blob: f0b4b0b93cae68d176fe101f25707a437a570d5c [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ P R A G --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2021, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Casing; use Casing;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Ch11; use Exp_Ch11;
with Exp_Util; use Exp_Util;
with Expander; use Expander;
with Inline; use Inline;
with Lib; use Lib;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Ch8; use Sem_Ch8;
with Sem_Prag; use Sem_Prag;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Sinput; use Sinput;
with Snames; use Snames;
with Stringt; use Stringt;
with Stand; use Stand;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with Validsw; use Validsw;
package body Exp_Prag is
-----------------------
-- Local Subprograms --
-----------------------
function Arg_N (N : Node_Id; Arg_Number : Positive) return Node_Id;
-- Obtain specified pragma argument expression
procedure Expand_Pragma_Abort_Defer (N : Node_Id);
procedure Expand_Pragma_Check (N : Node_Id);
procedure Expand_Pragma_Common_Object (N : Node_Id);
procedure Expand_Pragma_CUDA_Execute (N : Node_Id);
procedure Expand_Pragma_Import_Or_Interface (N : Node_Id);
procedure Expand_Pragma_Inspection_Point (N : Node_Id);
procedure Expand_Pragma_Interrupt_Priority (N : Node_Id);
procedure Expand_Pragma_Loop_Variant (N : Node_Id);
procedure Expand_Pragma_Psect_Object (N : Node_Id);
procedure Expand_Pragma_Relative_Deadline (N : Node_Id);
procedure Expand_Pragma_Suppress_Initialization (N : Node_Id);
procedure Undo_Initialization (Def_Id : Entity_Id; N : Node_Id);
-- This procedure is used to undo initialization already done for Def_Id,
-- which is always an E_Variable, in response to the occurrence of the
-- pragma N, a pragma Interface, Import, or Suppress_Initialization. In all
-- these cases we want no initialization to occur, but we have already done
-- the initialization by the time we see the pragma, so we have to undo it.
-----------
-- Arg_N --
-----------
function Arg_N (N : Node_Id; Arg_Number : Positive) return Node_Id is
Arg : Node_Id := First (Pragma_Argument_Associations (N));
begin
if No (Arg) then
return Empty;
end if;
for J in 2 .. Arg_Number loop
Next (Arg);
if No (Arg) then
return Empty;
end if;
end loop;
if Present (Arg)
and then Nkind (Arg) = N_Pragma_Argument_Association
then
return Expression (Arg);
else
return Arg;
end if;
end Arg_N;
---------------------
-- Expand_N_Pragma --
---------------------
procedure Expand_N_Pragma (N : Node_Id) is
Pname : constant Name_Id := Pragma_Name (N);
Prag_Id : constant Pragma_Id := Get_Pragma_Id (Pname);
begin
-- Suppress the expansion of an ignored assertion pragma. Such a pragma
-- should not be transformed into a null statment because:
--
-- * The pragma may be part of the rep item chain of a type, in which
-- case rewriting it will destroy the chain.
--
-- * The analysis of the pragma may involve two parts (see routines
-- Analyze_xxx_In_Decl_Part). The second part of the analysis will
-- not happen if the pragma is rewritten.
if Assertion_Expression_Pragma (Prag_Id) and then Is_Ignored (N) then
return;
-- Rewrite the pragma into a null statement when it is ignored using
-- pragma Ignore_Pragma, or denotes Default_Scalar_Storage_Order and
-- compilation switch -gnatI is in effect.
elsif Should_Ignore_Pragma_Sem (N)
or else (Prag_Id = Pragma_Default_Scalar_Storage_Order
and then Ignore_Rep_Clauses)
then
Rewrite (N, Make_Null_Statement (Sloc (N)));
return;
end if;
case Prag_Id is
-- Pragmas requiring special expander action
when Pragma_Abort_Defer =>
Expand_Pragma_Abort_Defer (N);
when Pragma_Check =>
Expand_Pragma_Check (N);
when Pragma_Common_Object =>
Expand_Pragma_Common_Object (N);
when Pragma_CUDA_Execute =>
Expand_Pragma_CUDA_Execute (N);
when Pragma_Import =>
Expand_Pragma_Import_Or_Interface (N);
when Pragma_Inspection_Point =>
Expand_Pragma_Inspection_Point (N);
when Pragma_Interface =>
Expand_Pragma_Import_Or_Interface (N);
when Pragma_Interrupt_Priority =>
Expand_Pragma_Interrupt_Priority (N);
when Pragma_Loop_Variant =>
Expand_Pragma_Loop_Variant (N);
when Pragma_Psect_Object =>
Expand_Pragma_Psect_Object (N);
when Pragma_Relative_Deadline =>
Expand_Pragma_Relative_Deadline (N);
when Pragma_Suppress_Initialization =>
Expand_Pragma_Suppress_Initialization (N);
-- All other pragmas need no expander action (includes
-- Unknown_Pragma).
when others => null;
end case;
end Expand_N_Pragma;
-------------------------------
-- Expand_Pragma_Abort_Defer --
-------------------------------
-- An Abort_Defer pragma appears as the first statement in a handled
-- statement sequence (right after the begin). It defers aborts for
-- the entire statement sequence, but not for any declarations or
-- handlers (if any) associated with this statement sequence.
-- The transformation is to transform
-- pragma Abort_Defer;
-- statements;
-- into
-- begin
-- Abort_Defer.all;
-- statements
-- exception
-- when all others =>
-- Abort_Undefer.all;
-- raise;
-- at end
-- Abort_Undefer_Direct;
-- end;
procedure Expand_Pragma_Abort_Defer (N : Node_Id) is
begin
-- Abort_Defer has no useful effect if Abort's are not allowed
if not Abort_Allowed then
return;
end if;
-- Normal case where abort is possible
declare
Loc : constant Source_Ptr := Sloc (N);
Stm : Node_Id;
Stms : List_Id;
HSS : Node_Id;
Blk : constant Entity_Id :=
New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
AUD : constant Entity_Id := RTE (RE_Abort_Undefer_Direct);
begin
Stms := New_List (Build_Runtime_Call (Loc, RE_Abort_Defer));
loop
Stm := Remove_Next (N);
exit when No (Stm);
Append (Stm, Stms);
end loop;
HSS :=
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stms,
At_End_Proc => New_Occurrence_Of (AUD, Loc));
-- Present the Abort_Undefer_Direct function to the backend so that
-- it can inline the call to the function.
Add_Inlined_Body (AUD, N);
Rewrite (N,
Make_Block_Statement (Loc, Handled_Statement_Sequence => HSS));
Set_Scope (Blk, Current_Scope);
Set_Etype (Blk, Standard_Void_Type);
Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));
Expand_At_End_Handler (HSS, Blk);
Analyze (N);
end;
end Expand_Pragma_Abort_Defer;
--------------------------
-- Expand_Pragma_Check --
--------------------------
procedure Expand_Pragma_Check (N : Node_Id) is
Cond : constant Node_Id := Arg_N (N, 2);
Nam : constant Name_Id := Chars (Arg_N (N, 1));
Msg : Node_Id;
Loc : constant Source_Ptr := Sloc (First_Node (Cond));
-- Source location used in the case of a failed assertion: point to the
-- failing condition, not Loc. Note that the source location of the
-- expression is not usually the best choice here, because it points to
-- the location of the topmost tree node, which may be an operator in
-- the middle of the source text of the expression. For example, it gets
-- located on the last AND keyword in a chain of boolean expressiond
-- AND'ed together. It is best to put the message on the first character
-- of the condition, which is the effect of the First_Node call here.
-- This source location is used to build the default exception message,
-- and also as the sloc of the call to the runtime subprogram raising
-- Assert_Failure, so that coverage analysis tools can relate the
-- call to the failed check.
procedure Replace_Discriminals_Of_Protected_Op (Expr : Node_Id);
-- Discriminants of the enclosing protected object may be referenced
-- in the expression of a precondition of a protected operation.
-- In the body of the operation these references must be replaced by
-- the discriminal created for them, which are renamings of the
-- discriminants of the object that is the target of the operation.
-- This replacement is done by visibility when the references appear
-- in the subprogram body, but in the case of a condition which appears
-- on the specification of the subprogram it has be done separately
-- because the condition has been replaced by a Check pragma and
-- analyzed earlier, before the creation of the discriminal renaming
-- declarations that are added to the subprogram body.
------------------------------------------
-- Replace_Discriminals_Of_Protected_Op --
------------------------------------------
procedure Replace_Discriminals_Of_Protected_Op (Expr : Node_Id) is
function Find_Corresponding_Discriminal
(E : Entity_Id) return Entity_Id;
-- Find the local entity that renames a discriminant of the enclosing
-- protected type, and has a matching name.
function Replace_Discr_Ref (N : Node_Id) return Traverse_Result;
-- Replace a reference to a discriminant of the original protected
-- type by the local renaming declaration of the discriminant of
-- the target object.
------------------------------------
-- Find_Corresponding_Discriminal --
------------------------------------
function Find_Corresponding_Discriminal
(E : Entity_Id) return Entity_Id
is
R : Entity_Id;
begin
R := First_Entity (Current_Scope);
while Present (R) loop
if Nkind (Parent (R)) = N_Object_Renaming_Declaration
and then Present (Discriminal_Link (R))
and then Chars (Discriminal_Link (R)) = Chars (E)
then
return R;
end if;
Next_Entity (R);
end loop;
return Empty;
end Find_Corresponding_Discriminal;
-----------------------
-- Replace_Discr_Ref --
-----------------------
function Replace_Discr_Ref (N : Node_Id) return Traverse_Result is
R : Entity_Id;
begin
if Is_Entity_Name (N)
and then Present (Discriminal_Link (Entity (N)))
then
R := Find_Corresponding_Discriminal (Entity (N));
Rewrite (N, New_Occurrence_Of (R, Sloc (N)));
end if;
return OK;
end Replace_Discr_Ref;
procedure Replace_Discriminant_References is
new Traverse_Proc (Replace_Discr_Ref);
-- Start of processing for Replace_Discriminals_Of_Protected_Op
begin
Replace_Discriminant_References (Expr);
end Replace_Discriminals_Of_Protected_Op;
-- Start of processing for Expand_Pragma_Check
begin
-- Nothing to do if pragma is ignored
if Is_Ignored (N) then
return;
end if;
-- Since this check is active, rewrite the pragma into a corresponding
-- if statement, and then analyze the statement.
-- The normal case expansion transforms:
-- pragma Check (name, condition [,message]);
-- into
-- if not condition then
-- System.Assertions.Raise_Assert_Failure (Str);
-- end if;
-- where Str is the message if one is present, or the default of
-- name failed at file:line if no message is given (the "name failed
-- at" is omitted for name = Assertion, since it is redundant, given
-- that the name of the exception is Assert_Failure.)
-- Also, instead of "XXX failed at", we generate slightly
-- different messages for some of the contract assertions (see
-- code below for details).
-- An alternative expansion is used when the No_Exception_Propagation
-- restriction is active and there is a local Assert_Failure handler.
-- This is not a common combination of circumstances, but it occurs in
-- the context of Aunit and the zero footprint profile. In this case we
-- generate:
-- if not condition then
-- raise Assert_Failure;
-- end if;
-- This will then be transformed into a goto, and the local handler will
-- be able to handle the assert error (which would not be the case if a
-- call is made to the Raise_Assert_Failure procedure).
