named type; fall through. */ |
| } |
| } |
| |
| mod_scope = scope_die_for (type, context_die); |
| |
| if (cv_quals) |
| { |
| int sub_quals = 0, first_quals = 0; |
| unsigned i; |
| dw_die_ref first = NULL, last = NULL; |
| |
| /* Determine a lesser qualified type that most closely matches |
| this one. Then generate DW_TAG_* entries for the remaining |
| qualifiers. */ |
| sub_quals = get_nearest_type_subqualifiers (type, cv_quals, |
| cv_qual_mask); |
| if (sub_quals && use_debug_types) |
| { |
| bool needed = false; |
| /* If emitting type units, make sure the order of qualifiers |
| is canonical. Thus, start from unqualified type if |
| an earlier qualifier is missing in sub_quals, but some later |
| one is present there. */ |
| for (i = 0; i < dwarf_qual_info_size; i++) |
| if (dwarf_qual_info[i].q & cv_quals & ~sub_quals) |
| needed = true; |
| else if (needed && (dwarf_qual_info[i].q & cv_quals)) |
| { |
| sub_quals = 0; |
| break; |
| } |
| } |
| mod_type_die = modified_type_die (type, sub_quals, reverse, context_die); |
| if (mod_scope && mod_type_die && mod_type_die->die_parent == mod_scope) |
| { |
| /* As not all intermediate qualified DIEs have corresponding |
| tree types, ensure that qualified DIEs in the same scope |
| as their DW_AT_type are emitted after their DW_AT_type, |
| only with other qualified DIEs for the same type possibly |
| in between them. Determine the range of such qualified |
| DIEs now (first being the base type, last being corresponding |
| last qualified DIE for it). */ |
| unsigned int count = 0; |
| first = qualified_die_p (mod_type_die, &first_quals, |
| dwarf_qual_info_size); |
| if (first == NULL) |
| first = mod_type_die; |
| gcc_assert ((first_quals & ~sub_quals) == 0); |
| for (count = 0, last = first; |
| count < (1U << dwarf_qual_info_size); |
| count++, last = last->die_sib) |
| { |
| int quals = 0; |
| if (last == mod_scope->die_child) |
| break; |
| if (qualified_die_p (last->die_sib, &quals, dwarf_qual_info_size) |
| != first) |
| break; |
| } |
| } |
| |
| for (i = 0; i < dwarf_qual_info_size; i++) |
| if (dwarf_qual_info[i].q & cv_quals & ~sub_quals) |
| { |
| dw_die_ref d; |
| if (first && first != last) |
| { |
| for (d = first->die_sib; ; d = d->die_sib) |
| { |
| int quals = 0; |
| qualified_die_p (d, &quals, dwarf_qual_info_size); |
| if (quals == (first_quals | dwarf_qual_info[i].q)) |
| break; |
| if (d == last) |
| { |
| d = NULL; |
| break; |
| } |
| } |
| if (d) |
| { |
| mod_type_die = d; |
| continue; |
| } |
| } |
| if (first) |
| { |
| d = new_die_raw (dwarf_qual_info[i].t); |
| add_child_die_after (mod_scope, d, last); |
| last = d; |
| } |
| else |
| d = new_die (dwarf_qual_info[i].t, mod_scope, type); |
| if (mod_type_die) |
| add_AT_die_ref (d, DW_AT_type, mod_type_die); |
| mod_type_die = d; |
| first_quals |= dwarf_qual_info[i].q; |
| } |
| } |
| else if (code == POINTER_TYPE || code == REFERENCE_TYPE) |
| { |
| dwarf_tag tag = DW_TAG_pointer_type; |
| if (code == REFERENCE_TYPE) |
| { |
| if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4) |
| tag = DW_TAG_rvalue_reference_type; |
| else |
| tag = DW_TAG_reference_type; |
| } |
| mod_type_die = new_die (tag, mod_scope, type); |
| |
| add_AT_unsigned (mod_type_die, DW_AT_byte_size, |
| simple_type_size_in_bits (type) / BITS_PER_UNIT); |
| add_alignment_attribute (mod_type_die, type); |
| item_type = TREE_TYPE (type); |
| |
| addr_space_t as = TYPE_ADDR_SPACE (item_type); |
| if (!ADDR_SPACE_GENERIC_P (as)) |
| { |
| int action = targetm.addr_space.debug (as); |
| if (action >= 0) |
| { |
| /* Positive values indicate an address_class. */ |
| add_AT_unsigned (mod_type_die, DW_AT_address_class, action); |
| } |
| else |
| { |
| /* Negative values indicate an (inverted) segment base reg. */ |
| dw_loc_descr_ref d |
| = one_reg_loc_descriptor (~action, VAR_INIT_STATUS_INITIALIZED); |
| add_AT_loc (mod_type_die, DW_AT_segment, d); |
| } |
| } |
| } |
| else if (code == ARRAY_TYPE |
| || (lang_hooks.types.get_array_descr_info |
| && lang_hooks.types.get_array_descr_info (type, &info))) |
| { |
| gen_type_die (type, context_die); |
| return lookup_type_die (type); |
| } |
| else if (code == INTEGER_TYPE |
| && TREE_TYPE (type) != NULL_TREE |
| && subrange_type_for_debug_p (type, &low, &high)) |
| { |
| tree bias = NULL_TREE; |
| if (lang_hooks.types.get_type_bias) |
| bias = lang_hooks.types.get_type_bias (type); |
| mod_type_die = subrange_type_die (type, low, high, bias, context_die); |
| item_type = TREE_TYPE (type); |
| } |
| else if (is_base_type (type)) |
| { |
| mod_type_die = base_type_die (type, reverse); |
| |
| /* The DIE with DW_AT_endianity is placed right after the naked DIE. */ |
| if (reverse_base_type) |
| { |
| dw_die_ref after_die |
| = modified_type_die (type, cv_quals, false, context_die); |
| add_child_die_after (comp_unit_die (), mod_type_die, after_die); |
| } |
| else |
| add_child_die (comp_unit_die (), mod_type_die); |
| |
| add_pubtype (type, mod_type_die); |
| } |
| else |
| { |
| gen_type_die (type, context_die); |
| |
| /* We have to get the type_main_variant here (and pass that to the |
| `lookup_type_die' routine) because the ..._TYPE node we have |
| might simply be a *copy* of some original type node (where the |
| copy was created to help us keep track of typedef names) and |
| that copy might have a different TYPE_UID from the original |
| ..._TYPE node. */ |
| if (code == FUNCTION_TYPE || code == METHOD_TYPE) |
| { |
| /* For function/method types, can't just use type_main_variant here, |
| because that can have different ref-qualifiers for C++, |
| but try to canonicalize. */ |
| tree main = TYPE_MAIN_VARIANT (type); |
| for (tree t = main; t; t = TYPE_NEXT_VARIANT (t)) |
| if (TYPE_QUALS_NO_ADDR_SPACE (t) == 0 |
| && check_base_type (t, main) |
| && check_lang_type (t, type)) |
| return lookup_type_die (t); |
| return lookup_type_die (type); |
| } |
| /* Vectors have the debugging information in the type, |
| not the main variant. */ |
| else if (code == VECTOR_TYPE) |
| return lookup_type_die (type); |
| else |
| return lookup_type_die (type_main_variant (type)); |
| } |
| |
| /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those, |
| don't output a DW_TAG_typedef, since there isn't one in the |
| user's program; just attach a DW_AT_name to the type. |
| Don't attach a DW_AT_name to DW_TAG_const_type or DW_TAG_volatile_type |
| if the base type already has the same name. */ |
| if (name |
| && ((TREE_CODE (name) != TYPE_DECL |
| && (qualified_type == TYPE_MAIN_VARIANT (type) |
| || (cv_quals == TYPE_UNQUALIFIED))) |
| || (TREE_CODE (name) == TYPE_DECL |
| && TREE_TYPE (name) == qualified_type |
| && DECL_NAME (name)))) |
| { |
| if (TREE_CODE (name) == TYPE_DECL) |
| /* Could just call add_name_and_src_coords_attributes here, |
| but since this is a builtin type it doesn't have any |
| useful source coordinates anyway. */ |
| name = DECL_NAME (name); |
| add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name)); |
| } |
| /* This probably indicates a bug. */ |
| else if (mod_type_die && mod_type_die->die_tag == DW_TAG_base_type) |
| { |
| name = TYPE_IDENTIFIER (type); |
| add_name_attribute (mod_type_die, |
| name ? IDENTIFIER_POINTER (name) : "__unknown__"); |
| } |
| |
| if (qualified_type && !reverse_base_type) |
| equate_type_number_to_die (qualified_type, mod_type_die); |
| |
| if (item_type) |
| /* We must do this after the equate_type_number_to_die call, in case |
| this is a recursive type. This ensures that the modified_type_die |
| recursion will terminate even if the type is recursive. Recursive |
| types are possible in Ada. */ |
| sub_die = modified_type_die (item_type, |
| TYPE_QUALS_NO_ADDR_SPACE (item_type), |
| reverse, |
| context_die); |
| |
| if (sub_die != NULL) |
| add_AT_die_ref (mod_type_die, DW_AT_type, sub_die); |
| |
| add_gnat_descriptive_type_attribute (mod_type_die, type, context_die); |
| if (TYPE_ARTIFICIAL (type)) |
| add_AT_flag (mod_type_die, DW_AT_artificial, 1); |
| |
| return mod_type_die; |
| } |
| |
| /* Generate DIEs for the generic parameters of T. |
| T must be either a generic type or a generic function. |
| See http://gcc.gnu.org/wiki/TemplateParmsDwarf for more. */ |
| |
| static void |
| gen_generic_params_dies (tree t) |
| { |
| tree parms, args; |
| int parms_num, i; |
| dw_die_ref die = NULL; |
| int non_default; |
| |
| if (!t || (TYPE_P (t) && !COMPLETE_TYPE_P (t))) |
| return; |
| |
| if (TYPE_P (t)) |
| die = lookup_type_die (t); |
| else if (DECL_P (t)) |
| die = lookup_decl_die (t); |
| |
| gcc_assert (die); |
| |
| parms = lang_hooks.get_innermost_generic_parms (t); |
| if (!parms) |
