blob: af260136bc0a1507f35a4747bc2769480bcd5a9a [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ D I S P --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Debug; use Debug;
with Elists; use Elists;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Exp_Disp; use Exp_Disp;
with Exp_Util; use Exp_Util;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch7; use Exp_Ch7;
with Exp_Tss; use Exp_Tss;
with Errout; use Errout;
with Freeze; use Freeze;
with Lib.Xref; use Lib.Xref;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Output; use Output;
with Restrict; use Restrict;
with Rident; use Rident;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Eval; use Sem_Eval;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Snames; use Snames;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with Warnsw; use Warnsw;
package body Sem_Disp is
-----------------------
-- Local Subprograms --
-----------------------
procedure Add_Dispatching_Operation
(Tagged_Type : Entity_Id;
New_Op : Entity_Id);
-- Add New_Op in the list of primitive operations of Tagged_Type
function Check_Controlling_Type
(T : Entity_Id;
Subp : Entity_Id) return Entity_Id;
-- T is the tagged type of a formal parameter or the result of Subp.
-- If the subprogram has a controlling parameter or result that matches
-- the type, then returns the tagged type of that parameter or result
-- (returning the designated tagged type in the case of an access
-- parameter); otherwise returns empty.
function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id;
-- [Ada 2012:AI-0125] Find an inherited hidden primitive of the dispatching
-- type of S that has the same name of S, a type-conformant profile, an
-- original corresponding operation O that is a primitive of a visible
-- ancestor of the dispatching type of S and O is visible at the point of
-- of declaration of S. If the entity is found the Alias of S is set to the
-- original corresponding operation S and its Overridden_Operation is set
-- to the found entity; otherwise return Empty.
--
-- This routine does not search for non-hidden primitives since they are
-- covered by the normal Ada 2005 rules.
function Is_Inherited_Public_Operation (Op : Entity_Id) return Boolean;
-- Check whether a primitive operation is inherited from an operation
-- declared in the visible part of its package.
-------------------------------
-- Add_Dispatching_Operation --
-------------------------------
procedure Add_Dispatching_Operation
(Tagged_Type : Entity_Id;
New_Op : Entity_Id)
is
List : constant Elist_Id := Primitive_Operations (Tagged_Type);
begin
-- The dispatching operation may already be on the list, if it is the
-- wrapper for an inherited function of a null extension (see Exp_Ch3
-- for the construction of function wrappers). The list of primitive
-- operations must not contain duplicates.
-- The Default_Initial_Condition and invariant procedures are not added
-- to the list of primitives even when they are generated for a tagged
-- type. These routines must not be targets of dispatching calls and
-- therefore must not appear in the dispatch table because they already
-- utilize class-wide-precondition semantics to handle inheritance and
-- overriding.
if Is_Suitable_Primitive (New_Op) then
Append_Unique_Elmt (New_Op, List);
end if;
end Add_Dispatching_Operation;
--------------------------
-- Covered_Interface_Op --
--------------------------
function Covered_Interface_Op (Prim : Entity_Id) return Entity_Id is
Tagged_Type : constant Entity_Id := Find_Dispatching_Type (Prim);
Elmt : Elmt_Id;
E : Entity_Id;
begin
pragma Assert (Is_Dispatching_Operation (Prim));
-- Although this is a dispatching primitive we must check if its
-- dispatching type is available because it may be the primitive
-- of a private type not defined as tagged in its partial view.
if Present (Tagged_Type) and then Has_Interfaces (Tagged_Type) then
-- If the tagged type is frozen then the internal entities associated
-- with interfaces are available in the list of primitives of the
-- tagged type and can be used to speed up this search.
if Is_Frozen (Tagged_Type) then
Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
while Present (Elmt) loop
E := Node (Elmt);
if Present (Interface_Alias (E))
and then Alias (E) = Prim
then
return Interface_Alias (E);
end if;
Next_Elmt (Elmt);
end loop;
-- Otherwise we must collect all the interface primitives and check
-- if the Prim overrides (implements) some interface primitive.
else
declare
Ifaces_List : Elist_Id;
Iface_Elmt : Elmt_Id;
Iface : Entity_Id;
Iface_Prim : Entity_Id;
begin
Collect_Interfaces (Tagged_Type, Ifaces_List);
Iface_Elmt := First_Elmt (Ifaces_List);
while Present (Iface_Elmt) loop
Iface := Node (Iface_Elmt);
Elmt := First_Elmt (Primitive_Operations (Iface));
while Present (Elmt) loop
Iface_Prim := Node (Elmt);
if Chars (Iface_Prim) = Chars (Prim)
and then Is_Interface_Conformant
(Tagged_Type, Iface_Prim, Prim)
then
return Iface_Prim;
end if;
Next_Elmt (Elmt);
end loop;
Next_Elmt (Iface_Elmt);
end loop;
end;
end if;
end if;
return Empty;
end Covered_Interface_Op;
----------------------------------
-- Covered_Interface_Primitives --
----------------------------------
function Covered_Interface_Primitives (Prim : Entity_Id) return Elist_Id is
Tagged_Type : constant Entity_Id := Find_Dispatching_Type (Prim);
Elmt : Elmt_Id;
E : Entity_Id;
Result : Elist_Id := No_Elist;
begin
pragma Assert (Is_Dispatching_Operation (Prim));
-- Although this is a dispatching primitive we must check if its
-- dispatching type is available because it may be the primitive
-- of a private type not defined as tagged in its partial view.
if Present (Tagged_Type) and then Has_Interfaces (Tagged_Type) then
-- If the tagged type is frozen then the internal entities associated
-- with interfaces are available in the list of primitives of the
-- tagged type and can be used to speed up this search.
if Is_Frozen (Tagged_Type) then
Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
while Present (Elmt) loop
E := Node (Elmt);
if Present (Interface_Alias (E))
and then Alias (E) = Prim
then
if No (Result) then
Result := New_Elmt_List;
end if;
Append_Elmt (Interface_Alias (E), Result);
end if;
Next_Elmt (Elmt);
end loop;
-- Otherwise we must collect all the interface primitives and check
-- whether the Prim overrides (implements) some interface primitive.
else
declare
Ifaces_List : Elist_Id;
Iface_Elmt : Elmt_Id;
Iface : Entity_Id;
Iface_Prim : Entity_Id;
begin
Collect_Interfaces (Tagged_Type, Ifaces_List);
Iface_Elmt := First_Elmt (Ifaces_List);
while Present (Iface_Elmt) loop
Iface := Node (Iface_Elmt);
Elmt := First_Elmt (Primitive_Operations (Iface));
while Present (Elmt) loop
Iface_Prim := Node (Elmt);
if Chars (Iface_Prim) = Chars (Prim)
and then Is_Interface_Conformant
(Tagged_Type, Iface_Prim, Prim)
then
if No (Result) then
Result := New_Elmt_List;
end if;
Append_Elmt (Iface_Prim, Result);
end if;
Next_Elmt (Elmt);
end loop;
Next_Elmt (Iface_Elmt);
end loop;
end;
end if;
end if;
return Result;
end Covered_Interface_Primitives;
-------------------------------
-- Check_Controlling_Formals --
-------------------------------
procedure Check_Controlling_Formals
(Typ : Entity_Id;
Subp : Entity_Id)
is
Formal : Entity_Id;
Ctrl_Type : Entity_Id;
begin
-- We skip the check for thunks
if Is_Thunk (Subp) then
return;
end if;
Formal := First_Formal (Subp);
while Present (Formal) loop
Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
if Present (Ctrl_Type) then
-- Obtain the full type in case we are looking at an incomplete
-- view.
if Ekind (Ctrl_Type) = E_Incomplete_Type
and then Present (Full_View (Ctrl_Type))
then
Ctrl_Type := Full_View (Ctrl_Type);
end if;
-- When controlling type is concurrent and declared within a
-- generic or inside an instance use corresponding record type.
if Is_Concurrent_Type (Ctrl_Type)
and then Present (Corresponding_Record_Type (Ctrl_Type))
then
Ctrl_Type := Corresponding_Record_Type (Ctrl_Type);
end if;
if Ctrl_Type = Typ then
Set_Is_Controlling_Formal (Formal);
-- Ada 2005 (AI-231): Anonymous access types that are used in
-- controlling parameters exclude null because it is necessary
-- to read the tag to dispatch, and null has no tag.
if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
Set_Can_Never_Be_Null (Etype (Formal));
Set_Is_Known_Non_Null (Etype (Formal));
end if;
-- Check that the parameter's nominal subtype statically
-- matches the first subtype.
if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
if not Subtypes_Statically_Match
(Typ, Designated_Type (Etype (Formal)))
then
Error_Msg_N
("parameter subtype does not match controlling type",
Formal);
end if;
-- Within a predicate function, the formal may be a subtype
-- of a tagged type, given that the predicate is expressed
-- in terms of the subtype.
elsif not Subtypes_Statically_Match (Typ, Etype (Formal))
and then not Is_Predicate_Function (Subp)
then
Error_Msg_N
("parameter subtype does not match controlling type",
Formal);
end if;
if Present (Default_Value (Formal)) then
-- In Ada 2005, access parameters can have defaults
if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
and then Ada_Version < Ada_2005
then
Error_Msg_N
("default not allowed for controlling access parameter",
Default_Value (Formal));
elsif not Is_Tag_Indeterminate (Default_Value (Formal)) then
Error_Msg_N
("default expression must be a tag indeterminate" &
" function call", Default_Value (Formal));
end if;
end if;
elsif Comes_From_Source (Subp) then
Error_Msg_N
("operation can be dispatching in only one type", Subp);
end if;
end if;
Next_Formal (Formal);
end loop;
if Ekind (Subp) in E_Function | E_Generic_Function then
Ctrl_Type := Check_Controlling_Type (Etype (Subp), Subp);
if Present (Ctrl_Type) then
if Ctrl_Type = Typ then
Set_Has_Controlling_Result (Subp);
-- Check that result subtype statically matches first subtype
-- (Ada 2005): Subp may have a controlling access result.
if Subtypes_Statically_Match (Typ, Etype (Subp))
or else (Ekind (Etype (Subp)) = E_Anonymous_Access_Type
and then
Subtypes_Statically_Match
(Typ, Designated_Type (Etype (Subp))))
then
null;
else
Error_Msg_N
("result subtype does not match controlling type", Subp);
end if;
elsif Comes_From_Source (Subp) then
Error_Msg_N
("operation can be dispatching in only one type", Subp);
end if;
end if;
end if;
end Check_Controlling_Formals;
----------------------------
-- Check_Controlling_Type --
----------------------------
function Check_Controlling_Type
(T : Entity_Id;
Subp : Entity_Id) return Entity_Id
is
Tagged_Type : Entity_Id := Empty;
begin
if Is_Tagged_Type (T) then
if Is_First_Subtype (T) then
Tagged_Type := T;
else
Tagged_Type := Base_Type (T);
end if;
-- If the type is incomplete, it may have been declared without a
-- Tagged indication, but the full view may be tagged, in which case
-- that is the controlling type of the subprogram. This is one of the
-- approx. 579 places in the language where a lookahead would help.