-- We also generate the direct raise if the Suppress_Exception_Locations
-- is active, since we don't want to generate messages in this case.
-- Note that the reason we do not always generate a direct raise is that
-- the form in which the procedure is called allows for more efficient
-- breakpointing of assertion errors.
-- Generate the appropriate if statement. Note that we consider this to
-- be an explicit conditional in the source, not an implicit if, so we
-- do not call Make_Implicit_If_Statement. Note also that we wrap the
-- raise statement in a block statement so that, if the condition is
-- evaluated at compile time to False, then the rewriting of the if
-- statement will not involve the raise but the block statement, and
-- thus not leave a dangling reference to the raise statement in the
-- Local_Raise_Statements list of the handler.
-- Case where we generate a direct raise
if ((Debug_Flag_Dot_G
or else Restriction_Active (No_Exception_Propagation))
and then Present (Find_Local_Handler (RTE (RE_Assert_Failure), N)))
or else (Opt.Exception_Locations_Suppressed and then No (Arg_N (N, 3)))
then
Rewrite (N,
Make_If_Statement (Loc,
Condition => Make_Op_Not (Loc, Right_Opnd => Cond),
Then_Statements => New_List (
Make_Block_Statement (Loc,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Raise_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Assert_Failure),
Loc))))))));
-- Case where we call the procedure
else
-- If we have a message given, use it
if Present (Arg_N (N, 3)) then
Msg := Get_Pragma_Arg (Arg_N (N, 3));
-- Here we have no string, so prepare one
else
declare
Loc_Str : constant String := Build_Location_String (Loc);
begin
Name_Len := 0;
-- For Assert, we just use the location
if Nam = Name_Assert then
null;
-- For predicate, we generate the string "predicate failed at
-- yyy". We prefer all lower case for predicate.
elsif Nam = Name_Predicate then
Add_Str_To_Name_Buffer ("predicate failed at ");
-- For special case of Precondition/Postcondition the string is
-- "failed xx from yy" where xx is precondition/postcondition
-- in all lower case. The reason for this different wording is
-- that the failure is not at the point of occurrence of the
-- pragma, unlike the other Check cases.
elsif Nam in Name_Precondition | Name_Postcondition then
Get_Name_String (Nam);
Insert_Str_In_Name_Buffer ("failed ", 1);
Add_Str_To_Name_Buffer (" from ");
-- For special case of Invariant, the string is "failed
-- invariant from yy", to be consistent with the string that is
-- generated for the aspect case (the code later on checks for
-- this specific string to modify it in some cases, so this is
-- functionally important).
elsif Nam = Name_Invariant then
Add_Str_To_Name_Buffer ("failed invariant from ");
-- For all other checks, the string is "xxx failed at yyy"
-- where xxx is the check name with appropriate casing.
else
Get_Name_String (Nam);
Set_Casing
(Identifier_Casing (Source_Index (Current_Sem_Unit)));
Add_Str_To_Name_Buffer (" failed at ");
end if;
-- In all cases, add location string
Add_Str_To_Name_Buffer (Loc_Str);
-- Build the message
Msg := Make_String_Literal (Loc, Name_Buffer (1 .. Name_Len));
end;
end if;
-- For a precondition, replace references to discriminants of a
-- protected type with the local discriminals.
if Is_Protected_Type (Scope (Current_Scope))
and then Has_Discriminants (Scope (Current_Scope))
and then From_Aspect_Specification (N)
then
Replace_Discriminals_Of_Protected_Op (Cond);
end if;
-- Now rewrite as an if statement
Rewrite (N,
Make_If_Statement (Loc,
Condition => Make_Op_Not (Loc, Right_Opnd => Cond),
Then_Statements => New_List (
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Raise_Assert_Failure), Loc),
Parameter_Associations => New_List (Relocate_Node (Msg))))));
end if;
Analyze (N);
-- If new condition is always false, give a warning
if Warn_On_Assertion_Failure
and then Nkind (N) = N_Procedure_Call_Statement
and then Is_RTE (Entity (Name (N)), RE_Raise_Assert_Failure)
then
-- If original condition was a Standard.False, we assume that this is
-- indeed intended to raise assert error and no warning is required.
if Is_Entity_Name (Original_Node (Cond))
and then Entity (Original_Node (Cond)) = Standard_False
then
null;
elsif Nam = Name_Assert then
Error_Msg_N ("?.a?assertion will fail at run time", N);
else
Error_Msg_N ("?.a?check will fail at run time", N);
end if;
end if;
end Expand_Pragma_Check;
---------------------------------
-- Expand_Pragma_Common_Object --
---------------------------------
-- Use a machine attribute to replicate semantic effect in DEC Ada
-- pragma Machine_Attribute (intern_name, "common_object", extern_name);
-- For now we do nothing with the size attribute ???
-- Note: Psect_Object shares this processing
procedure Expand_Pragma_Common_Object (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Internal : constant Node_Id := Arg_N (N, 1);
External : constant Node_Id := Arg_N (N, 2);
Psect : Node_Id;
-- Psect value upper cased as string literal
Iloc : constant Source_Ptr := Sloc (Internal);
Eloc : constant Source_Ptr := Sloc (External);
Ploc : Source_Ptr;
begin
-- Acquire Psect value and fold to upper case
if Present (External) then
if Nkind (External) = N_String_Literal then
String_To_Name_Buffer (Strval (External));
else
Get_Name_String (Chars (External));
end if;
Set_All_Upper_Case;
Psect :=
Make_String_Literal (Eloc, Strval => String_From_Name_Buffer);
else
Get_Name_String (Chars (Internal));
Set_All_Upper_Case;
Psect :=
Make_String_Literal (Iloc, Strval => String_From_Name_Buffer);
end if;
Ploc := Sloc (Psect);
-- Insert the pragma
Insert_After_And_Analyze (N,
Make_Pragma (Loc,
Chars => Name_Machine_Attribute,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Iloc,
Expression => New_Copy_Tree (Internal)),
Make_Pragma_Argument_Association (Eloc,
Expression =>
Make_String_Literal (Sloc => Ploc, Strval => "common_object")),
Make_Pragma_Argument_Association (Ploc,
Expression => New_Copy_Tree (Psect)))));
end Expand_Pragma_Common_Object;
--------------------------------
-- Expand_Pragma_CUDA_Execute --
--------------------------------
-- Pragma CUDA_Execute is expanded in the following manner:
-- Original Code
-- pragma CUDA_Execute (My_Proc (X, Y), Blocks, Grids, Mem, Stream)
-- Expanded Code
-- declare
-- Blocks_Id : CUDA.Vector_Types.Dim3 := Blocks;
-- Grids_Id : CUDA.Vector_Types.Dim3 := Grids;
-- Mem_Id : Integer := <Mem or 0>;
-- Stream_Id : CUDA.Driver_Types.Stream_T := <Stream or null>;
-- X_Id : <Type of X> := X;
-- Y_Id : <Type of Y> := Y;
-- Arg_Id : Array (1..2) of System.Address :=
-- (X'Address,_Id Y'Address);_Id
-- begin
-- CUDA.Internal.Push_Call_Configuration (
-- Grids_Id,
-- Blocks_Id,
-- Mem_Id,
-- Stream_Id);
-- CUDA.Internal.Pop_Call_Configuration (
-- Grids_Id'address,
-- Blocks_Id'address,
-- Mem_Id'address,
-- Stream_Id'address),
-- CUDA.Runtime_Api.Launch_Kernel (
-- My_Proc'Address,
-- Blocks_Id,
-- Grids_Id,
-- Arg_Id'Address,
-- Mem_Id,
-- Stream_Id);
-- end;
procedure Expand_Pragma_CUDA_Execute (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
procedure Append_Copies
(Params : List_Id;
Decls : List_Id;
Copies : Elist_Id);
-- For each parameter in list Params, create an object declaration of
-- the followinng form:
--
-- Copy_Id : Param_Typ := Param_Val;
--
-- Param_Typ is the type of the parameter. Param_Val is the initial
-- value of the parameter. The declarations are stored in Decls, the
-- entities of the new objects are collected in list Copies.
function Build_Dim3_Declaration
(Decl_Id : Entity_Id;
Init_Val : Node_Id) return Node_Id;
-- Build an object declaration of the form
--
-- Decl_Id : CUDA.Internal.Dim3 := Val;
--
-- Val depends on the nature of Init_Val, as follows:
--
-- * If Init_Val is of type CUDA.Vector_Types.Dim3, then Val has the
-- following form:
--
-- (Interfaces.C.Unsigned (Val.X),
-- Interfaces.C.Unsigned (Val.Y),
-- Interfaces.C.Unsigned (Val.Z))
--
-- * If Init_Val is a single Integer, Val has the following form:
--
-- (Interfaces.C.Unsigned (Init_Val),
-- Interfaces.C.Unsigned (1),
-- Interfaces.C.Unsigned (1))
--
-- * If Init_Val is an aggregate of three values, Val has the
-- following form:
--
-- (Interfaces.C.Unsigned (Val_1),
-- Interfaces.C.Unsigned (Val_2),
-- Interfaces.C.Unsigned (Val_3))
function Build_Kernel_Args_Declaration
(Kernel_Arg : Entity_Id;
Var_Ids : Elist_Id) return Node_Id;
-- Given a list of variables, return an object declaration of the
-- following form:
--
-- Kernel_Arg : ... := (Var_1'Address, ..., Var_N'Address);
function Build_Launch_Kernel_Call
(Proc : Entity_Id;
Grid_Dims : Entity_Id;
Block_Dims : Entity_Id;
Kernel_Arg : Entity_Id;
Memory : Entity_Id;
Stream : Entity_Id) return Node_Id;
-- Builds and returns a call to CUDA.Launch_Kernel using the given
-- arguments. Proc is the entity of the procedure passed to the
-- CUDA_Execute pragma. Grid_Dims and Block_Dims are entities of the
-- generated declarations that hold the kernel's dimensions. Args is the
-- entity of the temporary array that holds the arguments of the kernel.
-- Memory and Stream are the entities of the temporaries that hold the
-- fourth and fith arguments of CUDA_Execute or their default values.
function Build_Shared_Memory_Declaration
(Decl_Id : Entity_Id;
Init_Val : Node_Id) return Node_Id;
-- Builds a declaration the Defining_Identifier of which is Decl_Id, the
-- type of which is inferred from CUDA.Internal.Launch_Kernel and the
-- value of which is Init_Val if present or null if not.
function Build_Simple_Declaration_With_Default
(Decl_Id : Entity_Id;
Init_Val : Node_Id;
Typ : Node_Id;
Default_Val : Node_Id) return Node_Id;
-- Build a declaration the Defining_Identifier of which is Decl_Id, the
-- Object_Definition of which is Typ, the value of which is Init_Val if
-- present or Default otherwise.
function Build_Stream_Declaration
(Decl_Id : Entity_Id;
Init_Val : Node_Id) return Node_Id;
-- Build a declaration the Defining_Identifier of which is Decl_Id, the
-- type of which is Integer, the value of which is Init_Val if present
-- and 0 otherwise.
function Etype_Or_Dim3 (N : Node_Id) return Node_Id;
-- If N is an aggregate whose type is unknown, return a new occurrence
-- of the public Dim3 type. Otherwise, return a new occurrence of N's
-- type.
function Get_Nth_Arg_Type
(Subprogram : Entity_Id;
N : Positive) return Entity_Id;
-- Returns the type of the Nth argument of Subprogram
function To_Addresses (Elmts : Elist_Id) return List_Id;
-- Returns a new list containing each element of Elmts wrapped in an
-- 'address attribute reference. When passed No_Elist, returns an empty
-- list.