| /* T has no generic parameter. It means T is neither a generic type |
| or function. End of story. */ |
| return; |
| |
| parms_num = TREE_VEC_LENGTH (parms); |
| args = lang_hooks.get_innermost_generic_args (t); |
| if (TREE_CHAIN (args) && TREE_CODE (TREE_CHAIN (args)) == INTEGER_CST) |
| non_default = int_cst_value (TREE_CHAIN (args)); |
| else |
| non_default = TREE_VEC_LENGTH (args); |
| for (i = 0; i < parms_num; i++) |
| { |
| tree parm, arg, arg_pack_elems; |
| dw_die_ref parm_die; |
| |
| parm = TREE_VEC_ELT (parms, i); |
| arg = TREE_VEC_ELT (args, i); |
| arg_pack_elems = lang_hooks.types.get_argument_pack_elems (arg); |
| gcc_assert (parm && TREE_VALUE (parm) && arg); |
| |
| if (parm && TREE_VALUE (parm) && arg) |
| { |
| /* If PARM represents a template parameter pack, |
| emit a DW_TAG_GNU_template_parameter_pack DIE, followed |
| by DW_TAG_template_*_parameter DIEs for the argument |
| pack elements of ARG. Note that ARG would then be |
| an argument pack. */ |
| if (arg_pack_elems) |
| parm_die = template_parameter_pack_die (TREE_VALUE (parm), |
| arg_pack_elems, |
| die); |
| else |
| parm_die = generic_parameter_die (TREE_VALUE (parm), arg, |
| true /* emit name */, die); |
| if (i >= non_default) |
| add_AT_flag (parm_die, DW_AT_default_value, 1); |
| } |
| } |
| } |
| |
| /* Create and return a DIE for PARM which should be |
| the representation of a generic type parameter. |
| For instance, in the C++ front end, PARM would be a template parameter. |
| ARG is the argument to PARM. |
| EMIT_NAME_P if tree, the DIE will have DW_AT_name attribute set to the |
| name of the PARM. |
| PARENT_DIE is the parent DIE which the new created DIE should be added to, |
| as a child node. */ |
| |
| static dw_die_ref |
| generic_parameter_die (tree parm, tree arg, |
| bool emit_name_p, |
| dw_die_ref parent_die) |
| { |
| dw_die_ref tmpl_die = NULL; |
| const char *name = NULL; |
| |
| /* C++20 accepts class literals as template parameters, and var |
| decls with initializers represent them. The VAR_DECLs would be |
| rejected, but we can take the DECL_INITIAL constructor and |
| attempt to expand it. */ |
| if (arg && VAR_P (arg)) |
| arg = DECL_INITIAL (arg); |
| |
| if (!parm || !DECL_NAME (parm) || !arg) |
| return NULL; |
| |
| /* We support non-type generic parameters and arguments, |
| type generic parameters and arguments, as well as |
| generic generic parameters (a.k.a. template template parameters in C++) |
| and arguments. */ |
| if (TREE_CODE (parm) == PARM_DECL) |
| /* PARM is a nontype generic parameter */ |
| tmpl_die = new_die (DW_TAG_template_value_param, parent_die, parm); |
| else if (TREE_CODE (parm) == TYPE_DECL) |
| /* PARM is a type generic parameter. */ |
| tmpl_die = new_die (DW_TAG_template_type_param, parent_die, parm); |
| else if (lang_hooks.decls.generic_generic_parameter_decl_p (parm)) |
| /* PARM is a generic generic parameter. |
| Its DIE is a GNU extension. It shall have a |
| DW_AT_name attribute to represent the name of the template template |
| parameter, and a DW_AT_GNU_template_name attribute to represent the |
| name of the template template argument. */ |
| tmpl_die = new_die (DW_TAG_GNU_template_template_param, |
| parent_die, parm); |
| else |
| gcc_unreachable (); |
| |
| if (tmpl_die) |
| { |
| tree tmpl_type; |
| |
| /* If PARM is a generic parameter pack, it means we are |
| emitting debug info for a template argument pack element. |
| In other terms, ARG is a template argument pack element. |
| In that case, we don't emit any DW_AT_name attribute for |
| the die. */ |
| if (emit_name_p) |
| { |
| name = IDENTIFIER_POINTER (DECL_NAME (parm)); |
| gcc_assert (name); |
| add_AT_string (tmpl_die, DW_AT_name, name); |
| } |
| |
| if (!lang_hooks.decls.generic_generic_parameter_decl_p (parm)) |
| { |
| /* DWARF3, 5.6.8 says if PARM is a non-type generic parameter |
| TMPL_DIE should have a child DW_AT_type attribute that is set |
| to the type of the argument to PARM, which is ARG. |
| If PARM is a type generic parameter, TMPL_DIE should have a |
| child DW_AT_type that is set to ARG. */ |
| tmpl_type = TYPE_P (arg) ? arg : TREE_TYPE (arg); |
| add_type_attribute (tmpl_die, tmpl_type, |
| (TREE_THIS_VOLATILE (tmpl_type) |
| ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED), |
| false, parent_die); |
| } |
| else |
| { |
| /* So TMPL_DIE is a DIE representing a |
| a generic generic template parameter, a.k.a template template |
| parameter in C++ and arg is a template. */ |
| |
| /* The DW_AT_GNU_template_name attribute of the DIE must be set |
| to the name of the argument. */ |
| name = dwarf2_name (TYPE_P (arg) ? TYPE_NAME (arg) : arg, 1); |
| if (name) |
| add_AT_string (tmpl_die, DW_AT_GNU_template_name, name); |
| } |
| |
| if (TREE_CODE (parm) == PARM_DECL) |
| /* So PARM is a non-type generic parameter. |
| DWARF3 5.6.8 says we must set a DW_AT_const_value child |
| attribute of TMPL_DIE which value represents the value |
| of ARG. |
| We must be careful here: |
| The value of ARG might reference some function decls. |
| We might currently be emitting debug info for a generic |
| type and types are emitted before function decls, we don't |
| know if the function decls referenced by ARG will actually be |
| emitted after cgraph computations. |
| So must defer the generation of the DW_AT_const_value to |
| after cgraph is ready. */ |
| append_entry_to_tmpl_value_parm_die_table (tmpl_die, arg); |
| } |
| |
| return tmpl_die; |
| } |
| |
| /* Generate and return a DW_TAG_GNU_template_parameter_pack DIE representing. |
| PARM_PACK must be a template parameter pack. The returned DIE |
| will be child DIE of PARENT_DIE. */ |
| |
| static dw_die_ref |
| template_parameter_pack_die (tree parm_pack, |
| tree parm_pack_args, |
| dw_die_ref parent_die) |
| { |
| dw_die_ref die; |
| int j; |
| |
| gcc_assert (parent_die && parm_pack); |
| |
| die = new_die (DW_TAG_GNU_template_parameter_pack, parent_die, parm_pack); |
| add_name_and_src_coords_attributes (die, parm_pack); |
| for (j = 0; j < TREE_VEC_LENGTH (parm_pack_args); j++) |
| generic_parameter_die (parm_pack, |
| TREE_VEC_ELT (parm_pack_args, j), |
| false /* Don't emit DW_AT_name */, |
| die); |
| return die; |
| } |
| |
| /* Return the DBX register number described by a given RTL node. */ |
| |
| static unsigned int |
| dbx_reg_number (const_rtx rtl) |
| { |
| unsigned regno = REGNO (rtl); |
| |
| gcc_assert (regno < FIRST_PSEUDO_REGISTER); |
| |
| #ifdef LEAF_REG_REMAP |
| if (crtl->uses_only_leaf_regs) |
| { |
| int leaf_reg = LEAF_REG_REMAP (regno); |
| if (leaf_reg != -1) |
| regno = (unsigned) leaf_reg; |
| } |
| #endif |
| |
| regno = DBX_REGISTER_NUMBER (regno); |
| gcc_assert (regno != INVALID_REGNUM); |
| return regno; |
| } |
| |
| /* Optionally add a DW_OP_piece term to a location description expression. |
| DW_OP_piece is only added if the location description expression already |
| doesn't end with DW_OP_piece. */ |
| |
| static void |
| add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size) |
| { |
| dw_loc_descr_ref loc; |
| |
| if (*list_head != NULL) |
| { |
| /* Find the end of the chain. */ |
| for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next) |
| ; |
| |
| if (loc->dw_loc_opc != DW_OP_piece) |
| loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0); |
| } |
| } |
| |
| /* Return a location descriptor that designates a machine register or |
| zero if there is none. */ |
| |
| static dw_loc_descr_ref |
| reg_loc_descriptor (rtx rtl, enum var_init_status initialized) |
| { |
| rtx regs; |
| |
| if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER) |
| return 0; |
| |
| /* We only use "frame base" when we're sure we're talking about the |
| post-prologue local stack frame. We do this by *not* running |
| register elimination until this point, and recognizing the special |
| argument pointer and soft frame pointer rtx's. |
| Use DW_OP_fbreg offset DW_OP_stack_value in this case. */ |
| if ((rtl == arg_pointer_rtx || rtl == frame_pointer_rtx) |
| && eliminate_regs (rtl, VOIDmode, NULL_RTX) != rtl) |
| { |
| dw_loc_descr_ref result = NULL; |
| |
| if (dwarf_version >= 4 || !dwarf_strict) |
| { |
| result = mem_loc_descriptor (rtl, GET_MODE (rtl), VOIDmode, |
| initialized); |
| if (result) |
| add_loc_descr (&result, |
| new_loc_descr (DW_OP_stack_value, 0, 0)); |
| } |
| return result; |
| } |
| |
| regs = targetm.dwarf_register_span (rtl); |
| |
| if (REG_NREGS (rtl) > 1 || regs) |
| return multiple_reg_loc_descriptor (rtl, regs, initialized); |
| else |
| { |
| unsigned int dbx_regnum = dbx_reg_number (rtl); |
| if (dbx_regnum == IGNORED_DWARF_REGNUM) |
| return 0; |