elsif Ekind (T) = E_Incomplete_Type
and then Present (Full_View (T))
and then Is_Tagged_Type (Full_View (T))
then
Set_Is_Tagged_Type (T);
Tagged_Type := Full_View (T);
elsif Ekind (T) = E_Anonymous_Access_Type
and then Is_Tagged_Type (Designated_Type (T))
then
if Ekind (Designated_Type (T)) /= E_Incomplete_Type then
if Is_First_Subtype (Designated_Type (T)) then
Tagged_Type := Designated_Type (T);
else
Tagged_Type := Base_Type (Designated_Type (T));
end if;
-- Ada 2005: an incomplete type can be tagged. An operation with an
-- access parameter of the type is dispatching.
elsif Scope (Designated_Type (T)) = Current_Scope then
Tagged_Type := Designated_Type (T);
-- Ada 2005 (AI-50217)
elsif From_Limited_With (Designated_Type (T))
and then Has_Non_Limited_View (Designated_Type (T))
and then Scope (Designated_Type (T)) = Scope (Subp)
then
if Is_First_Subtype (Non_Limited_View (Designated_Type (T))) then
Tagged_Type := Non_Limited_View (Designated_Type (T));
else
Tagged_Type := Base_Type (Non_Limited_View
(Designated_Type (T)));
end if;
end if;
end if;
if No (Tagged_Type) or else Is_Class_Wide_Type (Tagged_Type) then
return Empty;
-- In the special case of a protected subprogram of a tagged protected
-- type that has a formal of a tagged type (or access formal whose type
-- designates a tagged type), such a formal is not controlling unless
-- it's of the protected type's corresponding record type. The latter
-- can occur for the special wrapper subprograms created for protected
-- subprograms. Such subprograms may occur in the same scope where some
-- formal's tagged type is declared, and we don't want formals of that
-- tagged type being marked as controlling, for one thing because they
-- aren't controlling from the language point of view, but also because
-- this can cause errors for access formals when conformance is checked
-- between the spec and body of the protected subprogram (null-exclusion
-- status of the formals may be set differently, which is the case that
-- led to adding this check).
elsif Is_Subprogram (Subp)
and then Present (Protected_Subprogram (Subp))
and then Ekind (Scope (Protected_Subprogram (Subp))) = E_Protected_Type
and then
Base_Type (Tagged_Type)
/= Corresponding_Record_Type (Scope (Protected_Subprogram (Subp)))
then
return Empty;
-- The dispatching type and the primitive operation must be defined in
-- the same scope, except in the case of abstract formal subprograms.
elsif (Scope (Subp) = Scope (Tagged_Type)
and then (not Is_Generic_Type (Tagged_Type)
or else not Comes_From_Source (Subp)))
or else
(Is_Formal_Subprogram (Subp) and then Is_Abstract_Subprogram (Subp))
or else
(Nkind (Parent (Parent (Subp))) = N_Subprogram_Renaming_Declaration
and then
Present (Corresponding_Formal_Spec (Parent (Parent (Subp))))
and then
Is_Abstract_Subprogram (Subp))
then
return Tagged_Type;
else
return Empty;
end if;
end Check_Controlling_Type;
----------------------------
-- Check_Dispatching_Call --
----------------------------
procedure Check_Dispatching_Call (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Actual : Node_Id;
Formal : Entity_Id;
Control : Node_Id := Empty;
Func : Entity_Id;
Subp_Entity : Entity_Id;
Indeterm_Ctrl_Type : Entity_Id := Empty;
-- Type of a controlling formal whose actual is a tag-indeterminate call
-- whose result type is different from, but is an ancestor of, the type.
Static_Tag : Node_Id := Empty;
-- If a controlling formal has a statically tagged actual, the tag of
-- this actual is to be used for any tag-indeterminate actual.
procedure Check_Direct_Call;
-- In the case when the controlling actual is a class-wide type whose
-- root type's completion is a task or protected type, the call is in
-- fact direct. This routine detects the above case and modifies the
-- call accordingly.
procedure Check_Dispatching_Context (Call : Node_Id);
-- If the call is tag-indeterminate and the entity being called is
-- abstract, verify that the context is a call that will eventually
-- provide a tag for dispatching, or has provided one already.
-----------------------
-- Check_Direct_Call --
-----------------------
procedure Check_Direct_Call is
Typ : Entity_Id := Etype (Control);
begin
-- Predefined primitives do not receive wrappers since they are built
-- from scratch for the corresponding record of synchronized types.
-- Equality is in general predefined, but is excluded from the check
-- when it is user-defined.
if Is_Predefined_Dispatching_Operation (Subp_Entity)
and then not (Is_User_Defined_Equality (Subp_Entity)
and then Comes_From_Source (Subp_Entity)
and then Nkind (Parent (Subp_Entity)) =
N_Function_Specification)
then
return;
end if;
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
Typ := Full_View (Typ);
end if;
if Is_Concurrent_Type (Typ)
and then
Present (Corresponding_Record_Type (Typ))
then
Typ := Corresponding_Record_Type (Typ);
-- The concurrent record's list of primitives should contain a
-- wrapper for the entity of the call, retrieve it.
declare
Prim : Entity_Id;
Prim_Elmt : Elmt_Id;
Wrapper_Found : Boolean := False;
begin
Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
while Present (Prim_Elmt) loop
Prim := Node (Prim_Elmt);
if Is_Primitive_Wrapper (Prim)
and then Wrapped_Entity (Prim) = Subp_Entity
then
Wrapper_Found := True;
exit;
end if;
Next_Elmt (Prim_Elmt);
end loop;
-- A primitive declared between two views should have a
-- corresponding wrapper.
pragma Assert (Wrapper_Found);
-- Modify the call by setting the proper entity
Set_Entity (Name (N), Prim);
end;
end if;
end Check_Direct_Call;
-------------------------------
-- Check_Dispatching_Context --
-------------------------------
procedure Check_Dispatching_Context (Call : Node_Id) is
Subp : constant Entity_Id := Entity (Name (Call));
procedure Abstract_Context_Error;
-- Error for abstract call dispatching on result is not dispatching
function Has_Controlling_Current_Instance_Actual_In_DIC
(Call : Node_Id) return Boolean;
-- Return True if the subprogram call Call has a controlling actual
-- given directly by a current instance referenced within a DIC
-- aspect.
----------------------------
-- Abstract_Context_Error --
----------------------------
procedure Abstract_Context_Error is
begin
if Ekind (Subp) = E_Function then
Error_Msg_N
("call to abstract function must be dispatching", N);
-- This error can occur for a procedure in the case of a call to
-- an abstract formal procedure with a statically tagged operand.
else
Error_Msg_N
("call to abstract procedure must be dispatching", N);
end if;
end Abstract_Context_Error;
----------------------------------------
-- Has_Current_Instance_Actual_In_DIC --
----------------------------------------
function Has_Controlling_Current_Instance_Actual_In_DIC
(Call : Node_Id) return Boolean
is
A : Node_Id;
F : Entity_Id;
begin
F := First_Formal (Subp_Entity);
A := First_Actual (Call);
while Present (F) loop
-- Return True if the actual denotes a current instance (which
-- will be represented by an in-mode formal of the enclosing
-- DIC_Procedure) passed to a controlling formal. We don't have
-- to worry about controlling access formals here, because its
-- illegal to apply Access (etc.) attributes to a current
-- instance within an aspect (by AI12-0068).
if Is_Controlling_Formal (F)
and then Nkind (A) = N_Identifier
and then Ekind (Entity (A)) = E_In_Parameter
and then Is_Subprogram (Scope (Entity (A)))
and then Is_DIC_Procedure (Scope (Entity (A)))
then
return True;
end if;
Next_Formal (F);
Next_Actual (A);
end loop;
return False;
end Has_Controlling_Current_Instance_Actual_In_DIC;
-- Local variables
Scop : constant Entity_Id := Current_Scope_No_Loops;
Typ : constant Entity_Id := Etype (Subp);
Par : Node_Id;
-- Start of processing for Check_Dispatching_Context
begin
-- Skip checking context of dispatching calls during preanalysis of
-- class-wide conditions since at that stage the expression is not
-- installed yet on its definite context.
if Inside_Class_Condition_Preanalysis then
return;
end if;
-- If the called subprogram is a private overriding, replace it
-- with its alias, which has the correct body. Verify that the
-- two subprograms have the same controlling type (this is not the
-- case for an inherited subprogram that has become abstract).
if Is_Abstract_Subprogram (Subp)
and then No (Controlling_Argument (Call))
then
if Present (Alias (Subp))
and then not Is_Abstract_Subprogram (Alias (Subp))
and then No (DTC_Entity (Subp))
and then Find_Dispatching_Type (Subp) =
Find_Dispatching_Type (Alias (Subp))
then
-- Private overriding of inherited abstract operation, call is
-- legal.
Set_Entity (Name (N), Alias (Subp));
return;
-- If this is a pre/postcondition for an abstract subprogram,
-- it may call another abstract function that is a primitive
-- of an abstract type. The call is nondispatching but will be
-- legal in overridings of the operation. However, if the call
-- is tag-indeterminate we want to continue with with the error
-- checking below, as this case is illegal even for abstract
-- subprograms (see AI12-0170).
-- Similarly, as per AI12-0412, a nonabstract subprogram may
-- have a class-wide pre/postcondition that includes a call to
-- an abstract primitive of the subprogram's controlling type.
-- Certain operations (nondispatching calls, 'Access, use as
-- a generic actual) applied to such a nonabstract subprogram
-- are illegal in the case where the type is abstract (see
-- RM 6.1.1(18.2/5)).
elsif Is_Subprogram (Scop)
and then not Is_Tag_Indeterminate (N)
and then
-- The context is an internally built helper or an indirect
-- call wrapper that handles class-wide preconditions
(Present (Class_Preconditions_Subprogram (Scop))
-- ... or the context is a class-wide pre/postcondition.
or else
(In_Pre_Post_Condition (Call, Class_Wide_Only => True)
-- The tagged type associated with the called
-- subprogram must be the same as that of the
-- subprogram with a class-wide aspect.
and then Is_Dispatching_Operation (Scop)
and then Find_Dispatching_Type (Subp)
= Find_Dispatching_Type (Scop)))
then
null;
-- Similarly to the dispensation for postconditions, a call to
-- an abstract function within a Default_Initial_Condition aspect
-- can be legal when passed a current instance of the type. Such
-- a call will be effectively mapped to a call to a primitive of
-- a descendant type (see AI12-0397, as well as AI12-0170), so
-- doesn't need to be dispatching. We test for being within a DIC
-- procedure, since that's where the call will be analyzed.
elsif Is_Subprogram (Scop)
and then Is_DIC_Procedure (Scop)
and then Has_Controlling_Current_Instance_Actual_In_DIC (Call)
then
null;
elsif Ekind (Current_Scope) = E_Function
and then Nkind (Unit_Declaration_Node (Scop)) =
N_Generic_Subprogram_Declaration
then
null;
else
-- We need to determine whether the context of the call
-- provides a tag to make the call dispatching. This requires
-- the call to be the actual in an enclosing call, and that
-- actual must be controlling. If the call is an operand of
-- equality, the other operand must not be abstract.
if not Is_Tagged_Type (Typ)
and then not
(Ekind (Typ) = E_Anonymous_Access_Type
and then Is_Tagged_Type (Designated_Type (Typ)))
then
Abstract_Context_Error;
return;
end if;
Par := Parent (Call);
if Nkind (Par) = N_Parameter_Association then
Par := Parent (Par);
end if;
if Nkind (Par) = N_Qualified_Expression
or else Nkind (Par) = N_Unchecked_Type_Conversion
then
Par := Parent (Par);
end if;
if Nkind (Par) in N_Subprogram_Call
and then Is_Entity_Name (Name (Par))
then
declare
Enc_Subp : constant Entity_Id := Entity (Name (Par));
A : Node_Id;
F : Entity_Id;
Control : Entity_Id;
Ret_Type : Entity_Id;
begin
-- Find controlling formal that can provide tag for the
-- tag-indeterminate actual. The corresponding actual
-- must be the corresponding class-wide type.