-------------------
-- Append_Copies --
-------------------
procedure Append_Copies
(Params : List_Id;
Decls : List_Id;
Copies : Elist_Id)
is
Copy : Entity_Id;
Param : Node_Id;
Expr : Node_Id;
begin
Param := First (Params);
while Present (Param) loop
Copy := Make_Temporary (Loc, 'C');
if Nkind (Param) = N_Parameter_Association then
Expr := Explicit_Actual_Parameter (Param);
else
Expr := Param;
end if;
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Copy,
Object_Definition => New_Occurrence_Of (Etype (Expr), Loc),
Expression => New_Copy_Tree (Expr)));
Append_Elmt (Copy, Copies);
Next (Param);
end loop;
end Append_Copies;
----------------------------
-- Build_Dim3_Declaration --
----------------------------
function Build_Dim3_Declaration
(Decl_Id : Entity_Id;
Init_Val : Node_Id) return Node_Id
is
-- Expressions for each component of the returned Dim3
Dim_X : Node_Id;
Dim_Y : Node_Id;
Dim_Z : Node_Id;
-- Type of CUDA.Internal.Dim3 - inferred from
-- RE_Push_Call_Configuration to avoid needing changes in GNAT when
-- the CUDA bindings change (this happens frequently).
Internal_Dim3 : constant Entity_Id :=
Get_Nth_Arg_Type (RTE (RE_Push_Call_Configuration), 1);
-- Entities for each component of external and internal Dim3
First_Component : Entity_Id := First_Entity (RTE (RE_Dim3));
Second_Component : Entity_Id := Next_Entity (First_Component);
Third_Component : Entity_Id := Next_Entity (Second_Component);
begin
-- Sem_prag.adb ensured that Init_Val is either a Dim3, an aggregate
-- of three Any_Integers or Any_Integer.
-- If Init_Val is a Dim3, use each of its components
if Etype (Init_Val) = RTE (RE_Dim3) then
Dim_X := Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Entity (Init_Val), Loc),
Selector_Name => New_Occurrence_Of (First_Component, Loc));
Dim_Y := Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Entity (Init_Val), Loc),
Selector_Name => New_Occurrence_Of (Second_Component, Loc));
Dim_Z := Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Entity (Init_Val), Loc),
Selector_Name => New_Occurrence_Of (Third_Component, Loc));
else
-- If Init_Val is an aggregate, use each of its arguments
if Nkind (Init_Val) = N_Aggregate then
Dim_X := First (Expressions (Init_Val));
Dim_Y := Next (Dim_X);
Dim_Z := Next (Dim_Y);
-- Otherwise, we know it is an integer and the rest defaults to 1
else
Dim_X := Init_Val;
Dim_Y := Make_Integer_Literal (Loc, 1);
Dim_Z := Make_Integer_Literal (Loc, 1);
end if;
end if;
First_Component := First_Entity (Internal_Dim3);
Second_Component := Next_Entity (First_Component);
Third_Component := Next_Entity (Second_Component);
-- Finally return the CUDA.Internal.Dim3 declaration with an
-- aggregate initialization expression.
return Make_Object_Declaration (Loc,
Defining_Identifier => Decl_Id,
Object_Definition => New_Occurrence_Of (Internal_Dim3, Loc),
Expression => Make_Aggregate (Loc,
Expressions => New_List (
Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (Etype (First_Component), Loc),
Expression => New_Copy_Tree (Dim_X)),
Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (Etype (Second_Component), Loc),
Expression => New_Copy_Tree (Dim_Y)),
Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (Etype (Third_Component), Loc),
Expression => New_Copy_Tree (Dim_Z)))));
end Build_Dim3_Declaration;
-----------------------------------
-- Build_Kernel_Args_Declaration --
-----------------------------------
function Build_Kernel_Args_Declaration
(Kernel_Arg : Entity_Id;
Var_Ids : Elist_Id) return Node_Id
is
Vals : constant List_Id := To_Addresses (Var_Ids);
begin
return
Make_Object_Declaration (Loc,
Defining_Identifier => Kernel_Arg,
Object_Definition =>
Make_Constrained_Array_Definition (Loc,
Discrete_Subtype_Definitions => New_List (
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound =>
Make_Integer_Literal (Loc, List_Length (Vals)))),
Component_Definition =>
Make_Component_Definition (Loc,
Subtype_Indication =>
New_Occurrence_Of (Etype (RTE (RE_Address)), Loc))),
Expression => Make_Aggregate (Loc, Vals));
end Build_Kernel_Args_Declaration;
-------------------------------
-- Build_Launch_Kernel_Call --
-------------------------------
function Build_Launch_Kernel_Call
(Proc : Entity_Id;
Grid_Dims : Entity_Id;
Block_Dims : Entity_Id;
Kernel_Arg : Entity_Id;
Memory : Entity_Id;
Stream : Entity_Id) return Node_Id is
begin
return
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Launch_Kernel), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Proc, Loc),
Attribute_Name => Name_Address),
New_Occurrence_Of (Grid_Dims, Loc),
New_Occurrence_Of (Block_Dims, Loc),
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Kernel_Arg, Loc),
Attribute_Name => Name_Address),
New_Occurrence_Of (Memory, Loc),
New_Occurrence_Of (Stream, Loc)));
end Build_Launch_Kernel_Call;
-------------------------------------
-- Build_Shared_Memory_Declaration --
-------------------------------------
function Build_Shared_Memory_Declaration
(Decl_Id : Entity_Id;
Init_Val : Node_Id) return Node_Id
is
begin
return Build_Simple_Declaration_With_Default
(Decl_Id => Decl_Id,
Init_Val => Init_Val,
Typ =>
New_Occurrence_Of
(Get_Nth_Arg_Type (RTE (RE_Launch_Kernel), 5), Loc),
Default_Val => Make_Integer_Literal (Loc, 0));
end Build_Shared_Memory_Declaration;
-------------------------------------------
-- Build_Simple_Declaration_With_Default --
-------------------------------------------
function Build_Simple_Declaration_With_Default
(Decl_Id : Entity_Id;
Init_Val : Node_Id;
Typ : Node_Id;
Default_Val : Node_Id) return Node_Id
is
Value : Node_Id := Init_Val;
begin
if No (Value) then
Value := Default_Val;
end if;
return Make_Object_Declaration (Loc,
Defining_Identifier => Decl_Id,
Object_Definition => Typ,
Expression => Value);
end Build_Simple_Declaration_With_Default;
------------------------------
-- Build_Stream_Declaration --
------------------------------
function Build_Stream_Declaration
(Decl_Id : Entity_Id;
Init_Val : Node_Id) return Node_Id
is
begin
return Build_Simple_Declaration_With_Default
(Decl_Id => Decl_Id,
Init_Val => Init_Val,
Typ =>
New_Occurrence_Of
(Get_Nth_Arg_Type (RTE (RE_Launch_Kernel), 6), Loc),
Default_Val => Make_Null (Loc));
end Build_Stream_Declaration;
-------------------
-- Etype_Or_Dim3 --
-------------------
function Etype_Or_Dim3 (N : Node_Id) return Node_Id is
begin
if Nkind (N) = N_Aggregate and then Is_Composite_Type (Etype (N)) then
return New_Occurrence_Of (RTE (RE_Dim3), Sloc (N));
end if;
return New_Occurrence_Of (Etype (N), Loc);
end Etype_Or_Dim3;
----------------------
-- Get_Nth_Arg_Type --
----------------------
function Get_Nth_Arg_Type
(Subprogram : Entity_Id;
N : Positive) return Entity_Id
is
Argument : Entity_Id := First_Entity (Subprogram);
begin
for J in 2 .. N loop
Next_Entity (Argument);
end loop;
return Etype (Argument);
end Get_Nth_Arg_Type;
------------------
-- To_Addresses --
------------------
function To_Addresses (Elmts : Elist_Id) return List_Id is
Result : constant List_Id := New_List;
Elmt : Elmt_Id;
begin
if Elmts = No_Elist then
return Result;
end if;
Elmt := First_Elmt (Elmts);
while Present (Elmt) loop
Append_To (Result,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Node (Elmt), Loc),
Attribute_Name => Name_Address));
Next_Elmt (Elmt);
end loop;
return Result;
end To_Addresses;
-- Local variables
-- Pragma arguments
Procedure_Call : constant Node_Id := Get_Pragma_Arg (Arg_N (N, 1));
Grid_Dimensions : constant Node_Id := Get_Pragma_Arg (Arg_N (N, 2));
Block_Dimensions : constant Node_Id := Get_Pragma_Arg (Arg_N (N, 3));
Shared_Memory : constant Node_Id := Get_Pragma_Arg (Arg_N (N, 4));
CUDA_Stream : constant Node_Id := Get_Pragma_Arg (Arg_N (N, 5));
-- Entities of objects that will be overwritten by calls to cuda runtime
Grids_Id : constant Entity_Id := Make_Temporary (Loc, 'C');
Blocks_Id : constant Entity_Id := Make_Temporary (Loc, 'C');
Memory_Id : constant Entity_Id := Make_Temporary (Loc, 'C');
Stream_Id : constant Entity_Id := Make_Temporary (Loc, 'C');
-- Entities of objects that capture the value of pragma arguments
Temp_Grid : constant Entity_Id := Make_Temporary (Loc, 'C');
Temp_Block : constant Entity_Id := Make_Temporary (Loc, 'C');
-- Declarations for temporary block and grids. These needs to be stored
-- in temporary declarations as the expressions will need to be
-- referenced multiple times but could have side effects.
Temp_Grid_Decl : constant Node_Id := Make_Object_Declaration (Loc,
Defining_Identifier => Temp_Grid,
Object_Definition => Etype_Or_Dim3 (Grid_Dimensions),
Expression => Grid_Dimensions);
Temp_Block_Decl : constant Node_Id := Make_Object_Declaration (Loc,
Defining_Identifier => Temp_Block,
Object_Definition => Etype_Or_Dim3 (Block_Dimensions),
Expression => Block_Dimensions);
-- List holding the entities of the copies of Procedure_Call's arguments
Kernel_Arg_Copies : constant Elist_Id := New_Elmt_List;
-- Entity of the array that contains the address of each of the kernel's
-- arguments.
Kernel_Args_Id : constant Entity_Id := Make_Temporary (Loc, 'C');
-- Calls to the CUDA runtime API.