| return one_reg_loc_descriptor (dbx_regnum, initialized); |
| } |
| } |
| |
| /* Return a location descriptor that designates a machine register for |
| a given hard register number. */ |
| |
| static dw_loc_descr_ref |
| one_reg_loc_descriptor (unsigned int regno, enum var_init_status initialized) |
| { |
| dw_loc_descr_ref reg_loc_descr; |
| |
| if (regno <= 31) |
| reg_loc_descr |
| = new_loc_descr ((enum dwarf_location_atom) (DW_OP_reg0 + regno), 0, 0); |
| else |
| reg_loc_descr = new_loc_descr (DW_OP_regx, regno, 0); |
| |
| if (initialized == VAR_INIT_STATUS_UNINITIALIZED) |
| add_loc_descr (®_loc_descr, new_loc_descr (DW_OP_GNU_uninit, 0, 0)); |
| |
| return reg_loc_descr; |
| } |
| |
| /* Given an RTL of a register, return a location descriptor that |
| designates a value that spans more than one register. */ |
| |
| static dw_loc_descr_ref |
| multiple_reg_loc_descriptor (rtx rtl, rtx regs, |
| enum var_init_status initialized) |
| { |
| int size, i; |
| dw_loc_descr_ref loc_result = NULL; |
| |
| /* Simple, contiguous registers. */ |
| if (regs == NULL_RTX) |
| { |
| unsigned reg = REGNO (rtl); |
| int nregs; |
| |
| #ifdef LEAF_REG_REMAP |
| if (crtl->uses_only_leaf_regs) |
| { |
| int leaf_reg = LEAF_REG_REMAP (reg); |
| if (leaf_reg != -1) |
| reg = (unsigned) leaf_reg; |
| } |
| #endif |
| |
| gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl)); |
| nregs = REG_NREGS (rtl); |
| |
| /* At present we only track constant-sized pieces. */ |
| if (!GET_MODE_SIZE (GET_MODE (rtl)).is_constant (&size)) |
| return NULL; |
| size /= nregs; |
| |
| loc_result = NULL; |
| while (nregs--) |
| { |
| dw_loc_descr_ref t; |
| |
| t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg), |
| VAR_INIT_STATUS_INITIALIZED); |
| add_loc_descr (&loc_result, t); |
| add_loc_descr_op_piece (&loc_result, size); |
| ++reg; |
| } |
| return loc_result; |
| } |
| |
| /* Now onto stupid register sets in non contiguous locations. */ |
| |
| gcc_assert (GET_CODE (regs) == PARALLEL); |
| |
| /* At present we only track constant-sized pieces. */ |
| if (!GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0))).is_constant (&size)) |
| return NULL; |
| loc_result = NULL; |
| |
| for (i = 0; i < XVECLEN (regs, 0); ++i) |
| { |
| dw_loc_descr_ref t; |
| |
| t = one_reg_loc_descriptor (dbx_reg_number (XVECEXP (regs, 0, i)), |
| VAR_INIT_STATUS_INITIALIZED); |
| add_loc_descr (&loc_result, t); |
| add_loc_descr_op_piece (&loc_result, size); |
| } |
| |
| if (loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED) |
| add_loc_descr (&loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0)); |
| return loc_result; |
| } |
| |
| static unsigned long size_of_int_loc_descriptor (HOST_WIDE_INT); |
| |
| /* Return a location descriptor that designates a constant i, |
| as a compound operation from constant (i >> shift), constant shift |
| and DW_OP_shl. */ |
| |
| static dw_loc_descr_ref |
| int_shift_loc_descriptor (HOST_WIDE_INT i, int shift) |
| { |
| dw_loc_descr_ref ret = int_loc_descriptor (i >> shift); |
| add_loc_descr (&ret, int_loc_descriptor (shift)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0)); |
| return ret; |
| } |
| |
| /* Return a location descriptor that designates constant POLY_I. */ |
| |
| static dw_loc_descr_ref |
| int_loc_descriptor (poly_int64 poly_i) |
| { |
| enum dwarf_location_atom op; |
| |
| HOST_WIDE_INT i; |
| if (!poly_i.is_constant (&i)) |
| { |
| /* Create location descriptions for the non-constant part and |
| add any constant offset at the end. */ |
| dw_loc_descr_ref ret = NULL; |
| HOST_WIDE_INT constant = poly_i.coeffs[0]; |
| for (unsigned int j = 1; j < NUM_POLY_INT_COEFFS; ++j) |
| { |
| HOST_WIDE_INT coeff = poly_i.coeffs[j]; |
| if (coeff != 0) |
| { |
| dw_loc_descr_ref start = ret; |
| unsigned int factor; |
| int bias; |
| unsigned int regno = targetm.dwarf_poly_indeterminate_value |
| (j, &factor, &bias); |
| |
| /* Add COEFF * ((REGNO / FACTOR) - BIAS) to the value: |
| add COEFF * (REGNO / FACTOR) now and subtract |
| COEFF * BIAS from the final constant part. */ |
| constant -= coeff * bias; |
| add_loc_descr (&ret, new_reg_loc_descr (regno, 0)); |
| if (coeff % factor == 0) |
| coeff /= factor; |
| else |
| { |
| int amount = exact_log2 (factor); |
| gcc_assert (amount >= 0); |
| add_loc_descr (&ret, int_loc_descriptor (amount)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0)); |
| } |
| if (coeff != 1) |
| { |
| add_loc_descr (&ret, int_loc_descriptor (coeff)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_mul, 0, 0)); |
| } |
| if (start) |
| add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0)); |
| } |
| } |
| loc_descr_plus_const (&ret, constant); |
| return ret; |
| } |
| |
| /* Pick the smallest representation of a constant, rather than just |
| defaulting to the LEB encoding. */ |
| if (i >= 0) |
| { |
| int clz = clz_hwi (i); |
| int ctz = ctz_hwi (i); |
| if (i <= 31) |
| op = (enum dwarf_location_atom) (DW_OP_lit0 + i); |
| else if (i <= 0xff) |
| op = DW_OP_const1u; |
| else if (i <= 0xffff) |
| op = DW_OP_const2u; |
| else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5 |
| && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT) |
| /* DW_OP_litX DW_OP_litY DW_OP_shl takes just 3 bytes and |
| DW_OP_litX DW_OP_const1u Y DW_OP_shl takes just 4 bytes, |
| while DW_OP_const4u is 5 bytes. */ |
| return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 5); |
| else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8 |
| && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT) |
| /* DW_OP_const1u X DW_OP_litY DW_OP_shl takes just 4 bytes, |
| while DW_OP_const4u is 5 bytes. */ |
| return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8); |
| |
| else if (DWARF2_ADDR_SIZE == 4 && i > 0x7fffffff |
| && size_of_int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i) |
| <= 4) |
| { |
| /* As i >= 2**31, the double cast above will yield a negative number. |
| Since wrapping is defined in DWARF expressions we can output big |
| positive integers as small negative ones, regardless of the size |
| of host wide ints. |
| |
| Here, since the evaluator will handle 32-bit values and since i >= |
| 2**31, we know it's going to be interpreted as a negative literal: |
| store it this way if we can do better than 5 bytes this way. */ |
| return int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i); |
| } |
| else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff) |
| op = DW_OP_const4u; |
| |
| /* Past this point, i >= 0x100000000 and thus DW_OP_constu will take at |
| least 6 bytes: see if we can do better before falling back to it. */ |
| else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8 |
| && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT) |
| /* DW_OP_const1u X DW_OP_const1u Y DW_OP_shl takes just 5 bytes. */ |
| return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8); |
| else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16 |
| && clz + 16 + (size_of_uleb128 (i) > 5 ? 255 : 31) |
| >= HOST_BITS_PER_WIDE_INT) |
| /* DW_OP_const2u X DW_OP_litY DW_OP_shl takes just 5 bytes, |
| DW_OP_const2u X DW_OP_const1u Y DW_OP_shl takes 6 bytes. */ |
| return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 16); |
| else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32 |
| && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT |
| && size_of_uleb128 (i) > 6) |
| /* DW_OP_const4u X DW_OP_litY DW_OP_shl takes just 7 bytes. */ |
| return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 32); |
| else |
| op = DW_OP_constu; |
| } |
| else |
| { |
| if (i >= -0x80) |
| op = DW_OP_const1s; |
| else if (i >= -0x8000) |
| op = DW_OP_const2s; |
| else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000) |
| { |
| if (size_of_int_loc_descriptor (i) < 5) |
| { |
| dw_loc_descr_ref ret = int_loc_descriptor (-i); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0)); |
| return ret; |
| } |
| op = DW_OP_const4s; |
| } |
| else |
| { |
| if (size_of_int_loc_descriptor (i) |
| < (unsigned long) 1 + size_of_sleb128 (i)) |
| { |
| dw_loc_descr_ref ret = int_loc_descriptor (-i); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0)); |
| return ret; |
| } |
| op = DW_OP_consts; |
| } |
| } |
| |
| return new_loc_descr (op, i, 0); |
| } |
| |
| /* Likewise, for unsigned constants. */ |
| |
| static dw_loc_descr_ref |
| uint_loc_descriptor (unsigned HOST_WIDE_INT i) |
| { |
| const unsigned HOST_WIDE_INT max_int = INTTYPE_MAXIMUM (HOST_WIDE_INT); |
| const unsigned HOST_WIDE_INT max_uint |
| = INTTYPE_MAXIMUM (unsigned HOST_WIDE_INT); |
| |
| /* If possible, use the clever signed constants handling. */ |
| if (i <= max_int) |