F := First_Formal (Enc_Subp);
A := First_Actual (Par);
-- Find controlling type of call. Dereference if function
-- returns an access type.
Ret_Type := Etype (Call);
if Is_Access_Type (Etype (Call)) then
Ret_Type := Designated_Type (Ret_Type);
end if;
while Present (F) loop
Control := Etype (A);
if Is_Access_Type (Control) then
Control := Designated_Type (Control);
end if;
if Is_Controlling_Formal (F)
and then not (Call = A or else Parent (Call) = A)
and then Control = Class_Wide_Type (Ret_Type)
then
return;
end if;
Next_Formal (F);
Next_Actual (A);
end loop;
if Nkind (Par) = N_Function_Call
and then Is_Tag_Indeterminate (Par)
then
-- The parent may be an actual of an enclosing call
Check_Dispatching_Context (Par);
return;
else
Error_Msg_N
("call to abstract function must be dispatching",
Call);
return;
end if;
end;
-- For equality operators, one of the operands must be
-- statically or dynamically tagged.
elsif Nkind (Par) in N_Op_Eq | N_Op_Ne then
if N = Right_Opnd (Par)
and then Is_Tag_Indeterminate (Left_Opnd (Par))
then
Abstract_Context_Error;
elsif N = Left_Opnd (Par)
and then Is_Tag_Indeterminate (Right_Opnd (Par))
then
Abstract_Context_Error;
end if;
return;
-- The left-hand side of an assignment provides the tag
elsif Nkind (Par) = N_Assignment_Statement then
return;
else
Abstract_Context_Error;
end if;
end if;
end if;
end Check_Dispatching_Context;
-- Start of processing for Check_Dispatching_Call
begin
-- Find a controlling argument, if any
if Present (Parameter_Associations (N)) then
Subp_Entity := Entity (Name (N));
Actual := First_Actual (N);
Formal := First_Formal (Subp_Entity);
while Present (Actual) loop
Control := Find_Controlling_Arg (Actual);
exit when Present (Control);
-- Check for the case where the actual is a tag-indeterminate call
-- whose result type is different than the tagged type associated
-- with the containing call, but is an ancestor of the type.
if Is_Controlling_Formal (Formal)
and then Is_Tag_Indeterminate (Actual)
and then Base_Type (Etype (Actual)) /= Base_Type (Etype (Formal))
and then Is_Ancestor (Etype (Actual), Etype (Formal))
then
Indeterm_Ctrl_Type := Etype (Formal);
-- If the formal is controlling but the actual is not, the type
-- of the actual is statically known, and may be used as the
-- controlling tag for some other tag-indeterminate actual.
elsif Is_Controlling_Formal (Formal)
and then Is_Entity_Name (Actual)
and then Is_Tagged_Type (Etype (Actual))
then
Static_Tag := Etype (Actual);
end if;
Next_Actual (Actual);
Next_Formal (Formal);
end loop;
if Present (Control) then
-- Verify that no controlling arguments are statically tagged
if Debug_Flag_E then
Write_Str ("Found Dispatching call");
Write_Int (Int (N));
Write_Eol;
end if;
Actual := First_Actual (N);
while Present (Actual) loop
if Actual /= Control then
if not Is_Controlling_Actual (Actual) then
null; -- Can be anything
elsif Is_Dynamically_Tagged (Actual) then
null; -- Valid parameter
elsif Is_Tag_Indeterminate (Actual) then
-- The tag is inherited from the enclosing call (the node
-- we are currently analyzing). Explicitly expand the
-- actual, since the previous call to Expand (from
-- Resolve_Call) had no way of knowing about the
-- required dispatching.
Propagate_Tag (Control, Actual);
else
Error_Msg_N
("controlling argument is not dynamically tagged",
Actual);
return;
end if;
end if;
Next_Actual (Actual);
end loop;
-- Mark call as a dispatching call
Set_Controlling_Argument (N, Control);
Check_Restriction (No_Dispatching_Calls, N);
-- The dispatching call may need to be converted into a direct
-- call in certain cases.
Check_Direct_Call;
-- If the call doesn't have a controlling actual but does have an
-- indeterminate actual that requires dispatching treatment, then an
-- object is needed that will serve as the controlling argument for
-- a dispatching call on the indeterminate actual. This can occur
-- in the unusual situation of a default actual given by a tag-
-- indeterminate call and where the type of the call is an ancestor
-- of the type associated with a containing call to an inherited
-- operation (see AI-239).
-- Rather than create an object of the tagged type, which would
-- be problematic for various reasons (default initialization,
-- discriminants), the tag of the containing call's associated
-- tagged type is directly used to control the dispatching.
elsif Present (Indeterm_Ctrl_Type) then
if Present (Static_Tag) then
Control :=
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Static_Tag, Loc),
Attribute_Name => Name_Tag);
else
Control :=
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Indeterm_Ctrl_Type, Loc),
Attribute_Name => Name_Tag);
end if;
Analyze (Control);
Actual := First_Actual (N);
Formal := First_Formal (Subp_Entity);
while Present (Actual) loop
if Is_Tag_Indeterminate (Actual)
and then Is_Controlling_Formal (Formal)
then
Propagate_Tag (Control, Actual);
end if;
Next_Actual (Actual);
Next_Formal (Formal);
end loop;
Check_Dispatching_Context (N);
elsif Nkind (N) /= N_Function_Call then
-- The call is not dispatching, so check that there aren't any
-- tag-indeterminate abstract calls left among its actuals.
Actual := First_Actual (N);
while Present (Actual) loop
if Is_Tag_Indeterminate (Actual) then
-- Function call case
if Nkind (Original_Node (Actual)) = N_Function_Call then
Func := Entity (Name (Original_Node (Actual)));
-- If the actual is an attribute then it can't be abstract
-- (the only current case of a tag-indeterminate attribute
-- is the stream Input attribute).
elsif Nkind (Original_Node (Actual)) = N_Attribute_Reference
then
Func := Empty;
-- Ditto if it is an explicit dereference
elsif Nkind (Original_Node (Actual)) = N_Explicit_Dereference
then
Func := Empty;
-- Only other possibility is a qualified expression whose
-- constituent expression is itself a call.
else
Func :=
Entity (Name (Original_Node
(Expression (Original_Node (Actual)))));
end if;
if Present (Func) and then Is_Abstract_Subprogram (Func) then
Error_Msg_N
("call to abstract function must be dispatching",
Actual);
end if;
end if;
Next_Actual (Actual);
end loop;
Check_Dispatching_Context (N);
elsif Nkind (Parent (N)) in N_Subexpr then
Check_Dispatching_Context (N);
elsif Nkind (Parent (N)) = N_Assignment_Statement
and then Is_Class_Wide_Type (Etype (Name (Parent (N))))
then
return;
elsif Is_Abstract_Subprogram (Subp_Entity) then
Check_Dispatching_Context (N);
return;
end if;
-- If this is a nondispatching call to a nonabstract subprogram
-- and the subprogram has any Pre'Class or Post'Class aspects with
-- nonstatic values, then report an error. This is specified by
-- RM 6.1.1(18.2/5) (by AI12-0412).
-- Skip reporting this error on helpers and indirect-call wrappers
-- built to support class-wide preconditions.
if No (Control)
and then not Is_Abstract_Subprogram (Subp_Entity)
and then
Is_Prim_Of_Abst_Type_With_Nonstatic_CW_Pre_Post (Subp_Entity)
and then not
(Is_Subprogram (Current_Scope)
and then
Present (Class_Preconditions_Subprogram (Current_Scope)))
then
Error_Msg_N
("nondispatching call to nonabstract subprogram of "
& "abstract type with nonstatic class-wide "
& "pre/postconditions",
N);
end if;
else
-- If dispatching on result, the enclosing call, if any, will
-- determine the controlling argument. Otherwise this is the
-- primitive operation of the root type.
Check_Dispatching_Context (N);
end if;
end Check_Dispatching_Call;
---------------------------------
-- Check_Dispatching_Operation --
---------------------------------
procedure Check_Dispatching_Operation (Subp, Old_Subp : Entity_Id) is
function Is_Access_To_Subprogram_Wrapper (E : Entity_Id) return Boolean;
-- Return True if E is an access to subprogram wrapper
procedure Warn_On_Late_Primitive_After_Private_Extension
(Typ : Entity_Id;
Prim : Entity_Id);
-- Prim is a dispatching primitive of the tagged type Typ. Warn on Prim
-- if it is a public primitive defined after some private extension of
-- the tagged type.
