| /* scalbnq.c -- __float128 version of s_scalbn.c. |
| * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. |
| */ |
| |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| |
| /* |
| * scalbnq (__float128 x, int n) |
| * scalbnq(x,n) returns x* 2**n computed by exponent |
| * manipulation rather than by actually performing an |
| * exponentiation or a multiplication. |
| */ |
| |
| #include "quadmath-imp.h" |
| |
| static const __float128 |
| two114 = 2.0769187434139310514121985316880384E+34Q, /* 0x4071000000000000, 0 */ |
| twom114 = 4.8148248609680896326399448564623183E-35Q, /* 0x3F8D000000000000, 0 */ |
| huge = 1.0E+4900Q, |
| tiny = 1.0E-4900Q; |
| |
| __float128 |
| scalbnq (__float128 x, int n) |
| { |
| int64_t k,hx,lx; |
| GET_FLT128_WORDS64(hx,lx,x); |
| k = (hx>>48)&0x7fff; /* extract exponent */ |
| if (k==0) { /* 0 or subnormal x */ |
| if ((lx|(hx&0x7fffffffffffffffULL))==0) return x; /* +-0 */ |
| x *= two114; |
| GET_FLT128_MSW64(hx,x); |
| k = ((hx>>48)&0x7fff) - 114; |
| } |
| if (k==0x7fff) return x+x; /* NaN or Inf */ |
| if (n< -50000) return tiny*copysignq(tiny,x); /*underflow*/ |
| if (n> 50000 || k+n > 0x7ffe) |
| return huge*copysignq(huge,x); /* overflow */ |
| /* Now k and n are bounded we know that k = k+n does not |
| overflow. */ |
| k = k+n; |
| if (k > 0) /* normal result */ |
| {SET_FLT128_MSW64(x,(hx&0x8000ffffffffffffULL)|(k<<48)); return x;} |
| if (k <= -114) |
| return tiny*copysignq(tiny,x); /*underflow*/ |
| k += 114; /* subnormal result */ |
| SET_FLT128_MSW64(x,(hx&0x8000ffffffffffffULL)|(k<<48)); |
| return x*twom114; |
| } |