| return int_loc_descriptor ((HOST_WIDE_INT) i); |
| |
| /* Here, we are left with positive numbers that cannot be represented as |
| HOST_WIDE_INT, i.e.: |
| max (HOST_WIDE_INT) < i <= max (unsigned HOST_WIDE_INT) |
| |
| Using DW_OP_const4/8/./u operation to encode them consumes a lot of bytes |
| whereas may be better to output a negative integer: thanks to integer |
| wrapping, we know that: |
| x = x - 2 ** DWARF2_ADDR_SIZE |
| = x - 2 * (max (HOST_WIDE_INT) + 1) |
| So numbers close to max (unsigned HOST_WIDE_INT) could be represented as |
| small negative integers. Let's try that in cases it will clearly improve |
| the encoding: there is no gain turning DW_OP_const4u into |
| DW_OP_const4s. */ |
| if (DWARF2_ADDR_SIZE * 8 == HOST_BITS_PER_WIDE_INT |
| && ((DWARF2_ADDR_SIZE == 4 && i > max_uint - 0x8000) |
| || (DWARF2_ADDR_SIZE == 8 && i > max_uint - 0x80000000))) |
| { |
| const unsigned HOST_WIDE_INT first_shift = i - max_int - 1; |
| |
| /* Now, -1 < first_shift <= max (HOST_WIDE_INT) |
| i.e. 0 <= first_shift <= max (HOST_WIDE_INT). */ |
| const HOST_WIDE_INT second_shift |
| = (HOST_WIDE_INT) first_shift - (HOST_WIDE_INT) max_int - 1; |
| |
| /* So we finally have: |
| -max (HOST_WIDE_INT) - 1 <= second_shift <= -1. |
| i.e. min (HOST_WIDE_INT) <= second_shift < 0. */ |
| return int_loc_descriptor (second_shift); |
| } |
| |
| /* Last chance: fallback to a simple constant operation. */ |
| return new_loc_descr |
| ((HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff) |
| ? DW_OP_const4u |
| : DW_OP_const8u, |
| i, 0); |
| } |
| |
| /* Generate and return a location description that computes the unsigned |
| comparison of the two stack top entries (a OP b where b is the top-most |
| entry and a is the second one). The KIND of comparison can be LT_EXPR, |
| LE_EXPR, GT_EXPR or GE_EXPR. */ |
| |
| static dw_loc_descr_ref |
| uint_comparison_loc_list (enum tree_code kind) |
| { |
| enum dwarf_location_atom op, flip_op; |
| dw_loc_descr_ref ret, bra_node, jmp_node, tmp; |
| |
| switch (kind) |
| { |
| case LT_EXPR: |
| op = DW_OP_lt; |
| break; |
| case LE_EXPR: |
| op = DW_OP_le; |
| break; |
| case GT_EXPR: |
| op = DW_OP_gt; |
| break; |
| case GE_EXPR: |
| op = DW_OP_ge; |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| |
| bra_node = new_loc_descr (DW_OP_bra, 0, 0); |
| jmp_node = new_loc_descr (DW_OP_skip, 0, 0); |
| |
| /* Until DWARFv4, operations all work on signed integers. It is nevertheless |
| possible to perform unsigned comparisons: we just have to distinguish |
| three cases: |
| |
| 1. when a and b have the same sign (as signed integers); then we should |
| return: a OP(signed) b; |
| |
| 2. when a is a negative signed integer while b is a positive one, then a |
| is a greater unsigned integer than b; likewise when a and b's roles |
| are flipped. |
| |
| So first, compare the sign of the two operands. */ |
| ret = new_loc_descr (DW_OP_over, 0, 0); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_xor, 0, 0)); |
| /* If they have different signs (i.e. they have different sign bits), then |
| the stack top value has now the sign bit set and thus it's smaller than |
| zero. */ |
| add_loc_descr (&ret, new_loc_descr (DW_OP_lit0, 0, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_lt, 0, 0)); |
| add_loc_descr (&ret, bra_node); |
| |
| /* We are in case 1. At this point, we know both operands have the same |
| sign, to it's safe to use the built-in signed comparison. */ |
| add_loc_descr (&ret, new_loc_descr (op, 0, 0)); |
| add_loc_descr (&ret, jmp_node); |
| |
| /* We are in case 2. Here, we know both operands do not have the same sign, |
| so we have to flip the signed comparison. */ |
| flip_op = (kind == LT_EXPR || kind == LE_EXPR) ? DW_OP_gt : DW_OP_lt; |
| tmp = new_loc_descr (flip_op, 0, 0); |
| bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc; |
| bra_node->dw_loc_oprnd1.v.val_loc = tmp; |
| add_loc_descr (&ret, tmp); |
| |
| /* This dummy operation is necessary to make the two branches join. */ |
| tmp = new_loc_descr (DW_OP_nop, 0, 0); |
| jmp_node->dw_loc_oprnd1.val_class = dw_val_class_loc; |
| jmp_node->dw_loc_oprnd1.v.val_loc = tmp; |
| add_loc_descr (&ret, tmp); |
| |
| return ret; |
| } |
| |
| /* Likewise, but takes the location description lists (might be destructive on |
| them). Return NULL if either is NULL or if concatenation fails. */ |
| |
| static dw_loc_list_ref |
| loc_list_from_uint_comparison (dw_loc_list_ref left, dw_loc_list_ref right, |
| enum tree_code kind) |
| { |
| if (left == NULL || right == NULL) |
| return NULL; |
| |
| add_loc_list (&left, right); |
| if (left == NULL) |
| return NULL; |
| |
| add_loc_descr_to_each (left, uint_comparison_loc_list (kind)); |
| return left; |
| } |
| |
| /* Return size_of_locs (int_shift_loc_descriptor (i, shift)) |
| without actually allocating it. */ |
| |
| static unsigned long |
| size_of_int_shift_loc_descriptor (HOST_WIDE_INT i, int shift) |
| { |
| return size_of_int_loc_descriptor (i >> shift) |
| + size_of_int_loc_descriptor (shift) |
| + 1; |
| } |
| |
| /* Return size_of_locs (int_loc_descriptor (i)) without |
| actually allocating it. */ |
| |
| static unsigned long |
| size_of_int_loc_descriptor (HOST_WIDE_INT i) |
| { |
| unsigned long s; |
| |
| if (i >= 0) |
| { |
| int clz, ctz; |
| if (i <= 31) |
| return 1; |
| else if (i <= 0xff) |
| return 2; |
| else if (i <= 0xffff) |
| return 3; |
| clz = clz_hwi (i); |
| ctz = ctz_hwi (i); |
| if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5 |
| && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT) |
| return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT |
| - clz - 5); |
| else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8 |
| && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT) |
| return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT |
| - clz - 8); |
| else if (DWARF2_ADDR_SIZE == 4 && i > 0x7fffffff |
| && size_of_int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i) |
| <= 4) |
| return size_of_int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i); |
| else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff) |
| return 5; |
| s = size_of_uleb128 ((unsigned HOST_WIDE_INT) i); |
| if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8 |
| && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT) |
| return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT |
| - clz - 8); |
| else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16 |
| && clz + 16 + (s > 5 ? 255 : 31) >= HOST_BITS_PER_WIDE_INT) |
| return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT |
| - clz - 16); |
| else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32 |
| && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT |
| && s > 6) |
| return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT |
| - clz - 32); |
| else |
| return 1 + s; |
| } |
| else |
| { |
| if (i >= -0x80) |
| return 2; |
| else if (i >= -0x8000) |
| return 3; |
| else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000) |
| { |
| if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i) |
| { |
| s = size_of_int_loc_descriptor (-i) + 1; |
| if (s < 5) |
| return s; |
| } |
| return 5; |
| } |
| else |
| { |
| unsigned long r = 1 + size_of_sleb128 (i); |
| if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i) |
| { |
| s = size_of_int_loc_descriptor (-i) + 1; |
| if (s < r) |
| return s; |
| } |
| return r; |
| } |
| } |
| } |
| |
| /* Return loc description representing "address" of integer value. |
| This can appear only as toplevel expression. */ |
| |
| static dw_loc_descr_ref |
| address_of_int_loc_descriptor (int size, HOST_WIDE_INT i) |
| { |
| int litsize; |
| dw_loc_descr_ref loc_result = NULL; |
| |
| if (!(dwarf_version >= 4 || !dwarf_strict)) |
| return NULL; |
| |
| litsize = size_of_int_loc_descriptor (i); |
| /* Determine if DW_OP_stack_value or DW_OP_implicit_value |
| is more compact. For DW_OP_stack_value we need: |
| litsize + 1 (DW_OP_stack_value) |
| and for DW_OP_implicit_value: |
| 1 (DW_OP_implicit_value) + 1 (length) + size. */ |
| if ((int) DWARF2_ADDR_SIZE >= size && litsize + 1 <= 1 + 1 + size) |
| { |
| loc_result = int_loc_descriptor (i); |
| add_loc_descr (&loc_result, |
| new_loc_descr (DW_OP_stack_value, 0, 0)); |
| return loc_result; |
| } |
| |
| loc_result = new_loc_descr (DW_OP_implicit_value, |
| size, 0); |
| loc_result->dw_loc_oprnd2.val_class = dw_val_class_const; |
| loc_result->dw_loc_oprnd2.v.val_int = i; |
| return loc_result; |
| } |
| |
| /* Return a location descriptor that designates a base+offset location. */ |
| |
| static dw_loc_descr_ref |
| based_loc_descr (rtx reg, poly_int64 offset, |