-------------------------------------
-- Is_Access_To_Subprogram_Wrapper --
-------------------------------------
function Is_Access_To_Subprogram_Wrapper (E : Entity_Id) return Boolean
is
Decl_N : constant Node_Id := Unit_Declaration_Node (E);
Par_N : constant Node_Id := Parent (List_Containing (Decl_N));
begin
-- Access to subprogram wrappers are declared in the freezing actions
return Nkind (Par_N) = N_Freeze_Entity
and then Ekind (Entity (Par_N)) = E_Access_Subprogram_Type;
end Is_Access_To_Subprogram_Wrapper;
----------------------------------------------------
-- Warn_On_Late_Primitive_After_Private_Extension --
----------------------------------------------------
procedure Warn_On_Late_Primitive_After_Private_Extension
(Typ : Entity_Id;
Prim : Entity_Id)
is
E : Entity_Id;
begin
if Warn_On_Late_Primitives
and then Comes_From_Source (Prim)
and then Has_Private_Extension (Typ)
and then Is_Package_Or_Generic_Package (Current_Scope)
and then not In_Private_Part (Current_Scope)
then
E := Next_Entity (Typ);
while E /= Prim loop
if Ekind (E) = E_Record_Type_With_Private
and then Etype (E) = Typ
then
Error_Msg_Name_1 := Chars (Typ);
Error_Msg_Name_2 := Chars (E);
Error_Msg_Sloc := Sloc (E);
Error_Msg_N
("?.j?primitive of type % defined after private extension "
& "% #?", Prim);
Error_Msg_Name_1 := Chars (Prim);
Error_Msg_Name_2 := Chars (E);
Error_Msg_N
("\spec of % should appear before declaration of type %!",
Prim);
exit;
end if;
Next_Entity (E);
end loop;
end if;
end Warn_On_Late_Primitive_After_Private_Extension;
-- Local variables
Body_Is_Last_Primitive : Boolean := False;
Has_Dispatching_Parent : Boolean := False;
Ovr_Subp : Entity_Id := Empty;
Tagged_Type : Entity_Id;
-- Start of processing for Check_Dispatching_Operation
begin
if Ekind (Subp) not in E_Function | E_Procedure then
return;
-- The Default_Initial_Condition procedure is not a primitive subprogram
-- even if it relates to a tagged type. This routine is not meant to be
-- inherited or overridden.
elsif Is_DIC_Procedure (Subp) then
return;
-- The "partial" and "full" type invariant procedures are not primitive
-- subprograms even if they relate to a tagged type. These routines are
-- not meant to be inherited or overridden.
elsif Is_Invariant_Procedure (Subp)
or else Is_Partial_Invariant_Procedure (Subp)
then
return;
-- Wrappers of access to subprograms are not primitive subprograms.
elsif Is_Wrapper (Subp)
and then Is_Access_To_Subprogram_Wrapper (Subp)
then
return;
end if;
Set_Is_Dispatching_Operation (Subp, False);
Tagged_Type := Find_Dispatching_Type (Subp);
-- Ada 2005 (AI-345): Use the corresponding record (if available).
-- Required because primitives of concurrent types are attached
-- to the corresponding record (not to the concurrent type).
if Ada_Version >= Ada_2005
and then Present (Tagged_Type)
and then Is_Concurrent_Type (Tagged_Type)
and then Present (Corresponding_Record_Type (Tagged_Type))
then
Tagged_Type := Corresponding_Record_Type (Tagged_Type);
end if;
-- (AI-345): The task body procedure is not a primitive of the tagged
-- type
if Present (Tagged_Type)
and then Is_Concurrent_Record_Type (Tagged_Type)
and then Present (Corresponding_Concurrent_Type (Tagged_Type))
and then Is_Task_Type (Corresponding_Concurrent_Type (Tagged_Type))
and then Subp = Get_Task_Body_Procedure
(Corresponding_Concurrent_Type (Tagged_Type))
then
return;
end if;
-- If Subp is derived from a dispatching operation then it should
-- always be treated as dispatching. In this case various checks
-- below will be bypassed. Makes sure that late declarations for
-- inherited private subprograms are treated as dispatching, even
-- if the associated tagged type is already frozen.
Has_Dispatching_Parent :=
Present (Alias (Subp))
and then Is_Dispatching_Operation (Alias (Subp));
if No (Tagged_Type) then
-- Ada 2005 (AI-251): Check that Subp is not a primitive associated
-- with an abstract interface type unless the interface acts as a
-- parent type in a derivation. If the interface type is a formal
-- type then the operation is not primitive and therefore legal.
declare
E : Entity_Id;
Typ : Entity_Id;
begin
E := First_Entity (Subp);
while Present (E) loop
-- For an access parameter, check designated type
if Ekind (Etype (E)) = E_Anonymous_Access_Type then
Typ := Designated_Type (Etype (E));
else
Typ := Etype (E);
end if;
if Comes_From_Source (Subp)
and then Is_Interface (Typ)
and then not Is_Class_Wide_Type (Typ)
and then not Is_Derived_Type (Typ)
and then not Is_Generic_Type (Typ)
and then not In_Instance
then
Error_Msg_N ("??declaration of& is too late!", Subp);
Error_Msg_NE -- CODEFIX??
("\??spec should appear immediately after declaration of "
& "& !", Subp, Typ);
exit;
end if;
Next_Entity (E);
end loop;
-- In case of functions check also the result type
if Ekind (Subp) = E_Function then
if Is_Access_Type (Etype (Subp)) then
Typ := Designated_Type (Etype (Subp));
else
Typ := Etype (Subp);
end if;
-- The following should be better commented, especially since
-- we just added several new conditions here ???
if Comes_From_Source (Subp)
and then Is_Interface (Typ)
and then not Is_Class_Wide_Type (Typ)
and then not Is_Derived_Type (Typ)
and then not Is_Generic_Type (Typ)
and then not In_Instance
then
Error_Msg_N ("??declaration of& is too late!", Subp);
Error_Msg_NE
("\??spec should appear immediately after declaration of "
& "& !", Subp, Typ);
end if;
end if;
end;
return;
-- The subprograms build internally after the freezing point (such as
-- init procs, interface thunks, type support subprograms, and Offset
-- to top functions for accessing interface components in variable
-- size tagged types) are not primitives.
elsif Is_Frozen (Tagged_Type)
and then not Comes_From_Source (Subp)
and then not Has_Dispatching_Parent
then
-- Complete decoration of internally built subprograms that override
-- a dispatching primitive. These entities correspond with the
-- following cases:
-- 1. Ada 2005 (AI-391): Wrapper functions built by the expander
-- to override functions of nonabstract null extensions. These
-- primitives were added to the list of primitives of the tagged
-- type by Make_Controlling_Function_Wrappers. However, attribute
-- Is_Dispatching_Operation must be set to true.
-- 2. Ada 2005 (AI-251): Wrapper procedures of null interface
-- primitives.
-- 3. Subprograms associated with stream attributes (built by
-- New_Stream_Subprogram) or with the Put_Image attribute.
-- 4. Wrappers built for inherited operations with inherited class-
-- wide conditions, where the conditions include calls to other
-- overridden primitives. The wrappers include checks on these
-- modified conditions. (AI12-113).
-- 5. Declarations built for subprograms without separate specs that
-- are eligible for inlining in GNATprove (inside
-- Sem_Ch6.Analyze_Subprogram_Body_Helper).
if Present (Old_Subp)
and then Present (Overridden_Operation (Subp))
and then Is_Dispatching_Operation (Old_Subp)
then
pragma Assert
((Ekind (Subp) = E_Function
and then Is_Dispatching_Operation (Old_Subp)
and then Is_Null_Extension (Base_Type (Etype (Subp))))
or else
(Ekind (Subp) = E_Procedure
and then Is_Dispatching_Operation (Old_Subp)
and then Present (Alias (Old_Subp))
and then Is_Null_Interface_Primitive
(Ultimate_Alias (Old_Subp)))
or else Get_TSS_Name (Subp) = TSS_Stream_Read
or else Get_TSS_Name (Subp) = TSS_Stream_Write
or else Get_TSS_Name (Subp) = TSS_Put_Image
or else
(Is_Wrapper (Subp)
and then Present (LSP_Subprogram (Subp)))
or else GNATprove_Mode);
Check_Controlling_Formals (Tagged_Type, Subp);
Override_Dispatching_Operation (Tagged_Type, Old_Subp, Subp);
Set_Is_Dispatching_Operation (Subp);
end if;
return;
-- The operation may be a child unit, whose scope is the defining
-- package, but which is not a primitive operation of the type.
elsif Is_Child_Unit (Subp) then
return;
-- If the subprogram is not defined in a package spec, the only case
-- where it can be a dispatching op is when it overrides an operation
-- before the freezing point of the type.
elsif ((not Is_Package_Or_Generic_Package (Scope (Subp)))
or else In_Package_Body (Scope (Subp)))
and then not Has_Dispatching_Parent
then
if not Comes_From_Source (Subp)
or else (Present (Old_Subp) and then not Is_Frozen (Tagged_Type))
then
null;
-- If the type is already frozen, the overriding is not allowed
-- except when Old_Subp is not a dispatching operation (which can
-- occur when Old_Subp was inherited by an untagged type). However,
-- a body with no previous spec freezes the type *after* its
-- declaration, and therefore is a legal overriding (unless the type
-- has already been frozen). Only the first such body is legal.
elsif Present (Old_Subp)
and then Is_Dispatching_Operation (Old_Subp)
then
if Comes_From_Source (Subp)
and then
(Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Body
or else Nkind (Unit_Declaration_Node (Subp)) in N_Body_Stub)
then
declare
Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
Decl_Item : Node_Id;
begin
-- ??? The checks here for whether the type has been frozen
-- prior to the new body are not complete. It's not simple
-- to check frozenness at this point since the body has
-- already caused the type to be prematurely frozen in
-- Analyze_Declarations, but we're forced to recheck this
-- here because of the odd rule interpretation that allows
-- the overriding if the type wasn't frozen prior to the
-- body. The freezing action should probably be delayed
-- until after the spec is seen, but that's a tricky
-- change to the delicate freezing code.
-- Look at each declaration following the type up until the
-- new subprogram body. If any of the declarations is a body
-- then the type has been frozen already so the overriding
-- primitive is illegal.
Decl_Item := Next (Parent (Tagged_Type));
while Present (Decl_Item)
and then (Decl_Item /= Subp_Body)
loop
if Comes_From_Source (Decl_Item)
and then (Nkind (Decl_Item) in N_Proper_Body
or else Nkind (Decl_Item) in N_Body_Stub)
then
Error_Msg_N ("overriding of& is too late!", Subp);
Error_Msg_N
("\spec should appear immediately after the type!",
Subp);
exit;
end if;
Next (Decl_Item);
end loop;
-- If the subprogram doesn't follow in the list of
-- declarations including the type then the type has
-- definitely been frozen already and the body is illegal.
if No (Decl_Item) then
Error_Msg_N ("overriding of& is too late!", Subp);
Error_Msg_N
("\spec should appear immediately after the type!",
Subp);
else
-- The subprogram body declares a primitive operation.
-- We must update its dispatching information here. The
-- information is taken from the overridden subprogram.
-- We must also generate a cross-reference entry because
-- references to other primitives were already created
-- when type was frozen.
Body_Is_Last_Primitive := True;
if Present (DTC_Entity (Old_Subp)) then
Set_DTC_Entity (Subp, DTC_Entity (Old_Subp));
Set_DT_Position_Value (Subp, DT_Position (Old_Subp));
if not Restriction_Active (No_Dispatching_Calls) then
if Building_Static_DT (Tagged_Type) then
-- If the static dispatch table has not been
-- built then there is nothing else to do now;
-- otherwise we notify that we cannot build the
-- static dispatch table.
if Has_Dispatch_Table (Tagged_Type) then
Error_Msg_N
("overriding of& is too late for building "
& " static dispatch tables!", Subp);
Error_Msg_N
("\spec should appear immediately after "
& "the type!", Subp);
end if;
-- No code required to register primitives in VM
-- targets
elsif not Tagged_Type_Expansion then
null;
else
Insert_Actions_After (Subp_Body,
Register_Primitive (Sloc (Subp_Body),
Prim => Subp));
end if;
-- Indicate that this is an overriding operation,
-- and replace the overridden entry in the list of
-- primitive operations, which is used for xref
-- generation subsequently.