Launch_Kernel_Call : Node_Id;
Pop_Call : Node_Id;
Push_Call : Node_Id;
-- Declaration of all temporaries required for CUDA API Calls
Blk_Decls : constant List_Id := New_List;
-- Start of processing for CUDA_Execute
begin
-- Append temporary declarations
Append_To (Blk_Decls, Temp_Grid_Decl);
Analyze (Temp_Grid_Decl);
Append_To (Blk_Decls, Temp_Block_Decl);
Analyze (Temp_Block_Decl);
-- Build parameter declarations for CUDA API calls
Append_To
(Blk_Decls,
Build_Dim3_Declaration
(Grids_Id, New_Occurrence_Of (Temp_Grid, Loc)));
Append_To
(Blk_Decls,
Build_Dim3_Declaration
(Blocks_Id, New_Occurrence_Of (Temp_Block, Loc)));
Append_To
(Blk_Decls,
Build_Shared_Memory_Declaration (Memory_Id, Shared_Memory));
Append_To
(Blk_Decls, Build_Stream_Declaration (Stream_Id, CUDA_Stream));
Append_Copies
(Parameter_Associations (Procedure_Call),
Blk_Decls,
Kernel_Arg_Copies);
Append_To
(Blk_Decls,
Build_Kernel_Args_Declaration
(Kernel_Args_Id, Kernel_Arg_Copies));
-- Build calls to the CUDA API
Push_Call :=
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Push_Call_Configuration), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Grids_Id, Loc),
New_Occurrence_Of (Blocks_Id, Loc),
New_Occurrence_Of (Memory_Id, Loc),
New_Occurrence_Of (Stream_Id, Loc)));
Pop_Call :=
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Pop_Call_Configuration), Loc),
Parameter_Associations => To_Addresses
(New_Elmt_List
(Grids_Id,
Blocks_Id,
Memory_Id,
Stream_Id)));
Launch_Kernel_Call := Build_Launch_Kernel_Call
(Proc => Entity (Name (Procedure_Call)),
Grid_Dims => Grids_Id,
Block_Dims => Blocks_Id,
Kernel_Arg => Kernel_Args_Id,
Memory => Memory_Id,
Stream => Stream_Id);
-- Finally make the block that holds declarations and calls
Rewrite (N,
Make_Block_Statement (Loc,
Declarations => Blk_Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Push_Call,
Pop_Call,
Launch_Kernel_Call))));
Analyze (N);
end Expand_Pragma_CUDA_Execute;
----------------------------------
-- Expand_Pragma_Contract_Cases --
----------------------------------
-- Pragma Contract_Cases is expanded in the following manner:
-- subprogram S is
-- Count : Natural := 0;
-- Flag_1 : Boolean := False;
-- . . .
-- Flag_N : Boolean := False;
-- Flag_N+1 : Boolean := False; -- when "others" present
-- Pref_1 : ...;
-- . . .
-- Pref_M : ...;
-- <preconditions (if any)>
-- -- Evaluate all case guards
-- if Case_Guard_1 then
-- Flag_1 := True;
-- Count := Count + 1;
-- end if;
-- . . .
-- if Case_Guard_N then
-- Flag_N := True;
-- Count := Count + 1;
-- end if;
-- -- Emit errors depending on the number of case guards that
-- -- evaluated to True.
-- if Count = 0 then
-- raise Assertion_Error with "xxx contract cases incomplete";
-- <or>
-- Flag_N+1 := True; -- when "others" present
-- elsif Count > 1 then
-- declare
-- Str0 : constant String :=
-- "contract cases overlap for subprogram ABC";
-- Str1 : constant String :=
-- (if Flag_1 then
-- Str0 & "case guard at xxx evaluates to True"
-- else Str0);
-- StrN : constant String :=
-- (if Flag_N then
-- StrN-1 & "case guard at xxx evaluates to True"
-- else StrN-1);
-- begin
-- raise Assertion_Error with StrN;
-- end;
-- end if;
-- -- Evaluate all attribute 'Old prefixes found in the selected
-- -- consequence.
-- if Flag_1 then
-- Pref_1 := <prefix of 'Old found in Consequence_1>
-- . . .
-- elsif Flag_N then
-- Pref_M := <prefix of 'Old found in Consequence_N>
-- end if;
-- procedure _Postconditions is
-- begin
-- <postconditions (if any)>
-- if Flag_1 and then not Consequence_1 then
-- raise Assertion_Error with "failed contract case at xxx";
-- end if;
-- . . .
-- if Flag_N[+1] and then not Consequence_N[+1] then
-- raise Assertion_Error with "failed contract case at xxx";
-- end if;
-- end _Postconditions;
-- begin
-- . . .
-- end S;
procedure Expand_Pragma_Contract_Cases
(CCs : Node_Id;
Subp_Id : Entity_Id;
Decls : List_Id;
Stmts : in out List_Id)
is
Loc : constant Source_Ptr := Sloc (CCs);
procedure Case_Guard_Error
(Decls : List_Id;
Flag : Entity_Id;
Error_Loc : Source_Ptr;
Msg : in out Entity_Id);
-- Given a declarative list Decls, status flag Flag, the location of the
-- error and a string Msg, construct the following check:
-- Msg : constant String :=
-- (if Flag then
-- Msg & "case guard at Error_Loc evaluates to True"
-- else Msg);
-- The resulting code is added to Decls
procedure Consequence_Error
(Checks : in out Node_Id;
Flag : Entity_Id;
Conseq : Node_Id);
-- Given an if statement Checks, status flag Flag and a consequence
-- Conseq, construct the following check:
-- [els]if Flag and then not Conseq then
-- raise Assertion_Error
-- with "failed contract case at Sloc (Conseq)";
-- [end if;]
-- The resulting code is added to Checks
function Declaration_Of (Id : Entity_Id) return Node_Id;
-- Given the entity Id of a boolean flag, generate:
-- Id : Boolean := False;
procedure Expand_Attributes_In_Consequence
(Decls : List_Id;
Evals : in out Node_Id;
Flag : Entity_Id;
Conseq : Node_Id);
-- Perform specialized expansion of all attribute 'Old references found
-- in consequence Conseq such that at runtime only prefixes coming from
-- the selected consequence are evaluated. Similarly expand attribute
-- 'Result references by replacing them with identifier _result which
-- resolves to the sole formal parameter of procedure _Postconditions.
-- Any temporaries generated in the process are added to declarations
-- Decls. Evals is a complex if statement tasked with the evaluation of
-- all prefixes coming from a single selected consequence. Flag is the
-- corresponding case guard flag. Conseq is the consequence expression.
function Increment (Id : Entity_Id) return Node_Id;
-- Given the entity Id of a numerical variable, generate:
-- Id := Id + 1;
function Set (Id : Entity_Id) return Node_Id;
-- Given the entity Id of a boolean variable, generate:
-- Id := True;
----------------------
-- Case_Guard_Error --
----------------------
procedure Case_Guard_Error
(Decls : List_Id;
Flag : Entity_Id;
Error_Loc : Source_Ptr;
Msg : in out Entity_Id)
is
New_Line : constant Character := Character'Val (10);
New_Msg : constant Entity_Id := Make_Temporary (Loc, 'S');
begin
Start_String;
Store_String_Char (New_Line);
Store_String_Chars (" case guard at ");
Store_String_Chars (Build_Location_String (Error_Loc));
Store_String_Chars (" evaluates to True");
-- Generate:
-- New_Msg : constant String :=
-- (if Flag then
-- Msg & "case guard at Error_Loc evaluates to True"
-- else Msg);
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => New_Msg,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_If_Expression (Loc,
Expressions => New_List (
New_Occurrence_Of (Flag, Loc),
Make_Op_Concat (Loc,
Left_Opnd => New_Occurrence_Of (Msg, Loc),
Right_Opnd => Make_String_Literal (Loc, End_String)),
New_Occurrence_Of (Msg, Loc)))));
Msg := New_Msg;
end Case_Guard_Error;
-----------------------
-- Consequence_Error --
-----------------------
procedure Consequence_Error
(Checks : in out Node_Id;
Flag : Entity_Id;
Conseq : Node_Id)
is
Cond : Node_Id;
Error : Node_Id;
begin
-- Generate:
-- Flag and then not Conseq
Cond :=
Make_And_Then (Loc,
Left_Opnd => New_Occurrence_Of (Flag, Loc),
Right_Opnd =>
Make_Op_Not (Loc,
Right_Opnd => Relocate_Node (Conseq)));
-- Generate:
-- raise Assertion_Error
-- with "failed contract case at Sloc (Conseq)";
Start_String;
Store_String_Chars ("failed contract case at ");
Store_String_Chars (Build_Location_String (Sloc (Conseq)));
Error :=
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Raise_Assert_Failure), Loc),
Parameter_Associations => New_List (
Make_String_Literal (Loc, End_String)));
if No (Checks) then
Checks :=
Make_Implicit_If_Statement (CCs,
Condition => Cond,
Then_Statements => New_List (Error));
else
if No (Elsif_Parts (Checks)) then
Set_Elsif_Parts (Checks, New_List);
end if;
Append_To (Elsif_Parts (Checks),
Make_Elsif_Part (Loc,
Condition => Cond,
Then_Statements => New_List (Error)));
end if;
end Consequence_Error;
--------------------
-- Declaration_Of --
--------------------
function Declaration_Of (Id : Entity_Id) return Node_Id is
begin
return
Make_Object_Declaration (Loc,
Defining_Identifier => Id,
Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
Expression => New_Occurrence_Of (Standard_False, Loc));
end Declaration_Of;
--------------------------------------
-- Expand_Attributes_In_Consequence --
--------------------------------------
procedure Expand_Attributes_In_Consequence
(Decls : List_Id;
Evals : in out Node_Id;
Flag : Entity_Id;
Conseq : Node_Id)
is
Eval_Stmts : List_Id := No_List;
-- The evaluation sequence expressed as assignment statements of all
-- prefixes of attribute 'Old found in the current consequence.
function Expand_Attributes (N : Node_Id) return Traverse_Result;
-- Determine whether an arbitrary node denotes attribute 'Old or
-- 'Result and if it does, perform all expansion-related actions.
-----------------------
-- Expand_Attributes --
-----------------------
function Expand_Attributes (N : Node_Id) return Traverse_Result is
Decl : Node_Id;
Pref : Node_Id;
Temp : Entity_Id;
Indirect : Boolean := False;
use Sem_Util.Old_Attr_Util.Indirect_Temps;
procedure Append_For_Indirect_Temp
(N : Node_Id; Is_Eval_Stmt : Boolean);
-- Append either a declaration (which is to be elaborated
-- unconditionally) or an evaluation statement (which is
-- to be executed conditionally).
-------------------------------
-- Append_For_Indirect_Temp --
-------------------------------
procedure Append_For_Indirect_Temp
(N : Node_Id; Is_Eval_Stmt : Boolean)
is
begin
if Is_Eval_Stmt then
Append_To (Eval_Stmts, N);
else
Prepend_To (Decls, N);
-- This use of Prepend (as opposed to Append) is why
-- we have the Append_Decls_In_Reverse_Order parameter.
end if;
end Append_For_Indirect_Temp;
procedure Declare_Indirect_Temporary is new
Declare_Indirect_Temp (
Append_Item => Append_For_Indirect_Temp,
Append_Decls_In_Reverse_Order => True);
-- Start of processing for Expand_Attributes
begin
-- Attribute 'Old
if Is_Attribute_Old (N) then
Pref := Prefix (N);
Indirect := Indirect_Temp_Needed (Etype (Pref));
if Indirect then
if No (Eval_Stmts) then
Eval_Stmts := New_List;
end if;
Declare_Indirect_Temporary
(Attr_Prefix => Pref,
Indirect_Temp => Temp);
-- Declare a temporary of the prefix type with no explicit
-- initial value. If the appropriate contract case is selected
-- at run time, then the temporary will be initialized via an
-- assignment statement.
else
Temp := Make_Temporary (Loc, 'T', Pref);
Set_Etype (Temp, Etype (Pref));
-- Generate a temporary to capture the value of the prefix:
-- Temp : <Pref type>;
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition =>
New_Occurrence_Of (Etype (Pref), Loc));
-- Place that temporary at the beginning of declarations, to
-- prevent anomalies in the GNATprove flow-analysis pass in
-- the precondition procedure that follows.