| enum var_init_status initialized) |
| { |
| unsigned int regno; |
| dw_loc_descr_ref result; |
| dw_fde_ref fde = cfun->fde; |
| |
| /* We only use "frame base" when we're sure we're talking about the |
| post-prologue local stack frame. We do this by *not* running |
| register elimination until this point, and recognizing the special |
| argument pointer and soft frame pointer rtx's. */ |
| if (reg == arg_pointer_rtx || reg == frame_pointer_rtx) |
| { |
| rtx elim = (ira_use_lra_p |
| ? lra_eliminate_regs (reg, VOIDmode, NULL_RTX) |
| : eliminate_regs (reg, VOIDmode, NULL_RTX)); |
| |
| if (elim != reg) |
| { |
| /* Allow hard frame pointer here even if frame pointer |
| isn't used since hard frame pointer is encoded with |
| DW_OP_fbreg which uses the DW_AT_frame_base attribute, |
| not hard frame pointer directly. */ |
| elim = strip_offset_and_add (elim, &offset); |
| gcc_assert (elim == hard_frame_pointer_rtx |
| || elim == stack_pointer_rtx); |
| |
| /* If drap register is used to align stack, use frame |
| pointer + offset to access stack variables. If stack |
| is aligned without drap, use stack pointer + offset to |
| access stack variables. */ |
| if (crtl->stack_realign_tried |
| && reg == frame_pointer_rtx) |
| { |
| int base_reg |
| = DWARF_FRAME_REGNUM ((fde && fde->drap_reg != INVALID_REGNUM) |
| ? HARD_FRAME_POINTER_REGNUM |
| : REGNO (elim)); |
| return new_reg_loc_descr (base_reg, offset); |
| } |
| |
| gcc_assert (frame_pointer_fb_offset_valid); |
| offset += frame_pointer_fb_offset; |
| HOST_WIDE_INT const_offset; |
| if (offset.is_constant (&const_offset)) |
| return new_loc_descr (DW_OP_fbreg, const_offset, 0); |
| else |
| { |
| dw_loc_descr_ref ret = new_loc_descr (DW_OP_fbreg, 0, 0); |
| loc_descr_plus_const (&ret, offset); |
| return ret; |
| } |
| } |
| } |
| |
| regno = REGNO (reg); |
| #ifdef LEAF_REG_REMAP |
| if (crtl->uses_only_leaf_regs) |
| { |
| int leaf_reg = LEAF_REG_REMAP (regno); |
| if (leaf_reg != -1) |
| regno = (unsigned) leaf_reg; |
| } |
| #endif |
| regno = DWARF_FRAME_REGNUM (regno); |
| |
| HOST_WIDE_INT const_offset; |
| if (!optimize && fde |
| && (fde->drap_reg == regno || fde->vdrap_reg == regno) |
| && offset.is_constant (&const_offset)) |
| { |
| /* Use cfa+offset to represent the location of arguments passed |
| on the stack when drap is used to align stack. |
| Only do this when not optimizing, for optimized code var-tracking |
| is supposed to track where the arguments live and the register |
| used as vdrap or drap in some spot might be used for something |
| else in other part of the routine. */ |
| return new_loc_descr (DW_OP_fbreg, const_offset, 0); |
| } |
| |
| result = new_reg_loc_descr (regno, offset); |
| |
| if (initialized == VAR_INIT_STATUS_UNINITIALIZED) |
| add_loc_descr (&result, new_loc_descr (DW_OP_GNU_uninit, 0, 0)); |
| |
| return result; |
| } |
| |
| /* Return true if this RTL expression describes a base+offset calculation. */ |
| |
| static inline int |
| is_based_loc (const_rtx rtl) |
| { |
| return (GET_CODE (rtl) == PLUS |
| && ((REG_P (XEXP (rtl, 0)) |
| && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER |
| && CONST_INT_P (XEXP (rtl, 1))))); |
| } |
| |
| /* Try to handle TLS MEMs, for which mem_loc_descriptor on XEXP (mem, 0) |
| failed. */ |
| |
| static dw_loc_descr_ref |
| tls_mem_loc_descriptor (rtx mem) |
| { |
| tree base; |
| dw_loc_descr_ref loc_result; |
| |
| if (MEM_EXPR (mem) == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem)) |
| return NULL; |
| |
| base = get_base_address (MEM_EXPR (mem)); |
| if (base == NULL |
| || !VAR_P (base) |
| || !DECL_THREAD_LOCAL_P (base)) |
| return NULL; |
| |
| loc_result = loc_descriptor_from_tree (MEM_EXPR (mem), 1, NULL); |
| if (loc_result == NULL) |
| return NULL; |
| |
| if (maybe_ne (MEM_OFFSET (mem), 0)) |
| loc_descr_plus_const (&loc_result, MEM_OFFSET (mem)); |
| |
| return loc_result; |
| } |
| |
| /* Output debug info about reason why we failed to expand expression as dwarf |
| expression. */ |
| |
| static void |
| expansion_failed (tree expr, rtx rtl, char const *reason) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Failed to expand as dwarf: "); |
| if (expr) |
| print_generic_expr (dump_file, expr, dump_flags); |
| if (rtl) |
| { |
| fprintf (dump_file, "\n"); |
| print_rtl (dump_file, rtl); |
| } |
| fprintf (dump_file, "\nReason: %s\n", reason); |
| } |
| } |
| |
| /* Helper function for const_ok_for_output. */ |
| |
| static bool |
| const_ok_for_output_1 (rtx rtl) |
| { |
| if (targetm.const_not_ok_for_debug_p (rtl)) |
| { |
| if (GET_CODE (rtl) != UNSPEC) |
| { |
| expansion_failed (NULL_TREE, rtl, |
| "Expression rejected for debug by the backend.\n"); |
| return false; |
| } |
| |
| /* If delegitimize_address couldn't do anything with the UNSPEC, and |
| the target hook doesn't explicitly allow it in debug info, assume |
| we can't express it in the debug info. */ |
| /* Don't complain about TLS UNSPECs, those are just too hard to |
| delegitimize. Note this could be a non-decl SYMBOL_REF such as |
| one in a constant pool entry, so testing SYMBOL_REF_TLS_MODEL |
| rather than DECL_THREAD_LOCAL_P is not just an optimization. */ |
| if (flag_checking |
| && (XVECLEN (rtl, 0) == 0 |
| || GET_CODE (XVECEXP (rtl, 0, 0)) != SYMBOL_REF |
| || SYMBOL_REF_TLS_MODEL (XVECEXP (rtl, 0, 0)) == TLS_MODEL_NONE)) |
| inform (current_function_decl |
| ? DECL_SOURCE_LOCATION (current_function_decl) |
| : UNKNOWN_LOCATION, |
| #if NUM_UNSPEC_VALUES > 0 |
| "non-delegitimized UNSPEC %s (%d) found in variable location", |
| ((XINT (rtl, 1) >= 0 && XINT (rtl, 1) < NUM_UNSPEC_VALUES) |
| ? unspec_strings[XINT (rtl, 1)] : "unknown"), |
| #else |
| "non-delegitimized UNSPEC %d found in variable location", |
| #endif |
| XINT (rtl, 1)); |
| expansion_failed (NULL_TREE, rtl, |
| "UNSPEC hasn't been delegitimized.\n"); |
| return false; |
| } |
| |
| if (CONST_POLY_INT_P (rtl)) |
| return false; |
| |
| /* FIXME: Refer to PR60655. It is possible for simplification |
| of rtl expressions in var tracking to produce such expressions. |
| We should really identify / validate expressions |
| enclosed in CONST that can be handled by assemblers on various |
| targets and only handle legitimate cases here. */ |
| switch (GET_CODE (rtl)) |
| { |
| case SYMBOL_REF: |
| break; |
| case NOT: |
| case NEG: |
| return false; |
| case PLUS: |
| { |
| /* Make sure SYMBOL_REFs/UNSPECs are at most in one of the |
| operands. */ |
| subrtx_var_iterator::array_type array; |
| bool first = false; |
| FOR_EACH_SUBRTX_VAR (iter, array, XEXP (rtl, 0), ALL) |
| if (SYMBOL_REF_P (*iter) |
| || LABEL_P (*iter) |
| || GET_CODE (*iter) == UNSPEC) |
| { |
| first = true; |
| break; |
| } |
| if (!first) |
| return true; |
| FOR_EACH_SUBRTX_VAR (iter, array, XEXP (rtl, 1), ALL) |
| if (SYMBOL_REF_P (*iter) |
| || LABEL_P (*iter) |
| || GET_CODE (*iter) == UNSPEC) |
| return false; |
| return true; |
| } |
| case MINUS: |
| { |
| /* Disallow negation of SYMBOL_REFs or UNSPECs when they |
| appear in the second operand of MINUS. */ |
| subrtx_var_iterator::array_type array; |
| FOR_EACH_SUBRTX_VAR (iter, array, XEXP (rtl, 1), ALL) |
| if (SYMBOL_REF_P (*iter) |
| || LABEL_P (*iter) |
| || GET_CODE (*iter) == UNSPEC) |
| return false; |
| return true; |
| } |
| default: |
| return true; |
| } |
| |
| if (CONSTANT_POOL_ADDRESS_P (rtl)) |
| { |
| bool marked; |
| get_pool_constant_mark (rtl, &marked); |
| /* If all references to this pool constant were optimized away, |
| it was not output and thus we can't represent it. */ |
| if (!marked) |
| { |
| expansion_failed (NULL_TREE, rtl, |
| "Constant was removed from constant pool.\n"); |
| return false; |
| } |
| } |
| |
| if (SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE) |
| return false; |
| |
| /* Avoid references to external symbols in debug info, on several targets |
| the linker might even refuse to link when linking a shared library, |
| and in many other cases the relocations for .debug_info/.debug_loc are |
| dropped, so the address becomes zero anyway. Hidden symbols, guaranteed |
| to be defined within the same shared library or executable are fine. */ |
| if (SYMBOL_REF_EXTERNAL_P (rtl)) |
| { |
| tree decl = SYMBOL_REF_DECL (rtl); |
| |
| if (decl == NULL || !targetm.binds_local_p (decl)) |
| { |
| expansion_failed (NULL_TREE, rtl, |
| "Symbol not defined in current TU.\n"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Return true if constant RTL can be emitted in DW_OP_addr or |
| DW_AT_const_value. TLS SYMBOL_REFs, external SYMBOL_REFs or |
| non-marked constant pool SYMBOL_REFs can't be referenced in it. */ |
| |
| static bool |
| const_ok_for_output (rtx rtl) |