Generate_Reference (Tagged_Type, Subp, 'P', False);
Override_Dispatching_Operation
(Tagged_Type, Old_Subp, Subp);
Set_Is_Dispatching_Operation (Subp);
-- Inherit decoration of controlling formals and
-- controlling result.
if Ekind (Old_Subp) = E_Function
and then Has_Controlling_Result (Old_Subp)
then
Set_Has_Controlling_Result (Subp);
end if;
if Present (First_Formal (Old_Subp)) then
declare
Old_Formal : Entity_Id;
Formal : Entity_Id;
begin
Formal := First_Formal (Subp);
Old_Formal := First_Formal (Old_Subp);
while Present (Old_Formal) loop
Set_Is_Controlling_Formal (Formal,
Is_Controlling_Formal (Old_Formal));
Next_Formal (Formal);
Next_Formal (Old_Formal);
end loop;
end;
end if;
end if;
Check_Inherited_Conditions (Tagged_Type,
Late_Overriding => True);
end if;
end if;
end;
else
Error_Msg_N ("overriding of& is too late!", Subp);
Error_Msg_N
("\subprogram spec should appear immediately after the type!",
Subp);
end if;
-- If the type is not frozen yet and we are not in the overriding
-- case it looks suspiciously like an attempt to define a primitive
-- operation, which requires the declaration to be in a package spec
-- (3.2.3(6)). Only report cases where the type and subprogram are
-- in the same declaration list (by checking the enclosing parent
-- declarations), to avoid spurious warnings on subprograms in
-- instance bodies when the type is declared in the instance spec
-- but hasn't been frozen by the instance body.
elsif not Is_Frozen (Tagged_Type)
and then In_Same_List (Parent (Tagged_Type), Parent (Parent (Subp)))
then
Error_Msg_N
("??not dispatching (must be defined in a package spec)", Subp);
return;
-- When the type is frozen, it is legitimate to define a new
-- non-primitive operation.
else
return;
end if;
-- Now, we are sure that the scope is a package spec. If the subprogram
-- is declared after the freezing point of the type that's an error
elsif Is_Frozen (Tagged_Type) and then not Has_Dispatching_Parent then
Error_Msg_N ("this primitive operation is declared too late", Subp);
Error_Msg_NE
("??no primitive operations for& after this line",
Freeze_Node (Tagged_Type),
Tagged_Type);
return;
end if;
Check_Controlling_Formals (Tagged_Type, Subp);
Ovr_Subp := Old_Subp;
-- [Ada 2012:AI-0125]: Search for inherited hidden primitive that may be
-- overridden by Subp. This only applies to source subprograms, and
-- their declaration must carry an explicit overriding indicator.
if No (Ovr_Subp)
and then Ada_Version >= Ada_2012
and then Comes_From_Source (Subp)
and then
Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
then
Ovr_Subp := Find_Hidden_Overridden_Primitive (Subp);
-- Verify that the proper overriding indicator has been supplied.
if Present (Ovr_Subp)
and then
not Must_Override (Specification (Unit_Declaration_Node (Subp)))
then
Error_Msg_NE ("missing overriding indicator for&", Subp, Subp);
end if;
end if;
-- Now it should be a correct primitive operation, put it in the list
if Present (Ovr_Subp) then
-- If the type has interfaces we complete this check after we set
-- attribute Is_Dispatching_Operation.
Check_Subtype_Conformant (Subp, Ovr_Subp);
-- A primitive operation with the name of a primitive controlled
-- operation does not override a non-visible overriding controlled
-- operation, i.e. one declared in a private part when the full
-- view of a type is controlled. Conversely, it will override a
-- visible operation that may be declared in a partial view when
-- the full view is controlled.
if Chars (Subp) in Name_Initialize | Name_Adjust | Name_Finalize
and then Is_Controlled (Tagged_Type)
and then not Is_Visibly_Controlled (Tagged_Type)
and then not Is_Inherited_Public_Operation (Ovr_Subp)
then
Set_Overridden_Operation (Subp, Empty);
-- If the subprogram specification carries an overriding
-- indicator, no need for the warning: it is either redundant,
-- or else an error will be reported.
if Nkind (Parent (Subp)) = N_Procedure_Specification
and then
(Must_Override (Parent (Subp))
or else Must_Not_Override (Parent (Subp)))
then
null;
-- Here we need the warning
else
Error_Msg_NE
("operation does not override inherited&??", Subp, Subp);
end if;
else
Override_Dispatching_Operation (Tagged_Type, Ovr_Subp, Subp);
-- Ada 2005 (AI-251): In case of late overriding of a primitive
-- that covers abstract interface subprograms we must register it
-- in all the secondary dispatch tables associated with abstract
-- interfaces. We do this now only if not building static tables,
-- nor when the expander is inactive (we avoid trying to register
-- primitives in semantics-only mode, since the type may not have
-- an associated dispatch table). Otherwise the patch code is
-- emitted after those tables are built, to prevent access before
-- elaboration in gigi.
if Body_Is_Last_Primitive
and then not Building_Static_DT (Tagged_Type)
and then Expander_Active
and then Tagged_Type_Expansion
then
declare
Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
Elmt : Elmt_Id;
Prim : Node_Id;
begin
Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
while Present (Elmt) loop
Prim := Node (Elmt);
if Present (Alias (Prim))
and then Present (Interface_Alias (Prim))
and then Alias (Prim) = Subp
then
Insert_Actions_After (Subp_Body,
Register_Primitive (Sloc (Subp_Body), Prim => Prim));
end if;
Next_Elmt (Elmt);
end loop;
-- Redisplay the contents of the updated dispatch table
if Debug_Flag_ZZ then
Write_Str ("Late overriding: ");
Write_DT (Tagged_Type);
end if;
end;
end if;
end if;
-- If no old subprogram, then we add this as a dispatching operation,
-- but we avoid doing this if an error was posted, to prevent annoying
-- cascaded errors.
elsif not Error_Posted (Subp) then
Add_Dispatching_Operation (Tagged_Type, Subp);
end if;
Set_Is_Dispatching_Operation (Subp, True);
-- Ada 2005 (AI-251): If the type implements interfaces we must check
-- subtype conformance against all the interfaces covered by this
-- primitive.
if Present (Ovr_Subp)
and then Has_Interfaces (Tagged_Type)
then
declare
Ifaces_List : Elist_Id;
Iface_Elmt : Elmt_Id;
Iface_Prim_Elmt : Elmt_Id;
Iface_Prim : Entity_Id;
Ret_Typ : Entity_Id;
begin
Collect_Interfaces (Tagged_Type, Ifaces_List);
Iface_Elmt := First_Elmt (Ifaces_List);
while Present (Iface_Elmt) loop
if not Is_Ancestor (Node (Iface_Elmt), Tagged_Type) then
Iface_Prim_Elmt :=
First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
while Present (Iface_Prim_Elmt) loop
Iface_Prim := Node (Iface_Prim_Elmt);
if Is_Interface_Conformant
(Tagged_Type, Iface_Prim, Subp)
then
-- Handle procedures, functions whose return type
-- matches, or functions not returning interfaces
if Ekind (Subp) = E_Procedure
or else Etype (Iface_Prim) = Etype (Subp)
or else not Is_Interface (Etype (Iface_Prim))
then
Check_Subtype_Conformant
(New_Id => Subp,
Old_Id => Iface_Prim,
Err_Loc => Subp,
Skip_Controlling_Formals => True);
-- Handle functions returning interfaces
elsif Implements_Interface
(Etype (Subp), Etype (Iface_Prim))
then
-- Temporarily force both entities to return the
-- same type. Required because Subtype_Conformant
-- does not handle this case.
Ret_Typ := Etype (Iface_Prim);
Set_Etype (Iface_Prim, Etype (Subp));
Check_Subtype_Conformant
(New_Id => Subp,
Old_Id => Iface_Prim,
Err_Loc => Subp,
Skip_Controlling_Formals => True);
Set_Etype (Iface_Prim, Ret_Typ);
end if;
end if;
Next_Elmt (Iface_Prim_Elmt);
end loop;
end if;
Next_Elmt (Iface_Elmt);
end loop;
end;
end if;
if not Body_Is_Last_Primitive then
Set_DT_Position_Value (Subp, No_Uint);
elsif Has_Controlled_Component (Tagged_Type)
and then Chars (Subp) in Name_Initialize
| Name_Adjust
| Name_Finalize
| Name_Finalize_Address
then
declare
F_Node : constant Node_Id := Freeze_Node (Tagged_Type);
Decl : Node_Id;
Old_P : Entity_Id;
Old_Bod : Node_Id;
Old_Spec : Entity_Id;
C_Names : constant array (1 .. 4) of Name_Id :=
(Name_Initialize,
Name_Adjust,
Name_Finalize,
Name_Finalize_Address);
D_Names : constant array (1 .. 4) of TSS_Name_Type :=
(TSS_Deep_Initialize,
TSS_Deep_Adjust,
TSS_Deep_Finalize,
TSS_Finalize_Address);
begin
-- Remove previous controlled function which was constructed and
-- analyzed when the type was frozen. This requires removing the
-- body of the redefined primitive, as well as its specification
-- if needed (there is no spec created for Deep_Initialize, see
-- exp_ch3.adb). We must also dismantle the exception information
-- that may have been generated for it when front end zero-cost
-- tables are enabled.
for J in D_Names'Range loop
Old_P := TSS (Tagged_Type, D_Names (J));
if Present (Old_P)
and then Chars (Subp) = C_Names (J)
then
Old_Bod := Unit_Declaration_Node (Old_P);
Remove (Old_Bod);
Set_Is_Eliminated (Old_P);
Set_Scope (Old_P, Scope (Current_Scope));
if Nkind (Old_Bod) = N_Subprogram_Body
and then Present (Corresponding_Spec (Old_Bod))
then
Old_Spec := Corresponding_Spec (Old_Bod);
Set_Has_Completion (Old_Spec, False);
end if;
end if;
end loop;
Build_Late_Proc (Tagged_Type, Chars (Subp));
-- The new operation is added to the actions of the freeze node
-- for the type, but this node has already been analyzed, so we
-- must retrieve and analyze explicitly the new body.
if Present (F_Node)
and then Present (Actions (F_Node))
then
Decl := Last (Actions (F_Node));
Analyze (Decl);
end if;
end;
end if;
-- AI12-0279: If the Yield aspect is specified for a dispatching
-- subprogram that inherits the aspect, the specified value shall
-- be confirming.
if Is_Dispatching_Operation (Subp)
and then Is_Primitive_Wrapper (Subp)
and then Present (Wrapped_Entity (Subp))
and then Comes_From_Source (Wrapped_Entity (Subp))
and then Present (Overridden_Operation (Subp))
and then Has_Yield_Aspect (Overridden_Operation (Subp))
/= Has_Yield_Aspect (Wrapped_Entity (Subp))
then
declare
W_Ent : constant Entity_Id := Wrapped_Entity (Subp);
W_Decl : constant Node_Id := Parent (W_Ent);
Asp : Node_Id;
begin
if Present (Aspect_Specifications (W_Decl)) then
Asp := First (Aspect_Specifications (W_Decl));
while Present (Asp) loop
if Chars (Identifier (Asp)) = Name_Yield then
Error_Msg_Name_1 := Name_Yield;
Error_Msg_N
("specification of inherited aspect% can only confirm "
& "parent value", Asp);
end if;
Next (Asp);
end loop;
end if;
Set_Has_Yield_Aspect (Wrapped_Entity (Subp));
end;
end if;
-- For similarity with record extensions, in Ada 9X the language should
-- have disallowed adding visible operations to a tagged type after
-- deriving a private extension from it. Report a warning if this
-- primitive is defined after a private extension of Tagged_Type.