Prepend_To (Decls, Decl);
-- Initially Temp is uninitialized (which is required for
-- correctness if default initialization might have side
-- effects). Assign prefix value to temp on Eval_Statement
-- list, so assignment will be executed conditionally.
Mutate_Ekind (Temp, E_Variable);
Set_Suppress_Initialization (Temp);
Analyze (Decl);
if No (Eval_Stmts) then
Eval_Stmts := New_List;
end if;
Append_To (Eval_Stmts,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Temp, Loc),
Expression => Pref));
end if;
-- Mark the temporary as coming from a 'Old reference
if Present (Temp) then
Set_Stores_Attribute_Old_Prefix (Temp);
end if;
-- Ensure that the prefix is valid
if Validity_Checks_On and then Validity_Check_Operands then
Ensure_Valid (Pref);
end if;
-- Replace the original attribute 'Old by a reference to the
-- generated temporary.
if Indirect then
Rewrite (N,
Indirect_Temp_Value
(Temp => Temp, Typ => Etype (Pref), Loc => Loc));
else
Rewrite (N, New_Occurrence_Of (Temp, Loc));
end if;
-- Attribute 'Result
elsif Is_Attribute_Result (N) then
Rewrite (N, Make_Identifier (Loc, Name_uResult));
end if;
return OK;
end Expand_Attributes;
procedure Expand_Attributes_In is
new Traverse_Proc (Expand_Attributes);
-- Start of processing for Expand_Attributes_In_Consequence
begin
-- Inspect the consequence and expand any attribute 'Old and 'Result
-- references found within.
Expand_Attributes_In (Conseq);
-- The consequence does not contain any attribute 'Old references
if No (Eval_Stmts) then
return;
end if;
-- Augment the machinery to trigger the evaluation of all prefixes
-- found in the step above. If Eval is empty, then this is the first
-- consequence to yield expansion of 'Old. Generate:
-- if Flag then
-- <evaluation statements>
-- end if;
if No (Evals) then
Evals :=
Make_Implicit_If_Statement (CCs,
Condition => New_Occurrence_Of (Flag, Loc),
Then_Statements => Eval_Stmts);
-- Otherwise generate:
-- elsif Flag then
-- <evaluation statements>
-- end if;
else
if No (Elsif_Parts (Evals)) then
Set_Elsif_Parts (Evals, New_List);
end if;
Append_To (Elsif_Parts (Evals),
Make_Elsif_Part (Loc,
Condition => New_Occurrence_Of (Flag, Loc),
Then_Statements => Eval_Stmts));
end if;
end Expand_Attributes_In_Consequence;
---------------
-- Increment --
---------------
function Increment (Id : Entity_Id) return Node_Id is
begin
return
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Id, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Id, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1)));
end Increment;
---------
-- Set --
---------
function Set (Id : Entity_Id) return Node_Id is
begin
return
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Id, Loc),
Expression => New_Occurrence_Of (Standard_True, Loc));
end Set;
-- Local variables
Aggr : constant Node_Id :=
Expression (First (Pragma_Argument_Associations (CCs)));
Case_Guard : Node_Id;
CG_Checks : Node_Id;
CG_Stmts : List_Id;
Conseq : Node_Id;
Conseq_Checks : Node_Id := Empty;
Count : Entity_Id;
Count_Decl : Node_Id;
Error_Decls : List_Id := No_List; -- init to avoid warning
Flag : Entity_Id;
Flag_Decl : Node_Id;
If_Stmt : Node_Id;
Msg_Str : Entity_Id := Empty;
Multiple_PCs : Boolean;
Old_Evals : Node_Id := Empty;
Others_Decl : Node_Id;
Others_Flag : Entity_Id := Empty;
Post_Case : Node_Id;
-- Start of processing for Expand_Pragma_Contract_Cases
begin
-- Do nothing if pragma is not enabled. If pragma is disabled, it has
-- already been rewritten as a Null statement.
if Is_Ignored (CCs) then
return;
-- Guard against malformed contract cases
elsif Nkind (Aggr) /= N_Aggregate then
return;
end if;
-- The expansion of contract cases is quite distributed as it produces
-- various statements to evaluate the case guards and consequences. To
-- preserve the original context, set the Is_Assertion_Expr flag. This
-- aids the Ghost legality checks when verifying the placement of a
-- reference to a Ghost entity.
In_Assertion_Expr := In_Assertion_Expr + 1;
Multiple_PCs := List_Length (Component_Associations (Aggr)) > 1;
-- Create the counter which tracks the number of case guards that
-- evaluate to True.
-- Count : Natural := 0;
Count := Make_Temporary (Loc, 'C');
Count_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Count,
Object_Definition => New_Occurrence_Of (Standard_Natural, Loc),
Expression => Make_Integer_Literal (Loc, 0));
Prepend_To (Decls, Count_Decl);
Analyze (Count_Decl);
-- Create the base error message for multiple overlapping case guards
-- Msg_Str : constant String :=
-- "contract cases overlap for subprogram Subp_Id";
if Multiple_PCs then
Msg_Str := Make_Temporary (Loc, 'S');
Start_String;
Store_String_Chars ("contract cases overlap for subprogram ");
Store_String_Chars (Get_Name_String (Chars (Subp_Id)));
Error_Decls := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Msg_Str,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression => Make_String_Literal (Loc, End_String)));
end if;
-- Process individual post cases
Post_Case := First (Component_Associations (Aggr));
while Present (Post_Case) loop
Case_Guard := First (Choices (Post_Case));
Conseq := Expression (Post_Case);
-- The "others" choice requires special processing
if Nkind (Case_Guard) = N_Others_Choice then
Others_Flag := Make_Temporary (Loc, 'F');
Others_Decl := Declaration_Of (Others_Flag);
Prepend_To (Decls, Others_Decl);
Analyze (Others_Decl);
-- Check possible overlap between a case guard and "others"
if Multiple_PCs and Exception_Extra_Info then
Case_Guard_Error
(Decls => Error_Decls,
Flag => Others_Flag,
Error_Loc => Sloc (Case_Guard),
Msg => Msg_Str);
end if;
-- Inspect the consequence and perform special expansion of any
-- attribute 'Old and 'Result references found within.
Expand_Attributes_In_Consequence
(Decls => Decls,
Evals => Old_Evals,
Flag => Others_Flag,
Conseq => Conseq);
-- Check the corresponding consequence of "others"
Consequence_Error
(Checks => Conseq_Checks,
Flag => Others_Flag,
Conseq => Conseq);
-- Regular post case
else
-- Create the flag which tracks the state of its associated case
-- guard.
Flag := Make_Temporary (Loc, 'F');
Flag_Decl := Declaration_Of (Flag);
Prepend_To (Decls, Flag_Decl);
Analyze (Flag_Decl);
-- The flag is set when the case guard is evaluated to True
-- if Case_Guard then
-- Flag := True;
-- Count := Count + 1;
-- end if;
If_Stmt :=
Make_Implicit_If_Statement (CCs,
Condition => Relocate_Node (Case_Guard),
Then_Statements => New_List (
Set (Flag),
Increment (Count)));
Append_To (Decls, If_Stmt);
Analyze (If_Stmt);
-- Check whether this case guard overlaps with another one
if Multiple_PCs and Exception_Extra_Info then
Case_Guard_Error
(Decls => Error_Decls,
Flag => Flag,
Error_Loc => Sloc (Case_Guard),
Msg => Msg_Str);
end if;
-- Inspect the consequence and perform special expansion of any
-- attribute 'Old and 'Result references found within.
Expand_Attributes_In_Consequence
(Decls => Decls,
Evals => Old_Evals,
Flag => Flag,
Conseq => Conseq);
-- The corresponding consequence of the case guard which evaluated
-- to True must hold on exit from the subprogram.
Consequence_Error
(Checks => Conseq_Checks,
Flag => Flag,
Conseq => Conseq);
end if;
Next (Post_Case);
end loop;
-- Raise Assertion_Error when none of the case guards evaluate to True.
-- The only exception is when we have "others", in which case there is
-- no error because "others" acts as a default True.
-- Generate:
-- Flag := True;
if Present (Others_Flag) then
CG_Stmts := New_List (Set (Others_Flag));
-- Generate:
-- raise Assertion_Error with "xxx contract cases incomplete";
else
Start_String;
Store_String_Chars (Build_Location_String (Loc));
Store_String_Chars (" contract cases incomplete");
CG_Stmts := New_List (
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Raise_Assert_Failure), Loc),
Parameter_Associations => New_List (
Make_String_Literal (Loc, End_String))));
end if;
CG_Checks :=
Make_Implicit_If_Statement (CCs,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => New_Occurrence_Of (Count, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 0)),
Then_Statements => CG_Stmts);
-- Detect a possible failure due to several case guards evaluating to
-- True.
-- Generate:
-- elsif Count > 0 then
-- declare
-- <Error_Decls>
-- begin
-- raise Assertion_Error with <Msg_Str>;
-- end if;
if Multiple_PCs then
Set_Elsif_Parts (CG_Checks, New_List (
Make_Elsif_Part (Loc,
Condition =>
Make_Op_Gt (Loc,
Left_Opnd => New_Occurrence_Of (Count, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1)),
Then_Statements => New_List (
Make_Block_Statement (Loc,
Declarations => Error_Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of
(RTE (RE_Raise_Assert_Failure), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Msg_Str, Loc))))))))));
end if;
Append_To (Decls, CG_Checks);
Analyze (CG_Checks);
-- Once all case guards are evaluated and checked, evaluate any prefixes
-- of attribute 'Old founds in the selected consequence.
if Present (Old_Evals) then
Append_To (Decls, Old_Evals);
Analyze (Old_Evals);
end if;
-- Raise Assertion_Error when the corresponding consequence of a case
-- guard that evaluated to True fails.