| { |
| if (GET_CODE (rtl) == SYMBOL_REF) |
| return const_ok_for_output_1 (rtl); |
| |
| if (GET_CODE (rtl) == CONST) |
| { |
| subrtx_var_iterator::array_type array; |
| FOR_EACH_SUBRTX_VAR (iter, array, XEXP (rtl, 0), ALL) |
| if (!const_ok_for_output_1 (*iter)) |
| return false; |
| return true; |
| } |
| |
| return true; |
| } |
| |
| /* Return a reference to DW_TAG_base_type corresponding to MODE and UNSIGNEDP |
| if possible, NULL otherwise. */ |
| |
| static dw_die_ref |
| base_type_for_mode (machine_mode mode, bool unsignedp) |
| { |
| dw_die_ref type_die; |
| tree type = lang_hooks.types.type_for_mode (mode, unsignedp); |
| |
| if (type == NULL) |
| return NULL; |
| switch (TREE_CODE (type)) |
| { |
| case INTEGER_TYPE: |
| case REAL_TYPE: |
| break; |
| default: |
| return NULL; |
| } |
| type_die = lookup_type_die (type); |
| if (!type_die) |
| type_die = modified_type_die (type, TYPE_UNQUALIFIED, false, |
| comp_unit_die ()); |
| if (type_die == NULL || type_die->die_tag != DW_TAG_base_type) |
| return NULL; |
| return type_die; |
| } |
| |
| /* For OP descriptor assumed to be in unsigned MODE, convert it to a unsigned |
| type matching MODE, or, if MODE is narrower than or as wide as |
| DWARF2_ADDR_SIZE, untyped. Return NULL if the conversion is not |
| possible. */ |
| |
| static dw_loc_descr_ref |
| convert_descriptor_to_mode (scalar_int_mode mode, dw_loc_descr_ref op) |
| { |
| machine_mode outer_mode = mode; |
| dw_die_ref type_die; |
| dw_loc_descr_ref cvt; |
| |
| if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE) |
| { |
| add_loc_descr (&op, new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0)); |
| return op; |
| } |
| type_die = base_type_for_mode (outer_mode, 1); |
| if (type_die == NULL) |
| return NULL; |
| cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0); |
| cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref; |
| cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die; |
| cvt->dw_loc_oprnd1.v.val_die_ref.external = 0; |
| add_loc_descr (&op, cvt); |
| return op; |
| } |
| |
| /* Return location descriptor for comparison OP with operands OP0 and OP1. */ |
| |
| static dw_loc_descr_ref |
| compare_loc_descriptor (enum dwarf_location_atom op, dw_loc_descr_ref op0, |
| dw_loc_descr_ref op1) |
| { |
| dw_loc_descr_ref ret = op0; |
| add_loc_descr (&ret, op1); |
| add_loc_descr (&ret, new_loc_descr (op, 0, 0)); |
| if (STORE_FLAG_VALUE != 1) |
| { |
| add_loc_descr (&ret, int_loc_descriptor (STORE_FLAG_VALUE)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_mul, 0, 0)); |
| } |
| return ret; |
| } |
| |
| /* Subroutine of scompare_loc_descriptor for the case in which we're |
| comparing two scalar integer operands OP0 and OP1 that have mode OP_MODE, |
| and in which OP_MODE is bigger than DWARF2_ADDR_SIZE. */ |
| |
| static dw_loc_descr_ref |
| scompare_loc_descriptor_wide (enum dwarf_location_atom op, |
| scalar_int_mode op_mode, |
| dw_loc_descr_ref op0, dw_loc_descr_ref op1) |
| { |
| dw_die_ref type_die = base_type_for_mode (op_mode, 0); |
| dw_loc_descr_ref cvt; |
| |
| if (type_die == NULL) |
| return NULL; |
| cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0); |
| cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref; |
| cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die; |
| cvt->dw_loc_oprnd1.v.val_die_ref.external = 0; |
| add_loc_descr (&op0, cvt); |
| cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0); |
| cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref; |
| cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die; |
| cvt->dw_loc_oprnd1.v.val_die_ref.external = 0; |
| add_loc_descr (&op1, cvt); |
| return compare_loc_descriptor (op, op0, op1); |
| } |
| |
| /* Subroutine of scompare_loc_descriptor for the case in which we're |
| comparing two scalar integer operands OP0 and OP1 that have mode OP_MODE, |
| and in which OP_MODE is smaller than DWARF2_ADDR_SIZE. */ |
| |
| static dw_loc_descr_ref |
| scompare_loc_descriptor_narrow (enum dwarf_location_atom op, rtx rtl, |
| scalar_int_mode op_mode, |
| dw_loc_descr_ref op0, dw_loc_descr_ref op1) |
| { |
| int shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (op_mode)) * BITS_PER_UNIT; |
| /* For eq/ne, if the operands are known to be zero-extended, |
| there is no need to do the fancy shifting up. */ |
| if (op == DW_OP_eq || op == DW_OP_ne) |
| { |
| dw_loc_descr_ref last0, last1; |
| for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next) |
| ; |
| for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next) |
| ; |
| /* deref_size zero extends, and for constants we can check |
| whether they are zero extended or not. */ |
| if (((last0->dw_loc_opc == DW_OP_deref_size |
| && last0->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode)) |
| || (CONST_INT_P (XEXP (rtl, 0)) |
| && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 0)) |
| == (INTVAL (XEXP (rtl, 0)) & GET_MODE_MASK (op_mode)))) |
| && ((last1->dw_loc_opc == DW_OP_deref_size |
| && last1->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode)) |
| || (CONST_INT_P (XEXP (rtl, 1)) |
| && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 1)) |
| == (INTVAL (XEXP (rtl, 1)) & GET_MODE_MASK (op_mode))))) |
| return compare_loc_descriptor (op, op0, op1); |
| |
| /* EQ/NE comparison against constant in narrower type than |
| DWARF2_ADDR_SIZE can be performed either as |
| DW_OP_const1u <shift> DW_OP_shl DW_OP_const* <cst << shift> |
| DW_OP_{eq,ne} |
| or |
| DW_OP_const*u <mode_mask> DW_OP_and DW_OP_const* <cst & mode_mask> |
| DW_OP_{eq,ne}. Pick whatever is shorter. */ |
| if (CONST_INT_P (XEXP (rtl, 1)) |
| && GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT |
| && (size_of_int_loc_descriptor (shift) + 1 |
| + size_of_int_loc_descriptor (UINTVAL (XEXP (rtl, 1)) << shift) |
| >= size_of_int_loc_descriptor (GET_MODE_MASK (op_mode)) + 1 |
| + size_of_int_loc_descriptor (INTVAL (XEXP (rtl, 1)) |
| & GET_MODE_MASK (op_mode)))) |
| { |
| add_loc_descr (&op0, int_loc_descriptor (GET_MODE_MASK (op_mode))); |
| add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0)); |
| op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) |
| & GET_MODE_MASK (op_mode)); |
| return compare_loc_descriptor (op, op0, op1); |
| } |
| } |
| add_loc_descr (&op0, int_loc_descriptor (shift)); |
| add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0)); |
| if (CONST_INT_P (XEXP (rtl, 1))) |
| op1 = int_loc_descriptor (UINTVAL (XEXP (rtl, 1)) << shift); |
| else |
| { |
| add_loc_descr (&op1, int_loc_descriptor (shift)); |
| add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0)); |
| } |
| return compare_loc_descriptor (op, op0, op1); |
| } |
| |
| /* Return location descriptor for signed comparison OP RTL. */ |
| |
| static dw_loc_descr_ref |
| scompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl, |
| machine_mode mem_mode) |
| { |
| machine_mode op_mode = GET_MODE (XEXP (rtl, 0)); |
| dw_loc_descr_ref op0, op1; |
| |
| if (op_mode == VOIDmode) |
| op_mode = GET_MODE (XEXP (rtl, 1)); |
| if (op_mode == VOIDmode) |
| return NULL; |
| |
| scalar_int_mode int_op_mode; |
| if (dwarf_strict |
| && dwarf_version < 5 |
| && (!is_a <scalar_int_mode> (op_mode, &int_op_mode) |
| || GET_MODE_SIZE (int_op_mode) > DWARF2_ADDR_SIZE)) |
| return NULL; |
| |
| op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| |
| if (op0 == NULL || op1 == NULL) |
| return NULL; |
| |
| if (is_a <scalar_int_mode> (op_mode, &int_op_mode)) |
| { |
| if (GET_MODE_SIZE (int_op_mode) < DWARF2_ADDR_SIZE) |
| return scompare_loc_descriptor_narrow (op, rtl, int_op_mode, op0, op1); |
| |
| if (GET_MODE_SIZE (int_op_mode) > DWARF2_ADDR_SIZE) |
| return scompare_loc_descriptor_wide (op, int_op_mode, op0, op1); |
| } |
| return compare_loc_descriptor (op, op0, op1); |
| } |
| |
| /* Return location descriptor for unsigned comparison OP RTL. */ |
| |
| static dw_loc_descr_ref |
| ucompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl, |
| machine_mode mem_mode) |
| { |
| dw_loc_descr_ref op0, op1; |
| |
| machine_mode test_op_mode = GET_MODE (XEXP (rtl, 0)); |
| if (test_op_mode == VOIDmode) |
| test_op_mode = GET_MODE (XEXP (rtl, 1)); |
| |
| scalar_int_mode op_mode; |
| if (!is_a <scalar_int_mode> (test_op_mode, &op_mode)) |
| return NULL; |
| |
| if (dwarf_strict |
| && dwarf_version < 5 |
| && GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE) |
| return NULL; |
| |
| op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| |
| if (op0 == NULL || op1 == NULL) |
| return NULL; |
| |
| if (GET_MODE_SIZE (op_mode) < DWARF2_ADDR_SIZE) |
| { |
| HOST_WIDE_INT mask = GET_MODE_MASK (op_mode); |
| dw_loc_descr_ref last0, last1; |