Warn_On_Late_Primitive_After_Private_Extension (Tagged_Type, Subp);
end Check_Dispatching_Operation;
------------------------------------------
-- Check_Operation_From_Incomplete_Type --
------------------------------------------
procedure Check_Operation_From_Incomplete_Type
(Subp : Entity_Id;
Typ : Entity_Id)
is
Full : constant Entity_Id := Full_View (Typ);
Parent_Typ : constant Entity_Id := Etype (Full);
Old_Prim : constant Elist_Id := Primitive_Operations (Parent_Typ);
New_Prim : constant Elist_Id := Primitive_Operations (Full);
Op1, Op2 : Elmt_Id;
Prev : Elmt_Id := No_Elmt;
function Derives_From (Parent_Subp : Entity_Id) return Boolean;
-- Check that Subp has profile of an operation derived from Parent_Subp.
-- Subp must have a parameter or result type that is Typ or an access
-- parameter or access result type that designates Typ.
------------------
-- Derives_From --
------------------
function Derives_From (Parent_Subp : Entity_Id) return Boolean is
F1, F2 : Entity_Id;
begin
if Chars (Parent_Subp) /= Chars (Subp) then
return False;
end if;
-- Check that the type of controlling formals is derived from the
-- parent subprogram's controlling formal type (or designated type
-- if the formal type is an anonymous access type).
F1 := First_Formal (Parent_Subp);
F2 := First_Formal (Subp);
while Present (F1) and then Present (F2) loop
if Ekind (Etype (F1)) = E_Anonymous_Access_Type then
if Ekind (Etype (F2)) /= E_Anonymous_Access_Type then
return False;
elsif Designated_Type (Etype (F1)) = Parent_Typ
and then Designated_Type (Etype (F2)) /= Full
then
return False;
end if;
elsif Ekind (Etype (F2)) = E_Anonymous_Access_Type then
return False;
elsif Etype (F1) = Parent_Typ and then Etype (F2) /= Full then
return False;
end if;
Next_Formal (F1);
Next_Formal (F2);
end loop;
-- Check that a controlling result type is derived from the parent
-- subprogram's result type (or designated type if the result type
-- is an anonymous access type).
if Ekind (Parent_Subp) = E_Function then
if Ekind (Subp) /= E_Function then
return False;
elsif Ekind (Etype (Parent_Subp)) = E_Anonymous_Access_Type then
if Ekind (Etype (Subp)) /= E_Anonymous_Access_Type then
return False;
elsif Designated_Type (Etype (Parent_Subp)) = Parent_Typ
and then Designated_Type (Etype (Subp)) /= Full
then
return False;
end if;
elsif Ekind (Etype (Subp)) = E_Anonymous_Access_Type then
return False;
elsif Etype (Parent_Subp) = Parent_Typ
and then Etype (Subp) /= Full
then
return False;
end if;
elsif Ekind (Subp) = E_Function then
return False;
end if;
return No (F1) and then No (F2);
end Derives_From;
-- Start of processing for Check_Operation_From_Incomplete_Type
begin
-- The operation may override an inherited one, or may be a new one
-- altogether. The inherited operation will have been hidden by the
-- current one at the point of the type derivation, so it does not
-- appear in the list of primitive operations of the type. We have to
-- find the proper place of insertion in the list of primitive opera-
-- tions by iterating over the list for the parent type.
Op1 := First_Elmt (Old_Prim);
Op2 := First_Elmt (New_Prim);
while Present (Op1) and then Present (Op2) loop
if Derives_From (Node (Op1)) then
if No (Prev) then
-- Avoid adding it to the list of primitives if already there
if Node (Op2) /= Subp then
Prepend_Elmt (Subp, New_Prim);
end if;
else
Insert_Elmt_After (Subp, Prev);
end if;
return;
end if;
Prev := Op2;
Next_Elmt (Op1);
Next_Elmt (Op2);
end loop;
-- Operation is a new primitive
Append_Elmt (Subp, New_Prim);
end Check_Operation_From_Incomplete_Type;
---------------------------------------
-- Check_Operation_From_Private_View --
---------------------------------------
procedure Check_Operation_From_Private_View (Subp, Old_Subp : Entity_Id) is
Tagged_Type : Entity_Id;
begin
if Is_Dispatching_Operation (Alias (Subp)) then
Set_Scope (Subp, Current_Scope);
Tagged_Type := Find_Dispatching_Type (Subp);
-- Add Old_Subp to primitive operations if not already present
if Present (Tagged_Type) and then Is_Tagged_Type (Tagged_Type) then
Add_Dispatching_Operation (Tagged_Type, Old_Subp);
-- If Old_Subp isn't already marked as dispatching then this is
-- the case of an operation of an untagged private type fulfilled
-- by a tagged type that overrides an inherited dispatching
-- operation, so we set the necessary dispatching attributes here.
if not Is_Dispatching_Operation (Old_Subp) then
-- If the untagged type has no discriminants, and the full
-- view is constrained, there will be a spurious mismatch of
-- subtypes on the controlling arguments, because the tagged
-- type is the internal base type introduced in the derivation.
-- Use the original type to verify conformance, rather than the
-- base type.
if not Comes_From_Source (Tagged_Type)
and then Has_Discriminants (Tagged_Type)
then
declare
Formal : Entity_Id;
begin
Formal := First_Formal (Old_Subp);
while Present (Formal) loop
if Tagged_Type = Base_Type (Etype (Formal)) then
Tagged_Type := Etype (Formal);
end if;
Next_Formal (Formal);
end loop;
end;
if Tagged_Type = Base_Type (Etype (Old_Subp)) then
Tagged_Type := Etype (Old_Subp);
end if;
end if;
Check_Controlling_Formals (Tagged_Type, Old_Subp);
Set_Is_Dispatching_Operation (Old_Subp, True);
Set_DT_Position_Value (Old_Subp, No_Uint);
end if;
-- If the old subprogram is an explicit renaming of some other
-- entity, it is not overridden by the inherited subprogram.
-- Otherwise, update its alias and other attributes.
if Present (Alias (Old_Subp))
and then Nkind (Unit_Declaration_Node (Old_Subp)) /=
N_Subprogram_Renaming_Declaration
then
Set_Alias (Old_Subp, Alias (Subp));
-- The derived subprogram should inherit the abstractness of
-- the parent subprogram (except in the case of a function
-- returning the type). This sets the abstractness properly
-- for cases where a private extension may have inherited an
-- abstract operation, but the full type is derived from a
-- descendant type and inherits a nonabstract version.
if Etype (Subp) /= Tagged_Type then
Set_Is_Abstract_Subprogram
(Old_Subp, Is_Abstract_Subprogram (Alias (Subp)));
end if;
end if;
end if;
end if;
end Check_Operation_From_Private_View;
--------------------------
-- Find_Controlling_Arg --
--------------------------
function Find_Controlling_Arg (N : Node_Id) return Node_Id is
Orig_Node : constant Node_Id := Original_Node (N);
Typ : Entity_Id;
begin
if Nkind (Orig_Node) = N_Qualified_Expression then
return Find_Controlling_Arg (Expression (Orig_Node));
end if;
-- Dispatching on result case. If expansion is disabled, the node still
-- has the structure of a function call. However, if the function name
-- is an operator and the call was given in infix form, the original
-- node has no controlling result and we must examine the current node.
if Nkind (N) = N_Function_Call
and then Present (Controlling_Argument (N))
and then Has_Controlling_Result (Entity (Name (N)))
then
return Controlling_Argument (N);
-- If expansion is enabled, the call may have been transformed into
-- an indirect call, and we need to recover the original node.
elsif Nkind (Orig_Node) = N_Function_Call
and then Present (Controlling_Argument (Orig_Node))
and then Has_Controlling_Result (Entity (Name (Orig_Node)))
then
return Controlling_Argument (Orig_Node);
-- Type conversions are dynamically tagged if the target type, or its
-- designated type, are classwide. An interface conversion expands into
-- a dereference, so test must be performed on the original node.
elsif Nkind (Orig_Node) = N_Type_Conversion
and then Nkind (N) = N_Explicit_Dereference
and then Is_Controlling_Actual (N)
then
declare
Target_Type : constant Entity_Id :=
Entity (Subtype_Mark (Orig_Node));
begin
if Is_Class_Wide_Type (Target_Type) then
return N;
elsif Is_Access_Type (Target_Type)
and then Is_Class_Wide_Type (Designated_Type (Target_Type))
then
return N;
else
return Empty;
end if;
end;
-- Normal case
elsif Is_Controlling_Actual (N)
or else
(Nkind (Parent (N)) = N_Qualified_Expression
and then Is_Controlling_Actual (Parent (N)))
then
Typ := Etype (N);
if Is_Access_Type (Typ) then
-- In the case of an Access attribute, use the type of the prefix,
-- since in the case of an actual for an access parameter, the
-- attribute's type may be of a specific designated type, even
-- though the prefix type is class-wide.
if Nkind (N) = N_Attribute_Reference then
Typ := Etype (Prefix (N));
-- An allocator is dispatching if the type of qualified expression
-- is class_wide, in which case this is the controlling type.
elsif Nkind (Orig_Node) = N_Allocator
and then Nkind (Expression (Orig_Node)) = N_Qualified_Expression
then
Typ := Etype (Expression (Orig_Node));
else
Typ := Designated_Type (Typ);
end if;
end if;
if Is_Class_Wide_Type (Typ)
or else
(Nkind (Parent (N)) = N_Qualified_Expression
and then Is_Access_Type (Etype (N))
and then Is_Class_Wide_Type (Designated_Type (Etype (N))))
then
return N;
end if;
end if;
return Empty;
end Find_Controlling_Arg;
---------------------------
-- Find_Dispatching_Type --
---------------------------
function Find_Dispatching_Type (Subp : Entity_Id) return Entity_Id is
A_Formal : Entity_Id;
Formal : Entity_Id;
Ctrl_Type : Entity_Id;
begin
if Ekind (Subp) in E_Function | E_Procedure
and then Present (DTC_Entity (Subp))
then
return Scope (DTC_Entity (Subp));
-- For subprograms internally generated by derivations of tagged types
-- use the alias subprogram as a reference to locate the dispatching
-- type of Subp.