Append_New_To (Stmts, Conseq_Checks);
In_Assertion_Expr := In_Assertion_Expr - 1;
end Expand_Pragma_Contract_Cases;
---------------------------------------
-- Expand_Pragma_Import_Or_Interface --
---------------------------------------
procedure Expand_Pragma_Import_Or_Interface (N : Node_Id) is
Def_Id : Entity_Id;
begin
-- In Relaxed_RM_Semantics, support old Ada 83 style:
-- pragma Import (Entity, "external name");
if Relaxed_RM_Semantics
and then List_Length (Pragma_Argument_Associations (N)) = 2
and then Pragma_Name (N) = Name_Import
and then Nkind (Arg_N (N, 2)) = N_String_Literal
then
Def_Id := Entity (Arg_N (N, 1));
else
Def_Id := Entity (Arg_N (N, 2));
end if;
-- Variable case (we have to undo any initialization already done)
if Ekind (Def_Id) = E_Variable then
Undo_Initialization (Def_Id, N);
-- Case of exception with convention C++
elsif Ekind (Def_Id) = E_Exception
and then Convention (Def_Id) = Convention_CPP
then
-- Import a C++ convention
declare
Loc : constant Source_Ptr := Sloc (N);
Rtti_Name : constant Node_Id := Arg_N (N, 3);
Dum : constant Entity_Id := Make_Temporary (Loc, 'D');
Exdata : List_Id;
Lang_Char : Node_Id;
Foreign_Data : Node_Id;
begin
Exdata := Component_Associations (Expression (Parent (Def_Id)));
Lang_Char := Next (First (Exdata));
-- Change the one-character language designator to 'C'
Rewrite (Expression (Lang_Char),
Make_Character_Literal (Loc,
Chars => Name_uC,
Char_Literal_Value => UI_From_Int (Character'Pos ('C'))));
Analyze (Expression (Lang_Char));
-- Change the value of Foreign_Data
Foreign_Data := Next (Next (Next (Next (Lang_Char))));
Insert_Actions (Def_Id, New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Dum,
Object_Definition =>
New_Occurrence_Of (Standard_Character, Loc)),
Make_Pragma (Loc,
Chars => Name_Import,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Name_Ada)),
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Chars (Dum))),
Make_Pragma_Argument_Association (Loc,
Chars => Name_External_Name,
Expression => Relocate_Node (Rtti_Name))))));
Rewrite (Expression (Foreign_Data),
OK_Convert_To (Standard_Address,
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Chars (Dum)),
Attribute_Name => Name_Address)));
Analyze (Expression (Foreign_Data));
end;
-- No special expansion required for any other case
else
null;
end if;
end Expand_Pragma_Import_Or_Interface;
-------------------------------------
-- Expand_Pragma_Initial_Condition --
-------------------------------------
procedure Expand_Pragma_Initial_Condition
(Pack_Id : Entity_Id;
N : Node_Id)
is
procedure Extract_Package_Body_Lists
(Pack_Body : Node_Id;
Body_List : out List_Id;
Call_List : out List_Id;
Spec_List : out List_Id);
-- Obtain the various declarative and statement lists of package body
-- Pack_Body needed to insert the initial condition procedure and the
-- call to it. The lists are as follows:
--
-- * Body_List - used to insert the initial condition procedure body
--
-- * Call_List - used to insert the call to the initial condition
-- procedure.
--
-- * Spec_List - used to insert the initial condition procedure spec
procedure Extract_Package_Declaration_Lists
(Pack_Decl : Node_Id;
Body_List : out List_Id;
Call_List : out List_Id;
Spec_List : out List_Id);
-- Obtain the various declarative lists of package declaration Pack_Decl
-- needed to insert the initial condition procedure and the call to it.
-- The lists are as follows:
--
-- * Body_List - used to insert the initial condition procedure body
--
-- * Call_List - used to insert the call to the initial condition
-- procedure.
--
-- * Spec_List - used to insert the initial condition procedure spec
--------------------------------
-- Extract_Package_Body_Lists --
--------------------------------
procedure Extract_Package_Body_Lists
(Pack_Body : Node_Id;
Body_List : out List_Id;
Call_List : out List_Id;
Spec_List : out List_Id)
is
Pack_Spec : constant Entity_Id := Corresponding_Spec (Pack_Body);
Dummy_1 : List_Id;
Dummy_2 : List_Id;
HSS : Node_Id;
begin
pragma Assert (Present (Pack_Spec));
-- The different parts of the invariant procedure are inserted as
-- follows:
-- package Pack is package body Pack is
-- <IC spec> <IC body>
-- private begin
-- ... <IC call>
-- end Pack; end Pack;
-- The initial condition procedure spec is inserted in the visible
-- declaration of the corresponding package spec.
Extract_Package_Declaration_Lists
(Pack_Decl => Unit_Declaration_Node (Pack_Spec),
Body_List => Dummy_1,
Call_List => Dummy_2,
Spec_List => Spec_List);
-- The initial condition procedure body is added to the declarations
-- of the package body.
Body_List := Declarations (Pack_Body);
if No (Body_List) then
Body_List := New_List;
Set_Declarations (Pack_Body, Body_List);
end if;
-- The call to the initial condition procedure is inserted in the
-- statements of the package body.
HSS := Handled_Statement_Sequence (Pack_Body);
if No (HSS) then
HSS :=
Make_Handled_Sequence_Of_Statements (Sloc (Pack_Body),
Statements => New_List);
Set_Handled_Statement_Sequence (Pack_Body, HSS);
end if;
Call_List := Statements (HSS);
end Extract_Package_Body_Lists;
---------------------------------------
-- Extract_Package_Declaration_Lists --
---------------------------------------
procedure Extract_Package_Declaration_Lists
(Pack_Decl : Node_Id;
Body_List : out List_Id;
Call_List : out List_Id;
Spec_List : out List_Id)
is
Pack_Spec : constant Node_Id := Specification (Pack_Decl);
begin
-- The different parts of the invariant procedure are inserted as
-- follows:
-- package Pack is
-- <IC spec>
-- <IC body>
-- private
-- <IC call>
-- end Pack;
-- The initial condition procedure spec and body are inserted in the
-- visible declarations of the package spec.
Body_List := Visible_Declarations (Pack_Spec);
if No (Body_List) then
Body_List := New_List;
Set_Visible_Declarations (Pack_Spec, Body_List);
end if;
Spec_List := Body_List;
-- The call to the initial procedure is inserted in the private
-- declarations of the package spec.
Call_List := Private_Declarations (Pack_Spec);
if No (Call_List) then
Call_List := New_List;
Set_Private_Declarations (Pack_Spec, Call_List);
end if;
end Extract_Package_Declaration_Lists;
-- Local variables
IC_Prag : constant Node_Id :=
Get_Pragma (Pack_Id, Pragma_Initial_Condition);
Body_List : List_Id;
Call : Node_Id;
Call_List : List_Id;
Call_Loc : Source_Ptr;
Expr : Node_Id;
Loc : Source_Ptr;
Proc_Body : Node_Id;
Proc_Body_Id : Entity_Id;
Proc_Decl : Node_Id;
Proc_Id : Entity_Id;
Spec_List : List_Id;
-- Start of processing for Expand_Pragma_Initial_Condition
begin
-- Nothing to do when the package is not subject to an Initial_Condition
-- pragma.
if No (IC_Prag) then
return;
end if;
Expr := Get_Pragma_Arg (First (Pragma_Argument_Associations (IC_Prag)));
Loc := Sloc (IC_Prag);
-- Nothing to do when the pragma is ignored because its semantics are
-- suppressed.
if Is_Ignored (IC_Prag) then
return;
-- Nothing to do when the pragma or its argument are illegal because
-- there is no valid expression to check.
elsif Error_Posted (IC_Prag) or else Error_Posted (Expr) then
return;
end if;
-- Obtain the various lists of the context where the individual pieces
-- of the initial condition procedure are to be inserted.
if Nkind (N) = N_Package_Body then
Extract_Package_Body_Lists
(Pack_Body => N,
Body_List => Body_List,
Call_List => Call_List,
Spec_List => Spec_List);
elsif Nkind (N) = N_Package_Declaration then
Extract_Package_Declaration_Lists
(Pack_Decl => N,
Body_List => Body_List,
Call_List => Call_List,
Spec_List => Spec_List);
-- This routine should not be used on anything other than packages
else
pragma Assert (False);
return;
end if;
Proc_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Pack_Id), "Initial_Condition"));
Mutate_Ekind (Proc_Id, E_Procedure);
Set_Is_Initial_Condition_Procedure (Proc_Id);
-- Generate:
-- procedure <Pack_Id>Initial_Condition;
Proc_Decl :=
Make_Subprogram_Declaration (Loc,
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id));
Append_To (Spec_List, Proc_Decl);
-- The initial condition procedure requires debug info when initial
-- condition is subject to Source Coverage Obligations.
if Generate_SCO then
Set_Debug_Info_Needed (Proc_Id);
end if;
-- Generate:
-- procedure <Pack_Id>Initial_Condition is
-- begin
-- pragma Check (Initial_Condition, <Expr>);
-- end <Pack_Id>Initial_Condition;
Proc_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Copy_Subprogram_Spec (Specification (Proc_Decl)),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Pragma (Loc,
Chars => Name_Check,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression =>
Make_Identifier (Loc, Name_Initial_Condition)),
Make_Pragma_Argument_Association (Loc,
Expression => New_Copy_Tree (Expr)))))));
Append_To (Body_List, Proc_Body);
-- The initial condition procedure requires debug info when initial
-- condition is subject to Source Coverage Obligations.
Proc_Body_Id := Defining_Entity (Proc_Body);
if Generate_SCO then
Set_Debug_Info_Needed (Proc_Body_Id);
end if;
-- The location of the initial condition procedure call must be as close
-- as possible to the intended semantic location of the check because
-- the ABE mechanism relies heavily on accurate locations.
Call_Loc := End_Keyword_Location (N);
-- Generate:
-- <Pack_Id>Initial_Condition;
Call :=
Make_Procedure_Call_Statement (Call_Loc,
Name => New_Occurrence_Of (Proc_Id, Call_Loc));
Append_To (Call_List, Call);
Analyze (Proc_Decl);
Analyze (Proc_Body);
Analyze (Call);
end Expand_Pragma_Initial_Condition;
------------------------------------
-- Expand_Pragma_Inspection_Point --
------------------------------------
-- If no argument is given, then we supply a default argument list that
-- includes all objects declared at the source level in all subprograms
-- that enclose the inspection point pragma.
procedure Expand_Pragma_Inspection_Point (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
A : List_Id;
Assoc : Node_Id;
S : Entity_Id;
E : Entity_Id;
Remove_Inspection_Point : Boolean := False;
begin
if No (Pragma_Argument_Associations (N)) then
A := New_List;
S := Current_Scope;
while S /= Standard_Standard loop
E := First_Entity (S);
while Present (E) loop
if Comes_From_Source (E)
and then Is_Object (E)
and then not Is_Entry_Formal (E)
and then not Is_Formal_Object (E)
and then Ekind (E) /= E_Component
and then Ekind (E) /= E_Discriminant
then
Append_To (A,
Make_Pragma_Argument_Association (Loc,
Expression => New_Occurrence_Of (E, Loc)));
end if;
Next_Entity (E);
end loop;
S := Scope (S);
end loop;
Set_Pragma_Argument_Associations (N, A);
end if;
-- Expand the arguments of the pragma. Expanding an entity reference
-- is a noop, except in a protected operation, where a reference may
-- have to be transformed into a reference to the corresponding prival.
-- Are there other pragmas that may require this ???
Assoc := First (Pragma_Argument_Associations (N));
while Present (Assoc) loop
Expand (Expression (Assoc));
Next (Assoc);
end loop;
-- If any of the references have a freeze node, it must appear before
-- pragma Inspection_Point, otherwise the entity won't be available when
-- Gigi processes Inspection_Point.
-- When this requirement isn't met, turn the pragma into a no-op.
Assoc := First (Pragma_Argument_Associations (N));
while Present (Assoc) loop
if Present (Freeze_Node (Entity (Expression (Assoc)))) and then
not Is_Frozen (Entity (Expression (Assoc)))
then
Error_Msg_NE ("??inspection point references unfrozen object &",
Assoc,
Entity (Expression (Assoc)));
Remove_Inspection_Point := True;
end if;
Next (Assoc);
end loop;
if Remove_Inspection_Point then
Error_Msg_N ("\pragma will be ignored", N);
-- We can't just remove the pragma from the tree as it might be
-- iterated over by the caller. Turn it into a null statement
-- instead.