| for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next) |
| ; |
| for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next) |
| ; |
| if (CONST_INT_P (XEXP (rtl, 0))) |
| op0 = int_loc_descriptor (INTVAL (XEXP (rtl, 0)) & mask); |
| /* deref_size zero extends, so no need to mask it again. */ |
| else if (last0->dw_loc_opc != DW_OP_deref_size |
| || last0->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode)) |
| { |
| add_loc_descr (&op0, int_loc_descriptor (mask)); |
| add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0)); |
| } |
| if (CONST_INT_P (XEXP (rtl, 1))) |
| op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) & mask); |
| /* deref_size zero extends, so no need to mask it again. */ |
| else if (last1->dw_loc_opc != DW_OP_deref_size |
| || last1->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode)) |
| { |
| add_loc_descr (&op1, int_loc_descriptor (mask)); |
| add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0)); |
| } |
| } |
| else if (GET_MODE_SIZE (op_mode) == DWARF2_ADDR_SIZE) |
| { |
| HOST_WIDE_INT bias = 1; |
| bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1); |
| add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0)); |
| if (CONST_INT_P (XEXP (rtl, 1))) |
| op1 = int_loc_descriptor ((unsigned HOST_WIDE_INT) bias |
| + INTVAL (XEXP (rtl, 1))); |
| else |
| add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst, |
| bias, 0)); |
| } |
| return compare_loc_descriptor (op, op0, op1); |
| } |
| |
| /* Return location descriptor for {U,S}{MIN,MAX}. */ |
| |
| static dw_loc_descr_ref |
| minmax_loc_descriptor (rtx rtl, machine_mode mode, |
| machine_mode mem_mode) |
| { |
| enum dwarf_location_atom op; |
| dw_loc_descr_ref op0, op1, ret; |
| dw_loc_descr_ref bra_node, drop_node; |
| |
| scalar_int_mode int_mode; |
| if (dwarf_strict |
| && dwarf_version < 5 |
| && (!is_a <scalar_int_mode> (mode, &int_mode) |
| || GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)) |
| return NULL; |
| |
| op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| |
| if (op0 == NULL || op1 == NULL) |
| return NULL; |
| |
| add_loc_descr (&op0, new_loc_descr (DW_OP_dup, 0, 0)); |
| add_loc_descr (&op1, new_loc_descr (DW_OP_swap, 0, 0)); |
| add_loc_descr (&op1, new_loc_descr (DW_OP_over, 0, 0)); |
| if (GET_CODE (rtl) == UMIN || GET_CODE (rtl) == UMAX) |
| { |
| /* Checked by the caller. */ |
| int_mode = as_a <scalar_int_mode> (mode); |
| if (GET_MODE_SIZE (int_mode) < DWARF2_ADDR_SIZE) |
| { |
| HOST_WIDE_INT mask = GET_MODE_MASK (int_mode); |
| add_loc_descr (&op0, int_loc_descriptor (mask)); |
| add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0)); |
| add_loc_descr (&op1, int_loc_descriptor (mask)); |
| add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0)); |
| } |
| else if (GET_MODE_SIZE (int_mode) == DWARF2_ADDR_SIZE) |
| { |
| HOST_WIDE_INT bias = 1; |
| bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1); |
| add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0)); |
| add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst, bias, 0)); |
| } |
| } |
| else if (is_a <scalar_int_mode> (mode, &int_mode) |
| && GET_MODE_SIZE (int_mode) < DWARF2_ADDR_SIZE) |
| { |
| int shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (int_mode)) * BITS_PER_UNIT; |
| add_loc_descr (&op0, int_loc_descriptor (shift)); |
| add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0)); |
| add_loc_descr (&op1, int_loc_descriptor (shift)); |
| add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0)); |
| } |
| else if (is_a <scalar_int_mode> (mode, &int_mode) |
| && GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE) |
| { |
| dw_die_ref type_die = base_type_for_mode (int_mode, 0); |
| dw_loc_descr_ref cvt; |
| if (type_die == NULL) |
| return NULL; |
| cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0); |
| cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref; |
| cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die; |
| cvt->dw_loc_oprnd1.v.val_die_ref.external = 0; |
| add_loc_descr (&op0, cvt); |
| cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0); |
| cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref; |
| cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die; |
| cvt->dw_loc_oprnd1.v.val_die_ref.external = 0; |
| add_loc_descr (&op1, cvt); |
| } |
| |
| if (GET_CODE (rtl) == SMIN || GET_CODE (rtl) == UMIN) |
| op = DW_OP_lt; |
| else |
| op = DW_OP_gt; |
| ret = op0; |
| add_loc_descr (&ret, op1); |
| add_loc_descr (&ret, new_loc_descr (op, 0, 0)); |
| bra_node = new_loc_descr (DW_OP_bra, 0, 0); |
| add_loc_descr (&ret, bra_node); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0)); |
| drop_node = new_loc_descr (DW_OP_drop, 0, 0); |
| add_loc_descr (&ret, drop_node); |
| bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc; |
| bra_node->dw_loc_oprnd1.v.val_loc = drop_node; |
| if ((GET_CODE (rtl) == SMIN || GET_CODE (rtl) == SMAX) |
| && is_a <scalar_int_mode> (mode, &int_mode) |
| && GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE) |
| ret = convert_descriptor_to_mode (int_mode, ret); |
| return ret; |
| } |
| |
| /* Helper function for mem_loc_descriptor. Perform OP binary op, |
| but after converting arguments to type_die, afterwards |
| convert back to unsigned. */ |
| |
| static dw_loc_descr_ref |
| typed_binop (enum dwarf_location_atom op, rtx rtl, dw_die_ref type_die, |
| scalar_int_mode mode, machine_mode mem_mode) |
| { |
| dw_loc_descr_ref cvt, op0, op1; |
| |
| if (type_die == NULL) |
| return NULL; |
| op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| if (op0 == NULL || op1 == NULL) |
| return NULL; |
| cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0); |
| cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref; |
| cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die; |
| cvt->dw_loc_oprnd1.v.val_die_ref.external = 0; |
| add_loc_descr (&op0, cvt); |
| cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0); |
| cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref; |
| cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die; |
| cvt->dw_loc_oprnd1.v.val_die_ref.external = 0; |
| add_loc_descr (&op1, cvt); |
| add_loc_descr (&op0, op1); |
| add_loc_descr (&op0, new_loc_descr (op, 0, 0)); |
| return convert_descriptor_to_mode (mode, op0); |
| } |
| |
| /* CLZ (where constV is CLZ_DEFINED_VALUE_AT_ZERO computed value, |
| const0 is DW_OP_lit0 or corresponding typed constant, |
| const1 is DW_OP_lit1 or corresponding typed constant |
| and constMSB is constant with just the MSB bit set |
| for the mode): |
| DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4> |
| L1: const0 DW_OP_swap |
| L2: DW_OP_dup constMSB DW_OP_and DW_OP_bra <L3> const1 DW_OP_shl |
| DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2> |
| L3: DW_OP_drop |
| L4: DW_OP_nop |
| |
| CTZ is similar: |
| DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4> |
| L1: const0 DW_OP_swap |
| L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr |
| DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2> |
| L3: DW_OP_drop |
| L4: DW_OP_nop |
| |
| FFS is similar: |
| DW_OP_dup DW_OP_bra <L1> DW_OP_drop const0 DW_OP_skip <L4> |
| L1: const1 DW_OP_swap |
| L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr |
| DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2> |
| L3: DW_OP_drop |
| L4: DW_OP_nop */ |
| |
| static dw_loc_descr_ref |
| clz_loc_descriptor (rtx rtl, scalar_int_mode mode, |
| machine_mode mem_mode) |
| { |
| dw_loc_descr_ref op0, ret, tmp; |
| HOST_WIDE_INT valv; |
| dw_loc_descr_ref l1jump, l1label; |
| dw_loc_descr_ref l2jump, l2label; |
| dw_loc_descr_ref l3jump, l3label; |
| dw_loc_descr_ref l4jump, l4label; |
| rtx msb; |
| |
| if (GET_MODE (XEXP (rtl, 0)) != mode) |
| return NULL; |
| |
| op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| if (op0 == NULL) |
| return NULL; |
| ret = op0; |
| if (GET_CODE (rtl) == CLZ) |
| { |
| if (!CLZ_DEFINED_VALUE_AT_ZERO (mode, valv)) |
| valv = GET_MODE_BITSIZE (mode); |
| } |
| else if (GET_CODE (rtl) == FFS) |
| valv = 0; |
| else if (!CTZ_DEFINED_VALUE_AT_ZERO (mode, valv)) |
| valv = GET_MODE_BITSIZE (mode); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0)); |
| l1jump = new_loc_descr (DW_OP_bra, 0, 0); |
| add_loc_descr (&ret, l1jump); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0)); |
| tmp = mem_loc_descriptor (GEN_INT (valv), mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| if (tmp == NULL) |
| return NULL; |
| add_loc_descr (&ret, tmp); |
| l4jump = new_loc_descr (DW_OP_skip, 0, 0); |
| add_loc_descr (&ret, l4jump); |
| l1label = mem_loc_descriptor (GET_CODE (rtl) == FFS |