elsif not Comes_From_Source (Subp)
and then Present (Alias (Subp))
and then Is_Dispatching_Operation (Alias (Subp))
then
if Ekind (Alias (Subp)) = E_Function
and then Has_Controlling_Result (Alias (Subp))
then
return Check_Controlling_Type (Etype (Subp), Subp);
else
Formal := First_Formal (Subp);
A_Formal := First_Formal (Alias (Subp));
while Present (A_Formal) loop
if Is_Controlling_Formal (A_Formal) then
return Check_Controlling_Type (Etype (Formal), Subp);
end if;
Next_Formal (Formal);
Next_Formal (A_Formal);
end loop;
pragma Assert (False);
return Empty;
end if;
-- General case
else
Formal := First_Formal (Subp);
while Present (Formal) loop
Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
if Present (Ctrl_Type) then
return Ctrl_Type;
end if;
Next_Formal (Formal);
end loop;
-- The subprogram may also be dispatching on result
if Present (Etype (Subp)) then
return Check_Controlling_Type (Etype (Subp), Subp);
end if;
end if;
pragma Assert (not Is_Dispatching_Operation (Subp));
return Empty;
end Find_Dispatching_Type;
--------------------------------------
-- Find_Hidden_Overridden_Primitive --
--------------------------------------
function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id
is
Tag_Typ : constant Entity_Id := Find_Dispatching_Type (S);
Elmt : Elmt_Id;
Orig_Prim : Entity_Id;
Prim : Entity_Id;
Vis_List : Elist_Id;
begin
-- This Ada 2012 rule applies only for type extensions or private
-- extensions, where the parent type is not in a parent unit, and
-- where an operation is never declared but still inherited.
if No (Tag_Typ)
or else not Is_Record_Type (Tag_Typ)
or else Etype (Tag_Typ) = Tag_Typ
or else In_Open_Scopes (Scope (Etype (Tag_Typ)))
then
return Empty;
end if;
-- Collect the list of visible ancestor of the tagged type
Vis_List := Visible_Ancestors (Tag_Typ);
Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Elmt) loop
Prim := Node (Elmt);
-- Find an inherited hidden dispatching primitive with the name of S
-- and a type-conformant profile.
if Present (Alias (Prim))
and then Is_Hidden (Alias (Prim))
and then Find_Dispatching_Type (Alias (Prim)) /= Tag_Typ
and then Primitive_Names_Match (S, Prim)
and then Type_Conformant (S, Prim)
then
declare
Vis_Ancestor : Elmt_Id;
Elmt : Elmt_Id;
begin
-- The original corresponding operation of Prim must be an
-- operation of a visible ancestor of the dispatching type S,
-- and the original corresponding operation of S2 must be
-- visible.
Orig_Prim := Original_Corresponding_Operation (Prim);
if Orig_Prim /= Prim
and then Is_Immediately_Visible (Orig_Prim)
then
Vis_Ancestor := First_Elmt (Vis_List);
while Present (Vis_Ancestor) loop
Elmt :=
First_Elmt (Primitive_Operations (Node (Vis_Ancestor)));
while Present (Elmt) loop
if Node (Elmt) = Orig_Prim then
Set_Overridden_Operation (S, Prim);
Set_Is_Ada_2022_Only (S,
Is_Ada_2022_Only (Prim));
Set_Alias (Prim, Orig_Prim);
return Prim;
end if;
Next_Elmt (Elmt);
end loop;
Next_Elmt (Vis_Ancestor);
end loop;
end if;
end;
end if;
Next_Elmt (Elmt);
end loop;
return Empty;
end Find_Hidden_Overridden_Primitive;
---------------------------------------
-- Find_Primitive_Covering_Interface --
---------------------------------------
function Find_Primitive_Covering_Interface
(Tagged_Type : Entity_Id;
Iface_Prim : Entity_Id) return Entity_Id
is
E : Entity_Id;
El : Elmt_Id;
begin
pragma Assert (Is_Interface (Find_Dispatching_Type (Iface_Prim))
or else (Present (Alias (Iface_Prim))
and then
Is_Interface
(Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
-- Search in the homonym chain. Done to speed up locating visible
-- entities and required to catch primitives associated with the partial
-- view of private types when processing the corresponding full view.
E := Current_Entity (Iface_Prim);
while Present (E) loop
if Is_Subprogram (E)
and then Is_Dispatching_Operation (E)
and then Is_Interface_Conformant (Tagged_Type, Iface_Prim, E)
then
return E;
end if;
E := Homonym (E);
end loop;
-- Search in the list of primitives of the type. Required to locate
-- the covering primitive if the covering primitive is not visible
-- (for example, non-visible inherited primitive of private type).
El := First_Elmt (Primitive_Operations (Tagged_Type));
while Present (El) loop
E := Node (El);
-- Keep separate the management of internal entities that link
-- primitives with interface primitives from tagged type primitives.
if No (Interface_Alias (E)) then
if Present (Alias (E)) then
-- This interface primitive has not been covered yet
if Alias (E) = Iface_Prim then
return E;
-- The covering primitive was inherited
elsif Overridden_Operation (Ultimate_Alias (E))
= Iface_Prim
then
return E;
end if;
end if;
-- Check if E covers the interface primitive (includes case in
-- which E is an inherited private primitive).
if Is_Interface_Conformant (Tagged_Type, Iface_Prim, E) then
return E;
end if;
-- Use the internal entity that links the interface primitive with
-- the covering primitive to locate the entity.
elsif Interface_Alias (E) = Iface_Prim then
return Alias (E);
end if;
Next_Elmt (El);
end loop;
-- Not found
return Empty;
end Find_Primitive_Covering_Interface;
---------------------------
-- Inheritance_Utilities --
---------------------------
package body Inheritance_Utilities is
---------------------------
-- Inherited_Subprograms --
---------------------------
function Inherited_Subprograms
(S : Entity_Id;
No_Interfaces : Boolean := False;
Interfaces_Only : Boolean := False;
One_Only : Boolean := False) return Subprogram_List
is
Result : Subprogram_List (1 .. 6000);
-- 6000 here is intended to be infinity. We could use an expandable
-- table, but it would be awfully heavy, and there is no way that we
-- could reasonably exceed this value.
N : Nat := 0;
-- Number of entries in Result
Parent_Op : Entity_Id;
-- Traverses the Overridden_Operation chain
procedure Store_IS (E : Entity_Id);
-- Stores E in Result if not already stored
--------------
-- Store_IS --
--------------
procedure Store_IS (E : Entity_Id) is
begin
for J in 1 .. N loop
if E = Result (J) then
return;
end if;
end loop;
N := N + 1;
Result (N) := E;
end Store_IS;
-- Start of processing for Inherited_Subprograms
begin
pragma Assert (not (No_Interfaces and Interfaces_Only));
-- When used from backends, visibility can be handled differently
-- resulting in no dispatching type being found.
if Present (S)
and then Is_Dispatching_Operation (S)
and then Present (Find_DT (S))
then
-- Deal with direct inheritance
if not Interfaces_Only then
Parent_Op := S;
loop
Parent_Op := Overridden_Operation (Parent_Op);
exit when No (Parent_Op)
or else (No_Interfaces
and then Is_Interface (Find_DT (Parent_Op)));
if Is_Subprogram_Or_Generic_Subprogram (Parent_Op) then
Store_IS (Parent_Op);
if One_Only then
goto Done;
end if;
end if;
end loop;
end if;
-- Now deal with interfaces
if not No_Interfaces then
declare
Tag_Typ : Entity_Id;
Prim : Entity_Id;
Elmt : Elmt_Id;
begin
Tag_Typ := Find_DT (S);
-- In the presence of limited views there may be no visible
-- dispatching type. Primitives will be inherited when non-
-- limited view is frozen.
if No (Tag_Typ) then
return Result (1 .. 0);
-- Prevent cascaded errors
elsif Is_Concurrent_Type (Tag_Typ)
and then No (Corresponding_Record_Type (Tag_Typ))
and then Serious_Errors_Detected > 0
then
return Result (1 .. 0);
end if;
if Is_Concurrent_Type (Tag_Typ) then
Tag_Typ := Corresponding_Record_Type (Tag_Typ);
end if;
if Present (Tag_Typ)
and then Is_Private_Type (Tag_Typ)
and then Present (Full_View (Tag_Typ))
then
Tag_Typ := Full_View (Tag_Typ);
end if;
-- Search primitive operations of dispatching type
if Present (Tag_Typ)
and then Present (Primitive_Operations (Tag_Typ))
then
Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Elmt) loop
Prim := Node (Elmt);
-- The following test eliminates some odd cases in
-- which Ekind (Prim) is Void, to be investigated
-- further ???
if not Is_Subprogram_Or_Generic_Subprogram (Prim) then
null;
-- For [generic] subprogram, look at interface
-- alias.
elsif Present (Interface_Alias (Prim))
and then Alias (Prim) = S
then
-- We have found a primitive covered by S
Store_IS (Interface_Alias (Prim));
if One_Only then
goto Done;
end if;
end if;
Next_Elmt (Elmt);
end loop;
end if;
end;
end if;
end if;
<<Done>>
return Result (1 .. N);
end Inherited_Subprograms;
------------------------------
-- Is_Overriding_Subprogram --
------------------------------
function Is_Overriding_Subprogram (E : Entity_Id) return Boolean is
Inherited : constant Subprogram_List :=
Inherited_Subprograms (E, One_Only => True);
begin
return Inherited'Length > 0;
end Is_Overriding_Subprogram;
end Inheritance_Utilities;
--------------------------------
-- Inheritance_Utilities_Inst --
--------------------------------
package Inheritance_Utilities_Inst is new
Inheritance_Utilities (Find_Dispatching_Type);
---------------------------
-- Inherited_Subprograms --
---------------------------
function Inherited_Subprograms
(S : Entity_Id;
No_Interfaces : Boolean := False;
Interfaces_Only : Boolean := False;
One_Only : Boolean := False) return Subprogram_List renames
Inheritance_Utilities_Inst.Inherited_Subprograms;
---------------------------
-- Is_Dynamically_Tagged --
---------------------------
function Is_Dynamically_Tagged (N : Node_Id) return Boolean is
begin
if Nkind (N) = N_Error then
return False;
elsif Present (Find_Controlling_Arg (N)) then
return True;
-- Special cases: entities, and calls that dispatch on result
elsif Is_Entity_Name (N) then
return Is_Class_Wide_Type (Etype (N));
elsif Nkind (N) = N_Function_Call
and then Is_Class_Wide_Type (Etype (N))
then
return True;
-- Otherwise check whether call has controlling argument
else
return False;
end if;
end Is_Dynamically_Tagged;
---------------------------------
-- Is_Null_Interface_Primitive --
---------------------------------
function Is_Null_Interface_Primitive (E : Entity_Id) return Boolean is
begin
return Comes_From_Source (E)
and then Is_Dispatching_Operation (E)
and then Ekind (E) = E_Procedure
and then Null_Present (Parent (E))
and then Is_Interface (Find_Dispatching_Type (E));
end Is_Null_Interface_Primitive;
-----------------------------------
-- Is_Inherited_Public_Operation --
-----------------------------------
function Is_Inherited_Public_Operation (Op : Entity_Id) return Boolean is
Pack_Decl : Node_Id;
Prim : Entity_Id := Op;
Scop : Entity_Id := Prim;
begin
-- Locate the ultimate non-hidden alias entity
while Present (Alias (Prim)) and then not Is_Hidden (Alias (Prim)) loop
pragma Assert (Alias (Prim) /= Prim);
Prim := Alias (Prim);
Scop := Scope (Prim);
end loop;
if Comes_From_Source (Prim) and then Ekind (Scop) = E_Package then
Pack_Decl := Unit_Declaration_Node (Scop);
return
Nkind (Pack_Decl) = N_Package_Declaration
and then List_Containing (Unit_Declaration_Node (Prim)) =
Visible_Declarations (Specification (Pack_Decl));
else
return False;
end if;
end Is_Inherited_Public_Operation;
------------------------------
-- Is_Overriding_Subprogram --
------------------------------
function Is_Overriding_Subprogram (E : Entity_Id) return Boolean renames
Inheritance_Utilities_Inst.Is_Overriding_Subprogram;
--------------------------
-- Is_Tag_Indeterminate --
--------------------------
function Is_Tag_Indeterminate (N : Node_Id) return Boolean is
Nam : Entity_Id;
Actual : Node_Id;
Orig_Node : constant Node_Id := Original_Node (N);
begin
if Nkind (Orig_Node) = N_Function_Call
and then Is_Entity_Name (Name (Orig_Node))
then
Nam := Entity (Name (Orig_Node));
if not Has_Controlling_Result (Nam) then
return False;
-- The function may have a controlling result, but if the return type
-- is not visibly tagged, then this is not tag-indeterminate.