Rewrite (N, Make_Null_Statement (Sloc (N)));
end if;
end Expand_Pragma_Inspection_Point;
--------------------------------------
-- Expand_Pragma_Interrupt_Priority --
--------------------------------------
-- Supply default argument if none exists (System.Interrupt_Priority'Last)
procedure Expand_Pragma_Interrupt_Priority (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
begin
if No (Pragma_Argument_Associations (N)) then
Set_Pragma_Argument_Associations (N, New_List (
Make_Pragma_Argument_Association (Loc,
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (RTE (RE_Interrupt_Priority), Loc),
Attribute_Name => Name_Last))));
end if;
end Expand_Pragma_Interrupt_Priority;
--------------------------------
-- Expand_Pragma_Loop_Variant --
--------------------------------
-- Pragma Loop_Variant is expanded in the following manner:
-- Original code
-- for | while ... loop
-- <preceding source statements>
-- pragma Loop_Variant
-- (Increases => Incr_Expr,
-- Decreases => Decr_Expr);
-- <succeeding source statements>
-- end loop;
-- Expanded code
-- Curr_1 : <type of Incr_Expr>;
-- Curr_2 : <type of Decr_Expr>;
-- Old_1 : <type of Incr_Expr>;
-- Old_2 : <type of Decr_Expr>;
-- Flag : Boolean := False;
-- for | while ... loop
-- <preceding source statements>
-- if Flag then
-- Old_1 := Curr_1;
-- Old_2 := Curr_2;
-- end if;
-- Curr_1 := <Incr_Expr>;
-- Curr_2 := <Decr_Expr>;
-- if Flag then
-- if Curr_1 /= Old_1 then
-- pragma Check (Loop_Variant, Curr_1 > Old_1);
-- else
-- pragma Check (Loop_Variant, Curr_2 < Old_2);
-- end if;
-- else
-- Flag := True;
-- end if;
-- <succeeding source statements>
-- end loop;
procedure Expand_Pragma_Loop_Variant (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Last_Var : constant Node_Id :=
Last (Pragma_Argument_Associations (N));
Curr_Assign : List_Id := No_List;
Flag_Id : Entity_Id := Empty;
If_Stmt : Node_Id := Empty;
Old_Assign : List_Id := No_List;
Loop_Scop : Entity_Id;
Loop_Stmt : Node_Id;
Variant : Node_Id;
procedure Process_Variant (Variant : Node_Id; Is_Last : Boolean);
-- Process a single increasing / decreasing termination variant. Flag
-- Is_Last should be set when processing the last variant.
---------------------
-- Process_Variant --
---------------------
procedure Process_Variant (Variant : Node_Id; Is_Last : Boolean) is
Expr : constant Node_Id := Expression (Variant);
Expr_Typ : constant Entity_Id := Etype (Expr);
Loc : constant Source_Ptr := Sloc (Expr);
Loop_Loc : constant Source_Ptr := Sloc (Loop_Stmt);
Curr_Id : Entity_Id;
Old_Id : Entity_Id;
Prag : Node_Id;
begin
-- All temporaries generated in this routine must be inserted before
-- the related loop statement. Ensure that the proper scope is on the
-- stack when analyzing the temporaries. Note that we also use the
-- Sloc of the related loop.
Push_Scope (Scope (Loop_Scop));
-- Step 1: Create the declaration of the flag which controls the
-- behavior of the assertion on the first iteration of the loop.
if No (Flag_Id) then
-- Generate:
-- Flag : Boolean := False;
Flag_Id := Make_Temporary (Loop_Loc, 'F');
Insert_Action (Loop_Stmt,
Make_Object_Declaration (Loop_Loc,
Defining_Identifier => Flag_Id,
Object_Definition =>
New_Occurrence_Of (Standard_Boolean, Loop_Loc),
Expression =>
New_Occurrence_Of (Standard_False, Loop_Loc)));
-- Prevent an unwanted optimization where the Current_Value of
-- the flag eliminates the if statement which stores the variant
-- values coming from the previous iteration.
-- Flag : Boolean := False;
-- loop
-- if Flag then -- condition rewritten to False
-- Old_N := Curr_N; -- and if statement eliminated
-- end if;
-- . . .
-- Flag := True;
-- end loop;
Set_Current_Value (Flag_Id, Empty);
end if;
-- Step 2: Create the temporaries which store the old and current
-- values of the associated expression.
-- Generate:
-- Curr : <type of Expr>;
Curr_Id := Make_Temporary (Loc, 'C');
Insert_Action (Loop_Stmt,
Make_Object_Declaration (Loop_Loc,
Defining_Identifier => Curr_Id,
Object_Definition => New_Occurrence_Of (Expr_Typ, Loop_Loc)));
-- Generate:
-- Old : <type of Expr>;
Old_Id := Make_Temporary (Loc, 'P');
Insert_Action (Loop_Stmt,
Make_Object_Declaration (Loop_Loc,
Defining_Identifier => Old_Id,
Object_Definition => New_Occurrence_Of (Expr_Typ, Loop_Loc)));
-- Restore original scope after all temporaries have been analyzed
Pop_Scope;
-- Step 3: Store value of the expression from the previous iteration
-- Generate:
-- Old := Curr;
Append_New_To (Old_Assign,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Old_Id, Loc),
Expression => New_Occurrence_Of (Curr_Id, Loc)));
-- Step 4: Store the current value of the expression
-- Generate:
-- Curr := <Expr>;
Append_New_To (Curr_Assign,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Curr_Id, Loc),
Expression => Relocate_Node (Expr)));
-- Step 5: Create corresponding assertion to verify change of value
-- Generate:
-- pragma Check (Loop_Variant, Curr <|> Old);
Prag :=
Make_Pragma (Loc,
Chars => Name_Check,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Name_Loop_Variant)),
Make_Pragma_Argument_Association (Loc,
Expression =>
Make_Variant_Comparison (Loc,
Mode => Chars (Variant),
Curr_Val => New_Occurrence_Of (Curr_Id, Loc),
Old_Val => New_Occurrence_Of (Old_Id, Loc)))));
-- Generate:
-- if Curr /= Old then
-- <Prag>;
if No (If_Stmt) then
-- When there is just one termination variant, do not compare the
-- old and current value for equality, just check the pragma.
if Is_Last then
If_Stmt := Prag;
else
If_Stmt :=
Make_If_Statement (Loc,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd => New_Occurrence_Of (Curr_Id, Loc),
Right_Opnd => New_Occurrence_Of (Old_Id, Loc)),
Then_Statements => New_List (Prag));
end if;
-- Generate:
-- else
-- <Prag>;
-- end if;
elsif Is_Last then
Set_Else_Statements (If_Stmt, New_List (Prag));
-- Generate:
-- elsif Curr /= Old then
-- <Prag>;
else
if Elsif_Parts (If_Stmt) = No_List then
Set_Elsif_Parts (If_Stmt, New_List);
end if;
Append_To (Elsif_Parts (If_Stmt),
Make_Elsif_Part (Loc,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd => New_Occurrence_Of (Curr_Id, Loc),
Right_Opnd => New_Occurrence_Of (Old_Id, Loc)),
Then_Statements => New_List (Prag)));
end if;
end Process_Variant;
-- Start of processing for Expand_Pragma_Loop_Variant
begin
-- If pragma is not enabled, rewrite as Null statement. If pragma is
-- disabled, it has already been rewritten as a Null statement.
if Is_Ignored (N) then
Rewrite (N, Make_Null_Statement (Loc));
Analyze (N);
return;
end if;
-- The expansion of Loop_Variant is quite distributed as it produces
-- various statements to capture and compare the arguments. To preserve
-- the original context, set the Is_Assertion_Expr flag. This aids the
-- Ghost legality checks when verifying the placement of a reference to
-- a Ghost entity.
In_Assertion_Expr := In_Assertion_Expr + 1;
-- Locate the enclosing loop for which this assertion applies. In the
-- case of Ada 2012 array iteration, we might be dealing with nested
-- loops. Only the outermost loop has an identifier.
Loop_Stmt := N;
while Present (Loop_Stmt) loop
if Nkind (Loop_Stmt) = N_Loop_Statement
and then Present (Identifier (Loop_Stmt))
then
exit;
end if;
Loop_Stmt := Parent (Loop_Stmt);
end loop;
Loop_Scop := Entity (Identifier (Loop_Stmt));
-- Create the circuitry which verifies individual variants
Variant := First (Pragma_Argument_Associations (N));
while Present (Variant) loop
Process_Variant (Variant, Is_Last => Variant = Last_Var);
Next (Variant);
end loop;
-- Construct the segment which stores the old values of all expressions.
-- Generate:
-- if Flag then
-- <Old_Assign>
-- end if;
Insert_Action (N,
Make_If_Statement (Loc,
Condition => New_Occurrence_Of (Flag_Id, Loc),
Then_Statements => Old_Assign));
-- Update the values of all expressions
Insert_Actions (N, Curr_Assign);
-- Add the assertion circuitry to test all changes in expressions.
-- Generate:
-- if Flag then
-- <If_Stmt>
-- else
-- Flag := True;
-- end if;
Insert_Action (N,
Make_If_Statement (Loc,
Condition => New_Occurrence_Of (Flag_Id, Loc),
Then_Statements => New_List (If_Stmt),
Else_Statements => New_List (
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Flag_Id, Loc),
Expression => New_Occurrence_Of (Standard_True, Loc)))));
-- Note: the pragma has been completely transformed into a sequence of
-- corresponding declarations and statements. We leave it in the tree
-- for documentation purposes. It will be ignored by the backend.
In_Assertion_Expr := In_Assertion_Expr - 1;
end Expand_Pragma_Loop_Variant;
--------------------------------
-- Expand_Pragma_Psect_Object --
--------------------------------
-- Convert to Common_Object, and expand the resulting pragma
procedure Expand_Pragma_Psect_Object (N : Node_Id)
renames Expand_Pragma_Common_Object;
-------------------------------------
-- Expand_Pragma_Relative_Deadline --
-------------------------------------
procedure Expand_Pragma_Relative_Deadline (N : Node_Id) is
P : constant Node_Id := Parent (N);
Loc : constant Source_Ptr := Sloc (N);
begin
-- Expand the pragma only in the case of the main subprogram. For tasks
-- the expansion is done in exp_ch9. Generate a call to Set_Deadline
-- at Clock plus the relative deadline specified in the pragma. Time
-- values are translated into Duration to allow for non-private
-- addition operation.
if Nkind (P) = N_Subprogram_Body then
Rewrite
(N,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (RE_Set_Deadline), Loc),
Parameter_Associations => New_List (
Unchecked_Convert_To (RTE (RO_RT_Time),
Make_Op_Add (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
New_Occurrence_Of (RTE (RO_RT_To_Duration), Loc),
New_List
(Make_Function_Call
(Loc, New_Occurrence_Of (RTE (RE_Clock), Loc)))),
Right_Opnd =>
Unchecked_Convert_To (
Standard_Duration,
Arg_N (N, 1)))))));
Analyze (N);
end if;
end Expand_Pragma_Relative_Deadline;
--------------------------------------
-- Expand_Pragma_Subprogram_Variant --
--------------------------------------
-- Aspect Subprogram_Variant is expanded in the following manner:
-- Original code
-- procedure Proc (Param : T) with
-- with Variant (Increases => Incr_Expr,
-- Decreases => Decr_Expr)
-- <declarations>
-- is
-- <source statements>
-- Proc (New_Param_Value);
-- end Proc;
-- Expanded code
-- procedure Proc (Param : T) is
-- Old_Incr : constant <type of Incr_Expr> := <Incr_Expr>;
-- Old_Decr : constant <type of Decr_Expr> := <Decr_Expr> ;
--
-- procedure Variants (Param : T);
--
-- procedure Variants (Param : T) is
-- Curr_Incr : constant <type of Incr_Expr> := <Incr_Expr>;
-- Curr_Decr : constant <type of Decr_Expr> := <Decr_Expr>;
-- begin
-- if Curr_Incr /= Old_Incr then
-- pragma Check (Variant, Curr_Incr > Old_Incr);
-- else
-- pragma Check (Variant, Curr_Decr < Old_Decr);
-- end if;
-- end Variants;
--
-- <declarations>
-- begin
-- <source statements>
-- Variants (New_Param_Value);
-- Proc (New_Param_Value);
-- end Proc;
procedure Expand_Pragma_Subprogram_Variant
(Prag : Node_Id;
Subp_Id : Entity_Id;
Body_Decls : List_Id)
is
Curr_Decls : List_Id;
If_Stmt : Node_Id := Empty;
function Formal_Param_Map
(Old_Subp : Entity_Id;
New_Subp : Entity_Id) return Elist_Id;
-- Given two subprogram entities Old_Subp and New_Subp with the same
-- number of formal parameters return a list of the form:
--
-- old formal 1
-- new formal 1
-- old formal 2
-- new formal 2
-- ...