| ? const1_rtx : const0_rtx, |
| mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| if (l1label == NULL) |
| return NULL; |
| add_loc_descr (&ret, l1label); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0)); |
| l2label = new_loc_descr (DW_OP_dup, 0, 0); |
| add_loc_descr (&ret, l2label); |
| if (GET_CODE (rtl) != CLZ) |
| msb = const1_rtx; |
| else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT) |
| msb = GEN_INT (HOST_WIDE_INT_1U |
| << (GET_MODE_BITSIZE (mode) - 1)); |
| else |
| msb = immed_wide_int_const |
| (wi::set_bit_in_zero (GET_MODE_PRECISION (mode) - 1, |
| GET_MODE_PRECISION (mode)), mode); |
| if (GET_CODE (msb) == CONST_INT && INTVAL (msb) < 0) |
| tmp = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32 |
| ? DW_OP_const4u : HOST_BITS_PER_WIDE_INT == 64 |
| ? DW_OP_const8u : DW_OP_constu, INTVAL (msb), 0); |
| else |
| tmp = mem_loc_descriptor (msb, mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| if (tmp == NULL) |
| return NULL; |
| add_loc_descr (&ret, tmp); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0)); |
| l3jump = new_loc_descr (DW_OP_bra, 0, 0); |
| add_loc_descr (&ret, l3jump); |
| tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| if (tmp == NULL) |
| return NULL; |
| add_loc_descr (&ret, tmp); |
| add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == CLZ |
| ? DW_OP_shl : DW_OP_shr, 0, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, 1, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0)); |
| l2jump = new_loc_descr (DW_OP_skip, 0, 0); |
| add_loc_descr (&ret, l2jump); |
| l3label = new_loc_descr (DW_OP_drop, 0, 0); |
| add_loc_descr (&ret, l3label); |
| l4label = new_loc_descr (DW_OP_nop, 0, 0); |
| add_loc_descr (&ret, l4label); |
| l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc; |
| l1jump->dw_loc_oprnd1.v.val_loc = l1label; |
| l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc; |
| l2jump->dw_loc_oprnd1.v.val_loc = l2label; |
| l3jump->dw_loc_oprnd1.val_class = dw_val_class_loc; |
| l3jump->dw_loc_oprnd1.v.val_loc = l3label; |
| l4jump->dw_loc_oprnd1.val_class = dw_val_class_loc; |
| l4jump->dw_loc_oprnd1.v.val_loc = l4label; |
| return ret; |
| } |
| |
| /* POPCOUNT (const0 is DW_OP_lit0 or corresponding typed constant, |
| const1 is DW_OP_lit1 or corresponding typed constant): |
| const0 DW_OP_swap |
| L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and |
| DW_OP_plus DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1> |
| L2: DW_OP_drop |
| |
| PARITY is similar: |
| L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and |
| DW_OP_xor DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1> |
| L2: DW_OP_drop */ |
| |
| static dw_loc_descr_ref |
| popcount_loc_descriptor (rtx rtl, scalar_int_mode mode, |
| machine_mode mem_mode) |
| { |
| dw_loc_descr_ref op0, ret, tmp; |
| dw_loc_descr_ref l1jump, l1label; |
| dw_loc_descr_ref l2jump, l2label; |
| |
| if (GET_MODE (XEXP (rtl, 0)) != mode) |
| return NULL; |
| |
| op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| if (op0 == NULL) |
| return NULL; |
| ret = op0; |
| tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| if (tmp == NULL) |
| return NULL; |
| add_loc_descr (&ret, tmp); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0)); |
| l1label = new_loc_descr (DW_OP_dup, 0, 0); |
| add_loc_descr (&ret, l1label); |
| l2jump = new_loc_descr (DW_OP_bra, 0, 0); |
| add_loc_descr (&ret, l2jump); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0)); |
| tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| if (tmp == NULL) |
| return NULL; |
| add_loc_descr (&ret, tmp); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0)); |
| add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == POPCOUNT |
| ? DW_OP_plus : DW_OP_xor, 0, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0)); |
| tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| add_loc_descr (&ret, tmp); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0)); |
| l1jump = new_loc_descr (DW_OP_skip, 0, 0); |
| add_loc_descr (&ret, l1jump); |
| l2label = new_loc_descr (DW_OP_drop, 0, 0); |
| add_loc_descr (&ret, l2label); |
| l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc; |
| l1jump->dw_loc_oprnd1.v.val_loc = l1label; |
| l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc; |
| l2jump->dw_loc_oprnd1.v.val_loc = l2label; |
| return ret; |
| } |
| |
| /* BSWAP (constS is initial shift count, either 56 or 24): |
| constS const0 |
| L1: DW_OP_pick <2> constS DW_OP_pick <3> DW_OP_minus DW_OP_shr |
| const255 DW_OP_and DW_OP_pick <2> DW_OP_shl DW_OP_or |
| DW_OP_swap DW_OP_dup const0 DW_OP_eq DW_OP_bra <L2> const8 |
| DW_OP_minus DW_OP_swap DW_OP_skip <L1> |
| L2: DW_OP_drop DW_OP_swap DW_OP_drop */ |
| |
| static dw_loc_descr_ref |
| bswap_loc_descriptor (rtx rtl, scalar_int_mode mode, |
| machine_mode mem_mode) |
| { |
| dw_loc_descr_ref op0, ret, tmp; |
| dw_loc_descr_ref l1jump, l1label; |
| dw_loc_descr_ref l2jump, l2label; |
| |
| if (BITS_PER_UNIT != 8 |
| || (GET_MODE_BITSIZE (mode) != 32 |
| && GET_MODE_BITSIZE (mode) != 64)) |
| return NULL; |
| |
| op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| if (op0 == NULL) |
| return NULL; |
| |
| ret = op0; |
| tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8), |
| mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| if (tmp == NULL) |
| return NULL; |
| add_loc_descr (&ret, tmp); |
| tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| if (tmp == NULL) |
| return NULL; |
| add_loc_descr (&ret, tmp); |
| l1label = new_loc_descr (DW_OP_pick, 2, 0); |
| add_loc_descr (&ret, l1label); |
| tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8), |
| mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| add_loc_descr (&ret, tmp); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 3, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0)); |
| tmp = mem_loc_descriptor (GEN_INT (255), mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| if (tmp == NULL) |
| return NULL; |
| add_loc_descr (&ret, tmp); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 2, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0)); |
| tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| add_loc_descr (&ret, tmp); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_eq, 0, 0)); |
| l2jump = new_loc_descr (DW_OP_bra, 0, 0); |
| add_loc_descr (&ret, l2jump); |
| tmp = mem_loc_descriptor (GEN_INT (8), mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| add_loc_descr (&ret, tmp); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0)); |
| l1jump = new_loc_descr (DW_OP_skip, 0, 0); |
| add_loc_descr (&ret, l1jump); |
| l2label = new_loc_descr (DW_OP_drop, 0, 0); |
| add_loc_descr (&ret, l2label); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0)); |
| add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0)); |
| l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc; |
| l1jump->dw_loc_oprnd1.v.val_loc = l1label; |
| l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc; |
| l2jump->dw_loc_oprnd1.v.val_loc = l2label; |
| return ret; |
| } |
| |
| /* ROTATE (constMASK is mode mask, BITSIZE is bitsize of mode): |
| DW_OP_over DW_OP_over DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot |
| [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_neg |
| DW_OP_plus_uconst <BITSIZE> DW_OP_shr DW_OP_or |
| |
| ROTATERT is similar: |
| DW_OP_over DW_OP_over DW_OP_neg DW_OP_plus_uconst <BITSIZE> |
| DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot |
| [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_shr DW_OP_or */ |
| |
| static dw_loc_descr_ref |
| rotate_loc_descriptor (rtx rtl, scalar_int_mode mode, |
| machine_mode mem_mode) |
| { |
| rtx rtlop1 = XEXP (rtl, 1); |
| dw_loc_descr_ref op0, op1, ret, mask[2] = { NULL, NULL }; |
| int i; |
| |
| if (is_narrower_int_mode (GET_MODE (rtlop1), mode)) |
| rtlop1 = gen_rtx_ZERO_EXTEND (mode, rtlop1); |
| op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| op1 = mem_loc_descriptor (rtlop1, mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| if (op0 == NULL || op1 == NULL) |
| return NULL; |
| if (GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE) |
| for (i = 0; i < 2; i++) |
| { |
| if (GET_MODE_BITSIZE (mode) < HOST_BITS_PER_WIDE_INT) |
| mask[i] = mem_loc_descriptor (GEN_INT (GET_MODE_MASK (mode)), |
| mode, mem_mode, |
| VAR_INIT_STATUS_INITIALIZED); |
| else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT) |
| mask[i] = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32 |
| ? DW_OP_const4u |
| : HOST_BITS_PER_WIDE_INT == 64 |
| ? DW_OP_const8u : DW_OP_constu, |
| GET_MODE_MASK (mode), 0); |
| else |
| mask[i] = NULL; |
|