elsif Is_Access_Type (Etype (Nam))
and then not Is_Tagged_Type (Designated_Type (Etype (Nam)))
then
return False;
-- An explicit dereference means that the call has already been
-- expanded and there is no tag to propagate.
elsif Nkind (N) = N_Explicit_Dereference then
return False;
-- If there are no actuals, the call is tag-indeterminate
elsif No (Parameter_Associations (Orig_Node)) then
return True;
else
Actual := First_Actual (Orig_Node);
while Present (Actual) loop
if Is_Controlling_Actual (Actual)
and then not Is_Tag_Indeterminate (Actual)
then
-- One operand is dispatching
return False;
end if;
Next_Actual (Actual);
end loop;
return True;
end if;
elsif Nkind (Orig_Node) = N_Qualified_Expression then
return Is_Tag_Indeterminate (Expression (Orig_Node));
-- Case of a call to the Input attribute (possibly rewritten), which is
-- always tag-indeterminate except when its prefix is a Class attribute.
elsif Nkind (Orig_Node) = N_Attribute_Reference
and then
Get_Attribute_Id (Attribute_Name (Orig_Node)) = Attribute_Input
and then Nkind (Prefix (Orig_Node)) /= N_Attribute_Reference
then
return True;
-- In Ada 2005, a function that returns an anonymous access type can be
-- dispatching, and the dereference of a call to such a function can
-- also be tag-indeterminate if the call itself is.
elsif Nkind (Orig_Node) = N_Explicit_Dereference
and then Ada_Version >= Ada_2005
then
return Is_Tag_Indeterminate (Prefix (Orig_Node));
else
return False;
end if;
end Is_Tag_Indeterminate;
------------------------------------
-- Override_Dispatching_Operation --
------------------------------------
procedure Override_Dispatching_Operation
(Tagged_Type : Entity_Id;
Prev_Op : Entity_Id;
New_Op : Entity_Id)
is
Elmt : Elmt_Id;
Prim : Node_Id;
begin
-- If there is no previous operation to override, the type declaration
-- was malformed, and an error must have been emitted already.
Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
while Present (Elmt) and then Node (Elmt) /= Prev_Op loop
Next_Elmt (Elmt);
end loop;
if No (Elmt) then
return;
end if;
-- The location of entities that come from source in the list of
-- primitives of the tagged type must follow their order of occurrence
-- in the sources to fulfill the C++ ABI. If the overridden entity is a
-- primitive of an interface that is not implemented by the parents of
-- this tagged type (that is, it is an alias of an interface primitive
-- generated by Derive_Interface_Progenitors), then we must append the
-- new entity at the end of the list of primitives.
if Present (Alias (Prev_Op))
and then Etype (Tagged_Type) /= Tagged_Type
and then Is_Interface (Find_Dispatching_Type (Alias (Prev_Op)))
and then not Is_Ancestor (Find_Dispatching_Type (Alias (Prev_Op)),
Tagged_Type, Use_Full_View => True)
and then not Implements_Interface
(Etype (Tagged_Type),
Find_Dispatching_Type (Alias (Prev_Op)))
then
Remove_Elmt (Primitive_Operations (Tagged_Type), Elmt);
Add_Dispatching_Operation (Tagged_Type, New_Op);
-- The new primitive replaces the overridden entity. Required to ensure
-- that overriding primitive is assigned the same dispatch table slot.
else
Replace_Elmt (Elmt, New_Op);
end if;
if Ada_Version >= Ada_2005 and then Has_Interfaces (Tagged_Type) then
-- Ada 2005 (AI-251): Update the attribute alias of all the aliased
-- entities of the overridden primitive to reference New_Op, and
-- also propagate the proper value of Is_Abstract_Subprogram. Verify
-- that the new operation is subtype conformant with the interface
-- operations that it implements (for operations inherited from the
-- parent itself, this check is made when building the derived type).
-- Note: This code is executed with internally generated wrappers of
-- functions with controlling result and late overridings.
Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
while Present (Elmt) loop
Prim := Node (Elmt);
if Prim = New_Op then
null;
-- Note: The check on Is_Subprogram protects the frontend against
-- reading attributes in entities that are not yet fully decorated
elsif Is_Subprogram (Prim)
and then Present (Interface_Alias (Prim))
and then Alias (Prim) = Prev_Op
then
Set_Alias (Prim, New_Op);
-- No further decoration needed yet for internally generated
-- wrappers of controlling functions since (at this stage)
-- they are not yet decorated.
if not Is_Wrapper (New_Op) then
Check_Subtype_Conformant (New_Op, Prim);
Set_Is_Abstract_Subprogram (Prim,
Is_Abstract_Subprogram (New_Op));
-- Ensure that this entity will be expanded to fill the
-- corresponding entry in its dispatch table.
if not Is_Abstract_Subprogram (Prim) then
Set_Has_Delayed_Freeze (Prim);
end if;
end if;
end if;
Next_Elmt (Elmt);
end loop;
end if;
if (not Is_Package_Or_Generic_Package (Current_Scope))
or else not In_Private_Part (Current_Scope)
then
-- Not a private primitive
null;
else pragma Assert (Is_Inherited_Operation (Prev_Op));
-- Make the overriding operation into an alias of the implicit one.
-- In this fashion a call from outside ends up calling the new body
-- even if non-dispatching, and a call from inside calls the over-
-- riding operation because it hides the implicit one. To indicate
-- that the body of Prev_Op is never called, set its dispatch table
-- entity to Empty. If the overridden operation has a dispatching
-- result, so does the overriding one.
Set_Alias (Prev_Op, New_Op);
Set_DTC_Entity (Prev_Op, Empty);
Set_Has_Controlling_Result (New_Op, Has_Controlling_Result (Prev_Op));
Set_Is_Ada_2022_Only (New_Op, Is_Ada_2022_Only (Prev_Op));
end if;
end Override_Dispatching_Operation;
-------------------
-- Propagate_Tag --
-------------------
procedure Propagate_Tag (Control : Node_Id; Actual : Node_Id) is
Call_Node : Node_Id;
Arg : Node_Id;
begin
if Nkind (Actual) = N_Function_Call then
Call_Node := Actual;
elsif Nkind (Actual) = N_Identifier
and then Nkind (Original_Node (Actual)) = N_Function_Call
then
-- Call rewritten as object declaration when stack-checking is
-- enabled. Propagate tag to expression in declaration, which is
-- original call.
Call_Node := Expression (Parent (Entity (Actual)));
-- Ada 2005: If this is a dereference of a call to a function with a
-- dispatching access-result, the tag is propagated when the dereference
-- itself is expanded (see exp_ch6.adb) and there is nothing else to do.
elsif Nkind (Actual) = N_Explicit_Dereference
and then Nkind (Original_Node (Prefix (Actual))) = N_Function_Call
then
return;
-- When expansion is suppressed, an unexpanded call to 'Input can occur,
-- and in that case we can simply return.
elsif Nkind (Actual) = N_Attribute_Reference then
pragma Assert (Attribute_Name (Actual) = Name_Input);
return;
-- Only other possibilities are parenthesized or qualified expression,
-- or an expander-generated unchecked conversion of a function call to
-- a stream Input attribute.
else
Call_Node := Expression (Actual);
end if;
-- No action needed if the call has been already expanded
if Is_Expanded_Dispatching_Call (Call_Node) then
return;
end if;
-- Do not set the Controlling_Argument if already set. This happens in
-- the special case of _Input (see Exp_Attr, case Input).
if No (Controlling_Argument (Call_Node)) then
Set_Controlling_Argument (Call_Node, Control);
end if;
Arg := First_Actual (Call_Node);
while Present (Arg) loop
if Is_Tag_Indeterminate (Arg) then
Propagate_Tag (Control, Arg);
end if;
Next_Actual (Arg);
end loop;
-- Add class-wide precondition check if the target of this dispatching
-- call has or inherits class-wide preconditions.
Install_Class_Preconditions_Check (Call_Node);
-- Expansion of dispatching calls is suppressed on VM targets, because
-- the VM back-ends directly handle the generation of dispatching calls
-- and would have to undo any expansion to an indirect call.
if Tagged_Type_Expansion then
declare
Call_Typ : Entity_Id := Etype (Call_Node);
Ctrl_Typ : Entity_Id := Etype (Control);
begin
Expand_Dispatching_Call (Call_Node);
if Is_Class_Wide_Type (Call_Typ) then
Call_Typ := Root_Type (Call_Typ);
end if;
if Is_Class_Wide_Type (Ctrl_Typ) then
Ctrl_Typ := Root_Type (Ctrl_Typ);
end if;
-- If the controlling argument is an interface type and the type
-- of Call_Node differs then we must add an implicit conversion to
-- force displacement of the pointer to the object to reference
-- the secondary dispatch table of the interface.
if Is_Interface (Ctrl_Typ)
and then Ctrl_Typ /= Call_Typ
then
-- Cannot use Convert_To because the previous call to
-- Expand_Dispatching_Call leaves decorated the Call_Node
-- with the type of Control.
Rewrite (Call_Node,
Make_Type_Conversion (Sloc (Call_Node),
Subtype_Mark =>
New_Occurrence_Of (Etype (Control), Sloc (Call_Node)),
Expression => Relocate_Node (Call_Node)));
Set_Etype (Call_Node, Etype (Control));
Set_Analyzed (Call_Node);
Expand_Interface_Conversion (Call_Node);
end if;
end;
-- Expansion of a dispatching call results in an indirect call, which in
-- turn causes current values to be killed (see Resolve_Call), so on VM
-- targets we do the call here to ensure consistent warnings between VM
-- and non-VM targets.
else
Kill_Current_Values;
end if;
end Propagate_Tag;
end Sem_Disp;