--
-- as required by New_Copy_Tree to replace references to formal
-- parameters of Old_Subp with references to formal parameters of
-- New_Subp.
procedure Process_Variant
(Variant : Node_Id;
Formal_Map : Elist_Id;
Prev_Decl : in out Node_Id;
Is_Last : Boolean);
-- Process a single increasing / decreasing termination variant given by
-- a component association Variant. Formal_Map is a list of formal
-- parameters of the annotated subprogram and of the internal procedure
-- that verifies the variant in the format required by New_Copy_Tree.
-- The Old_... object created by this routine will be appended after
-- Prev_Decl and is stored in this parameter for a next call to this
-- routine. Is_Last is True when there are no more variants to process.
----------------------
-- Formal_Param_Map --
----------------------
function Formal_Param_Map
(Old_Subp : Entity_Id;
New_Subp : Entity_Id) return Elist_Id
is
Old_Formal : Entity_Id := First_Formal (Old_Subp);
New_Formal : Entity_Id := First_Formal (New_Subp);
Param_Map : Elist_Id;
begin
if Present (Old_Formal) then
Param_Map := New_Elmt_List;
while Present (Old_Formal) and then Present (New_Formal) loop
Append_Elmt (Old_Formal, Param_Map);
Append_Elmt (New_Formal, Param_Map);
Next_Formal (Old_Formal);
Next_Formal (New_Formal);
end loop;
return Param_Map;
else
return No_Elist;
end if;
end Formal_Param_Map;
---------------------
-- Process_Variant --
---------------------
procedure Process_Variant
(Variant : Node_Id;
Formal_Map : Elist_Id;
Prev_Decl : in out Node_Id;
Is_Last : Boolean)
is
Expr : constant Node_Id := Expression (Variant);
Expr_Typ : constant Entity_Id := Etype (Expr);
Loc : constant Source_Ptr := Sloc (Expr);
Old_Id : Entity_Id;
Old_Decl : Node_Id;
Curr_Id : Entity_Id;
Curr_Decl : Node_Id;
Prag : Node_Id;
begin
-- Create temporaries that store the old values of the associated
-- expression.
-- Generate:
-- Old : constant <type of Expr> := <Expr>;
Old_Id := Make_Temporary (Loc, 'P');
Old_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Old_Id,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Expr_Typ, Loc),
Expression => New_Copy_Tree (Expr));
Insert_After_And_Analyze (Prev_Decl, Old_Decl);
Prev_Decl := Old_Decl;
-- Generate:
-- Curr : constant <type of Expr> := <Expr>;
Curr_Id := Make_Temporary (Loc, 'C');
Curr_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Curr_Id,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Expr_Typ, Loc),
Expression =>
New_Copy_Tree (Expr, Map => Formal_Map));
Append (Curr_Decl, Curr_Decls);
-- Generate:
-- pragma Check (Variant, Curr <|> Old);
Prag :=
Make_Pragma (Loc,
Chars => Name_Check,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression =>
Make_Identifier (Loc,
Name_Subprogram_Variant)),
Make_Pragma_Argument_Association (Loc,
Expression =>
Make_Variant_Comparison (Loc,
Mode => Chars (First (Choices (Variant))),
Curr_Val => New_Occurrence_Of (Curr_Id, Loc),
Old_Val => New_Occurrence_Of (Old_Id, Loc)))));
-- Generate:
-- if Curr /= Old then
-- <Prag>;
if No (If_Stmt) then
-- When there is just one termination variant, do not compare
-- the old and current value for equality, just check the
-- pragma.
if Is_Last then
If_Stmt := Prag;
else
If_Stmt :=
Make_If_Statement (Loc,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd => New_Occurrence_Of (Curr_Id, Loc),
Right_Opnd => New_Occurrence_Of (Old_Id, Loc)),
Then_Statements => New_List (Prag));
end if;
-- Generate:
-- else
-- <Prag>;
-- end if;
elsif Is_Last then
Set_Else_Statements (If_Stmt, New_List (Prag));
-- Generate:
-- elsif Curr /= Old then
-- <Prag>;
else
if Elsif_Parts (If_Stmt) = No_List then
Set_Elsif_Parts (If_Stmt, New_List);
end if;
Append_To (Elsif_Parts (If_Stmt),
Make_Elsif_Part (Loc,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd => New_Occurrence_Of (Curr_Id, Loc),
Right_Opnd => New_Occurrence_Of (Old_Id, Loc)),
Then_Statements => New_List (Prag)));
end if;
end Process_Variant;
-- Local variables
Loc : constant Source_Ptr := Sloc (Prag);
Aggr : Node_Id;
Formal_Map : Elist_Id;
Last : Node_Id;
Last_Variant : Node_Id;
Proc_Bod : Node_Id;
Proc_Decl : Node_Id;
Proc_Id : Entity_Id;
Proc_Spec : Node_Id;
Variant : Node_Id;
begin
-- Do nothing if pragma is not present or is disabled
if Is_Ignored (Prag) then
return;
end if;
Aggr := Expression (First (Pragma_Argument_Associations (Prag)));
-- The expansion of Subprogram Variant is quite distributed as it
-- produces various statements to capture and compare the arguments.
-- To preserve the original context, set the Is_Assertion_Expr flag.
-- This aids the Ghost legality checks when verifying the placement
-- of a reference to a Ghost entity.
In_Assertion_Expr := In_Assertion_Expr + 1;
-- Create declaration of the procedure that compares values of the
-- variant expressions captured at the start of subprogram with their
-- values at the recursive call of the subprogram.
Proc_Id := Make_Defining_Identifier (Loc, Name_uVariants);
Proc_Spec :=
Make_Procedure_Specification
(Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => Copy_Parameter_List (Subp_Id));
Proc_Decl :=
Make_Subprogram_Declaration (Loc, Proc_Spec);
Insert_Before_First_Source_Declaration (Proc_Decl, Body_Decls);
Analyze (Proc_Decl);
-- Create a mapping between formals of the annotated subprogram (which
-- are used to compute values of the variant expression at the start of
-- subprogram) and formals of the internal procedure (which are used to
-- compute values of of the variant expression at the recursive call).
Formal_Map :=
Formal_Param_Map (Old_Subp => Subp_Id, New_Subp => Proc_Id);
-- Process invidual increasing / decreasing variants
Last := Proc_Decl;
Curr_Decls := New_List;
Last_Variant := Nlists.Last (Component_Associations (Aggr));
Variant := First (Component_Associations (Aggr));
while Present (Variant) loop
Process_Variant
(Variant => Variant,
Formal_Map => Formal_Map,
Prev_Decl => Last,
Is_Last => Variant = Last_Variant);
Next (Variant);
end loop;
-- Create a subprogram body with declarations of objects that capture
-- the current values of variant expressions at a recursive call and an
-- if-then-else statement that compares current with old values.
Proc_Bod :=
Make_Subprogram_Body (Loc,
Specification =>
Copy_Subprogram_Spec (Proc_Spec),
Declarations => Curr_Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (If_Stmt),
End_Label => Make_Identifier (Loc, Chars (Proc_Id))));
Insert_After_And_Analyze (Last, Proc_Bod);
-- Restore assertion context
In_Assertion_Expr := In_Assertion_Expr - 1;
-- Rewrite the aspect expression, which is no longer needed, with
-- a reference to the procedure that has just been created. We will
-- generate a call to this procedure at each recursive call of the
-- subprogram that has been annotated with Subprogram_Variant.
Rewrite (Aggr, New_Occurrence_Of (Proc_Id, Loc));
end Expand_Pragma_Subprogram_Variant;
-------------------------------------------
-- Expand_Pragma_Suppress_Initialization --
-------------------------------------------
procedure Expand_Pragma_Suppress_Initialization (N : Node_Id) is
Def_Id : constant Entity_Id := Entity (Arg_N (N, 1));
begin
-- Variable case (we have to undo any initialization already done)
if Ekind (Def_Id) = E_Variable then
Undo_Initialization (Def_Id, N);
end if;
end Expand_Pragma_Suppress_Initialization;
-------------------------
-- Undo_Initialization --
-------------------------
procedure Undo_Initialization (Def_Id : Entity_Id; N : Node_Id) is
Init_Call : Node_Id;
begin
-- When applied to a variable, the default initialization must not be
-- done. As it is already done when the pragma is found, we just get rid
-- of the call to the initialization procedure which followed the object
-- declaration. The call is inserted after the declaration, but validity
-- checks may also have been inserted and thus the initialization call
-- does not necessarily appear immediately after the object declaration.
-- We can't use the freezing mechanism for this purpose, since we have
-- to elaborate the initialization expression when it is first seen (so
-- this elaboration cannot be deferred to the freeze point).
-- Find and remove generated initialization call for object, if any
Init_Call := Remove_Init_Call (Def_Id, Rep_Clause => N);
-- Any default initialization expression should be removed (e.g.
-- null defaults for access objects, zero initialization of packed
-- bit arrays). Imported objects aren't allowed to have explicit
-- initialization, so the expression must have been generated by
-- the compiler.
if No (Init_Call) and then Present (Expression (Parent (Def_Id))) then
Set_Expression (Parent (Def_Id), Empty);
end if;
-- The object may not have any initialization, but in the presence of
-- Initialize_Scalars code is inserted after then declaration, which
-- must now be removed as well. The code carries the same source
-- location as the declaration itself.
if Initialize_Scalars and then Is_Array_Type (Etype (Def_Id)) then
declare
Init : Node_Id;
Nxt : Node_Id;
begin
Init := Next (Parent (Def_Id));
while not Comes_From_Source (Init)
and then Sloc (Init) = Sloc (Def_Id)
loop
Nxt := Next (Init);
Remove (Init);
Init := Nxt;
end loop;
end;
end if;
end Undo_Initialization;
end Exp_Prag;